
3

overload issue 72 april 2006

contents credits &
contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Tim Penhey
tim@penhey.net

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Multithreading 101
Tim Penhey 7

To Grin Again
Alan Griffiths 10

A Fistful of Idioms
Steve Love 14

C++ Best Practice:
Designing Header Files

Alan Griffiths 19

Visiting Alice
Phil Bass 24

Copy Deadlines
All articles intended for publication in Overload 73 should be submitted to the editor by
May 1st 2006, and for Overload 74 by July 1st 2006.

4

overload issue 72 april 2006

However, as editor for the last couple of years I’ve noticed
that there is a worrying decline in proposals for articles
from authors. Many of the great articles you’ve enjoyed
over the last year have only arisen because I’ve happened
to be talking to someone about a problem they have
encountered developing software and the way they solved
it. When I suggest that they write it up the usual response
is “no-one would find that interesting” – but those that have
gone ahead and written an article will attest that people are
interested in these things. We belong to a community that
enjoys solving the problems of software development and
in hearing about the experience of others.

One of the things about a community is that it is
strengthened by sharing, all of you have stories to tell –
and the purpose of Overload is here to help you tell
them. The team of advisors listed at the front of
Overload are not here to write the magazine for you,
they are here to help with the selection of the best stories
to publish and to work with the authors to ensure that
their stories are told well. And after the advisors’ efforts
to fill the pages of Overload this time I’m going to
enforce a rest. I will not be accepting any articles from
the advisors for the next issue of Overload. (If the next
issue consists only of an editorial then you’ll know why.)

I know, because I’ve heard the stories, that several of
you could write about “Proving Brookes’ Law” (the
industry clearly needs more evidence); or “A Pair
Programming experience report” (that may be better
written jointly– when you are talking to each other once
more); or “Doing the Right Thing” (when judgment and
policy disagree). I’m sure that others I’ve not talked to
could also contribute to these or other stories.

Make an effort to contribute to the magazine. If you
are willing but “don’t have anything to write” then seek
me (or one of the advisers) out at the ACCU conference,
at XtC, at SomethingInNottingham, or by email – every
one of you has a story to share, you just might not realise
it yet. It doesn’t have to be a success story: “cautionary
tales” are as informative as “happy endings” (and
sometimes more useful).

Remember, I’m not going to let the advisors write
Overload 73 for you. It is your magazine and you need
to make an effort.

More on WG14

Last time I commented on the fact that I was hearing
conflicting information about the WG14 technical report
on “safe” alternatives to the standard library function.
This has led to an email from the Convener of WG14
(John Benito <jb@benito.com>):

Reading the editorial in the February 2006 edition of the Overload
magazine written by you, Exhibit 3. WG14 is indeed working on a
Technical Report that will define more resilient library functions (we
are staying away from “secure”, “safe” and that ilk). This work was
first brought to WG14 by Microsoft, but to indicate it would have
Microsoft specific extensions embedded is just ridiculous and a
statement like that would only come from the misinformed. Chris
Hills indeed was the Chair of the UK C Panel, but attended (or partially
attended) just one (yes one) WG14 meeting his entire tenure as UK
C Panel convener, and should not be used as a reference to what is
happening within the Working Group. If you want to know what is
going on in WG14, ask me, or Francis Glassborow, or at the very least
ask someone that actually attends the meetings.

I would also like to point out that using statements like “later this
year if WG14 (article has WG13) accepts this” makes it seems as if
you do not understand the ISO process. WG14 generated an NP for
this work in 2003, this NP was balloted at the SC22 level, passed
and WG14 officially started work on the project. Since then the TR
has been through the Registration ballot phase and is ready for the
next ballot in the process. Again, if you are not sure of this process
ask. Also implying anyone can write a Technical Report because we
are all volunteers is misleading and just not the case. There is a
process, and the process is followed.

I am not trying to harsh in any way, but I really do not want WG14
misrepresented to the Community.

Thank you. John Benito (WG14 Convener)

I hope that clarifies the situation. I apologise for implying
that due process is not being followed and only intended to
observe that, typically, national bodies do not actively oppose
work that they themselves don’t wish to spend time on.

More on C++/CLI

I’ve also had an email about C++/CLI. Mark Bartosik
<mbartosik@yahoo.com> writes:

Alan, I’ve just read your editorial in Overload. A lot of what you
said rang very true with me.

I’ve got a reasonable degree of competence in C++ (attended
ACCU conference for about ten years, and speaking this year). I say

Editorial: Doing What You Can
Your magazine needs you!

I
f you look at the contents of this issue of Overload you’ll see that most of the feature
content has been written by the editorial team.You might even notice that the remaining
article is not new material. To an extent this is a predictable consequence of the time

of year: many of the potential contributors are busy preparing for the conference.

this to place into context my following comments...
When I first heard from Herb a couple of years ago what

Microsoft were doing to bind C++ to CLI it sounded cool. However,
when I now look at what it has evolved into I too feel like it is a
different language, for me it is the attributes and keywords where
library code might have done the job.

Now for the important comment that is also an embarrassment....
When I read some of the Visual Studio 2005 / MSDN documentation,

I did think that I had lost track of what was happening to the C++
standard. I thought that some of what were in reality C++/CLI features
were C++ features that were in TR2 and I had somehow got confused
about what was in TR2. No it was just that the documentation is highly
misleading, and it mislead me. Not for long, but I’m sure that many of
my coworkers would have been completely fooled.

I have no experience in C++/CLI, indeed I’ve only read some of
the documentation, but I was fooled by the documentation for at least
a short time. The documentation does make it feel like a different
language but also gives the impression that some features are C++,
some are plausible features (attributes are obviously not).

Nice editorial, Mark

The issue that should concern us as developers is the
confusion that Mark highlights regarding which semantics
belong to C++ and which to C++/CLI. However, ECMA’s
response to the issues raised by BSI dismisses this:

There is no reason to expect that programmers will mistake
C++/CLI features for ISO C++ features any more than they
occasionally mistake extensions in specific compilers (e.g., Borland,
Gnu, and Microsoft) for ISO C++ features. Rather, having these
extensions as a named standard instead of unnamed vendor
extensions serves to help distinguish them more clearly from ISO C++.

This confusion of language semantics would not arise with
a library based “binding” to the CLR – or with language
extensions to add semantics. The difficulty of doing this is
discussed in Herb Sutter’s excellent paper “A Design
Rationale for C++/CLI”: to achieve the design goals that
the C++/CLI group set themselves language support for a
radically different programming model is necessary.

Those involved in the “C++/CLI Language
Specification” have done a good job of solving the
problems set by integrating C++ into a platform with a
radically different object model: C++/CLI is better thought
out than comparable technologies like Microsoft’s
“managed C++” or Borland’s VCL. It does look like a good
and useful addition to the curly-brace family of languages!
(And C++/CLI is definitely “on topic” for Overload – so
don’t be shy of writing articles that use it.)

In any case, it seems likely that around the time you are
reading this, there will be more developments on this front.
Both BSI representatives and Microsoft representatives
will be present at a WG21 meeting in Berlin and we can
expect that a constructive dialogue will ensue.

More on the Safe Standard C++ Library

A great deal of effort has been expended explaining to the
Microsoft representatives that others may have a different
security model than they do (and, therefore, different

vulnerabilities), that other concerns dominate in other
organisations (which make the suggested “solution”
unacceptable), that the diagnostics may be issued for
manifestly correct code, that changing code to fix the
diagnostic can result in incorrect code, and that the choice
of wording creates a misleading impression regarding the
authority of the diagnostics.

Obviously, there are limitations to what Microsoft can
do with software that has already shipped, and even to
what they can change in a service pack. But clearly things
have been happening within Microsoft, because Herb
Sutter (yes, he’s been busy) recently came back to the
WG21 reflector seeking feedback on their current plans
for addressing this in a service pack. In particular, the
wording has been changed to avoid implying that the
advice is standards based, and to make it easier for library
vendors to suppress the diagnostics appropriately. While
there are concerns that have not been addressed by this
proposal it is a big improvement.

Probably the most significant concern is due to a lot of
the diagnostics produced being false positives. It is still easy
to envisage scenarios where correct code is flagged as being
“unsafe” resulting in a developer spending time to fix the
“problem” and, in the process, producing “safe” code that
is incorrect. While I accept that scenarios like this should
be rare, they will be noticed: “you broke it because the
compiler said it was wrong? That doesn’t happen with
<insert random programming language here>”. Once a few
stories like this start “going around” the facts will become
irrelevant – like the idea that C++ programs have memory
management problems and that Java programs don’t.

In Conclusion

Each of us can only do so much to uphold the values we
espouse. But we have a solemn duty not only to do what
we think is right, but to recognise what others are
achieving. Sometimes the latter may not be obvious but,
given the history of Microsoft, does anyone believe that
there would be any progress towards resolving the above
issues without considerable internal resistance?

I hope to see you at the conference!
Alan Griffiths

overload@accu.org

References
1. ACCU conference: http://www.accu.org/conference/
2. XtC:

http://www.xpdeveloper.net/xpdwiki/Wiki.jsp?page=XtC

3. SomethingInNottingham: http://www.xpdeveloper.net/
xpdwiki/Edit.jsp?page=SomethingInNottingham

4. ECMA’s response: http://www.octopull.demon.co.uk/
editorial/ECMA_comments_on_ISO_IEC_DIS_26926_

C++_CLI_Language_specification001.pdf

5. “A Design Rationale for C++/CLI”, Herb Sutter
http://www.gotw.ca/publications/C++CLIRationale.pdf

6. “C++/CLI Lanaguage Specification” - http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-

372.pdf

5

overload issue 72 april 2006

6

overload issue 72 april 2006

Multithreading 101
by Tim Penhey

Multithreading is a huge topic and this article is really just giving
an introduction to many terms and concepts. It is aimed at the
threading newcomer and intends to highlight some of the
problems associated with writing multithreaded applications.

Firstly I’ll cover the basics on threads – what are they, and how
do they relate to processes. Next there are some guidelines of where
threads can be useful, and when not to use them. Then I’ll explain
the “primitives”, the underlying building blocks provided by the
operating system kernel to allow multithreading programs to be
written.

Following that I cover some concepts that do not at first seem
intuitive: memory barriers – what they are and why they are needed;
race conditions – with specific examples of deadlock and livelock;
and priority inversion – where a low priority task gets more
processor time than a high priority task.
Lastly a look at the where the world of threading is headed.

Tasks, Processes and Threads

In the beginning there was synchronous execution. A list of
commands were executed in order, one at a time. As time
progressed, more and more was expected from an operating
system. Multitasking allowed multiple programs to appear to be
running at the same time, while in actual fact the CPU was still
only capable of running one thing at a time.

In order to switch computation from one task to another there
would be a context switch. The execution details of one task were
saved out of the registers in the CPU, and details of another task
were moved in, and execution of the new task would resume.
Multitasking appeared in two forms: cooperative and pre-emptive.
With cooperative multitasking, it is up to the application to
relinquish control, whereas with pre-emptive multitasking the OS
kernel will interrupt the task “mid flow” and switch it out. The
primary problem with cooperative multitasking is that it only
takes one badly behaved process to disrupt the entire system.

Processes can be thought of as tasks that have certain isolation
guarantees with respect to memory and resources. Threads are
created by a process – from its “main thread”. Created threads share
memory and resources with the thread that created it.

Shared access to memory and resources combined with pre-
emptive multitasking is where the complexity of multithreaded
programming comes in.

When to Use Threads

Unfortunately there is no black and white answer for this
question. There are several important questions that you should
ask yourself before diving into multiple threads:
● Are shared resources really needed?
● Is the extra complexity worth the effort?

There are many cases where it seems desirable to have separate
threads – particularly when there may be clean separation in
processing. An important question here is “should they be
separate threads or separate processes?” Do both tasks really
need access to shared resources or is there just information being
passed from one to the other? Two single threaded programs are

often better than one multithreaded program due to the following
points:
● Single threaded code is easier to write – no resource

synchronization needed
● Single threaded programs are easier to debug
● Single threaded programs are easier to maintain – no threading

knowledge needed
● Separate programs are easier to test – each can be tested in

isolation

Threading adds complexity to often already complex situations.
A good rule of thumb is “Is the complexity that is added through
the use of threads significantly reducing the complexity of the
problem?” If the answer is “NO” then you may want to strongly
reconsider the use of threads. However there may be other
overriding factors that push strongly towards a threaded
solution:
● GUI responsiveness
● Complete processor utilisation
● Network connectivity

GUI Responsiveness

By their nature GUI programs are event driven. For much of the
time, the programs are waiting for the user to click or type
something. GUI programs are normally written with a main event
loop where the application needs to respond to “desktop events”
such as repaint or move as well as user events. When applications
fail to respond to these events in a timely manner, the operating
system often marks the processes as non-responsive and the
application can appear frozen.

