

August 2006 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, be default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Comments Considered Good
William Fishburne makes the case for
commenting.

6 Introducing CODEF/CML
Fernando Cacciola introduces a novel approach to
serialization.

13 Fine Tuning for lexical_cast
Alexander Nasonov takes a look at Boost’s
lexical_cast.

17 C# Generics - Beyond Containers of T
Steve Love uses C# generics to simplify code.

22 The Kohonen Neural Network
Seweryn Habdank-Wojewódzki and Janusz
Rybarski present the Kohonen Neural Network
Library.

32 The Documentation Myth
Allan Kelly considers why we spend so little time
on documentation.

OVERLOAD 74

August 2006
ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editor

Mark Radford
mark@twonline.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddeaus Froggley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Tim Penhey
tim@penhey.net

Advertising enquiries

ads@accu.org

Cover art

Pete Goodliffe
pete@cthree.org

Design

Pete Goodliffe

Copy deadlines
All articles intended for publication in
Overload 75 should be submitted to
the editor by 1st September 2006
and those intended for Overload 76
by 1st November 2006.

EDITORIAL ALAN GRIFFITHS
Take a Step Forward
“Nobody made a greater mistake than he who did nothing
because he could do only a little.” – Edmund Burke.
It is up to you to get involved
Once again I’m pleased with the response from authors
– for the second issue running the advisors have been
able to concentrate on providing assistance to the
authors and to the editor and have not found it
necessary to write articles to reach our minimum

length. As you can see, we have comfortably achieved that again. Thanks
to everyone who submitted an article! (I know some were redirected to C
Vu, but the effort is appreciated.) I trust that those of you who have been
thinking of writing will be inspired by this example and do so next time.
One of the benefits that ACCU can provide is the opportunity to learn new
skills safely outside the work environment. I know that I have learnt a lot
from my ACCU activities – as an author, as the chair, as a speaker and
now as a journal editor. When people occupy a position for an extended
period there are pros and cons: they provide us all the benefit of their
experience, but they also block others from that same learning experience.
If you check your back issues you’ll see that some of the advisors have
been working on Overload longer than I’ve been editor – a long time.
We’ve all benefited from their diligence and expertise over the years.
Thanks team!
For a couple of reasons now is a good time for new people to get involved
in producing this magazine. The first reason is to bring new skills to the
task: over the last couple of issues I’ve had to ask for help from outside
the team to review articles that require more knowledge of CSS, C# and
neural networks than the current advisors have. (I’m always willing to do
this, but CSS and C# are hardly obscure.) A second reason is that recently
several of the current advisors have taken on new commitments in their
lives. (Some of these commitments have to do with ACCU, some are
personal, but all have the effect that the editorial team has reduced capacity
and would welcome some new blood.)
If you have a clear idea of what makes a good article about software
development and would like to help authors polish their writing then now
is the time to get involved – while the old hands are here to “show the
ropes” (and before some of them find their new commitments push
contributing to Overload every issue out of their lives). It isn’t hard – and
the authors do appreciate the work done reviewing their articles.

The quest for usability
For many years I’ve puzzled to understand why, when people try to make
a piece of software they are working on more useful (or “reusable”) they

take actions that have the opposite effect. I may have
previously described how a simple “properties”
class I wrote to hold configuration information was
“improved” by another developer who needed to

serialize it: by including the serialisation code he needed in the class he
made it less useful in contexts which don’t need the same approach to
serialisation – I’m sure you can add many examples from your own
experience.
What people repeatedly miss is that simple things that do one clearly
defined thing are more usable than complex ones that do a host of things.
There is even a clear tendency for people to add functionality “because
we will need it later” – this is recognised in the Agile mantra “you aren’t
gonna need it” [YAGNI]. I’ve seen projects drowning in code that
contributes nothing at the moment but was written and is being kept
“because we will need it later”. Not only are these projects typically over
budget already, but they are also continuing to lose time because of the
cost of compiling, changing and testing this useless code. My experience
isn’t unique – Tim Penhey wrote recently about a project that had
recognised this condition and was investing a substantial effort to identify
and remove dead code [Penhey].
The code that causes development problems may not always be
completely useless – with a diverse or large user community there is often
someone, somewhere, who uses it. If there are enough units sold then
providing value to even a small proportion of users may justify the
expense. The problem I’ve seen in this scenario is that there is no objective
basis to make this decision: it is hard to quantify the cost of slowing down
all changes to a system – not only is it difficult to quantify the lost
productivity, but when new features are delivered slowly there can be
significant opportunity costs (and these may be hidden – the benefits of
possible features may not even be evaluated “because of the backlog”).
Operating systems often meet the criteria of large, diverse user
communities and it is no wonder that they have a history of developing
lumps of near dead code that are needed for “backward compatibility” and
have to be worked around for new development. I can remember IBM
boasting proudly of how complex they had made MVS+S/390 – and, for
many years, the press releases and briefings about forthcoming versions
Windows have shown all the signs of optimism obscuring the difficulty
of developing a codebase with so much baggage. Of course, “difficult”
isn’t “impossible” – we as a profession keep pushing back the boundaries
of what is possible. S/390, WinNT, Win2K and WinXP were all delivered
eventually – but without some of the functionality mooted in early
“roadmaps”.
It is, of course, easier in most projects to remove functionality that exists
only in the plan than to remove functionality that has been developed in
the code. In the latter case, more has been invested in creating that
functionality – and there is also the risk that someone, somewhere is using
it (or will want to use it someday). Hence the common experience that, in
practice, as the codebase grows it accumulates increasing amounts of dead
code that sucks vitality from the project.

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. Homepage:
http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | August 2006

EDITORIALALAN GRIFFITHS
Not just software
However, as I don’t want to drift too far off topic, I’ll get back on track
with some comments about J2EE. Time was that J2EE was the new simple
way to deliver a whole range of server-side applications. I remember those
days – I worked on some systems in this category. As with many
development tools, if what you wanted fitted the design parameters then
it was great! (And if it didn’t you either had to code around it or used
different tools – I’ve worked on projects that took both approaches.) Over
the years J2EE has accumulated new libraries, new technologies and
grown in complexity until it gets comments like “In five years, Java EE
will be the CORBA of the 21st Century. People will look at it and say, ‘It
had its time but nobody uses it any more because it was too complicated.’”
Richard Monson-Haefel (Senior Analyst, Burton Group) – reported on
The Register by Gavin Clarke [Clarke].
It isn’t just software projects that that suffer from accumulating well
motivated, but counter-productive, complexity. There is scarcely a day
that goes by without something of this nature appearing in the news.
Today’s example was the UK’s ID card scheme – a project filled with stuff
that “might be useful” to the extent that it is far from clear that it addresses
the anti-terrorism problem it purports to address.
I’ve not worked on a Java project for some time now, so I can’t attest to
the accuracy of these comments – but I heard very similar remarks about
JDK5 at the ACCU conference a couple of years ago and noticed how
rapidly the proportion of Java content had reduced at the last one. I’m sure
Java will be around for a good while yet – but the complexity it has
accumulated isn’t helping.
I can imaging the C++ developers amongst you smiling at this and feeling
smug that you avoided the Java “fad”. Don’t be! It is a lot like the decaying
codebases I was describing earlier – much of the complexity in C++ is
there because the standards committee doesn’t dare to remove it. There
are features that “might be useful” (while I’ve heard reports from people
who are using custom allocators, these uses don’t justify the cost to
everyone else of maintaining them in the standard). There are features that
someone started to work on, but didn’t have time to finish (valarray
does have users and there are some ongoing efforts to resolve the issues).
There are even features that never seem quite right and were being
reworked right up to the moment of shipping (like auto_ptr).

In another world
It doesn’t have to be that way. While working on a codebase it is possible
to delete the dead code and amputate the dying features. I know – I’ve done
it – and the results are worth it. One of my more memorable days was when
I deleted around 800 lines of code from a function and could then see that
a condition had been coded incorrectly. (The deleted code had
accumulated bit by bit to identify and fix up various specific scenarios that
had been reported as being wrong. I deleted it bit by bit on the basis that
“this shouldn't be doing anything”.) Of course, it is prudent to have both
version control and a good test suite in place before getting too eager with
the “hatchet”.

One of the keynotes at the last conference dealt with changes being made
to the Python language. I know that many of us feel this was not a good
topic for a plenary session, but it did give an insight into a very different
strategy for maintaining a language. Changes are being made that break
“backward compatibility”– something that Java and C++ go to
tremendous lengths to avoid. Instead there were tools being considered
that would help with the identification and migration of code that relied
on the features obsoleted.
There are differences between the communities that Python and C++
support. But considerations such as “don’t break backward compatibility”
are not absolute requirements for Java and C++. C++ in particular supports
a far wider range of environments.

Can you do anything?
You may feel that you can’t do much about Overload, your codebase or
the language standard. You are wrong: if you already find the time to read
an article in Overload when it arrives then it doesn’t take long to write
some review comments; if you are developing some
class it won’t take any time to not add that bell or
whistle; and. if you are looking at some code that isn’t
being used it doesn’t take long to select and delete.
Progress is made one step at a time.

References
[YAGNI]“you aren’t gonna need it”

http://c2.com/cgi/wiki?YouArentGonnaNeedIt
[Penhey]“Dead Code”, Tim Penhey, Overload 71
[Clarke]“JEE5: the beginning of the end?”, Gavin Clarke, The

Register http://www.regdeveloper.co.uk/2006/07/12/
java_ee_burton_group/
August 2006 | Overload | 3

FEATURE WILLIAM FISHBURNE
Comments Considered Good
In our last issue, we offered the case against comments; in
this issue, William Fishbourne responds in defence. He
argues that it is not the practice of commenting that it is evil,
it is the thoughtless commenter.
At the ACCU 2006 conference, the question was asked, “Is the total
value of all the comments in all of the code out there less than or
more than zero?” [ACCU2006] Mr. Easterbrook [Overload73]

concluded that if the answer is less than zero, then it must be the practice
of commenting that is at fault. Consider, for a moment, the same question
with a different subject, “Is the total value of all the punditry in all the
newspapers out there less than or more than zero?” If one could conclude
that the pundits of the world offer little or detract from the world, following
this line of reasoning, should one conclude that freedom of the press is
inappropriate? Would it not be better to encourage more writing in hopes
of finding better pundits? In a like manner, this author encourages more
commenting for better commenters, not the elimination of comments.

Learning from the experts
Mr. Easterbrook took a look at the comments that experts put in books for
beginners and found the comments woefully inadequate. This is an unfair
test, however, as the books for beginners use comments to explain simple
concepts to beginning programmers. A look at the complexity of the
programs in beginning programming books would likewise be found
wanting. Let us consider, however, how experts comment code designed
for the advanced programmer. Stan Lippman in Essential C++
[Lippman2000] has this example:

template <typename valType>
void BTnode<valType>::
lchild_leaf(BTnode *leaf, BTnode *subtree)
{
 while (subtree->_lchild)
 subtree = subtree->_lchild;
 subtree->_lchild = leaf;
}

Mr. Easterbrook’s argument is made! The code is, however, dense and
while it is possible to figure out that BT probably means ‘Binary Tree’,
especially with the help of lchild which is probably ‘left child’, it isn’t
intuitively obvious what this function is doing. After all, lchild could be
‘least child’ or BT could mean ‘Branch of the Tree’. All in all, however,
the code is easy enough for an good programmer to understand. Some
might argue that longer or more descriptive names might make
understanding easier, those same people might argue that such long names
are hard to type in and lead to typos which are false errors. Mr. Lippman
has chosen to comment upon invocation where explanation is useful:
 // lchild_leaf() will travel the left subtree
 // looking for a null left child to attach ...

These comments are useful and help elucidate the manner in which the
function is being used.
Computers have often been compared to “universal tools” and procedures
have also born this title. To the extent that a given procedure is generic or
universal, the invocation of that procedure should be accompanied with
comments that (as Mr. Easterbrook points out):

Say why and not how
Are meaningful
Used where the code is non-obvious and/or non-portable

Tying the comment to the invocation, in this case, helps facilitate
understanding of the code at the point where that understanding is needed.

Is code self-documenting?
Simply put, no. As an advocate of self-documenting code, this author is
frustrated to admit it, but the simple fact is that code is not self-
documenting no matter how hard a programmer may try. As the first
example shows, even code that uses meaningful names in an intuitive
manner can be very hard to understand.
Consider this snippet from Marshall Cline’s Essential C++ [4]:

class stack {
public:
 stack() throw();
 unsigned size() const throw();
 int top() const throw(Empty);
 void push (int elem) throw(Full);
 int pop() throw(Empty);
protected:
 int data_[10];
 unsigned size_;
};

Now consider the comments recommended by the author:

int pop() throw(Empty);
 // PURPOSE: Pops and returns the top element from
 // this
 // REQUIRE: size() must not be zero
 // PROMISE: size() will decrease by 1
 // PROMISE: Returns the same as if top() were called
 // at the beginning

The comments tell us what to expect from the member function and this
type of information is critically important for interfaces, etc. While
separate test functions might prove this functionality, it is worth taking the
time to make these comments so that someone using the member function
would be able to rely upon this functionality.
The comments offer us something that code alone cannot. There is no way
for the declaration to state that size will decrease by 1 as a side-effect. One
may argue that such side effects are components of bad code and be right

A

William Fishburne is a graduate of the University of Maryland
in Computer Science and works as a consultant to the United
States Government. He is also a production coordinator for
Project Gutenberg where numerous programming
opportunities can be found for interested volunteers. You can
contact William at bfishburne@gmail.com
4 | Overload | August 2006

FEATUREWILLIAM FISHBURNE

it is sad that so many programmers have
abandoned the practice of actually

designing code before implementing
in many cases, but that argument does not solve the problem – the code
cannot document itself, particularly in side-effects.

Comments as design reference
Mr. Easterbrook refers to the use of pseudo-code as the programmer opting
to code in another coding language to which the programmer has a
preference. Many consider the use of pseudo-code a critical design step.
In fact, it is sad that so many programmers have abandoned the practice
of actually designing code before implementing (or, perhaps more
correctly: hacking) it. Whatever the nature of the design process, it is
worthwhile capturing the design as comments: first, as a reference for the
programmer as the program is developed, and, second, as an insight into
other follow-on programmers who are trying to fathom the whys and
wherefores of a particular program.
The first code snippet given, might have been created in pseudo-code as:

// template static function lchild_leaf
// traverse the left subtree looking for a null leaf
// to attach
// accept a leaf and subtree as parameters
// while the left subtree exists
// step down the left subtree
// put the passed leaf into the left subtree

As comments, things like “while the left subtree exists” may seem
redundant to the code that was written; however, it reflects the design
process and the comments (with code removed) offer insight into the
algorithm used. In this way, even “obvious comments” have a place, sort
of like the paragraph headers which appear in this article. The paragraph
headers aren’t strictly necessary, the structure of the article should be self-
evident, but the headers facilitate the reading of the article which is, after
all, the point.
Comments that are used as part of the structure for writing a program
should be kept in the program and not simply removed as the components
are written. These comments help guide the reader through the code and
help the programmer develop well-organized code which doesn’t leave out
crucial missing parts.
By the same token, comments should be maintained in the same manner
as the code itself should be maintained. As the algorithm changes the
comments, as well as the code, that was outmoded should be revised or
removed. The examples given by Mr. Easterbrook are sad examples of
code maintenance and simply another example of why peer code reviews
are necessary. Think for a minute, would you let a peer slide on comments
that are misleading or incomplete? It is in everyone’s best interest to
prevent that from happening.

