
April 2006 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, be default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Pair Programming Explained
Rachel Davies introduces pair programming and
explains how to use it effectively.

7 Comments Considered Evil
Mark Easterbrook challenges the assumption that
comments in code are a good thing.

10 How Do Those Funky Placeholders Work?
Chris Gibson goes under the covers of Boost.bind.

14 Implementing Drop-Down Menus in Pure
CSS (no JavaScript)
Anthony Williams gives a cross-browser solution to
providing drop-down menus.

13 The Rise and Fall of Singleton Threaded
Steve Love explores the evolution of a project that
makes use of Singletons.

17 The Case Against TODO
Thomas Guest asks whether TODO and its
associates are useful tools.

26 Objects for States
Adam Petersen also considers Singleton, and its
purported application to Objects for States.

OVERLOAD 73

June 2006
ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editor

Mark Radford
mark@twonline.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddeaus Froggley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Tim Penhey
tim@penhey.net

Advertising enquiries

ads@accu.org

Cover art

Pete Goodliffe
pete@cthree.org

Design

Pete Goodliffe

Copy deadlines
All articles intended for publication in
Overload 74 should be submitted to
the editor by 1st July 2006 and for
Overload 75 by 1st September 2006.

FEATURE ALAN GRIFFITHS
The More Things Change, the
More They Stay the Same
One of the great things about a community like ACCU is that
people care. We care about contributing and we care about
problems that affect us all. Maybe together we can do
something about them!
Your magazine still needs you!
In my last editorial I found it necessary to remind you
that Overload is your magazine and it requires your
input. As you can see, a number of you have seized the

opportunity and submitted the articles that appear in this issue.
I’m pleased with the response, and I hope that both the authors and the
readers will be pleased with the results too. But don’t let things rest there
– if you have an article, or an idea for an article, then the advisors and I
are still here and ready to help shepherd it through to print.
Overload now has a new look and some new authors – the very least you
can do is write and tell us what you think!

What makes an Overload article?
At the conference I was asked a number of times about what might be
suitable material for Overload. This isn’t as easy to answer as it might
seem: Overload isn’t about a particular language, a particular platform or
a particular technology. But it is about helping the readership make better,
more informed choices about the way they develop software.
There are many types of article that can do this: but whether it is about a
technology, a technique, a design pattern, a development process, good
(or bad) practice, or something else, an article for Overload should offer
the reader a new way to approach the problems of developing software.
In this issue we have a pair of articles that address aspects of the Singleton
design pattern (or, as some might prefer it, “anti-pattern”). Steve Love tells
a pattern story about the introduction of Singletons into a project and
considers what happens next. Meanwhile, Adam Petersen asks Mr
Singleton about his walk-on part in the State pattern – and discovers a
notable lack of enthusiasm for this particular role.
We also cater for those that are interested in how clever stuff works. There
are a couple of articles that address this: Anthony Williams explains the
finer points of implementing menus in CSS and Chris Gibson examines
how “boost::bind” works.
An Overload article need not be a definitive statement of the “one true way”.
In this issue you will find two opinion pieces questioning the received
wisdom that comments are good. One of these is Thomas Guest’s
consideration of “TODO”: is “TODO” a part of your programming
toolbox? And does it work as well as you’d like to think? Our other opinion

piece was inspired by Peter Sommerlad’s session at
the conference – Peter’s agenda was to challenge
some myths about software development. He
certainly succeeded in getting Mark Easterbrook

thinking. (There is more to follow – Allan Kelly was also inspired by this
talk to submit an article that we don’t have space for this time.)
Overload presumes that its readers are willing to think about what is
written in these pages, and not to accept it blindly. These articles are part
of a long standing tradition of printing material that may provoke
discussion. We’ve had plenty of debate in these pages over the years, and
long may this continue – it sometimes leads in surprising and fruitful
directions! If these articles make you think about the way you develop
software then I hope you can contribute something to the next issue that
continues the discussion.
I should, perhaps, clarify that the pair-programming experience report by
Rachel Davies is not the one I alluded to in my last editorial. This is a
shame, because it would have been nice to see them together – and to
compare conclusions. Unfortunately, like all of us, the potential author of
the missing article is busy – and in addition to a day job has recently been
working on other material I feel is more important than producing this
Overload article. (If I said any more then I’d risk identifying someone who
already knows who they are.)
Maybe you can think of a phrase to cover all all these articles. I can’t – I
just know that these are the articles my advisors and I agree they want to
see in the magazine. I hope we are making the right choices. If you think
we are not, then please don’t suffer in silence (or resign your membership
in disgust) – write and let us know.

Digital Rights Management
I know of no safe depository of the ultimate powers of the

society but the people themselves; and if we think them not
enlightened enough to exercise their control with wholesome
discretion, the remedy is not to take it from them, but to inform

their discretion by education. This is the true corrective of
abuses of constitutional power.

Thomas Jefferson
Judging by a recent thread on ACCU general it would seem that the
attempts to restrict the rights of consumers by distributors of copyright
material has not appeared on the radar of many of us. This is a shame
because we should be far more aware of “digital rights management”
issues than the general public.
Even in its current form this isn’t a new issue: Richard Stallman has been
attempting to highlight it for at least a decade as shown by his entertaining
“The Right to Read” article from 1997 [Stallman97]. In that time all that
has happened is that the threat to our rights has become clearer and the
need to defend them more urgent.

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. Homepage:
http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | June 2006

FEATUREALAN GRIFFITHS
June 2006 | Overload | 3

I think my first brush with these problems was in 1998 or ’99 – the
company I was working for bought a PDF of the ANSI C++ standard.
ANSI chose to distribute this with a flag set that prevented text selection
for copy and paste – which is a considerable pain when one wants to quote
a section of the standard in discussion. Now, I’m not suggesting that they
were acting illegally – clearly I could, and did, exercise my “fair use” right
by retyping the text I needed. But it is notable that after a bit of lobbying
by the C++ community they revised their policy and supplied a copy
enabled version both to those that had complained and to new purchasers.
What I found annoying was the lack of respect shown in making it less
convenient to exercise my rights than it need be.
There are similar irritations with the music industry – I am (and always
have been) entitled to play my LPs on a wide range of equipment or to
lend them to friends. With electronic distribution of music increasing
effort is being made to tie playback to a particular piece of kit (and we all
know how quickly that gets replaced). There is nothing illegal about such
restrictions – you have the legal right to agree to such terms when you
make a purchase.
Of course, even before electronic distribution many of us stretched the
“wide range of equipment” beyond legal limits by introducing an audio-
cassette into the playback mechanism to make our music available in our
cars (the dire quality of commercial audio cassettes was also a factor here).
And I suspect that occasionally, people acquired tapes of material for
which they didn’t buy a copy of their own. The industry wasn’t happy
about this – but instead of chasing such petty infringements they lobbied
government to impose a tax on blank audio-cassettes.
Ever since books have existed they have been lent to friends and
associates, and the same has been true of music and video. The right to do
these things is under threat.
The move to digital technologies changed things – the marginal cost of
reproducing things is negligible. In the early days of the computer industry
little though was given to controlling the distribution of software (it was
considered) – but, as the level of investment in software and the benefits
from using it became more apparent, many regimes of permissions were
experimented with. Some of take a “like a book” approach, some tie use
of the software to a particular piece of hardware (either a computer, or a
“dongle”), and some actively promote sharing. While the more restrictive
approaches are popular with vendors, they tend to inconvenience their
customers.
With the move to digital technologies for distributing books, music and
movies, the distributors have been attracted by availability of these more
restrictive approaches – which prevent us doing what we’ve always been
able, and are entitled, to do with traditional technologies. While it is true
that the same facilities that allow us to do this could also be abused to break
the law this isn’t new (although it has become cheaper and more reliable).

More importantly, the current technological solutions are not adequate to
prevent serious abuse and serve mainly to irritate customers. (For a
particularly eggrarious example of this see [Russinovich].)
Given this background I was interested to see a Sydney Morning Herald
article [SMH] describing proposed changes to Australian law making
legal “format shifting” from private collections onto playback devices and
“time shifting” (recording programs for later playback). I particularly
enjoyed a quote from the Attorney-General Philip Ruddock: Everyday
consumers shouldn’t be treated like copyright pirates, copyright pirates
should not be treated like everyday consumers. Amen!
However, this action is very much against current trends. At the far side
of the world a different story is unfolding: “The British Library - “The
world’s knowledge” DRM’d and for a price” [Groklaw]. It seems that
libraries are also introducing restrictions on the use of borrowed material
that limit its use far more than would apply under copyright law (which
guarantees various forms of “fair use”).
We hear far too much about the rights of the suppliers of digital content
– we need to ensure that the rights of the consumer are also respected!

A short note on OpenDocument
I’ve made a few mentions of the standard format for office application
documents produced by Oasis in the past few editorials. You may be
interested to hear that OpenDocument has now been approved as an ISO
standard – there are a few formalities to go through, but
the decision making process has completed and all that
remains is producing the final document. You can read
more about th i s on Andy Updegrove’s b log
[Updegrove].

References
[Stallman97] “The Right to Read”, Richard Stallman, 1997, http:/

/www.gnu.org/philosophy/right-to-read.html
[Russinovich] “Sony’s Rootkit: First 4 Internet Responds”, Mark

Russinovich, http://www.sysinternals.com/blog/2005/11/
sonys-rootkit-first-4-internet.html

[SMH] “Cutting crime as easy as MP3”, http://www.smh.com.au/
news/technology/cutting-crime-as-easy-as-mp3/2006/05/13/
1146940771335.html

[Groklaw] “The British Library - “The world's knowledge”
DRM’d and for a price”, http://www.groklaw.net/article.php
?story=20060317044847293

[Updegrove] “OpenDocument Approved by ISO/IEC Members”,
http://www.consortiuminfo.org/standardsblog/article.php
?story=20060503080915835372.pdf

FEATURE RACHEL DAVIES
Pair Programming Explained
Rachel Davies explains how to implement pair programming and
why it can be an effective practice for programmers.

t was 1999 when I first heard about Extreme Programming [Beck] and partner. Instead, you need straight-sided tables or better convex curved

its counter-intuitive practices of Test-Driven Development and Pair
Programming. At the time, I was embroiled in a telecomms project,
managing a large team of C++ programmers.

On that project, some developers were new to C++ and object-oriented
programming but had valuable knowledge about our existing systems
written in CORAL. Whereas other programmers were C++ experts who
had mostly worked on strategic proof-of-concept projects so were unused
to writing high performance production code. We developed our software
incrementally, using UML to capture designs, and held code inspections
of programmers’ work, but we struggled with effective knowledge
sharing.
Problems that arose were:
� Programmers who reported they were “90% done” on the same

tasks for several weeks.
� Lack of dependency management – long compile times.
� Programmers using new language features purely to try them out

without considering the impact on performance.
� Programmers who reported they were finished when they had done

little or no unit testing.
� Programmers who kept code checked out for long periods.

Since then I have become an XP practitioner and, in hindsight, I realise
that these problems could have been avoided if we had applied the practice
of pair programming.

Pair programming environment
In 2000, I decided to follow Martin Fowler’s advice: If you can’t change
your organization, change your organization! I went for a job interview as
a developer at an XP company. The team had just moved into new offices
and they were being fitted out to create a customised work environment
to support the XP team. Large screens and convex desks were the order
of the day.
To start pair programming, as Ward Cunningham said, you need to
“Arrange the furniture” [Cunningham]. Pair programming is not one
person passively watching the other type. Each programmer needs to play
an active role in determining the design, implementation and tests. The
pair works together on the task in hand while passing keyboard control
back and forth between them, writing code and tests as they go. Many
offices have desks shaped for a single programmer to sit within an inset.
It is impossible to pair program at these desks without squashing your

desks. You also need wall space for whiteboards and pin boards, to create
what Kent Beck now calls an Informative Workspace.
Try to get workstations with the highest specification you can (you only
need to budget for half the number of workstations as for solo
programming). A large screen area is essential so that both programmers
can read the code without crowding each other. Dual screens have become
a popular way to implement this. A cordless keyboard and mouse can also
make it smoother to pass them between partners. Some teams even choose
to set up workstations with two keyboards and two mice (although I
haven’t tried this myself). To make it easy for a pair to use any free
workstation, each workstation ought be configured with the same set of
development tools and a standard set of preferences in the team’s chosen
IDE.

 A pair programming episode
Most XP teams make a pair programming session part of their interview
process. My first pair programming experience was during my interview.
This was quite nerve-racking, as I was new to the Java programming
language and web development. However, from a candidate’s point of
view I appreciated a chance to see their code and get an impression of how
they worked before accepting the job.
Here is how a typical pair programming episode works. The person at the
keyboard takes the role of driver and directly implements the solution
working at the tactical level; their partner takes the role of navigator
thinking at a strategic level about next steps and potential pitfalls. Pairs
switch frequently between these roles (sometimes passing the keyboard
over every few minutes).
Each pair programming episode typically lasts a couple of hours and ends
with code being integrated and checked into version control. In addition
to switching roles during a pair programming episode, programmers in an
XP team typically change partners more than once per day. Most teams I
have worked with use use a simple pair rotation rule – each day the pair
splits, leaving one person on the task for continuity and releasing the other
to pair with another programmer on a different task.
Some teams have experimented with swapping even more frequently,
using a synchronised time interval of as little as 45 minutes. Arlo Belshee
reports that when swapping partners every 90 minutes: We were able to
fully ramp up new hires who had never programmed in C++ before – to the
level that they could write template metaprograms and train the next round
of new hires – in one month [Belshee].
My experience of joining two XP teams with an existing code base is that,
initially each pair programming episode is like key-hole surgery – you can
work effectively on small clumps of related classes to add a new feature
but you don’t really get a good picture of the architecture by pair
programming alone. My advice is to be aware that pair programming is
not a substitute for training, new programmers will need time to learn a
new technology and will probably benefit from some time on their own
to explore the code base when they join the team.

I

Rachel Davies is an independent agile coach based in the
UK, a frequent presenter at industry conferences and a
director of the Agile Alliance. She has been working in the
software industry for nearly 20 years. She can be reached via
her website, www.agilexp.com, or at rachel@agilexp.com.
4 | Overload | June 2006

FEATURERACHEL DAVIES

staying focused on the task at hand you are
more likely to have working code at the end

of the day rather than going home with
coding problems still lodged in your head
The rationale
Pair programming sounds like it will be hard to justify to your team and
management. If you only count number of number features coded per
developer then it might appear that two programmers will produce more
features when working separately than when working as a pair. But this
is a simplistic view of productivity that ignores the contribution of defect
rates and rework. Maximizing your output without attention to quality
eventually slows a development team down. We are all prone to making
mistakes and bugs cost additional time to fix – usually interrupting on-
going development tasks. Code also needs to be consistently organised
and well factored to allow subsequent features to be added.
Fixing defects found in a QA phase or, worse, after deployment is costly.
Leaving defects in the code to be picked up downstream also slows down
a software development team, as programmers try to build new features
on over-complicated and possibly malfunctioning code. Pair
programming can prevent this slowdown by keeping code clean and well
organised at all times. Clutter and bugs are simply not allowed to
accumulate.
It is well recorded that code inspections are cost-effective ways to reduce
defect rates [Fagan]. However, industry adoption of formal inspections
still remains low. Most teams that I meet see code reviews as a “nice to
have” practice and drop them when the team is working under time
pressure. Pair programming provides an alternative way to implement
design and code reviews. The ongoing peer review that happens while pair
programming prevents poorly designed code from ever being checked in.
When programmers write code in pairs, they keep each other on task and
on process.
Information rapidly diffuses through a pair programming team as pairs
switch and learn from each other. Ken Auer, one of the early adopters of
XP, calls this knowledge transfer effect the “pair-vine.” Although code
inspections also support knowledge sharing, these meetings typically
happen weeks apart, so they have an inbuilt latency. Also discussing a
technique in a code review is not the same as actually trying it out. When
you are pair programming, you learn good design by implementing new
concepts on real code with your pair on hand to give guidance.

