

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Letters
The use of comments in code and the concept of
pair programming stimulated some discussion
between readers and authors.

6 Up Against the Barrier
Simon Sebright examines the hidden cost of
limiting the ways in which code may be changed.

8 Inventing a Mutex
George Shagov examines a lightweight
mechanism for thread synchronisation.

11 C++ Unit Testing Easier: CUTE
Peter Sommerlad presents a lightweight
framework for C++ unit testing.

16 From CVS to Subversion
Thomas Guest reflects on migrating his
organisation’s version control system from CVS to
Subversion.

OVERLOAD 75

October 2006

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editor

Mark Radford
mark@twonline.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddeaus Froggley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Tim Penhey
tim@penhey.net

Advertising enquiries

ads@accu.org

Cover art

Pete Goodliffe

Design

Pete Goodliffe

Copy deadlines
All articles intended for publication in
Overload 76 should be submitted to
the editor by 1st November 2006 and
for Overload 77 by 1st January 2007.

EDITORIAL ALAN GRIFFITHS
Life in the Fast Lane
The ISO Fast-Track is paved with good intentions,
but does it lead where we want to be?
The latest in the ISO C++/CLI story
I’m going to come back to this after explaining the
process of standardisation, but the recent fast-track
ballot by ISO’s SC22 committee on whether to adopt
ECMA’s C++/CLI proposal as a “Draft International

Standard” decided “against”. ECMA as the Fast Track submitter has been
instructed to “decide whether they wish to schedule a disposition of
comments meeting and to address all comments and update the text for a
second DIS ballot”.
I’m not sure what the other options are, but there is no reason to think that
ECMA will do anything but press ahead with this standard – which, after
all, is what their business is about.

ISO’s “Fast Track”
ISO has traditionally developed standards internally based on principles
of “consensus”, “industry-wide” and “voluntary”. Quoting from their
website [ISO]:

How are ISO standards developed?

ISO standards are developed according to the following principles:

Consensus

The views of all interests are taken into account: manufacturers,
vendors and users, consumer groups, testing laboratories,
governments, engineering professions and research organizations.

Industry-wide

Global solutions to satisfy industries and customers worldwide.

Voluntary

International standardization is market-driven and therefore based on
voluntary involvement of all interests in the market-place.

The same page gives the following overview of the process of developing
a standard:

The need for a standard is usually expressed by an industry sector,
which communicates this need to a national member body. The latter
proposes the new work item to ISO as a whole. Once the need for an
International Standard has been recognized and formally agreed, the
first phase involves definition of the technical scope of the future
standard. This phase is usually carried out in working groups which
comprise technical experts from countries interested in the subject
matter.

Once agreement has been reached on which
technical aspects are to be covered in the
standard, a second phase is entered during
which count r ies negot iate the deta i led

specifications within the standard. This is the consensus-building
phase.

The final phase comprises the formal approval of the resulting draft
International Standard (the acceptance criteria stipulate approval by
two-thirds of the ISO members that have participated actively in the
standards development process, and approval by 75 % of all members
that vote), following which the agreed text is published as an ISO
International Standard.

This is inherently a slow process – and, in practice, it can be really slow
(in the case of C++ it took about nine years). And many feel that standards
need to be produced on a more ambitious timetable. And so, ISO created
an alternative “fast-track” process that allowed it to adopt standards
created outside the above process – for example “publicly available
standards”.
While I can’t find details of this fast-track process on the ISO website
(having asked around, it is part of the “ISO/IEC JTC 1 Directives” – JTC
is “Joint Technical Committee”). While I can’t claim expert knowledge
of these I understand that the fast-track proceeds as follows: firstly,
document (for example a “publicly available standard”) is submitted for
“Fast-Track” approval to the corresponding ISO committee. In the case
of the C++/CLI proposal this is SC22 (programming languages). This
committee, or rather the national bodies that comprise it, then has a thirty
day period to identify contradictions that would prevent the standard being
considered. (We’ll revisit this idea of “contradictions” in the context of
the C++/CLI submission below.) Assuming the standard survives
scrutiny, the next stage is for the committee to vote on its adoption as a
“draft international standard”. (This is in contrast with the process outlined
above where a working group formed from the national bodies on the
committee work together to create a consensus before the corresponding
vote.)
The progress of C++/CLI (described below) suggests that the criteria for
accepting a standard for fast-tracking are not clear and that there is a failure
to gain consensus from people knowledgeable about the subject area and
potential impact of this standard. There is a marked contrast with standards
developed by ISO itself – for these there is, for example, a requirement
that a working group comprising at least five national bodies is willing to
take responsibility for the work involved.
Every organisation develops a culture over the course of time that reflects
the way it tries to work. And ISO is no exception to this. Most of its
standards are of interest to a minority of those on the decision making
panels (not surprising really, there are a lot of standards and very limited
resources to pursue them). A consequence of this is that national bodies
with no interest in a particular standard try to keep out of the way by

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. His homepage
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | October 2006

EDITORIALALAN GRIFFITHS
automatically voting “approve” to anything that comes up for a vote. For
traditional standards this is justified on both the tit-for-tat principle that
others will do the same for standards that do interest them and on the
assumption that those national bodies forming the working group have
been diligent.
In organisational terms the fast-track is a new thing and the existing culture
of “approve” by default is still operating. However, for a PAS submission
there may be no national bodies interested in the standard – with the
consequence that neither the tit-for-tat principle nor the presumption of
diligence need apply. The effect of this can be quite alarming.