Mr. Easterbrook has some great ideas
Compiler aware annotations are an interesting innovation, although there
are still plenty of people who don’t code in some graphic environment
where annotations could pop up over the code itself. Mr. Easterbrook’s

concept of compiler aware annotations has hit on an improvement that only
lacks an implementation. Perhaps some innovative programmers will get
together and add this type of functionality to gcc and the programming
environment of their choice. At the risk of inciting a riot, it seems that this
would be easier to do with EMACS then with vi!
The call for meaningful comments is a good one, although banning headers
is as bad as requiring them. Headers have a place (just like every book has
a title and author on the cover page), but the place is to facilitate the reading
and understanding of the code, not simply to meet a check box. When
programming becomes a “step in a process” the art has been left behind
and shoddy, cookie-cutter code is the result. Innovative thinking, like that
of Mr. Easterbrook, is the hallmark of good programming, whereas
meeting a series of check boxes is hardly short of automation.
As a modification of Mr. Easterbrook’s call to action, leaders of code
reviews should ask themselves why the comment would be useful. Perhaps
most of the staff that maintains the code is composed of junior
programmers and a comment that an experienced programmer would find
unnecessary, should be there for the junior programmers. Perhaps there is
a component of business logic that (though obvious) needs to be stated as
such so that it is not later “mildly” modified without consideration for the
importance of the business rule embodied in the code. Finally, the thinking
process of the programmer can be documented in the comments, which is
a singularly unique insight into why things are programmed in a specific
manner as opposed to simply noticing that a particular path has been used.
Please remember, comments don’t make code bad, programmers do.

References
[ACCU2006] By Russel Winder in Peter Sommerlad's session called

“Only the Code tells the Truth”.
[Cline1999] Cline, Marshall, et al, “C++ FAQs Second Edition, Addison-

Wesley, 1999, ISBN: 0-201-30983-1
[Lippman2000] Lippman, Stanley C., “Essential C++”, Addison-Wesley,

2000, ISBN: 0-201-48518-4
[Overload73] Easterbrook, Mark, “Comments Considered Evil”,

Overload, Issue 73
August 2006 | Overload | 5

FEATURE FERNANDO CACCIOLA
Introducing CODEF/CML
This article introduces a C# serialization facility that proposes
a novel separation between object models, representing the
serialized data, and class descriptors, representing the
binding to the receiving design space.
 seldom find myself being completely comfortable with a development
framework. I just can’t help myself seeing a weakness here and there,
and not even the .Net framework escapes from this criticism. On the

other hand, I have used and sweated many different frameworks over the
years, from Win32 in Windows 3.1, to DCOM and CORBA, and from that
experience I have to admit that .Net gets its job done remarkably well.
Being a long term C++ programmer, I do find many areas that I would have
liked to have been different, but then I recall that there are ASP.Net, VB,
Java and C# programmers out there that wouldn’t agree with me on pretty
much any of those points. Admittedly, the .Net frameworks allows all of
us (programmers with different backgrounds, experiences and mindsets)
to work together in an incredibly productive way; something I’ve never
before had the opportunity to enjoy.
The lingua franca that .Net represents in a heterogeneous team got me to
learn and even appreciate C#, which I’ve been using for the last two years.
I’ve also got to learn and appreciate many of the .Net subsystems, like
Reflection, GDI+ (which is a royal pleasure for those with a Win32 GDI
experience) and particularly .Net serialization (from framework version 1.1)
.Net 1.1 serialization just worked for us out of the box without trouble until
we got a complaint from the boss because files were unacceptably large.
We started to work around that problem from within the framework but in
the process we discovered how .Net Reflection was not being used to the
extent it could, so we ended up writing our own replacement framework
instead, which has been used in production code for more than a year now.

.Net serialization 101:
The .Net framework provides two serialization facilities. They are
significantly different and serve different purposes.
One is called XML Serialization and it’s mainly targeted at representing
XML Documents as .Net objects. In this form of serialization only public
fields are serialized, and the type information included in the XML file, if
any, is driven by the target specification, such as SOAP, instead of the
actual types of the objects being serialized.
The other is called just Serialization and it’s mainly targeted at object
persistence, that is, saving and loading an object graph out of core memory.
XML Serialization is not suited for persistence of application objects
unless the types of these objects are supported in the target schema.
Therefore, in this article, I will always refer to the second form of
serialization and I will use the term to refer to the complete round trip
process; that is, including deserialization.

.Net serialization is controlled at the highest level by a Formatter object.
Via a Formatter object you can Serialize and Deserialize an object
graph into and from a Stream. The framework provides two of formatters
BinaryFormatter and SoapFormatter. The first stores binary data in
the Stream and the second stores SOAP-encoded XML Elements. The
SoapFormatter is similar in effect to XMLSerialization but is not
exactly the same.
Only those classes marked as [Serializable] are actually serialized
when passed to a formatter.
If all you do is mark a class like that, all of its fields are automatically
serialized without any further intervention. This is extremely programmer
friendly, but like most magical things when it doesn’t work it really
doesn’t. In our case, the problem was the size of the files, it was just way
too big for us.
The logical solution was obvious: in theory, not all of the data members
need to be saved, and in our case that was particularly true: our objects are
geometric figures and they cache a lot of information like bounding boxes,
polygonal approximations, lengths, areas, etc. none of them need to be
saved since they can be recomputed on load.
Well, it turns out that you can mark fields with the [NonSerialized]
attribute which prevents them from being saved and loaded. However, the
deserialization process simply ignores them so this attribute alone is not
enough if those fields are dependent, that is, their values must be computed
after the other fields have been loaded. In that case, you must also
implement the IDeserializationCallback interface which defines
the method OnDeserialization called for each deserialized object after
the complete object graph has been deserialized:

[Serializable] class Circle : IDeserializationCallback
{
 void OnDeserialization(object Sender)
 {
 m_area = Math.PI * m_radius * m_radius;
 }
 double m_center_x, m_center_y, m_radius;

 [NonSerialized] m_area;
}

If you make any change to a [Serializable] class and the Formatter
finds a mismatch between the current class fields and the saved fields it
will throw a SerializationException, even if the mismatch is just a
field removed in the current class. Unfortunately, classes often change
after they start being serialized. When that happens, you just need to ask
.Net to hand you total control of the process.
When a [Serializable] class implements the ISerializable
interface it makes itself completely responsible for the serialization/
deserialization process. It is totally up to you to match the data saved and
loaded with the object’s state. This method allows you (and requires you)
to fill in a dictionary called SerializationInfo, which is what the

I

Fernando Cacciola Born and living in Argentina, Fernando
has been producing software since 1984. In 2003 he became
a freelancer and founded SciSoft, currently contracted by US
and European companies. He is a developer of the Boost
(www.boost.org) and CGAL (www.cgal.org) projects. Visit his
home page at http://fcacciola.50webs.com
6 | Overload | August 2006

FEATUREFERNANDO CACCIOLA
Formatter actually stores in the Stream as a representation for your object.
You still need to mark the class as [Serializable] though because
interfaces don’t define constructors and the ISerializable interface
only defines a method used on save but doesn’t provide the deserialization
counterpart, a constructor that takes a SerializationInfo dictionary to
restore the object state from the loaded data. See Listing 1: Implementing
the Iserializable interface.
There are other low-level facilities in .Net serialization that won’t be
discussed in this article, like SerializationBinder objects that allow
you to instruct the Formatter to map a saved type to its current counterpart,
or SerializationSurrogate objects that you can use to serialize closed
third-party types.
.Net serialization version 1.1 almost worked for us, but its weakness was
that it offered two opposing extremes: total automation with no control at
all with [Serializable] alone, or complete control with no automation
at all with the interfaces and the helper objects. We felt like Reflection
could be used to provide something in between that mixes automation and
control.
After we invented our own framework, .Net 2.0 was released and .Net
serialization was extended precisely to better use Reflection to give you
some control without losing automation. The additions in .Net 2.0 are:
The data member attribute [OptionalField] which instructs the
Formatter not to throw if this member is missing in a saved file.
And the method attributes [OnDeserialized], [OnDeserializing],
[OnSerialize] and [OnSerializing] which let you hook on the 4
stages of the process and change your object’s state if necessary.
However, we believe that the concepts and mechanisms developed in our
framework are worth describing even with the .Net 2.0 Serialization
extensions available.

CODEF/CML 101:
The main reason why we needed to implement ISerializable was to
control which data members to serialize in order to reduce file size.
Eventually we realized that the .Net serializer was using Reflection to
detect [Serializable] classes and to automatically read the object
fields, save them, then read and set them back to a newly created object.
But reflection can be used even further to mark, in the code, which data
members to serialize, so we created CODEF/CML as a replacement for
.Net serialization.
All objects have a value (or state if you like), and two objects which are
not equal are equivalent if they have the same value (or state).
Serialization can be viewed as the process of transferring the value of an
object into another, where transferring here necessarily involves getting
the value of an object, storing it into a medium, then extracting the value
out of the medium, and setting the value into the receiving object (via
initialization or assignment).
Under this view, copy-construction and assignment is not a form of
serialization because the value is transfered directly and not indirectly
through an external medium. On the other hand, saving/loading objects to

a file, transmitting them across a boundary, and even cloning an object
indirectly stepping through an external medium are all forms of
serialization.
From that characterization, serialization can be considered as the
composition of two layered processes. On the bottom layer there is the
process of getting the value out of one object and setting the value into
another object. On the top layer there is the process of storing the value of
an object into an external medium and extracting that value back out of
the medium. Such a decomposition is useful because it decouples the get/
set step (bottom layer) from the store/extract step (top layer), allowing the
top layer to be provided by different agents, like one storing/extracting
values to and from a file and another transmitting/receiving values over a
channel.
This decomposition implies that values are themselves objects, so the
bottom layer can be seen as a metadata codec as it encodes and decodes
the value of an object into metadata about it. The top layer can be seen itself
as another codec as its encodes and decodes the metadata about the value
of an object into some arbitrary specific code (a domain-specific XML for
example).
You can see that these layers are implicitly present in many existing
serialization frameworks. For example, in .Net the SerializationInfo
object that is the metadata, which is used by different “top layers” like the
BinarySerializer or the XmlSerializer.

[Serializable] class Circle : ISerializable
{
 private Circle(SerializationInfo aInfo,
StreamingContext aContext)
 {
 m_center_x = aInfo.GetDouble("m_center_x");
 m_center_y = aInfo.GetDouble("m_center_y");
 m_radius = aInfo.GetDouble("m_radius");

 m_area = Math.PI * m_radius * m_radius;

 }

 public void GetObjectData(SerializationInfo
aInfo, StreamingContext aContext)
 {
 aInfo.AddValue("m_center_x", m_center_x);
 aInfo.AddValue("m_center_y", m_center_y);
 aInfo.AddValue("m_radius" , m_radius);
 }

 double m_center_x, m_center_y, m_radius, m_area;
}
 };

Listing 1
August 2006 | Overload | 7

FEATURE FERNANDO CACCIOLA

CML is similar to the XML files produced by
.Net’s SoapFormatter but is more compact
When designing our framework I decided to formalize and even name
these two layers:

CODEF
The bottom layer is called CODEF, which stands for Compact Object
Description Framework.
CODEF uses two separate objects as metadata: descriptors and models. In
conjunction, they codify the value of an object. Thus, CODEF encodes
such a va lue as a pa i r (desc r ip to r+model) and decodes a
(descriptor+model) as a value set into a new object which CODEF
instantiates.
A descriptor describes the type of the object in a generalized format. It is
basically a list of data member fields along with some flags and some
method fields . CODEF uses reflection to create descriptors automatically.
A model describes the value of an object in a generalized format. It is
basically a list of named values (it is equivalent to SerializationInfo).
CODEF uses reflection to create models automatically.
The intersection between models and descriptors is the name of the data
member field. That name matches each entry in a descriptor with the
corresponding entry in a model.

CML
The top layer is called CML, which stands for Compact Markup Language.
CML encodes CODEF models as XML files, and decodes appropriate
XML files back as CODEF models. We used XML as the final encoding
not to interoperate with open standards, like SOAP, but to allow us to
inspect saved documents in a text editor in case of versioning problems.
This turned out to be very useful as I was able, many many times, to find
out in a snap why some old file couldn’t be loaded back with the current
code. Our application compresses the CML text file using ZLib to produce
small files (3 times smaller, on average, than what we had when we started)
CML is similar to the XML files produced by .Net’s SoapFormatter but
is more compact because it doesn’t follow all the SOAP protocol (that was
not our goal).
Consider the following types:

class Point { int x,y }

class Bbox
{
 Point bottom_left;
 Point top_right;
}

class Figure
{
 Bbox bbox;
}

In CML this will look similar to this:
<Figure bbox.bottom_left="0,0" bbox.top_right="5,5"/>

Instead of this:
<Figure>
 <Bbox host="bbox">
 <Point host="botton_left">0,0</Point>
 <Point host="top_right">5,5</Point>
 </Bbox>
</Figure>

If you have ever seen serialization-based XML files you are likely to be
familiar with the second verbose form but not with the first compact form.
The first thing to notice here is that CML can use XML attributes instead
of XML elements, even for data members (the XML attributes are those
name="value" tags right after the Figure markup).
If you look closely enough, you’ll notice that the CML attributes,
bbox.bottom_left and bbox.top_right, placed in the context of the
encoding for the value of a Figure object, refer to a data member of a data
member. That is, CML can encode the value of a data member nested any
level deep directly from the root object as an XML attribute of the form:
"data_member.sub_data_member.sub_sub_data_member.····=
value"

Using CODEF/CML
Listing 2 shows some sample illustrative user code.
CODEF/CML is based on Reflection, but in order to keep it simple, it
doesn’t attempt to analyze each and every type in the system (though it
could as Reflection permits that). Instead, you need to explicitly tell the
framework which types it should cover. That is the purpose of the
[Described] attribute prepended to the definition of the Point and
Circle types.
As I’ve already mentioned, the main goal of CODEF/CML is to allow you
to decide which data members must be saved. Hence, only those data
members explicitly marked with the attribute [DField] are modeled (thus
serialized by CML).
A CODEF descriptor object contains a list of DField objects, each one in
turn encapsulating a .Net reflection’s FieldInfo object which essentially
contains all the needed information about a data member (including
methods to set and get its value).
A CODEF model object contains a list of MField objects, each one it turn
encapsulating a string with the field’s name and an object with the
field’s value. There is no type information in a model’s MField, but each
MField is implicitly associated to the corresponding descriptor’s DField
by the field name. Together, a descriptor and a model completely codifies
an object’s value.
Each data member you mark as [DField] contributes a DField+MField
pair in the encoding. Those data members which are not marked as
[DField] are simply left out completely.
8 | Overload | August 2006

FEATUREFERNANDO CACCIOLA
When CODEF needs to set the decoded value into a new object it uses the
default constructor to instantiate the object and then it sets each DField
automatically via reflection. Since the unsaved fields may depend on the
saved fields (they usually do), CODEF calls the method marked with the
attribute [Fixup], if any, whose job is to recompute the unsaved
dependent data members. This method can be private and can be named
any way you like (because CODEF detects the method by its attribute, not
by name).
The attribute [InPlace] is parsed by CODEF and merely becomes a flag
in the corresponding DField and MField. CML then interprets that flags
as indicating that the value must be encoded as an XML Attribute of the
parent Element.