There are often situations in writing an application where long
running functions are needed (for some arbitrary definition of long)
– for example: reading or writing files, running a spell check, or
encoding some data. In order to have a responsive GUI for the
application it is not desirable to have these functions running in the
same thread as the main event processing loop.

Complete Processor Utilisation

Some classes of problems lend themselves to being easily
broken into independent parts. Some classes of problems need
to be solved as soon as possible. Some classes of problems are
purely calculation intensive where the problem is not waiting
on other results or information from other sources. The
intersection of these three sets of problems are candidates for a
solution where all the processors in a machine could be fully
utilised. In situations where separate processes are not viable,
having a number of threads to do the processing will provide a
time benefit. One of the tricks is not to have more processing
threads than effective CPUs (effective as a single
hyperthreading CPU can appear as two). The reason for this is
that if all the threads are CPU bound (which means the only
thing slowing the calculation of the results is the speed of the
processor), then ideally there should be one thread assigned to
each effective CPU. If there are more calculation threads than
CPUs then more context switching occurs as the active threads
compete with each other for the processors. Every context
switch has an overhead which slows down the results
generation even more.

7

overload issue 72 april 2006

Network Connectivity

Threads used in this way are often referred to as “worker
threads”. A point to consider when dealing with worker threads is
when to create them. There are always overheads involved when
creating and destroying threads. The amount of overhead varies
from platform to platform. It is a common idiom to use a
collection of threads that are started prior to any work being
available for them. These threads then wait for work to do. The
collection of threads is often referred to as a “thread pool” or
“work crew”. Since the thread generating the work does not pass
it on to a specific thread, there needs to be some abstraction
between the threads generating the work and the threads
processing the work. This is often implemented using a queue.
The work generating threads put work on the queue, and the
workers take work from the queue. In situations such as this there
are normally two types of work: those that have feedback –
results passed back to the work generators; and those that do not
– for example the worker threads save results directly to a
database. How the feedback from the worker threads is handled
depends greatly on the problem – suffice to say there are many
ways to do it.

Whether on the client or the server side, threads are often used
when communicating over a network. On the client side threads are
used when requesting a response that may take the server some time
to respond to – especially if the client side application has more to
do than just wait for the response such as responding to GUI events.

Threads are more common on the server side where the server
may be listening on a socket. When a client connects a socket
descriptor is generated that represents the connection between the
client and the server. The socket descriptor can then be used
independently of waiting for more connections. In order for the
server application to remain responsive to client connections, the
actual work with the socket descriptors is normally handled by a
different thread than the thread where the program is accepting
connections.

Thread pools are frequently used to handle server side execution
where the threads wait for the primary thread to accept a client
connection. The socket descriptor is then passed to an idle worker
thread in the thread pool. This thread then handles the conversation
with the client and performs the necessary actions to produce results
for the client. Once the conversation with the client is finished, the
worker thread releases the socket descriptor and goes back into a
waiting state.

Primitives

Providing an API to start, stop and wait for threads is really just
the tip of a much bigger iceberg of necessary functions. The
simplest of these functions are atomic operations. These are
functions, provided by the OS kernel, that are guaranteed to
complete before the task is switched out.

As well as atomic additions and subtractions, there are also
functions that perform more than one “action” such as “decrement
and test” and “compare and swap”.
● Decrement and test subtracts one from the atomic variable and

returns true if the atomic variable is now zero.
● Compare and swap takes three parameters, the atomic

variable, the expected current value, and the new value. If the
atomic variable is the expected value then it is updated to the
new value and returns true. If the atomic variable is not the

expected value, then the expected current value is updated to
what the atomic variable currently holds and the function
returns false.

These atomic operations are then used to build more complex
primitives.

In order to provide some isolation guarantees for multiple
threads within one process, the operating system provides a way
to define mutual exclusion blocks. The primitive that provides
the interface to these blocks is often referred to as a mutex
(mut-ual ex-clusion). The key to how the mutex works is in the
acquiring and releasing. When a mutex is acquired, it is
effectively marked as being owned by the thread that acquired
it. If another thread attempts to acquire the mutex while it is still
owned by a different thread, the acquiring thread blocks waiting
for the mutex to be released. When the mutex is released it is
marked as “unowned”. In the case where there is another thread
waiting, it is effectively woken up and given ownership of the
mutex. Some care needs to be taken acquiring mutex ownership
as some implementations will not check for self ownership
before waiting, so it is possible for a single thread to wait for
itself to relinquish ownership – not a situation you really want
to be in.

Any non-trivial data structure uses multiple member variables
to define the structure’s state. When the data structure is being
modified it is possible that the thread that is updating the data
structure could be switched out. Another thread that wants to access
the shared data structure could be switched in. Without the use of
mutual exclusion blocks it is possible that the data structure’s state
is inconsistent. Once this happens the program is often in the world
of undefined behaviour.

Consider the following example:
There is a container of Foo objects called

foo.

A mutex to protect foo access called m

Thread 1:

acquire mutex m

bar = reference to a value in foo

release mutex m

use bar...

Thread 2:

acquire mutex m

modify foo

release mutex m

What is protecting bar? It is possible that thread 2 may modify
the value of bar while thread 1 is trying to use it. Protecting
memory access between threads is almost always more complex
than it first looks. One approach is to put mutexes around
everything, however this does little more than serialise the
application and prohibits the concurrency that is intended through
the use of threads. Multiple threads with extraneous mutexes
often perform worse than a single threaded approach due to the
additional overhead of context switches.

The next two primitives are more for synchronization than
mutual exclusion. They are events and semaphores. Events and
semaphores can be used to initiate actions on threads in response
to things happening on a different thread of execution.

8

overload issue 72 april 2006

Unfortunately there is no agreed standard on what an event is, and
the two most common platforms (Win32 and posix) handle things
quite differently. Without going into too much detail, you can have
threads waiting on an event. These threads block until the event
occurs. When the event is signalled (from a non-blocking thread
obviously) one or more threads (implementation dependant) will
wake up and continue executing.

An example of using an event would be a client-server system
where the client is able to cancel long running calls. One way of
doing this is to have the thread that is communicating with the client
not actually do the work, but instead get another thread to do the
work and be told when the work is complete. The way in which the
servicing thread is informed of complete work is through the use
of an event.

Thread 1:

gets client request

passes on to worker thread

waits on event

Worker thread:

gets work for client

processes for a long time

signals event when complete

Thread 1:

wakes on event signal

returns result to client

What advantage does this give over just one thread?
Implemented this way allows the possibility of having either
time-outs for long work or client driven cancellation. For client
driven cancellation it may work something like this:

Thread 1:

gets client requesting

passes on to worker thread

waits on event

Worker thread:

gets work for client

processes for a long time

Thread 2:

client cancels original request

sets cancelled flag

signals event

Thread 1:

wakes on event signal

returns cancelled request

What happens to the worker thread depends on the problem. The
worker thread may be allowed to run to completion and discard
results or it maybe be possible to interrupt the worker thread prior
to completion.

For time-outs instead of having a client connection initiating the
cancellation it is some “watchdog” thread whose job it is to observe
running work and cancel work that runs overtime.

A semaphore can be thought of as a counter that can be waited

on. A semaphore is initialised with a non-negative number. When
a thread wants to acquire a semaphore, this value is checked. If
the value is positive, then the value is decremented and execution
continues. If the value is zero, then the thread blocks. The
semaphore value is incremented by a non-blocked thread calling
the “signal” or “release” semaphore function. If there is a waiting
thread, it will awaken, decrement the value and continue
executing.
Semaphores are often used where there are multiple copies of a
resource to be managed. For example a database connection pool.
Instead of initiating a connection every time the database needs
to be accessed, a number of connections are created “ahead of
time” and await use. One way of managing this pool of
connections is to create a semaphore with an initial count of the
number of available connections. When a thread requests a
connection it does so by acquiring the semaphore. If the value of
the semaphore is non-zero the semaphore is decremented which
means there is a database connection available. When the thread
is finished with the connection, the connection is returned to the
pool and the semaphore is incremented. If the semaphore is zero
when a connection is requested, the thread blocks until the
semaphore is incremented. When a connection is returned to the
pool and the semaphore incremented a thread waiting on the
semaphore will awaken – decrementing the semaphore in the
process, allowing it to get the connection.

Memory Barriers

Advances in processor efficiency have led to many tricks and
optimisations that the processor can do in order to speed up
memory access. Grouping together memory reads and memory
writes, along with block reads and writes are some of the tricks
that are done to make access faster. The reordering of memory
reads and writes are a special case of the more general
optimisation referred to as “execution out of order”. The
commands are grouped in such a way that any grouping that is
done is transparent to a single thread of execution. The problem
occurs when there is more than one thread sharing the memory
that is being read or written to in the optimised manner.

Suppose we have two threads as illustrated by this pseudo code:

x = 0, y = 0

Thread 1:

while x == 0 loop

print y

Thread 2:

y = 42

x = 1

It might seem reasonable to expect the print statement from
Thread 1 to show the value 42, however it is possible that the
processor may store the value for x before y, and hence the
printed value may show 0.

A memory barrier is a general term that is used to refer to
processor instructions that inhibit the “optimal” reordering of
memory access. A memory barrier is used to make sure that all
memory loads and saves before the barrier happen before any loads

9

overload issue 72 april 2006

and saves after the barrier. The actual behaviour of memory barriers
varies from platform to platform.

Many synchronization primitives have implicit memory barriers
associated with them. For example it is usual for a mutex to have a
memory barrier defined at the point of acquiring and at the point of
releasing.

As well as processor execution out of order, there are also issues
with compiler optimisations. What a compiler may do depends on
the memory model for the language that is being used. The more
thread aware languages provide keywords which will stop the
compiler making certain assumptions, for example the volatile
keyword in Java.

Race Conditions

A race condition is a catch-all term for situations where the
timing of the code execution can impact the result. The definition
provided by the Free On-Line Dictionary Of Computing [1] is
“Anomalous behavior due to unexpected critical dependence on
the relative timing of events”.

Many of the well known problems associated with multithreaded
code are types of race conditions. A large number of race conditions
can be solved through the use of synchronization primitives.
However overly liberal use of synchronization primitives will have
a performance impact and can also bring a different type of problem
into the picture.

Probably the best known result of a race condition is deadlock.
A deadlock is where two or more threads are waiting for resources
that the other waiting threads own – so each waiting thread waits
forever.

There are four necessary conditions for deadlocks to occur.
These were initially defined in a 1971 paper by Coffman, Elphick,
and Shoshani [2].
1. Tasks claim exclusive control of the resources they require

(“mutual exclusion” condition).
2. Tasks hold resources already allocated to them while waiting for

additional resources (“wait for” condition).
3. Resources cannot be forcibly removed from the tasks holding

them until the resources are used to completion (“no pre-
emption” condition).

4. A circular chain of tasks exists, such that each task holds one or
more resources that are being requested by the next task in the
chain (“circular wait” condition).

Having these conditions in the code does not necessarily mean
that deadlocks will occur, just that they could, and hence the
relative timing of events in different threads can lead to this race
condition happening.

There are several strategies for avoiding deadlocks, the simplest
is to avoid the circular chain. This is normally achieved by
specifying a particular order in which locks must be acquired if
multiple locks are needed.

A less well known problem is that of livelock. A livelock is
where two or more threads continuously execute but make no
progress. For example two threads are both doing calculations while
some value is true, but they are doing it in such a way that each
invalidates the other’s test, causing both threads to continue for
ever.

A real world example of live lock is two people walking towards
each other in a corridor. Each person trying to be polite steps to the
side, however they just end up mirroring the other person’s

movement and end up moving from side to side. Luckily we don’t
normally end up stuck forever in this predicament.

Priority Inversion

Priority inversion is more of a problem for real-time systems, but
it can occur on any system where threads or processes can have
priorities assigned to them. This ends up being a scheduling
problem and occurs when a low priority task has ownership of a
resource that a high priority task needs.