What does this mean for C++/CLI?
When it came to ECMA C++/CLI standardisation effort there was very
little existing interest in SC22. Even within SC22/WG21 (C++) it was very
much a minority interest – although some members of the BSI panel (and
other participants in WG21) had made an effort to engage in the ECMA
process. The general attitude, however, of those working on ISO C++ was
that C++/CLI would be a diversion of their effort from more important
issues.
When C++/CLI was submitted for “Fast-Track” the BSI C++ panel
believed that there were a number of contradictions inherent in the C++/
CLI submission (these are discussed in the editorial mentioned above).
These were duly raised with SC22 which then chose to proceed with this
submission. It isn’t clear whether the objections raised by BSI, DIN (the
German standards body) were considered inconsequential or irrelevant
“technical comments”. It does appear that the latter may be the case as, at
this time, a document was posted to the BSI website requesting that
national bodies “review and contributions on the relevant parts of JTC 1
Directives clause 13 on the 30 day call for contradictions during Fast
Track” which suggests that it is recognised that there is ambiguity in this
area.
It wasn’t just the British and Germans that has issues to raise: the French
C++ group also attempted to raise objections through their standards body
(AFNOR) but I don’t think these were actually seen by SC22 as there was
some confusion regarding the language in which the objections were
stated. My understanding is that the C++ group raised and/or translated
their objections into French, thinking this was a requirement only to find
that AFNOR would not submit them to SC22 unless they were in English.
Attitudes within WG21 changed somewhat during the Berlin WG21
meeting when, at an off-schedule get-together (sponsored – after the fact
– by ACCU), Lois Goldthwaite presented the concerns of the BSI panel
to many of the people active in WG21. One of the key points made in this
presentation was that while C++/CLI was a natural evolution of C++ (to
the CLI) it could, if ratified by ISO, be mistaken for the natural evolution
of C++ that they had all been so busy working on. For ISO to ratify two
incompatible “C++” standards in rapid succession would be guaranteed to
create confusion.
As a result of these arguments the various national bodies active in WG21
chose to look at C++/CLI more closely and decided that they needed to
act. This decision was not made lightly as there is an expectation within
ISO that “no” votes are accompanied with “comments” (an informed
explanation of the reasons for voting no and a suggested resolution that
would change the vote to a “yes”). These comments are hard work – which
discourages “no” votes on trivial grounds.
The consequence was that when it came to voting there were eleven votes
in favour of accepting the C++/CLI standard and nine votes against.
According to Francis Glassborow (who is better placed than I am to know
who is active in WG21) all of the active members of WG21 voted against1:
“No one who knew anything about the subject was in favour”. While a
majority of national bodies did approve the standard this represents a
failure to gain approval (according to the voting rules there needs to be at
least 66% approval and at most 25% against – abstentions not counting).
If you look at the numbers, they prove how hard it is to defeat one of these
ballots. There were eleven in favour when twelve were needed to pass. And

there were nine against when six would not have been enough. Consider
what would happen with a working group that, like many, has fewer active
members than WG21. Or one that was less alert to events.

The role of ECMA
There are many bodies in the world that take it upon themselves to issue
standards and ECMA (formerly the “European Computer Manufacturers
Association”) is one of many. As its former name suggests it represents
the interests of manufactures (although, in line with current trends in
globalisation, it in no way restricts its activities to Europe).
ECMA seems rather proud of the fact that it is behind the majority of
standards fast-tracked through ISO since that process became available:
“All together 250 standards have been fast-tracked since 1987:Over 80%
of these come from Ecma” [ECMA]. Thus success progressing standards
through the ISO fast track process is thought to encourage manufactures
to invest in developing standards through ECMA.
The role of ECMA is different to that of ISO – the manufacturers that it
represents are only one of the constituencies represented in ISO. The fact
that, for example, Microsoft can gain consensus with other manufacturers
for standardising C++/CLI is not a guarantee of more widespread support.

What does this mean?
There would appear to be something missing in the ISO fast-track process.
While it does meet its initial goal of permitting standardisation on a much
shorter time-scale it currently fails to meet the principle of consensus cited
above.
There is a serious danger of the ISO stamp of approval being applied
without due caution. One may hope that the review being undertaken by
JTC1 will result in the process being updated to ensure that, for example,
there is a quorum of national bodies interested in adopting any standard
being considered.
Pending such a development there is a need for vigilance on the part of
national bodies and, to assist them in this, on the part of individuals that
may be aware of developments that their national bodies are not actively
tracking.

Watch this space
There is another standard that bears watching to illuminate this process.
Earlier this year ISO standardised Open Document Format (a format
covering various office documents) through the Publicly Available
Standard process when it was submitted by Oasis. Now ECMA is
standardising Office Open – a corresponding format based on the new
format that Microsoft’s office suite will use. In due course this too will be
submitted for fast tracking by ISO.
It seems absurd for ISO to standardise two competing standards in this
space. This absurdity has a cost – the national bodies then have to publish
these standards.

A note of thanks
I’d like to thank all those who responded to my appeal for help putting this
issue of Overload together. In particular, I’d like to mention Alistair
McDonald and Anthony Williams who both helped with the process of
preparing material submitted by others for publication.

References
[ISO] http://www.iso.org/iso/en/stdsdevelopment/whowhenhow/

how.html
[ECMA] http://www.ecma-international.org/activities/General/

presentingecma.pdf
1. There is a partial exception in the case of Switzerland – which national body voted

“yes” without first consulting its C++ experts.
October 2006 | Overload | 3

LETTERS
Letters

Colin Paul Gloster writes:
Dear William,
In response to Bill Fishburne’s example comments for a stack in his article
‘Comments Considered Good’ in the August 2006 issue of Overload and
his claim that “The comments offer us something that code alone cannot.
There is no way for the declaration to state that size will decrease by 1 as
a side-effect. [..] the code cannot document itself, particularly in side-
effects”, I really do not agree with this. Postconditions and the Design by
Contract™ paradigm are capable of documenting this without a comment,
e.g. SPARK [SPARK] and Eiffel [Meyer] can do so. (SPARK is defined
in such a way that it is entirely written inside comments of another
language’s. This does not affect my point that postconditions in SPARK
are documented without a comment: the commenting is for bypassing the
other language’s compiler, before the other language’s compiler is invoked
the SPARK code must be passed by a SPARK analyzer.)

