
3

overload issue 71 february 2006

contents credits &
contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Soft Documentation
Thomas Guest 7

Dead Code
Tim Penhey 13

How to Shoot Yourself in the Foot
In an Agile Way

Giovanni Asproni 16

Friend or Foe!
Mark Radford 18

Recursive Make Considered Harmful
Peter Miller 20

Copy Deadlines
All articles intended for publication in Overload 72 should be submitted to the editor by
March 1st 2006, and for Overload 73 by May 1st 2006.

4

overload issue 70 february 2006

Let’s take one example that we are all familiar with:
connecting to mains power. This involves a large number
of arbitrary choices: voltage, frequency, the shape and
materials of the plugs and sockets. The benefits of being
able to take any appliance and plug into any socket are
obvious. Less obvious are both the mechanisms and
activities that support this – the standards process – and the
market it creates in compatible components. The former is
the cost that suppliers pay to participate in the market, and
competition in the market drives improvements in quality
and price. Clearly suppliers would like to avoid both the
costs of validating conformance to standards and the need
for competition, but society (in the form of legislation) has
ensured that they cannot access the market without this.

As software developers we all come across standards as
part of our work – almost all of you will be working with
ASCII or one of the Unicode supersets of it. (Yes, there is
also EBCDIC.) Maybe some of you can remember the
time before character sets were standardised, and computer
manufacturers just did their own thing. The others will
have to imagine the additional effort this once required
when a program needed to accept data from a new source.
Standards didn’t solve the whole problem – for example,
ASCII had an alternative interpretation of code 0x23 as
“national currency symbol” which has largely fallen into
disuse since the advent of “extended ASCII” which
contains enough “national currency symbols” to handle
European countries as well as the USA.

Another implication of differing character sets is that
there are occasionally characters represented in one that
were not representable in another (for example, the “{”
and “}”curly brace characters beloved of the C family
of languages are not present in EBCDIC). This means
that workarounds are required – for text intended for
human consumption this may be as simple as mapping
these characters to some arbitrary token (such as a “?”),
but for some uses (like the source code of computer
programs) more automation is required – hence the C
and C++ support for trigraphs and digraphs.

Despite these problems, having a common standard (or
two) for interpreting and transmitting text solves a lot of

problems and helped make communication between
computers a commonplace. Nowadays computers can
be plugged into the “world wide web” with almost the
same ease that appliances can be plugged into the mains.
There is less regulation and certification than with
electrical power (and probably more standards), but by
and large it does work.

IT standards come in a wide variety of forms. They
vary in source: there are bodies that exist to ratify
standards like IEEE, ISO and ECMA; there are industry
consortia set up to standardise a specific area like Posix,
W3C and Oasis; and there are standards published and
maintained by a specific vendor like IBM, Microsoft or
Sun. They vary in terms: some are financed by charging
for access to the standard and some don’t charge; some
require (and charge for) validation and some don’t –
there are even some with legislative backing!

My last editorial related to the C++ language standard
and the unfortunate treatment it has received at the hands
of a major vendor of C++. What I wasn’t expecting at the
time was that it would sound so familiar to a number of
of correspondents. In fact, as I gathered the stories that
I’m about to relate together I began to feel that
Bonaparte’s maxim “never ascribe to malice that which
can adequately be explained by incompetence” was being
stretched beyond credibility. I now think that Microsoft
has either undervalued consensus in the standardisation
process, or overestimated the extent to which the its needs
are a guide to the needs of the wider community. But
please don’t take my word for it: decide that for yourself.

Exhibit 1

Many of you will have heard of “C++/CLI” – this is an
ECMA standard that originates with Microsoft and has
recently been submitted to ISO for a “Fast Track Ballot”.
The BSI working group responding to this submission,
and the following quotes come from this response:

At the time this project was launched in 2003, participants described
it as an attempt to develop a "binding" of C++ to CLI, and a minimal
(if still substantial) set of extensions to support that environment.
C++/CLI is intended to be upwardly compatible with Standard C++,
and Ecma TG5 have gone to praiseworthy efforts to guarantee that

Editorial: Keeping Up Standards

T
here are many conventions that are required to make modern life possible. They
take many forms – from social rules, through voluntary agreements and contractual
arrangements to legislation.There are also those who seek to circumvent, subvert

or exploit these conventions. This implies that there are benefits, real or imagined, from
ignoring the conventions – so what is the value of them?

“Nobody made a greater mistake than he who did nothing because he could do only a little.” - Edmund Burke.

standard-conforming C++ code will compile and run correctly in this
environment.

Nevertheless, we believe C++/CLI has effectively evolved into
a language which is almost, but not quite, entirely unlike C++
as we know it. Significant differences can be found in syntax,
semantics, idioms, and underlying object model. It is as if an
architect said, “we're going to bind a new loft conversion on to your
house, but first please replace your foundations, and make all your
doors open the other way.” Continuing to identify both languages
by the same name (even though one includes an all-too-often-
dropped qualifier) will cause widespread confusion and damage
to the industry and the standard language.

...
Standard C++ is maintained by WG21, the largest and most active

working group in SC22.WG21 meetings, twice a year lasting a week
at a time, draw regular attendance by delegates from a number of
national bodies and nearly all the important vendors of C++
compilers and libraries, plus a number of people who use the
language in their work. By contrast, this ECMA draft was developed
by a small handful of people – awesomely competent ones,
undoubtedly, but who do not represent the interests of the broad
market of vendors and users.With ISO/IEC 14882 maintained by JTC
1 SC 22 WG 21 and C++/CLI maintained by ECMA, the differences
between Standard C++ and the C++/CLI variant will inevitably grow
wider over time.The document proposes no mechanism for resolving
future differences as these two versions of C++ evolve.

For JTC1 to sanction two standards called C++ for what are really
two different languages would cause permanent confusion among
employers and working programmers.

There is clear evidence that this confusion already exists now...
...
Documentation for Microsoft's Visual C++ product contains many

code examples identified as “C++” – NOT “C++/CLI” or even
“C++.Net” – which will fail to compile in a Standard C++
environment.

...
C++ already has a reputation as a complicated language which

is difficult to learn and use correctly. C++/CLI incorporates lip-service
support for Standard C++ but joins to it in shotgun marriage a
complete second language, using new keywords, new syntax,
variable semantics for current syntax, and a substantially different
object model, plus a complicated set of rules for determining which
language is in effect for any single line of source code.

If this incompatible language becomes an ISO/IEC standard under
the name submitted, it will be publicly perceived that C++ has
suddenly become about 50% more complex. The hugely increased
intellectual effort would almost certainly result in many programmers
abandoning the use of C++ completely.

...
A parallel to this situation can be found in the history of C++ itself.

As related by Bjarne Stroustrup in The Design and Evolution of C++,
the language in its early days was known as “C with Classes”, but he
was asked to call it something else: “The reason for the naming was
that people had taken to calling C with Classes ‘new C' and then C.
This abbreviation led to C being called ‘plain C’, ‘straight C’ and ‘old
C’.The last name, in particular, was considered insulting, so common
courtesy and a desire to avoid confusion led me to look for a new
name.”
(Full response at: http://www.octopull.demon.co.uk

/editorial/N8037_Objection.pdf.)

In short, ISO – the body that standardised C++ is being
asked to ratify a “fork” of C++, and the BSI panel is raising
some concerns about this. Forking isn’t of itself evil: there
are often good reasons to fork pieces of work – and on
occasions good things come of it. Some of you will
remember the edcs fork of gcc – this was a major
reworking of the C++ compiler that was infeasible within
the normal gcc schedule. This work has since become the
basis of current gcc versions. Another, long-lived and
useful fork exists between emacs and xemacs – these
projects co-exist happily and frequently exchange ideas.

However, in these felicitous cases of forking those
concerned were careful to make it clear what they were
doing and why. In the case of C++/CLI it is clear that
having a language with the power of C++ on the .NET
platform is a good thing for those interested in the
platform, and it is also clear that the CLR provides many
features that cannot be accessed without language support
(yes, efforts were made to find a library-based “mapping”).

In short, while there may be no explicit rules or laws
being broken by Microsoft’s promotion of C++/CLI as
“Pure C++” (http://msdn.microsoft.com/msdnmag/
issues/05/12/PureC/default.aspx) it is undoubtedly
antisocial.

Exhibit 2

In an earlier editorial I alluded briefly to the notice given
by the Commonwealth of Massachusetts’ administration
that, from 2007, they intended to require suppliers of office
applications to support the OpenDocument standard. For
those that don’t know, OpenDocument is an XML based
standard for office applications and has been developed
by Oasis (a consortium including all the major players)
which has submitted it to ISO for ratification.

Although Microsoft joined Oasis it is apparent that
they didn’t participate in developing the standard that
was produced. I don’t know the reasons for this but, inter
alia, it is clear that they disagreed with the decision to
take an existing, open, XML based formats as a starting
point: including that used by both StarOffice and
OpenOffice. (Although the resulting OpenDocument
format differs substantially from the original
OpenOffice format statements from Microsoft continue
to refer to it as “OpenOffice format”.)

Anyway, after discovering that their own XML based
formats didn’t meet the eventual criteria that
Massachusetts developed during an extended consultation
period (and that these criteria were unlikely to change)
Microsoft decided to standardise its own XML based
formats through ECMA as “Office Open format”. (The
terms of reference for the ECMA working group are
interesting – by my reading it seems that the group doing
the standardisation don’t have the authority to make
changes to address problems discovered in the format!)

5

overload issue 71 february 2006

6

overload issue 70 february 2006

The intent is for ECMA to submit “Office Open format”
to ISO for “Fast Track submission”.

I don’t have the expertise to make a technical assessment
of alternative standard formats for office documents –
especially when one has yet to be published. But when a
major customer (Massachusetts) and a range of suppliers,
including both IBM and Sun, agree on a standard I think it
should be given serious consideration. It is easy to see that
OpenDocument is already being adopted and supported by
applications suppliers: <http://en.wikipedia.org/wiki/
List_of_applications_supporting_OpenDocument>).

By playing games with names, Microsoft trivialise the
discussion to the point where I doubt that there is any merit
to their claim that OpenDocument is seriously flawed or
that Office Open format (when it arrives) will be better.

Exhibit 3

In my last editorial, talking about about Microsoft’s non-
standard “Safe Standard C++ Library” I wrote: The
Microsoft representatives have indicated that the parts of this work
applicable to the C standard have already been adopted by the ISO C
working group as the basis for a ‘Technical Report’. Since then I’ve
had my attention drawn to the following comments by
Chris Hills (who was convener of BSI’s C panel around
that time):

Microsoft are pushing for a new “secure C library” (See
http://std.dkuug.dk/jtc1/sc22/wg14/www/docs/

n1007.pdf and http://std.dkuug.dk/jtc1/sc22/wg14/
www/docs/n1031.pdf) for all the library functions, apparently all
2000 of them. I did not think there were 2000 functions in the ISO-C
library but MS have included all the MS C/C++ libraries as well in this
proposal, which is of no use to the vast majority in the embedded
world.

The problem for me is that the resultant libraries would be full of
MS specific extensions. The trust of the proposal is that there are
many holes and leaks in the original libraries that permit buffer over
runs, error reporting and parameter validation. Security is the
important thing here they stress. One of my BSI panel said that voting
against security is like “voting against Motherhood and Apple Pie”.
However, there is quite some unease on the UK panel re this
proposal.

The other complaint MS have in their proposal is that the library
was designed when computers were “Much simpler and more
constrained”. This is a common comment from PC programmers
who will tell you 16 bit systems died out a while ago and there has
not been an 8-bit system since Sinclair or the BBC home computers.
http://www.phaedsys.org/papersese0403.html

This doesn’t sound quite like the support for the TR implied
by Microsoft’s account – and I don’t know what has
actually happened at the WG14 meeting when this was
discussed (maybe I will by next time). However, these ISO
groups are manned by individuals and organisations that
volunteer their time: if someone volunteers to write a
‘Technical Report’then even the most negative response is
likely to be something like “it doesn't interest me” – so
Microsoft may have talked only to those interested in their

idea, not those that thought it misguided. This could have
led to an incorrect impression regarding the level of support
for their proposal. (Or Chris may have got it wrong – I
gather he was unable to attend the ISO meeting where this
proposal was discussed.)

We should see later this year if WG13 accepts this
‘Technical Report’ but, even if that happens, there are
some members of the working group that do not
anticipate this report becoming a significant input to a
future C standard.

Exhibit 4

As I reported on this last time Microsoft has unilaterally
decided various usages that a sanctioned by the standard
should be reported as ‘deprecated’ by their C++
implementation and replaced with other non-standard (and
non-portable) usages of their own. Beyond saying that the
discussions between Microsoft and other WG21 members
are ongoing I won’t go into more detail at present.

Exhibit n

The above exhibits are not an exhaustive list, I’ve heard
disgruntled remarks about Microsoft’s implementation
of Kerberos authentication, their implementation of
HTTP, their approach to standardising .NET and their
work with the SQLAccess Group. Such remarks may or
may not be justified – I don’t know enough about any of
these subjects to make informed comment.

Conclusion

Conforming to standards and regulations can be
irritating and inconvenient and some, like speed limits,
are widely violated – to the extent that ‘being caught’ is
frequently considered the nuisance, not the miscreant.
(Other standards, such as prohibitions against
kidnapping, are held in higher esteem.)

Part of what governs our attitude to standards is the
difference between what we get out of it and the
inconvenience it imposes on us. Getting to bed half an
hour earlier after a long journey often seems attractive
compared to the marginal increase in risk that speeding
introduces. (On the other hand, the temptations of
kidnapping are, to me at least, more elusive.)

In many regards Microsoft’s determination to ensure
that standard C++ code works in C++/CLI is a
demonstration of respect for the C++ standard. On the
other hand, by their actions they appear to hold the
process of standardisation, or the needs of other
participants, in low regard. On the gripping hand, these
standardisation processes are not meeting the needs of
an important supplier – is it the process or the supplier
that is out of step?