In these situations the low priority task ends up taking
precedence over the high priority task. This can be complicated
even more by there being another task running with a priority
between the high and low task. The medium priority task takes
precedence over the low priority task which delays even longer the
releasing of the resource that the high priority task needs.

In many cases, priority inversion passes without much notice,
but it can cause serious problems, as in the case with the “Mars
Pathfinder” [3] where the craft was resetting the computer
frequently.

Where To From Here?

We are now in the situation where multi-core processors are
becoming commonplace. In order to write software that will
make full use of new hardware, multithreading is going to be
used more and more.

Languages that have defined memory models are considering
them with respect to changes in hardware technology. Languages
that don’t, like C++, are looking to define them. A particular interest
is the possibility of adding language constructs that will allow the
automatic use of threads to speed up loops.

Another area of research that is likely to see more interest is lock-
free data structures and wait-free algorithms. Lock-free data
structures are possible to write by using the atomic operations
supplied by the operating system. However due to the more inherent
complexities of non-trivial data structures, they are hard to get right.

Wait-free algorithms are of particular interest to real time
systems due to the fact that if a high priority task is never blocked,
then priority inversion does not happen.

Conclusion

If you are looking at using multiple threads first stop and think.
Are they really necessary? Is the added complexity from
threading going to reduce the complexity of the problem? Would
separate processes be better? If after careful consideration you
decide that they are in fact going to help, then go forward with
care. Protect your shared data structures with mutual exclusion
blocks or cunningly-devised lock-free algorithms. Avoid circular
dependencies on mutexes, and use the correct synchronisation
methods for the problem.

Tim Penhey
tim@penhey.net

References

1 http://foldoc.org

2 http://www.cs.umass.edu/~mcorner/courses/691J/

papers/TS/coffman_deadlocks/

coffman_deadlocks.pdf

3 http://research.microsoft.com/~mbj/

Mars_Pathfinder/Authoritative_Account.html

10

overload issue 72 april 2006

To Grin Again
by Alan Griffiths

In the latter years of the last millennium there were a number of
articles published that explored the design space of “smart
pointers”. That was in the days where there were loads of broken
implementations available for download from the internet, but
working ones – like those in the Loki and Boost libraries – were
not to be found.

One of these pointers has come back to haunt me – partly
because I wrote it, but also because it meets a set of recurring
requirements. I’d not looked at it for years, but a colleague was
implementing a “Cheshire Cat” class using Boost’s shared_ptr
[1] (which is a dubious choice as the copy and assignment
semantics are completely wrong for this purpose) so I pointed him
to my old article on grin_ptr [2]. This article has also been
referenced by a couple of recent Overload articles, so I thought it
was time to revisit the subject.

The first thing I discovered is that I’ve never submitted the article
for publication in Overload (instead a heavily annotated version
written with Allan Newton appeared in Overload 38 [3]). The
second thing I discovered is that there were a number of
improvements I’d like to make to both the code and to the article.
What follows is the result.

The “Classical” Cheshire Cat

The “Cheshire Cat” idiom is a great solution to a set of problems
that have existed since the pre-history of C++. This idiom first
emerged in the late ‘80s in a cross-platform GUI class library called
CommonView and was described by John Carolan [4]. It has been
reinvented a number of times since and is also known as
“Compilation Firewall” and as “Pimpl”. The “Gang of Four” [5]
classifies it as a special case of the “Bridge” pattern. These
problems addressed by Cheshire Cat stem from three areas:
1. Ensuring that a header file includes nothing that the client code

needn’t be aware of. (In the case of CommonView, this includes
the native windowing APIs.)

2. Making it possible to distribute updated object code libraries
without requiring the client code to be recompiled. If a class
definition (or anything else in a header) changes, then any
compilation unit that includes it must be recompiled.

3. Protecting intellectual property by concealing implementation
techniques used.

Which of these is most important to you will differ according to
circumstance, but the “Cheshire Cat” idiom addresses them all.

When Glockenspiel (the suppliers of CommonView) started
developing their cross-platform GUI library they were influenced
by all three of the above reasons for hiding the implementation.
Here is a simplified telephone list class implemented in the style of
the CommonView library:

struct phone_list_implementation;

class phone_list

{

public:

phone_list(const char *name);

phone_list(const phone_list& rhs);

phone_list& operator=(

const phone_list& rhs);

~phone_list();

const char* list_name();

const char* find_number(const char *person);

void add(const char *name,

const char *number);

private:

phone_list_implementation* grin;

};

Note the need for a copy constructor and assignment operator.
These are required because phone_list owns the
phone_list_implementation to which it holds a pointer.
(The default behaviour of just copying the pointer value is
obviously inappropriate.)

In the implementation file we can imagine that the phone_list
member functions are implemented like this:

const char* phonelist::find_number(

const char* person)

{

return grin->number(person);

}

The Motivation for grin_ptr

Once you’ve written a few classes using this idiom it will occur
to you that you are writing the same functions again and again to
manage the implementation. Specifically the copy constructor,
assignment operator and destructor of a Cheshire Cat class are
generic - they always look the same, they only differ in the types
of the interface and implementation classes.

This sounds like a job for a template. A template that looks after
an implementation object allocated on the heap, and ensures it is
copied or deleted when appropriate. It is tempting to reach for the
standard library, but the closest thing we find there is auto_ptr<>.
Even moving further afield to Boost we don't find a smart pointer
with the desired semantics.

Let us suppose for a moment that such a smart pointer exists and
is called arg::grin_ptr<>. This would allow the phone_list
class to be rewritten as follows:

class phone_list

{

public:

explicit phone_list(

std::string const& name);

std::string name() const;

std::pair<bool, std::string> number(

std::string const& person) const;

phone_list& add(std::string const& name,

std::string const& number);

private:

class implementation;

arg::grin_ptr<implementation> grin;

};

11

overload issue 72 april 2006

Note that there is no longer a need to supply the copy constructor,
assignment operator, or destructor as we are assuming that the
necessary logic is supplied by the grin_ptr<> template. (I’ve
also taken the opportunity to use a more contemporary style of
C++, by nesting implementation, using const and
std::string but the ideas are the same.)

In the implementation file we can imagine that the phone_list
member functions are implemented the same way as in the original.
For example:

std::pair<bool, std::string>

phonelist::number(

std::string const& person) const

{

return grin->number(person);

}

The idea is for grin_ptr<> to act “just like” a pointer in all
relevant ways while taking the burden of ownership management.
Naturally, “all relevant ways” doesn’t include such things as
support for pointer arithmetic since this is inappropriate for
pointers used in implementing “Cheshire Cat”.

By using a compatible substitute for a “real” pointer we avoid
the need to write repetitive boilerplate code. Everything else is the
same.

The resulting simplification looks good, but can such a smart
pointer be implemented?

Implementing arg::grin_ptr<>

The principle problem to overcome in implementing
grin_ptr<> is that the compiler generated copy constructor,
assignment operator and destructor for phone_list will each
instantiate the corresponding code for grin_ptr<> in a context
where implementation is an incomplete type.

This means that the grin_ptr<> copy constructor cannot
simply copy construct an instance of implementation. Likewise,
the destructor of grin_ptr<> can’t be a simple delete p; as
deleting a pointer to an incomplete type gives undefined behaviour
whenever the type in question has a non-trivial destructor. The
assignment operator, will either have to deal with both these issues
or delegate these problems. Let’s write a test case for these
operations:

struct implementation;

int implementation_instances = 0;

int implementation_copies_made = 0;

void test_incomplete_implementation(

const arg::grin_ptr<implementation>&

const_grin)

{

assert(implementation_instances == 1);

assert(implementation_copies_made == 0);

{

// Check that copy construction works

// creates a new instance

arg::grin_ptr<implementation>

nonconst_grin(const_grin);

assert(implementation_instances == 2);

assert(implementation_copies_made == 1);

// Check assignment calls copy constructor

// (and that the discarded implementation

// is deleted)

nonconst_grin = const_grin;

assert(implementation_instances == 2);

assert(implementation_copies_made == 2);

}

// Check destructor cleans up instances

assert(implementation_instances == 1);

}

Note that this test case is unable to initialise grin_ptr<> with
an instance of implementation – this is a direct consequence
of implementation being an incomplete type.

In implementing grin_ptr<> I make use of the fact that the
constructor is instantiated in the implementation file for
phone_list, where the class definition for implementation
resides. Similarly calls to implementationmember functions also
require a complete type. These are tested in the next part of the test
harness:

struct implementation

{

struct const_tag {};

struct nonconst_tag {};

const_tag function() const

{ return const_tag(); }

nonconst_tag function()

{ return nonconst_tag(); }

implementation()

{ ++implementation_instances; }

implementation(const implementation&)

{ ++implementation_instances;

++implementation_copies_made; }

~implementation()

{ --implementation_instances; }

};

void test_implementation()

{

assert(implementation_instances == 0);

assert(implementation_copies_made == 0);

{

arg::grin_ptr<implementation>

grin(new implementation);

assert(implementation_instances == 1);

assert(implementation_copies_made == 0);

test_incomplete_implementation(grin);

// Check that copy construction works

// creates a new instance

const arg::grin_ptr<implementation>&

const_grin(grin);

assert(implementation_instances == 1);

12

overload issue 72 april 2006

// if const qualification is wrong then

// these should produce compiler error

implementation::const_tag

const_test = const_grin->function();

implementation::nonconst_tag

nonconst_test = grin->function();

}

// Check destructor cleans up instance

assert(implementation_instances == 0);

}

If you examine the code for grin_ptr<> (shown in listing 1)
you’ll see that each instance carries around a pointer to a
structure containing function pointers do_copy and do_delete.
This structure is initialised using a trick I first saw used by
Richard Hickey [6]: the constructor (which is instantiated with a
complete type) instantiates the corresponding my_delete_ftn
and my_copy_ftn template functions and stores the pointers to
them. Because these see the full definition of the class used to
initialise the pointer they can make use of its copy constructor
and destructor (the casts are there to support implementation
hierarchies). Using pointers to functions provides a safe method
for grin_ptr<> to copy and delete the object it owns. The point
of passing around function pointers instead of the apparently
more natural use of virtual member functions is that everything
can be done “by value” and no dynamic allocation is required.

There are few features that can be seen in this implementation
that are not immediately related to the foregoing discussion:
● The dereference and indirection operators are const qualified,

which allows the implementation class to overload on const in
a natural manner.

● The single argument (conversion) constructor may be initialised
using a class derived from implementation – this allows
different specialisations of implementation to be selected at
runtime1. This functionality is illustrated in the test case given in
Listing 2.

● There is a two argument constructor that allows the user to
provide custom copy and delete functionality.

Conclusion

The class template presented here - arg::grin_ptr<> -
removes some of the repetitive work required when
implementing Cheshire Cat classes. In addition it is able to
support applications that are considerably more sophisticated
(making use of polymorphic implementations and/or overloading
on const) than the phone_list example considered here.

Alan Griffiths
<alan@octopull.demon.co.uk>

References

1. “shared_ptr class template”, Greg Colvin et al.,
http://www.boost.org/libs/smart_ptr/

shared_ptr.htm

2. “Ending with the grin”, Alan Griffiths,
http://www.octopull.demon.co.uk/arglib/

TheGrin.html

3. ‘Interpreting “Supporting the “Cheshire Cat” idiom”’, Alan
Griffiths & Allan Newton, Overload 38

4. “Constructing bullet-proof classes”, John Carolan, Proceedings:
C++ at Work ’89, SIGS

5. Design Patterns, Gamma, Helm, Johnson, Vlissides ISBN 0-201-
63361-2, Addison-Wesley

6. Callbacks in C++ Using Template Functors, Richard Hickey C ++
Gems ISBN 1 884842 37 2

1 This is a difference from the earlier implementationof grin_ptr – in that, if the
user wanted to derive from implementation , it was necessary for
implementation to derive from arg::cloneable and to declare the
destructor virtual. I feel the current approach is more natural and extensible.

Listing 1 – grin_ptr.hpp

#ifndef INCLUDED_GRIN_PTR_HPP_ARG_20060308

#define INCLUDED_GRIN_PTR_HPP_ARG_20060308

#include <utility>

namespace arg

{

template<typename Grin>

class grin_ptr

{

public:

/// Construct taking ownership of

/// pointee.