Regards,
Colin Paul Gloster (Colin_Paul_Gloster@ACM.org)

[Meyer] Bertrand Meyer, ‘Part 6 Design by Contract and Assertions’ of
‘Invitation to Eiffel’, HTTP://Docs.Eiffel.com/eiffelstudio/general/
guided_tour/language/invitation-07.html

[SPARK] Praxis High Integrity Systems, ‘SPARK Quick Reference 1 -
Toolset and Annotations’, WWW.Praxis-HIS.com/sparkada/pdfs/
SPARK_QRG1.pdf

William Fishburne replies:
Colin,
Thank you for your comment. I was speaking particularly in respect to C/
C++, and am sadly unfamiliar with both SPARK and Eiffel (I know Eiffel
by name only). It does seem likely, however, that any language which
could completely forego comments would be so verbose as to rival a native
language (such as English), although I would surely not want to bet the
farm on it! One might argue that ‘side-effects’ would be impossible in such
a language, but I will let my ignorance of the two languages in question
strongly undermine the validity of any such argument from me.
Instead, let me direct you to http://www.ddj.com/184405997 which is an
article by Christopher Diggins who built Heron using the Design by
Contract paradigm and stated (with respect to the paradigm and not
specifically to Heron):

In fact, some pre/postconditions are difficult and even impossible to
express in a formal language. In these cases, the pre/postcondition is
best expressed as a natural language comment.

I’m unable to evaluate the validity of this assertion, but simply point you
toward it as it seemed relevant to me.

William Fishburne (bfishburne@gmail.com)

Colin Paul Gloster again:
Dear William,
I do not know of any programming language in which comments are not
possible, but I can think of at least one terse specification language (namely
Z) which does not have comments. The objection I have written is not
against the overall idea that comments may be good, but rather against a

specific example in which it had been claimed that code visible to the user
other than a comment can not document a particular feature.
I agree it [the Christopher Diggins quote] seems relevant. Not everything
is expressible in every or maybe even some language, and a comment may
be helpful to explain something complicated which is written or which can
not be written in a formal language.

Regards,
Colin Paul Gloster

Seweryn Habdank-Wojewódzki writes:
Dear Rachel Davies,
I read your article about Pair Programming [Overload 73]. Last month I
made a survey of software projects. I would like to share my observations
with you.
The survey was of 48 software projects. A questionnaire was completed,
recording metrics such as the number of lines of code, the number of
developers, the number of different languages and APIs used, and so on.
A copy of the questionnaire can be made available if desired.
In figure 1, I show cloud data which shows a correlation between
complexity of the project and the number of developers.
This shows the trivial fact that as complexity increases, the number of
developers increases. We could also turn this round and suggest that more
developers can spontaneously increase the complexity of a project.
One other interpretation we can make is how much complexity can the
average developer cope with? This appears to be around 1 developer for
5 points of complexity. This might be useful for managers in estimating
how many developers are required for any particular project.
Figure 2 shows the number of lines of code per person month, plotted
against the number of developers on a project. Looking at the top of the
graph, we can observe that there is small tendency for developers to create

Figure 1

4 | Overload | October 2006

LETTERS
less code as the numbers of developers in the project increases. On the
other hand, looking at the bottom, the least productive developers create
more code as the number of developers increases.
This may be because, as team size increases, developers spend more time
on communication between themselves, but conversely they are
stimulating each other to increase speed, possibly because a group of
people is more creative than the individuals alone.
Figure 3 shows the number of lines of code per person month against the
duration of the project in person months. It shows that coding speed
decreases on a longer project.
There may be two reasons. Firstly, to get a high number of person months,
there may be many people on a relatively short-running project. Many
people need more time to communicate, instead of coding. Secondly, a
small group of people may work on a long-running project, develop a large
codebase, and they cannot cope with it, perhaps through boredom or
tiredness. This would suggest that programmers are better when they are
new in the project, but of course there is a low boundary, as it takes time
for a developer to attain good productivity.

Figure 4 shows number of lines of code per person month against project
duration (only data for projects between 20 and 30 months duration are
shown). As can be seen, as project duration increases, coding speed slows.
My question is how do you think Pair Programming would affect the
results – would the same trends be seen, or would pair programming
projects correspond to the same graphs?

Best regards,
Seweryn Habdank-Wojewódzki (habdank@megapolis.pl)

Rachel replies:
Dear Seweryn,
I apologize for taking so long to reply to your questions. I have looked
through your observations and the graphs are interesting.
Your conclusions on how much complexity a developer can handle make
the assumption that the project did deliver/complete and that developer
competence is a constant. Your survey did not ask is what calibre of
developers were used and also whether the project delivered to completion.
In my view, the graphs only tell us is the level of staffing that the
organisation felt was appropriate, this might depend on other factors not
just complexity (such as how much money is available, expected working
hours, number of developers already in department, etc.). Also, I am also
not sure that having a coding standard or doing testing (questions 11 and
12) increase the complexity of the project.
Regarding the other pictures (developers-lines of code), I would add that
I do not expect lines of code to keep growing at the same rate throughout
the project. I would hope that the team practice refactoring and have an
on-going effort to reduce code bloat in favour of cleaned up designs. In
this study, we don't have information on other factors that could be
affecting developer productivity (company events, time spent in meetings,
etc). I don't think lines of code is enough to assess developer productivity.
I think you need to combine information about code quality and customer
satisfaction to understand if these developers were truly productive.
I am not good a speculating but would hope that pair programming would
improve code quality and if that were factored into your measure of
productivity then pair programming ought to improve productivity but
have a slower rate of adding code due to more emphasis on refactoring.