Alan Griffiths
overload@accu.org

7

overload issue 71 february 2006

Soft Documentation
by Thomas Guest

Introduction

Recently I spent some time working on a user manual.
The existing version of this manual was based on a Microsoft

Word [1] master document. From this master the various required
output formats were generated in a semi-automated fashion.

I’m guessing anyone who’s used a computer will have come
across Microsoft Word: it’s a popular tool which is easy to get
started with and which, by virtue of its WYSIWYG interface,
allows even a novice to produce stylish output. It does have its
drawbacks though, especially for technical documentation, and
these drawbacks were only amplified by the other tools involved in
producing the final deliverables.

We’ll look more closely at these drawbacks later. I summarise
them here by saying the proprietary tools and file formats led to a
loss of control. The final outputs were not so much WYSIWYG as
WYGIWYG – What You Get is What You’re Given.

Producing high quality technical documentation is a difficult
problem but it’s also a problem which has been solved many times
over. Plenty of open source projects provide model solutions. My
increasing frustration with the Microsoft Word based
documentation toolchain led me to explore one of these
alternatives.

This article records the outcome of my exploration. It tells how,
in the end, we did regain control over the manual, but at a price.

Requirements

The requirements for the manual were clear enough. It had to
look good. It had to fit the corporate style – dictating, in this
case, font families, colour schemes, logos and various other
presentational aspects. There would be pictures. There would be
screen shots. There would be cross references.

Naturally, the contents should provide clear and complete details
on how to use the Product.

We needed just two output formats:
● hard copy, printed and bound
● linked online web pages.

Of course, these two versions of the document would have to
agree with each other. And the Product itself, a server-based piece
of software with a web browser interface, should integrate with
the online documentation in a context-sensitive manner: clicking
the Help icon next to an item in the UI should pop up the manual
opened at the correct location.

Finally, there was the slightly strange requirement that the
documentation should be substantial. Somehow, it seemed
unreasonable to ask customers to hand over lots of money for
nothing more than CD’s worth of software; bundling in a weighty
manual made the final deliverables more tangible. 1

The Existing Documentation
Toolchain

The existing toolchain was, as already mentioned, based on a
Microsoft Word master document.

Producing hard copy was as simple as CTRL+P, followed by a
dialog about printer settings and some manual labour involving a
ring binder. It’s fair to say that the printed output looked pretty
much exactly as previewed: the author had good control over
pagination, positioning of images, fonts, colours and so on.

The linked online pages took more effort. We’d got a license for
a tool which I’ll call Word Doctor (not its real name – I’m using
an alias because I’m going to moan about it). Generating the linked
web pages using Word Doctor involved the following steps:
1. Create a new Project.
2. Point it at the Microsoft Word Master.
3. Select some project options from the Word Doctor GUI.
4. Click the build button (experts, hit ‘F5’).
5. Make a cup of tea while the pages generate.

All fairly easy – in theory. In practice, there were some other
steps which the Word Doctor user manual neglected to mention:

● Exit Microsoft Word. Word Doctor has trouble accessing the
document otherwise.

● Restart your PC. For some reason a resource got terminally
locked up.

● Rewrite the Microsoft Word master using the Word Doctor
document template.

● Don’t forget to exit Microsoft Word!
● Create a new project etc.
● Click the build button.
● Click away a few warnings about saving TEMPLATE.DOT and

OLE something or other.
● Read the Word Doctor workarounds Wiki page on the intranet.
● Click the build button again.
● Go for lunch. Documentation builds took around half an hour.

I am not exaggerating. The engineering manager admitted that he
estimated it took at least two days of struggling to convert a
Microsoft Word master into the online form. And nor do I blame
Word Doctor. I don’t think Microsoft Word comes with a decent
developer API. Instead, it tries to do everything itself: from
revision control, through styling, to HTML output. It uses an
opaque binary file format to deter anyone from trying to develop
tools to work with it.

The final irritation was with the Word Doctor output – if you
ever got any. The HTML was packed with Internet Explorer specific
Javascript, and looked poor in any other browser.

Connecting up to Word Doctor
Output

The real downside of Word Doctor was when it came to trying to
connect the Product to the Word Doctor web pages. This job fell
to me. It was a multi-layered integration task:
● on a team level I would work with the technical author to ensure

the documentation content was correct, and contained the
required Help topics.

● on the Product side, the web-based user interface would call for
help using a text identifier. The Help subsystem would use the
identifier to look up an HTML location – a page and an anchor
within that page – and it could then pop up a new window
viewing this location.

● on the documentation side, I would have to configure Word
Doctor to ensure its HTML output included the right locations.

1 This, to me, is a suspect requirement, or at least one we should keep in check,
otherwise we run the risk of producing documentation whose sections are cut-and-
paste adaptations of similar sections.

8

overload issue 70 february 2006

Unfortunately, there were problems with each of these layers.
Personally, I got on well with the technical author, but the

documentation tools made it extremely hard for us to work on the
same file. We had to take it in turns or work with copies. I couldn’t
even fix a typo directly.

The Word Doctor output was a frame-based collection of static
HTML pages. Now, externally referencing a particular location in
such a set of pages is tricky – due to the limitations of frames – so
the Product’s help sub-system had to dynamically generate a framed
front page displaying the appropriate left and right pane each time
it was called. Not too difficult, but more complex than strictly
necessary.

Both pages and anchors were a moving target in the Word Doctor
output. Every time you added a new section to the document you
broke most of the help references. Thus we found ourselves in a
situation where the technical author wanted the Product to stabilise
in order to document it and I needed the documentation to stabilise
in order to link to it.

Other Problems

Microsoft Word uses a proprietary binary format. This ties you
into their product to a degree – effectively, you’re relying on
Microsoft to look after your data because you simply cannot
work with this data without their tool. Of course, the risk of
Microsoft collapsing during the lifetime of your document may
be one you can live with, but you are also vulnerable to them
ceasing to support the version of Word you prefer, or charging an
unreasonable amount for an upgrade. It also means:
● it’s extremely hard for more than one person to work on a

document at a time since changes to binary files cannot be
merged together easily.

● revision control becomes more expensive and less useful (how
do you view the differences between two versions of the
manual?)

● it is very difficult to automate anything. As a trivial example,
Word Doctor had no batch interface – it required human input
at every stage. Now consider trying to rebadge the manual,
perhaps for redistribution of the Product by some partner
company. With a decent documentation toolchain this should be
as simple as the build ‘prepare’ target copying the correct logo
graphic into place and applying a simple transformation to some
text strings.

Resistance to Change

Despite all of these limitations and irritations it was hard to
convince anyone a change was necessary or even desirable. The
reasons were as much organisational as technical.
● The existing tools had been used to produce acceptable end user

documentation in the past for other products shipped by the
company.

● Already, considerable effort had been put into the Word master
for the new Product (even if much of it would have to be
scrapped due to the inevitable changes as the Product
developed).

● The engineering team had more work than it could cope with
already. At least the user documentation could be outsourced
to a contract technical author.

● Setting up a smarter toolchain would need engineering input
and, once the tools were in place, would the technical author
be able to use them productively?

● The sales team saw the documentation task as non-urgent for
much the same reason that they saw user input validation as a
nice-to-have rather than a priority. After all, they’d run some
promising beta trials at customer sites using a poorly
documented and inputs-unchecked version of the Product. They
were happy to continue to provide support and tuition as
required, either on site, by phone or by email.

I could (and did) argue against all of these points:
● existing documentation was stand-alone: it did not have to

integrate with what it documented. Using the existing tools to
connect the new Product with its documentation looked like
being a continual sink of effort.

● The engineering team probably spent as long telling the technical
author what to write as they might have spent writing it
themselves.

● Surely the technical author would quickly master a new
documentation tool?

● In fact it was more often the engineers than the sales team who
provided support, and frequently for problems which could have
been avoided with better input checking and more solid
documentation.

As software engineers we need to concentrate on the software.
That means listening to the sales team; but when it comes to
software quality, we know best. I believe the only shortcut is to
prune back the feature list and, increasingly, I regard it as wrong to
view software documentation as an add-on. Decent documentation
is one of the first things I look for when I evaluate a piece of
software: the website, the user interface, the README, the FAQ
list, and of course the source code itself (if available). Quite
simply, I didn’t want to deliver a Product with poor documentation.
I didn’t think it would save us time in the short or long term.

Regaining Control

My frustration with the existing documentation tools set me
thinking about alternatives. I looked first to the open source
world (I’m using the term loosely here), where there’s no
shortage of excellent documentation and where the authors are
happy to show how they generated it.

I experimented by downloading and attempting to build some
open source documentation. This was a part time activity, squeezed
into moments when I was waiting for builds to complete or files to
check out. If the documentation didn’t build or required lots of
configuration to get it to build, I moved on.

I was looking for something as simple as:
> cd docs ; make

To my surprise and disappointment it took several attempts to
find something which worked out of the box. Perhaps I was
unlucky. No doubt in many cases it was user error on my part and
no doubt I could have sought advice from email lists;
nonetheless, I kept moving on until I found something which
worked first time (my thanks to the Hibernate documentation
team [2]). Then I continued to experiment: could I change fonts,
include images, replicate the house style? How easy were the
tools to use with our own content?

After a Friday afternoon’s experimentation I had something
worth showing to the engineering manager: an end-to-end solution

9

overload issue 71 february 2006

which, from a DocBook XML master, generated a skeleton PDF
and HTML user manual in something approaching the house style.
I suggested to the engineering manager that we should switch the
user manual to use the tools I had just demonstrated. I said I’d be
happy to do the work. He agreed with me that technically, this
seemed the way forwards. However, it wasn’t easy for him to
give me the go ahead for the reasons already discussed.

Also, it was a hard sell for him to make to the rest of the
company: on the one hand, writing end user documentation simply
wasn’t what the engineers were supposed to be doing; and on the
other, it was hard enough persuading the technical author to use the
revision control system, let alone edit raw XML.

I confess I had my own doubts too. All I knew at this stage was
that DocBook could do the job and that I would happily tinker with
it to get it working. I didn’t know if I could be productive using it.
I don’t relish editing XML either.

We both recognised that the single most important thing was
content. Full and accurate documentation supplied as a plain
README would be of more practical use to our customers than
something beautifully formatted and structured but misleadingly
inaccurate.

In the end we deferred making a final decision on what to do
with the manual.

The results of my experiment did seem worth recording, so I
spent a day or so tidying up and checking in the code so we could
return to it, if required.

A DocBook Toolchain

I should outline here the basics of the toolchain I had evaluated.
It was based on DocBook [3]. A two sentence introduction to
DocBook can be found on the front page of the SourceForge
DocBook Project [4]. I reproduce it here in full:

DocBook is an XML vocabulary that lets you create documents in
a presentation-neutral form that captures the logical structure of
your content. Using free tools along with the DocBook XSL
stylesheets, you can publish your content as HTML pages and PDF
files, and in many other formats.

I would also like to highlight a couple of points from the preface
to Bob Stayton’s DocBook XSL: The Complete Guide [5] – a
reference which anyone actually using DocBook is sure to have
bookmarked:

A major advantage of DocBook is the availability of DocBook tools
from many sources, not just from a single vendor of a proprietary
file format.

You can mix and match components for editing, typesetting,
version control, and HTML conversion.

...
The other major advantage of DocBook is the set of free

stylesheets that are available for it... These stylesheets enable
anyone to publish their DocBook content in print and HTML.An active
community of users and contributors keeps up the development of
the stylesheets and answers questions.

So, the master document is written in XML conforming to the
DocBook DTD. This master provides the structure and content of
our document. Transforming the master into different output
formats starts with the DocBook XSL stylesheets.

Various aspects of the transformation can be controlled by setting
parameters to be applied during this transformation (do we want
a datestamp to appear in the page footer?, should a list of Figures
be included in the contents?), or even by writing custom XSL
templates (for the front page, perhaps).
Depending on the exact output format there may still be work for
us to do. For HTML pages, the XSL transformation produces
nicely structured HTML, but we probably want to adjust the CSS
style sheet and perhaps provide our own admonition and
navigation graphics. For Windows HTML Help, the DocBook
XSL stylesheets again produce a special form of HTML which
we must then run through an HTML Help compiler.

PDF output is rather more fiddly: The DocBook XSL stylesheets
yield XSL formatting objects (FO) from the DocBook XML master.
A further stage of processing is then required to convert these
formatting objects into PDF. I used the Apache Formatting Objects
Processor (FOP) [6], which in turn depends on other third-party
libraries for image processing and so on.

Presentation and Structure

A key point to realise when writing technical documentation is
the distinction between structure and presentation. Suppose,
for example, our document includes source code snippets and
we want these snippets to be preformatted in a monospaced
font with keywords emphasized using a bold font style. Here,
we have two structural elements (source code, keywords) and
two presentational elements (monospaced font, bold style).

Structure and presentation are separate concerns and our
documentation chain should enable and maintain this distinction.
This means that our master document structure will need to
identify source code as “source code” – and not simply as
preformatted text – and any keywords within it as “keywords”;
and the styling associated with the presentation of this document
will make the required mapping from “source code” to
“monospace, preformatted” and from “keyword” to “bold””.

We can see this separation in well-written HTML where the
familiar element tags (HEAD, BODY, H1, H2, P etc) describe
basic document structure, and CLASS attributes make finer
structural distinctions. The actual presentation of this structured
content is controlled by logically (and usually physically)
separate Cascading Style Sheets (CSS).

With a WYSIWYG documentation tool presentation and
structure – by definition – operate in tandem, making it all too
easy to use a structural hack to fix a presentational issue (for
example, introducing a hard page break to improve printed
layout, or scaling a font down a point size to make a table look
pretty).