Versioning issues
Serialization, as a process, can be considered as the transfer of values from
a sender object to a receiving object, with a dimension of time or space in
between. Requiring the class definitions of the sender and receiver objects
to match exactly is a desirable but largely unfeasible goal: I’ve never had
the luxury of working on a system for which serialization facilities were
added after the object model for the system was completely finished. In
practice, you start serializing objects whose structure keeps changing after
the first files are saved. Even if initially you simply do not support old files,
sooner or later, earlier end users like testers begin to save files with objects
still under development.
Versioning is the term used to refer to all the synchronization required to
match the design subspace of the sender with the design subspace of the
receiver. I speak of design subspace instead of class definitions because
in some extreme scenarios the two subspaces might contain totally
unrelated classes.
To my knowledge, the only systems that are capable of totally matching
completely unconnected design subspaces are those which communicate
via a high level generalized code. The best example that comes to mind is
HTML and all its derivatives, from XML to SVG.
In classical versioning, problems appear when you start changing
serializable classes but you need to read files saved with the old definitions.
The simplistic solution is to populate the design space with the history of
changes: that is, you never really change class A, instead, you create a new
class B to replace it. Although this makes versioning a complete non-issue,
it is, like most simplistic solutions, totally useless: imagine the design
space after years of changes in a system with 200 (active) classes.
Class definitions continuing to change after 2, 5 or 10 years is not at all
uncommon. In fact, it’s called refactoring and is the best thing that can
happen to old source code.
In versioning there are 3 archetypal scenarios of increasing complexity:
The first scenario is when you delete or add serializable data members to
a class. This can be handled easily in most serialization frameworks:
Deleted data members are extracted back but just left unset (because they
are no longer in the class), and new data members are simply not extracted
at all and you need to explicitly give them a sensible default.
Scenario 1 In the .Net framework, if you use the automatic approach (simply
marking a class as [Serializable]) you’ll get an exception whenever
the current class definition contains data members that were not saved, but
in the low level approach you can simply set the new data members to a
default value in the serialization constructor (the one taking a
SerializationInfo as a parameter).
Traditionally, a version number is saved along with every object so you
can know, on load, which class definition was used when that data was
saved. Unfortunately, version numbers are extremely error prone since it
is totally up to you to relate a number to a particular historical class
definition. Using version numbers successfully requires an uncommon
discipline as you need to keep proper record of the definitions for each
number, which in practice means a lot of side work whenever you change
a class.

Using the low-level .Net serialization approach you can add the version
number to SerializationInfo even if that is not really part of the
object.
Alternatively, using .Net serialization, you could also enumerate each
entry in the SerializationInfo and match that, programmatically via
reflection, with the actual data members in the class, setting only matching
members.
Scenario 2 The second scenario is when the type of a data member changes,
or the name of a type changes. This typically breaks most serialization
frameworks, like .Net serialization, because the type of each value is saved
so that the loader can read the value back (even if the static type of a value
is generic, like “object”, its dynamic type must be concrete and the loader
needs to know which is it).
Scenario 3 The third scenario is when the design space changes radically
(entire class hierarchies are replaced with new ones). The best and possibly
only solution here is to keep the old classes around, read them, and make
all the necessary conversions.
Scenario 4 There is a fourth scenario that is actually outside the domain of
any serialization framework but which is related to serialization
nevertheless: when serialized objects hold non-serializable objects. A non
serializable object could be a Bitmap, or a Font, or some opaque third-party
type whose state is hidden to the application. In these cases you cannot, or
would not, save the actual object’s state, so instead you save something,
like a file name, or a string concatenating a Font Family name and Style,
that, in your application, refers to the object. On load, typically as a global
postprocessing stage after all the objects have been read back, you set the
actual object within its parent locating it using the saved reference.

CODEF/CML Versioning facilities
I’ve described how CODEF uses both models and descriptors, and you
might have asked why two separate objects with an implicit
correspondence and not just one, like SerializationInfo?
Simple: to simplify some versioning issues. How? Because descriptors are
always current. That is, when you load a class, both CML and CODEF uses
the descriptor of the current definition of the class. Unlike any other

[Described] public struct Point
{
 public Point() {}

 public Point(float x_, float y_) { x = x_; y =
y _; }

 [DField] float x,y;
}

[Described] public class Circle
{
 [Fixup] object OnLoad()
 {
 perimeter = 2 * Math.PI * radius;
 area = Math.PI * radius * radius;

 return this;
 }

 [DField] [InPlace] Pen pen;
 [DField] [InPlace] Point center;
 [DField] float radius;

 double perimeter;
 double area;

 Circle() {} // CODEF needs a default ctor,
 // but it can be private
}

Listing 2
August 2006 | Overload | 9

FEATURE FERNANDO CACCIOLA
serialization framework I’ve ever seen, the loader is not tied to the
potentially outdated description of a class that is stored in a saved file.

Removed and New data members:
Since descriptors are always current, CODEF knows when a saved MField
(from the saved model) no longer matches a current DField (because a
data member was removed) so it just ignores it. It also knows when there
are unmatched DFields, that is, new data members. In this case though
our current implementation simply assumes that the default constructor
gives ALL fields a sensible default, so it also just ignores unsaved new data
members.
CODEF always calls the default constructor to instantiate a new receiving
object before the saved fields are set. This is suboptimal, yes, because
saved fields are first initialized with a default value and then assigned their
actual values. We just didn’t consider this issue critical enough to
complicate the design specially considering that managed objects, unlike
unmanaged C++ objects, use a memory model in which all data members
are initialized, either to zero or to the default value given in the member
definition, before any constructor is called (thus you just cannot use a
special constructor that does nothing as you could in unmanaged (pure)
C++). [I do not know if the compiler optimizes away the default
initialization of data members which are explicitly assigned in the
constructor.. but I guess not]

Implicit typing:
Recall the figure example:
<Figure bbox.bottom_left="0,0" bbox.top_right="5,5"/>

If you look even closer than before you’ll notice that there is only one type
there: Figure.
When CML parses that line back it knows it has to produce a model for
an object of type Figure, so it uses CODEF to get a descriptor of Figure.
This descriptor is always up-to-date with the current definition of Figure.
That Figure descriptor tells CML that, currently, a Figure has a field
named bbox of type BBox. Similarly, CML gets a current descriptor for
BBox so it knows that a BBox has two fields named bottom_left and
top_right of type Point. As you can see, it doesn’t at all matter which
type bbox and its own members had when this was saved.
Normally, as in .Net serialization and every serialization framework I’ve
ever seen, the saved data explicitly encodes the concrete type of the value
being saved to allow the loader to regenerate the object that corresponds
to that value. This introduces what I call an early type binding: by the time
you get the value from the loader it is already of a concrete type that is
defined by the saved data instead of the variable that is receiving it.
However, since the type of the saved value must be, necessarily,
constrained by the declared type of the variable that will receive the value
on load, such early type binding can be worked around, in some cases,
using descriptors as the loader knows the current declared type of the
receiving variable and can use it to regenerate the object.
Suppose you have the following struct:
[Described] struct Point
{
 public Point() {}
 public Point(float x_, float y_)
 { x = x_; y = y _; }
 [DField] float x,y;
}

The data member fields x and y are not polymorphic so the objects
reconstructed by the loader must be of type float, and CODEF knows
that because the current descriptor says so. Consequently, there is no need
at all to include the type in the serialized data. This not only saves space,

which is significant by itself, but it also allows you the change the type of
x,y provided that the encoded values of x,y (strings in the case of CML)
can be decoded back into the new type. For example, you can change
float to double and it just works, without any extra work on your part.
You might be thinking that you can also change float to double using
the .Net serializer since you can simply convert the float read back to a
double at the point where the value is assigned to the data member. That’s
correct and you can always use a conversion to handle type changes, but
using the currently declared type of the receiving variable might skip the
conversion altogether (as in the float->double case above).
Unfortunately, the declared type of the receiving variable cannot always
be used to reconstruct the saved object so CODEF cannot always omit the
type in the saved data. One case is when the declared type is explicitly or
implicitly just object (implicitly is the case of a container like
ArrayList). Another case is when the declared type is polymorphic:
when the declared type of the variable is Base, but the concrete type of
the object held by the variable is Derived.

Described and non-described types:
CODEF/CML fully understands only [Described] structs/classes (but
this is by design and not an inherent impossibility since via Reflection you
can create a descriptor/model for any type in the system). Non-described
types are classified in 3 groups: containers, primitive types and everything
else. CODEF/CML needs to detect containers because it has to encode the
values of the contained objects differently than it does for data-members
(there is no field “name” for instance).
Primitive types are detected as such because if the type is declared in a data
member field (that is, the primitive value is not stored in a container or
boxed in an object) CML does not need to encode this type (it is left implicit
in the CML file). For everything else, for which CODEF has nothing to
say, CML has no choice but to encode the concrete type, even if it is not
polymorphic.

 The Textualizer
Values of a non-described type are atomic from the CML point of view
(CML cannot access its structure without a descriptor for it). In a CML file,
atomic values are rendered as a single XML text.
The process of converting an arbitrary value to and from a string is far from
trivial. In fact, the whole serialization framework can been seen as doing
just that. I call that process textualization: A value can be textualized, that
is, encoded as a string; and can be detextualized, that is, parsed back from
a string. Textualization is not exactly the same as conversion to/from
string. The difference is that textualization requires the conversion to be
round trip: that is, detextualize(textualize(val))==val must
hold for any value val. This requirement is often not fulfilled by string
conversion functions.
The fundamental problem of textualization in CML is that it needs to
textualize values of arbitrary types, including those it knows nothing about
(though it could using reflection). For that reason, CML doesn’t handle that
at all. Instead, it uses a special singleton object called Textualizer,
which can be seen as a side-product of the framework.
The textualizer knows how to textualize values of primitive type (it uses
.Net XmlConvert for that). For other types you can either implement the
in ter face ITextualized or regis ter , non- in t rus ive ly , an
ItextualizedSurrogate (Listing 3).
In CML, values of type Pen are rendered as a single string which is even
more compact that using [Described] (that’s why there is this option)
If the type is third-party you must implement the textualization agent as a
separate class and register it with the Textualizer, Listing 4:

The TypeMap
Except in the case of implicit typing of unboxed primitive types, CML
needs to encode a Type as a string and get a Type back from its string ID.
This is similar to the textualization problem except that the object that
needs to be recreated from a string is a Type.

The process of converting an
arbitrary value to and from a string
is far from trivial
10 | Overload | August 2006

FEATUREFERNANDO CACCIOLA
Given an object t of type Type; t.FullName is a string encoding that is
guaranteed to fulfill the round-trip requirement when used as an argument
to its counterpart method: Type.GetType(string).
This should be enough; but it isn’t, because Type.GetType() returns null
if the Type is in a different Assembly (DLL) than the one calling that
Type.GetType().
To get back a type from its FullName encoding you need to search for it
in all the Assemblies of your application.
Again, CML itself doesn’t handle this but instead it relies on a TypeMap
to do that.
A TypeMap is anything implementing the following interface:

 public interface ITypeMap
 {
 Type GetType(string aID);
 }

When you call CML.Read() to load a file you must pass some ITypeMap
to it.
Typemaps are chained and the GetType() request is passed down the
chain until someone returns a non-null Type. The current framework
implementation comes with an ExplicitTypeMap, a SystemTypeMap
which merely returns Type.GetType(aID), and an AssemblyTypeMap
which searches the type in the entire system in case none of the other maps
find it.
The ExplicitTypeMap, normally the first in the chain, is there to help
with a sort of versioning issue which is typically a huge problem when it
shouldn’t: type renaming. If the saved data speaks of type “animal” but
the current class name is “Animal”, you’re in trouble even if that’s the only
thing that changed. But what if you could tell CML that “animal” is now
called “Animal”?. Well, you can… using an ExplicitTypeMap
registering with the Type that corresponds to a given string ID.

CML Encoding
The job of CODEF is to encode and decode types and values in a
generalized form: descriptors and models. But that’s just half the story. The
job of CML is to encode and decode types and objects, using CODEF
descriptors and models when it can, into an XML-like text file.
CML encodes objects based on the following rules which apply recursively
to each distinguishable subobject.
If the object was already rendered as XML, then it has an Instance ID
(administered by CML) and is encoded as an XML Element: <HostField
href="#instanceID /> o r an XML At t r i bu t e :
HostField=#instanceID. HostField is the name of the corresponding
data member field on the parent object (if any, items in a container for
instance have no host field).
The choice between an XML Element or Attribute is given by the InPlace
flag of the field (controlled via the [InPlace] attribute).
If the object is modeled, which means that its dynamic type is described
and CML can create a model for it via CODEF, it is encoded as an XML
Element:
<ConcreteTypeName id="#instanceID" host="HostName">
along with XML Attributes or XML Elements corresponding to each
MField (each data member).
If the object is unmodeled but is a container, it is encoded as an XML
Element:
<ConcreteTypeName id="#instanceID" host="HostName">
along with XML Elements for each item in the container.
If the object is unmodeled but its declared type is primitive but not object,
it is encoded as an XML Attribute: "HostField=textualized-value"
If the object is unmodeled but its declared type is object or non primitive,
it is encoded as an XML Element:
<ConcreteTypeName id="#instance" host="HostField">
textualized-value</ConcreteTypeName>.

CML
Decoding
Upon decoding, CML must regenerate objects, and for that it needs to get
to its type first. If the CML encoding includes the type, as is always the
case except for primitive unboxed fields, CML uses the TypeMap it
receives to get the Type of the saved value. If the type is implicit, CML
uses the HostField to lookup the corresponding DField in the
descriptor of the parent object to get to the needed type.
If the object to be regenerated is modeled (that is, its type is described),
CML decodes the XML Element creating a model object out of it and
passes that to CODEF to complete the regeneration. If the object is not
modeled, CML decodes the XML Element or Attribute using the singleton
Textualizer to detextualize the string which is encoding the value into the
resulting object.
Each regenerated object of reference-type (instead of value-type), which
always has an instance ID, is kept in a dictionary with its ID as key. Thus,
if the XML Element or Attribute is a reference to an instance ID, the object
is just taken from the dictionary.

Mismatch handling and additional versioning features
 CML uses the HostName to lookup a matching DField in the
descriptor of a parent class. If there is no such DField the value is just
ignored (as it normally corresponds to a data member deleted from the
class), unless the struct/class contains the following special method:

[SetField] void SetField (Type aType, string aName,
 object aValue);

which is then called for any mismatching value.
If there is a DField for a particular MField (that is, the data member still
exists) but the concrete type of the data member object (as encoded in the
CML) is not a subtype of the declared type of the DField, CODEF throws
a TypeMistmatchException unless the class has a SetField method,
in which case it just calls it, passing the saved type as the aType parameter
and letting that method take care of the conversion.
You can tell CODEF to call SetField directly without testing if the
regenerated data member object is of the right type by marking the data
member as [ManualSet]. By itself this isn’t very useful, but it is when

interface ITextualized { string Textualize(); }

public struct Pen : ITexutalized
{
 public Pen(uint color_, int width_)
 {
 color = color_;
 width = width_;
 }

 public string Textualize()
 {
 return Color.ToString() + “,” +
Width.ToString();
 }

 static public object Detextualize(string aTextual
)
 {
 string[] lTokens = aTextual.Split(“,”);
 uint Color = int.Parse(lTokens[0]);
 int Width = int.Parse(lTokens[1]);
 return new MyPen(Color,Width);
 }

 uint Color;
 int Width;
}

Listing 3
August 2006 | Overload | 11

FEATURE FERNANDO CACCIOLA
you also mark the data member as [ManualGet]. ManualGet tells
CODEF to simply bypass itself and do not encode the data member value
in any way (as a model for instance). Instead, CODEF calls the following
special method:

[GetField] object GetField (string aName,
 object aValue)

and lets you encode the object that CML will see and recreate.
The attributes [ManualSet] and [ManualGet] can be shortcut if used
together as simply [Manual]. Manual fields are useful for data members
that just can’t be serialized via its data members, or for third-party objects
which can’t be serialized by textualization (CML will just textualize
unmodeled objects).
A last but still interesting CODEF feature is the fact that the Fixup method
returns an object. This is necessary because CODEF/CML automatically
set data members unless they are marked as ManualSet. The object
returned by the Fixup method allows you to keep a data member automatic
even if its type changed critically.

Consider the follow scenario:
At some point in time you have a Collection class, with some
complex structure, and lots of files saved with that in. But then, later
on, you refactor the design and the Collection class is replaced by
a Group class which is totally different. You just have to keep the
Collection class around (a stripped down version actually) so that
CML can regenerate objects of that type when they are found in
CML files. But that’s not sufficient by itself: Data members that
used to be of type Collection are now of type Group, so you need
a way to convert a Collection read from an old file into a Group
before assigning it to the data member. We already saw a case of
type change that was handled by implicit typing, but implicit typing
applies to declared primitive types only... here you need an explicit
conversion.
Using .Net serialization you would solve this by explicitly converting
a Collection object extracted from a SerializationInfo to a
Group object right before the assignment. In CODEF, all you need
to do is to add a Fixup method to the deprecated Collection class
that converts itself to a Group. That’s it.
The advantage of this is that the conversion is in the Collection
class itself, and is always called by CODEF right before setting any
field that used to be a Collection but now is a Group. This way,
you just can’t forget to add the conversion in a particular parent
class, as you could using the .Net framework.