Best regards,
Rachel Davies

Figure 2 Figure 3

Figure 4

October 2006 | Overload | 5

FEATURE SIMON SEBRIGHT
Up Against the Barrier
A discussion of development against the odds, describing
process, personal and environmental barriers between the
people and the job they are trying to do.
his article seeks to explore why things are not always done ‘properly’.
Based on personal experience working in various teams, I have
noticed a common problem: some people in the team ‘know’ what is

idiomatic, what good and bad practices are, and yet the code still rots. I
would like to explore with you why this might be, and thus draw some
conclusions for both the software developers and the project managers.
Fundamentally, I have identified that there are various ‘barriers’ in place
when a developer is given a task. These barriers can be to do with the
process, the tools in use, the other people on the project, or the developer
themselves. Typically these barriers are of the kind that narrow the amount
a developer touches a code base, and I will argue that this is often just the
opposite of what is needed.
The situation where barriers exist tends to encourage practices which I
identify as anti-patterns. That is, they are things which occurred frequently,
in response to the forces in play, but because the forces in this case were
the barriers hampering good practice, the result was a degradation of the
code base.
The most significant barrier I encountered was the disabling of multiple
checkouts in the source control system. By this, I mean the ability for more
than one developer to checkout a given file simultaneously, such that the
can all make changes independently.
Let’s explore what the barriers might be, with an attempt to categorise
them:
Process

Very bureaucratic change process
Poor access to files e.g. multiple checkouts not allowed, remote
working connection speed problems
Restrictions on code changes. E.g. in later phases, management
decide to touch as little as possible
Lack of automated testing

Personal
Lack of ability to make the right decisions about changes
Fear of failure
Wanting to keep a low profile
Laziness

Environment
Long build times
High dependencies among modules

I decided to write this article based on a small subset of these barriers,
which I had identified as particularly prevalent in one place of work.

However, thinking about the topic, I identified other barriers too, which
might be causing similar problems for other teams.
So, the talented developer can often be frustrated at the system, his
colleagues or his manager. The question I think is important is: why are
these barriers a problem? What effect do they have exactly?
Let’s examine the kinds of changes that are made to a code base once the
project is well under way, since these are often different to the changes
made in the opening or closing stages of the project, and this is when the
majority of the changes are made. There is compilable code which
correctly implements some desired features. There is more functionality
to add, existing functionality to change as requirements change, and there
are bugs to find in what exists. Thus, changes are afoot, rife perhaps, to
existing code. We are actually in maintenance mode as well as new
development mode. Assumptions will change and some new features will
pose challenges to the designs in place.
So, let’s consider a developer who is assigned a task. The product has a
graphical front end and works with a hierarchy of objects. We display the
name of the item in the list view, but for some items, we wish to display
something else. Perhaps a different kind of name, for example a name
embellished with other information like the count of sub-objects. The
experienced among us might immediately pull out new concepts from this.
Aha, we have the concept of displayed name, or list view display value,
or display value parameterised by view type. We might have a session at
the whiteboard and/or pub to see which concept best fits the expected
future changes (perhaps other views might want to display different
information too).
Our programmer, however, does not think like that, or at least does not act
like that. They want to have an easy life, sign off the requirement and go
to the pub. What is the easiest/quickest way to get this done?
Answer: Go to the list view code, and where the name is being pulled off
the items, do a dynamic cast to see if we have the special type. If so, call
a function on it to get the extra information to display and append this to
its name. One function, plus a #include statement: one source file
changed. Ah, and no one has that file checked out. Magic!
Someone else given this task would have approached it differently. They
would have introduced the concept of different display properties, perhaps
parameterised by view type, or something. Ok, so we add some new virtual
functions to the object base class. Provide a suitable implementation for
most items, and for the special item, we provide the desired
implementation. Maybe all the view classes need to be given knowledge
of this new concept too. Without getting into a discussion about the merits
of implementations in virtual function hierarchies, etc., I hope you can see
where I am coming from. The changes necessary here are now much wider,
in that they affect both more files directly through code changes, and
indirectly through dependencies, most notably the object hierarchy. We
may even end up with a fundamental change to both the objects and the
view. Heaven forbid!
What have I explained here? That the changes you can make to software
can be done in different ways. I think there is often a correlation between

T

Simon Sebright has been programming for 10 years, mainly
in multi-tier C++ application development. Recently, he has
been designing and developing web/database-based
applications using C# and asp.net. He can be contacted at
simonsebright@hotmail.com
6 | Overload | October 2006

FEATURESIMON SEBRIGHT
the correctness of a change and the amount it affects the code base. Here
is a hierarchy of changes, ordered by ascending effect on dependent files:

1. Code change in one function, as outlined above. Note the nasty
smell of a dynamic cast, or other form of type ascertainment.

2. Add a parameter with a default value to a function that needs to do
something different in some circumstances, and call it with a non-
default value where the new behaviour is required. (requires change
to two files for the changed class and files for calling classes where
some different behaviour is required, and rebuild of dependent
things).

3. Add a new function (same overhead as above, but with additional
potential responsibilities of documentation, etc. and the visibility
of having changed that interface more).

4. Add a new virtual function to a base class (requires access to the
base class, and the derived class for which the specialised version
is required, requiring access to more files and a longer rebuild).
Perhaps other families of objects need to change too to know of the
new concept in town.