/// CheshireCat must be a complete type,

/// Copyable and Destructable.

template<typename CheshireCat>

explicit grin_ptr(CheshireCat* pointee);

/// Copy using copy function

grin_ptr(const grin_ptr& rhs);

/// Destroy using delete function

~grin_ptr() throw() {

copy_delete->do_delete(p); }

/// Return contents (const)

const Grin* get() const { return p; }

/// Return contents (non-const)

Grin* get() { return p; }

/// Dereference op (const)

const Grin* operator->()

const { return p; }

/// Dereference op (non-const)

Grin* operator->() { return p; }

/// Dereference op (const)

const Grin& operator*()

const { return *p; }

/// Dereference op (non-const)

Grin& operator*() { return *p; }

/// Swaps contents with "with"

void swap(grin_ptr& with) throw();

13

overload issue 72 april 2006

[continued at bottom of next page]

Listing 2 – test for polymorphic implementation

struct base

{

protected:

base() {}

base(const base&) {}

};

struct derived1 : base

{

static int instances;

derived1() { ++instances; }

derived1(const derived1& src)

: base(src) { ++instances; }

~derived1() { --instances; }

};

///

grin_ptr& operator=(const grin_ptr& rhs);

/// Pointers to deep copy and delete

/// functions

struct copy_delete_ptrs

{

typedef void (*delete_ftn)(Grin*);

typedef Grin* (*copy_ftn)(const Grin*);

copy_ftn do_copy;

delete_ftn do_delete;

};

/// Allow user to specify copy and delete

grin_ptr(Grin* pointee,

copy_delete_ptrs* cdp)

: p(pointee), copy_delete(cdp) {}

private:

Grin* p;

copy_delete_ptrs* copy_delete;

template<typename CheshireCat>

static void my_delete_ftn(Grin* p);

template<typename CheshireCat>

static Grin* my_copy_ftn(const Grin* p);

};

template<typename Grin>

template<typename CheshireCat>

inline void

grin_ptr<Grin>::my_delete_ftn(Grin* p)

{ delete static_cast<CheshireCat*>(p); }

template<typename Grin>

template<typename CheshireCat>

inline Grin*

grin_ptr<Grin>::my_copy_ftn(const Grin* p)

{ return new CheshireCat(

static_cast<const CheshireCat&>(*p)); }

template<typename Grin>

template<typename CheshireCat>

inline grin_ptr<Grin>::grin_ptr(

CheshireCat* pointee)

: p(pointee), copy_delete(0)

{

void(sizeof(CheshireCat));

static copy_delete_ptrs cdp =

{

&my_copy_ftn<CheshireCat>,

&my_delete_ftn<CheshireCat>

};

copy_delete = &cdp;

}

template<typename Grin>

inline void grin_ptr<Grin>::swap(

grin_ptr& with) throw()

{

std::swap(p, with.p);

std::swap(copy_delete, with.copy_delete);

}

template<typename Grin>

inline grin_ptr<Grin>::grin_ptr(

const grin_ptr& rhs)

:

p(rhs.copy_delete->do_copy(rhs.p)),

copy_delete(rhs.copy_delete)

{

}

template<typename Grin>

inline grin_ptr<Grin>&

grin_ptr<Grin>::operator=(

const grin_ptr& rhs)

{

grin_ptr<Grin>(rhs).swap(*this);

return *this;

}

}

namespace std

{

template<class Grin>

inline void swap(

::arg::grin_ptr<Grin>& lhs,

::arg::grin_ptr<Grin>& rhs) throw()

{

lhs.swap(rhs);

}

}

#endif

14

overload issue 72 april 2006

[continued from previous page]

A Fistful Of Idioms
by Steve Love

Giving STL Iterators a Base Class

Some little while ago, I posted a question on the accu-prog-
questions list regarding virtual template functions. The short
answer I already knew – “it can’t be done.” The slightly longer
answer was provided by Kevlin Henney – “it can be done if you
know how.”

A template function cannot be made virtual because, as Kevlin
put it, The dynamic binding you want ... is more significant than the
polymorphism required to handle any type. The virtual function table
for the class would contain the address of the function normally,
but a template function may never be instantiated, or may be
instantiated multiple times. What’s a poor compiler to do? Spit it
out with a diagnostic, probably (which is exactly what mine did).

I thought that this could be overcome in a simple and idiomatic
manner. I wasn’t far off the mark; the solution provided by Kevlin
is, in his words, a collaboration of idioms. I’ll try to identify them as
we go along.

The Good, the Bad and the Ugly

Consider a class to write to a file. The format of a given file is
probably fixed (few files contain both fixed width and comma-
separated values), but a more general solution will provide for
several formats. Even better, a good solution will also provide for
extensions; today you may want only CSV and fixed width, but
tomorrow you may also require an ODBC data source. An
obvious way to do this is provide an interface class, with pure
virtual functions defining the interface to be implemented in
derived classes. Each derived class has knowledge of the layout
and delimiter requirements of the target.

class file_writer

{

public:

// pure virtual functions define the

// interface

};

class csv_writer : public file_writer

{

// implement virtual functions according

// to CSV format

};

class fixed_w_writer : public file_writer

{

// implement virtual functions according to

// fixed width format

};

The original requirement was for something along these lines. A
record writer function would take a range of values to be written
as a single record:

class file_writer

{

public:

// ...

template<typename Iterator>

virtual void write

(Iterator begin, Iterator end) = 0;

};

int derived1::instances = 0;

struct derived2 : base

{

static int instances;

derived2() { ++instances; }

derived2(const derived2& src)

: base(src) { ++instances; }

~derived2() { --instances; }

};

int derived2::instances = 0;

void test_derived()

{

assert(derived1::instances == 0);

assert(derived2::instances == 0);

{

arg::grin_ptr<base> d1(new derived1);

arg::grin_ptr<base> d2(new derived2);

assert(derived1::instances == 1);

assert(derived2::instances == 1);

{

// Check that copy works

arg::grin_ptr<base> d(d1);

assert(derived1::instances == 2);

assert(derived2::instances == 1);

// Check assignment from d1

d = d1;

assert(derived1::instances == 2);

assert(derived2::instances == 1);

// Check assignment from d2

d = d2;

assert(derived1::instances == 1);

assert(derived2::instances == 2);

}

// Check destruction

assert(derived1::instances == 1);

assert(derived2::instances == 1);

}

// Check destruction

assert(derived1::instances == 0);

assert(derived2::instances == 0);

}

As already mentioned, this can’t be done directly. Three
possibilities immediately present themselves:

virtual void write

(std::vector<std::string>::

const_iterator begin,

std::vector<std::string>::

const_iterator end);

virtual void write

(std::vector<std::string>container);

Neither of these is very pleasing; both tie you, as the client, into a
specific container and contained type. The first has advantages
over the second, in that you, the client, can pass only a partial
range if you wish. The write() function itself doesn’t have to
change. Both suffer from having to specify the particular iterator
to be used. For example, the function would need to be
overloaded for a reverse iterator.

The third option is to pass each value in the container in turn to
the write() function. This has the improvement over the previous
solutions in that the container type is no longer an issue, but has
other limitations, a burden on the client not least among them.

virtual void file_writer::write

(const std::string & value) = 0;

// ...

std::vector<std::vector<std::string> > values;

file_writer * csv_file =

new csv_file_writer (file_name);

// ...

for (std::vector<std::vector<std::string>

>::iterator record = values.begin();

record != values.end(); ++record)

{

std::vector<std::string>::iterator i =

record->begin();

while (i != record->end()

{

csv_file->write (*i);

++i;

if (i != record->end())

{

csv_file->write (",");

}

}

csv_file->write ("\n");

}

This code would probably do the job, but is prone to error,
slightly obfuscated (which could be helped with judicious use of
using declarations), and the client is required to know the format
of the output file – defeating the original object.

The clue to the solution is in the requirement. Ideally, we want
to be able to write:

virtual void write (any_iterator begin,

any_iterator end);

So, a good starting point is a class called any_iterator.

The Type With No Name

The reason for writing a function which operates on an iterator
range as a template function, is so that it’ll work with any iterator
(provided the function itself uses a conformant interface). Given
that fact, we need to be able to create an any_iterator from,
well, any iterator. In this case, it is sufficient to be able to create
one from any Input Iterator.

The concept of Input Iterator limits the scope of what we
need to achieve in any_iterator. We need the following
operations:
● default construction
● assignment/copy
● equality compare
● dereference
● member access
● pre increment
● post increment
● post increment and dereference1

On this basis, then, our any_iterator class will provide the
following member functions:
● any_iterator()
● any_iterator (const any_iterator &)
● operator= (const any_iterator &)
● operator== (const any_iterator &)
● operator!= (const any_iterator &)
● operator*()
● operator->()
● operator++()
● operator++(int)

This provides our interface, but we have to decide, for example,
what operator*() should return. We can specialise the entire class
on its contained type (in our original requirement, std::string),
or we can parameterise the class on the contained type:

template<typename Contained>

class any_iterator

{

// ...

This latter method means that the signature for our write()
function becomes

void write (any_iterator<std::string> begin,

any_iterator<std::string> end)

which seems a reasonable compromse.
With this in mind, we can provide an implicit conversion from

any Input Iterator (actually, from anything, but the
restrictions will come later) using a member template function
for a constructor.

template<typename Iterator>

any_iterator (const Iterator & rhs);

15

overload issue 72 april 2006

1 The “post-increment and dereference” isn’t an operator in itself, but the expression
iter++ uses both operator() and operator++(int). It merely
requires that operator++(int) returns *this (usually as a const
reference). Since some standard library functions use this idiom, Input
Iterators are required to support it. (ISO, 1998).

16

overload issue 72 april 2006

Painting Your Wagon

The real magic of the solution is expressed in a Pattern called
“External Polymorphism” which is published as having the
following intent:

Allow C++ classes unrelated by inheritance and/or having no virtual
methods to be treated polymorphically. These unrelated classes can be
treated in a common manner by software that uses them. [1]

Standard Library Iterators are expressly not related by
inheritance; they are related by concept [2]. They do not have virtual
functions, and cannot be treated polymorphically, in the late-
binding sense. Our requirements for any_iterator are to treat
Iterators as if they had a common ancestor. They could then be
treated in the common manner described above.

class interface

{

public:

// pure virtual interface declarations

};

template<typename ConcreteType>

class adaptor : public interface

{

public:

// implementations of pure virtuals in

// base class

private:

ConcreteType adaptee;

};

The adaptor class has member functions which forward the call
to the member function of ConcreteType. In this sense, this
structure is similar in some respects to the Adaptor pattern [2],
but it has differing motivations; it does not set out to convert the
interface of ConcreteType in any way (athough it could), only
to provide ConcreteType with polymorphic behaviour. The
client class, using a pointer to interface, can use it as if it were a
ConcreteType.

In our any_iterator class, ConcreteType is an iterator. We
need to provide in the interface those functions which will allow us
to provide an iterator-like interface in any_iterator. A start is
the following:

class wrapper

{

public:

virtual void next () = 0;

virtual std::string & current () const = 0;

virtual bool equal (

const wrapper * rhs) const = 0;

virtual void assign (

const wrapper * rhs) = 0;

};

template<typename Iterator>

class adaptor : public wrapper

{

public:

adaptor (const Iterator & rhs);

virtual void next ()

{ ++adaptee; }

virtual std::string & current () const

{ return *adaptee; }

virtual bool equal (const wrapper * rhs)

{ return adaptee ==

static_cast<adaptor<Iterator> *>

(rhs)->adaptee; }

virtual void assign (const wrapper * rhs)

{ adaptee =

static_cast<adaptor<Iterator> *>

(rhs)->adaptee; }

private:

Iterator adaptee;

};

Note the addition of a conversion constructor in adaptor’s
interface; that will become clear shortly. There are a couple of
gotcha’s here. The first one to go is the return from current().
This is the same contained type we already fixed in the
any_iterator class by using a template parameter to the class.
The easiest way to parameterise this one is to nest interface
and adaptor<> inside any_iterator.

template<typename Contained>

class any_iterator

{

public:

// ...

private:

class wrapper

{

public:

virtual void next () = 0;

virtual Contained & current () const = 0;

virtual bool equal (

const wrapper * rhs) const = 0;

virtual void assign (

const wrapper * rhs) const = 0;

};

template<class Iterator>

class adaptor : public wrapper

{

// ...

};

};

The next problem is with equal(). The rhs pointer could have a
different adaptee type to this – in our case, for example, a
list<>::iterator when this one is a vector<>::iterator.