The evidence
There are some studies that provide empirical evidence in support of pair
programming.
� A 1975 study of “two-person programming teams” reported a 127%

gain in productivity and an error rate that was three orders of
magnitude less than normal for the organization under study.
[Crosstalk]

� In 1992, Larry Constantine wrote about a team that was set up by
author P.J. Plauger, who developed code that was nearly 100% bug
free. [Constantine]

� Dr. Laurie Williams, author of Pair Programming Illuminated, has
carried out the main research on this topic. You can find much of
her research on the pair programming website [Pair]. Williams

found in her studies [Cockburn] that in exchange for a 15% increase
in development time, pair programming improved design quality;
reduced defects by an average of 15%; and was reported as more
enjoyable by programmers at statistically significant levels. A less
well-known finding was that pair programmers generate output that
is more concise – implementing the same functionality in fewer
lines of code.

Personally, I am a bit skeptical about these studies – the conditions that
they were carried out under are unlikely to be representative of many
software projects in industry. Over the last six years, I have witnessed pair
programming working effectively on real projects in a variety of domains
that have successfully delivered software and it has become my preferred
way to write code.

Programmer’s concerns
Code quality is important but most developers who have not tried pair
programming are concerned about how pair programming affects their
creative process and how working with another programmer affects the
pace of development. There’s no denying it feels different. Your partner
frequently challenges your proposed approach so you have to stay alert
and completely engaged in the task at hand. It’s hard work but nice to have
someone to share your highs and lows with.
Programmers may worry that pair programming will expose gaps in their
coding skills. This actually cuts both ways – it’s highly probable that you
know tricks that your partner does not. My experience is that once
programmers have tried pair programming this concern quickly
evaporates as such gaps are quickly filled when you are learning from your
programming partners. Working with a partner means there is always
someone there to help you get unstuck. By staying focused on the task at
hand you are more likely to have working code at the end of the day rather
than going home with coding problems still lodged in your head.
As knowledge spreads throughout the team, fewer bottlenecks are caused
by holidays or absence because most code has been worked on by more
than one programmer. You stop having to plan around key people on the
critical path. Because pair programming brings an increase in knowledge
sharing, it can release you from specialist work that no one else knows how
to do. No longer will you be the only person who can work on a specific
component and feel under pressure whenever you need to ask for time off
work. You will be free to move onto work on other parts of the system
and broaden out your skill set.
Finally, curbing programmers with bad habits who create work for the rest
of the team, by checking in their broken code for their fellow team mates
to fix, can be a big relief if you were one of those dutifully cleaning up in
their wake.

Getting to the next level
It does take time to become skilled at pair programming. The technique
hinges on improving your communication skills; it is vital that you can
articulate your ideas and also listen to your pair. I recently spent several
June 2006 | Overload | 5

FEATURE RACHEL DAVIES
months working in a dispersed team where each developer worked from
home and we pair programmed using NetMeeting to share desktop
control. Despite my initial doubts, this actually turned out to be a
reasonably effective way to work. Although it did require even more
attention to clear verbal explanation of potential problems that you see in
your partner’s approach and alternative strategies that you would like to
be considered.

When solo programming, we invest more effort in building a complete
mental model of the solution and then transcribing it into code. However,
we don’t always think every scenario through thoroughly and so bugs can
creep in. Pair programming slows down our thinking process so that we
take a closer look at each small step in building the solution – working in
the “here and now” using the simplest strategy that works for this moment.
Each programmer reveals their experience a little bit at a time and their
ideas are woven together rather than clashing over anticipated end
solutions. You have probably heard about the XP saying “Do the simplest
thing that can possibly work” – this heuristic is the key to resolving
differences of opinion that arise in a pair programming team. This is used
as a guide to evaluate micro-decisions at the strategic level within a pair
programming episode and does not literally mean write naïve solutions.
You may anticipate that pairing inexperienced programmers with expert
programmers may be frustrating because the expert will be forced to slow
down to work at the pace of the novice. It is essential that the expert does
take time to explain their thinking to their partner rather than dominating
the keyboard or barking keyboard escape sequences for them to type. The
novice is more likely to get up to speed as an effective team member when
their partner takes care to explain their thinking and the expert is likely to
be surprised that slowing down often results in a more rounded solution.
The peer programming experience of two experts working together is
usually very rewarding, as both partners will be generating good
ideas and counter-challenges at a similar rate. Novice-novice
programming pairs are typically more talkative as the pair are
working hard to learn together – often making false starts when
in new terrain but usually making more progress than when left
to work on their own. It may be wise to track pairing combinations
within your team to avoid pair cliques forming and to ensure that
each team member gets the opportunity to pair with everyone.

Solo programming
Are there times when solo programming is appropriate? Yes. Sometimes
code quality is not so important – as when developing a temporary solution
or prototype. Splitting a pair makes sense when exploring alternative
technical solutions or bug-busting where different root causes need to be
eliminated. There will be days when you have an odd number of
programmers. Most programmers find being locked into pair
programming all the time a little claustrophobic and appreciate some time
to work on their own now and then. In this case, try to make sure that any
production code written without a pair is peer reviewed before being
checked in.
After reading this article it might appear that pair programming will have
a positive effect on every software development team. But as the mighty
Frederick Brooks said, there is no “silver bullet.” [Brooks]. Some
scenarios are listed below where pair programming is unlikely to deliver
the full set of benefits:
� Flexi-time and Telecommuting. For pair programming to get off

the ground successfully, you do need to have programmers
available for work in the office for core hours. This may be an issue
if your company explicitly offers employees the option to work
from home and programmers on the team do not wish to give this
benefit up.

� Distributed Teams. Where a project team is split across different
company sites, it may not make sense to attempt pair programming
across these boundaries, as face-to-face communication is much
richer. An alternative is to only pair program within the sub-teams
at each site and then implement code reviews of selected work
products across the boundaries. This strategy does mean that you
lose some knowledge sharing across sites but rotating programmers

between sites is another way to do this.
� Diverse Teams. A classic situation in which pair

programming does not work well is when you have
heterogeneous system architecture and the team is made
up of a small number of specialists, each proficient in

only one technology used in the system. A common case of this
situation is the specialised database programmer. It probably does
not make sense for an Oracle programmer to pair with a C++
programmer because the skills required to work proficiently in their
respective technologies are not easy to absorb via pair programming
alone and separate training support may be required.

� Small Teams. Very small teams (one to three programmers) will
probably find that they do not benefit from formal pair
programming as they already have a high level of interaction and
would find working with the same person for long periods too
claustrophobic.

Summary
Pair programming is a technique that improves both code quality and your
programming skills. It helps by improving programmer discipline and
providing a mechanism for knowledge sharing. The best way to evaluate
pair programming is to use this practice on a small, low-risk project. To
check whether the practice is delivering results, review your bug rates –
you should find fewer critical bugs reported on code developed in pairs.
It will also be important to discuss with the team what their experience
has been with pair programming and whether they feel that they are
learning more by using the technique. �

References
[Beck] Extreme Programming Explained – K.
 & C. Andres ISBN 0-321-27865-8
[Belshee] Promiscuous Pairing and Beginner’s Mind: Embrace

Inexperience by Arlo Belshee, Agile2005 http://agile2005.org/
XR4.pdf

[Brooks] The Mythical Man Month by Brooks ISBN 0-201-83595-9
[Cockburn] The Costs and Benefits of Pair Programming XP2000

conference, A. Cockburn & L. Williams http://
collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF

[Constantine] “The Benefits of Visibility” in The Peopleware
Papers – Larry Constantine ISBN 0-13-060123-3

[Crosstalk] Crosstalk March 2003 available on-line at http://
www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html

[Cunningham] “EPISODES: A Pattern Language of Competitive
Development” – Ward Cunningham, Pattern Languages of
Program Design 2. ISBN 0-201-89527-7

[Fagan] “Advances in software inspections to reduce errors in
program development” - Michael Fagan IBM Systems Journal
1976.

[Pair] http://www.pairprogramming.com/

ideas are woven together rather than
clashing over anticipated end solutions

Splitting a pair makes sense when
exploring alternative technical solutions

or bug-busting where different root
causes need to be eliminated.
6 | Overload | June 2006

FEATUREMARK EASTERBROOK
Comments Considered Evil
We are taught that adding comments to code is a good thing
and adds value. In practice this value is seldom, if ever,
realised. Mark Easterbrook makes the case for a better way.

t the ACCU 2006 conference, the question was asked “Is the total factoring tool that avoids the problems with global “find and replace” and

value of all the comments in all of the code out there less than or
more than zero?” [1] If the answer is less than zero, which judging

from participants’ reactions and war stories is quite possibly the case, then
the ability to put comments in source code has had a negative impact on
the programming community, and is therefore A Bad Thing™.

Learning from the experts
Why do programmers put comments in code? To answer this we need to
look at how the language is taught, so I took a number of books by the
most respected authors in the industry that are aimed at beginners or start
from the basics, and looked to see how these experts recommend beginners
use comments, and they all had something along the lines of:
 i++;/* Increment i */

So, if all these highly recommended books are consistent on what a code
comment should look like, it must be right, right? It is a brave programmer
to tell these esteemed writers that the code samples they use in their books
are poor examples. Taking one particular example at random, on page 24
of The C++ Programming Language, 3rd Ed, by Bjarne Stroustrup we
find the following example of how to write a C++ function:
void some_function() // function that doesn't return a
 // value
 {
 double d = 2.2 // initialise floating-point
 // number
 int i = 7; // initialise integer
 d = d+i; // assign sum to d
 i = d*i; // assign product to i
 }

Thus Bjarne’s book is teaching single character variables are good and
comments should tell the code reader what the code is doing. Much much
later on page 138 Bjarne does describe better use of comments, but by this
time most beginners have given up reading and are out there hacking code
with looming deadlines. Even those who do read more of the book have
what they learned on page 24 reinforced with “[indent style]…I have my
preferences, and this book reflects them. The same applies to comments”.
That’s right, just copy Bjarne’s “preferable” commenting style from his
book. (Note: Before you email me, I have read to the end of the section,
my point is that not everyone bothers to read all the way to the end.)
Examples of this Good Practice™ of commenting can be found
everywhere. One example from some telecoms software had, in revision
1.1 in CVS:
 channel++; //increment channel

The good thing about this line was that both the code and the comment
agreed (experience shows this is quite often not the case). The bad thing
about this code is that they are both wrong, the problem being that the
original coder didn’t understand the difference between channel and
timeslot [2] and chose the wrong variable name. Fortunately, when he (or
someone who came along later) realised the mistake he used a snazzy re-

understands the code enough to only change the relevant variable name
and not other occurrences of the string or the same name in another scope.
The code now reads:
 timeslot++; //increment channel

You might ask why the re-factoring programmer didn’t change the
comment to match and it was because he wasn’t looking at that particular
line, but at this one:
 uint32_t channel; // I think this is probably
 // timeslot, not channel.

The first person to come along realised the poor choice of variable name
and “fixed” it by adding a comment. The second decided it would be better
to change the variable name. Obviously, the second programmer believes
in saying it in the code and disregarding comments, because the changed
line now reads:
 uint32_t timeslot; // I think this is probably
 // timeslot, not channel.

It passed programmer testing, because the test suite only tested the code
and disregarded the comments. It then passed code review with only an
observation because it had already been tested and checked in, and the
company policy was not to modify the source file after testing unless a
potential customer visible fault is found. The rationale being that
modifying the comment modifies the file, forcing a rebuild and requiring
a re-test [3].

“If the code and comments disagree, both are probably wrong”.
Norm Schryer

Better comments
The problem with all these code gurus is that they are code gurus, and
comments are not code. If they stuck to teaching code and left teaching
comments to comment gurus we would get much better comments. Or
would we? I trawled various sources for good practice in commenting and
found the following pieces of advice:
� Say why and not how.
� Meaningful.
� Say it in the code when you can, and in the comments when you

must.
� Only use comments where the code is non-obvious and/or non-

portable.
� Don’t write comments that repeat the code.

A

Mark Easterbrook is a software developer specialising in
technical domains. In his day job he works with embedded
systems, high performance/reliability/availability systems,
operating systems, and legacy code, sometimes all at the
same time. The rest of his time is split between motorcycles,
genealogy, linux, and food & drink, but never at the same time.
Mark can be contacted at mark@easterbrook.co.uk
June 2006 | Overload | 7

FEATURE MARK EASTERBROOK
� Do write illuminating comments that explain approach and
rationale.

This is not a complete list, but a representative sample. The last two are
from C++ Coding Standards [4] where Herb and Andrei dedicate only 4
lines of their book to comments. This sends the message that the authors
do not regard good comments as a subject to spend much time on.
I have stolen a good example of someone following the above guidelines
from Roger Orr [5]:
 // Clear collection before we start
 myCollection.empty();

The code by itself would hopefully be spotted at code review because the
reader would have to think about why there is a statement with no side-
effects, and make sure it fails the review. Add in the comment following
the above guidelines and the “why?” is obvious so the reader doesn’t have
to ponder the code and moves on to more important things. Would this
code be better with or without the comment? Would the coding error be
more obvious without the comment?

What is a comment?
If you ask a group of programmers what they understand by “comment”
you will almost certainly start an argument. This will not be quite as heated
or frequent as “vi or emacs”, but neither will it be a minor disagreement.
The descriptions I have heard vary from “line comments” – the “block
headers are documentation not comments” school of thought, through to
“everything the compiler ignores”, bringing in commented-out code and
all #if 0 blocks into the definition. I suspect that more than a few out
there will include comments that aren’t even in the source code file (CVS
check-in comments anyone? RCS maybe?).
And then there is self-documenting code: If comments are a form of
documentation, and a programmer writes self-documenting code, surely
the code is then a “comment”. Just because the compiler reads it does not
mean that it is checked for correctness - the compiler does not care if a
variable is called channel, timeslot, or foo – variable names are
for the human reader, not the machine, and thus are a type of commenting!

Mandating useless comments
Almost every code generating place I have worked has some form of
mandating comments in code, either by having a coding standard which
is selectively checked at code review (and comments are always selected,
sometimes the only thing selected), or just going straight to a tick-box list
somewhere that has “adequate comments” as a line item. Adequate by
quantity is easy to check. Adequate by quality is not so easy. Most reviews
choose the path of least resistance and go for a quantity check.