In the team where this kind of thing was most prevalent, there were two
main barriers in play. One was personal: laziness, lack of thought and
ability to pull out concepts. The other was process – multiple checkouts
were not allowed. As a result, the codebase was already in decline a long
time before the end of the project. Particularly prevalent were functions
which had a Boolean parameter at the end, one of the lower impact changes
mentioned above. This was my anti-pattern nemesis.
Anti-Pattern – Parameterise Function with Boolean (often with default
value)
Forces: Some functionality exists, but a change in behaviour is needed in
certain circumstances. Other places using that functionality are required
to remain the same.
Solution: Add a Boolean parameter to the function. Give it a default value,
and in the function body, preserve the current flow through the code for
that value. For the non-default value, do something different as required.
The parameter would often be called doX or dontDoX, indicating that you
could get it to do something subtly different with either true or false. There
would often be a default so that existing code would compile and do the
same as it did. Most people reading this article would try and think of more
graceful ways to solve this problem; use of Template Method design
pattern perhaps, or perhaps two separate functions, each of which calls a
helper to do the common bits, the names of these functions clearly
indicating which behaviour they cause. The point is that that process of
thinking simply did not occur. Sometimes it was lack of ability or
experience, sometime laziness.
Consequences: The results of this anti-pattern are mysterious calls to
functions. GetName(false); Whilst totally comprehensible to the
developer at the time, should either the developer or the time change,
comprehensibility declines. One could use techniques designed for
comment-less coding to mitigate the mess somewhat, such as declaring a
named constant variable and passing this in, or using an enum, but I feel
this is really tidying up after a mess, rather than avoiding creating that
mess.
But there were code reviews; surely only good code will get checked in?
At least, the process included a mandatory code review for each checkin.
The reviewer had to check a box on the requirement sign-off page.
Unfortunately, this review more often than not ended up as simply reading
the code. Any questions asked were dismissed with lame excuses. “Oh,
yes, I could do it that way, but this works and is much simpler.” “That
would be overkill.” “The files were checked out.”
I managed to get a reputation for being a difficult reviewer, because I
would demand changes where I felt that things were not being done
properly. A few people in the team really liked this, and we formed a band
offering good constructive criticism of each other’s designs and code.
Other team members sought reviewers of the old school type so they didn’t
have much hassle.

Now for the second main barrier in place: the lack of multiple checkouts.
This was rigidly enforced and defended by the project management team
for fear of collisions of code changes causing compilation failures and
bugs. It is certainly true that when checking in a file that someone has
changed under your feet, you have to go through a process of reconciling
those changes and making sure your own changes still make sense. But,
that is something you have to do anyway when making a checkin, because
the same issue occurs between different source files. For example, the
same issue still applies if you decided to call a function which no longer
exists on a class, or for which someone has changed the signature.
So, their worry was really not fully founded in my opinion.

Furthermore, it had exactly the opposite effect to that intended. The more
diligent programmers did try to do things properly and, as discussed above,
often needed to make small changes to a larger number of files. We often
ended up in deadlock. Because someone knows they won’t be able to
checkout a file if someone else grabs it first, they check it out as soon as
they can and hog it. So, the second person needing it does the only sane
thing and makes their own copy writeable so as they can get on with their
own changes. There are ways to make this more robust. These might range
from simply writing down which files are thus affected, to making a
temporary source code control system for such situations. However it is
done, we have the same risks as when the main tool is used to do multiple
checkouts, but with extra overhead and risks as well! These extra risks are
things like the developer accidentally overwriting their working copy, or
forgetting to integrate the changes made in the meantime. The multiple
checkout facility, in this case of SourceSafe, is specifically there to help
manage this situation for the developers, but it wasn’t being used, for fear
of the very thing which it helps to avoid.
Now, it also had the effect of changing the nature of changes made to the
files. Things tended to back up on developers’ machines who were not
lucky enough to get all the files they needed, thus changes were often much
larger than they could have been. Several requirements might be addressed
in one checkin, for example. With multiple checkouts allowed, this would
not be the case, as you have the ability to keep checking in your atomic
changes, and keeping them concerned with one issue at a time. So, we had
a vicious circle. Lack of multiple checkouts made the lack of multiple
checkouts much worse to live with!

What can we learn?
Any constraints on developers will have a tendency to reduce their
effectiveness, when considering the project as a whole, evolving thing.
Constraints can be those imposed by the management via process, or the
tools in use, through to the developers themselves, through laziness, lack
of ability, or lack of experience.
If you are a project manager, be aware that the constraints you impose on
your team must be those which will encourage better code being checked
in, not merely conform to some loose idea of how things should be done.
A good constraint might be “any code checked in must have unit tests”. A
bad constraint might restrict access to files (as with the well-intended lack
of multiple checkouts).
If you are a developer, think hard about what you check in. Is it a result of
some compromise because of file availability, or because you didn't feel
like changing base object class for some reason? Think how your changes
will affect the future of the code, and if you can make that future brighter,
then consider doing so. Fight your corner where you can see that well-
meant processes are causing a derogatory effect.
There will be barriers in place at your place. Hopefully they will be lower
than you can jump.

constraints you impose on your team
must be those which will encourage

better code being checked in
October 2006 | Overload | 7

FEATURE GEORGE SHAGOV
Inventing a Mutex
A mutex is a general purpose tool – there may be better
solutions in specific circumstances. George Shagov presents
one such alternative.
1. begin

2. Check

3. Setting K-bit to 1

6. End

4. Check

5. Setting K-bit to 0

Not all values are 0

All the values are 0

Not all non K-bits are 0

All non K-bits are 0

Introduction
he article might be of interest for server developers in a multi-user
multi-threaded multi-processor environment with high data flow
capacity, where performance stands on the very edge of the business.

(Note that the approach presented here is restricted to systems where the
application runs on a single core, and that extreme care should be taken
applying it to further processor architectures. - Ed) The basic objective is
to represent another approach to the locking mechanism, well-known as
mutex objects. Sometimes synchronization objects are the very edge of
performance, in some systems locking might take up to 30 percent of total
performance, which is quite annoying, since in order to improve the
performance it is required to change the architecture of the system, if it is
possible of cause, sometimes for certain reasons it is not.