DocBook enforces the separation between structure and
presentation strictly. This doesn’t mean that we can’t use a
Graphical Editor to work with DocBook documents – indeed,
a web search suggests several such editors exist. I chose to work
with the raw DocBook format, however, partly because I could
continue to use my preferred editor [7] and partly because I
wanted to get a better understanding of DocBook. The enforced
separation can sometimes be frustrating, however. It took me
about an hour to figure out how to disable hyphenation of the
book’s subtitle on my custom frontpage!

10

overload issue 70 february 2006

As we can see, there are choices to be made at all stages: which
XSL transform software do we use, which imaging libraries; do
we go for a stable release of Apache FOP or the development
rewrite? Do we spend money on a DocBook XML editor? Since
we have full source access for everything in the chain we might
also choose to customise the tools if they aren’t working for us.
These choices were, to start with, a distraction. I was happy to go
with the selection made by the Hibernate team unless there was a
good reason not to. I wanted the most direct route to generating
decent documentation. I kept reminding myself that content was
more important than style (even though the styling tools were
more fun to play with).

The Technical Author Departs

We continued on, then, deferring work on the documentation
until at least we had frozen the user interface, still pinning our
hopes on Word Doctor. Then the technical author left. She’d
landed a full-time editing position on a magazine.

Again, I volunteered to work on the documentation. By now the
engineering manager had succeeded in selling the idea of switching
documentation tools to higher management. It was still hard for him
to authorise me to actually write the documentation, though, since
we had just recruited a new technical support engineer, based in
North America. This engineer had nothing particular lined up for
the next couple of weeks. What better way for him to learn about
the Product than to write the user manual?

As it turned out it various delayed hardware deliveries meant it
took him a couple of weeks to set up a server capable of actually
running the Product – and then he was booked up on site visits. He
didn’t get to spend any time on documentation.

Version 1.0 was due to be released in a week’s time. We had four
choices:
● Ship with the existing documentation – which was dangerously

out of date.
● Stub out the documentation entirely, so at least users wouldn’t

be misled by it.
● Revise the Microsoft Word document, use Word Doctor to

generate HTML, reconnect the HTML to the Product.
● Rewrite the manual using DocBook.

We ruled out the first choice even though it required the least
effort. The second seemed like an admission of defeat – could
we seriously consider releasing a formal version of the Product
without documentation? No-one present had any enthusiasm for

the third choice.
So, finally, with less than a week until code freeze, I got assigned the
task of finishing the documentation using the tools of my choosing.

Problems with DocBook

Most things went rather surprisingly well, but I did encounter a
small number of hitches.

Portability

My first unpleasant surprise with the DocBook toolchain came
when I tried to generate the printable PDF output on a Windows
XP machine. Rather naively, perhaps, I’d assumed that since all
the tools were Java based I’d be able to run them on any platform
with a JVM. Not so.

The first time I tried a Windows build, I got a two page traceback
(see Figure 1) which sliced through methods in javax.media.jai,
org.apache.fop.pdf, org.apache.xerces.parsers, arriving
finally at the cause.

I had several options here: web search for a solution, raise a
query on an email list, swap out the defective component in the
toolchain, roll up my sleeves and debug the problem, or restrict the
documentation build to Linux only.

I discovered this problem quite early on, before the technical
author left – otherwise the Linux-only build restriction might have
been an acceptable compromise; several other Product components
were by now tied to Linux. (Bear in mind that the documentation
build outputs were entirely portable, it was only the build itself which
didn't work on all platforms). My actual solution was, though, another
compromise: I swapped the Java JAI [8] libraries for the more
primitive JIMI [9] ones, apparently with no adverse effects.

The incident did shake my confidence, though. It may well be
true that open source tools allow you the ultimate level of control,
but you don’t usually want to exercise it! At this stage I had only
tried building small documents with a few images. I remained
fearful that similar problems might recur when the manual grew
larger and more laden with screenshots.

Volatility

We all know that healthy software tools are in active development,
but this does have a downside. Some problems actually arose from
the progression of the tools I was using. For example, I started out
with the version of the DocBook XSL stylesheets I found in the
Hibernate distribution (version 1.65.1). These were probably more
than good enough for my needs, but much of the documentation I
was using referred to more recent distributions. In this case,

fortunately, switching
to the most recent
stable distribution of
the XSL stylesheets
resulted in
improvements all
round. Apache FOP
is less mature though:
the last stable version
(as of December
2005) is 0.20.5 –
hardly a version
number to inspire
confidence – and the
latest unstable

Caused by: java.lang.IllegalArgumentException: Invalid ICC Profile Data

at java.awt.color.ICC_Profile.getInstance(ICC_Profile.java:873)

at java.awt.color.ICC_Profile.getInstance(ICC_Profile.java:841)

at java.awt.color.ICC_Profile.getDeferredInstance(ICC_Profile.java:929)

at java.awt.color.ICC_Profile.getInstance(ICC_Profile.java:759)

at java.awt.color.ColorSpace.getInstance(ColorSpace.java:278)

at java.awt.image.ColorModel.<init>(ColorModel.java:151)

at java.awt.image.ComponentColorModel.<init>(ComponentColorModel.java:256)

at com.sun.media.jai.codec.ImageCodec.<clinit>(ImageCodec.java:561)

... 34 more

Figure 1: Traceback following an attempted build on Windows XP

11

overload issue 71 february 2006

release, 0.90 alpha 1, represents a break from the past. I anticipate
problems if and when I migrate to a modern version FOP, though
again, I also hope for improvements.

Verbosity

XML is verbose and DocBook XML is no exception. As an
illustration, Figure 2 shows a section of a DocBook document.

XML claims to be human readable, and on one level, it is. On
another level, though, the clunky angle brackets and obtrusive tags
make the actual text content in the master document hard to read:
the syntax obscures the semantics.

Control

The DocBook toolchain gave us superb control over some
aspects of the documentation task. In other areas the controls
existed but were tricky to locate and operate.

For example, controlling the chunking of the HTML output
was straightforward and could all be done using build time
parameters – with no modifications needed to the document
source. Similarly, controlling file and anchor names in the
generated HTML was easy, which meant the integration between
the Product and the online version of the manual was both stable
and clean.

Some of the printed output options don’t seem so simple,
especially for someone without a background in printing. In
particular, I still haven’t really got to grips with fine control of page-
breaking logic, and have to hope no-one minds too much about
tables which split awkwardly over pages.

The Rush to Completion

In the end, though, all went better than we could have hoped.
I soon had the documentation build integrated with the Product

build. Now the ISO CD image had the right version of the User
Manual automatically included.

I wrote a script to check the integration between the Product and
the User Manual. This script double-checked that the various
page/anchor targets which the Product used to launch the pop up
Help window were valid. This script too became part of the build.
It provided a rudimentary safety net as I rolled in more and more
content.
Next, I cannibalised the good bits of the existing manual. We
knew what problems we had seen in the field: some could be

fixed using better examples in the Help text; I fixed these next.
Within a couple of days the new manual had all the good content
from the old manual and none of the misleading or inaccurate
content; it included some new sections and was fully linked to the
Product. It was, though, very light on screen shots.

Screen Captures

In an ideal world we could programatically:
● launch the Product;
● load some data;
● pose the user interface for a number of screen shots;
● capture these screen shots for inclusion in the documentation.

Then this program too could become part of the build and, in
theory, the screen shots would never fall out of step with the
Product.

Already we had some tools in place to automate data loading and
to exercise the user interface. We still have no solution for
automatically capturing and cropping the images, so we rely on
human/GIMP intervention. So far, this hasn’t been a huge issue.

QuickBook

I had a workaround for the verbosity issue. I used QuickBook [10],
one of the Boost tools [11]. QuickBook is a lightweight C++
program which generates DocBook (BoostBook, strictly speaking2)
XML from a WikiWiki style source document.

Using QuickBook, we can write our previous example as:

[section Hello World]

Here is the canonical C++ example program.

#include <iostream>

int main() {

std::cout << "Hello world!" << std::endl;

return 0;

}

[endsect]

QuickBook documents are easy to read and easy to write.
QuickBook does fall a long way short of the full expressive
richness of DocBook but if all you need are sections, cross-
references, tables, lists, embedded images and so on, then it’s ideal.

You can even escape back to DocBook from QuickBook. So if
you decide your manual needs, for example, a colophon, you can
do it!

Build Times

It wasn’t going to be hard to beat Word Doctor on build times.
Currently, it takes about a minute to generate the full user
manual, in PDF and HTML format, from source. A simple
dependency check means this build is only triggered when
required. The real gain here is not so much that the build is quick,
but that it is automatic: not a single button needs clicking.

Conclusions

The real benefits of the new documentation toolchain are
becoming more and more apparent.

<section id="hello_world">

<title>Hello World</title>

<para>

Here is the canonical C++ example program.

</para>

<programlisting>

<![CDATA[

#include <iostream>

int main() {

std::cout << "Hello world!" << std::endl;

return 0;

}

]]>

</programlisting>

</section>

Figure 2: A section of DocBook document.

2 BoostBook [12] extends DocBook to provide greater support for C++ documentation.

12

overload issue 70 february 2006

As a simple example, a single text file defines the Product’s four
part version number. The build system processes this file to make
sure the correct version number appears where it’s needed: in the
user interface, in the CD install script – and, of course, in the
documentation.

Another example. If we get a support call which we think
could have been avoided had the documentation been better, then
we fix the documentation directly. Anyone with access to the
revision control system and a text editor can make the fix. The
full printed and online documentation will be regenerated when
they next do a build, and will automatically be included in the
next release.

And a final example. The Product I work on checks file-based
digital video: it can spot unpleasant compression artifacts, unwanted
black frames, audio glitches and so on. The range and depth of these
checks is perhaps the area which changes most frequently: when
we add support for a new video codec or container file format, for
example. The architecture we have in place means that these low
level enhancements disrupt the higher levels of the software only
minimally: in fact, the user interface for this part of the Product is
dynamically generated from a formal description of the supported
checks. Adding a check at this level is a simple matter of extending
this formal description. We also need to document the check:
perhaps a reference to the codec specification and a precise
definition of the metrics used. With an intelligent documentation
toolchain the documentation can live alongside the formal
description and build time checks confirm the help text links up
properly.

From an engineering point of view, documentation is properly
integrated into the Product. I finish with another quotation from
Stayton [5]:

Setting up a DocBook system will take some time and effort. But
the payoff will be an efficient, flexible, and inexpensive publishing
system that can grow with your needs.

Thomas Guest
<thomas.guest@gmail.com>

References

1 Microsoft Word: http://office.microsoft.com/
2 Hibernate: http://www.hibernate.org/
3 DocBook: http://docbook.org
4 The DocBook Project:

http://docbook.sourceforge.net/

5 Stayton, DocBook XSL: The Complete Guide
http://www.sagehill.net/docbookxsl/index.html

6 Apache FOP: http://xmlgraphics.apache.org/fop/
7 Emacs:

http://www.gnu.org/software/emacs/emacs.html

8 Java Advanced Imaging (JAI) API
http://java.sun.com/products/java-media/jai/

9 JIMI Software Development Kit
http://java.sun.com/products/jimi/

10 Boost QuickBook:
http://www.boost.org/tools/quickbook/

11 Boost: http://www.boost.org/
12 BoostBook:

http://www.boost.org/tools/boostbook/

13Manifesto for Agile Software Development
http://agilemanifesto.org/

14 Abelson and Sussman, Structure and Interpretation of Computer
Progams, Harold Abelson, Gerald Jay Sussman with Julie
Sussman MIT Press, 1984; ISBN 0-262-01077-1

Credits

My thanks to Alan Griffiths, Phil Bass and Alison Peck for their
help with this article.

Colophon

The master version of this document was written using emacs.

SOFT DOCUMENTATION

As a software user I expect software to just work –
especially software with a GUI. It should be obvious what to
do without needing to read the manual; and preferably
without even waiting for tooltips to float into view. By
designing a GUI which operates within a web browser we
already have a head start here: the user interface is driven
like any other web interface – there’s no need to document
how hyperlinks work or what the browser’s address bar does.

What’s more, the Manifesto for Agile Software
Development explicitly prefers: Working software over
comprehensive documentation. [13]

These considerations don’t mean that the manual is
redundant or unwanted, though. There are times when we don’t
want to clutter the core user interface with reference details.
There remain occasions when hardcopy is invaluable.

What’s more, when you try and design an intuitive user
interface, you realise that the distinction between software and
documentation is somewhat artificial: it’s not so much that the
boundaries blur as that, from a user’s point of view, they aren’t
really there. Suppose, for example, that a form requires an
email address to be entered. If the user enters an invalid address
the form is redrawn with the erroneous input highlighted and
a terse message displayed: Please enter a valid email address;
there will also be a clickable Help icon directing confused users
to the right page of the user manual. Which of these elements
of the user interface are software and which are documentation?

Now suppose we are delivering a library designed to be
linked into a larger program. The documentation is primarily
the header files which define the interface to this library. We
must invest considerable effort making sure these header files
define a coherent and comprehensible interface: maybe we
deliver the library with some example client code and
makefiles; maybe we provide a test harness; maybe we generate
hyperlinked documentation directly from the source files; and
maybe we supply the library implementation as source code.
Now which is software and which is documentation?

When we write software, we remember that:
Programs should be written for people to read, and only

incidentally for machines to execute. [14]

In other words, software is documentation. Software should
also be soft – soft enough to adapt to changing requirements.
We must be sure to keep our documentation soft too.

13

overload issue 71 february 2006

Dead Code
by Tim Penhey

Dead code comes in many forms, and appears in most projects at
some time or another. A general definition of dead code would be
“code that is unreachable”. This may be due to a function never
being called, or it may be control paths within a function never
being accessible. This article deals with the former.

Functions that are never called happen at two phases during the
code’s lifecycle: brand new code that is yet to be hooked into an
existing framework; or refactoring of some code that removes calls
to other functions.