It is the polymorphic type which interests us, so we can make
use of RTTI to determine consistency of type:

adaptor<Iterator> * tmp =

dynamic_cast<adaptor<Iterator>*>(rhs)

return tmp && adaptee == tmp->adaptee;

The nature of using dynamic_cast on pointers means that tmp will
be null if the conversion fails, i.e. the runtime type of rhs is different
to this. To make this fail more noisily, we could have

adaptor::equal() take a reference, and make tmp a reference,
thus forcing dynamic_cast to throw std::bad_cast on failure.

Note that assign() also suffers from this problem, but we’ll
address that one differently.

We now need access to this framework in the any_iterator
class. The declarations are already nested; all that remains is to
define such a thing.

template<typename Contained>

class any_iterator

{

public:

// ...

private:

class wrapper

{

// ...

};

template<typename Iterator>

class adaptor : public wrapper

{

// ...

};

wrapper * body;

};

Now the member functions of any_iterator can operate on
body which will forward all requests to adaptee.

const any_iterator<Contained>

any_iterator<Contained>::operator++ (int)

{

body->next();

return *this;

}

bool any_iterator<Contained>::operator==

(const any_iterator & rhs)

{

return body->equal (rhs.body);

}

// ...

A Few Idioms More...

So far, so good. However, the functions we’ve created only work
if we have an actual instance of body. Recall the converting
constructor being a member template function. The template type
of the Iterator is known at this point, and we can construct a new
adaptor object accordingly:

template<typename Contained>

template<typename Iterator>

any_iterator<Contained>::any_iterator

(const Iterator & rhs)

: body (new adaptor<Iterator>(rhs))

{ }

The copy constructor is more of a problem; we have no way of
identifying the Iterator type for rhs->body

any_iterator<Contained>::any_iterator

(const any_iterator<Contained> & rhs)

{

// ???

}

and so have no way of creating a new instance of it. This
identifies a need for a new idiom in the adaptor class: a Virtual
Copy Constructor [3, 4, 5].

A constructor for a class cannot be virtual. Normally, you know
the concrete type of the object being created, and so this doesn’t
cause a problem. In some circumstances (here for example), we
have only access to the base class type of the object we want to
construct. It is meaningless to create an empty one, but perfectly
reasonable to require a copy, or a clone. It forms part of the interface
to the wrapper class

wrapper * wrapper::clone () const = 0;

and is implemented in adaptor:
template<typename Iterator>

wrapper * adaptor<Iterator>::clone () const

{

return new adaptor<Iterator>(adaptee);

}

This uses the already given conversion from Iterator (the
type of adaptee), which has been used before in the
conversion constructor of any_iterator. The return from
clone() could be covariant, i.e. return a pointer to the actual
class rather than a pointer to its base class, but there is no
benefit in this, since the target for the returned pointer is a
pointer to the base class; it won’t be used as part of an
expression such as

Contained string_value = body->clone()

->current();

(Aside to users of Borland C++Builder 4/5 – I originally
declared a copy constructor for adaptor thus:

adaptor (const adaptor<Iterator> & rhs);

but the entire class refused to compile. Removing the template
type from the rhs parameter solved the problem legally, a
language construct I had not previously encountered – but the
diagnostics were not helpful in reaching this conclusion!)

This allows us to write a copy constructor for any_iterator as

template<typename Contained>

any_iterator<Contained>::any_iterator

(const any_iterator & rhs)

: body (rhs.body ? rhs.body->clone () : 0)

{ }

Having defined a copy constructor, we now need a copy
assignment operator, which brings us to another idiom – Copy
Before Release (CBR). Self assignment is not a problem in a
class with only intrinsic data types (or those that provide the
same copy semantics of intrinsics); but then, if only intrinsic data
types are present, we can do without copy construction and copy
assignment altogether, leaving the compiler to provide the
necessary logic.

This actually leaves us at the Rule of Three – if you need any
one of copy constructor, copy assignment operator, destructor, you
generally need all three.[4, 6]

Since the data member of any_iterator is a pointer, we
require a proper deep copy to be performed on assignment. We also

17

overload issue 72 april 2006

18

overload issue 72 april 2006

need to ensure that assignment to self does not occur. Finally,
assignment should be exception safe, meaning it will operate
correctly in the presence of an exception.

The idiom which expresses all these things is Copy Before
Release [7]. At its most basic level, using the current example, it is
implemented as

any_iterator<Contained> &

any_iterator<Contained>::operator=

(const any_iterator<Contained> & rhs)

{

wrapper * tmp = body->clone();

delete body;

body = tmp.body;

return *this;

}

As you can see, the name given this idiom is apt. It turns out that
this can be simplified using a suitable copy constructor. We’ve
already defined the copy constructor for any_iterator, and so
can use that. Further more, exception safety can be guaranteed by
using std::swap() .This leads to a remarkably simple
implementation [8]:

any_iterator<Contained> &

any_iterator<Contained>::swap

(any_iterator<Contained> & rhs)

{

std::swap (body, rhs.body);

return *this;

}

any_iterator<Contained> &

any_iterator<Contained>::operator=

(const any_iterator<Contained> & rhs)

{

any_iterator<Contained> temp(rhs));

swap(temp);

return *this;

}

The swap() member function merely swapping two pointers
may look a little suspect, but the call to it provides the insight.
We create a new copy of the rhs and swap it with this. When
the call to swap() completes, the temporary object constructed
in its arguments goes out of scope, taking its pointer with it. At
that point, its body pointer is the memory which used to be
attached to this, whereas this->body points at newly
allocated memory containing a copy of rhs.

This safely handles null assignment, self assignment and
exceptions (such as std::bad_alloc), as well as a successful
copy. If an exception does occur, via the any_iterator copy
constructor, then thiswill remain in its previous state, because the
copy will not occur.

Conclusion

The whole premise of this technique revolves around being able
to silently convert from a STL iterator to an any_iterator. In
the wider sense [1], it can be used to superimpose polymorphic
behaviour on other concrete types. This property of encouraging
silent conversions is, rightly, regarded as dangerous (when C++
is described as a language which enables you to shoot yourself in
the foot, this is one of the big shooters), but under specific
conditions, such as those described here, it may be inescapable.

The circumstances under which it’s considered dangerous are

generally where the converted type appears as a parameter to a
function; however, this is exactly the circumstance under which this
idiom is intended to be used. Here’s an example.

void csv_writer::write

(const any_iterator<std::string> &begin,

const any_iterator<std::string> & end)

{

// ...

}

// ...

csv_writer cw;

std::vector<std::string> records;

// initialisation of vector with strings here

// using "ordinary" STL iterators from vector.

// It's also perfectly valid to use

// reverse_iterators or const_iterators

cw.write (records.begin(), records.end());

// similarly, we can use istream_iterators

// because the basis for any_iterator is the

// Input Iterator, which is modelled by

// istream_iterator

std::ifstream strm (file_name);

cw.write

(std::istream_iterator<std::string>(strm),

std::istream_iterator<std::string> ());

This extract demonstrates the use of any_iterator. The
intention is that client code never uses – indeed, probably
doesn’t even need to know about – the any_iterator type
directly, but is able to use it transparently because it exhibits
properties to allow this.

Steve Love

Acknowledgements

My thanks to Kevlin Henney, who provided more than just
“significant input” to both this article and the code that backs it,
and Nigel Dickens, who provided further code and text reviews.

References

1 Cleeland, (1996) External Polymorphism,
http://siesta.cs.wustl.edu/~cleeland/papers/

External-Polymorphism/External-

Polymorphism.html

2 Gamma, Helm, Johnson and Vlissides (1995), Design Patterns,
Addison Wesley

3 Henney, Kevlin (1999) Overload, “Coping With Copying in C++
- Clone Alone” August 1999

4 Cline (1991) The C++ FAQ, http://www.cs.bham.ac.uk/
~jdm/CPP/index.html

5 Koenig, Andrew and Barbara Moo (1997) Ruminations on C++,
Addison Wesley/AT&T

6 Coplien, James O (1992) Advanced C++ Programming Styles &
Idioms, Addison Wesley

7 Henney, Kevlin (1998) C++ Report, “Creating Stable
Assignments”.

8 Sutter, Herb (1999) Exceptional C++, Addison Wesley
9 Leone, Sergio Spaghetti Western Director

19

overload issue 72 april 2006

C++ Best Practice –
Designing Header Files
by Alan Griffiths

C++, and its close relatives C and C++/CLI, have a compilation
model that was invented way back in the middle of the last
century – a directive to insert text into the translation unit from
(at least in the typical case) a header file. This has the advantage
of simplicity – and to run on 1970’s computers compilers had to
be simpler than they do today. However, there are other
considerations and it is not clear that the same trade-off would be
made if inventing a language today (certainly more recently
designed languages like Java and C# import a compiled version
of referenced code).

A consequence of this language design decision is that the
responsibility for dealing with these “other considerations” shifts
from the language and compiler writer to the developers using the
language. Naturally, experienced C++ developers do not think
about all these as they work, any more than an experienced driver
thinks about where she places her hands and feet when turning a
corner. But just as many drivers get into bad habits (and cut
corners), many programmers fail to observe best practice at all
times, so it is worth reviewing these factors occasionally.

Considerations for Designing C++
Header Files

1. The effect of including a header file should be deterministic (and
not be dependent upon the context in which it is included).

2. Including a header file should be idempotent (including it several
times should have the same effect as including it once).

3. A header file should have a coherent purpose (and not have
unnecessary or surprising effects).

4. A header file should have low coupling (and not introduce
excessive dependencies on other headers).

It should come as no surprise that this list is analogous to the
design criteria for other elements of software – functions, classes,
components, subsystems, etc. It includes well known techniques
for making design elements easier to use, reuse and reason about.
There are exceptions: for example, functions that may produce a
different result on each invocation – std::strtok is one – but
not all design is good design. (Not even in the standard library.)

If all header files met these criteria, then it would make the life
of developers easier. However, because the language doesn’t forbid
ignoring these principles there are header files that don’t satisfy
them. One needs to look no further than the standard library and
<cassert> to find an example of a header file that breaks the first
two criteria. Not only does the effect of this header depend upon
whether the preprocessor macro NDEBUG has been defined1, but
it is also designed to be included multiple times in a translation unit:

#undef NDEBUG

#include <cassert>

void assert_tested_here() { assert(true); }

#define NDEBUG

#include <cassert>

void assert_untested_here() { assert(false); }

Other examples exist too: Boost.preprocessor [1] makes use of a
technique referred to as “File Iteration” (repeatedly #including
a file under the control of preprocessor macros to generate
families of macro expansions). Although this technique is
undeniably useful, the circumstances where it is appropriate are
rare – and the vast majority of headers do meet (or should meet)
the conditions given above.

Writing Deterministic, Idempotent
Headers

Most header files however are designed to be independent of
when or how many times they are included. Lacking direct
language support, developers have come up with a range of
idioms and conventions2 to achieve this. These methods relate
only to the structure of the header which means that they are
simple, effective and easy to follow:
● Only include header files at file scope. Including header files

within a function or namespace scope is possible but it isn’t
idiomatic (and won’t work unless the header is designed to make
this possible).

// Do this...

#include "someheader.hpp"

// Not this

namespace bad_idea

{

#include "someheader.hpp"

}

● The Include Guard Idiom is to surround the body of the
include file by an #ifndef block and define the
corresponding macro in the body. The body of the header,
therefore, has no effect after the the first inclusion (but this
does not avoid the file being reopened and parsed by the
compiler’s preprocessor3).

// Like this

#ifndef INCLUDED_EXAMPLE_HPP_ARG_20060303

#define INCLUDED_EXAMPLE_HPP_ARG_20060303

...

#endif

Note that one needs some mechanism for ensuring the header
guards are unique. (Some development environments will
generate guaranteed unique guards for you – here I’ve just used
a combination of the header name, my initials and the date.)

● Create Self Contained Headers that do not rely on the presence
of macros, declarations or definitions being available at the point
of inclusion. Another way to look at this is that they should be
compilable on their own. One common way to ensure headers

1 It is also worth noting that one should be very wary of code using assert in
header files as it may expand differently in different translation units. (Which would
break the “One Definition Rule”.)

2 This is not as effective as support within the language: not only does it require
developers to know the idioms but also compilers can’t be optimised on this
asumption as they must support headers for which it is not true.