I know that the misguided individuals who write coding standards and
code review checklists don’t intend to mandate useless comments: the
desire is to promote good practice. However, programmers are only
human (for the sake of this argument I’m assuming this is the case, you
may know some exceptions) and will take the easiest path to conformance
– which is to follow what is actually mandated rather than what is intended
to be mandated.
The most useless mandated comments in the wild are block headers. Some
development teams even put an empty block header into an easily
accessible file somewhere (they call it a skeleton header or some other
similar excuse) so it can easily be copied and pasted into every source file.
Mostly these headers remain as function separators making sure each
function or procedure is kept away from the adjacent one by lots of screen
real estate so you cannot ever see more than one on the screen at once.

Sometimes the cut-and-pasters go that bit further and fill out the fields in
the block header. Unfortunately these are typically:
� Name of function – Don’t copy and paste from the function name a

few lines down, type it in to increase the chance of error.
� Purpose of function – Take the function name and add spaces

between the words (and maybe put back the vowels and other letters
if they are missing).

� Inputs – Another name for the argument list.
� Outputs – Another name for the return type.
� Algorithm – Pseudo code, which means the code written in the

language you would prefer to use rather than the language that the
compiler understands.

� Comments or Remarks – Your chance to demonstrate your wit and
charm, or lack of it, to your fellow coders.

Some development teams even discourage the filling-in of block headers
by surrounding them with a box of asterisks or similar characters. Any
changes make the right hand side of the box irregular, so it is better to leave
it in its original regular form.
It seems to me that the unwritten rule is: If you have a function that is
similar to the one you want to write, or not similar at all, just copy both
the header and the code. Because someone has already filled in the header
for you it saves some time and allows you to concentrate on the code.
Furthermore, if the coding standards mandate block headers with an
asterisk in column 2, it is possible to grep for just the headers and produce
the documentation from the code files. Counting the duplicate functions
then allows an estimate of how much cut-and-paste programming has
taken place. But look at how much documentation there is!
Block Headers: Please, just say no.

Automatic comment generation
Integrated development tools now take a lot of the effort out of adding
comments to code, saving the programmer valuable minutes of coding
time. Picking a popular IDE and using the tool to create a new Dialog Box
obtains comments such as:
 return TRUE; // return TRUE unless you set the
 // focus to a control
 // EXCEPTION: OCX Property Pages
 // should return FALSE

Now I thought the idea of automatic code generation was that the code
was generated automatically for the programmer, or am I being
particularly naïve about this? Surely the system, either at code generation
time or later, can work out if the focus is set to a control or not, and whether

this is an OCX property page or not. This particular example
was taken from production code – did the original
programmer actually look at the code and decide that TRUE
was correct but was too lazy to modify the comment
appropriately, or not?
The nice thing about good code generators is that quite often
the default behaviour is what is required, so there is no need

to even go and look at the automatically generated code. Thus the presence
of
 // TODO: Add extra validation here
 CDialog::OnOK();

throughout the code leaves the maintenance programmer with an uneasy
feeling that perhaps the original coder did not finish the job.
If the above example had not auto-generated comments but pseudo code
instead:
 Perform custom validation (if any) then call:
 CDialog::OnOK();

The coder would have been forced to look at the generated text and turn
it into the correct code. The compiler would have insisted on it!

the misguided individuals who write coding
standards and code review checklists don’t
intend to mandate useless comments
8 | Overload | June 2006

FEATUREMARK EASTERBROOK
In another universe
Just imagine a world in which the compiler reads the whole of the source
file instead of skipping the bits the coder cannot be bothered to code in
the language. This is a fancy way of saying “No comments”.
To imagine what this nirvana might be like, let’s look at something else
that the designers of programming languages decided wisely not to add to
the language: Version Control. The first version control system [6], RCS,
foolishly added the history of the code to the code file itself, but everyone
saw this was bad (all right, almost everyone) and caused files to grow
beyond the file system limit and lo, CVS was born where the code is the
payload and the version information is the metadata. CVS makes putting
the version information in the file so difficult nobody bothers to do it. [7]

The nice things about having code and version control system loosely
coupled are:
� If you don’t like your version control system you can change it

without changing your programming language.
� If you don’t like your programming language you can change it

without changing your version control system.
� You can view just the code, or you can view just the revision

information, or a bit of one and a bit of the other. You choose to
view just what is appropriate for the current task.

� There is a big market for version control systems, and add-ons for
version control systems, and books and websites on version control
systems.

In our brave new (comment-free) world, the more creative individuals will
soon work on adding what is missing…
Someone will write a pre-processor that allows annotations and code to be
mixed, but strips them out before the compiler or interpreter sees them. This
will be a great development because the way annotations are added is
language independent. The alternative, the Balkanisation of annotations,
would be awful because you could end up with a crazy situation where lines
starting with a certain symbol mean an annotation in an interpreted
language but, say, a pre-processor instruction in a compiled language.
An obvious tool to support annotations is the programmer’s editor,
whether it be stand-alone such as Unix vi, or within a feature-rich IDE such
as Microsoft Visual Studio. The potential in the integrated development
tools is large: hover the cursor over the variable and a balloon pops up with
any comment assigned to the variable. There could be options to open up
further information such as seeing the definition or any comments
assigned to the containing code (class if it is a member variable, function
if it is a local variable, etc.). Annotations could be applied at any level,
even right up to whole application or project. Even the simpler tools can
use code colouring or other hints to indicate the presence of annotations,
perhaps showing them in a separate but linked scrolling window that can
be re-sized or hidden when not required.
Annotations could be a valuable part of pair programming with one of the
pair taking the role of coder and the other the annotator. A positive feedback
loop would occur: when the coder reads the annotations he obtains a
qualitative measure of how much the annotator has understood so that both
the code and the annotations can be improved. All this happens in a short
timeframe when the original implementation knowledge is still fresh.
The majority of code in the wild comes under the category of legacy code.
The constraints of maintaining such code are the rule of minimum change
and no gratuitous modifications. Considerable time and effort is spent
analysing and understanding the code in order to add necessary
enhancements or fix problems without violating those constraints. As
annotations don’t modify the deliverable code or force automatic rebuilds
(e.g. by make or similar tools), they can be added as the code is examined

with little risk. Just imagine the understanding that would be gained and
then immediately thrown away if those new annotations were hard-wired
to the code and couldn’t be modified!

Conclusion
The direction that programming comments, a.k.a. code annotation, has
taken has helped keep the quality and maintainability of code low. The
way that different programming languages implement comments is
inconsistent and in some cases conflicting. The authors of books, industry
gurus, and the quality [8] procedures in most companies have all
perpetuated the status quo with the result that innovation, which could lift
the usefulness of code annotation to higher levels, has been stifled.
Is it time to change the mindset of the programming community so that
the total value of all the comments in all of the code moves into positive
territory and then continues this upwards trend? This requires those with
influence to lead the change:
� Authors of books and articles should stop putting bad examples of

comments in code snippets. The topic being described should
appear in the text, not in the code.
These auto-generated comments are the result of lazy implementa-
tion of the tools (just write a comment instead of working out what
the code should be) followed by lazy users (the computer generated
it so it must be right). Definitely a case of two wrongs make an even
worse wrong.

� Coding standards should stop mandating comments and move
towards making code readable and understandable. A comment
should reflect a failure to make the intent of the code clear, and
therefore be a fall-back position and not a primary goal.

� Leaders of code reviews should look for justification for comments,
and reject cases where the comments are only added because the
coder is too lazy to write the code properly in the first place.

� Block headers should be actively discouraged. The total value of
block headers is so far into negative territory that elimination of all
block headers would be a significant improvement.

� Programming tools should be enhanced to support annotations to
code that improve the readability, instead of comments that pollute
it and make it more difficult and confusing to understand.

It may not be possible to go back and make existing commenting
consistent and useful across multiple languages and the millions of files
of existing source code, but it is possible to change the approach of
programmers so that newly written code is appropriately annotated. All it
needs is the realisation that we have been wrong all these years and that
there is another way. �

Notes and references
1. By Russel Winder in Peter Sommerlad’s session called “Only the

Code tells the Truth”.
2. Timeslots typically start at zero and channels often start at one. In

2Mbit/s ISDN timeslots 0 and 16 are reserved so that channel 1 is in
timeslot 1 and channel 16 is in timeslot 17. As long as you only test
the first 16 channels you don’t have to bother about the subtle
difference.

3. This raises the perennial question: When do you do code reviews,
before check-in and testing, or after? Both have their pros and cons,
and neither stands out as being significantly better.

4. C++ Coding Standards. Herb Sutter and Andrei Alexandrescu.
2005.

5. Producing Better Bugs. Roger Orr. ACCU conference 2006.
6. I’m taking a little artistic licence here with the history of source

code revision systems, but you get the picture.
7. It also makes it so hard to get it out again, nobody can work out how

to, and thus exports and imports into a fresh CVS archive occur.
This gets rid of the pollution in the code, but it gets rid of all the
history as well.

8. As in ISO9000 type quality, as opposed to goodness.

change the approach of
programmers so that newly written
code is appropriately annotated
June 2006 | Overload | 9

FEATURE CHRIS GIBSON
How Do Those Funky
Placeholders Work?
The current C++ standard function binders are notoriously
difficult to use. Chris Gibson exposes the secret the Boost
alternative, which is so much better it seems like magic.

henever I learn a new coding technique and try it out at work,

it’s very interesting to see how rapidly it’s adopted throughout
the department. One of the fastest to propagate so far is the boost

bind library. So much easier to use than the standard library’s bind1st
or bind2nd adapters and much more flexible. Once you’ve got the hang
of those funny looking placeholders, the bind library is elegant and simple
to use, and the initial effort is well rewarded. Your code is clearer to read,
easier to understand, quicker to review, quicker to test, it’s less likely to
contain bugs and is probably more efficient.
In my experience the average developer, by which of course I don’t mean
you, and certainly not me, when using the bind library for the first time
will probably use either too many, too few, or the wrong placeholders; and
will put at least one of them in the wrong place. Any of which will result
in pages of compiler errors. The average developer will then decide that
it’s all too difficult, templates are the work of the devil, they haven’t got
time to read the manual, and they just need to get it working. So they hand
code a solution instead and decide to do it properly before review or
release, which in all probability never happens.
So I can’t decide whether the bind library is intuitive or not. Once you’ve
got the hang of it, it is, but doesn’t intuitive mean you don’t need to get
the hang of it? Can it be true that the more you use the bind library the
more intuitive it gets?
Once a developer has ‘seen the light’ he will invariably ask ‘So how do
those funky placeholders work?’ In an ideal world you wouldn’t concern
yourself with the implementation details of a library, you would just use
it. However, an understanding of what is going on behind the scenes is
useful for several reasons. Firstly, with the error messages the average
compiler gives you when you make a typo, it’s a big help to have some
understanding of what’s going on. Secondly, studying the designs
developed by experts is always instructive and can help to improve your
own designs. Finally, most developers are naturally curious and, once
comfortable with the placeholder syntax, often want to know how they
work.
This article intends to demonstrate how the bind library’s placeholders
work by constructing a very basic bind library. It will be modest, very
modest, but enough I hope to satisfy your curiosity. The examples are
written for clarity above all else, other issues such as efficiency, const
correctness, volatility, etc., are not considered. Note also that the function
return types are not considered and assumed to be void.

A quick recap
Suppose you have a collection of widgets and you want to perform an
action on each of them; you would simply write something like this:
void DoSomething(Widget& widget)
{
 ...
}
for_each(widgets.begin(), widgets.end(),
 DoSomething);

Suppose, however, that you would like to pass each widget to an existing
function such as:
void DoSomething(Gadget& gadget, Gizmo& gizmo,
 Widget& widget)
{
 ...
}

The for_each algorithm takes a unary function as its third parameter,
which it calls once for each iterator in its range, passing the dereferenced
iterator as the single argument to the unary function (see below). Our target
function has three parameters, which causes two problems:
� The unary function and the target function have a different number

of parameters.
� The dereferenced iterator could map to any one of the target

function’s parameters.

template<typename InIt, typename UnaryFn>
Fn for_each(InIt first, InIt last, UnaryFn fn)
{
 // perform function for each element
 for(; first != last; ++first)
 fn(*first);
 return fn;
}

Resolving the different number of parameters is done by applying the
Fundamental Theory of Software Engineering and adding a level of
indirection between the algorithm and the target function. The indirection
takes the form of an object, let’s call it a binder. The binder’s responsibility
is to adapt the interface the algorithm calls to the interface of the target
function. The binder can be called by for_each because it has a unary
operator(), and can call the target function because it’s supplied with
a pointer to it and the two extra arguments at construction.
Specifying which of DoSomething’s three parameters should be the
widget is where placeholders come in. Using the bind library we can
simply do this:

for_each(widgets.begin(), widgets.end(),
 bind(&DoSomething, aGadget, aGizmo, _1));

W

Chris Gibson is a Chartered Electrical Engineer. He began
his software career in 1994 when he developed Power
Management Systems for the Jubilee Line extension. He went
on to develop software for Industrial Automation and Fire &
Gas Systems. He is currently developing software for
Radiotherapy applications in C++. Normally he struggles to
write so much as a postcard. Chris can be contacted at
chris@eurous.co.uk
10 | Overload | June 2006

FEATURECHRIS GIBSON

The binder sits between the algorithm
that we want to use and the function that

we want to call
The bind function is passed four arguments: the address of the target
function DoSomething, a Gadget object, a Gizmo object and a
placeholder _1. Notice that the order of the second, third and fourth
arguments to bind is the same as the order of the arguments to the target
function. The placeholder indicates the position of the argument passed
to the unary function by for_each. If the signature of DoSomething had
expected the widget as the second parameter we would have written:

for_each(widgets.begin(), widgets.end(),
 bind(&DoSomething, aGadget, _1, aGizmo));

The _1 placeholder specifies the mapping of for_each’s single argument
to the target signature. For algorithms that expect a unary function you
must use a single placeholder, _1. For algorithms that expect a binary
function you must use two placeholders, _1 and _2. For algorithms that
expect a ternary function you must use three placeholders, _1, _2 and _3
and so on.
For example, adjacent_find is an algorithm that takes a binary function
and finds the first instance of two adjacent elements which match a given
criteria. If we have a comparison function which takes a third parameter
we can bind to it as below:

bool IsEqualWidget(Widget& w1, Widget& w2,
 int tolerance);
adjacent_find(widgets.begin(), widgets.end(),
 bind(IsEqualWidget, _1, _2, 42)); // tolerance = 42

For more information and examples see the boost website.