Often in the refactoring of code, functions that are no longer
called are left alone as they might still be called from somewhere.
This is often the case on larger projects where individuals do not
know the entire codebase.

Another reason functions are not deleted is the idea that “it might
be useful later”, an extension of the hoarder’s mentality.

This leads on to an interesting question: How do you know when
a function is no longer called? The problem really presents itself
when looking at shared object libraries. The normal approach is that
an exported function is intended to be called from some other
library or executable, however, in many cases there are exported
functions that are only ever called from inside the library. Just
because a function is exported, does that mean it should be kept?
In order to look at shared object libraries, you need also look at all
the code that uses that shared object library.

Once you have identified that your code base has dead code in
it, why remove it? Probably the biggest factor is to aid the
programmers in their understanding. There is no point in spending
time reading and understanding code that is never called. Another
major factor is having less clutter and cleaner code. This leads to
identifying areas for refactoring, which often leads to better
abstractions. A minor benefit is speeding up the compile and link
time and reducing the size of the libraries and executables.

There are tools available that will do a coverage analysis of the
source code. The tool watches the code as it is being executed and
will identify parts of the code that are never reached. An advantage
of this is that it can also identify unreached code paths in called
functions. The disadvantage is the need for either automated or
manual testing. If using automated testing, then the tests need to
cover all the required use cases, which in itself is hard to do much
of the time due to “fluffy”, incorrect, or outdated requirements. It
is also often hard to “retrofit” on to a large code base. The
alternative is manual testing, which means someone sitting in front
of the application doing all it can do. Manual testing is probably
more error prone than even limited automated testing. If the tests,
manual or automated, don’t fully cover the actual use cases then it
is possible that required code is incorrectly identified as unused.

The impetus behind my looking into this issue was the code base
at a previous contract. There was somewhere in the vicinity of two
million lines of code and of those it was estimated that somewhere
between 20 and 40% is no longer used anywhere. The code was
built into approximately 50 shared object libraries and 20
executables. There were only limited regression tests and no user
knew everything that the system was supposed to do, which led to
the idea of trying to create some tool that would analyse the libraries
and executables themselves.

The general approach was to process each of the shared object
libraries and extract a list of exported functions to match up with
the undefined functions from the shared object libraries and

executables – the theory being that whatever was exported and not
called was “dead code”.

The tools that were chosen for the job were from GNU Binutils
[1]: nm, c++filt, and readelf. Primarily because all the code
was compiled with g++.

In order to tie nm, c++filt and readelf together, some glue
was needed – I chose python.

GNU nm lists the symbols from object files. It can also extract
the symbols from shared object libraries and executables. nm is
capable of giving much more information than is needed for
simple function usage. The parameters --defined-only and
--undefined-only were used to reduce the results. These were
then parsed using regular expressions to extract the mangled
name.

To illustrate we have the following source for a shared object
library:

--- start shared.hpp

#ifndef DEAD_CODE_SHARED_H

#define DEAD_CODE_SHARED_H

#include <string>

void exported_func(std::string const& param);

void unused_func(std::string const& param);

#endif

--- end shared.hpp

--- start shared.cpp

#include "shared.hpp"

#include <iostream>

void internal_func(std::string const& param)

{

std::cout << "internal called with "

<< param << "\n";

}

void exported_func(std::string const& param)

{

std::cout << "exported_called\n";

internal_func(param);

}

void unused_func(std::string const& param)

{

std::cout << "never called\n";

}

--- end shared.cpp

g++ -shared -o libshared.so shared.cpp

tim@spike:~/accu/overload/dead-code$

nm --defined-only libshared.so

00001bd8 A __bss_start

00000740 t call_gmon_start

00001bd8 b completed.4463

00001ac4 d __CTOR_END__

00001abc d __CTOR_LIST__

00000920 t __do_global_ctors_aux

00000770 t __do_global_dtors_aux

00001bd0 d __dso_handle

00001acc d __DTOR_END__

14

overload issue 70 february 2006

00001ac8 d __DTOR_LIST__

00001ad4 A _DYNAMIC

00001bd8 A _edata

00001be0 A _end

00000964 T _fini

000007e0 t frame_dummy

00000ab8 r __FRAME_END__

00000900 t _GLOBAL__I__Z13internal_funcRKSs

00001bc0 a _GLOBAL_OFFSET_TABLE_

00000764 t __i686.get_pc_thunk.bx

00000700 T _init

00001ad0 d __JCR_END__

00001ad0 d __JCR_LIST__

00001bd4 d p.4462

000008a4 t __tcf_0

00000886 T _Z11unused_funcRKSs

0000085a T _Z13exported_funcRKSs

0000081c T _Z13internal_funcRKSs

000008bc t _Z41__static_initialization_and

_destruction_0ii

00001bdc b _ZSt8__ioinit

The entries of interest here are the ones where the type (the bit
after the hex address) is T. These are where the symbol is in the
text (code) section.

Here is a script that extracts the defined functions and its results
for libshared.so:

-- start

#!/usr/bin/env python

import re, os

exported_func = \

re.compile('[0-9a-f]{8} T (\S+)')

exported_cmd = 'nm --defined-only %s'

for line in os.popen \

(exported_cmd % "libshared.so").readlines():

m = exported_func.match(line)

if m: print m.group(1)

-- end

_fini

_init

_Z11unused_funcRKSs

_Z13exported_funcRKSs

_Z13internal_funcRKSs

-- end results

Mangled names are great for identifying with regular expressions
and matching, but not so good for matching with the code. This is
where c++filt comes in.

def unmangle(name):

return os.popen('c++filt ' \

+ name).readline()[:-1]

-- new results

_fini

_init

unused_func(std::basic_string<char,

std::char_traits<char>,

std::allocator<char> > const&)

exported_func(std::basic_string<char,

std::char_traits<char>,

std::allocator<char> > const&)

internal_func(std::basic_string<char,

std::char_traits<char>,

std::allocator<char> > const&)

-- end results

You can see with the fully expanded names why the mangled one is
easier to parse and match, so both are needed. All libraries also have
the _fini and _init methods, so those can be safely ignored.

In order to identify real usage you need to look at the libraries
and executables together, so here is a program which uses the shared
object library:

-- start main.cpp

#include "shared.hpp"

int main()

{

exported_func("Hello World\n");

return 0;

}

-- end main.cpp

-- compile & execute

tim@spike:~/accu/overload/dead-code$ g++

-o deadtest -l shared -L . main.cpp

tim@spike:~/accu/overload/dead-code$

./deadtest

exported_called

internal called with Hello World

tim@spike:~/accu/overload/dead-code$

-- end

For the executables you are only interested in the undefined
references, and of those ultimately only the ones that correspond
to exported functions in the libraries.

tim@spike:~/accu/overload/dead-code$ nm --

undefined-only deadtest

U __cxa_guard_acquire@@CXXABI_1.3

U __cxa_guard_release@@CXXABI_1.3

U getenv@@GLIBC_2.0

w __gmon_start__

U __gxx_personality_v0@@CXXABI_1.3

w _Jv_RegisterClasses

U __libc_start_main@@GLIBC_2.0

U _Unwind_Resume@@GCC_3.0

U _Z13exported_funcRKSs

U _ZNSaIcEC1Ev@@GLIBCXX_3.4

U _ZNSaIcED1Ev@@GLIBCXX_3.4

U _ZNSsC1EPKcRKSaIcE@@GLIBCXX_3.4

U _ZNSsD1Ev@@GLIBCXX_3.4

Following is a simplistic script that follows the initial approach
defined above.

-- start nm2.py

#!/usr/bin/env python

import os, re

exported_func = re.compile \

('[0-9a-f]{8} T (\S+)')

unknown_func = re.compile('\s*U (\S+)')

15

overload issue 71 february 2006

exported_cmd = 'nm --defined-only %s'

unknown_cmd = 'nm --undefined-only %s'

ignored_funcs = \

set(['_PROCEDURE_LINKAGE_TABLE_', '_fini',

'_init'])

def unmangle(name):

return os.popen('c++filt ' \

+ name).readline()[:-1]

return name

class Library(object):

def __init__(self, name):

self.fullname = name

self.name = os.path.basename(name)

self.exported = []

for line in os.popen(exported_cmd \

% self.fullname).readlines():

m = exported_func.match(line)

if m:

if m.group(1) not in ignored_funcs:

self.exported.append(m.group(1))

self.unknown = []

for line in os.popen(unknown_cmd \

% self.fullname).readlines():

m = unknown_func.match(line)

if m:

self.unknown.append(m.group(1))

class Binary(object):

def __init__(self, name):

self.fullname = name

self.name = os.path.basename(name)

self.unknown = []

for line in os.popen(unknown_cmd \

% self.fullname).readlines():

m = unknown_func.match(line)

if m: self.unknown.append(m.group(1))

def main():

lib = Library('libshared.so')

bin = Binary('deadtest')

exported = set(lib.exported)

for unk in bin.unknown:

if unk in exported:

exported.discard(unk)

print "Unused:"

for func in exported:

print "\t%s" % unmangle(func)

if __name__ == "__main__":

main()

-- end nm2.py

-- executed

tim@spike:~/accu/overload/dead-code$./nm2.py

Unused:

internal_func(std::basic_string<char,

std::char_traits<char>,

std::allocator<char> > const&)

unused_func(std::basic_string<char,

std::char_traits<char>,

std::allocator<char> > const&)

-- end executed

Here we can see that the function internal_func has been
shown as not used even though it is called directly from
exported_func. A tool that was going to give false positives
like this was not going to be extremely useful.

Luckily it was pointed out to me that another GNU tool called
readelf is able to show relocation information. There is a
relocation entry for every function that is called.

The relevant lines from the results of readelf -r --wide
libshared.so are shown in Figure 1.

More regex magic '[0-9a-f]{8}\s+[0-9a-

f]{8}\s+\S+\s+[0-9a-f]{8}\s+(\S+)' gives a way to
identify the function calls. Once these are eliminated from the
exported list, we are left with only one function: unused_func.

Conclusion

The script ended up taking about 15 - 20 minutes to run (mainly due
to an inefficiency in the c++filt calling that I never got around to
fixing) but returned around about three or four thousand functions
that were no longer called. The script does still show false positives
though as it is not able to determine when a function is called
through a pointer to a function or pointer to a member function. It

did however give a good
starting point to reduce the
dead code.

Tim Penhey
tim@penhey.net

Thanks

Thanks to Paul Thomas on
the accu-general list for
pointing out readelf to me.

References

1 GNU:
http://www.gnu.org/

software/binutils/

00000830 00001002 R_386_PC32 00000000

_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc

00000850 00001002 R_386_PC32 00000000

_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc

0000086e 00001002 R_386_PC32 00000000

_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc

0000089a 00001002 R_386_PC32 00000000

_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc

0000083f 00000d02 R_386_PC32 00000000

_ZStlsIcSt11char_traitsIcESaIcEERSt13basic_ostreamIT_T0_ES7_RKSbIS4_S5_T1_E

0000087c 00001502 R_386_PC32 0000081c _Z13internal_funcRKSs

000008b3 00001d02 R_386_PC32 00000000 _ZNSt8ios_base4InitD1Ev

000008e0 00000c02 R_386_PC32 00000000 _ZNSt8ios_base4InitC1Ev

000008f7 00001102 R_386_PC32 00000000 __cxa_atexit

Figure 1

16

overload issue 70 february 2006

How to Shoot Yourself
in the Foot.
In an Agile Way.
by Giovanni Asproni

Introduction

The project is late and over-budget, the software is bug-ridden
and unusable, the customer is furious and doesn’t want to pay
any more money, the team is burned out and lacks motivation.
The Project Manager, looking around for advice, comes across
the Agile Alliance web-site [2] and decides that an agile
methodology is the way to go to rescue his project…

This is a typical scenario of introduction of an agile methodology
in a company; of course it is not the only one – some projects use
an agile methodology right from the start. However, no matter how
and why an agile approach is chosen, there are some traps and
pitfalls that it’s better to be aware of.

In this article I’ll describe what, in my experience, are the five
most common and dangerous mistakes that can make the
implementation of an agile methodology fail. I’ll give also some
hints about how to avoid and/or fix them.

In the rest of the article, I’ll refer to the person that has the
ultimate decision on what the software should do as the customer,
and to the developers as the team.

Finally, the project manager is the person that, in a traditional
process, is in charge of planning the activities of the team and the
deliverables of the project, and, in an agile one, works more as a
facilitator between the team and the customer, and makes sure that
the activities of the team run as smoothly as possible. In both cases,
she also keeps track of progress made and is instrumental in keeping
all the stakeholders focused on the project goals.

So, You Want to be Agile

Nowadays, agile methodologies are in the mainstream, and
almost everybody claims to be agile: every time I talk about agile
development with some project managers or developers, the first
point they frequently make is “in a certain way we are agile as
well”. (OK, sometimes they are not really that agile, but this is
something for another article).

I personally believe that agile methods can give many projects
a boost in every respect: quality, productivity, motivation, etc.
However, their adoption may be more difficult than many expect.
The reason is that, in every agile methodology “Individuals and
interactions” are considered more important than “processes and
tools” [1], and managing people it is arguably one of the most
challenging activities in every organization.

There are many ways to make a project fail, but, in this article,
I’ll focus on what in my experience are the five most common (and
dangerous, since any of them can make a project fail) mistakes that
can be made in the adoption of an agile methodology:
● Mandating the methodology from above
● Lack of trust
● Measuring agility by the number of “agile practices”

implemented
● Thinking that merely implementing some of the practices will

improve quality
● Focusing too much on the process and not enough on the product

Let’s have a look at these mistakes in more detail.

Mandating the Methodology from
Above

This happens when the project manager (or some other manager)
decides that the team must use an agile methodology in order to
be more productive, and imposes it on the developers (and
sometimes, on the customer as well).