Future directions
CODEF/CML was developed to solve a specific problem during the
lifecycle of a real application. It had concrete goals and was constrained
by fixed resources (time). There are a number of improvements and open
issues that become evident when you look back at the whole thing.
One of them is that fact that CODEF uses reflection but only on
Described types. The idea was to avoid overloading the system with too
much reflection, but I wonder now if given the fact that descriptors and
models are generated on-demand from the set of types that are requested
to be saved, if it really is a big overload to simply reflect on every type so
that everything becomes described and all objects modeled. In our
Application that is not really a problem because our design space is almost
completely proprietary. We use at most 3 or 4 third-party simple structs,
period; everything else comes from our own code.
But in most applications that’s a very unlikely case.
The [Manual] attribute and the GetField/SetField method used with
it is intended to give you some support for third-party types that can’t be
simply textualized (encoded as a string). Again, that totally worked for us
because we just don’t use third party objects except a few, and those are
so simple that they can be textualized without trouble, but a better approach
would be that you can register some form of CODEF agent that allows you
to manually create CODEF models (and maybe even descriptors although
these contain special Reflection types that can only be obtained via
reflection).
CML needs textualization to get to and from the ultimate text
representation, but it uses it for other things too. One of them is to handle
types unknown to CODEF, yet, if CODEF is extended as proposed above
this use of textualization won’t be needed anymore.
Another usage of textualization in CML is to force compactness: If you
go back to the textualizer example, you’ll notice that the Pen class could
have been Described instead of Textualizable. True, but if you want
some type, possibly with 2 or 3 data members, to end up in CML as a single
string, you just have to do that, but this is really an abuse of the current
design. A much better approach is to let you register with CML your own
codec for a given type. This would be similar in essence to the CODEF
agents proposed above but it would be responsible for creating the XML
elements that end up in the CML file (or part of them since some XML
parts are mandatory).

 public interface ITextualizedSurrogate
 {
 string Textualize(object aO);
 object Detextualize (string aTextual);
 }
 public class Color_TextualizedSurrogate :
 ITextualizedSurrogate
 {
 public string Textualize(object aO)
 {
 return TextualizeColor((Color)aO);
 }
 public object Detextualize (string aTextual)
 {
 return DetextualizeColor(aTextual);
 }
 static public string TextualizeColor(
 Color aColor)
 {
 uint lColorValue = ((uint)aColor.A << 24)
 +((uint)aColor.B << 16)
 +((uint)aColor.G << 8)
 +((uint)aColor.R);
 return XmlConvert.ToString(lColorValue);
 }
 static public Color DetextualizeColor (
 string aTextual)
 {
 uint lColorValue =
 XmlConvert.ToUInt32(aTextual);
 byte lA =
 (byte)((lColorValue & 0xFF000000) >> 24);
 byte lB =
 (byte)((lColorValue & 0x00FF0000) >> 16);
 byte lG =
 (byte)((lColorValue & 0x0000FF00) >> 8);
 byte lR =
 (byte)((lColorValue & 0x000000FF));
 return Color.FromArgb(lA,lR,lG,lB);
 }
 }
 Textualizer.RegisterSurrogate(typeof(Color),
 new Color_TextualizedSurrogate());

Listing 4
12 | Overload | August 2006

FEATUREALEXANDER NASONOV
Fine Tuning for lexical_cast
Alexander Nasonov takes a look at Boost’s
lexical_cast and addresses a common user
request: “make it go faster”.
 few weeks ago I created a patch that reduces a size of executable
when arrays of different sizes are passed to lexical_cast. I sent
the patch to Kevlin Henney and to a maintainer of lexical_cast

Terje Slettebo. To my surprise, nobody is actively maintaining
lexical_cast anymore. Terje kindly asked me to take a maintainership
and I did.
To those of you who have never used boost::lexical_cast before, this
is a function that transforms a source value of one type into another type
by converting the source value to a string and reading the result from that
string. For example, if the first argument of a program is an integer, it can
be obtained with int value = lexical_cast<int>(argv[1]) inside
the main function. For more information, refer to [Boost].
There were several requests from users and I, as the maintainer, should
consider them. The first request that I recalled was to improve the poor
performance of the lexical_cast. Inspection of the boost/
lexical_cast.hpp file showed that an argument of lexical_cast is
passed to an internal std::stringstream object and a return value is
constructed by reading from that std::stringstream object. It is well
k n ow n a m on g C + + p ro g ra m m e r s t ha t a cons t ruc t ion o f
std::stringstream is slow. This affects performance significantly
because the object is created to format one value every time the
lexical_cast function is called.
In the general case, not much can be improved but specialized conversions
can be optimized. One example is where this can be done is
lexical_cast<char>(boolean_value), which could be expanded to
'0' + boolean_value if this combination of types was supported.
Another example is a conversion from an integral type to std::string.
It could be as fast as

std::string s = itoa(n); // n is int

I wish I could add a specialization that handled this case but itoa is not
a standard function. The sprintf function might be an option but it
formats differently compared to std::ostringstream and it also might
be painful to mix C and C++ locales.
Sounds like I should implement a function similar to itoa. No problem.
Though it’s always good to study the subject before coding.
Some might argue that coding activity should be driven by tests. Well,
that’s a great approach but even having an excellent test suite doesn’t
guarantee that your code is bug-free. One goal of code analysis is to explore
new test cases. You will easily recognize them during the course of the
article.
Actually, the lexical_cast is shipped with a test (see libs/
conversion/lexical_cast_test.cpp in Boost tree). It will help not
to make a silly mistake but is not enough for checking hand coded
conversion from an integral type to std::string because the test relies
on correctness of std::stringstream code.

Analysis of several itoa implementation
There are several open-source UNIX distributions available ([FreeBSD],
[NetBSD] and [OpenSolaris]) that include a code of itoa-like functions.
I should make it clear that I’m not going to copy code between projects.
Even if both projects are open-source, there are might be some
incompatibilities between licences that don’t let you redistribute mixed
code under one licence. I only analyzed algorithms and pitfalls of
implementations.
Some implementations of itoa look similar to this code:
char* itoa(int n)
{
 static char buf[12]; // assume 32-bit int
 buf[11] = '\0';
 char *p = buf + 11;
 int negative = n < 0;

 if(negative)
 n = -n;

 do {
 *--p = '0' + n % 10;
 n /= 10;
 } while (n);

 if(negative)
 *--p = '-';

 return p;
}

This code is plainly wrong. More precisely, -n has an implementation-
defined behaviour. On 2s-complement systems, a negation of INT_MIN
overflows. On systems where integer overflow doesn’t interrupt a program
execution, a result of INT_MIN negation is INT_MIN.
This fact has an interesting consequence for the algorithm. The first
argument of the n % 10 expression is negative, therefore, a result of this
expression is implementation-defined as per section 5.6 bullet 4 of the
standard [1]:

If both operands are nonnegative then the remainder is nonnegative; if
not, the sign of the remainder is implementation-defined

On my FreeBSD-powered Pentium-M notebook, this function returns:
 "-./,),(-*,(". This is definitely not a number!

A

Alexander Nasonov has been programming in C++ for
over 8 years. Recently his interests expanded to scripting
languages, web technologies and project management. A
few months ago he became an occasional blogger at
http://nasonov.blogspot.com. Alexander can be contacted
at alexander.nasonov@gmail.com.
August 2006 | Overload | 13

FEATURE ALEXANDER NASONOV

serialization can be considered as the
composition of two layered processes
So, I threw this version away and went to the next implementation:
char* itoa(int n)
{
 static char buf[12]; // assume 32-bit int
 buf[11] = '\0';
 char *p = buf + 11;
 unsigned int un = n < 0 ? -n : n;

 do {
 *--p = '0' + un % 10;
 un /= 10;
 } while (un);

 if(n < 0)
 *--p = '-';

 return p;
}

It still applies unary minus to int type but the result is immediately
transformed into unsigned int. This makes a big difference compared
to the previous code. According to [1] 4.7/2, a conversion of some value
v to unsigned type is the least congruent to v modulo 2^N, where N is a
number of bits used to represent values of the target type.
In other words, v belongs to one equivalence class with v + 2^N, v +
2^N + 2^N, v + 2^N + 2^N + 2^N and so on. By common convention,
values within [0, 2^N) are used to represent classes of equivalent values.
Negative numbers are outside of this range and therefore, 2^N should be
added to convert them to unsigned type1. For example, n=INT_MIN in
2s-complement representation is -2^(N-1). This number is equivalent to
-2^(N-1) + 2^N = 2^(N-1). Therefore, un is equal to an absolute value
of n.
To get rid of implementation-defined behaviour of the -n expression, the
line:

unsigned int un = n < 0 ? -n : n;

can be replaced with:

unsigned int un = n;
if(n < 0)
 un = -un;

It has already been discussed that a conversion in the first line has well-
defined behaviour. Negative number n is converted to unsigned value n
+ 2^N, other values become unsigned by trivial conversion.
The third line operates on unsigned type and therefore, obeys modulo
2^N arithmetic as per 3.9.1/4 of [1]. This means that a value of un after
assignment is equal to -(n + 2^N) = -(n + 2^N) + 2^N = -n. Since
n is negative, -n is positive and we can conclude that un is equal to an
absolute value of n.

A reader might wonder why we don’t just write unsigned int un =
abs(n)? The answer is the same. When an absolute value of n cannot be
represented by int, a result of abs function is implementation-defined.
Let’s move on to the next problems. Illustrated functions define static
char buf[12].
First problem is that it is assumed that int’s representation is not bigger
than 32 bits. A size of buf should be correctly calculated for all possible
representations:

static char buf[3 +
 std::numeric_limits<int>::digits10];

The number 3 is a sum of 1 byte for minus sign, 1 byte for trailing '\0'
and 1 byte for a digit not counted by digits10 constant.
A more generic formula for arbitrary integral type T is:

2 + std::numeric_limits<T>::is_signed +
std::numeric_limits<T>::digits10

The second problem with buf is that it is shared between invocations of
this function. You cannot call itoa from two threads simultaneously
because both calls would try to write at the same location – to the buf array.
There are several solutions. One can pass a pointer to a buffer of sufficient
length to itoa:

void itoa(int n, char* buf);

It introduces one inconvenience, though. Original itoa is very handy for
code like s += itoa(n). This modification would definitely break it
because prior to making a call, a buffer variable should be defined. For the
very same reason calling lexical_cast in-place is better then defining
std::ostringstream variable and performing formatting.
The idea is to return an array from itoa. Builtin C/C++ array cannot be
copied, so it should be wrapped into struct:

struct itoa_result
{
 char elems[12]; // assume 32-bit int
};
itoa_result itoa(int n);

The technique of wrapping an array into a struct can be generalized in C++.
We don’t have to do this though because boost::array2 is (quoting

1. This statement is not correct if the source type has more bits then N. For such
conversions, 2^N should be added repeatedly until the result is within [0,
2^N) range.

2. The class is under discussion for inclusion into the next version of the standard;
see N1836, Draft Technical Report on C++ Library Extensions.
14 | Overload | August 2006

FEATUREALEXANDER NASONOV

Although it’s tempting to turn itoa into a function
template, there is a good reason to leave it and
add overloads for other integral types instead
Boost documentation) STL compliant container wrapper for arrays of
constant size:

boost::array<char, 3 +
 std::numeric_limits<int>::digits10> itoa(int n);

A typical call of this function would look like this:

s += itoa(n).elems;

or, if you’d like to save a result in a variable that has a wider scope than
that of the temporary return value of itoa, take this route:

char buf[sizeof itoa(n).elems];
std::strcpy(buf, itoa(n).elems);

It’s interesting to note how buf is defined in the last example. There is no
magic formula to calculate a capacity to hold the int value, just the
sizeof applied to an array returned by itoa. It is much easier to
remember this trick then to recall the formula.

Unless you count every byte in buf, an access to elems in sizeof
expression can be omitted:

char buf[sizeof itoa(n)];

This might increase the size of buf slightly but this is not dangerous, while
it saves typing 6 characters.
Other improvements that can be applied to itoa are consistency with C++
streams and support for other integral types.
The first improvement is printing digits in groups delimited by a thousands
separator if the current locale has grouping. It is worth noting that this
increases the size of the buffer. Since the thousands separator is a char,
this change doesn’t add more then std::numeric_limits<int>
::digits10 characters to the buffer.
Integral types other then int are not different from an implementation
point of view. Although it’s tempting to turn itoa into a function template,
there is a good reason to leave it and add overloads for other integral types
instead. The fact is that some types cannot be used in templates. Such
things as bit fields and values of unnamed or local enumeration types are
incompatible with a template machinery.
That’s it. Definitely too much for the patch but we created a good ground
for another library.

Tuning for lexical_cast
As shown in a previous section, string representations of some source types
have a limited length that can be calculated at compile-time. For every such
type, we define a specialization of the lexical_cast_src_length
metafunction that returns that limit. For example:
template<> struct lexical_cast_src_length<bool>
 : boost::mpl::size_t<1> {};

template<> struct lexical_cast_src_length<int>
 : boost::mpl::size_t<2 +
 std::numeric_limits<int>::digits10> {};

A source value can be placed in a local buffer buf of appropriate length
without the overhead of std::stringstream class, e.g. a lexical
conversion of bool value could be a simple buf[0] = '0' + value
expression, likewise itoa could format an int value and so on.
Fine, the output phase is completed without calling to C++ iostream
facilities. Next is the input phase. Unlike the output phase, where a set of
source types is limited to those that have a specialization of
lexical_cast_src_length , a t a rge t t ype can be any
InputStreamable1 type. This means that we have to use C++ streams.
The implementation is straightforward. First of all, a streambuf object
is constructed, then its get area (setg member function) is set to point to
a location of formatted source value as shown in Listing 1.

1. A more correct list of requirements is InputStreamable,
CopyConstructible and DefaultConstructible

struct lexical_streambuf : std::streambuf
{
 using std::basic_streambuf<CharT>::setg;
};

// Adapted version of lexical_cast
template<class Target, class Source>
Target lexical_cast(Source const& arg)
{
 // Pretend that Source has a limited string
 // representation
 char buf[lexical_cast_src_length<Source>::value];
 char* start = buf;

 // Output phase ...
 // char* finish points to past-the-end of
 // formatted value

 // Input phase
 lexical_streambuf sb;
 std::istream in(&sb);
 sb.setg(start, start, finish);
 Target result;
 if(!(in >> result) || in.get() !=
 std::char_traits<char>::eof())
 throw bad_lexical_cast(typeid(Source),
 typeid(Target));
 return result;
}

Listing 1
August 2006 | Overload | 15

FEATURE ALEXANDER NASONOV

write down a list of Source and Target
types that have an optimized
implementation... all combinations should
be tested one by one
To solve a performance degradation of the generic solution, specialized
versions can be added. For example, if Target is std::string, the input
phase can be implemented in a single line of code:
 return std::string(start, finish);

Testing
It’s great that the library already has a test. We can safely assume that
combinations of Source and Target types that are dispatched to old
implementations are tested thoroughly. Some combinations of types that
trigger an execution of the new code are tested as well but we shouldn’t
rely on it.
The plan is to write down a list of Source and Target types that have an
optimized implementation. Then all combinations should be tested one by
one. Implementation details should be taken into account so that there are
no surprises like INT_MIN being formatted incorrectly or weird behavior
for some locales.
Completeness of the test can be verified by running the test under control
of a coverage tool. If some line is not hit, it’s a good hint for a new testcase.
The re i s one sma l l p rob l e m wi t h spec i a l i z a t i ons o f
lexical_cast_src_length metafunction, though. They don’t have
executable code at all. How do you check that some particular
special izat ion is in use? That’s easy, just define an empty
check_coverage function in each specialization and call it from a point
of use of the metafunction.