Classical mutex
I do not want to spend your time explaining how mutexes work, yet I think
it is important to refresh this knowledge in order to understand the basic
idea of the article, and all the consequences which follow. The realization
of the synchronization object basically depends on the CPU architecture,
let us consider an Intel x86 based one. Basically the mutex object itself is
but an integer value (if we are talking about non re-entreat objects). The
mechanism of obtaining the lock is usually (this is a very general
assumption) performed by means of the assembler XCHG instruction,
which exchanges two values. So if we set EAX register to 0 and will
perform XCHG EAX, DWORD PTR [EBP], where EBP points out to the
mutex (which is integer), all we need to do after is to check the EAX value,
(0 represents a lock with 1 being a fail). The crucial thing I did not mention
is the LOCK prefix that must be used before XCHG instruction, which locks
the BUS during XCHG. Actually that’s it. It works perfectly fine, the basic
problem is this prefix LOCK, since locking the BUS is quite a costly
operation from the perspective of view of performance.

Surprise
What we can do in order to make this operation lighter is to merely remove
the LOCK prefix before the XCHG instruction. And that will work, since
XCHG is an atomic operation and we assume we are talking about a single
CPU system; in a multiple CPU environment, it will definitely fail.. This
limitation does look strong, and so it is, but in some cases it might help,
in particular where I am describing ‘Limitation and usage’ in the section
below.
It may seem that we could remove the LOCK prefix, but on closer
examination this would gain nothing:

The XCHG (exchange) instruction swaps the contents of two operands.
This instruction takes the place of three MOV instructions and does not
require a temporary location to save the contents of one operand
location while the other is being loaded. When a memory operand is
used with the XCHG instruction, the processor’s LOCK signal is
automatically asserted. This instruction is thus useful for implementing
semaphores or similar data structures for process synchronization. See
“Bus Locking” in Chapter 7, “Multiple-Processor Management” of the IA-
32 Intel® Architecture Software Developer’s Manual, Volume 3A, for
more information on bus locking.”[Intel06]

The AMD has the same.
I do not know for what reason they have done that, but that is the fact,
probably it means some kind of a protection from a fool, I honestly do not
know. So, it might seem like this is a dead end. Actually, it is not.

Logical lock
Let us say we do limit the amount of the users by means of some prior
known value, for instance 32. Let us say that our synchronization object
will be 32-bit value, an integer, a bit mask, let us say that each particular
bit of this mask corresponds to one particular customer (a thread), let us
say each thread has and knows its id, let us say each thread is allowed to
change only the corresponded bit in the bit-mask, and not allowed to
modify any other bit, yet is allowed to check any bit in the bit-mask. Have
you got the point? As simple as that, the algorithm of getting lock for thread
with number K in case of non re-enter able synchronization object might
look like figure 1. The steps are described on the next page.

T

Figure 1

George Shagov was born in Moscow in the seventies.
Graduated from Moscow State Technical University. He
started as a software developer in 1992 and since has spent a
year and a half in the US (also developing software). George is
currently working as a software engineer at Deutche Bank in
Moscow. George can be contacted at george.shagov@db.com
8 | Overload | October 2006

FEATUREGEORGE SHAGOV

Sometimes synchronization objects are the
very edge of performance, in some systems
locking might take up to 30 percent of total

performance
1. The beginning of the algorithm.
2. Checking that all the values of the bit mask are 0. (This step might

have been omitted). And here we have two options:
All the values are 0. It means the mutex is in non-signalled state
and we are allowed to get a lock
Not all the values are 0. The mutex is in signalled state, some
thread has got the lock already. This is the very time to perform
spinning and then to go to the beginning of the algorithm.

3. Customer with number K is allowed to modify only K-th bit in the
bit mask. On this step the modification is performed.

4. It might have happen some other customer has got the lock during
this time (from step 2 to 4) therefore we need an additional check
here. We need to check that all non-K bits in the bit mask are 0, there
are two options also:

All non-K bits in the bit mask are 0, it means we have got the
lock.
Not all non-K bits in the bit mask are 0, it means we must reset
K-th bit in the bit mask to 0 (step 5) and go to the beginning of
the algorithm.

The code is absolutely simple and to post it here would be the waste of the
space, the only think to consider is the third and fifth step, which are to be
done in assembler, my version is in Listing 1.
C interface for these functions:

extern void nl_nr32_set(
 volatile word32* synchronisation_mask,
 word32 thread_bit);

extern void nl_nr32_reset(
 volatile word32* synchronisation_mask,
 word32 thread_bit);

Does it work? Approximately four times faster than classical mutex.
Which is quite obvious since the value of the mutex gets cached. Therefore
we must say:

Once again
Generally it does not work, since in general case we have a multiple CPUs
and each particular CPU has its own cache, therefore in multi-processor
environment the algorithm will definitely fail.
It means in order to have got this working we must place all the threads in
one CPU, which looks quite strong limitation.

Some data
The first test (see Table 1) creates a thread which locks the mutex and
unlocks the mutex, and thus it does for one minute, the amount of locks/
unlock is outputted.

The second test (see Table 2) creates 8 threads and each one locks the
mutex and unlock it, for one minute, the amount of locks/unlock is
outputted.
Such poor number of locking count under Windows I can not explain, this
is a question rather to be asked to Microsoft.
There are something to consider here, videlicet a spin-time. On some
systems (let me say thus) it significantly changes the result. I am not going
to analyse the matter; the only one thing I intend to say is that applying
such a lock needs to be diligently considered and measured in each
particular case and all the benefits and disadvantages must be taken in
account. Such a lock is a very tricky way to get the performance and
applying such a one without understanding might lead to unpredictable
results.