If the project manager is lucky, and the team members already
think that an agile methodology is the way to go, this approach
might actually work. Unfortunately, imposition very rarely works
with programmers, especially with the good ones: programmers are
knowledge workers and, as such, they don’t like to be patronized,
especially about how to do their job properly. So trying to impose
them a new methodology can actually have an effect opposite to
that which was intended.

I worked in a project where Extreme Programming was imposed
from above, and the developers where forced to pair program all
the time (with even the pairs often chosen by the project manager),
no matter what they thought about the practice, and, as a result,
some of the programmers where quite grumpy during pairing
sessions making them very unpleasant. Later in the project, after
having seen the effects of his decision, the project manager changed
his mind, and made pairing optional leaving to the programmers
also the choice of whom to pair with. Suddenly something
interesting happened: the programmers that used to hate pairing
chose to pair most of the time; the only difference was that now
they had freedom of choice and decided to choose what they
thought was best for their productivity.

If you are a manager willing to adopt an agile methodology in
your company and also want to succeed doing it, you should
consider involving the programmers and the other stakeholders
right from the start, asking for their opinion and help. You may also
be willing to consider the books by Linda Rising, and Mary Lynn
Manns [3], and Jim Coplien and Neil Harrison [4].

Lack of Trust

Lack of trust is always a bad thing, no matter what is the
methodology (agile or traditional) used. In fact, if trust is
missing, honest communication becomes very difficult and so is
keeping control of the project.

There are different types of lack of trust: between the customer
and the team; between the customer and the project manager;
between the project manager and the team; and between team
members. The symptoms are, usually, not very difficult to spot, for
example, when the customer (or the project manager) doesn’t trust
the team, often insists in giving technical hints and tips; or, when
the project manager and the customer don’t trust each other, often
they insist in very detailed product specifications before starting
any development, to be used, by any of them, as a weapon in case
of problems. Finally, lack of trust inside the team, usually, manifests
itself in the form of gossip at the coffee machine, or finger pointing
(and, sometimes, scapegoating, usually against a former team
member) when a bug shows up.

The fact that agile methodologies are mainly based on people
and their interactions makes them even more sensitive to the lack
of trust than traditional ones. For this reason, several “agile
practices” such as collective code ownership, face to face
communication, co-location, etc., are meant also to foster trust
among all the stakeholders, but, unfortunately, they are not
sufficient – I’ve been involved in at least one Extreme
Programming project where all the above trust problems where

17

overload issue 71 february 2006

present, even if we used all the practices suggested by the
methodology.

There are no sure recipes for improving trust. However, besides
some agile practices, there are some more things you can try.

First of all, everybody can contribute to creating a safe environment.
This means that it should be safe for any stakeholder to express her
concerns or criticism without having to fear humiliation or retaliation.

If you are a developer, a good starting point is to take
responsibility for the code you write, and have the courage to be
very clear and honest about what you can and cannot do without
giving in to pressure. This last thing can be very difficult, especially
at the beginning, but think about what happened the last time you
didn’t deliver what you were “forced” to promise!

If you are a project manager, a good starting point is to trust your
team, give them the resources they need, share the goals with them
and allow them to take responsibility for achieving them.

If you are a customer, try to understand that there is a limit to
what the team can do and, if you push them hard to do more without
listening to their concerns, you will have to blame yourself for the
bugs in the resulting product.

Measuring Agility by the Number of
“Agile Practices” Implemented

This is a very common mistake. First of all, most of the practices
that are considered to be agile – e.g., configuration management,
continuous integration, unit testing, collective code ownership,
test driven development, etc. – are not specific to agile
methodologies, but they are used in more traditional
methodologies as well.

Furthermore, practices only make sense in a context, e.g., if the
programmers in the team are not comfortable with pair
programming, forcing them to do it could be a very big mistake.

Of course using appropriate practices is very important for the
success of a project – for example, I couldn’t work without having
configuration management in place – but the real difference
between being, or not being agile is attitude – in an agile project
there is a big emphasis on people, communication, trust, and
collaboration. The tools and techniques are important only as long
as they add value to the work, when they don’t add value any more
they are discarded or adapted to the new situation.

If you want to introduce new practices in order to make
development smoother and/or safer, again, it is better to look for
ways to convince everybody involved (developers, customers,
project manager, etc.) to buy into your idea.

Thinking that Merely Implementing
Some of the Practices will Improve
Quality

Unfortunately, this silver bullet view has been promoted also by
several people in the agile community. In my opinion (and
experience), none of the practices can automatically improve
quality of the system, of the code, of the design or testing.

A case in point is Test Driven Development (TDD), which is
writing the tests (usually the acceptance or unit ones) before writing
any code.

Nowadays, it is often sold as the new silver bullet that will solve
all of your code quality problems almost overnight.

This is a technique that, if used properly, can give excellent
results in term of code quality, and productivity. However, it is just
a tool, and, like any other tool, it can be misused: I worked in a

project where TDD was used extensively from the beginning, and
yet the code-base was of a very poor quality in terms of bugs and
maintainability. The same goes for pair programming and all the
other practices.

The bottom line is, good practices are welcome, but you have to
use your judgement, experience, and a grain of salt before (and
during) the adoption of any of them.

Focusing Too Much on the Process
and not Enough on the Product

This is typical of a team using a specific process for the first
time. To a certain extent it is normal: after all, when you are
learning something new you need to focus on it to see if what you
are doing is right or wrong.

However, when the team starts to think along the lines of “the
code is not good enough, maybe we are not doing enough <put your
preferred practice here>” too often, it could be a sign of something
else going wrong.

Of course, good teams think about the process, and change it to
fit better their current situation, but they spend only a fraction of
their time doing that. In my experience, when too much time is
spent on the process, it is a sign that the team is looking for a
scapegoat for their shortcomings: blaming the process is easy and
safe, since nobody is going to be held responsible for failure.

Conclusion

Implementing an agile methodology can give many advantages
in terms of product quality, customer satisfaction, and team
satisfaction as well. However, it is not an easy job: customers may
fight against it because they have to be more involved and take more
responsibility for the outcome; Project Managers need to learn how
not to be control freaks and delegate more authority to developers;
and developers have to accept more responsibility and be more
accountable for what they do.

For these reasons, using a checklist based approach is not going to
make the team more or less agile. Even more importantly, don’t expect
any practice or technique to magically improve the quality of your
code-base – they are just tools that, if used wisely, may help; if not,
at best won’t change anything, and at worst may have disastrous
consequences (especially if their use is mandated from above).

The real change happens when all the people involved are given
a stake in the product and in the process as well, and they are trusted
to do a good job. This is the essence of agility.

However, it is quite simple to shoot yourself in the foot by
inadvertently making any of the mistakes described in this article,
but can be very difficult to spot them – especially when we are the
ones to blame – but, if you keep an open mind, make it safe for
others to give you honest feedback, and use it to correct your
mistakes, then you are likely to have a very positive impact on the
implementation of your agile methodology.

Giovanni Asproni
gasproni@asprotunity.com

References

1 Agile Manifesto: http://www.agilemanifesto.org
2 Agile Alliance: http://www.agilealliance.org
3 Rising, L., Manns, M., L., Fearless Change: patterns for introducing

new ideas, Addison Wesley, 2004
4 Coplien, J., O., Harrison, N., B., Organizational Patterns of Agile

Software Development, Prentice Hall, 2004

18

overload issue 70 february 2006

Friend or Foe!
by Mark Radford

The friend keyword in C++ drops the barriers of access control
between a class and functions and/or other classes which are
named in the friend declaration. It is a language feature that
introductory tutorial text books seem to have a lot of trouble
with. In searching for an example of its use, they often reach for
that of declaring freestanding operator functions as friends. In
this article, I want to argue the case that using friends in this
way is a bad design decision – albeit for a more subtle reason
than any that might immediately spring to mind – and also, that
friend is not inherently evil. I will illustrate the latter with an
example of how its use does genuinely make a design more
robust.

A Bad Example

First, let’s dissect a simple example of using friends to
implement operator<< (note that the same arguments can be
applied to many similar examples). Consider a simple (and self-
explanatory) value based class:

class seconds

{

public:

explicit seconds(int initialiser);

//...

friend std::ostream&

operator<<(std::ostream& os,

const seconds& s);

private:

int val;

};

std::ostream& operator<<(std::ostream& os,

const seconds& s)

{

os << s.val;

return os;

}

The use of friend in this way is, in my experience, fairly
common in C++ production code, probably because it is a
traditional example used in C++ text books (indeed, no lesser
book than C++ Programming Language [1] contains such an
example).
The immediately obvious way to give operator<< access to the
implementation of seconds is to make it a member. However,
the operator<< is something of a language design paradox,
because there is no way to define it as a class member, while at
the same time allowing its idiomatic use in client code. If
operator<< were to be defined as a member of the class
seconds, then it would not possible to write the simple
expression:

std::cout << seconds(5);

This is because in such expressions it is idiomatic for the instance
of the class of which operator<< is a member to appear on the
left hand side of the << operator. If operator<< were made into
a member of seconds, the expression would have to be written
the other way around. Therefore, a non-member function must be
used to implement this operator.

So, what’s wrong with this approach? Well, one concern is that
encapsulation has been breached vis-à-vis the use of friend, to
allow a non-member function to gain access to the
implementation of seconds. However, that is clearly not really a
concern (although in my experience many seem to think it is).
After all, what really is the difference between a function having
(private) implementation access because it’s a member or
because it’s a friend? Another way of looking at it is this: a
friend function is a member function via a different syntax.

In the above example, the real problem is this: the use of friend
to implement a non-member operator is only necessary because a
natural (and necessary) conversion is absent from seconds’
interface. In such class designs it makes perfect sense for instances
to be convertible to a built-in type representation of their value. The
addition of the value() member function underpins this, as
follows:

class seconds

{

public:

explicit seconds(int initialiser);

//...

int value() const;

private:

int val;

};

std::ostream& operator<<(std::ostream& os,

const seconds& s)

{

os << s.value();

return os;

}

Allowing the value to be converted to a built in type
representation via a member function is not only a good thing, it
is also necessary in order to make the class usable. For example,
a class designer can not know in advance of every conversion
client code will need. The provision of the value() member
function allows any required conversion to be added without
modifying the definition of seconds. Note the analogy with
std::string which permits conversion to const char* via
the c_str() member function. Note further, the use of a member
function rather than a conversion operator, thus requiring the
conversion to be a deliberate decision on the part of seconds’
user.
Now operator<< can be implemented as a non-member, and
there is no need to use friend. However, I now want to describe
a short piece of design work, in which friend is used for the
right reasons…

A Persistent Object Framework

Consider the design of a persistence framework that has the
following requirements:
● The state of certain objects must transcend their existence in a

C++ program. Such objects are typically those from the problem
(real world) domain. When such objects are not in use in the C++
program, their state is stored in some kind of repository, let’s say,
a relational database.

● Such objects must be loaded into memory when they are needed,
and consigned to the database when they are finished with. For

19

overload issue 71 february 2006

the sake of this example, the loading of objects and their
consignment to the database should be transparent to the
applications programmer.

The housekeeping of whether the object has been retrieved or not
is delegated to a (class template) smart pointer called
persistent_ptr. persistent_ptr delegates the mechanism
used to retrieve objects from the database to the implementations
of an interface class called database_query. The definitions
look like this:

template <class persistent>

class database_query

{

public:

typedef persistent persistent_type;

virtual persistent_type* execute() const = 0;

};

template <typename persistent>

class persistent_ptr

{

public:

~persistent_ptr() {...}

// ...

persistent* operator->() { return get(); }

persistent const* operator->()

const { return get(); }

private:

persistent* get() const

{

if (!loaded(object)) object =

query->execute();

return object;

}

boost::scoped_ptr

< database_query<persistent> > const query;

persistent* object;

};

An illustration of persistant_ptr’s use looks like this:
void f()

{

persistent_ptr object(…);

:

:

}

The object is instantiated, its state loaded when/if a call to it is
made, and when object goes out of scope its state (if loaded)
goes back into the database.
The interface class database_query defines the protocol for
loading objects from the database into memory. It has just one
member function: the execute() function. persistant_ptr’s
member access operator checks if the object (of type
persistent) is loaded and if not, calls the database_query’s
execute() function, i.e. lazy loading is used and the object is
not loaded until it is actually used. Also, the invocation of
persistant_ptr’s destructor triggers the consigning of

persistent to the database. So far so good. However, we are
now presented with a problem: what if the database_query’s
execute() function was to be called (contrary to the idea of this
design) by something other than persistent_ptr? One option
is just to document that this is not the way this framework is
intended to be used. However, it would be much better if this
constraint could be stated explicitly by the code itself. There is a
way to do this…

A Simple Solution Using friend

Like many (most?) of the textbook examples of the use of
friend, the above example featured its use in accessing private
member data. However, member functions too can be made
private, and one way to prevent unauthorised parties calling
database_query’s execute() function is to make it private.
This leaves us with a problem: persistent_ptr can’t call it
either. One simple solution is to declare persistent_ptr a
friend. Given that database_query is an interface class and
the execute() function is the only member function, this does
not cause any problems with exposure of all private members – a
problem normally associated with friend. The interface class
database_query now looks like this:

template <class persistent>

class database_query

{

public:

typedef persistent persistent_type;

private:

friend class persistent_ptr<persistent>;

virtual persistent_type* execute() const = 0;

};

Note that there is no impact on derived classes because friendship
is not inherited. The use of friend in this way has provided one
simple way to bring some extra robustness to the design of this
framework.

Finally

When designing for C++, occasionally there is a need for two
classes to work together closely. In such cases the permitted
interactions must often be defined quite specifically, to an extent
not covered by the access specifiers public, protected and private.
Here, the friend keyword can be an asset. I believe many
(most?) of its traditional uses – both in textbook examples and
production code – are bad, as illustrated by the seconds
example. However, it should not be rejected as bad in every case,
as I believe the example of persistent_ptr and its colleague
database_query shows.