3 There is a technique for avoiding this compile-time cost – External Include Guards:
each #include can be surrounded by a #ifndef...#define...#endif
block akin to the include guard idiom mentioned below. It does work (I’ve reduced a
12 hour build cycle to 4 hours this way) but it is painful to use because it is verbose,
and it is necessary to ensure that the guard macros are chosen consistently. Use it
only in extreme need and, before using it, check your compiler for optimisations that
would make it unnecessary.

20

overload issue 72 april 2006

are self-contained is to make them the first include in the
corresponding implementation file.

● Don’t use using directives – especially in the global namespace
(and particularly using namespace std;). Users of the
header file may be surprised and inconvenienced if names are
introduced into scopes they think they control – this is
particularly problematic with using directives at file scope as the
set of names introduced depends upon which other headers are
included, and name lookup in client code always has the
potential to search the global namespace.

Compiler suppliers also like to add value and, on the basis that
almost all header files are deterministic and idempotent, have
used this assumption in attempts to reduce compilation time:
● There are compilers (like gcc) that recognise the Include Guard

Idiom and don’t process such header files (again) if the
corresponding macro is defined. As the cost of opening files and
parsing them is often a significant component of the compile
time the saving can be significant.

● There are compilers (like Microsoft’s Visual C++) that
implement a language extension – #pragma once – that
instructs the compiler to only process a header file the first time
it is encountered. As the cost of opening files and parsing them
is often a significant component of the compile time the saving
can be significant.

● Some compilers (like Microsoft’s Visual C++) allow headers to
be “pre-compiled” into an intermediate form that allows the
compiler to quickly reload the state it reaches after processing a
series of headers. This may be effective if there is a common
series of headers at the start of multiple translation units –
opinions differ about the frequency of this occurring (if it is
infrequent there may be a net cost of pre-compiled headers).

● There have also been “C++” compilers (such as IBM’s
VisualAge C++) that have abandoned the inclusion model of
compilation – but that makes them significantly non-compliant
and, to the best of my knowledge, this approach has been
abandoned.

With the appropriate co-operation from the developer any, or all,
of these can be effective at reducing build times. However, only
the first of these is a portable approach in that it doesn't have the
potential to change the meaning of the code. (If the code in a
header file does have a different effect if included a second time
then #pragma once changes its meaning; if files sharing a
“precompiled header” actually have different sequences of
includes the meaning is changed; and, with no separate
translation units, VisualAge C++ interpreted static definitions
and the anonymous namespace in non-standard ways.)

Writing Coherent Headers

It is much harder to meet this objective by rote mechanical
techniques than the two considered above. This is because a
single design element may map to several C++ language
elements (for example, the <map> header provides not only the
std::map<> class template, but also a number of template
functions such as the corresponding operator== and a class
template for std::map<>::iterator. It takes all of these
elements to support the single “ordered associative container”
concept embodied in this header. (Of course, this header also
includes a parallel family of templates implementing “multimap”
– it is less clear that this is part of the same concept.)

There have been various attempts to give simple rules for the
design of coherent headers:
● “Put each class in its own header file.” I frequently encounter

this rule in “coding standards” but while classes and headers are
both units of design they are not at the same level of abstraction.
The example given above of a container and its iterators shows
that this rule is simplistic. However, the weaker (but harder to
explain) rule “if you have two classes in the same header then
question whether they support the same abstraction” is probably
useful.

● “Can the purpose of the header be summarised in a simple
phrase without using ‘and’ or ‘or’?” This is an application of a
common test for coherence in a design. The problem with this
test is that one needs to “get it” before it is useful: is “represent
the household pets” a single concept? Or is “represents the
household cats, dogs and budgerigars” multiple concepts? Given
an appropriate context either might be true.

Of course, there are common mistakes that can be avoided:
● Never create a header called utils.hpp (or variations like

utility.h). It is too easy for a later developer to add things
to this header instead of crafting a more appropriate one for
their purpose. (On one project I worked on utility.h got so
cluttered that one of my colleagues created a bits-and-
bobs.h header “to make it easier to find things”. It didn’t
work.)

Writing Decoupled Headers

Occasionally one encounters adherents of a “pretend C++ is
Java” style of header writing – just put the implementation code
inline in the class definition. They will cite advantages of this
techniques: you only code interfaces once (no copying of
function signatures to the implementation file), there are fewer
files to keep track of, and it is immediately apparent how a
function works. (There is a further advantage that I’ve never seen
mentioned – it is impossible to write headers with circular
dependencies in this style4.) Listing 1 shows a header written in
this style.

In the listing I’ve highlighted the pieces of code that are of no
value to translation units that use the header file. This is of little
account when there are few users of the telephone_list class
(for example, when the header is first being written and there is only
the test harness to consider5). However, having implementation
code in a header distracts from defining the contract with the client
code.

Further, most C++ projects are considerably larger than this and,
if this approach were applied to the entire codebase, the cost of
compiling everything in one big translation unit would be
prohibitive. Even on a smaller scale exposing implementation code
can also have an adverse effect on the responsiveness of the build
process: compiling the implementation of a function or member-
function in every translation unit that includes the header is
wasteful; in addition, implementation code often requires more
context than interfaces (e.g. the definitions of classes being used
rather than declarations of them); and, finally, the implementation
4 This is not true in Java, but C++ is not Java.
5 I suspect that I’m not the only one to apply “test driven development” to C++ by

initially writing some pieces of new code in a header. If you decide to try this
approach remember: refactoring the code to separate out the implementation
afterwards is part of the work you need to do. This is not a case where “you ain’t
gonna need it” applies

21

overload issue 72 april 2006

is more likely to change than the interface and trigger a mass
recompilation of the client code.
Hence:
● Don’t put implementation code in headers. If we apply this rule

to our example we arrive at something like Listing 26. Once
again, I’ve highlighted stuff that is of no interest to the client
code.

● Don’t include unnecessary headers. It may seem obvious, but
the easiest thing that developers can do to reduce the number of
header files being included is not to include them when they are
not needed. It takes only one unnecessary header in each file to
have an enormous effect on compilation times: not only do the
original files each add an extra file, but so do each of the added
files, and the files they add, and... – the only reason that this
doesn’t go on forever is that eventually some of these includes
are duplicated and, because of their include guards, these
duplicates do not include anything the second or subsequent
times they are included.

When is a Header File Include
“Necessary”?

An examination of Listing 2 shows that I’ve highlighted three
includes – two of these can be removed without preventing the
header compiling while the third is not used in the interface to
client code – it is an “implementation detail” that has leaked.
There are also two headers (not highlighted) that are needed to
compile the header itself and also include definitions used in the
interface to client code. The two sidebars (“Cheshire Cat” and
“Interface Class”) show two alternative design techniques that
permit removing these includes from the header file. Of course,
they are still required by the implementation file and need to be
moved there.

Deciding whether it is necessary to include a header file isn’t quite
as simple as removing it and asking “does it compile?” – a trial and
error approach to eliminating header files can generate both false
positives and false negatives: positives where a header appears
unnecessary incorrectly (because it is also being included indirectly
by another header – where it may be unnecessary), and negatives
where a header is incorrectly being considered necessary (because
it indirectly includes the header that is actually needed). There really
is no shortcut that avoids understanding which definitions and
declarations a header introduces and which of these are being used
– and this is easier when headers have a coherent function.

Listing 1

// allinline.hpp - implementation hiding

// example.

#ifndef INCLUDED_ALLINLINE_HPP_ARG_20060303

#define INCLUDED_ALLINLINE_HPP_ARG_20060303

#include <string>

#include <utility>

#include <map>

#include <algorithm>

#include <ctype.h>

namespace allinline

{

/** Example of implementing a telephone list

* using an inline implementation.

*/

class telephone_list

{

public:

/** Create a telephone list.

* @param name The name of the list.

*/

telephone_list(const std::string& name)

: name(name), dictionary() {}

/** Get the list's name.

* @return the list's name.

*/

std::string get_name()

const { return name; }

/** Get a person's phone number.

* @param person The person's name

* (must be an exact match)

* @return pair of success flag and (if

* success) number.

*/

std::pair<bool, std::string> get_number(

const std::string& person) const {

dictionary_t::const_iterator

i = dictionary.find(person);

return(i != dictionary.end()) ?

std::make_pair(true, (*i).second) :

std::make_pair(false, std::string());

}

/** Add an entry. If an entry already

* exists for this person it is

* overwritten.

* @param name The person's name

* @param number The person's number

*/

telephone_list& add_entry(

const std::string& name,

const std::string& number) {

std::string nn(name);

std::transform(nn.begin(), nn.end(),

nn.begin(), &tolower);

dictionary[nn] = number;

return *this;

}

private:

typedef std::map<std::string,

std::string> dictionary_t;

std::string name;

dictionary_t dictionary;

telephone_list(const telephone_list& rhs);

telephone_list& operator=(

const telephone_list& rhs);

};

}

#endif

6 This example may look familiar to some of you – in Overload 66 Mark Radford and I
used a similar example in our article “Separating Interface and Implementation in
C++”. I’ve stolen it (and the “Cheshire Cat” and “Interface Class” sidebars) because it
addresses the current theme.

22

overload issue 72 april 2006

Cheshire Cat

● A private “representation” class is written that embodies the
same functionality and interface as the naïve class – however,
unlike the naïve version, this is defined and implemented
entirely within the implementation file. The public interface of
the class published in the header is unchanged, but the private
implementation details are reduced to a single member variable
that points to an instance of the “representation” class – each
of its member functions forwards to the corresponding function
of the “representation” class.

● The term “Cheshire Cat” is an old one, coined by John Carollan
over a decade ago [2]. Sadly it seems to have disappeared from
use in contemporary C++ literature. It appears described as a
special case of the “Bridge” pattern in Design Patterns [3], but
the name “Cheshire Cat” is not mentioned. Herb Sutter [4]
discusses it under the name “Pimpl idiom”, but considers it only
from the perspective of its use in reducing physical
dependencies. It has also been called “Compilation Firewall”.

● Cheshire Cat requires “boilerplate” code in the form of
forwarding functions that are tedious to write and (if the
compiler fails to optimise them away) can introduce a slight
performance hit. It also requires care with the copy semantics
(although it is possible to factor this out into a smart pointer
[5]). As the relationship between the public and implementation
classes is not explicit it can cause maintenance issues.

// cheshire_cat.hpp Cheshire Cat -

// implementation hiding example

#ifndef INCLUDED_CHESHIRE_CAT_HPP_ARG_20060303

#define INCLUDED_CHESHIRE_CAT_HPP_ARG_20060303

#include <string>

#include <utility>

namespace cheshire_cat

{

class telephone_list

{

public:

telephone_list(const std::string& name);

~telephone_list();

std::string get_name() const;

std::pair<bool, std::string>

get_number(const std::string& person)

const;

telephone_list&

add_entry(const std::string& name,

const std::string& number);

private:

class telephone_list_implementation;

telephone_list_implementation* rep;

telephone_list(const telephone_list& rhs);

telephone_list& operator=

(const telephone_list& rhs);

};

}

#endif

Listing 2

// naive.hpp - implementation hiding

// example.

#ifndef INCLUDED_NAIVE_HPP_ARG_20060303

#define INCLUDED_NAIVE_HPP_ARG_20060303

#include <string>

#include <utility>

#include <map>

#include <algorithm>

#include <ctype.h>

namespace naive

{

/** Telephone list. Example of implementing a

*telephone list using a naive implementation.

*/

class telephone_list

{

public:

/** Create a telephone list.

* @param name The name of the list.

*/

telephone_list(const std::string& name);

/** Get the list's name.

* @return the list's name.

*/

std::string get_name() const;

/** Get a person's phone number.

* @param person The person's name

* (must be an exact match)

* @return pair of success flag and (if

* success) number.

*/

std::pair<bool, std::string>

get_number(const std::string& person)

const;

/** Add an entry. If an entry already

* exists for this person it is overwritten.

*

* @param name The person's name

* @param number The person's number

*/

telephone_list&

add_entry(const std::string& name,

const std::string& number);

private:

typedef std::map<std::string,

std::string> dictionary_t;

std::string name;

dictionary_t dictionary;

telephone_list(const telephone_list& rhs);

telephone_list& operator=

(const telephone_list& rhs);

};

}

#endif

23

overload issue 72 april 2006

There are also other ways to avoid including headers. Frequently, a
header file will bring in a class (or class template) definition when
all that is needed is a declaration. Consider Listing 3 where the
header file location.hpp is included whereas all that is needed is
the statement “class location;”. A similar approach can be taken
with std::ostream – but with a typedef in the standard library
one cannot do it oneself: one cannot say typedef

basic_ostream

<char, char_traits<char> > ostream; without first
declaring template<...> class basic_ostream; and
template<...> class char_traits; and doing this is
problematic because the bit I’ve shown as “...” is implementation
defined.