Benchmark
A conversion from int digit to char has been measured on FreeBSD 6.1.
The test has been compiled with gcc 3.4.4 with -O2 optimization flag
turned on.
#include <boost/lexical_cast.hpp>
int main()
{
 int volatile result = 0;
 for(int count = 1000000; count > 0; --count)
 result += boost::lexical_cast<char>(count % 10);
 return result;
}

The next table shows execution times of the test compiled with Boost
1.33.1 and with the patched lexical_cast. The last column is the
performance influence of not constructing std::locale and
std::numpunct<char> ob j ec t s and no t c a l l i ng
std::numpunct<char>::grouping function. This change is not
included into the patch because it is not consistent with the standard output
operator for int.

More common is a conversion to std::string. To measure performance
of this conversion, the for body in the test program has been replaced with
result +=
 boost::lexical_cast<std::string>(count).size();

The results are:

Conclusion
After careful tuning, the lexical_cast can run several times faster. I
hope that future versions of Boost will have an improved version. It will
likely happen in version 1.35.

References
[Abrahams] C++ Template Metaprogramming by David Abrahams and

Aleksey Gurtovoy, ISBN 0-321-22725-5
[Boost] The Boost Library, http://www.boost.org
[FreeBSD] The FreeBSD Project, http://www.freebsd.org
[NetBSD] The NetBSD Project, http://www.netbsd.org
[OpenSolaris] The OpenSolaris Project, http://www.opensolaris.org
[Standard] ISO/IEC 14882, Programming Languages – C++, Second

Edition 2003-10-15
Boost 1.33.1 Patch Ratio Patch that ignores locales

2.012 sec 0.322 sec 6.24 0.083 sec

Boost 1.33.1 Patch Ratio Patch that ignores locales

2.516 sec 0.844 sec 2.98 0.626 sec
16 | Overload | August 2006

FEATURESTEVE LOVE
C# Generics – Beyond
Containers of T
Steve Love takes a look at generics in C# v2.0, how to use
them to simplify code and even remove dependencies.
ne of the bigger differences between the latest version of C# and its
predecessors is the addition of Generics. This facility is in fact
provided and supported by the runtime (actually the Common

Language Infrastructure, or CLI, specification), and exposed in the
language of C# from version 2.0. Programmers already familiar with C++
templates or Java generics will immediately spot that they share a common
base motivation with C# – the provision of type-safe generic containers of
things. Syntactically they are similar, too, but it would have been grotesque
for C# to choose an entirely different syntax just to be unique. Where these
languages really diverge is in the implementation details. A discussion of
these differences is beyond the scope of this article; this isn’t a comparison
between languages, rather an exploration of what C# generics offer. If you
think that means you can do:
 public class Stack< T >
 {
 }

and
 private T Swap< T > (T left, T right)
 {
 }

well, you’re right, but that’s not the whole story. This article is for people
who already know you can do those things and are starting to wonder if
they can do anything else.

Groundwork
At its most basic level, using generics is about writing less code. At a
slightly higher level, it’s about saying what you mean in code. Without
generics, the contents of a list have to be manually cast from object to
obtain the real thing. With a generic list container, you write less code
because the casts are no longer required. A list container parameterised on
the type of its contents also says what it is right on the tin. Speak less, say
more.
The next thing generics give you is support from your compiler. If you try
to get an integer out of a container of strings, the compiler tells you you're
dumb. Defects like this, if left until the program runs, are much harder to
find and fix. Generics provide stronger type-safety. Wise programmers
depend on their compilers being smarter than they are, however smug the
error messages are.
Note that all the above is about using generic types, delegates, methods,
etc.. If you’re writing generic code, you need to invest a bit in allowing
the programmers using your code to write less code, say what they mean
and expect the compiler to spot their misuses. Given that often the “other
programmers” will be you later on, it’s worth every penny.

The example (nope – it’s not a stack)
Double Dispatch [Wiki] is a common pattern used to figure out the
concrete type of an object when all you have is an interface. The Visitor
Pattern is often used for this, but the intent of Double-Dispatch is different.

A common example is for Shape objects, and a basic implementation is
in Listing 1. For the purposes of the example, the ShapeHandler class
has a Receive method to stand-in for client code. The important point is
that the code needs to access the concrete Shape instances when it has only
a Shape interface available.
What’s worth paying attention to in this example is what would be required
if a new member of the Shape hierarchy gets added: the Handler interface

O

Steve Love Steve is a contract developer currently working in
C# targeting the .Net Compact Framework version 2. He can
be contacted at steve.love@essennell.co.uk

interface Shape
{
 void Accept(Handler handler);
}
class Circle : Shape
{
 public void Accept(Handler handler)
 {
 handler.Handle(this);
 }
}
class Square : Shape
{
 public void Accept(Handler handler)
 {
 handler.Handle(this);
 }
}
interface Handler
{
 void Receive(Shape s);
 void Handle(Circle c);
 void Handle(Square s);
}
class ShapeHandler : Handler
{
 public void Receive(Shape shape)
 {
 shape.Accept(this);
 }
 public void Handle(Circle c)
 {
 Console.WriteLine("Circle");
 }
 public void Handle(Square s)
 {
 Console.WriteLine("Square");
 }
}

Listing 1
August 2006 | Overload | 17

FEATURE STEVE LOVE

the whole point of using double-dispatch
is to vary the behaviour on the concrete
type of the object we have in hand
grows a new method, and the ShapeHandler implementation grows a
new method in sympathy. This isn’t too onerous, really, but it’s a nasty
dependency. All of the classes shown must be in the same assembly,
because to do otherwise would introduce a circular reference, which is not
allowed. In practice this means that the Handler interface is redundant.
We could just as easily use the concrete ShapeHandler object in the
Accept methods.
We can use C# generics to remove some of the code duplication in this
example, and more importantly, we can break the dependency between the
Handler interface, and the concrete implementations of the Shape
interface.

Speak less
There are two areas in the example for Listing 1 where code is duplicated.
Firstly, each of the concrete implementations of the Shape interface
require an Accept method which contains identical code. Further
implementations of Shape require exactly the same code. The second
duplication is also a source of the dependency already mentioned: each of
the implementations of Shape is mentioned in both the Handler interface
and its implementation.

Say More
The ideal situation we’d like to achieve is to have the Shape and Handler
interfaces living in their own assemblies (or perhaps a single common
interfaces assembly), with concrete Shapes in one separate assembly, and
the concrete ShapeHandler in another. We also want to divorce the
Accept method from the Shape interface: it is not a Shape’s
responsibility to do double dispatch, it has other things to think about. We

can in fact go one step further, and remove the duplication in the Square
and Circle classes by moving the Accept method to a base class.

The Handler
The first pass at breaking this up is to remove the dependency between the
Handler interface and the concrete Shape classes. This is where C#’s
generics can help.
Generic code is representable regardless of the types it operates on
(although we’ll talk about type constraints later). “Representable” usually
means some combination of:

An algorithm works irrespective of the types on which it operates –
e.g. Swap or sort.
The storage of objects is the same whatever their type – e.g.
Containers of “T”.

Our requirements don’t really fit either of these: the whole point of using
double-dispatch is to vary the behaviour on the concrete type of the object
we have in hand, and we’re not really storing objects. What we can say is
that the interface for the Handler is the same for each type of Shape object
we consider. By using a generic interface, our Handler interface and
ShapeHandler implementation become as shown in Listing 2.
This code demonstrates a simple use of generics, where the Handler has
a generic parameter indicating the handled type. This handled type is then
used by the Handle method declaration. When the interface is
implemented, a Handle method for each of the generic arguments (in this
case Circle and Square) must be implemented. Handler is a
straightforward generative interface. In particular, it allows
ShapeHandler to explicitly declare what types of Shape it is a handler
for – it is like a label on a tin.
Note that the Handler interface no longer has the dependencies upon
Circle and Square. This means we can safely put the Handler interface
into a separate assembly, and have broken that part of the dependency
circle. It presents other challenges, though.

Unrest in Shape County
Recall from Listing 1 that the Shape interface looked like this:
 interface Shape
 {
 void Accept(Handler handler);
 }

Now that the Handler interface has a generic parameter, this is no longer
valid. The problem is, what would we put as the argument to it?
 interface Shape
 {
 void Accept(Handler< ? > handler);
 }

We could use the ShapeHandler class directly, but that would again make
the Handler interface redundant, and would re-introduce the circular

interface Handler< HandledType >
{
 void Receive(Shape s);
 void Handle(HandledType c);
}
class ShapeHandler : Handler< Circle >,
 Handler< Square >
{
 public void Receive(Shape s)
 {
 s.Accept(this);
 }
public void Handle(Circle c)
 {
 Console.WriteLine("Circle handled");
 }
 public void Handle(Square s)
 {
 Console.WriteLine("Square handled");
 }
}

Listing 2
18 | Overload | August 2006

FEATURESTEVE LOVE
dependency between Shape and ShapeHandler. We could try the same
trick as with Handler and make Shape a generic, but that would cause a
different kind of difficulty. If Shape were generic, we would have to name
its type parameter at every use, precluding uses like
 List< Shape< ? > > shapes;

The answer is to use a generic method. Instead of making the whole of the
Shape interface generic, we make only its Accept method generic. A first
attempt might look like this:
void Accept< ShapeType >(
 Handler< ShapeType > handler)

This would be valid, parameterising Handler on the generic parameter of
Accept, but we have now moved the problem of what to put as a generic
argument back to ShapeHandler, in its Receive method:
 public void Receive(Shape s)
 {
 s.Accept(this);
 }

This does not compile because the call to Shape.Accept is ambiguous:
“this” could be interpreted as either a Handler< Circle > or a
Handler< Square > in this context, and we cannot explicitly specify
which to use, because at this point, we know only that we have a Shape.
The best we can manage is to make the entire type of the handler a generic
parameter.
void Accept< HandlerType >(
 HandlerType handler);

We then need some way to tell the compiler the actual contents of the
handler in the Accept method, and generics can’t help here: a runtime cast
is required. Listing 3 shows the new Shape hierarchy with this in place.
ShapeHandler and its interface remain as in Listing 2.
Note that it’s not possible to cast an unconstrained generic parameter to
just anything. A cast to object is always valid, and a cast to an interface
type (which is used here) is also OK. Constraining the parameter can make
further casts valid.
This code works because generics in C# are a runtime artifact. The Accept
method in Shape is implicitly virtual, because it’s declared in an interface
type. Derived classes (Circle and Square) inherit this method, and if
code calls Accept using the Shape reference, the over-ridden method in
the concrete (runtime) type will get called. If you’re already familiar with
C++ templates, this is probably the biggest difference between them and
C# Generics. In C++, templates are a purely compile-time construction,
and it’s not possible to have a virtual function template.

Mission accomplished
We have reached the point where the circular dependency between
concrete Shapes and the Handler interface is gone. We can create a new
project structure reflecting rôles and responsibilities, with each different
assembly having a specific rôle:

HandlerInterface
– interface Handler< HandledType >
ShapeInterface depends upon HandlerInterface
– interface Shape
Shapes depends upon ShapeInterface and HandlerInterface
– class Circle
– class Square
Application depends upon Shapes, ShapeInterface and
HandlerInterface
– class ShapeHandler

There are no circular references, and apart from the main application, all
dependencies are on interface-only assemblies. If nothing else, this makes
testing easier. There remain some opportunities for overtime, however: we

interface Shape
{
 void Accept< HandlerType >(HandlerType handler);
}
class Circle : Shape
{
 void Shape.Accept< HandlerType >(
 HandlerType handler)
 {
 ((Handler< Circle >)handler).Handle(
 this);
 }
}
class Square : Shape
{
 void Shape.Accept< HandlerType >(
 HandlerType handler)
 {
 ((Handler< Square >)handler).Handle(
 this);
 }
}

Listing 3

public class Dispatchable< Dispatched >
 : Dispatchable
{
 void Dispatchable.Accept< HandlerType >(
 HandlerType handler)
 {
 ((Handler< Dispatched >)handler).Handle(
 this);
 }
}
public class Circle : Dispatchable< Circle >, Shape
{
}

Listing 4
August 2006 | Overload | 19

FEATURE STEVE LOVE

Taking a leaf from a pattern normally
associated with C++ ... each derived class
parameterises its base class with itself.
can still improve on what we have. It’s time to make good on the promise
that we can reduce the amount of duplicated code, and in the process make
the whole a bit more tidy and self-describing.

The interfaces of shapes
It has already been noted that the Shape interface has too many
responsibilities. Not only is it a shape, with all that implies, it is a shape
that can take part in the double-dispatch mechanism we are describing
here. That really isn’t part of a Shape interface.
This indicates the need for a new interface, which we’ll call
Dispatchable. This interface exposes the double-dispatch mechanism in
the same way as the old Shape interface did – a generic Accept method.
We can still do better. The implementations of the Accept method in the
concrete Circle and Square classes are identical. Each class now
implements Dispatchable as well as Shape, but the Accept method
remains as it was in Listing 3. We have already identified that one of the
uses of generic code is when an algorithm can operate regardless of the
types using it: this is exactly that example.
We can therefore make a base class common to all concrete shapes which
implements the Accept method. Listing 4 shows a first try at what we want
to achieve. Taking a leaf from a pattern normally associated with C++ -
the Curiously Recurring Template Pattern [Coplien95] – each derived
class parameterises its base class with itself.
The observant among you will notice that we now have two types with the
same name – Dispatchable. C# allows types to be “overloaded” based
on the number of generic parameters, and thus Dispatchable and
Dispatchable< Dispatched > are distinct types.
Unfortunately this doesn’t compile because the call to Handle is passing
this –which is an instance of Dispatchable< Dispatched >. Recall
the Handler interface: it is a generic interface, where the Handle method

declaration uses the generic parameter. ShapeHandler itself implements
the Handle method with the actual concrete type of the shape being used,
and so expects either a Circle or a Square. The Dispatched parameter
is a generic handle for exactly that – depending on which concrete class
implementation is in play – so we might try this:
((Handler< Dispatched > handler)
 .Handle((Dispatched)this);

Alas this doesn’t compile either. The difficulty is that the compiler doesn’t
know the type of Dispatched because it is resolved at runtime. The types
to which we can cast “this” are strictly controlled: we can cast to object,
to any direct or indirect base class or interface of this, or to the same type
as this – which is usually redundant, but permitted. It cannot be cast to
a type that is, as far as the compiler is concerned, an unrelated type.

Constraints
A short diversion into a comparison between C++ templates and C#
generics might be illustrative of what is going on. In C++, a template
parameter represents any type, and being a compile-time construct, the
compiler knows when some facility is used that the supplied argument to
the template parameter doesn’t support. In C# generic parameters are not
resolved to types until runtime, so during compilation, the parameter still
represents any type, but only as an object, the ultimate base class of all
types. Therefore only those operations supported by object are permitted
by the compiler, without extra information.
The extra information is provided either by explicitly casting the reference
(as we’ve already seen), or by using constraints on the types allowed as
arguments to that parameter. Listing 5 shows this in a simple way. Note
there are several different types of constraint; a fairly detailed discussion
can be found at [MSDN].
The where clause on the PersonComparer. Compare method tells the
compiler that the parameters are Person objects (or are derived from
Person), and thus have a Name property. Without the constraint, this code
won’t compile because object has no Name property. In addition, if
PersonComparer. Compare is called with arguments which are not
Person objects, the compiler also issues an error – the constraint applies
to the client code as well.