Mark Radford
mark@twonine.co.uk

References

1 Stroustrup,Bjarne (1997) C++ Programming Language, 3rd
edition, Addison-Wesley.

20

overload issue 70 february 2006

Recursive Make
Considered Harmful
by Peter Miller

Introduction

For large UNIX software development projects, the traditional
methods of building the project use what has come to be known
as “recursive make.” This refers to the use of a hierarchy of
directories containing source files for the modules which make
up the project, where each of the sub-directories contains a
Makefile which describes the rules and instructions for the
make program. The complete project build is done by arranging
for the top-level Makefile to change directory into each of the
sub-directories and recursively invoke make.

This paper explores some significant problems encountered
when developing software projects using the recursive make
technique. A simple solution is offered, and some of the
implications of that solution are explored.

Recursive make results in a directory tree which looks something
like figure 1.
This hierarchy of modules can be nested arbitrarily deep. Real-
world projects often use two- and three-level structures.

Assumed Knowledge

This paper assumes that the reader is familiar with developing
software on UNIX, with the make program, and with the issues
of C programming and include file dependencies.

This paper assumes that you have installed GNU Make on your
system and are moderately familiar with its features. Some features
of make described below may not be available if you are using the
limited version supplied by your vendor.

The Problem

There are numerous problems with recursive make, and they are
usually observed daily in practice. Some of these problems include:
● It is very hard to get the order of the recursion into the sub-

directories correct. This order is very unstable and frequently
needs to be manually ‘‘tweaked.’’ Increasing the number of
directories, or increasing the depth in the directory tree, cause
this order to be increasingly unstable.

● It is often necessary to do more than one pass over the sub-
directories to build the whole system. This, naturally, leads to
extended build times.

● Because the builds take so long, some dependency information
is omitted, otherwise development builds take unreasonable
lengths of time, and the developers are unproductive. This
usually leads to things not being updated when they need to be,
requiring frequent “clean” builds from scratch, to ensure
everything has actually been built.

● Because inter-directory dependencies are either omitted or too
hard to express, the Makefiles are often written to build too
much to ensure that nothing is left out.

● The inaccuracy of the dependencies, or the simple lack of
dependencies, can result in a product which is incapable of

Project

Makefile

source1.c

source2.c

etc...

Makefile

Makefile

module1

etc...

module2

Abstract

For large UNIX projects, the traditional method of building
the project is to use recursive make. On some projects, this
results in build times which are unacceptably large, when all
you want to do is change one file. In examining the source of
the overly long build times, it became evident that a number
of apparently unrelated problems combine to produce the
delay,but on analysis all have the same root cause.

This paper explores a number of problems regarding the use
of recursive make, and shows that they are all symptoms of the
same problem. Symptoms that the UNIX community have long
accepted as a fact of life, but which need not be endured any
longer. These problems include recursive makes which take
“forever” to work out that they need to do nothing, recursive
makes which do too much, or too little, recursive makes which
are overly sensitive to changes in the source code and require
constant Makefile intervention to keep them working.

The resolution of these problems can be found by looking at
what make does, from first principles, and then analyzing the
effects of introducing recursive make to this activity. The analysis
shows that the problem stems from the artificial partitioning of
the build into separate subsets. This, in turn, leads to the symptoms
described. To avoid the symptoms, it is only necessary to avoid
the separation; to use a single make session to build the whole
project, which is not quite the same as a single Makefile.

This conclusion runs counter to much accumulated folk
wisdom in building large projects on UNIX. Some of the main
objections raised by this folk wisdom are examined and shown
to be unfounded. The results of actual use are far more
encouraging, with routine development performance
improvements significantly faster than intuition may indicate,
and without the intuitvely expected compromise of modularity.
The use of a whole project make is not as difficult to put into
practice as it may at first appear.

Figure 1

21

overload issue 71 february 2006

building cleanly, requiring the build process to be carefully
watched by a human.

● Related to the above, some projects are incapable of taking
advantage of various “parallel make” impementations, because
the build does patently silly things.

Not all projects experience all of these problems. Those that do
experience the problems may do so intermittently, and dismiss
the problems as unexplained “one off” quirks. This paper
attempts to bring together a range of symptoms observed over
long practice, and presents a systematic analysis and solution.

It must be emphasized that this paper does not suggest that make
itself is the problem. This paper is working from the premise that
make does not have a bug, that make does not have a design flaw.
The problem is not in make at all, but rather in the input given to
make – the way make is being used.

Analysis

Before it is possible to address these seemingly unrelated
problems, it is first necessary to understand what make does and
how it does it. It is then possible to look at the effects recursive
make has on how make behaves.

Whole Project Make

make is an expert system. You give it a set of rules for how to
construct things, and a target to be constructed. The rules can be
decomposed into pair-wise ordered dependencies between files.
make takes the rules and determines how to build the given
target. Once it has determined how to construct the target, it
proceeds to do so.

make determines how to build the target by constructing a directed
acyclic graph, the DAG familiar to many Computer Science students.
The vertices of this graph are the files in the system, the edges of this
graph are the inter-file dependencies. The edges of the graph are
directed because the pair-wise
dependencies are ordered;
resulting in an acyclic graph –
things which look like loops are
resolved by the direction of the
edges.

This paper will use a small
example project for its analysis.
While the number of files in this
example is small, there is
sufficient complexity to
demonstrate all of the above
recursive make problems. First,
however, the project is
presented in a non-recursive
form (figure 2).

The Makefile in this small project looks like this:

Some of the implicit rules of make are presented here explicitly, to
assist the reader in converting the Makefile into its equivalent
DAG.

The above Makefile can be drawn as a DAG in the form
shown in figure 3.

This is an acyclic graph because of the arrows which express the
ordering of the relationship between the files. If there was a circular
dependency according to the arrows, it would be an error.

Note that the object files (.o) are dependent on the include files
(.h) even though it is the source files (.c) which do the including.
This is because if an include file changes, it is the object files which
are out-of-date, not the source files.

The second part of what make does it to perform a postorder
traversal of the DAG. That is, the dependencies are visited first. The
actual order of traversal is undefined, but most make
implementations work down the graph from left to right for edges
below the same vertex, and most projects implicitly rely on this
behaviour. The last-time-modified of each file is examined, and
higher files are determined to be out-of-date if any of the lower files
on which they depend are younger. Where a file is determined to
be out-of-date, the action associated with the relevant graph edge
is performed (in the above example, a compile or a link).

The use of recursive make affects both phases of the operation of
make: it causes make to construct an inaccurate DAG, and it forces
make to traverse the DAG in
an inappropriate order.

Recursive Make

To examine the effects of
recursive makes, the above
example will be artificially
segmented into two modules,
each with its own
Makefile, and a top-level
Makefile used to invoke
each of the module
Makefiles.

This example is intentionally
artificial, and thoroughly so.
However, all “modularity” of
all projects is artificial, to some
extent. Consider: for many
projects, the linker flattens it all
out again, right at the end.

The directory structure is as
shown in figure 4.

Project

Makefile

main.c

parse.c

parse.h

prog

main.o parse.o

main.c parse.h parse.c

Project

Makefile

main.c

parse.c

parse.h

Makefile

Makefile

Figure 2

Figure 3

Figure 4

OBJ = main.o parse.o

prog: $(OBJ)

$(CC) -o $@ $(OBJ)

main.o: main.c parse.h

$(CC) -c main.c

parse.o: parse.c parse.h

$(CC) -c parse.c

22

overload issue 70 february 2006

The top-level Makefile often looks a lot like a shell script:

The ant/Makefile looks like this:

and the equivalent DAG looks like figure 5.

The bee/Makefile looks like this:

and the equivalent DAG looks like figure 6.
Take a close look at the DAGs. Notice how neither is complete

– there are vertices and edges (files and dependencies) missing
from both DAGs. When the entire build is done from the top level,
everything will work.

But what happens when small changes occur? For example, what
would happen if the parse.c and parse.h files were generated

from a parse.y yacc grammar? This would add the following
lines to the bee/Makefile:

And the equivalent DAG changes to look like figure 7.

This change has a simple effect: if parse.y is edited, main.o
will not be constructed correctly. This is because the DAG for
ant knows about only some of the dependencies of main.o,and
the DAG for bee knows none of them.

To understand why this happens, it is necessary to look at the
actions make will take from the top level. Assume that the project
is in a self-consistent state. Now edit parse.y in such a way that
the generated parse.h file will have non-trivial differences.
However, when the top-level make is invoked, first ant and then
bee is visited. But ant/main.o is not recompiled, because
bee/parse.h has not yet been regenerated and thus does not yet
indicate that main.o is out-of-date. It is not until bee is visited
by the recursive make that parse.c and parse.h are
reconstructed, followed by parse.o. When the program is linked
main.o and parse.o are non-trivially incompatible. That is, the
program is wrong.

Traditional Solutions

There are three traditional fixes for the above ‘‘glitch.’’

Reshuffle
The first is to manually tweak the order of the modules in the top-
level Makefile. But why is this tweak required at all? Isn’t
make supposed to be an expert system? Is make somehow
flawed, or did something else go wrong?

To answer this question, it is necessary to look, not at the graphs,
but the order of traversal of the graphs. In order to operate correctly,
make needs to perform a postorder traversal, but in separating the
DAG into two pieces, make has not been allowed to traverse the

prog

main.o parse.o

parse.h parse.c

prog

main.o parse.o

parse.h parse.c

parse.y

main.o

main.c parse.h

Figure 5

Figure 6

Figure 7

MODULES = ant bee

all:

for dir in $(MODULES); do \

(cd $$dir; ${MAKE} all); \

done

all: main.o

main.o: main.c ../bee/parse.h

$(CC) -I../bee -c main.c

OBJ = ../ant/main.o parse.o

all: prog

prog: $(OBJ)

$(CC) -o $@ $(OBJ)

parse.o: parse.c parse.h

$(CC) -c parse.c

parse.c parse.h: parse.y

$(YACC) -d parse.y

mv y.tab.c parse.c

mv y.tab.h parse.h

23

overload issue 71 february 2006

graph in the necessary order – instead the project has dictated an
order of traversal. An order which, when you consider the original
graph, is plain wrong. Tweaking the top-level Makefile corrects
the order to one similar to that which make could have used. Until
the next dependency is added...

Note that make -j (parallel build) invalidates many of the
ordering assumptions implicit in the reshuffle solution, making it
useless. And then there are all of the sub-makes all doing their
builds in parallel, too.

Repetition
The second traditional solution is to make more than one pass in
the top-level Makefile, something like this:

This doubles the length of time it takes to perform the build. But
that is not all: there is no guarantee that two passes are enough!
The upper bound of the number of passes is not even proportional
to the number of modules, it is instead proportional to the number
of graph edges which cross module boundaries.

Overkill
We have already seen an example of how recursive make can
build too little, but another common problem is to build too
much. The third traditional solution to the above glitch is to add
even more lines to ant/Makefile:

This means that whenever main.o is made, parse.h will
always be considered to be out-of-date. All of bee will always be
rebuilt including parse.h, and so main.o will always be
rebuilt, even if everything was self consistent.

Note that make -j (parallel build) invalidates many of the
ordering assumptions implicit in the overkill solution, making it
useless, because all of the sub-makes are all doing their builds
(“clean” then “all”) in parallel, constantly interfering with each
other in non-deterministic ways.

Prevention

The above analysis is based on one simple action: the DAG was
artificially separated into incomplete pieces. This separation
resulted in all of the problems familiar to recursive make builds.

Did make get it wrong? No. This is a case of the ancient GIGO
principle: Garbage In, Garbage Out. Incomplete Makefiles are
wrong Makefiles.

To avoid these problems, don’t break the DAG into pieces;
instead, use one Makefile for the entire project. It is not the

recursion itself which is harmful, it is the crippled Makefiles
which are used in the recursion which are wrong. It is not a
deficiency of make itself that recursive make is broken, it does the
best it can with the flawed input it is given.

But, but, but... You can’t do that!’’ I hear you cry. ‘‘A single
Makefile is too big,it’sunmaintainable,it’s too hard to write the rules,
you’ll run out of memory, I only want to build my little bit, the build
will take too long. It’s just not practical.’

These are valid concerns, and they frequently lead make users to
the conclusion that re-working their build process does not have
any short- or long-term benefits. This conclusion is based on
ancient, enduring, false assumptions.

The following sections will address each of these concerns in
turn.

A Single Makefile is Too Big

If the entire project build description were placed into a single
Makefile this would certainly be true, however modern make
implementations have include statements. By including a relevant
fragment from each module, the total size of the Makefile and
its include files need be no larger than the total size of the
Makefiles in the recursive case.

A Single Makefile Is Unmaintainable

The complexity of using a single top-level Makefile which
includes a fragment from each module is no more complex than
in the recursive case. Because the DAG is not segmented, this
form of Makefile becomes less complex, and thus more
maintainable, simply because fewer “tweaks” are required to
keep it working.

Recursive Makefiles have a great deal of repetition. Many
projects solve this by using include files. By using a single
Makefile for the project, the need for the “common” include files
disappears – the single Makefile is the common part.

It’s Too Hard To Write The Rules

The only change required is to include the directory part in
filenames in a number of places. This is because the make is
performed from the top level directory; the current directory is
not the one in which the file appears. Where the output file is
explicitly stated in a rule, this is not a problem.

GCC allows a -o option in conjunction with the -c option, and
GNU Make knows this. This results in the implicit compilation rule
placing the output in the correct place. Older and dumber C
compilers, however, may not allow the -o option with the -c
option, and will leave the object file in the top-level directory (i.e.
the wrong directory). There are three ways for you to fix this: get
GNU Make and GCC, override the built-in rule with one which
does the right thing, or complain to your vendor.