Constructing a basic bind library
I’m going to construct a basic bind library capable of calling the three
parameter version of DoSomething shown earlier, once for each of the
Widgets in our collection.
The bind function is one of a family of overloaded factory function
templates. The responsibility of each of the overloads is to create a specific
type of binder. In our example bind is a function template with four
parameters: a target function with three parameters and three parameters
to pass to it (see below).
template<typename F, typename A1, typename A2,
 typename A3>
binder<F, list3<A1, A2, A3> > bind(F f, A1 a1, A2 a2,
 A3 a3)
{
 typedef typename list3<A1, A2, A3> list_type;
 list_type list(a1, a2, a3);
 return binder<F, list_type>(f, list);
}

The return type, the binder that bind creates, is of unspecified type in TR1.
In this example it is a class template with two parameters. The first
parameter is the target function and the second is an argument list.

template<typename F, typename List>
class binder
{
public:
 binder(F f, List list):f_(f), list_(list)
 {}
 …
private:
 F f_;
 List list_;
};

In this example, the binder is instantiated with an instantiation of list3
as a template argument. list3 is one of a family of class templates. Each
of list3’s member variables represents a value passed to the original
bind function. We have converted the three arguments to bind into an
object with three member variables (see below). Notice the ellipsis, we’ll
be adding more responsibilities to list3 and its siblings shortly.

template<typename A1, typename A2, typename A3>
class list3
{
public:
 list3(A1 a1, A2 a2, A3 a3): a1_(a1), a2_(a2),
 a3_(a3) {}
 …
private:
 A1 a1_;
 A2 a2_;
 A3 a3_;
};

Now that we have created our binder we need to turn our attention to what
it does. The binder sits between the algorithm that we want to use and the
function that we want to call. The for_each algorithm expects its third
parameter to be a unary function so we must add a templated unary
operator() to the binder.
template<typename F, typename List>
class binder
{
public:
 … // As previously defined
 template<typename A1>
 void operator()(A1 a1)
 {
 list1<A1> list(a1); // Explanation coming
 list_(f_, list);
 }
};
June 2006 | Overload | 11

FEATURE CHRIS GIBSON

Placeholders then aren’t really anything
special. They are simply a type that allows
overload resolution to occur.
The operator() creates a list1 (see below) object from its parameter.
The list1 object is very similar to list3 but with just one parameter.
We now have two lists of parameters, the list object for the argument
passed by the algorithm and the list_ member for the arguments passed
into bind.

template<typename A1>
class list1
{
public:
 list1(A1 a1): a1_(a1){}
 …
private:
 A1 a1_;
};

We have to detect which of the arguments passed to the bind function are
placeholders and substitute them for the arguments passed by the
algorithm. For arguments that are not placeholders we must simply pass
the argument to the function to be called. To achieve this we are going to
rely on function overloading.
For list3 we have to add the list3::operator() which is called from
the unary binder::operator() (see below). In our first example the
three member variables of list3 are:
� a1_ - a Gadget, which should be passed as the first argument of f.
� a2_ - a Gizmo, which should be passed as the second argument of f.
� a3_ - a placeholder (_1) indicating that the first parameter in the

list1 (a widget) should be passed as the third argument of f.

template<typename A1, typename A2, typename A3>
class list3
{
public:
 … // As previously defined

 template<typename F, typename List1>
 void operator()(F f, List1 list1)
 {
 f(list1[a1_], list1[a2_], list1[a3_]);
 // Explanation coming
 }
};

At the moment there is no way to access the data in list1, we need to
add two operator[]s (see below). Notice that one operator[] takes a
placeholder<1> and returns the a1_ member (the widget passed by the
for_each algorithm). The second operator[] is templated to take any
other type and just return the value it is passed.

template<typename A1>
class list1
{
 … // As previously defined

 A1 operator[](placeholder<1>) const { return a1_; }

 template<typename T>
 T operator[](T v) const { return v; }

 … // As previously defined
};

When list1[a1_] is evaluated it will resolve to the templated
operator[] in list1 and simply return the gadget that was passed in.
The same process will occur for list1[a2_] with a Gizmo. However,
when list1[a3_] is evaluated the non-templated operator[]
(placeholder1) will be selected and a widget will be returned. Hence
DoSomething will be called with the correct arguments.
Placeholders then aren’t really anything special. They are simply a type
that allows overload resolution to occur. We need to have a different type
for each of the number of placeholders we decide to scale our library to
support. A trivial class template instantiated on an integer value will
suffice, for example.

template<int I>
class placeholder{};
placeholder<1> _1;
placeholder<2> _2;
placeholder<3> _3;

The example we set out to achieve will now compile and execute correctly
– try it. Next try calling a function with different arguments and the widget
in a different position. Finally try calling a function with a different
number of arguments, it will fail to compile. Can you work out what we
need to add to our library? Hint: look in \boost\bind.hpp! �
12 | Overload | June 2006

FEATUREANTHONY WILLIAMS
Implementing drop-down menus
in pure CSS (no JavaScript)
Implementing drop-down menus to aid website navigation is
usually thought to require lots of JavaScript. This article
shows how to do it using just CSS.

client of mine wanted his website to have drop-down menus, so I

had a look round at the best way of doing this. I imagined that it
would require JavaScript, but it turns out that it is possible in pure

CSS, at least for fully compliant browsers. This article attempts to explain
how the CSS works, and builds up the menu step by step.

Why CSS?
Why CSS, and not JavaScript? JavaScript is often disabled by users, as a
security measure, and the necessary code for drop-down menus can be
quite involved. Also, a pure JavaScript menu is not available for browsers
that don’t support it, such as text-only browsers. CSS-based menus are
always available, even with JavaScript disabled — browsers that don’t
handle it will just render a list. With this technique, adding a menu to a
page is as easy as creating an unordered list of links, with nested lists for
the sub-menus, and including the appropriate style-sheet.

Other CSS-based menus — what's new here?
Tarquin’s tutorial on CSS menus shows how to do menus, where the main
menu is stacked vertically, and the sub-menus open out to the side, and
links to CrazyTB’s CSS menu page, which shows a horizontal top-level
menu, with drop-downs, but which doesn’t work with IE, and imposes a
fixed width on the menu entries. This article describes a technique for
doing drop-down menus in CSS, with a horizontal top-level menu, and
variable-width menu entries – in other words, I’ve managed to overcome
many of the limitations of the implementations I’ve seen.

Menu structure
The menus are just represented by nested UL lists. Each LI is a menu entry,
and nested lists result in sub-menus. The top level UL must have the class
attribute of navmenu, and everything follows from there. The menu items
are just normal A links, or SPANs where they are not links. For this example,
I'm going to use the menu in Listing 1.

A menu bar should be horizontal
The first step is to take off all the normal list adornments, so we know what
the indents are, and don’t get bullet marks:
.navmenu,
.navmenu ul,
.navmenu li
{
 padding: 0px;
 margin: 0px;
}
.navmenu li
{
 list-style-type: none;
}

We make the top level menu horizontal by floating the menu items, but if
we do that then the rest of the page now displays underneath them, so we

need to follow the menu with a clear style. In compliant browsers, we
can do this using the .navmenu + * selector, but IE doesn’t support this,

A

Anthony is the Managing Director of Just Software Solutions
Ltd. He has been programming professionally for over 10
years, having programmed as a hobby for a good many before
that. He is a strong believer in the benefits of Test Driven
Development, Refactoring, and being able to see the sea
from his office. He can be contacted at
anthony@justsoftwaresolutions.co.uk

<ul class="navmenu">
 Top Level Link
 SubMenus
 Item 1
 Item 2
 with submenus

 One
 Two
 Three

 Item 4

 3rd entry
 Submenu no link
 One
 Two
 Three

 Item 2

 Fourth
 has items
 but no submenus

 top level 5
 item 1
 item 2

 entry 6
 foo
 bar

 Final entry
 aaa
 bbb
 ccc

Listing 1
June 2006 | Overload | 13

FEATURE ANTHONY WILLIAMS

we are using float to make the LI elements
stack sideways, rather than their default
of stacking vertically, in order to get a
horizontal menu
so we need a tag with a class attribute of .endmenu following our menu
(an empty DIV is good for that):
.navmenu li
{
 float: left;
}
.navmenu + *
{
 clear: left;
}
.endmenu
{
 clear: left;
}

Sub-menus only display on demand
Next off is to hide the sub-menus, and show them when the mouse moves
over the parent. This requires a browser that supports :hover for LI tags.
For IE, we can then simulate this with DHTML Behaviours, as suggested
by Tarquin:

.navmenu ul
{
 display: none;
}
.navmenu li:hover > ul
{
 display: block;
}
.navmenu ul.parent_hover
{
 display: block;
}

To add the DHTML Behaviours for IE, we can add the following to the
HTML:

<!--[if gte IE 5]><![if lt IE 7]>
<style type="text/css">
.navmenu li
{
 behavior: url(ie_menus.htc);
}
</style>
<![endif]><![endif]-->

The DHTML behaviour f i le (ie_menus.htc) is then quite
straightforward – we simply set the hover class on the current element,
and parent_hover on all the child elements when the mouse moves over
the appropriate element, and then remove these classes when the mouse
moves off again:

<attach event="onmouseover" handler="mouseover" />
<attach event="onmouseout" handler="mouseout" />
<script type="text/javascript">
function mouseover()
{
 element.className += ' hover';
 for(var x = 0; x!=element.childNodes.length; ++x)
 {
 if(element.childNodes[x].nodeType==1)
 {
 element.childNodes[x].className
 += ' parent_hover';
 }
 }
}

function mouseout()
{
 element.className =
 element.className.replace(/ ?hover$/,'');
 for(var x = 0; x!=element.childNodes.length; ++x)
 {
 if(element.childNodes[x].nodeType==1)
 {
 element.childNodes[x].className =
 element.childNodes[x].className.replace(
 / ?parent_hover$/,'');
 }
 }
}
</script>

Sub-menu layout should be nice and clean
This works OK, but as the menus expand, the content of the rest of the
page gets shunted down to make room. Ideally, we’d like the menus to
show on top of the rest of the page. We can do this by giving the sub-menus

In normal usage, the float property of the CSS removes an element
from the normal flow of the document, and “floats” it over to either the
left or right edge. Such “floating” elements stack sideways, so if two
elements both have a float: left style, then the second one will be
to the right of the first. Subsequent content is flowed to the side of the
floating elements.
Here, we are using float to make the LI elements stack sideways,
rather than their default of stacking vertically, in order to get a
horizontal menu.
The clear property is used with float, to ensure that following
content appears below any floating elements. The value can be left
or right, to indicate that this element (and any following ones) should
be below all prior floating elements on the specified side, or both, to
indicate that it should be below floating elements from either side.
Here, clear is used to ensure that subsequent content comes below
the menu bar.

Float and clear
14 | Overload | June 2006

FEATUREANTHONY WILLIAMS

highlight the entire box when you hover
the mouse, so you can see you’re over a

menu item that’s actually a link
a position style of absolute, but if we do just that then they’re hard to
see over the top of the text below, and the menus don’t work quite right
in IE. Therefore, we will add a border, and background. Of course, if we
set a background colour, we ought to set the foreground colour too. Links
have a different default colour to other text, so we need to set that
separately. We therefore need to add the following styles:

.navmenu ul
{
 position: absolute;
}
.navmenu li
{
 border: 1px solid #3366cc;
 color: #000033;
 background-color: #6699FF;
}
.navmenu a
{
 color: #000033;
}

In Mozilla, the drop-down menus are also horizontal, whereas in IE,
they’re vertical. We can fix that by making only the top-level menu entries
float, rather than all of them:

.navmenu > li
{
 float: left;
}

However, this doesn’t work in IE – to get a nice horizontal top-level menu,
we need to float the menu entries, and specify a fixed width for them,
so we need to update our IE-specific block to do this:

<!--[if gte IE 5]><![if lt IE 7]>
<style type="text/css">
.navmenu li
{
 float: left;
 width: 8em;
}
</style>
<![endif]><![endif]-->

Of course, you can vary the width as required.

Links should occupy the full box
I like the links to take up the full width of the box, so you don’t have to
click on the text. It’s therefore nice to highlight the entire box when you
hover the mouse, so you can see you’re over a menu item that’s actually
a link.

In this case, because it’s links we’re referring to, IE is quite happy with
:hover, so we can use the same styling for all browsers:

.navmenu a
{
 display:block;
 width: 100%;
 text-decoration: none;
}
.navmenu a:hover
{
 background-color: #f8f8fb;
}

Sub-sub menus should pop out to the side
We now have a new problem – if one of the drop-down menus has a sub-
menu, then we can’t get to the following menu items, as the sub-menu
comes down on top of them. We therefore need to adjust the positioning
of the sub-menu; we’ll move it almost to the right-hand edge of the parent
menu item. It is important that we don’t move it completely off, as then
users would have to move the mouse cursor off the parent to go to the sub
menu, and so the menu would close. We accomplish this with the left
style. If we just use that, then the menus also start a line down, so we should
use top to ensure they start level. Finally, we need to make the LI elements
have relative positioning, since we made the sub-menus have
absolute positioning above. This resets the base position for each sub-
menu as relative to its parent menu item, rather than relative to the whole
page.

.navmenu li
{
 position: relative;
}
.navmenu ul ul
{
 top: 0;
 left: 99%;
}

The problem now is that the drop-down menus display underneath existing
menus.
We could fix this with z-index, but IE doesn’t handle that. Instead, and
here’s the fun bit, if we set padding-left to 1px, then the menu items
are shown on top, but the top specified above doesn’t work – it aligns the
sub-menu with the top of the parent sub-menu.
Instead, we can use margin-top with a negative offset, to shift the block
up. I've chosen -1.2em as the offset, since this is the default line-height,
so the menu should pop out level with the parent entry.
.navmenu li
{
 padding-left: 1px;
}

June 2006 | Overload | 15

FEATURE ANTHONY WILLIAMS
.navmenu ul ul
{
 /* top: 0; --- remove this*/
 margin-top: -1.2em;
 left: 99%;
}

This left padding shifts the drop-down menus right a fraction. Combined
with the border, this makes the top-level sub-menus appear 2 pixels to the
right of their parent, which is a bit untidy. The fix for this issue is to add
a negative margin to the sub menus, which has the effect of shifting them
back left, to compensate:
.navmenu ul
{
 margin-left: -2px;
}

Menu items that have sub-menus, but are not themselves links, still don’t
work quite right, since the text does not form a block for CSS layout
purposes, and the sub-menu therefore is displayed too high up. This is why
we put the non-link menu items in SPAN tags – the fix for this is to make
these SPAN tags into block elements:
.navmenu span
{
 display: block;
}

Exposed background
If the top-level menu doesn’t cover the full width of the browser window,
then the background for the BODY element will show through in the
exposed parts. To deal with this, we can set the width of the outer UL
element to 100%, and give it a background:
.navmenu
{
 width: 100%;
 background-color: #6699FF;
}

This works nicely in Opera and IE, but not in Firefox, which makes a
change. If we also make it float to the left, then it works in all three
browsers.
.navmenu
{
 float: left;
}

Spacing around text
Having the menu entries just display as minimal-sized blocks can mean
that the text is quite close to the edges, and looks a bit crammed in. We
can alleviate this by adding some padding to the LI elements:
.navmenu li
{
 padding: 2px;
}

Of course, this means that the previous padding-left entry should be
removed, and the negative margin-left entry for the sub-menus needs
adjusting. We also now need a margin-top entry for the first layer of sub-
menus, to align the top of the sub-menu with the bottom of the parent item:
.navmenu li
{
 /* padding-left: 1px; --- remove this */
}
.navmenu ul
{
 margin-left: -3px; /* was -2px */
 margin-top: 2px;
}

Another consequence of this padding is that the highlighted links now
have an extra border around them, as only the link text area highlights,
not the whole LI. We can fix that by changing the background colour for
LI elements that we’re hovering over as well. This has the side effect that
the menu entries leading to the currently displayed sub-menu are also
highlighted, which works as quite a nice visual aid. We’ll leave the
highlighting in place for hovered links, too, so that browsers that can’t
handle hovering on LI elements still show some highlighting. We have to
do two versions here – one for IE, and one not, as we’re relying on the
DHTML behaviours for the hover detection in IE.
.navmenu li:hover
{
 background-color: #f8f8fb;
}
.navmenu li.hover
{
 background-color: #f8f8fb;
}

Browser support
The key feature that this technique relies on is the ability to use the :hover
modifier on arbitrary elements, and not just links. Older versions of
browsers do not support this, but newer versions do. If this feature is not
supported, just the top-level menu is shown. It is therefore important to
ensure that the pages are not just accessible via the menu – I would
recommend that each top-level menu entry is a link to a page with real links
to the items on the appropriate sub-menu.
Internet Explorer doesn’t support this usage of :hover, but it can be
simulated with a small bit of JavaScript, as shown. If the user’s security
settings mean the JavaScript is not run, then IE will just display the top-
level menu.
This technique is known to work in Opera 7.2 and 8.5, IE6 (with
JavaScript), Mozilla Firefox 1.5, and Konqueror 3.4.3. It is known not to
work in Opera 5, and Netscape 4.7. Of course, it doesn’t work in text-only
browsers such as Lynx, either – users of such browsers will see the menu
just as a nested list.