Limitation and usage
The limited amount of threads and requirement to have all these threads
executed on one CPU are to be considered as strong limitations.
Notwithstanding there are some certain areas where this invention might
have been successfully used, for instance:

/*
 * set (step 3)
 */
.globl nl_nr32_set
 .type nl_nr32_set, @function
nl_nr32_set:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 orl %eax, (%edx)
 popl %ebp
 ret
 .size nl_nr32_set, .-nl_nr32_set
/*
 * reset (step 5)
 */
.globl nl_nr32_reset
 .type nl_nr32_reset, @function
nl_nr32_reset:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 and %eax, (%edx)
 popl %ebp
 ret
 .size nl_nr32_reset, .-nl_nr32_reset

Listing 1
October 2006 | Overload | 9

FEATURE GEORGE SHAGOV

Mandriva 2006.
Intel Celeron 2.4Ghz

Windows XP/Cygwin
Intel Xeon(TM) 2.8GHz

./nlocks_test_02

Initial value: 99
p_thread 3084577712 started
<skipping>
p_thread 3025828784 finished
<skipping>
Thread id: 3084577712[0], counts: 25509563 [*1]
<skipping>
Sum: 304813761 [*1]
Initial value: 99

Initial value: 99
nl_nr32_thread 3017436080[0] started
<skipping>
nl_nr32_thread 2967079856[6] finished
<skipping>
Thread id: 3017436080[0], counts: 84948965 [*1]
Thread id: 3009043376[1], counts: <skipping>
Sum: 715733620 [*1]
Initial value: 99
Test finished

$./nlocks_test_02.exe

Initial value: 99
p_thread 268502720 started
<skipping>
p_thread 268503040 finished
<skipping>
Thread id: 268502720[0], counts: 2930005 [*1]
<skipping>
Sum: 21867838 [*1]
Initial value: 99

Initial value: 99
nl_nr32_thread 268503856[0] started
<skipping>
nl_nr32_thread 268504400[4] finished
<skipping>
Thread id: 268503856[0], counts: 50639884 [*1]
<skipping>
Sum: 349357548 [*1]
Initial value: 99
Test finished

Let us consider some multi-threaded business server, which has
some kind of the data collection which is intensively used by means
of one or two threads, one thread for instance provides the pretty
high flow of the incoming data which are supposed to be added at
the collection, the second performs some kind of a calculation, and
probably removal of the data from the collection and also there are
some amount of threads which lazily query the collection. I would
presume the task is quite common. In this case these two threads,
which have a high flow of the data might use the locking
mechanism, described above. It is important to remember these two
threads are to be started on one CPU, moreover we need an
additional stuff of threads which are to be started on the same CPU
which will perform query operation. This approach will cause some
performance degradation for querying threads, yet it will boost up
the performance of the first two threads. Thus it becomes possible to
get the benefit.
Let us consider a game server, which offers a skirmish service. It is
quite clear what must be done here. All the members (their threads)
of one game must be placed on one CPU (though we do limit their
amount), and thus we swerve from common locking mechanism.
Unfortunately I can not tell you how much percentage of the
performance might be taken here, I tried to contact the companies
who offer such services but have not had an answer.
Here I must mention different chat and conference virtual rooms, the
only problem is the limited amount of the users.

I can not avoid the mention of PC boxes, most of them have only one
CPU, therefore in some cases classical locks might be considered as
redundant.
One more interesting thing to consider. The algorithm must
perfectly on in case multi-core processors, if they use one cache.

In conclusion
I must say the know-how must be diligently considered before use and
additional investigation must be done on each particular case, which seems
to be quite heavy to apply. Notwithstanding, this is a way to go for those
developers who deal with the application where performance is a key issue,
such as real-time systems.

References
[Intel06] IA-32 Intel® Architecture Software Developer’s Manual.

Volume 1: Basic Architecture. Order Number: 253665-018. January
2006

Mandriva 2006.
Intel Celeron 2.4Ghz

Suse 9
Intel Xeon DP 2.8GHz

Windows XP/Cygwin
Intel Xeon(TM) 2.8GHz

./nlocks_test_01
p_thread started
count: 315107638
p_thread finished
nl_nr32_thread (within
pthread_self) started
count: 1453393599
nl_nr32_thread finished

./nlocks_test_01
p_thread started
count: 400931049
p_thread finished
nl_nr32_thread (within
pthread_self) started
count: 1800204642
nl_nr32_thread finished

$./nlocks_test_01.exe
p_thread started
count: 61242829
p_thread finished
nl_nr32_thread (within
pthread_self) started
count: 145314858
nl_nr32_thread finished

Table 1

Table 2

10 | Overload | October 2006

FEATUREPETER SOMMERLAD
C++ Unit Testing Easier: CUTE
Peter Sommerlad presents a lightweight framework for C++
unit testing.
his article describes my attempt to leverage more modern C++
libraries and features to make the writing of unit tests easier in C++.
For example, one disadvantage of CPPUnit is that you have to write

a subclass to have your own test case. This is a lot of programmer overhead,
especially when you want to start small.
I was inspired by Kevlin Henney’s Java testing framework called
JUTLAND (Java Unit Testing: Light, Adaptable ‘n’ Discreet), and the
corresponding presentation he gave at JAOO 2005. In addition, I wondered
if I could come up with a design that is similarly orthogonal, easily
extendable and also much simpler to use than current C++ unit testing
approaches.
You will learn how to use CUTE in your projects and also some of the more
modern C++ coding techniques employed for its implementation. I also
ask you to give me feedback to further simplify and improve CUTE. Even
during the writing of this article I recognized simplification potential and
refactored CUTE accordingly. Porting and testing onto other compilers not
available to me is also an appreciated contribution.