The designers of the standard library did realise that people
would want to declare the input and output stream classes without
including the definitions, and allowed for this by providing a header

Listing 3

#ifndef INCLUDED_LISTING3_HPP_ARG_20060303

#define INCLUDED_LISTING3_HPP_ARG_20060303

#include "location.hpp"

#include <ostream>

namespace listing3

{

class traveller

{

public:

...

location current_location() const;

void list_itinary(std::ostream& out) const;

};

}

#endif

Listing 4

#ifndef INCLUDED_LISTING4_HPP_ARG_20060303

#define INCLUDED_LISTING4_HPP_ARG_20060303

#include <iosfwd>

namespace listing4

{

class location;

class traveller

{

public:

...

location current_location() const;

void list_itinary(std::ostream& out) const;

};

}

#endif

Interface Class

All member data is removed from the naïve class and all
member functions are made pure virtual. In the implementation
file a derived class is defined and implements these member
functions. The derived class is not used directly by client code,
which sees only a pointer to the public class.

This is described in some detail in Mark Radford’s “C++
Interface Classes – An Introduction” [6].

Conceptually the Interface Class idiom is the simplest of those
we consider. However, it may be necessary to provide an
additional component and interface in order to create instances.
Interface Classes, being abstract, can not be instantiated by the
client. If a derived “implementation” class implements the pure
virtual member functions of the Interface Class, then the client
can create instances of that class. (But making the implementation
class publicly visible re-introduces noise.) Alternatively, if the
implementation class is provided with the Interface Class and
(presumably) buried in an implementation file, then provision of
an additional instantiation mechanism – e.g. a factory function –
is necessary. This is shown as a static create function in the
corresponding sidebar.

As objects are dynamically allocated and accessed via pointers
this solution requires the client code to manage the object lifetime.
This is not a handicap where the domain understanding implies
objects are to be managed by a smart pointer (or handle) but it
may be significant in some cases.

// interface_class.hpp - implementation

// hiding example.

#ifndef INC_INTERFACE_CLASS_HPP_ARG_20060303

#define INC_INTERFACE_CLASS_HPP_ARG_20060303

#include <string>

#include <utility>

namespace interface_class

{

class telephone_list

{

public:

static telephone_list* create(

const std::string& name);

virtual ~telephone_list() {}

virtual std::string get_name() const = 0;

virtual std::pair<bool, std::string>

get_number(const std::string& person)

const = 0;

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number) = 0;

protected:

telephone_list() {}

telephone_list(const telephone_list& rhs)

{}

private:

telephone_list& operator=

(const telephone_list& rhs);

};

}

#endif

[continued at bottom of next page]

Visiting Alice
by Phil Bass

"The time has come," the Walrus said,
"To talk of many things:

Of tuples, trees and composites;
Of visitors and kings."1

Welcome

“Good morning, everyone, and welcome to the Wonderland
Social Club annual treasure hunt. I am the Walrus.” (coo-coo
coo-choo) “Well, not a walrus, but I am quite long in the tooth.”
(groan)

“This year the clues are all in trees. On each clue sheet there’s a
clue to an item of treasure. Some clue sheets also contain two further
clues, which lead to more clue sheets. With each treasure clue there
is an indication of the value of the treasure at that location.”

“You have until 6 o’clock this evening to find as much treasure
as you can. The team with the most valuable hoard of treasure will
be the winner. The first clue is outside in the garden. See you back
here in the Carpenter’s Arms at 6 o’clock. Good luck everybody!”

Planning the Route

There were three teams: four trainee nurses called the Pre-
Tenders, three employees of the Royal Mail called the Post Men
and two publicans called the Inn Keepers. The Pre-Tenders
decided to do the easy clues first; the Post Men chose to visit the
nearest places first; and the Inn Keepers settled for finding the
most valuable treasure first.

Overload readers will have spotted immediately that the treasure
hunters’ problem involves the traversal of an abstract binary tree.
The Walrus had drawn the tree on a sheet of paper so that he could
refer to it when he was adding up the scores at the end of the day.
And, as it turned out, the Pre-Tenders would visit the treasure
locations in pre-order sequence, the Post Men in post-order
sequence and the Inn Keepers in in-order sequence.

Encoding the Problem

Bill, a nerdy-looking youth with thick oyster-shell glasses had
spotted this, too. He was a C# programmer and was often to be

seen in the corner of the bar with a beer and a lap-top. To him the
treasure hunters’ tree seemed to be a set of dynamically
constructed, garbage collected, polymorphic objects. “It’s a binary
tree”, he said to his best mate, Ben. “Yes”, agreed Ben, but Ben’s
mental imagery was very different. “Nested structs”, said Ben.

Bill looked at him blankly for a moment, decided Ben must
have been joking and replied with an ironic, “Yeah, right”. But
Ben was a C++ programmer and he wasn’t joking. “No, really”
said Ben, pulling out his own lap-top, “Look, I’ll show you what
I mean”.1 After Lewis Caroll’s “The Walrus and the Carpenter”. By the way, he lied about the

kings.

24

overload issue 72 april 2006

file for the purpose - <iosfwd>. While this doesn’t avoid including
any header it is much simpler than <ostream> and with its aid we
can write Listing 4.

Conclusion

Designing C++ header files is like many tasks in developing
computer software – if done badly it can cause major problems. I
hope that I’ve shown that, given the right techniques and idioms plus
an understanding of the issues, doing it well isn’t so terribly hard.

Alan Griffiths
<alan@octopull.demon.co.uk>

References

1. “An Introduction to Preprocessor Metaprogramming”, David
Abrahams and Aleksey Gurtovoy, http://boost-

consulting.com/tmpbook/preprocessor.html

2 “Constructing bullet-proof classes”, John Carrolan, Proceeding
C++ at Work - SIGS

3 Gamma, Helm, Johnson & Vlissides. "Design Patterns",
Addison-Wesley, 1995

4 Herb Sutter. Exceptional C++, Addison-Wesley, 2000
5 “To Grin Again”, Alan Griffiths, Overload 72.
6 “C++ Interface Classes – An Introduction”, Mark Radford,

Overload 62

See also “Separating Interface and Implementation in C++”,
Alan Griffiths and Mark Radford, Overload 66

struct L

{

char a, i;

};

struct C

{

L l;

char e;

};

Listing 1 - A simple tree as nested structs

C

A I

EL

[continued from previous page]

25

overload issue 72 april 2006

Ben drew a tree with just five nodes, A, L, I, C and E, as shown
in Listing 1. He defined classes for the root node, C, and the other
non-leaf node L. For the leaf nodes he just used chars.

Bill was not impressed at all. “I thought you were a C++
programmer”, he retorted. “That’s C code. Where are the classes?
Where are the methods? What’s that public data doing there?” “This
just captures the structure of the tree”, Ben explained. “I’ve used a
char as a place-holder for the treasure clues and the value of the
treasure.”

Bill wasn’t convinced. Inserting his Design Patterns CD into
his PC he brought up the Composite structure diagram and typed
in an improved version of Ben’s classes. “Even I can write better

C++ than that”, Bill scoffed. Referring to the example in the
Design Patterns book, Bill wrote the code shown in Listing 2.
Now it was Ben’s turn to be unimpressed. Bill’s code was more
than three times longer (32 non-blank lines to 9), it had more
types in more complex relationships, it brought up apparently
irrelevant implementation issues (such as using vectors or lists
and how to implement Leaf::push_back()) and it was less
efficient in time and space (particularly if the tree nodes were
allocated on the heap). But Ben was more interested in other
things.

“OK”, said Ben, in an uncharacteristically conciliatory tone, “but
your tree has to be built at run time and it gives special status to
Component::operation(). What if the tree structure is fixed at
compile time? And what if we want to capture the tree structure,
but don’t know what operations will be performed on the nodes?”
Bill’s face fell. He could see what was coming. Any second now
Ben was going to say something about those confounded C++
templates.
Two of the trainee nurses from the Pre-Tenders team had been
powdering their noses. As they came out of the Ladies and left
the pub to start the treasure hunt Bill’s face brightened
momentarily. But his brief reverie was broken by Ben’s words.
“We should be able to write a function template that applies an
arbitrary function to each node in a tree. Any tree. Something like
this.” And Ben typed in the code in Listing 3.

“Let’s stick with our 5-node tree and let’s not worry about how
it’s created, for now. Write is a function object that writes
information about a node to an ostream. And visit is a function
template that walks the tree and calls a function (Write in this case)
for each node. The in_order template parameter is a policy class
that specifies in-order traversal.”

class Component

{

public:

virtual ~Component() {}

virtual void operation() = 0;

virtual void push_back(Component*) = 0;

typedef std::vector<Component*>

::iterator Iterator;

virtual Iterator begin() = 0;

virtual Iterator end() = 0;

};

class Leaf : public Component

{

public:

Leaf(int v) : leaf_value(v) {}

int value() {return leaf_value;}

private:

virtual void operation() { /* . . . */ }

virtual void push_back(Component*)

{throw "Can't add to Leaf!";}

virtual Iterator begin()

{return children.begin();}

virtual Iterator end()

{return children.end();}

int leaf_value;

std::vector<Component*> children;

// always empty

};

class Composite : public Component

{

private:

virtual void operation() { /* . . . */ }

virtual void push_back(Component* c)

{children.push_back(c);}

virtual Iterator begin()

{return children.begin();}

virtual Iterator end()

{return children.end();}

std::vector<Component*> children;

};

Listing 2 - Classes for the Composite Pattern in C++

int main()

{

C tree = /* ... */;

visit<in_order>(tree, Write(cout));

return 0;

}

Listing 3 - A generic tree visit function

template<typename Traversal, typename Node,

typename Op>

void visit(Node& root, Op op)

{

typedef typename begin<Node>::type first;

typedef typename end<Node>::type last;

typedef typename Traversal

::template apply<Node>::type pvp;

children<first, pvp>::template

visit_each<Traversal>(root, op);

op(root);

children<pvp, last>::template

visit_each<Traversal>(root, op);

}

Listing 4 - The generalised visit algorithm

26

overload issue 72 april 2006

The Generalised Visit Algorithm

Thinking out loud, Ben said: “When we visit a node we need to
apply the given function to the node itself and each of its child
nodes. The parent defines a natural order on the children and
we’ll use that to visit each child in turn. The traversal policy
defines when to visit the parent (before the children, after the
children or somewhere in between). It’s like having a parent
that’s an STL container of children and the traversal policy
provides an iterator into the container – except that it all happens
at compile time. So the algorithm is:
● visit the children in the range [first, pvp)
● visit the parent
● visit the children in the range [pvp, last)
where pvp is the ‘parent visit position’ iterator obtained from the
traversal policy.”

Ben’s code is shown in Listing 4.
At first this looked more like hieroglyphics than source code to
Bill. He could see Ben’s “iterators” first, last and pvp, but
they were types and real iterators are objects. He could see
function calls that seemed to correspond to the three steps of the
visit algorithm, too, but it was far from clear how the
visit_each functions would work. The “iterators” were being
used to instantiate the children class template instead of being
passed to the visit_each function, so how could the function
step through the children as the algorithm requires?

Compile-Time Iterators

Ben was well aware that the code needed some explanation.
“Compile time algorithms work with constants and types, which
are both immutable”, he went on. “There’s no such thing as a
compile-time variable. Instead of incrementing an iterator we
must create a new iterator pointing to the next element in the
container. For example, the root node in our 5-node tree has two
children: l and e. We could think of using a pointer-to-member-
of-C as an iterator. Then an iterator to the first child of C would
point to C::l and we can imagine incrementing that iterator to
point to C::e. But C++ doesn’t have a pointer-to-member-of-C

type – it only has pointer-to-member-of-C-of-type-L (L C::*);
and that can’t be incremented because it would change type in the
process (becoming int C::*).”