Hiding things from old browsers
Old browsers such as Netscape Navigator 4.7 understand CSS, but get the
rendering all wrong. Therefore, we need to mask our style-sheet from such
browsers, so they just render the menu as a list. Of course, you could make
a set of styles that worked with such browsers to make the menu render
more nicely, if you wish. That’s more effort than I’m willing to spend at
the moment, so I’m just going to wrap the style-sheet in @media all{},
which will force such old browsers to completely ignore it.
There are numerous other techniques which can be used to adjust the style-
sheet for specific older browsers, but they’re beyond the scope of this
article.

Conclusion
So, there you have it, drop-down menus in pure CSS, with a tiny bit of
JavaScript for Internet Explorer. Supported in a wide range of browsers,
with graceful degradation where it is not supported, this technique allows
you to add menus to your website, without delving into JavaScript.

Final style-sheet
The final style sheet is shown on the next page, as Listing 2. The IE-
specific styling, which needs to go directly into the HEAD part of the
HTML, is shown in Listing 3. The IE-specific DHTML behaviour code
from ie_menus.htc is in Listing 4. �
16 | Overload | June 2006

FEATUREANTHONY WILLIAMS
 @media all{
.navmenu,
.navmenu ul,
.navmenu li
{
 padding: 0px;
 margin: 0px;
}
.navmenu > li
{
 float: left;
}
.navmenu li
{
 list-style-type: none;
 border: 1px solid #3366cc;
 color: #000000;
 background-color: #6699FF;
 padding: 2px;
}
.navmenu ul
{
 display: none;
 position: absolute;
 margin-left: -3px;
 margin-top: 2px;
}
.navmenu li:hover > ul
{
 display: block;
}
.navmenu ul.parent_hover
{
 display: block;
}
.navmenu a
{
 display: block;
 width: 100%;
 text-decoration: none;
}
.navmenu li:hover
{
 background-color: #f8f8fb;
}
.navmenu li.hover,
.navmenu a:hover
{
 background-color: #f8f8fb;
}
.navmenu ul ul
{
 margin-top: -1.2em;
 left: 99%;
}
.navmenu span
{
 display: block;
}
.navmenu
{
 float: left;
 width: 100%;
 background-color: #6699FF;
}
.endmenu
{
 clear: left;
}
}

<!--[if gte IE 5]><![if lt IE 7]>
<style type="text/css">
.navmenu li
{
 float: left;
 width: 8em;
 behavior: url(ie_menus.htc);
}
</style>
<![endif]><![endif]-->

Listing 2

Listing 3

<attach event="onmouseover" handler="mouseover" />
<attach event="onmouseout" handler="mouseout" />
<script type="text/javascript">
function mouseover()
{
 element.className += ' hover';
 for(var x = 0; x!=element.childNodes.length; ++x)
 {
 if(element.childNodes[x].nodeType==1)
 {
 element.childNodes[x].className +=
 ' parent_hover';
 }
 }
}

function mouseout()
{
 element.className =
 element.className.replace(/ ?hover$/,'');
 for(var x = 0; x!=element.childNodes.length; ++x)
 {
 if(element.childNodes[x].nodeType==1)
 {
 element.childNodes[x].className =
 element.childNodes[x].className.replace(
 / ?parent_hover$/,'');
 }
 }
}
</script>

Listing 4
June 2006 | Overload | 17

FEATURE STEVE LOVE
The Rise and Fall of Singleton
Threaded
Steve Love explores how “Singletons” in design can seem a
good idea at the time, why they are generally a mistake, and
what to do if you have them.

or a while now, it has become increasingly accepted that the use of making it easily accessible from anywhere in the program would ease

Singleton is a Bad Thing™. In general terms we hear the case against
Singletons: hard to test; don’t play nicely with multiple threads; hide

dependencies; etc. By and large, I think, programmers are becoming less
enamoured with Singletons, and this, I also think, is a Good Thing™. But
it’s not as widespread as I thought. Singleton is still pretty popular: it is,
after all, simple to implement. Programmers use it with the very best of
intentions, even when those intentions are to find an alternative to real
global data.
Instead of trotting out the same arguments that others have used, however,
I want to explore a little, and implement a small system in terms of
Singleton and see where it leads. This (I hope) will also allow some
exploration into how to return from Singleton-ness to a more ordered
world.
The code examples here are in C#, mainly because it’s compact and
simple. There shouldn’t be anything that can’t easily be translated to Java,
C++, or others.

The descent
For the sake of argument, and because it makes the code simple, the
example application is a data transformation program; it takes some input,
and writes a different output.
A simple Main function might contain:

// Create a new reader using the first command-line
// argument as a file name.
 Reader reader = new Reader(args[0]);

// Create a new writer which performs the
// transformations
 Writer writer = new Writer();

// Read all lines from the reader. null gets returned
// when EOF is reached. Write resulting text to the
// output.
 string text;
 while((text = reader.Read()) != null)
 {
 writer.Write(text);
 }

Now this may or may not be grand design, but it suffices to provide a
framework within which to think about the design. The Reader object
may be doing some kind of validation of input, and the Writer collating
and transforming the data.
At some point in the development of this application, the requirement
arises that a run report is produced, indicating errors such as opening the
file, and a record of the number of lines of text read: a logging facility for
the Reader.
Having added such a facility, it doesn’t take much imagination to see that
the Writer component could also use the logging facility, and that

development.

The fall
A key intent of the Singleton pattern is that it provides access to some
service or data globally within an application, i.e. that it is always easily
available [1]. Making a Singleton logging class in C# is straightforward:

public sealed class Logging
{
 public static readonly Logging Instance =
 new Logging("log.txt");

 public void Write(string text)
 {
 using(StreamWriter log = new StreamWriter(
 filename, true))
 {
 log.WriteLine(text);
 }
 }
 private Logging(string fileName)
 {
 this.fileName = fileName;
 }

 private string fileName;
}

This allows the Writer class to perform the following trick in its Write
method (for the sake of the example, Writer sends its output to a file) :

public void Write(string text)
{
 try
 {
 // some processing on text for transforming it
 // ...
 output.WriteLine(text);
 }
 catch
 {
 Logging.Instance.Write(
 "Failed to write a line");
 }
}

A similar Read method in the Reader is also achievable, and does much
the same thing, with no changes to the client code.

F

Steve Love is an OO developer who can’t make his mind up
between C++ and C#. This coupled with a penchant for
English beer and Italian food conspire to reduce the time he
gets to take part in extreme sports. He can be contacted at
steve@essennell.co.uk
18 | Overload | June 2006

FEATURESTEVE LOVE

calls into the logging component are now
so tightly synchronised that any benefit of

using multiple threads is lost
A nasty knock
Our little neat design works as intended, and all is fine with the world, until
one day, the requirements ask for multiple Writers operating
concurrently to speed up processing. As well as writing to a back-end
store, results need to be transferred to some other location as a backup, in
a different format. Instead of actually exposing multiple Writer objects
in the main application, the existing Writer implementation spawns a
thread for each target, writing its results. The client code has no need to
know of the change. Each separate thread looks like the original Write
and the application appears to run no slower than the original, which is
handy because that was also a requirement ☺. All is fine with the world…
Until someone inspects the log files and sees gibberish!
After perhaps only a little head-scratching, it becomes obvious that the
problem is concurrent access to the logging facility. In C# we have a handy
short-hand for obtaining a lock on some object to provide a critical section,
so our logging Write method now becomes:

public void Write(string text)
{
 lock(this)
 {
 using(StreamWriter log =
 new StreamWriter(filename, true))
 {
 log.WriteLine(text);
 }
 }
}

The lock statement effectively allows only a single thread of execution
into the protected code at a time. A second thread cannot enter that section
of code until the first thread completes it and releases the lock.
So the problem of the gibberish log has been fixed. However…

The hard landing
All calls into the logging component are now so tightly synchronised that
any benefit of using multiple threads is lost. Whilst thread one is logging
its output, thread two must wait until it has finished before continuing and
vice-versa. This code probably performs worse than the single-threaded
alternative due to the overhead of obtaining the lock in each thread.
One solution to this would be to make the logger entirely asynchronous.
A call to Logging.Write would merely add the message to a queue
(which itself would have to be locked each time, but the latency would
be greatly reduced). The logging component would have a thread of its
own looking for available messages to actually write to the output. This
seems neat and tidy, but suffers mainly from the fact that the logging
facility is now many times more complicated, introducing a large potential
for error, and additionally is much more complex than the code that uses it!

…and kicked when you’re down
As work is under way trying to “fix” the logging problem, some users
report that the transformed output sometimes contains errors. Initial
investigation suggests a bug in the Writer component, but reproducing
the error is hard, making the location of the error hard to pin down. It seems
the only course of action is to run the entire application in a debugging
environment, and keep trying this with different input until the bug is
found. Not only is this time consuming, it’s boring for the poor soul
selected to do it – and that makes it error-prone, too.
What would be really nice is to be able to test the Writer component in
splendid isolation, away from the rest of the application, under laboratory
conditions, and just have it perform its tricks on small sets of test input.
To achieve this separation entirely, the Writer component needs to be
stripped of all its dependencies. For true lab conditions the Writer object
needs to exist in a test harness that might look like this:

public void TestInputsToOutputs()
 {
 Writer writer = new Writer();
 writer.Write("test text");

 // How do we test the output here?
 // Perhaps open the output file, and check its
 // contents?
 }

It has now become clear that Writer has some hidden dependency which
we need to break: Writer sends its output to file each time its Write
method is called – a hidden dependency! In our ideal test, we’d like to be
able to tell the Writer where to send its output, so our test can become
(for example):

 public void InputsToOutputs()
 {
 TextWriter output =
 new StringWriter(new StringBuilder());
 Writer writer = new Writer(output);

 string testText = "test text";
 writer.Write(testText);

 Assert.AreEqual(testText, output.ToString());
 }

This associates a Writer object with the output target as a TextWriter
– an abstract base class for both StringWriter used in the test, and a
StreamWriter which can be used to write to a file.
The key point here is that Writer is parameterised with the needed
dependency. Obviously the dependency itself has not been removed
altogether – that would be pointless because it removes needed
functionality. Instead the dependency is moved from a concrete class to
an interface, and a reference to the object is passed in. Amongst other
June 2006 | Overload | 19

FEATURE STEVE LOVE

What if we could inject the Singleton
object to allow us to control its
dependency on a real live log file?
things, this is called Dependency Inversion, achieved using a technique
called Parameterise From Above [3] [4].

A healing injection
Having unhidden the dependency on an actual file location, the Writer
object still has the dependency on the logger. Unless we need to test the
logged output, this dependency isn’t a great problem. It isn’t ideal, though.
Firstly the tests are slowed down by the need to write to the logging
component. In the test environment, there is no need for logged output, so
this is merely a waste. The second issue is one of style: the object under
test cannot be tested in true isolation.
Resolving the dependency is harder for this case than for the output
location, because the dependency is upon a Singleton. We could re-factor
the code to pass in the Logging component, having first modified the
Logging class to be an implementation of some interface. Given that we
have no tests to ensure that this refactoring is successful (that’s what we’re
trying to achieve!), this approach is somewhat risky.
A different approach is to inject the dependency into the object. The
Parameterise From Above Pattern used just now is an example of injecting
the dependency into the user-object. What if we could inject the Singleton
object to allow us to control its dependency on a real live log file? This
would allow us to keep the existing code – which reduces the risk of
breaking the application – but does muddy the waters a little by adding
indirection to the Logging component. In its very simplest form, the new
logging component might look like (please remember this is for brevity!):

 public interface LoggingInterface
 {
 void Write(string text);
 }

 public sealed class DefaultLogging :
 LoggingInterface
 {
 public void Write(string text)
 {
 // The actual writing to log file goes here
 }
 }

 public sealed class Logging
 {
 public static LoggingInterface Instance =
 new DefaultLogging();
 }

The idea here is that the class actually writing to the log file now
implements a common interface and the Singleton itself just passes
requests off to the implementor. It is possible to assign a new
implementat ion to th is var iable , as long as i t implements
LoggingInterface [8].

Test code can now look like:

 class NullLogger : LoggingInterface
 {
 public void Write(string text)
 {
 }
 }
 [Test]
 public void InputsToOutputs()
 {
 TextWriter output =
 new StringWriter(new StringBuilder());
 Writer writer = new Writer(output);

 // Inject a do-nothing logger into the singleton
 Logging.Instance = new NullLogger();

 string testText = "test text";
 writer.Write(testText);

 Assert.AreEqual(testText, output.ToString());
 }

This is not entirely nice, and the dependency on the Singleton remains,
but there is still value here: note that the code that uses the Logging class
requires no changes. This therefore gives you enough of a framework to
write tests for the Writer class, which in turn allows you to refactor the
Logging and Writer classes more safely at a later date, perhaps to use
the Parameterise From Above pattern described before.

Healing time (multiple remedies)
There are other ways to isolate and manage the Singleton Dependency
Problem, and what you end up using depends very much on your
circumstances (doesn’t everything? There’s no substitute for using your
brain!).
One simple technique is to have some globally accessible Factory [1],
which can be asked for services. In simple form, this may manifest itself
as a simple Global Service Locator [2], such as:

 public sealed class ServiceLocator
 {
 public LoggingInterface Logging
 {
 get{ return logging; }
 }
 // Other application services
 // ...
 }

This of course bears a striking resemblance to the Singleton we’ve already
seen, but it has the benefits that access to the services provided is all in
one place, and that ServiceLocator can be easily parameterised by
20 | Overload | June 2006

FEATURESTEVE LOVE
injection for testability, etc., using Dependency Injection. It does still have
the same inside-out dependency that accessing a Singleton instance has,
and the dependency is still hidden.
This form of Service Locator is a kind of Application Context [5]. It is an
easily accessible single point of contact where different parts of an
application can access the common context needed to run. It doesn’t take
much imagination to see that we could combine this with Parameterise
From Above so that instead of the dependency being inside-out, it becomes
outside-in again:

public class Writer
{
 public void Write(string text,
 ServiceLocator context)
 {
 // ...
 context.Logging.Write("Failed to write a line");
 }
}

One of the motivating reasons behind Encapsulated Context
is that using Parameterise From Above can cause over-long
parameter lists. This can certainly be a problem where you
require several services, and many objects need access to the
majority of them, although this should rarely be the case.
However, using a single Encapsulated Context object which
covers all of an application’s needs can appear to be little
better than lots of (possibly Singleton) Service objects.
Splitting a single multi-purpose Encapsulated Context into different Role-
Partitioned Context objects [6] can alleviate this problem, and has the
added benefit of allowing the code to directly publish its immediate
dependencies, and provide a certain level of in-code documentation, too.
The small example used here would not really benefit from either
Encapsulated Context or Role-Partitioned Context, and a Service Locator
would be too heavy-weight. However, few real-world applications have
the luxury of being so simple.