Also, K&R C compilers will start the double-quote include
path (#include "filename.h") from the current directory.
This will not do what you want. ANSI C compliant C compilers,
however, start the double-quote include path from the directory
in which the source file appears; thus, no source changes are
required. If you don’t have an ANSI C compliant C compiler,you
should consider installing GCC on your system as soon as
possible.

MODULES = ant bee

all:

for dir in $(MODULES); do \

(cd $$dir; ${MAKE} all); \

done

for dir in $(MODULES); do \

(cd $$dir; ${MAKE} all); \

done

.PHONY: ../bee/parse.h

../bee/parse.h:

cd ../bee; \

make clean; \

make all

24

overload issue 70 february 2006

I Only Want To Build My Little Bit

Most of the time, developers are deep within the project tree and
they edit one or two files and then run make to compile their
changes and try them out. They may do this dozens or hundreds
of times a day. Being forced to do a full project build every time
would be absurd.

Developers always have the option of giving make a specific
target. This is always the case, it’s just that we usually rely on the
default target in the Makefile in the current directory to shorten
the command line for us. Building “my little bit” can still be done
with a whole project Makefile, simply by using a specific target,
and an alias if the command line is too long.

Is doing a full project build every time so absurd? If a change
made in a module has repercussions in other modules, because there
is a dependency the developer is unaware of (but the Makefile
is aware of), isn’t it better that the developer find out as early as
possible? Dependencies like this will be found, because the DAG
is more complete than in the recursive case.

The developer is rarely a seasoned old salt who knows every one
of the million lines of code in the product. More likely the developer
is a short-term contractor or a junior. You don’t want implications
like these to blow up after the changes are integrated with the master
source, you want them to blow up on the developer in some nice
safe sand-box far awayfrom the master source.

If you want to make “just your little” bit because you are
concerned that performing a full project build will corrupt the
project master source, due to the directory structure used in your
project, see the “Projects versus Sand-Boxes” section below.

The Build Will Take Too Long

This statement can be made from one of two perspectives. First,
that a whole project make, even when everything is up-to-date,
inevitably takes a long time to perform. Secondly, that these
inevitable delays are unacceptable when a developer wants to
quickly compile and link the one file that they have changed.

Project Builds
Consider a hypothetical project with 1000 source (.c) files, each
of which has its calling interface defined in a corresponding
include (.h) file with defines, type declarations and function
prototypes. These 1000 source files include their own interface
definition, plus the interface definitions of any other module they
may call. These 1000 source files are compiled into 1000 object
files which are then linked into an executable program. This
system has some 3000 files which make must be told about, and
be told about the include dependencies, and also explore the
possibility that implicit rules (.y ➔ .c for example) may be
necessary.

In order to build the DAG, make must “stat” 3000 files, plus an
additional 2000 files or so, depending on which implicit rules your
make knows about and your Makefile has left enabled. On the
author’s humble 66MHz i486 this takes about 10 seconds; on native
disk on faster platforms it goes even faster. With NFS over 10MB
Ethernet it takes about 10 seconds, no matter what the platform.

This is an astonishing statistic! Imagine being able to do a single
file compile, out of 1000 source files, in only 10 seconds, plus the
time for the compilation itself.

Breaking the set of files up into 100 modules, and running it as a
recursive make takes about 25 seconds. The repeated process
creation for the subordinate make invocations take quite a long time.

Hang on a minute! On real-world projects with less than 1000
files, it takes an awful lot longer than 25 seconds for make to
work out that it has nothing to do. For some projects, doing it in
only 25 minutes would be an improvement! The above result tells
us that it is not the number of files which is slowing us down
(that only takes 10 seconds), and it is not the repeated process
creation for the subordinate make invocations (that only takes
another 15 seconds). So just what is taking so long?

The traditional solutions to the problems introduced by recursive
make often increase the number of subordinate make invocations
beyond the minimum described here; e.g. to perform multiple
repetitions (see ‘Repetition’, above), or to overkill cross-module
dependencies (see ‘Overkill’, above). These can take a long time,
particularly when combined, but do not account for some of the
more spectacular build times; what else is taking so long?

Complexity of the Makefile is what is taking so long. This is
covered, below, in the ‘Efficient Makefiles’ section.

Development Builds
If, as in the 1000 file example, it only takes 10 seconds to figure
out which one of the files needs to be recompiled, there is no
serious threat to the productivity of developers if they do a whole
project make as opposed to a module-specific make. The
advantage for the project is that the module-centric developer is
reminded at relevant times (and only relevant times) that their
work has wider ramifications.

By consistently using C include files which contain accurate
interface definitions (including function prototypes), this will
produce compilation errors in many of the cases which would result
in a defective product. By doing whole-project builds, developers
discover such errors very early in the development process, and can
fix the problems when they are least expensive.

You’ll Run Out Of Memory

This is the most interesting response. Once long ago, on a CPU
far, far away, it may even have been true. When Feldman [1] first
wrote make it was 1978 and he was using a PDP11. Unix
processes were limited to 64KB of data.

On such a computer, the above project with its 3000 files detailed
in the whole-project Makefile, would probably not allow the
DAG and rule actions to fit in memory.

But we are not using PDP11s any more. The physical memory
of modern computers exceeds 10MB for small computers, and
virtual memory often exceeds 100MB. It is going to take a project
with hundreds of thousands of source files to exhaust virtual
memory on a small modern computer. As the 1000 source file
example takes less than 100KB of memory (try it, I did) it is
unlikely that any project manageable in a single directory tree on a
single disk will exhaust your computer’s memory.

Why Not Fix The DAG InThe Modules?

It was shown in the above discussion that the problem with
recursive make is that the DAGs are incomplete. It follows that
by adding the missing portions, the problems would be resolved
without abandoning the existing recursive make investment.
● The developer needs to remember to do this. The problems

will not affect the developer of the module, it will affect the
developers of other modules. There is no trigger to remind
the developer to do this, other than the ire of fellow
developers.

25

overload issue 71 february 2006

● It is difficult to work out where the changes need to be made.
Potentially every Makefile in the entire project needs to be
examined for possible modifications. Of course, you can wait
for your fellow developers to find them for you.

● The include dependencies will be recomputed unnecessarily, or
will be interpreted incorrectly. This is because make is string
based, and thus “.”and “../ant” are two different places, even
when you are in the ant directory. This is of concern when
include dependencies are automatically generated – as they are
for all large projects.

By making sure that each Makefile is complete, you arrive at
the point where the Makefile for at least one module contains
the equivalent of a whole-project Makefile (recall that these
modules form a single project and are thus inter-connected), and
there is no need for the recursion anymore.

Efficient Makefiles

The central theme of this paper is the semantic side-effects of
artificially separating a Makefile into the pieces necessary to
perform a recursive make. However, once you have a large
number of Makefiles, the speed at which make can interpret
this multitude of files also becomes an issue.

Builds can take “forever” for both these reasons: the traditional
fixes for the separated DAG may be building too much and your
Makefile may be inefficient.

Deferred Evaluation

The text in a Makefile must somehow be read from a text file and
understood by make so that the DAG can be constructed, and the
specified actions attached to the edges. This is all kept in memory.

The input language for Makefiles is deceptively simple. A
crucial distinction that often escapes both novices and experts alike
is that make’s input language is text based, as opposed to token
based, as is the case for C or AWK. make does the very least
possible to process input lines and stash them away in memory.

As an example of this, consider the following assignment:

Humans read this as the variable OBJ being assigned two
filenames main.o and parse.o. But make does not see it that
way. Instead OBJ is assigned the string “main.o parse.o”. It
gets worse:

In this case humans expect make to assign two filenames to OBJ,
but make actually assigns the string ‘‘$(SRC:.c=.o)’’. This is
because it is a macro language with deferred evaluation, as
opposed to one with variables and immediate evaluation.

If this does not seem too problematic, consider the following
Makefile shown at the top of the next column.

How many times will the shell command be executed? Ouch! It
will be executed twice just to construct the DAG,and a further two
times if the rule needs to be executed.

If this shell command does anything complexor time consuming
(and it usually does) it will take four times longer than you thought.

But it is worth looking at the other portions of that OBJ macro.
Each time it is named, a huge amount of processing is performed:
● The argument to shell is a single string (all built-in-functions

take a single string argument). The string is executed in a sub-
shell, and the standard output of this command is read back
in, translating new lines into spaces. The result is a single
string.

● The argument to filter is a single string. This argument is
broken into two strings at the first comma. These two strings are
then each broken into sub-strings separated by spaces. The first
set are the patterns, the second set are the filenames. Then, for
each of the pattern substrings, if a filename sub-string matches
it, that filename is included in the output. Once all of the output
has been found, it is re-assembled into a single space-separated
string.

● The argument to patsubst is a single string. This argument is
broken into three strings at the first and second commas. The
third string is then broken into sub-strings separated by spaces,
these are the filenames. Then, for each of the filenames which
match the first string it is substituted according to the second
string. If a filename does not match, it is passed through
unchanged. Once all of the output has been generated, it is re-
assembled into a single space-separated string.

Notice how many times those strings are disassembled and re-
assembled. Notice how many ways that happens. This is slow.
The example here names just two files but consider how
inefficient this would be for 1000 files. Doing it four times
becomes decidedly inefficient.

If you are using a dumb make that has no substitutions and no
built-in functions, this cannot bite you. But a modern make has lots
of built-in functions and can even invoke shell commands on-the-
fly.The semantics of make’s text manipulation is such that string
manipulation in make is very CPU intensive,compared to
performing the same string manipulations in C or AWK.

Immediate Evaluation

Modern make implementations have an immediate evaluation
:= assignment operator.The above example can be re-written
as

OBJ = main.o parse.o

SRC = main.c parse.c

OBJ = $(SRC:.c=.o)

SRC = $(shell echo ’Ouch!’ \

1>&2 ; echo *.[cy])

OBJ = \

$(patsubst %.c,%.o,\

$(filter %.c,$(SRC))) \

$(patsubst %.y,%.o,\

$(filter %.y,$(SRC)))

test: $(OBJ)

$(CC) -o $@ $(OBJ)

SRC := $(shell echo ’Ouch!’ \

1>&2 ; echo *.[cy])

OBJ := \

$(patsubst %.c,%.o,\

$(filter %.c,$(SRC))) \

$(patsubst %.y,%.o,\

$(filter %.y,$(SRC)))

test: $(OBJ)

$(CC) -o $@ $(OBJ)

26

overload issue 70 february 2006

Note that both assignments are immediate evaluation assignments.
If the first were not, the shell command would always be executed
twice. If the second were not, the expensive substitutions would
be performed at least twice and possibly four times.

As a rule of thumb: always use immediate evaluation assignment
unless you knowingly want deferred evaluation.

Include Files

Many Makefiles perform the same text processing (the filters
above,for example) for every single make run, but the results of
the processing rarely change. Wherever practical, it is more
efficient to record the results of the text processing into a file, and
have the Makefile include this file.

Dependencies

Don’t be miserly with include files. They are relatively
inexpensive to read, compared to $(shell), so more rather
than less doesn’t greatly affect efficiency.

As an example of this, it is first necessary to describe a useful
feature of GNU Make: once a Makefile has been read in, if any
of its included files were out-of-date (or do not yet exist), they are
re-built, and then make starts again, which has the result that make
is now working with up-to-date include files. This feature can be
exploited to obtain automatic include file dependency tracking for
C sources. The obvious way to implement it, however, has a subtle
flaw.

The depend.sh script prints lines of the form:

file.o: file.cinclude.h...

The most simple implementation of this is to use GCC, but you
will need an equivalent awk script or C program if you have a

different compiler:
This implementation of tracking C include dependencies has
several serious flaws, but the one most commonly discovered is
that the dependencies file does not, itself, depend on the C
include files. That is, it is not re-built if one of the include files
changes. There is no edge in the DAG joining the
dependencies vertex to any of the include file vertices. If an
include file changes to include another file (a nested include), the
dependencies will not be recalculated, and potentially the C file
will not be recompiled, and thus the program will not be re-built
correctly.

A classic build-too-little problem, caused by giving make
inadequate information, and thus causing it to build an inadequate
DAG and reach the wrong conclusion.

The traditional solution is to build too much:

Now, even if the project is completely up-do-date, the
dependencies will be re-built. For a large project, this is very
wasteful, and can be a major contributor to make taking “forever”
to work out that nothing needs to be done.

There is a second problem, and that is that if any one of the C
files changes, all of the C files will be re-scanned for include
dependencies. This is as inefficient as having a Makefile which
reads

What is needed, in exact analogy to the C case, is to have an
intermediate form. This is usually given a .d suffix. By
exploiting the fact that more than one file may be named in an
include line, there is no need to ‘‘link’’all of the .d files together:

This has one more thing to fix: just as the object (.o) files
depend on the source files and the include files, so do the
dependency (.d) files.

file.d file.o: file.c include.h

This means tinkering with the depend.sh script again:

This method of determining include file dependencies results in
the Makefile including more files than the original method,
but opening files is less expensive than rebuilding all of the
dependencies every time. Typically a developer will edit one or
two files before re-building; this method will rebuild the exact
dependency file affected (or more than one, if you edited an
include file). On balance, this will use less CPU, and less time.

In the case of a build where nothing needs to be done, make will
actually do nothing, and will work this out very quickly.

However, the above technique assumes your project fits enitrely
within the one directory. For large projects, this usually isn’t the
case.