Bill wasn’t sure if he understood this, but he wasn’t going to
admit it, so he let Ben continue. “Instead we can define a meta-

template<typename C, typename M,

M C::*> struct member_iterator;

template<typename D,

typename B> struct base_iterator;

Listing 6 - Member and base class iterators.

template<typename First, typename Last>

struct children

{

template<typename Traversal, typename Node,

typename Op>

static

void visit_each(Node& node, Op op)

{

visit<Traversal>

(bind<First>::function(node), op);

typedef typename next<First>::type Next;

children<Next,Last>::template

visit_each<Traversal>(node, op);

}

};

template<typename Iter>

struct children<Iter, Iter>

{

template<typename Traversal, typename Node,

typename Op>

static

void visit_each(Node&, Op) {}

};

Listing 7 - The visit_each<> function.

template<typename Iter> struct bind;

template<typename C, typename M,

M C::* member>

struct bind< member_iterator<C, M, member> >

{

typedef member_iterator<C, M, member> Iter;

typedef typename child<Iter>::type Child;

typedef typename parent<Iter>::type Parent;

static Child& function(Parent& parent)

{return parent.*member;}

};

template<typename D, typename B>

struct bind< base_iterator<D,B> >

{

typedef base_iterator<D,B> Iter;

typedef typename child<Iter>::type Child;

typedef typename parent<Iter>::type Parent;

static Child& function(Parent& parent)

{return parent;}

};

Listing 8 - Simulated partial specialisations of the bind
function.

template<typename C, typename M, M C::*>

struct next;

template<>

struct next<C, L, &C::l>

{

static int L::* const value;

};

int C::* const next<C, L, &C::l>::value

= &C::e;

Listing 5 - The compile-time analogue of incrementing an
iterator

function that takes a compile-time iterator as a template parameter
and generates a new compile-time iterator pointing to the next
element. Something like this.” Ben produced listing 5.
“We pass in &C::l (as a template parameter) and we get out
&C::e (as a class static value).”
“But that’s hideous”, said Bill. “It is pretty ugly”, admitted Ben.
“And it only works for child nodes that are accessible data
members of the parent node, too. That’s very limiting. But the
visit function doesn’t use pointer-to-member values as iterators
– it uses types, and that’s much more flexible.”
Ben was enjoying himself. “Suppose L was a base class of C
instead of a member”, he enthused. “We can’t use a pointer-to-
member value to identify a base class, but we can encode a
pointer-to-member value as a type.” (In fact, the next<> meta-
function in Listing 5 does just that.) “And then we can use types
as iterators to base classes and data members. It’s probably worth
declaring class templates for these two families of types:
member_iterator<> points to a node that’s a member of its
parent and base_iterator<> points to a node that’s a base
class sub-object of its parent.”
“I’ll refer to these collectively as ‘child iterators’. The begin<>
and end<> meta-functions can return classes instantiated from
these templates for the visit<> function to use. Those meta-
functions are the compile-time analogue of the begin() and
end() functions provided by STL containers.”

“OK”, said Bill slowly, still far from convinced, “We can’t
increment these iterators, but we still have to compare them and
dereference them, right? How do we do that?”

Iterating Through the Children

“That’s a good question”, replied Ben. “We need to see how the
visit_each<> function works to answer that.”

“As you can see, there are no loop constructs. There can’t be
because loops require a loop variable and there are no compile-time
variables. So we use recursion instead. The idea is to visit the first
child (by calling the visit<> function) and then call
visit_each<> recursively to visit all the remaining children.”
Ben paused to take another gulp of his Black Sheep bitter and
Bill seized the opportunity to ask why visit_each<> is a static
function of a template class. “I’ll come to that in a minute”, Bill
responded, “but for now you just need to know that the primary
children<> template defines the general case and the
specialisation provides the terminating condition for the
recursion.”

Ben pondered for a moment before continuing. “If First is a
member_iterator<> the visit_each<> function can retrieve a
pointer-to-member value from it, which must be bound to an object
using the .* or ->* operator before we can access the data member
it refers to. We can’t store an object reference or pointer in the
iterator because it’s a compile-time iterator and references and
pointers are run-time entities – they don’t have a value at compile
time. And that means we can’t dereference a member_iterator<>
– it doesn’t hold enough information. So, the visit_each<>
function must bind a compile-time iterator to a (run-time) reference
to the parent node, which produces a reference to the child node
pointed to by the iterator. And, of course, if we have to do this for
member_iterator<>s we should do the same for other child
iterators such as base_iterator<>s.”

“Is that clear?”, asked Ben. “Errm, I think so”, said Bill, who
wasn’t used to thinking about the interaction of compile-time

operations with the run-time environment. “So, a child iterator is a
type, not an object; it can’t be incremented; and it can’t be
dereferenced. That’s a weird sort of iterator!” Ben agreed, “Weird,
yes, but it’s still an iterator in my book”.

Bill was studying the visit_each<> function and another
question occurred to him: “bind<> seems to be a class template
with a nested function. Why isn’t it just a template function?”
“Ah”, said Ben, “that’s so that we can define separate bind
functions for member-iterators and base-iterators. If C++
supported partial specialisation of function templates we could
define partial specialisations for each of the two iterator
families; but it doesn’t, so I’ve just put a static function in a class
template and defined partial specialisations of the class
template.”

Hardly pausing for breath Ben continued his commentary.
“Here, the parent<> and child<> meta-functions just extract
the type of the parent and child nodes from the child iterator.” (See
Appendix 1.) “The member_iterator<> specialisation uses the
.* operator to bind a pointer-to-member to the parent; the
base_iterator<> specialisation just uses the implicit
conversion from derived class reference to base class reference.”
(Although Ben didn’t think to mention it, he could have used the
Boost enable_if<> templates to define separate overloads of
the bind function instead.)

Ben leant back in his chair with a satisfied smile. “The rest is
easy”, he said. “The visit_each<> function uses the next<>
meta-function to generate an iterator to the next child node and calls
itself to visit the remaining children (if any). Eventually, the two
iterators become equal and the children<Iter,Iter>
specialisation comes into play. At that point an empty
visit_each<> function is instantiated and the recursion
terminates.”

Bill felt cheated. “So we don’t compare the iterators, either”, he
said tetchily. “At least, not explicitly.” “Well, no, I suppose not”,
Ben replied with an air of superiority, “but that’s how it is with
compile-time algorithms.”

Epilogue

“Glad to see everyone back on time”, said the Walrus cheerily.
“Now, let’s see how you all got on.” And with that he
collected the clue sheets and sat down to work out what the
teams had scored. Some 20 minutes later he stood up again
and gravely announced that he had a problem – all three teams
had the same score! “So I’ll offer a bonus point to the first
team to find Tweedledum and Tweedledee.” One of the Pre-
Tenders gave a little squeal, waved one hand in the air and
pointed excitedly with the other in the direction of Bill and
Ben. “It’s them”, she cried. And everyone could see she was
right. They looked like two peas in a pod and they were
arguing like schoolboys.

“Compile-time is better”, said Ben. “Nah, run-time”, insisted
Bill. “Compile-time.” “Run-time.” ...

Phil Bass
phil@stoneymanor.demon.co.uk

Full code listings provided in appendices.

27

overload issue 72 april 2006

28

overload issue 72 april 2006

Appendix 1 – Visit.hpp

The following code implements the compile-time visit algorithm itself.
struct nil {};

template<typename Iter> struct parent;

template<typename Iter> struct child;

template<typename Iter> struct bind;

template<typename Iter> struct next;

template<typename C, typename M, M C::*> struct member_iterator;

template<typename C, typename M, M C::* member>

struct parent< member_iterator<C,M,member> >

{

typedef C type;

};

template<typename C, typename M, M C::* member>

struct child< member_iterator<C,M,member> >

{

typedef M type;

};

template<typename C, typename M, M C::* member>

struct bind< member_iterator<C, M, member> >

{

typedef member_iterator<C, M, member> Iter;

typedef typename child<Iter>::type Child;

typedef typename parent<Iter>::type Parent;

static Child& function(Parent& parent) {return parent.*member;}

};

template<typename D, typename B> struct base_iterator;

template<typename D, typename B>

struct parent< base_iterator<D,B> >

{

typedef D type;

};

template<typename D, typename B>

struct child< base_iterator<D,B> >

{

typedef B type;

};

template<typename D, typename B>

struct bind< base_iterator<D,B> >

{

typedef base_iterator<D,B> Iter;

typedef typename child<Iter>::type Child;

typedef typename parent<Iter>::type Parent;

static Child& function(Parent& parent) {return parent;}

};

template<typename T> struct begin { typedef nil type; };

template<typename T> struct end { typedef nil type; };

template<typename First, typename Last> struct children;

template<typename Traversal, typename Node, typename Op>

void visit(Node& root, Op op)

{

typedef typename begin<Node>::type first;

29

overload issue 72 april 2006

typedef typename end<Node>::type last;

typedef typename Traversal::template apply<Node>::type pvp;

children<first, pvp> ::template visit_each<Traversal>(root, op);

op(root);

children<pvp, last> ::template visit_each<Traversal>(root, op);

}

template<typename First, typename Last>

struct children

{

template<typename Traversal, typename Node, typename Op>

static

void visit_each(Node& node, Op op)

{

visit<Traversal> (bind<First>::function(node), op);

typedef typename next<First>::type Next;

children<Next,Last> ::template visit_each<Traversal>(node, op);

}

};

template<typename Iter>

struct children<Iter, Iter>

{

template<typename Traversal, typename Node, typename Op>

static

void visit_each(Node&, Op) {}

};

Appendix 2 - Visiting Alice (with children as nested structs)

A program using the visit algorithm described here needs to provide some information about the structure of the tree whose nodes
are to be visited. This is done by defining suitable child-iterator types, the next<Iter> meta-function, the begin<Node> meta-
function and specialisations of the traversal order policy templates. The following code shows the definitions for the ALICE tree
used in the main text.

struct L

{

char a, i;

};

typedef member_iterator<L, char, &L::a> L_a_iterator;

typedef member_iterator<L, char, &L::i> L_i_iterator;

template<> struct next<L_a_iterator> { typedef L_i_iterator type; };

template<> struct next<L_i_iterator> { typedef nil type; };

template<> struct begin<L> { typedef L_a_iterator type; };

struct C

{

L l;

char e;

};

typedef member_iterator<C, L, &C::l> C_l_iterator;

typedef member_iterator<C, char, &C::e> C_e_iterator;

template<> struct next<C_l_iterator> { typedef C_e_iterator type; };

template<> struct next<C_e_iterator> { typedef nil type; };

template<> struct begin<C> { typedef C_l_iterator type; };

struct in_order

{

template<typename T> struct apply { typedef nil type; };

};

template<> struct in_order::apply<C> { typedef C_e_iterator type; };

template<> struct in_order::apply<L> { typedef L_i_iterator type; };

The traversal policy is in the form of a meta-function class (a class with a nested class template). This gives the flexibility of
template template parameters while still allowing the policy to be used by compile-time algorithms operating on types.

30

overload issue 72 april 2006

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support
nor disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author
is, by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column
(not a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Appendix 3 - Visiting Alice (with a base class as a child)

The case of the ALICE tree where L is a base class of C is only slightly different. The root node, C, needs a constructor and the
child-iterator pointing to node L becomes a base_iterator<>. The following code shows the support required for node C (most
of which is the same as for the example in which L is a member of C).

struct C : L

{

C(const L& l, char e_) : L(l), e(e_) {}

char e;

};

typedef base_iterator<C, L> C_l_iterator;

typedef member_iterator<C, char, &C::e> C_e_iterator;

template<> struct next<C_l_iterator> { typedef C_e_iterator type; };

template<> struct next<C_e_iterator> { typedef nil type; };

template<> struct begin<C> { typedef C_l_iterator type; };

template<> struct in_order::apply<C> { typedef C_e_iterator type; };

For compile-time trees defined using tuples and inheritance it is possible to provide the child iterators in a library. For example, the
ALICE tree could be defined as:

#include <boost/tuple.hpp>

using boost::tuple;

typedef tuple<char,char> L;

typedef tuple<L,char> C;

C tree = C(L('A','I'), 'E');

Since Boost tuples are implemented using inheritance it is easy to provide predefined base-iterators and meta-functions supporting
the visit<> algorithm. In this case, no information about the structure of the tree needs to be provided in the client code; visiting
Alice comes for free.

Advertise in C Vu & Overload
80% of Readers Make Purchasing Decisions

or recommend products for their organisation.

Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@accu.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Helvetica
 /Helvetica-Bold
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /ScriptMTBold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