The emergence
If we had written our little example using a Test First approach, as
advocated by Test Driven Development [7], I think it likely we would have
ended up with an interface to represent the Logging object being passed
in to the Writer object – Parameterise From Above. It is the simplest
approach that fulfils all our requirements: the Writer object logs to a file
in the real application, and is easily testable in isolation from other objects.
As further requirements became apparent, it may have become more
useful to use Encapsulated Context or Role-Partitioned Context objects
to pass in the needed services. Unless the requirements really need several
independent services, however, Parameterise From Above is superior on
the basis of its simplicity.
I remain suspicious of Global Service Locator partly because the word
“global” conjures the wrong connotations for me, but mainly because it
has many of the hallmarks (and problems) of Singleton.

A return
Our little journey has taken us through a design that, though very simple
– even trivial – lent itself to a very plausible solution using the Singleton
Design Pattern, and highlighted some of the difficulties resulting from this
decision – however well-intentioned. There are other issues with
Singletons: they can be particularly difficult to manage in C++, where the
tension between lifetime management and the use of static data members
causes real headaches. In this, maybe C# does us a disservice making
Singletons so easy to implement.
As for the alternatives? Well, Parameterise From Above and Dependency
Injection both are often criticised for causing contorted, spaghetti logic
caused by over-long parameter lists. This criticism can often be overcome

by judicious use of Encapsulated Context and its relatives, and if it cannot
be overcome that way, that could be an indication of a flaw in the design.
Using Singletons or globals to reduce parameter lists are non-solutions
because they don’t reduce the dependencies in the code – they just hide
them. If long parameter lists are the symptom, high coupling is the likely
disease.
The technique of allowing the Singleton itself to have its Instance changed
by client code is a very useful one when working with legacy code for
which you want to introduce unit tests. It’s probably not recommended for
new code.
However, regardless of implementation language, problems with lifetime,
threading or hidden dependencies, and irrespective of difficulties with
testing, there are very few reasons to use Singletons anyway. It’s important
to understand the difference between needing a single instance of some
object or service right now, and the necessity that there is only one possible
instance of some object or service [9]. Consider the need to use a Stub
Object for the logging object – even a test can be an important instance of
an object. �

Acknowledgements
The motivation for this article arose from a discussion on the accu-general
mailing list, which was really focused on replacing instances of Singleton
objects with something else. Several somethings else were suggested by
various respondents. In particular, John Jagger suggested being able to
inject a Singleton instance with a different implementation (his version
was much tidier than mine ☺); Hubert Matthews suggested the Factory
Method Service Locator, and Adrian Fagg suggested Encapsulated
Context, with references to detailed information on it and variations on it
provided by Allan Kelly and Kevlin Henney.

Notes and references
1 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,

Design Patterns – Elements of Reusable Object Oriented Software,
Addison Wesley, 1995

2 Martin Fowler, ‘Inversion of Control Containers and the
Dependency Injection pattern’
http://www.martinfowler.com/articles/injection.html

3 Kevlin Henney, ‘Minimalism: A Practical Guide to Writing Less
Code’, 2002,
http://www.two-sdg.demon.co.uk/curbralan/papers/jaoo/Minimal-
ism.pdf

4 Kevlin Henney, ‘Programmer’s Dozen’, 2003,
http://www.two-sdg.demon.co.uk/curbralan/courses/
ProgrammersDozen.pdf

5 Alan Kelly, ‘Encapsulated Context Pattern’,
http://www.allankelly.net/patterns/encapsulatecontext.pdf
(printed in Overload 63 (October 2004) as ‘Encapsulate Context’)

6 Kevlin Henney, ‘Context Encapsulation’,
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/
ContextEncapsulation.pdf

7 Kent Beck, Test Driven Development By Example, Addison
Wesley, 2002 (See also http://www.testdriven.com)

8 Even with readonly left in, it’s actually possible to assign to this
variable, but I that too counter-intuitive even for an example!

9 And don’t get me started on “Multitons” :-)

Singletons . . . can be particularly difficult to
manage in C++, where the tension between
lifetime management and the use of static

data members causes real headaches
June 2006 | Overload | 21

FEATURE THOMAS GUEST
The Case Against TODO
TODO - a neat way to label work in progress or an easy way
to disguise the flaws in a codebase?

ODO, TO_DO, TO DO, @todo, FIXME, FIX_ME, FIX ME, HACK // TODO
No other keyword has so many aliases. No other keyword is quite
as open to interpretation.

Don’t worry, our compiler hasn’t gone soft on us. TODO isn’t really a
keyword: it lives in comments and can therefore take whatever form a
programmer chooses, safe in the knowledge it won’t cause trouble at
compile or run time.
On the surface, TODO seems both useful and inevitable. No piece of code
is ever really finished: there will always be something more to do, and
where better to record this information than in the code itself? If we think
more carefully though, we realise that TODO actually indicates a point at
which a decision was made – a decision to defer action, a decision, in fact,
to not do something. Clearly this decision is less than ideal.
This article investigates the use of TODO and friends more closely.
First, we shall consider what it is meant to mean and what it often turns
out to mean. Next, we’ll search through some code, uncover some use
cases, and think about the alternatives.
These alternatives are usually better. TODO, it turns out, is not so innocent
after all. When used as a shorthand for “more work required” it tells us
too little – and often too late – and when used as a convenient label for
broken code, it can cause serious damage to a codebase.

What does ’TODO’ mean?
As stated in the introduction, TODO isn’t a keyword, it’s a comment. Its
exact meaning will depend on the local coding culture and often individual
programming style. For example, the Sun Java programming conventions
[Reference Java Conventions] state:

10.5.4 Special Comments

Use XXX in a comment to flag something that is bogus but works. Use
FIXME to flag something that is bogus and broken.

Already we’ve found a shocking new member of our TODO set: XXX!
I think it’s clear, though, that the phrase TODO in a comment indicates
something more is required. With any luck, the rest of the comment will
indicate exactly what that something is.
FIXME often seems to be used interchangeably with TODO but carries a
stronger suggestion that something is broken – if TODO is a feature request,
then FIXME is a defect report. Again, with luck, the rest of the comment
will explain what needs fixing.
Unfortunately the rest of the comment is often inadequate. Sometimes
we’ll find a bare:

sometimes an initialled note-to-self:
 // FIXME TAG

sometimes a plea for attention:
 // TODO Fix this hack !!!

and sometimes even a garbled attempt to cover all bases:
 // TODO FIXME XXX HACK

Of course, TODO isn’t meant to be pretty. The capital letters shout at the
reader, drawing attention to the deficiency. The noise will continue until
something gets done.

Ask the code
Maybe I’m being unfair. Let’s take a look at TODO in action by searching
some source code. On a Unix platform the following command should
output matches in any files beneath the current working directory:
 grep -ERi "TO[_]?DO|FIX[_]?ME|HACK|XXX" *

I cannot publish the output of this search on any of the proprietary code I
work on. It’s confidential information. (The small amount of open source
code I have written or contributed to is TODO free.) Nor am I going to
publish the output of this search on any of the open source code I use – I
do not think it would be fair, since this article questions the use of TODO.
I should stress, though, that I’m grateful to have source access, so that any
such comments are at least visible to me.
I would be interested to know how useful the output of your search is. Does
the TODO list correlate with work-in-progress? Are the FIXMEs actively
being fixed? Or have we merely generated a list of half-baked ideas,
abandoned experiments and neglected suggestions?
The next section considers some specific use cases which I hope overlap
with our search results.

Use cases and alternatives

Place holders
In another article [Reference Guest], I describe my use of an Emacs elisp
program to generate a skeleton C++ file, which – amongst other things –
inserts placeholders for ‘Doxygen’ comments.
These placeholders had TODOs in them for me to fill in. Or at least they
used to! I have now decided I would rather leave a class undocumented
than have it ever look like this:
 /**
 * TODO write a description of MyNewClass.
 */
 class MyNewClass {
 …
 };

The TODO in the example above serves no useful purpose – I’m well aware
the new class needs describing, ‘Doxygen’ will warn me should I forget

T

Thomas Guest is an enthusiastic and experienced computer
programmer. He has developed software for everything from
embedded devices to clustered servers. His website can be
found at http://www.wordaligned.org and you can contact him
at thomas.guest@gmail.com
22 | Overload | June 2006

FEATURETHOMAS GUEST

the programmer sensibly wishes to put her
work-in-progress into the source

management system as soon as possible
– and as a consequence my elisp now generates smaller but better-
formed skeleton files. This reflects more accurately the way I aspire to
work: no broken code.
While we’re on the subject, note that editor macros make it all too easy to
create unfinished or extravagent comments. A block of asterisks is a poor
wayto fill a source file:
 /* * * * * * * * * * * * * * * * * ** * * * * * * *
 * *
 * M Y N E W C L A S S *
 * *
 */

Generated code
My elisp metaprogram is of course a code-generator. When I realised it
was producing broken output I stepped in and fixed it. With third-party
code generators we may not be so lucky.
Consider a GUI builder which allows us to design our user interface and
map buttons events to actions. The output of this builder is some auto-
generated code with placeholders:
 void MyDialog::OnButtonClick(Button button) {
 // TODO. Insert button action code here.
 }

Clearly there’s a potential problem if the auto-generation is repeated. Will
any callbacks we implement be replaced with TODOs?
There’s not much we can do about this – unless we are GUI builder writers,
in which case we might consider better ways to separate the generated code
from the application-specific implementation. (See [Reference Brown] for
a more detailed discussion of this issue.)
Perhaps this is why many seasoned GUI developers drop the framework
early on, preferring the control they get from hand-crafted code?

Work-in-progress
Suppose a programmer creates a new class, NewClass, whose interface
offers clients, amongst other things, a pair of serialization functions:
 NewClass {
 …
 public: // Serialization
 void put(std::ostream & put_to) const;
 void get(std::istream & get_from);
 …
 };

The output function is quickly coded up. The input function turns out to
be rather trickier. Now, the programmer sensibly wishes to put her work-
in-progress into the source management system as soon as possible. She
checks in an empty implementation:
 void NewClass::get(std::istream & get_from) {
 // TODO
 }

Here, we understand the TODO to mean that, although the code compiles,
the implementation is incomplete. Client code shouldn’t try to ‘get’
instances of this new class just yet.
The trouble is, as far as client code is concerned – at both compile and run
time – the comment has no effect. It’s not hard to imagine a scenario where
we accidentally end up reading in a NewClass, leading to some unwanted
effect downstream, possibly in an apparently unrelated piece of code.
Any time spent tracking down such a problem has been wasted. The
moment the TODO was written, we were aware of its exact location and
cause.
A better technique is to call a function:
 void NewClass::get(std::istream & from) const {
 NotYetImplemented();
 }

Here, NotYetImplemented() might fire an assertion, raise an exception,
or log an error message. At the very simplest, we could put a rough and
ready macro into service:
 #define NotYetImplemented()
 assert(!"Not yet implemented!")

As usual, the move from comment to code improves things. Now the
system offers more useful diagnostics in the event of an unimplemented
function being called: but it won’t save us from trouble if this event
happens once the software has been shipped. We are still reliant on
someone remembering to finish what got started. Here, test-driven
development techniques are invaluable. They are so important they merit
fuller discussion later in this article.

Notes To self
Consider the following struct:
 struct FileSize { // TODO 64 bit
 unsigned long ms_4_bytes;
 unsigned long ls_4_bytes;
 };

I classify this TODO as a note-to-self since it may not be obvious to anyone
but the programmer who wrote the comment exactly what should be done
to the code on a 64 bit platform. If we grep around surrounding source
files, we’ll probably find a few similar comments and get a better idea of
what’s required.
Sometimes it’s even more clear that we’re dealing with a note-to-self.
 struct FileSize { // TODO 64 bit. TAG
 …
 };

Here, the author uses his initials to stake a claim on the struct. He seems
to be saying, “I know what needs doing, and I’ll probably be the one who
does it”. Ideally, of course, when we undertake a 64 bit port, he will still
June 2006 | Overload | 23

FEATURE THOMAS GUEST
be around to tie up these loose ends; even if he isn’t, he has left us some
useful pointers.
This isn’t a bad use of TODO. It’s certainly preferable to the programmer
keeping the TODO list in his head, or even in his log book. The information
is where it needs to be, often down to individual lines of code. My only
quibble is with the note-to-self attitude. When we check in code, we
release it to a wider audience; we are publishing our work. These notes-
to-self should really be notes-to-everyone.
In an ideal world, then, there will be a little more documentation
explaining the porting task in more detail. Pair-programming, peer review
and open source development can help us maintain a disciplined approach.

Latent defects
Suppose we’re digging around some legacy code and we discover the
following bizarre integer literal in an assignment:
 flags &= 0xFFFFFFF7;

What to do? Evidently bit three of the unsigned int flags variable is
being cleared, but so are bits thirty-two and above. Is this the intended
behaviour?
Now, the code in question is regarded as sound. It works. Target platforms
have always had thirty-two bit ints, and will continue to do so for the
forseeable future.
We could make a note in the code and move on:
 flags &= 0xFFFFFFF7;//FIXME this assumes 32 bit ints

If we’re feeling less confident, the note might read:
 flags &= 0xFFFFFFF7;
 // TODO doesn't this assume 32 bit ints !?

Or, if we’re feeling more confident, we make the fix directly:
 flags &= ~(1U << 3);

Personally, I dislike adding comments as shown above. Yes, it’s better
than ignoring the problem, but only marginally. By adding a comment
we’re ducking the issue. On the other hand it’s also risky to modify legacy
code even when we think we’re fixing it (see Sidebar, Legacy Code). Who
knows what compensating code there might be elsewhere in the system?
A more responsible reaction is to dig a little deeper and find exactly how
pervasive the problem is. The assumption that ints occupy thirty-two bits
may cut across many lines in many files – and yet, as stated earlier, this
assumption may actually be reasonable, at least for the forseeable future.
Not all code needs to be portable.
Even if we are prepared to continue with this assumption about target
platforms, the important thing is not to throw away our insight. With
barely any extra effort we can replace the TODO with a compile-time
assertion [Reference Boost]:

 BOOST_STATIC_ASSERT(sizeof(int) * CHAR_BIT == 32);

With this assertion in place, the code won’t even compile if we try and
port to a platform which doesn’t meet this assumption.
On the other hand, if digging deeper reveals more latent defects, and if we
already have reason to believe the legacy code is in poor shape, then more
radical action may be needed (see Legacy Code).

Grand designs
At the other end of the scale are the TODOs which claim a glorious future
for a sound – if straightforward – block of code.

 // TODO use an adaptive search algorithm:
 // 1) keep a log of past commands
 // 2) when the system is idle, review this log to
 // predict the next command
 // 3) pre-fetch the results of the predicted
 // command.
 // This should make the UI more responsive.