Tying it up
So finally we should be able to finish the generic Dispatchable base
class. From Listing 4, remember we need to be able to cast this to a type
suitable for the argument to Handler< Dispatched >.Handle which
accepts a reference to either Circle or Square. Depending on context,
the Dispatchable class is either a Dispatchable< Circle > or
Dispatchable< Square >, with the concrete type substituted for the
generic parameter Dispatched.
In order to cast this to Dispatched, Dispatched must be constrained
to ensure it’s actually the same type as this, so the class declaration
becomes:

struct Person
{
 public string Name
 {
 get { return name; }
 }
 private string name;
}
class PersonComparer
{
 public static bool Compare< Sorted >(
 Sorted left, Sorted right)
 where Sorted : Person
 {
 return string.Compare(left.Name,
 right.Name) < 0;

 }
}

Listing 5
20 | Overload | August 2006

FEATURESTEVE LOVE

restricting the types permitted by user
code allows the generic code more

freedom in its implementation
public class Dispatchable< Dispatched > : Dispatchable
 where Dispatched : Dispatchable< Dispatched >

and the cast is now legal, allowing:
void Dispatchable.Accept< HandlerType >(
 HandlerType handler)
 {
 ((Handler< Dispatched >)handler).Handle(
 (Dispatched)this);
 }

With this in place, we can now add the Dispatchable interface, and
perhaps the Dispatchable< Dispatched > base class, since it depends
only on the Handler< Dispatched > interface, to the Handler
assembly, and the Shape interface is completely independent of the
double-dispatch mechanism.
The effort now required to add a new object to the Shape family is to add
the class, and inherit from Dispatchable, add a new derivation to
ShapeHandler, and add the overloaded Accept method. No copy-and-
paste, and many mistakes in usage will be caught by the compiler. Another
benefit of using this generic double-dispatch framework is that
ShapeHandler need not be the only handler: there could be multiple
implementations of the Handler interface, each handling a different set
of Shape objects, with no duplication in the interface or implementations.

One step too far
Using a Constraint for the Dispatched parameter in the
Dispatchable< Dispatched > class gave the compiler extra
information about Dispatched which allowed us to use it as a cast target.
The question now arises – could we apply a constraint to HandlerType
in the Accept method and so remove the runtime cast?
Unfortunately, the answer is “no”.
An interface class specifies a contract which must be adhered to by
implementing classes. A constraint on a generic parameter forms part of
the interface, and therefore the contract, so implementing classes must
match it exactly. The HandlerType parameter would need a constraint in
the Dispatchable interface:
interface Dispatchable
{
 void Accept< HandlerType >(
 HandlerType handler) where HandlerType :
 Handler< ? >;
}

and we have no way of specifying what to use as the argument to Handler
at that point.

In conclusion
There is more to life – and generic code – than containers and simple
functions. Generics in C# improve the type-safety of code, which in turn
gives us, as programmers, much greater confidence that our code, once
compiled, is correct.
The double-dispatch example shows how generics allow a generative
interface to remove hard-wired dependencies, how classes can make use
of a common generic base class to reduce code duplication, and
demonstrated the run-time nature of C# generics, using virtual generic
methods. In addition, it shows the trade-off of using type constraints on
generic parameters, where restricting the types permitted by user code
allows the generic code more freedom in its implementation.
There is much more to generics in C# than can be covered here, including
using constraints to improve code efficiency, specifying naked type
constraints, to match whole families of types (mimicking Java wild-cards),
and creating arbitrary objects at runtime.
Generics in C# are not perfect – nothing is! – and there are limitations
which can seem to be entirely gratuitous, but they provide a very powerful
and expressive framework for improving code by allowing it to speak less,
and say more.

Acknowledgements
The idea for using C# generics to implement double-dispatch is the result
of inspiration from two sources:
Anthony Williams’ article “Message Handling Without Dependencies”
[Williams06] discusses managing the dependency problem of double-
dispatch in C++ using templates. This got me wondering whether anything
like it was possible in C# using generics.
Jon Jagger has an Occasional Software Blog [Jagger], where he uses the
Visitor Pattern to demonstrate some properties of generics in C#. This
showed me that double-dispatch probably was possible using C# generics.
Thanks to Phil Bass, Nigel Dickens, Pete Goodliffe, Alan Griffiths and Jon
Jagger for their helpful comments and insights.

References
[Wiki] http://en.wikipedia.org/wiki/Double_dispatch
[Coplien95] James O Coplien, “Curiously Recurring Template Pattern”,

C++ Report February 1995
[MSDN] MSDN, “Constraints on Type Parameters (C# Programming

Guide), http://msdn2.microsoft.com/en-us/library/d5x73970.aspx
[Williams06] Anthony Williams, “Message Handling Without

Dependencies”, Dr Dobb's Journal May 2006, issue 384, available
on-line at http://www.ddj.com/dept/cpp/184429055

[Jagger] Jon Jagger, “Less Code More Software (C# 2.0 – Visitor return
type)”, http://jonjagger.blogspot.com
August 2006 | Overload | 21

FEATURE SEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
The Kohonen Neural Network
Library
Seweryn Habdank-Wojewódzki and Janusz Rybarski present
a C++ library for users of Kohonen Neural Networks.
Introduction
his article is about the Kohonen Neural Network Library written to
support the implementation of Kohonen Neural Networks. The
Kohonen Neural Network Library (KNNL) is written in C++ and

makes extensive use of C++ language features supporting functional and
generative programming styles. The library is available from
http://knnl.sourceforge.net under Open Source BSD Licence [KNNL].
Artificial Neural Networks (Neural Networks for short) are designed to
mimic the biological structure of the natural neurons in the human brain.
The structure of a single artificial neuron is similar to the biological one,
too. One important feature is that an artificial network can be trained in
much the same way as a biological one. We can easily imagine, that some
mental abilities of animals can be duplicated in the computer system e.g.
classification, generalisation and prediction. Artificial Neural Networks
have a wide variety of applications. They are used, for example, in speech
and image recognition, signal processing (filtering, compression), data
mining and classification (e.g. classification of projects, analysis of
customer demand, tracking the habits of clients), knowledge discovery
(recognition of different diseases from various diagnoses), forecasting
(e.g. prediction of the sale rate or object trajectories), adaptive control, risk
management, data validation and diagnostics of complex systems.
Kohonen Neural Networks are not the only type of Artificial Neural
Networks – there are three basic kinds: Kohonen Network, Feedforward
and Recurrent (of which the Hopfield Network is a particularly interesting
example) [Wiki]. There are no precise rules to determine which kind of
network to use for a given task; rather it is a matter of deep analysis to find
the right one – sometimes a mixture of them is used. More important is
what kind of training procedure we can use. The Kohonen Neural Network
is tuned using an unsupervised training algorithm, so for that reason it is
also called a Self-Organizing Map (SOM).
Other types of neural networks are tuned using supervised training
algorithms. Supervised training sometimes is called training with teacher,
because we compare output values from network with with a value which
we expected that should be in the output (we are teachers). The comparison
generally is created by calculation difference of the output value and given
one. After that weights are modified with respect to calculated difference.
Unsupervised training has no teacher, there are no comparisons. Training
algorithms and network are prepared to modify parameters without
external decisions what is proper – network is self-trained (self-organized).

Some example uses
Kohonen Networks are used mainly for classification, compression,
pattern recognition and diagnostics. Here we want to offer some simple
but quite different examples where the Kohonen Network can be used.

Example: recognising shopper categories
Let's consider a shop with electronic shopping carts. The neural network
can recognize all carts and what each customer has in his or her cart. After
recognition, we can observe representative carts – in reality, what a typical
Mr. “X” bought. But the network is more flexible than the statistics,
because it can divide clients into groups: women will probably have
different purchases to men, and young people will have different purchases
to older ones, the same between single and married people, and so on.
Everyone knows how valuable this information is. If our aim is to help the
customer shop quickly, the manager will place products from a particular
group close to each other; or if our target is to sell everything from stock,
we can place all elements from a recognised group in different parts of the
shop and in the paths between those products we can place things that are
expensive or hard to sell.

Example: compression
The next example is how it can be used for compression. Let’s assume that
we can lose information, so if there is a huge amount of data we can use
it to train a network, and from the network we identify the most important
information about data. In compressed storage we can put just the most
important information. For this usage it is important that the number of
recognised details is chosen to determined the length of the output
independently of the length of the input. This fact can be sometimes very
useful.

Example: spellchecker
Let say that we need to have an intelligent spell-checker. We can train a
Kohonen network using all properly written words. After training we can
put there a word which is written incorrectly, and the network can say
which word is the closest one, and what are further opportunities.

Example: classification
Classification is similar to pattern recognition, but the important work of
the network is done after training. We train network using some data – this
data can define classes (groups). After training we put new data as the input
of the network, and we have answer to which group belongs new item.

Example: diagnosis
Diagnosis is a combination of the pattern recognition and classification.
But the core of the system is to define diagnostic rules (see sidebar) in the
system using Kohonen Network. The sketch of the diagnostic system is
that we train the network more or less manually. We define internal
parameters in neural network to fit to different let's say diseases.
Parameters can be the same as are typically when we control health in
hospital. Then we put to the network data of other patient, and we can

T

The authors of this article both obtained Masters degrees from
the AGH University of Science and Technology in 2003 and
are now working towards a PhD.

Seweryn Habdank-Wojewódzki Seweryn’s programing
interests are computational software especially for data mining
and knowledge disovery. Seweryn can be contacted at
habdank@megapolis.pl

Janusz Rybarski Janusz’s programming interests are data
mining, knowledge discover and decision support systems.
22 | Overload | August 2006

FEATURESEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
observe what is a hypothesis of his disease. Another possibility is that we
describe the state of the patient then train the network with some data. After
training we probe the network, and notice where are placed typical
situations. Then we put data from a new patient and we can have hypothesis
of his own state.
As an example of advance medicine application of the Kohonen network
is used for image segmentation of the scans from the magnetic resonance
[Reyes-Aldasoro]. The target in this example is to separate on the image
cranium, cerebrum and other parts of human head.

Example: Travelling Salesman Problem
A Kohonen network has been used to solve the Travelling Salesman
Problem (TSP) [Brocki]. In this work the author assumes that every neuron
represents single place that salesman visits. And then dedicated
definitions, of the tasks and proper training of the networks, lead him to
solutions which are quite good. Similar work is presented on the web page
www.patol.com/java/TSP/ [TSP].
Generally Kohonen Neural Network is known as one of the algorithms for
Data Mining and Knowledge Discovery in Data. Knowledge Discovery is
very difficult task, but it is possible to use Kohonen Network for this
purpose. The most important thing is to properly define the structure of
the rules, which can be stored in the system, and then our data have to fit
to this construction, so training will try to find in the system some rules
which are satisfies.

Mathematical fundamentals of Kohonen Neural
Networks
Kohonen Neural Networks are built from neurons which are placed in an
organized structure. Thus:

KNN = container + neurons
The Kohonen neuron is defined as the composition of an activation
function and a distance function, as shown in Figure 1.
The distance function (see sidebar “Distance”) computes the distance
between the input, X, and the neuron’s internal weight, W.
In this paper, the input, X, and the weight, W, can be numbers, can be
vectors on the plane, or on the 3D space, or in higher dimensional space.
In that particular case the weights W belong to the same space as the input

values X. We can calculate the distance between X and W using Euclidean
formula (see sidebar “Euclidean formula”).
In this article we will focus that particular distance function – it means on
the Euclidean distance function. The activation function is the Gauss
function (half of the full curve as shown in Figure 1.). The activation
function controls the level of the output.

G(s,p)(x) = exp (- 0.5 (x/s)p)
As with all neural networks, a Kohonen network is useless until it has been
trained but, once trained, it is a very useful and intelligent mathematical
object. It is useful because it can be applied in various branches of industry
and science. It is intelligent because it can be trained without teacher – it
can find some aspects in the data, that are not exposed.
Kohonen neural network must be trained. There are two main algorithms:
one is called Winner Takes All (WTA), and the second is called Winner
Takes Most (WTM). Details of these algorithms are described in section

Figure 1

A simple rule would be:

Patient has high level of the fat in the blood => Patient has coronary
attack.

A more complex rule would take more objects, so we can add that patient
is a smoker, and his live is nervous and so on. In addition to conditions
we can add consequences – such as a cerebral haemorrhage.

So the new example is:

Patient has high level of the fat in the blood, patient is smoker => Patient
has coronary attack, patient has cerebral haemorrhage.

The Kohonen Neural Network Library is fully equipped for examples like
above – rules that can be described in numerical way as a vectors of
numbers. It provides the implementation for some simple examples. For
more complex examples the user may have to specialize templates for
appropriate data structures, or add dedicated distance (maybe both). For
details how to describe rules in the system we suggest to look in the
books of Diagnostics Fuzzy Logic and Arti f icial Intel l igence
[Korbicz03][Yager94][Lin96].

Rules

In general case the are many kinds of sets where we can introduce
distance. First very easy example is that we have a plane and we can
measure distance between two points. Other possible example is, that
we have a map of the surface of the earth and we have cities. Then we
can assume that the distance is a minimal price which we have to pay
to go from one city to another (we do not consider the mode of transport
- it can vary, only the price). Other example of the distance can be
considered in the dictionary. Let's consider such a situation. We have a
set of words and we want to introduce a distance in this set. For example:
the word “something” and its miskeyed versions: “somethinf”, “sqmthing”
and “smthng”. Our intuition can say that “somethinf” is closer to correct
version than word “smthng”. So we can define distance in dictionary e.g.
Levenshtein distance [Levenshtein]. The Kohonen network can work
using such a distances if there will be a need.

Distance

Functional diagram of the neuron
August 2006 | Overload | 23

FEATURE SEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
Training Process in this paper. Respectively to the training algorithm this
structure can be either just a container (for WTA algorithm) for neurons
or container equipped with distance function or topology (for WTM
algorithm) – typically it is a two dimensional matrix. More generally, the
network topology can be a graph or a multidimensional matrix. In
medicine, especially, a 3D network topology is used for 3D image pattern
recognition. In this paper the authors concentrate on the two dimensional
case.

Code construction for the Kohonen Neural Network
In the library presented here we use vector < vector < T > > as a
2D matrix rather than the matrix template from the Boost uBLAS library
[Boost]. This is because boost::matrix requires the value type to be
DefaultConstructible and the neuron types in the library do not
satisfy this requirement. We have suggested that the boost::matrix
maintainers should add a suitable constructor to the matrix classes, so in
the next version of the KNN library, the boost::matrix class will be
used as a container to keep the network structure. This version of the library
is restricted to 2D matrices. If need be, we will extend the structure of the
network to 3D structures and graphs.
From a designer’s point of view we can either construct a structure based
on classes containing pointers to functions and functors (the latter being a
class with declared and defined operator()) or build up template classes
that store functors by value and provide an opportunity to parametrize the
code by means of policy classes. We have decided to use templates,
because many errors can be detected at compilation time, so the cost of
testing and debugging the program is reduced to a minimum. Moreover
template functors are quite small and such a construction is modular.
Imagine how many different types of networks and training algorithms we
are able to store in memory and use, and be sure that they will work, as
they are fully constructed at compile time.
In the previous section the structure of the Kohonen neuron was described.
Now we shall show how those neurons are represented in code. We use a
class template, Basic_neuron, as shown in Listing 1. The template has
two parameters: the type of the distance function and the type of the
activation function. It is important that a neuron cannot be default
constructed. This requirement is enforced by only providing a non-default
constructor. So in the construction of a neuron there is no possibility of

Let's assume that:

X = [x1, x2, ..., xn]

W = [w1, w2, ..., wn]

Euclidean distance:

d(X,W) = sqrt ((x1 – w1)2 + ... + (xn – wn)2)

Sometimes is very useful to calculate weighted Euclidean distance, so
let’s assume that P = [p1, p2, ..., pn] are parameters:

dP(X,W) = sqrt (p1 (x1 – w1)2 + ... + pn (xn – wn)
2

)

Euclidean Formulas

Listing 1

template
<
 typename Activation_function_type,
 typename Binary_operation_type
>
class Basic_neuron
{
public:
 /** Weights type. */
 typedef typename Binary_operation_type
 ::value_type weights_type;
 /** Activation function type. */
 typedef Activation_function_type
 activation_function_type;
 /** Binary operation type. */
 typedef Binary_operation_type
 binary_operation_type;
 typedef typename Binary_operation_type
 ::value_type value_type;
 typedef typename Activation_function_type
 ::result_type result_type;
 /** Activation function functor. */
 Activation_function_type activation_function;
 /** Weak and generalized distance function. */
 Binary_operation_type binary_operation;
 /** Weights. */
 weights_type weights;
 Basic_neuron
 (
 const weights_type & weights_,
 const Activation_function_type &
 activation_function_,
 const Binary_operation_type & binary_operation_
)
 : activation_function (activation_function_),
 binary_operation (binary_operation_),
 weights (weights_)
 {}
 const typename Activation_function_type
 ::result_type
 operator() (const value_type & x) const
 {
 // calculate output of the neuron as activation
 // function working on results from binary
 // operation on weights and value.
 // composition of activation and distance
 // function
 return activation_function (binary_operation (
 weights, x));
 }

protected:
 Basic_neuron();
};
24 | Overload | August 2006

FEATURESEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
making errors, because the neuron will work if the constructor parameter
classes work.
We can easily see that the Basic_neuron class does not define anything
more t han a compos i t i on o f f unc to r s s im i l a r t o t he
compose_f_gx_hy_t in [Josuttis99]. The class stores functors by
value, so as we mentioned earlier there are no pointers in that construction
[Vandevoorde03].
The next thing to do is to design the code for the activation function.
Activation function is a concept; we could easily use e.g. the Cauchy hat
function or the Gauss hat function as an activation function. The Cauchy
hat function is a generalisation of the Cauchy distribution function. The
integral of the Cauchy distribution function over its whole domain is 1; this
is not true, in general, for the Cauchy hat function.