SRC := $(wildcard *.c)

OBJ := $(SRC:.c=.o)

test: $(OBJ)

$(CC) -o $@ $(OBJ)

include dependencies

dependencies: $(SRC)

depend.sh $(CFLAGS) \

$(SRC) > $@

#!/bin/sh

gcc -MM -MG "$@"

SRC := $(wildcard *.c)

OBJ := $(SRC:.c=.o)

test: $(OBJ)

$(CC) -o $@ $(OBJ)

include dependencies

.PHONY: dependencies

dependencies: $(SRC)

depend.sh $(CFLAGS) \

$(SRC) > $@

prog: $(SRC)

$(CC) -o $@ $(SRC)

SRC := $(wildcard *.c)

OBJ := $(SRC:.c=.o)

test: $(OBJ)

$(CC) -o $@ $(OBJ)

include $(OBJ:.o=.d)

%.d: %.c

depend.sh $(CFLAGS) $* > $@

#!/bin/sh

gcc -MM -MG "$@" |

sed -e ’s@ˆ\(.*\)\.o:@\1.d \1.o:@’

27

overload issue 71 february 2006

This means tinkering with the depend.sh script again:

And the rule needs to change, too, to pass the directory as the
first argument, as the script expects.

Note that the .d files will be relative to the top level directory.
Writing them so that they can be used from any level is possible,
but beyond the scope of this paper.

Multiplier

All of the inefficiencies described in this section compound
together. If you do 100 Makefile interpretations, once for each
module, checking 1000 source files can take a very long time - if
the interpretation requires complex processing or performs
unnecessary work, or both. A whole project make, on the other
hand, only needs to interpret a single Makefile.

Projects versus Sand-boxes

The above discussion assumes that a project resides under a
single directory tree, and this is often the ideal. However, the
realities of working with large software projects often lead to
weird and wonderful directory structures in order to have
developers working on different sections of the project without
taking complete copies and thereby wasting precious disk space.

It is possible to see the whole-project make proposed here as
impractical, because it does not match the evolved methods of your
development process.

The whole-project make proposed here does have an effect on
development methods: it can give you cleaner and simpler build
environments for your developers. By using make’s VPATH
feature, it is possible to copy only those files you need to edit into
your private work area, often called a sandbox.

The simplest explanation of what VPATH does is to make an
analogy with the include file search path specified using -I path
options to the C compiler. This set of options describes where to
look for files, just as VPATH tells make where to look for files.

By using VPATH, it is possible to “stack” the sand-box on top
of the project master source, so that files in the sand-box take
precedence, but it is the union of all the files which make uses to
perform the build (see Figure 8).

In this environment, the sand-box has the same tree structure as
the project master source. This allows developers to safely change
things across separate modules, e.g. if they are changing a module
interface. It also allows the sand-box to be physically separate –
perhaps on a different disk, or under their home directory. It also
allows the project master source to be read-only, if you have (or
would like) a rigorous check-in procedure.

Note: in addition to adding a VPATH line to your development
Makefile, you will also need to add -I options to the CFLAGS
macro, so that the C compiler uses the same path as make does. This
is simply done with a 3-line Makefile in your work area – set a
macro, set the VPATH, and then include the Makefile from the
project master source.

VPATH Semantics

For the above discussion to apply, you need to use GNU
Make 3.76 or later. For versions of GNU Make earlier than 3.76,
you will need Paul Smith’s VPATH+ patch. This may be obtained
from ftp://ftp.wellfleet.com/netman/psmith/gmake/.

The POSIX semantics of VPATH are slightly brain-dead, so
many other make implementations are too limited. You may want
to consider installing GNU Make.

The Big
Picture

This section brings
together all of the
preceding discussion,
and presents the
example project with
its separate modules,

but with a
whole-project
Makefile.
The directory
structure is
changed little
from the
recursive case,
except that the
deeper
Makefiles
are replaced by
module
specific include
files (see
Figure 9).

Master Source
main.c
parse.y

Sand-Box
main.c

variable.c

Combined View
main.c

variable.c
parse.y

Project

Makefile

main.c

parse.y

depend.sh

module.mk

module.mk

bee

ant

Figure 8 Figure 9

#!/bin/sh

DIR="$1"

shift 1

case "$DIR" in

"" | ".")

gcc -MM -MG "$@" |

sed -e ’s@ˆ\(.*\)\.o:@\1.d \1.o:@’

;;

*)

gcc -MM -MG "$@" |

sed -e "s@ˆ\(.*\)\.o:@$DIR/\1.d $DIR/\1.o:@"

;;

esac

%.d: %.c

depend.sh ‘dirname $*‘ $(CFLAGS) $* > $@

28

overload issue 70 february 2006

The Makefile looks like this:

This looks absurdly large, but it has all of the common elements
in the one place, so that each of the modules’ make includes may
be small.

The ant/module.mkfile looks like:

The bee/module.mkfile looks like:

Notice that the built-in rules are used for the C files, but we need
special yacc processing to get the generated .h file.

The savings in this example look irrelevant, because the top-
level Makefile is so large. But consider if there were 100
modules, each with only a few non-comment lines, and those
specifically relevant to the module. The savings soon add up to a
total size often less than the recursive case, without loss of
modularity.

The equivalent DAG of the Makefile after all of the includes
looks like figure 10

The vertexes and edges for the include file dependency files
are also present as these are important for make to function
correctly.

Side Effects

There are a couple of desirable side-effects of using a single
Makefile.
● The GNU Make -j option, for parallel builds, works even better

than before. It can find even more unrelated things to do at once,
and no longer has some subtle problems.

● The general make -k option, to continue as far as possible even
in the face of errors, works even better than before. It can find
even more things to continue with.

LiteratureSurvey

Howcan it be possible that we have been mis-using make for 20
years? How can it be possible that behaviour previously ascribed
to make’s limitations is in fact a result of mis-using it?

The author only started thinking about the ideas presented in
this paper when faced with a number of ugly build problems on
utterly different projects, but with common symptoms. By
stepping back from the individual projects, and closely examining
the thing they had in common, make, it became possible to see
the larger pattern. Most of us are too caught up in the minutiae of
just getting the rotten build to work that we don’t have time to
spare for the big picture. Especially when the item in question
“obviously” works, and has done so continuously for the last 20
years.

It is interesting that the problems of recursive make are rarely
mentioned in the very books Unix programmers rely on for
accurate, practical advice.

The Original Paper

The original make paper [1] contains no reference to recursive
make, let alone any discussion as to the relative merits of whole
project make over recursive make.

It is hardly surprising that the original paper did not discuss
recursive make, Unix projects at the time usually did fit into a single
directory.

It may be this which set the “one Makefile in every directory”
concept so firmly in the collective Unix development mind-set.

GNU Make

The GNU Make manual [2] contains several pages of material
concerning recursive make, however its discussion of the merits
or otherwise of the technique are limited to the brief statement
that

This technique is useful when you want to separate makefiles for
various subsystems that compose a larger system.

No mention is made of the problems you may encounter.

MODULES := ant bee

#look for include files in

each of the modules

CFLAGS += $(patsubst %,-I%,\

$(MODULES))

#extra libraries if required

LIBS :=

#each module will add to this

SRC :=

#include the description for

each module

include $(patsubst %,\

%/module.mk,$(MODULES))

#determine the object files

OBJ := \

$(patsubst %.c,%.o, \

$(filter %.c,$(SRC))) \

$(patsubst %.y,%.o, \

$(filter %.y,$(SRC)))

#link the program

prog: $(OBJ)

$(CC) -o $@ $(OBJ) $(LIBS)

#include the C include

dependencies

include $(OBJ:.o=.d)

#calculate C include

dependencies

%.d: %.c

depend.sh ‘dirname $*.c‘ $(CFLAGS) $*.c > $@

SRC += ant/main.c

SRC += bee/parse.y

LIBS += -ly

%.c %.h: %.y

$(YACC) -d $*.y

mv y.tab.c $*.c

mv y.tab.h $*.h

29

overload issue 71 february 2006

Managing Projects with Make

The Nutshell Makebook [3] specifically promotes recursive make
overwhole project make because:

The cleanest way to build is to put a separate description file in
each directory, and tie them together through a master description
file that invokes make recursively.While cumbersome, the technique
is easier to maintain than a single, enormous file that covers multiple
directories. (p. 65)

This is despite the book’s advice only two paragraphs earlier that

make is happiest when you keep all your files in a single directory.
(p. 64)

Yet the book fails to discuss the contradiction in these two
statements, and goes on to describe one of the traditional ways of
treating the symptoms of incomplete DAGs caused by recursive
make.

The book may give us a clue as to why recursive make has been
used in this way for so many years. Notice how the above quotes
confuse the concept of a directory with the concept of a
Makefile.

This paper suggests a simple change to the mind-set: directory
trees, however deep, are places to store files; Makefiles are
places to describe the relationships between those files, however
many.

BSD Make

The tutorial for BSD Make [4] says nothing at all about recursive
make, but it is one of the few which actually described, however
briefly, the relationship between a Makefile and a DAG (p. 30).
There is also a wonderful quote

If make doesn’t do what you expect it to, it’s a good chance the
makefile is wrong. (p. 10)

Which is a pithy summary of the thesis of
this paper.

Summary

This paper presents a number of related
problems, and demonstrates that they are
not inherent limitations of make, as is
commonly believed, but are the result of
presenting incorrect information to make.
This is the ancient Garbage In, Garbage
Out principle at work. Because make can
only operate correctly with a complete
DAG, the error is in segmenting the
Makefile into incomplete pieces.

This requires a shift in thinking:
directory trees are simply a place to hold
files, Makefiles are a place to remember
relationships between files. Do not confuse
the two because it is as important to
accurately represent the relationships
between files in different directories as it is
to represent the relationships between files
in the same directory. This has the
implication that there should be exactly one

Makefile for a project, but the magnitude of the description can
be managed by using a make include file in each directory to
describe the subset of the project files in that directory. This is just
as modular as having a Makefile in each directory.

This paper has shown how a project build and a development
build can be equally brief for a whole-project make. Given this
parity of time, the gains provided by accurate dependencies mean
that this process will, in fact, be faster than the recursive make case,
and more accurate.

Inter-dependent Projects

In organizations with a strong culture of re-use, implementing
whole-project make can present challenges. Rising to these
challenges, however, may require looking at the bigger picture.
● A module may be shared between two programs because the

programs are closely related. Clearly, the two programs plus the
shared module belong to the same project (the module may be
self-contained, but the programs are not). The dependencies must
be explicitly stated, and changes to the module must result in
both programs being recompiled and re-linked as appropriate.
Combining them all into a single project means that whole-
project make can accomplish this.

● A module may be shared between two projects because they
must inter-operate. Possibly your project is bigger than your
current directory structure implies. The dependencies must be
explicitly stated, and changes to the module must result in both
projects being recompiled and re-linked as appropriate.
Combining them all into a single project means that whole-
project make can accomplish this.

● It is the normal case to omit the edges between your project and
the operating system or other installed third party tools. So
normal that they are ignored in the Makefiles in this paper,
and they are ignored in the built-in rules of make programs.

Modules shared between your projects may fall into a
similar category: if they change, you will deliberately re-build
to include their changes, or quietly include their changes

parse.d

prog

main.d

parse.o

main.c

main.o

parse.h parse.c

parse.y

Figure 10

30

overload issue 70 february 2006

whenever the next build may happen. In either case, you do not
explicitly state the dependencies, and whole-project make does
not apply.

● Re-use may be better served if the module were used as a
template, and divergence between two projects is seen as normal.
Duplicating the module in each project allows the dependencies
to be explicitly stated, but requires additional effort if
maintenance is required to the common portion.

How to structure dependencies in a strong re-use environment
thus becomes an exercise in risk management. What is the
danger that omitting chunks of the DAG will harm your
projects? How vital is it to rebuild if a module changes? What
are the consequences of not rebuilding automatically? How can
you tell when a rebuild is necessary if the dependencies are not
explicitly stated? What are the consequences of forgetting to
rebuild?

Return On Investment

Some of the techniques presented in this paper will improve the
speed of your builds, even if you continue to use recursive make.
These are not the focus of this paper, merely a useful detour.

The focus of this paper is that you will get more accurate builds
of your project if you use whole-project make rather than recursive
make.
● The time for make to work out that nothing needs to be done will

not be more, and will often be less.
● The size and complexity of the total Makefile input will not

be more, and will often be less.
● The total Makefile input is no less modular than in the

recursive case.
● The difficulty of maintaining the total Makefile input will not

be more, and will often be less.

The disadvantages of using whole-project make over recursive
make are often un-measured. How much time is spent figuring
out why make did something unexpected? How much time is
spent figuring out that make did something unexpected? How

much time is spent tinkering with the build process? These
activities are often thought of as “normal” development
overheads.

Building your project is a fundamental activity. If it is performing
poorly, so are development, debugging and testing. Building your
project needs to be so simple the newest recruit can do it
immediately with only a single page of instructions. Building your
project needs to be so simple that it rarely needs any development
effort at all. Is your build process this simple?

Peter Miller
miller@canb.auug.org.au

References

1 Feldman, Stuart I. (1978). Make- APro gramfor Maintaining
Computer Programs. Bell Laboratories Computing Science
Technical Report 57

2 Stallman, Richard M. and Roland McGrath (1993). GNU Make:
A Programfor Directing Recompilation.Free Software
Foundation, Inc.

3 Talbott, Steve (1991). Managing Projects with Make, 2nd
Ed.O’Reilly & Associates, Inc.

4 de Boor, Adam (1988). PMake- ATutorial.University of
California, Berkeley

About the Author

Peter Miller has worked for many years in the software R&D
industry, principally on UNIX systems. In that time he has
written tools such as Aegis (a software configuration
management system) and Cook (yet another make-oid), both of
which are freely available on the Internet. Supporting the use of
these tools at many Internet sites provided the insights which led
to this paper.

Please visit http://www.canb.auug.org.au/˜millerp/ if
you would like to look at some of the author’s free software.

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support
nor disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author
is, by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column
(not a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Advertise in C Vu & Overload
80% of Readers Make Purchasing Decisions

or recommend products for their organisation.

Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@accu.org

31

overload issue 71 february 2006