Let’s hope this ingenious scheme isn’t attempted until careful analysis
shows that it really is necessary and calibrated test runs prove that it really
can improve response times.
Until then, this particular TODO is simply an incitement to over-
engineering.

Future optimisations
Closely related to Grand Designs are those points in a code-base where a
progammer uses TODO to indicate where a sub-optimal solution has been
used.
Maybe a hand-crafted container might offer client code quicker lookups
than the one which was picked, for convenience, from the C++ Standard
Library.

 typedef std::map<person, phone_number> phone_book;
 // TODO replace with a hash map for efficiency

This TODO looks reasonable enough, but again I think it may lead us astray.
Why should we consider making this replacement? Why should the
suggestion be repeated every time we look at this code?
If we do find our code runs too slowly we need to measure first. The hand-
rolled hash map might make no perceptible difference; but simplifying the
arithmetic in that innocent looking loop the profiler warned us about might
realise a 50% speed-up with far less effort.

The hideous hack
Consider the following scenario. Testing reveals that a peculiar – but
reproducible – combination of events can lead to deadlock. A
SHOWSTOPPER defect is raised and assigned to some unfortunate
programmer. The programmer must delay her current task to investigate.
After a couple of frustrating days of poring over log files she narrows the
problem down. It looks very like a race condition in a particular function.
To test her suspicions, she injects a ten millisecond delay into one of the
calling threads. The defect goes away!
Armed with this evidence, she consults the programmers involved. The
original author of the function has nothing helpful to say – clearly it’s the
client code (which does the synchronisation) which is at fault. Equally
unhelpfully, the authors of the client code suggest the proper solution is
to move responsibility for synchronisation into the function itself.
All this blame-storming is holding up development. The project manager
makes the call: check in the hack, change the defect to LOW priority, get
on with new features.
I don’t think it will come as a surprise to find out that the code still reads
as follows:
 Sleep(10); // HACK. Workaround a race condition.
 // See DEFECT 5678 for details.

Nor should it surprise us to learn that the defect hasn’t really gone away,
it has just gone under cover. The software still deadlocks. Less often, less
reproducibly, but just as disastrously.
This article is about the use of TODO, not dysfunctional development
teams. A proper solution will involve the organisation as much as the code-
base, and will have to remain beyond the scope of this article.

I haven’t defined what I mean by legacy code here – but the risk
associated with change is surely a defining characteristic. In his book
Working Effectively with Legacy Code, Michael Feathers [Reference
Feathers] chooses a specific and objective definition: legacy code is code
which has no unit tests. He goes on to offer some sound advice on how
to work with such code: that is, how to put it under test. Once the tests
are in place, the risks associated with change reduce.

Legacy Code
24 | Overload | June 2006

FEATURETHOMAS GUEST
Clearly, though, something very wrong has happened. I’m not claiming
that TODO – or, in this case, its unsavoury relative, HACK – is to blame.
What I do suggest is that this use of HACK opens the door (breaks the
window perhaps? see bottom of page) to similar abuse in future. When we
introduce such code into our system we sanction the approach it takes,
inviting more of the same.
Sure enough, as features continue to be added, we find more and more
Sleep()s, HACKs and TODOs attempting to disguise a broken threading
model.

Test frameworks
Remember the programmer who checked a stubbed function into
the source management system?

 void NewClass::get(std::istream & get_from) {
 // TODO
 }

In a test-first environment, the TODO is superfluous. The accompanying
unit tests show exactly what needs doing. In a console window, we see
something like:

 Test : testNewClassGet
 testNewClass.cpp(57): Expected "foo" but got "bar"
--
 Ran 13 tests, 12 Passed, 1 Failed.

Here, the feedback is swift and accurate, and continues to be so even once
the class is complete (that is to say, once it passes its tests). Should
something cause NewClass to regress, a good set of tests will isolate the
error even before the offending code gets checked in.
In other words, the TODO list and the FIXME list have been replaced by test
results. We have done the best we can to ensure our NewClass does not
end up being yet another LegacyClass.
Now remember the HACK which covered up a broken threading model. We
will need to work much harder to stop the rot advancing any further (in
both the code-base and the organisation), but again, my main
recommendation would be to invest in a test framework – a system test
framework in this case.
If we can create a suite of tests which exercise the code to systematically
expose the threading problems, we may have a chance of understanding
them. If we can automate these tests and publish results in a user-friendly
form – bearing in mind that users are not just engineers, but everyone with
an interest in the code-base – then we may yet fix them.

The case against TODO
This article has covered the use and abuse of TODO. In some cases, it is
redundant; in others inadequate; in others misleading; and in yet others it
could more usefully be replaced by code. TODO is sometimes a note written
in some personal shorthand, which, like many such notes, is in danger of
becoming meaningless to even its originator.
I have no major problem with any of these uses, though personally I avoid
them. It’s the times when TODO (or FIXME or HACK) gets roped in to defer
the proper treatment of a defect which make it suspect.
In Overload 68, Alan Griffiths [Reference Griffiths] writes:

The worst thing that can be done on encountering a problem is to ignore
it on the basis that “someone else” should deal with it. The next worst

thing is to bury it in a write-only “issues list” in the hope that one day
someone will deal with it. If everyone behaves like that then nobody
deals with anything.

Griffiths is talking about problems in a wider sense, perhaps, than this
article, but he expresses my frustration with TODO perfectly. A search
through code for TODOs is all too likely to reveal a “write only issues list”.
Too often, FIXME silently marks a place where we know something is
wrong, but we haven’t bothered to do anything about it. Worst of all, HACK
gets deployed when we know something is wrong and we fear we might
have made it worse. �

Acknowledgements
I would like to thank Dan Tallis and the editorial teams at The C++ Source
and Overload for their help with this article.

References
Boost - http://www.boost.org
Brown - ‘Automatically-Generated Nightmares’, Silas S Brown, CVu
16.6, ACCU
Feathers - Working Effectively With Legacy Code, Michael C. Feathers,
Prentice Hall, ISBN: 0131177052
Griffiths - ‘Editorial: Size Does Matter’, Alan Griffiths, Overload 68,
ACCU
Guest - ‘Metaprogramming is Your Friend’, Thomas Guest, Overload 66,
ACCU, Also available at: http://www.wordaligned.org/
Hunt & Thomas - The Pragmatic Programmer: From Journeyman to
Master, Andrew Hunt and David Thomas, Addison-Wesley Oct 1999,
ISBN: 020161622X
Java Conventions - ‘Code Conventions for the Java Programming
Language’, http://java.sun.com/docs/codeconv/

In The Pragmatic Programmer: From Journeyman to Master [Reference
Hunt, Thomas] Andrew Hunt and Dave Thomas advise us not to live with
broken windows:

One broken window, left unrepaired for any substantial length of
time, instills in the inhabitants of the building a sense of abandonment
– a sense that the powers that be don’t care about the building. So
anothern window gets broken. People start littering. Graffiti
appears. Serious structural damage begins. In a relatively short
space of time, the building becomes damaged beyond the owner’s
desire to fix it, and the sense of abandonment becomes reality.

Hunt and Thomas suggest the same is true of software: when we
discover something is broken, we must repair it promptly. Deferring the
repair work with a TODO or a FIXME risks making things worse. The next
programmer to visit the code is unlikely to make the fix, but he may well
be encouraged to adopt TODO to defer the treatment of similar problems
elsewhere.

in some cases, it is redundant; in others
inadequate; in others misleading; and in

yet others it could more usefully be
replaced by code

Broken Windows
June 2006 | Overload | 25

FEATURE ADAM PETERSEN
Objects for States
Originally captured in Design Patterns, Objects for States is
described in close conjunction with the Singleton pattern. This article
investigates better alternatives for implementing the pattern in C++.

[9], a subject which makes matters even worse. There’s also all the
The Singleton connection
esign Patterns [1] includes the name Objects for States only as an
alias and the pattern is probably better known for its primary name:
State. I prefer the name Objects for States because it expresses both

the intent and resulting structure in a much better way. After all, the main
idea captured in the pattern is to represent each state as an object of its own.
Besides the naming issue, everything starts just fine in the pattern
description and nothing indicates that Singleton is about to enter the scene.
Not even as Design Patterns discusses implementation issues concerning
the lifetime of state-objects do they actually mention Singleton. Turn the
page and suddenly the pattern appears in the sample code with each state
implemented as Singleton. Later on Design Patterns officially relates the
two patterns by concluding that “State objects are often Singletons” [1].
However true that statement may be, is it a good design decision?

The case against Mr Singleton
The Singleton pattern is on the verge of being officially demoted to anti-
pattern status. In order to get the freshest insider information possible, I
decided to carry out an interview with the subject himself. Mr Singleton
surprised me with his honesty and introspective nature.

“Mr Singleton, you have been accused of causing design damage
[6] and of leading programmers to erroneous abstractions by
masquerading your tendencies to global domination as a cool
object-oriented solution. What are your feelings?”
“I’m just an innocent pattern, I did nothing wrong. I feel truly
misunderstood.”

“But your class diagram included in Design Patterns looks rather
straightforward. It doesn’t get simpler than that – one class only –
how could anyone possibly misunderstand that?”
“Well, that’s the dilemma.” He continues with a mystic look on his
face: “I look simple but my true personality is rather complex,
if I may put it that way.”

I understand he has more to say on the subject. I’ll see if we can get further.
“Interesting! Care to elaborate?” It seems like he just waited for this
opportunity. Mr Singleton immediately answers, not without a tone
of pride in his voice:
“Sure, first of all I’m hard to implement.”
“Yes, I’m aware of that. Most writings about you are actually
descriptions of the problems you introduce. What springs to my
mind is, hmm, well, no offence, discussions about killing Singletons

multithreading issues with you involved [10].”
“Yeah, right, but my implementation is the minor problem. Can
you keep a secret?”
“Sure”, I reply crossing my fingers.
“Hmm, I shouldn’t really mention this, but Design Patterns are
over-using me.”

“Wow! You mean that you are inappropriately used to implement
other patterns?”
“Yes, you may put it that way. I mean, part of my intent is to
ensure that a class only has one instance. But if an object
doesn’t have any internal state, then what’s the point of using
me? If there isn’t any true uniqueness constraint, why
implement mechanisms for guaranteeing only one, single
instance?”

Reflecting on the above dialogue I notice that it describes a common
problem with many implementations using Objects for States. In most
designs the state objects are stateless, yet many programmers, including
my younger self, implement them as Singletons. Sounds like some serious
tradeoffs are made. After all, I like to take a test-driven approach and
writing unit tests with Singletons involved is a downright scary thought.
Mr Singleton agrees:

“It’s sad, isn’t it? You end up solving the solution. Not only does
it mean writing unnecessary code and that’s a true waste;
worse is that I’m wrong from a design perspective too.”

There it is! Implementing Objects for States using Singleton is, I quote
once more, “wrong from a design perspective”. He said it himself. The
good news is that in this case a better design also means less code and less
complexity. But before jumping into the details of why and how, let’s
leave Mr Singleton for a while and recap the details of Objects for States.

Objects for States recap
Objects for States works by emulating a dynamic change of type and the
parts to be exchanged are encapsulated in different states. A state transition
simply means changing the pointer in the context from one of the concrete
states to the other. Consider a simple, digital stop-watch. In its most basic
version, it has two states: started and stopped. Applying Objects for States
to such a stop-watch results in the structure shown in Figure 1.
Before developing a concrete implementation, let’s investigate the
involved participants and their responsibilities:
� stop_watch: Design Patterns defines this as the context. The

context has a pointer to one of our concrete states, without knowing
exactly which one. It is the context that specifies the interface to the
clients.

� watch_state: Defines the interface of the state machine,
specifying all supported events. Depending upon the problem
domain, watch_state may also implement default actions for
different events. The default actions may range from throwing

D

Adam Petersen is a software developer whose prime
professional interests include C++, patterns, agile
development, modeling and Lisp. Besides spending way too
much time reading tech books, Adam also has somewhat
healthier hobbies like chess, music, modern history and
Russian literature. He can be contacted at
adampetersen75@yahoo.se
26 | Overload | June 2006

FEATUREADAM PETERSEN

Such a dependency is an obstacle to unit tests
and leads to big-bang integrations, although

limited to the micro-universe of the context
exceptions and logging to silently ignoring the events (the UML
note in Figure 1 shows an example of a default action implemented
in the start() function that sends a debug trace to standard
output).

� stopped_state and started_state: These are concrete states
and each one of them encapsulates the behaviour associated with
the state it represents.

It depends
Design Patterns includes many examples of good OO designs. An
example is its adherence to one of the most important design principles:
“Programming to an interface, not an implementation”. In fact all patterns
in the catalogue, with one notable pathological exception – Singleton,
adhere to this principle. Yet there are some subtle nuances to watch out
for. Upon state transitions the pointer in the context has to be changed to
the new state. The typical approach is to let each concrete state specify
their successor state and trigger the transition. This way each state needs
a link back to its context.

In its canonical form, Objects for States uses a friend declaration to
allow states to access their context object. A friend declaration used this
way breaks encapsulation, but that’s not really the main problem; the
problem is that it introduces a cyclic dependency between the context and
the classes representing states. Such a dependency is an obstacle to unit
tests and leads to big-bang integrations, although limited to the micro-
universe of the context. Fortunately enough it is rather straightforward to
break this dependency cycle. The first step is to introduce an interface to
be used by the states:
class watch_state;

class watch_access
{
 public:
 virtual void change_state_to(
 watch_state* new_state) = 0;

 protected:
 ~watch_access() {}
};

stop_watch
+ start() : void
+ stop() : void

watch_state
+* «pure» ~watch_state()
+* start() : void
+* stop() : void
-* «pure» state_name() : std::string

delegates state specific requests to

stopped_state
+* start() : void
-* state_name() : std::string

started_state
+* stop() : void
-* state_name() : std::string

void watch_state::start()
{
 cout << "Event start() not handled in "
 << state_name() << '\n':
}

stop_watch
+ start() : void
+ stop() : void

watch_state
+* «pure» ~watch_state()
+* start() : void
+* stop() : void
-* «pure» state_name() : std::string

«interface»
watch_access

+* «pure» change_state_to(watch_state*) : void
~watch_access()

«nested class»
state_controller

+ state_controller(watch_state*)
+* change_state_to(watch_state*) : void

-current_state

specifies transitions through

Figure 1

Figure 2
June 2006 | Overload | 27

FEATURE ADAM PETERSEN

inheritance, private or not, puts strong
compile-time dependencies upon the clients
This interface is realized in the context and each state is given a reference
to i t . A s t a t e c an now make a t r an s i t i on by i nvok ing
change_state_to(). Now, I deliberately didn’t write exactly how the
context shall implement the interface. From a design and usability
perspective public inheritance isn’t a good idea; watch_access is a result
of our implementation efforts of weakening the dependencies and we
really don’t want to expose implementation details to clients of the
stop_watch.
The perhaps simplest solution is offered by the idiom Private Interface [3].
All there is to it is to let stop_watch inherit watch_access privately.
Now a conversion from stop_watch to watch_access is only allowed
within the stop_watch itself. That is, the stop_watch can grant
controlled access to its states and clients are shielded from the
watch_access interface. Or are they really? Well, they are shielded from
the conceptual overhead of the interface but there’s more to it.
What worries me is that inheritance, private or not, puts strong compile-
time dependencies upon the clients of stop_watch. In his classic book
Effective C++, Scott Meyers advices us to “use private inheritance
judiciously” [2]. Meyers also proposes an alternative that I find more
attractive, albeit with increased complexity: declare a private nested class
in the context and let this class inherit publicly. The context now uses
composition to hold an instance of this class as illustrated in Figure 2. Not
only is it cleaner with respect to encapsulation, it also allows us to control
the compilation dependencies of our clients as it is possible to refactor it
to a Pimpl [8] solution if needed.
Enough of fancy diagrams – let’s carve it out in code..

class stop_watch
{
 public:
 ...
 private:
 // Meyers Item 39: Prefer public inheritance
 // plus composition in favour of private inheritance.
 class state_controller : public watch_access
 {
 ...
 public:
 ...
 virtual void change_state_to(
 watch_state* new_state)
 {
 ...
 }
 };
 state_controller state;
};

With the main structure of the context in place, we’re ready to tackle the
allocation of states.