C(s,p)(x) = 1 / (1 + (x/s)p)
The same is true for the Gauss hat function. An outline of the code for the
Gauss hat functor is shown in Listing 2; the Cauchy hat functor is similar
except for the formula that calculates the outputs.
We use a class template with three type parameters. Value_type is the
type of the value that will be passed to the function. Scalar_type is the
type of the scaling factor, and Exponent_type is the type of the exponent.
All parameters are important, because generally Value_type and
Scalar_type are some sort of floating point type like double or long
double, and Exponent_type is used to choose the most appropriate power
algorithm. This is important, because we won’t always use the floating
point power operation; sometimes we can use the faster and more accurate
power function for integral exponents. So the library defines two
specialisations of the power functor: one for integral exponents, and one
based on the std::pow calculation for floating point exponents.
The library uses two coding tricks derived from modern C++ software
design. The first one we call Grouping Classes. This technique is used to
ensure that the class templates are only instantiated with the correct
template parameters.

Listing 2

template
<
 typename Value_type,
 typename Scalar_type,
 typename Exponent_type
>
class Gauss_function
: public Basic_function < Value_type >,
public Basic_activation_function
<
 typename operators::Max_type < Scalar_type,
 Exponent_type >::type,
 Value_type,
 typename operators::Max_type
 <
 typename operators::Max_type
 <
 typename operators::Max_type < Scalar_type,
 Exponent_type >::type,
 Value_type
 >::type,
 double
 >::type
>
{
public:
 typedef Scalar_type scalar_type;
 typedef Exponent_type exponent_type;
 typedef Value_type value_type;

 typedef typename operators::Max_type
 <
 typename operators::Max_type
 <
 typename operators::Max_type < Scalar_type,
 Exponent_type >::type,
 Value_type
 >::type,
 double
 >::type result_type;
 /** Sigma coefficient in the function. */
 Scalar_type sigma;
 /** Exponential factor. */
 Exponent_type exponent;
 Gauss_function (const Scalar_type & sigma_,
 const Exponent_type & exp_)
 : sigma (sigma_), exponent (exp_)
 {}
 const result_type operator() (
 const Value_type & value) const
 {
 operators::power < result_type,
 Exponent_type > power_v;

 // calculate result
 return
 (
 std::exp
 (
 - operators::inverse (
 static_cast < Scalar_type > (2))
 * (power_v)
 (
 operators::inverse (sigma) * value,
 exponent
)
)
);
 }
};

Listing 2 (cont’d)
August 2006 | Overload | 25

FEATURE SEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
In our library we have a lot of functors. They all define operator().
When we write code it would be easy to use the wrong functor as a
parameter of a class template. We might try to solve this problem by
putting related functors into separate namespaces, e.g. we might require
that foo::Foo is only parametrized by functors from namespace foo. But
this is just a hint to the programmer; it can not be checked by the compiler.
There is also the problem of how to set up namespaces if there are some
functors that could parametrize both class bar::Bar and foo::Foo.
Multiple inheritance helps here. If we have a set of functors and some of
them are only valid as parameters to bar::Bar, some are only valid as
parameters to foo::Foo, and the rest will fit both templates, we could
define two empty classes with name e.g. Fit_to_Foo and Fit_to_Bar,
and all functors derive from them with respect to the represented traits.
Sample code could be like Listing 3.
The BOOST_STATIC_ASSERT macro will generate a compiler error if T is
not derived from Fit_to_Foo. So there is a compile-time check that the
programmer has used a valid functor as a template parameter. Even though
all the functor classes define operator(), they will not all fit our
template. And the static assertion has no run-time overhead because it
doesn’t generate any code or data.

template < typename S, typename T >
struct Max_type_private
{};

template < typename T >
struct Max_type_private < T, T >
{
 typedef T type;
};

#define MAX_TYPE_3(T1,T2,T3) template <>\
struct Max_type_private < T1, T2 >\
{ typedef T3 type; };

MAX_TYPE_3(int,double,double)
MAX_TYPE_3(short,long,long)
MAX_TYPE_3(unsigned long,double,double)
// an example where we can explicitly use three
// different types MAX_TYPE(std::complex < int >,
// double, std::complex < double >)
// macro below assumes that bigger type is the
// first one
// macro MAX_TYPE_2(argument_1_type,
// argument_2_type)
// simulate default result_type that result_type
// = argument_1_type

#define MAX_TYPE_2(T1,T2) template <>\
struct Max_type_private < T1, T2 >\
{ typedef T1 type; };

MAX_TYPE_2(double,int)
MAX_TYPE_2(long,short)
MAX_TYPE_2(double,unsigned char)
MAX_TYPE_2(double,unsigned long)

template
<
 typename T_1,
 typename T_2
>
class Max_type
{
private:
 typedef typename boost::
 remove_all_extents < T_1 >::type T_1_t;
 typedef typename boost::
 remove_all_extents < T_2 >::type T_2_t;

public:
 typedef typename Max_type_private < T_1_t,
 T_2_t >::type type;
};

Listing 3

#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>

// helpful template
template<typename T, typename Group>
 struct is_in_group {
 enum {value = boost::is_base_of<Group,T>::value };
 };

// define groups
struct Fit_to_Foo {};
struct Fit_to_Bar {};

// set functors as a member of group
class Functor_A : public Fit_to_Foo { ... };
class Functor_B : public Fit_to_Bar { ... };
class Functor_C : public Fit_to_Bar,
 public Fit_to_Foo { ... };

// example template classes that check if parameter
// is in proper group
template < typename T >
class
Any_class_that_accepts_functors_only_from_Foo_group
{
 // and for example in constructor we can put:
 BOOST_STATIC_ASSERT(
 (is_in_group < T, Fit_to_Foo >::value));
};

Listing 4
26 | Overload | August 2006

FEATURESEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
In KNNL this technique is used for hat functions. The Gauss hat function
will be used as the activation function and later as a helper function in the
training algorithms. But this function is not valid for other purposes, so we
derive Gauss_function f rom Basic_function and from
Basic_activation_function. In template classes which will use them
we could check which classes they are der ived from using
boost::is_base_of . If we use BOOST_STATIC_ASSERT or
BOOST_MPL_ASSERT_MSG we can check if the hat function class is derived
from the appropriate base, which guarantees that some minimal
functionality is available and the class models the correct concept
[Abrahams04]. If we don’t do this and we use as a parameter any class that
fits the type requirements, the template will compile, but the parameter
(functor) may not meet the semantic requirements of the template. This

template
<
 typename Value_type
>
class Euclidean_distance_function
: public Basic_weak_distance_function
<
 Value_type,
 Value_type
>
{
public:
 const typename Value_type::value_type operator()
 (
 const Value_type & x,
 const Value_type & y
) const
 {
 return
 (
 euclidean_distance_square
 (
 x.begin(),
 x.end(),
 y.begin(),
 static_cast < const typename Value_type
 ::value_type & > (0)
)
);
 }
private:
 typedef typename Value_type
 ::value_type inner_type;
 const inner_type euclidean_distance_square
 (
 typename Value_type::const_iterator begin_1,
 typename Value_type::const_iterator end_1,
 typename Value_type::const_iterator begin_2,
 const inner_type & init
) const
 {
 return std::inner_product
 (
 begin_1, end_1, begin_2,
 static_cast < inner_type > (init),
 std::plus < inner_type >(),
 operators::compose_f_gxy_gxy
 (
 std::multiplies < inner_type >(),
 std::minus < inner_type >()
)
);
 }
};

// type of the single data vector
// for example if we have tuples of the data like:
// {(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7), ... }
// this data could describe position of pixel and
// it's colour
// V_d describes type of e.g. (1,2,3)
typedef vector < double > V_d;

// configure Gauss hat function
typedef neural_net::Gauss_function
 < double, double, int > G_a_f;
// Activation function for the neurons with some
// parameters
G_a_f g_a_f (2.0, 1);

// prepare Euclidean distance function
typedef distance::Euclidean_distance_function
 < V_d > E_d_t;
E_d_t e_d;

// here Gauss activation function and Euclidean
// distance is chosen to build Kohonen_neuron
typedef neural_net::Basic_neuron
 < G_a_f, E_d_t > Kohonen_neuron;

// Kohonen_neuron is used for the constructing a
// network
typedef neural_net::Rectangular_container
< Kohonen_neuron > Kohonen_network;

Kohonen_network kohonen_network;

// generate networks initialized by data
neural_net::generate_kohonen_network
//<
// vector < V_d >,
// Kohonen_network,
// neural_net::Internal_randomize
//>
(R, C, g_a_f, e_d, data, kohonen_network, IR);

Listing 5 Listing 6
August 2006 | Overload | 27

FEATURE SEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
technique is an extension of the concept traits technique, because in
concept traits we are sure only that the class contains the necessary
m e t h od s ; b u t i f w e e n s u re t h a t i t i s d e r i v e d f ro m
Basic_activation_function it is guaranteed to be a valid activation
function. The authors call this technique Grouping Classes although there
is no name in the literature for this coding style as there is for type traits
or concept traits [Traits]. At this stage of the work the code does not include
such checks; this will be added in the next version of the library after
feedback from users. The rest of the Gauss_function class uses the
power and inverse functors, which implement the common
mathematical functions xy and 1/x, to generate the proper results.
Another important feature of the library is the metafunction shown in
Listing 4 (Max_type < Scalar_type, Exponent_type >).
The goal of this metafunction is to return a type that can represent any value
on types T_1 and T_2. This template is used to deduce the output type of
functors from their input values types (presented here the number of the
propositions of the usage of MAX_TYPE_2 and MAX_TYPE_3 is reduced –
there are more examples in the library).
The last part of the neuron is the distance function which is designed to
work for any container. The Euclidean distance function, which is easy to
understand, is presented in Listing 5 – the library also provides the
weighted Euclidean distance function. To avoid problems (e.g. lost of
performance) with the square root function, the functor actually returns the
square of the Euclidean distance (we omit calculation of the square root
function). If the user needs the real Euclidean distance from this functor
he/she should either calculate the square root from this value, or set the
proper exponent in activation function.
This function will be used as the binary_operation in neuron
construction. The Euclidean_distance_function template is
designed for any data stored in any container as defined in the C++
Standard Library. User-defined value types can be used with the Euclidean
distance function provided the mathematical operations of addition,

subtraction and multiplication are defined on them and the identity element
under addition is formed by construction from the integer value 0.
Listing 6 shows the complete code for a Kohonen network. Here, R is the
number of rows in the network matrix, C is the number of columns, g_a_f
is the chosen activation function, e_d is the chosen distance function, data
is a data set of type vector < V_d >, kohonen_network is the network
to be initialized and IR is a policy class for configuring the random number
generator. (Random number generation is important for the
implementation but it is too detailed for this short paper. Further
explanation is included in the reference manual). Data are used just for
setting up ranges in data space. In generation process ranges are used for
randomly generated weights in network (uniformly in data space with
respect to the ranges of the data). There are several algorithms for
initialising the neuron weights. In this library the weights are assigned
random values between the minimum and maximum values in the input
data. So, for example, if the input data are:
{ (1,-2,-1), (-1,3,-2), (2,1,0), (0,0,1) }

the weights will be assigned random values in the range (-1,-2,-2) through
(2,3,1). This completes the code to create and generate the weights of the
Kohonen Neural Network. As we can see our desire for flexible code is
fulfilled, even though we are not using pointers.

Training process
The training process is very important, because the untrained network has
no idea why it exists. The more training passes are applied the greater the
effect of the training. And after that the weights of the neurons can bring
out many important properties of the data. For example, how the data can
be generalized, how the data might be represented, what clusters (groups)
exist in the data and so on.
There are two training algorithms for the Kohonen network. As we said
in the beginning, the first is called Winner Takes All (WTA), and the
second is Winner Takes Most (WTM).
WTA is very easy to understand and implement. When data is placed on
the input to the neural network all the outputs are compared and the neuron
with the highest response is chosen. This means that the weights of the
winning neuron are quite close to the data. The winning neuron is the
neuron with the highest response for the given input value. The weights
for this neuron only are modified:

w(t+1) = w(t) + C(t) (x – w(t))

where: w(t) is the weight(s) after training pass t, w(t+1) is the modified
weight(s), x is the input data, and C is a training coefficient which may vary
as the training process proceeds.
Generally the behaviour of the WTA training algorithm is that it invests
only in winners. Very radical method, isn’t it? The WTM training process

Figure 2

6 neighbours at distance 1 4 neighbours at distance 1 8 neighbours at distance 1

Figure 3
28 | Overload | August 2006

FEATURESEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
template
<
 typename Network_type,
 typename Value_type,
 typename Data_iterator_type,
 typename Training_functional_type,
 typename Numeric_iterator_type
 = Linear_numeric_iterator <
 typename Training_functional_type
 ::iteration_type
 >
>
class Wta_training_algorithm
{
public:

 typedef typename
 Training_functional_type::iteration_type
 iteration_type;
 typedef Numeric_iterator_type
 numeric_iterator_type;
 typedef Network_type network_type;
 typedef Value_type value_type;
 typedef Data_iterator_type data_iterator_type;
 typedef Training_functional_type
 training_functional_type;
 /** Training functional. */
 Training_functional_type training_functional;
 Wta_training_algorithm
 (
 const Training_functional_type &
 training_functional_,
 Numeric_iterator_type numeric_iterator_ =
 linear_numeric_iterator()
)
 : training_functional (training_functional_),
 numeric_iterator (numeric_iterator_)
 {
 network = static_cast < Network_type* > (0);
 }
 const int operator()
 (
 Data_iterator_type data_begin,
 Data_iterator_type data_end,
 Network_type * network_
)
 {
 network = network_;
 // check if pointer is not null
 assert (network != static_cast <
 Network_type * > (0));
 // for each data train neural network
 std::for_each
 (
 data_begin, data_end,
 boost::bind
 (
 & Wta_training_algorithm
 <
 Network_type,
 Value_type,
 Data_iterator_type,
 Training_functional_type,
 Numeric_iterator_type
 >::train,
 this,
 _1
)
);
 return 0;
 }
Listing 7
protected:

 /** Pointer to the network. */
 Network_type * network;

 iteration_type iteration;

 Numeric_iterator_type numeric_iterator;

 void train (const Value_type & value)
 {
 size_t index_1 = 0;
 size_t index_2 = 0;

 typename Network_type::value_type
 ::result_type tmp_result;
 // reset max_result
 typename Network_type::value_type
 ::result_type max_result
 = std::numeric_limits
 <
 typename Network_type
 ::value_type::result_type
 >::min();

 typename Network_type::row_iterator r_iter;
 typename Network_type::column_iterator c_iter;