A dynamic allocation scheme
Our first approach is to allocate the states dynamically as they are needed.
A state transition simply means allocating the new state, wrapped in a
suitable smart pointer from boost [4], and passing it to the context. Here’s
an example on the stopped-state:

 // watch_state.h
...
typedef boost::shared_ptr<watch_state>
watch_state_ptr;

// stopped_state.cpp
void stopped_state::start(watch_access& watch)
{
 watch_state_ptr started(new started_state);

 watch.change_state_to(started);
}

The started-state has an identical mechanism, but of course it allocates
stopped_state as its successor. With the allocation scheme in place we
can implement the context, shown in Listing 1, overleaf.
Here we let the stop_watch specify its initial state upon construction:

// stop_watch.cpp
stop_watch::stop_watch()
 : state(watch_state_ptr(new stopped_state))
{
}

Our preference of public inheritance in combination with composition
over private inheritance leads to an extra level of indirection. We can hide
this indirection by overloading operator-> in the state_controller,
which makes the context’s delegation to the states straightforward:

// stop_watch.cpp
void stop_watch::start()
{
 state->start(state);
}

void stop_watch::stop()
{
 state->stop(state);
}

Dynamic allocation of the states is a simple solution, yet it makes several
tradeoffs:
28 | Overload | June 2006

FEATUREADAM PETERSEN

nobody wants to get caught using globals, yet
global variables are more honest about the

intent than to camouflage them as Singletons
Sharing states - the return of the Singletons
With instance variables in the states, dynamic allocation is a simple
solution. However, in most applications of Objects for States the state-
objects are there just to provide a unique type and do not need any instance
variables. Design Patterns describes this as “If State objects have no
instance variables […] then contexts can share a State object” [1]. In their
sample code, Design Patterns notes that this is the case; only one instance
of each state-object is required, and with that motivation makes each state
a Singleton.
After my interview with Mr Singleton I promised to explain why this is
the wrong abstraction. The reason is that the responsibility of managing
state-instances is put on the wrong object, namely the state itself, and an
object should better not assume anything about the context in which it is
used. Design Patterns describes a particular case where only one instance
is needed. This need, however, doesn’t imply a uniqueness constraint on
the state-objects themselves that would motivate the Singletons. Further,
whether states should be shared or not should be decided in the context.
Obviously the Singleton approach breaks this rule and, for all practical
purposes, forces all states to be stateless.
To summarize, Singleton leads to:

1. an erroneous abstraction,
2. unnecessary code complexity,
3. superfluous uniqueness constraints,
4. and it seriously limits unit testing capabilities.

Clearly another approach would be preferable. However, before sharing
any states, I would like to point to Joshua Kerievsky’s advice that “it’s
always best to add state-sharing code after your users experience system
delays and a profiler points you to the state-instantiation code as a prime
bottleneck” [5].

Going global
When implementing Objects for States the uniqueness constraint of
Singleton is actually an unwanted by-product of the solution. So, let’s
focus on the second part of Singleton’s intent: “provide a global point of
access” [1]. These are the things programmers speak low about – nobody
wants to get caught using globals, yet global variables are more honest
about the intent than to camouflage them as Singletons. Consider the
following code snippet:

// possible_states.h
class watch_state;

namespace possible_states{
extern watch_state* stopped;
extern watch_state* started;
}

// stopped_state.cpp
#include "possible_states.h"

+ Allows for stateful states, i.e. instance variables in the states.
– Potentially many and frequent heap allocations may have negative

performance impact.
– Hard to change to sharing states (such a change ripples through all

states).
– Dependent upon a concrete class (i.e. the next state), which is a

barrier to unit tests

 // stop_watch.h
class stop_watch
{
 public:
 stop_watch();
 void start();
 void stop();

 private:

 class state_controller : public watch_access
 {
 watch_state_ptr current_state;

 public:
 state_controller(
 watch_state_ptr initial_state)
 : current_state(initial_state)
 {
 }

 // Hide the extra indirection for the
 // client by using en masse delegation.
 watch_state_ptr operator->() const
 {
 return current_state;
 }

 virtual void change_state_to(
 watch_state_ptr new_state)
 {
 current_state = new_state;
 }
 };

 state_controller state;
 };

Listing 1
June 2006 | Overload | 29

FEATURE ADAM PETERSEN

What’s left to the states is specifying their
successors in abstract terms
void stopped_state::start(watch_access& watch)
{
 using possible_states::started;

 watch.change_state_to(started);
}

No constraints on the number of possible instances in the states
themselves. But who defines them? The context seems like a good
candidate:

// stop_watch.cpp
namespace{
stopped_state stopped_instance;
started_state started_instance;
}

namespace possible_states{
watch_state* stopped = &stopped_instance;
watch_state* started = &started_instance;
}

Except for the construction (we have to initialize our state_controller
with possible_states::stopped instead of a dynamically allocated
state), the rest of the context code stays the same. Any tradeoffs made?
Yes, always. Here they are
:

In control
Using link-time polymorphism to unit test? Yuck! Not particularly OO,
is it? No, it sure isn’t, but I wouldn’t discard a solution just by that
objection. Anyway, what about finally approaching a solution that
removes the dependencies between the sub-states? Moving the state
management into the state_controller makes it possible.

// watch_access.h
class watch_access
{
public:
 virtual void change_to_started() = 0;

 virtual void change_to_stopped() = 0;
 ...
};

// stop_watch.h
class stop_watch
{
 ...

 class state_controller : public watch_access
 {
 started_state started;
 stopped_state stopped;

 watch_state* current_state;

 public:
 state_controller()
 : current_state(&stopped)
 {
 }
 virtual void change_to_started()
 {
 current_state = &started;
 }

 virtual void change_to_stopped()
 {
 current_state = &stopped;
 }

 ...
 };
 ...
};

The state_controller allocates all possible states and switches
between them as requested by the states. What’s left to the states is
specifying their successors in abstract terms:
// stopped_state.cpp
void stopped_state::start(watch_access& watch)
{
 watch.change_to_started();
}

// started_state.cpp
void started_state::stop(watch_access& watch)
{
 watch.change_to_stopped();

}

+ Conceptually simple and definitely simpler than the classic
Singleton approach (same characteristics, but more honest in its
intent).

+ No dependencies from the states upon concrete classes (only a
forward declaration is actually used in possible_states.h).

+ Primitive but possible way to unit test individual states by use of
link-time polymorphism (this technique uses the linker to link in
different state definitions, i.e. test-stubs, instead of the real ones in
stop_watch.cpp).

+– States are shared.
– Forced to share states, which makes it virtually impossible to use

stateful states.
– Still not quite true to the ‘program to an interface’ principle.
– Scalability problems with possible_states.h, which must be

updated each time a state is added or removed.
30 | Overload | June 2006

FEATUREADAM PETERSEN
And here we are, finally programming to an interface and not an
implementation. Let’s look at the resulting context:

A generative approach
The previous solution indicated potential scalability problems; adding
new states requires modifications to watch_access and its implementer,
state_controller. In my experience this has been an acceptable trade-
off for most cases; as long as the state-machine is stable and relatively few
states are used (5 - 10 unique states) I wouldn't think twice about it.
However, in the ideal world, introducing a new state should only affect
the states that need transitions to it. Reflecting upon our last example,
although limited to only two states, the pattern is clear: the different
methods for changing state (change_to_started(), change_to_stopped())
are identical except for the type encoded in the function name. Sounds like
a clear candidate for compile-time polymorphism. The core idea is simple:
each state instantiates a member function template with the next state as
argument.

// Example from stopped_state.h
void stopped_state::start(watch_access& watch)
{
 watch.change_state_to<started_state>();
}

Each member function template instantiation creates the new state object
and changes the reference in the context. Something along the lines of:

class X
{
...
 template<class new_state>
 void change_state_to()
 {
 watch_state_ptr created_state(new new_state);

 current_state = created_state;
 }
};

A quick quiz: in the listing above, what class should X be? The states
specify their transitions by invoking methods on watch_access and by
means of the virtual function mechanism the call is dispatched to the
context. Now, there’s no such beast as virtual member function templates
in C++. The solution is to intercept the call chain and capture the template
argument in an, necessarily non-virtual, member function template, create
the new state instance there and delegate to the context by a virtual
function (see Listing 2).
Considering the tradeoffs shows that the one step forward in scalability
pushed us back with respect to dependency management:
:

Recycling states
The last example brought us back to a dynamic allocation scheme.
However, that knowledge is encapsulated within watch_access and we
can easily switch to another allocation strategy. For example, in a single-
threaded context static objects are a straightforward way to share states
and avoid frequent allocations:

// watch_access.h
class watch_access
{
public:
 template<class new_state>
 void change_state_to()
 {
 static new_state created_state;

 change_state_to(&created_state);
 }
 ...
};

State objects can also be recycled by introducing a variation of the design
pattern Flyweight [1]. In fact, Design Patterns links these two patterns
together with its statement that “it’s often best to implement State […]
objects as flyweights”. Does the claim hold true? Let’s try it out and see.

+ The responsibility for the allocation scheme is where it should be:
in the context.

+ States are easily shared among instances by making them static.
Such a decision is taken in the context and not coded into the states
themselves as in the traditional Singleton approach.

+ All states written towards an interface, which make them easy to
unit test.

– Doesn’t scale well. watch_access runs the risk of growing fat as
it has to provide methods for all possible states, which is a similar
problem to the global approach with possible_states.h.

+ Scales well, no know-them-all class; the compiler generates code
to instantiate states.

– The states depend upon concrete classes

// watch_access.h
class watch_access
{
public:

 template<class new_state>
 void change_state_to()
 {
 watch_state_ptr created_state(new new_state);

 change_state_to(created_state);
 }

protected:
 ~watch_access() {}
 typedef boost::shared_ptr<watch_state>
 watch_state_ptr;
private:
 // Delegate the actual state management to the
 // derived class through this method.
 virtual void change_state_to(
 watch_state_ptr new_state) = 0;
};

// stop_watch.h
class state_controller : public watch_access
{
 watch_state_ptr current_state;

 public:
 state_controller()
 {
 // Specify the initial state.
 watch_access::change_state_to<stopped_state>();
 }

 virtual void change_state_to(
 watch_state_ptr new_state)
 {
 current_state = new_state;
 }
 ...
};

Listing 2
June 2006 | Overload | 31

FEATURE ADAM PETERSEN
First each object is associated with a unique key. The idea is, that the first
time an object is requested from the flyweight factory, a look-up is
performed. If an object with the requested key already exists a pointer to
that object is returned. Otherwise the object is created, stored in the
factory, and a pointer to the newly created object returned. The example
below introduces a pool for state objects in a flyweight_factory using
the unique type-name as key (Listing 3).
The flyweights are fetched from the instantiations of the member function
template in watch_access (Listing 4).
The state_controller stays as before because the internal protocol,
change_state_to(watch_state_ptr), is left untouched:

Conclusion
As this article has highlighted the problems inherent in a Singleton based
Objects for States solution, it feels fair to let Mr Singleton get the final
word. After all, if I was successful his career may suffer. Will the two
patterns finally be separated?

“I sure hope so”, Mr Singleton answers, “Clearly there are better
alternatives and if I ever get the opportunity I’m prepared to

sacrifice my link in Objects for States in the name of good
design.”
“That’s a great attitude and I’m delighted you take it that way.
Speaking of design, any particular solution you would
recommend?”
“I don’t think you can put it that way. Like all design alternatives
each one of them comes with its own set of tradeoffs, which
must be carefully balanced depending on the problem at
hand.” �

References
1. Gamma, Helm, Johnson & Vlissides, Design Patterns, Addison-

Wesley, 1995
2. Scott Meyers, Effective C++ Third Edition, Addison-Wesley, 2005
3. James Newkirk, Private interface, 1997,

http://www.objectmentor.com/
4. http://www.boost.org
5. Joshua Kerievsky, Refactoring to Patterns, Addison-Wesley, 2004
6. Mark Radford, ‘SINGLETON – The Anti-Pattern!’, Overload 57
7. The complete source code for this article: www.adampetersen.se
8. Herb Sutter, Exceptional C++, Addison-Wesley, 2000

The Pimpl idiom was originally described by John Carolan as the
“Cheshire Cat”.

9. John Vlissides, Pattern Hatching, Addison-Wesley, 1998
10. Meyers & Alexandrescu, ‘C++ and the Perils of Double-Checked

Locking’, 2004, http://www.aristeia.com/

Acknowledgements
I would like to thank Drago Krznaric, Alan Griffiths, Phil Bass, and
Richard Blundell for their valuable feedback.

+ Scales well, no know-them-all class; the compiler generates code
to instantiate states.

+ Allows for sharing states among all instances of stop_watch by
making the flyweight_factory static in watch_access.

+ Generic flyweight_factory for all default-constructable types.
– The states depend upon concrete classes.
– Relatively high design complexity

template<class flyweight>
class flyweight_factory
{
public:
 typedef boost::shared_ptr<flyweight>
 flyweight_ptr;

 template<class concrete_flyweight>
 flyweight_ptr get_flyweight()
 {
 const std::string key(
 typeid(concrete_flyweight).name());

 typename pool_type::const_iterator
 existing_flyweight(pool.find(key));

 if(pool.end() != existing_flyweight) {
 return existing_flyweight->second;
 }
 else {
 flyweight_ptr new_flyweight(
 new concrete_flyweight);

 const bool inserted = pool.insert(
 std::make_pair(key, new_flyweight)).second;
 assert(inserted);

 return new_flyweight;
 }
 }

private:
 typedef std::map<std::string, flyweight_ptr>
 pool_type;
 pool_type pool;
};

Listing 3

class watch_access
{
 typedef flyweight_factory<watch_state>
 state_factory;
 state_factory factory;

public:
 template<class new_state>
 void change_state_to()
 {
 change_state_to(
 factory.get_flyweight<new_state>());
 }
 protected:
 ~watch_access() {}

 typedef state_factory::flyweight_ptr
 watch_state_ptr;
private:
 // Delegate the actual state management to the
derived
 // class through this method.
 virtual void change_state_to(
 watch_state_ptr new_state) = 0;
};

Listing 4

All of the code for this article is available from my website:
http://www.adampetersen.se
32 | Overload | June 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-BoldMT
 /ArialMT
 /BlueHighway-Bold
 /CourierNewPS-BoldMT
 /CourierNewPSMT
 /Helvetica
 /Impact
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Wingdings-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