 // set ranges for iteration procedure
 size_t r_counter = 0;
 size_t c_counter = 0;

 for (r_iter = network->objects.begin();
 r_iter != network->objects.end();
 ++r_iter
)
 {
 for (c_iter = r_iter->begin();
 c_iter != r_iter->end();
 ++c_iter
)
 {
 tmp_result = (*c_iter) (value);
 if (tmp_result > max_result)
 {
 index_1 = r_counter;
 index_2 = c_counter;
 max_result = tmp_result;
 }
 ++c_counter;
 }
 ++r_counter;
 c_counter = 0;
 }

 r_iter = network->objects.begin();
 std::advance (r_iter, index_1);
 c_iter = r_iter->begin();
 std::advance (c_iter, index_2);

 // train the winning neuron
 (training_functional)
 (
 c_iter->weights,
 value,
 this->iteration
);
 // increase iteration
 ++numeric_iterator;
 iteration = numeric_iterator();
 }
};

Listing 7 (cont’d)
August 2006 | Overload | 29

FEATURE SEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
is more complicated. As in WTA we look for the best neuron, but we train
all neurons in neighbourhood.

wM(t+1) = wM(t) + G(w(t), x, N, M, t)(x – wM(t))

where: w(t) is the existing weight(s) of the trained neuron (not only the
winner), w(t+1) is the modified weight(s) of this neuron, x is the input data,
and G is a training function, N is neuron which is mostly activated (the
winner), M denotes trained neuron.
Function G depends on the relation between the winning neuron N and the
trained neuron M, also between the weight wM and the data x. The library
provides some ready-made WTM algorithms, too. The WTM algorithm
trains groups of neurons, as much as they fit to the data.
The 2D topologies supported by the library are: Hexagonal topology, City
topology and Maximum topology. In these diagrams (Figure 2.) we can
see that the same 4x4 matrix can have different topologies which define
different shapes of neighbourhood (on figures are shown neighbourhoods
of the radius equals 1). In the WTM algorithm the winner will be improved
a lot, but the neighbours will be improved too – the effect falling off with

distance in the neural network and some other parameters defined by the
G function.

template
<
 typename Value_type,
 typename Parameters_type,
 typename Iteration_type
>
class Wta_proportional_training_functional
: public Basic_wta_training_functional
<
 Value_type,
 Parameters_type
>
{
public:
 typedef Iteration_type iteration_type;

 /** Shifting parameter for linear function */
 Parameters_type parameter_0;

 /** Scaling parameter for linear function */
 Parameters_type parameter_1;

 Wta_proportional_training_functional
 (
 const Parameters_type & parameter_0_,
 const Parameters_type & parameter_1_
)
 : parameter_0 (parameter_0_),
 parameter_1 (parameter_1_)
 {}

 Value_type & operator()
 (
 Value_type & weight,
 const Value_type & value,
 const iteration_type & s
)
 {
 using namespace operators;
 return
 (
 weight
 = weight
 + (parameter_0 + parameter_1 * s)
 * (value - weight)
);
 }
};

Listing 8

// data container like:
// {(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7), ... }
typedef vector < V_d > V_v_d;

// construct WTA training functional
typedef
neural_net::Wta_proportional_training_functional
 < V_d, double, int >
 Wta_train_func;

// define proper functional and its parameters
Wta_train_func wta_train_func (0.2 , 0);

// construct WTA training algorithm
typedef neural_net::Wta_training_algorithm
 < Kohonen_network, V_d, V_v_d::iterator,
 Wta_train_func >
 Learning_algorithm;

// define training algorithm
Learning_algorithm training_alg (wta_train_func);

// set number of the training epochs
// one epoch it is training through all data
// stored in container
const int no_epoch = 30;

// print weights before training process
neural_net::print_network_weights (cout,
kohonen_network);

// train network
for (int i = 0; i < no_epoch; ++i)
{
 training_alg (data.begin(), data.end(),
 &kohonen_network);
 // better results are reached if data are sorted
 // in each cycle of the training
 // in target procedure this functionality
 // could be prepared using
 // proper policy like Shuffle_policy
 std::random_shuffle (data.begin(), data.end());
}

// print weights after training process
neural_net::print_network_weights
 (cout, kohonen_network);

Listing 9

Figure 4
30 | Overload | August 2006

FEATURESEWERYN HABDANK-WOJEWÓDZKI & JANUS RYBARSKI
Implementation of the training algorithms
To be consistent with the design of the neuron, we decide to continue using
class templates. A schematic of the training process is shown on Figure 3.
The code for the WTA algorithm is shown in Listing 7.
The function call operator calls the private train function for each item
of data. The train function finds the winning neuron and applies the
training_functional to it. Listing 8 shows the code for the
training_functional class template:
So we could go deeper and deeper defining further class templates to build
up the code for all the training procedures. Listing 9 presents part of the
code that brings all the pieces together, creates the WTA training algorithm
and, finally, trains the network generated earlier.
The code for the WTA method presented here is just an overview showing
how the rest of the code is structured. WTM is much bigger and complicated,
but also much more effective. Both algorithms are implemented in the
library.

Usage of the network
Generally the structure e.g. topology, input and outputs of the trained
network are shown in Figure 3. After training the network can be used in
the same way as other neural networks. We can put the input value, and
we can simply read outputs. The function below will return output value
of the (i,j)-th neuron when we set the input value.
 network (i, j) (input_value);

or directly:
 network.objects[i][j] (input_value);

There are other useful functions for printing values and weights from
network. The first one (from the print_network.hpp file) is:
 print_network

The example of the usage is shown below. In the examples
kohonen_network is a network and *(data.begin()) is the first value
from the set of training data, but there can be used other input values, too:
 neural_net::print_network (std::cout,
 kohonen_network, *(data.begin()));

Other is for printing only weights:
 print_network_weights

The example of the usage is shown below:
 neural_net::print_network_weights (std::cout,
 kohonen_network);

All details are available in the reference manual, both function are just
loops through the network container. The first function calculates every
output value. The second one take every weight of the neuron and print it.

Interpretation of the results
One interpretation of the network is that after training we are looking on
values of the weights of all neurons. The weights can be treated as
“centres” of the clusters.
If we have a network with 3 neurons, and we will train it with a set of data.
We can noticed that weights of the neurons will concentrate in the centres
of the data groups. We do not need define any group, Kohonen network
will find as many group as is number of neurons what is shown on Figure
4. Thanks to the network and training process we have generalisation of
the data. After training if we put in to the network input new data (similar
to shown in Figure 4.) the network will activate neurons – it mean that we
can read output values, and then we can look which neuron have the highest
response – we call it “winner”. We can say that new data belongs to the

cluster (group) which is represented by this neuron and we can read the
weights of this neuron.
This is important in all branches of the computation from business, through
medicine, from signal processing e.g. image compression, to the weather
prediction. Everywhere when we have a lot of data, and we do not really
know what they are generally represent.
After training if we put input value to the network, we can observe
responses from all neurons. Then we can say e.g. that the given input value
belongs to the cluster e.g. “A” which is represented by the neuron with the
highest response. Further we can say in “fuzzy” language that this
particular value belongs the most to cluster e.g. “A”, however it belongs
to other clusters “B” and “D”, but not to “C”, where every cluster is
represented by the single neuron.

Conclusions
In this paper we have presented the design and implementation of a
Kohonen neural network library using class templates and a functional
programming style. The KNNL library uses the Boost library. The training
algorithms have been tested and found to produce quite good results. After
implementation the library we observe that class templates are very useful
for creating very flexible mathematical code.

Acknowledgements
Seweryn would like to thank Bronek Kozicki for help with the publication
of this work, and Michal Rzechonek who always helps to improve my
programming skills, and Phil Bass who gives many important remarks to
the coding style and shape of this article. Moreover Seweryn would like
to thanks Alan Griffiths for help in preparing final version of this paper
more oriented to the programmers needs.

References
[Wiki] Artificial Neural Networks, http://en.wikipedia.org/wiki/

Artificial_neural_network
[Boost] Boost::uBlas, http://www.boost.org/libs/numeric/ublas/doc/

matrix.htm
[Josuttis99] The C++ Standard Library: A Tutorial and Reference, N. M.

Josuttis, Addison Wesley Professional, 1999.
[Vandevoorde03] C++ Templates: The Complete Guide, D.

Vandevoorde, N. M. Josuttis, Addison Wesley Professional, 2003.
[Abrahams04] C++ Template Metaprogramming: Concepts, Tools, and

Techniques from C++ Boost and Beyond, D. Abrahams, A.
Gurtovoy, Addison Wesley, 2004.

[Traits] Concept Traits, http://www.neoscientists.org/~tschwinger/
boostdev/concept_traits/libs/concept_traits/doc/

[Reyes-Aldasoro] Image Segmentation with Kohonen Neural Network
Self-Organizing Map, Contsantino Carlos Reyes-Aldasoro, http://
www.cs.jhu.edu/~cis/cista/446/papers/SegmentationWithSOM.pdf

[Brocki] Kohonen Self-Organizing Map for the Traveling Salesperson
Problem, Lukas Brocki, http://www.tokyolectures.pjwstk.edu.pl/
files/lucas_tsp.pdf

[TSP] Travelling Salesman Problem, http://www.patol.com/java/TSP/
[KNNL] Source code of the KNNL, http://knnl.sourceforge.net
[Levenshtein] Levenshtein Distance, http://www.merriampark.com/

ld.htm#WHATIS
[Korbicz03] Fault Diagnosis: Models, Artificial Intelligence,

Applications, J. Korbicz, Springer-Verlag, 2003.
[Yager94] Essential of Fuzzy Modelling and Control, R. R. Yager, D. P.

Filev, John Willey & Sons, 1994.
[Lin96] Neural Fuzzy System – A Neuro-Fuzzy Synergism to Intelligent

Systems, C.-T. Lin, C. S. G. Lee, Prentice-Hall, 1996.
August 2006 | Overload | 31

32 | Overload | August 2006

FEATURE ALLAN KELLY

The Documentation Myth
Allan Kelly suggests that we don’t invest
more in documentation for a reason: that it
isn’t as valuable as we claim.

t appears that software developers, and their managers, have a love-hate
relationship with documentation. On the one hand, we all seem to be
able to agree that documentation is a good thing and we should write

more of it. On the other hand, we are the first to acknowledge that we don’t
produce enough documentation. Frequently I talk to developers who say
they don’t have the time to do it, while managers often don’t see the point
“shouldn’t you have written that before you started?”
Still, when a new recruit joins an existing project we’re quite likely to sit
them at a desk with a pile of documents and somehow expect that by
reading them they will learn the system. Chances are the poor guy will just
end up being bored and have difficulty keeping his eyes open by lunch.
Then, when you actually give him some code to work on he’ll find it was
never documented, or the document wasn’t finished, or it’s out of date, or
it’s just plain wrong. How often have we heard a new developer ask for
documents, even though he knows they won’t exist, One has to go through
the ritual of asking - after all, this is a professional outfit isn’t it?
Now at this point in the article, writers like me are expected to launch into
exhortations on why documentation is important, why managers and
developers should take it seriously, and maybe even recommend an
amazing new tool which will help you do this. Surprisingly this tool is
available from my company for just £199 (plus VAT).
However, I’m going to save my breath. To my mind it stands to reason that
if documentation was as important as we say it is then we would take it
seriously, we would do it, and it would be available. End of argument.
This is not to say documentation is useless. Particularly when we are
planning and designing our system, the writing of papers, drawing of
diagrams and discussions based around such documents are an essential
way of analysing the problem and creating a shared understanding between
team members.
Specification documents are somewhat more troublesome. They may be
essential in order to start the project, indeed they may form part of a legal
contract between customer and supplier, but we all know that
specifications change. In fact, I’d argue that the process of writing the
specification changes the specification. By documenting the problem we
come to a better understand of the domain, this leads to new insights for
all concerned and often leads us to view the original problem in a new way
which also leads to new requirements.
OK, I’ll accept that documentation has a role to play in helping new staff
understand what is going on. However, diminishing returns are at work,
the bigger the document the less information will be absorbed. The first
few pages add more to understanding than the second hundred. Bigger
documents delay the time when new staff actually do anything.
Voluminous documentation can even discourage people from problem
solving when they believe it is just a case of find the right page with a
working solution (and how often have we each searched MSDN or Google
for such a page?)
Even when there is documentation available we don’t really trust it – and
with good reason. We expect there to be a gap between what it says in the

document and what is actually the case. The gap arises because things
change over time, and because English and Java express different ideas.
In the worst case writing documentation becomes goal deferment – why
complete the code when you can complete the document? I worked on one
project that followed a rigorous ISO-9000 certified process. Despite very
tight deadlines the documentation had to be kept up to date, as the
documents grew the development work slowed, morale fell and the
documents become more and more inaccurate. Even when they where
proof-read by others there was no check to make sure the document
actually described what was in the code. Increasingly the documents said
what the managers wanted to hear and the programmers wrote the code
they way wanted to. So what are we to do about the documentation myth?
Which tool will solve my problem?
There is no technical fix for this problem. We need to rethink our view of
documents. They are themselves a tool which allows us to discuss the
problem domain, explore solutions and share information. However, they
are a product of their environment. Inevitably they will address the issues
at the time they are written, not the issues we find two years later.
Documents will contain the information considered important by the people
involved when they were writing. Other people, with different backgrounds
and at different times, will consider different information important.
Documents only contain explicit information that we choose to express.
Much of the important information on a project is actually tacit and held
in people’s heads without recognising it. Information is also held in the
practices and processes adopted by a development team, and duplicating
the processes won’t necessarily replicate the information.
While our code base and deployed systems will always be the definitive
source of information, we can supplement these sources if we value other
forms of communication – particularly verbal and cultural. This means we
need to look to our people, we need to encourage them to communicate
and share what they know. New staff shouldn’t ask “Where can I find the
documentation?” but “Who can I ask?”

Postscript
The Documentation Myth was written a couple of years ago - January 2004
according to the file. For some reason I never got around to finishing it, I
still stand by everything I’ve said: documentation can be useful, but it’s
probably not as useful as we often think it is. And the proof is: if it was
that important we’d do more of it. The reason for dusting it off and
publishing it now is down to Peter Sommerlad’s presentation at ACCU
conference: Only the Code Tells the Truth.
Peter suggested that at the end of the day the only definitive documentation
of a running system is the code itself. Not the system documentation, not
the specification, not the UML and not even the comments in the system.
Then he went further. He suggested that many of the practices we consider
important in software development may be myths. For example, comments
in the code, design before coding, test after coding and strongly typed
languages, to name a few.
Some of these things were never true, we just thought they were a good
idea at the time – well intentioned but not actually helpful. Others were
useful once upon a time but things change and maybe they aren’t so useful
today – for example strongly typed languages. And others were just
downright wrong, ISO-9000 for one.
I’ve written about this before in a way: it’s the need to unlearn some things.
Some ideas have passed their sell-by date and we need to let go. But this
goes further, we need to constantly look at what we are doing and ask: does
this add value? Does it contribute? These are hard questions to ask and the
results can be even harder to accept but we have to do it if our profession
is to move forward and not get caught in sub-optimal positions.
However, like Peter, I believe that the time has come for some Myth
Busting. It’s a new century, our young profession is entering middle age,
the time has come to look at what passes for conventional wisdom and
question it. So, do you know any Myths we should be exposing?

I

Allan Kelly Allan has many years’ experience at the code-
face and more recently in product and project management.
He believes the future of software development looks very
different to its past, and the key to high performing software
teams is the ability to learn. He holds BSc and MBA degrees.
Allan can be reached at allan@allankelly.net

	Take a Step Forward
	Comments Considered Good
	Introducing CODEF/CML
	Fine Tuning for lexical_cast
	C# Generics - Beyond Containers of T
	The Kohonen Neural Network Library
	The Documentation Myth