My problems with CPPUnit
Inheritance is a very strong coupling between classes. Requiring a test-case
class to inherit from a CPPUnit-framework class couples both closely
together. The CPPUnit tutorial [CPPUnitCookbook] lists at least six
classes you have to deal with to get things up and running. You even have
to decide if you want to inherit from TestCase or TestFixture for
your simple test case you intend to write. I do not want to go into more
details, but I show how I would like to write tests.
#include "cute.h"
int lifeTheUniverseAndEverything = 42;

void mysimpletest(){
 t_assert(lifeTheUniverseAndEverything == 6*7);
}

That’s it. A simple test is a simple void function. Done (almost).
In addition CPPUnit stems from a time of non-standard C++ compilers,
where more modern features of the language just have not been available
broadly. This limits its design from a modern perspective.
Today, all relevant compilers (with the exception of the still in use
MSVC6) are able to compile most of standard C++ and the proposed
std::tr1 libraries from Boost.

Running a single test
Since we lack some of the reflection mechanisms available in Java, you
have to write your own main function for testing with CUTE. For simple
cases this is straightforward. As with CPPUnit you have to instantiate a
runner object and pass your test for running it. The simplest possible way,
producing some output is shown in Listing 1.
OK, not very impressing yet, but simple. Reporting test outcome is so
common, that CUTE provides a means to configure the runner with a so-

called ‘listener’. You already might have wondered what these template-
brackets with cute::runner were about. So we can change that to the
following:
int main(){
 using namespace std;
 cute::runner<cute::ostream_listener>()(
 mysimpletest);
}

"void () () OK"

is what we get from that one. We know that a void function without any
arguments succeeded to run. This shows C++ introspection limitation,
which only provides type information, not function names. But the
preprocessor can help us. So making our test cuter by applying the macro
CUTE(), helps us:

 cute::runner<cute::ostream_listener>()(
 CUTE(mysimpletest));

This achieves the output "mysimpletest OK". Not too interesting.
However, if we make our test case fail by setting deep thought’s answer
to 41 instead of 42, we get:

../simpletest.cpp:6: testcase failed:
 lifeTheUniverseAndEverything == 6*7 in mysimpletest

That is everything we need to track down the failure’s origin and even some
context helping with a first guess. You already guessed that the
preprocessor macro t_assert() from cute.h contains the magic for
collecting this interesting information.
Note that all classes presented in the following are in namespace cute,
that I omit from the definitions shown for brevity.

T

Peter Sommerlad is professor and head of Institute for
Software at HSR Hochschule für Technik, Rapperswil. He can
be contacted at peter.sommerlad@hsr.ch

#include <iostream>
#include "cute_runner.h"
int main(){
 using namespace std;

 if (cute::runner<>()(mysimpletest)){
 cout << "OK" << endl;
 } else {
 cout << "failed" << endl;
 }
}

Listing 1
October 2006 | Overload | 11

FEATURE PETER SOMMERLAD

I tried to create a simple orthogonal and
thus easy to extend and adapt testing
framework
How things work
I tried to create a simple orthogonal and thus easy to extend and adapt
testing framework that stays easy to use. Exploiting C++ library features
that are modern (boost) and will be part of the future standard (std::tr1)
I could avoid some complexity for CUTE’s users.

CUTE test
The core class representing tests uses boost::function, which will be
std::tr1::function, when compilers support this designated
extension, to store test functions. So any parameterless function or functor
can be a test. In addition each cute::test has a name, so that it can be
easier identified. That name is either given during construction or derived
from a functor’s typeid. The GNU g++ compiler requires to demangle that
name given by the type_info object, where VC++ already provides a
human readable type_info::name() result.
struct test{
 template <typename VoidFunctor>
 test(VoidFunctor const &t, std::string name =
 demangle(typeid(VoidFunctor).name()))
 :theTest(t),name_(name){}
 void operator()()const{ theTest(); }
 std::string name()const{ return name_;}
 static std::string demangle(char const *name);

private:
 boost::function<void()> theTest;
 std::string name_;
};

As you can see, there is no need to inherit from class test. The only thing
I do not yet like, is the static function demangle, that needs to be
implemented per compiler. I haven’t found a better place for it in the
framework yet.
For simple functions, or if you want to name your tests differently from
the functor’s type, you can use the following CUTE() macro.
#define CUTE(name) cute::test((name),#name)

The using of a template constructor allows you to use any kind of functor,
that can be stored in a boost::function<void()>, that means a
functor that doesn’t take parameters. With boost::bind() you are able
to construct those, even from functions, functors or member functions with
parameters as shown below.

Sweet suites
Running a single test with cute::runner is not very interesting – you
might call that function directly and check results. But having a larger
collection of test cases and running them after every compile and on a build
server after every check in, is what makes unit testing so powerful. So there
is a need for running many tests at once.
But in contrast to other unit testing frameworks (including JUnit) I
refrained from applying the Composite Design Pattern ! [GoF] for
implementing the container for these many test cases your project requires.

I love Composite and it is handy in many situations for tree structures,
but it comes at a price of strong coupling by inheritance and lower cohesion
in the base class, because of the need to support the composite class
interface. The simplest solution I came up with is just using a
std::vector<cute::test> as my representation for test suites.
Instead of a hierarchy of suites, you just run a sequence of tests. When the
tests run, the hierarchy doesn’t play a role. You still can arrange your many
tests in separate suites, but before you run them, you either concatenate
the vectors or you run the suites in your main function separately through
the runner.
For those of you who really want your test suites to be tests, CUTE
provides a suite_test functor that will take a suite and run it through
its call operator. But if any test of the suite in such a suite_test fails,
the remaining tests won’t be run.
To make it easy to fill your suite with your tests CUTE provides an
overloaded operator+= that will append a test object to a suite. This idea
is blatantly stolen from boost::assign, which I didn’t use, because to
my knowledge it didn’t make it to std::tr1 (yet?).
So this is all it takes to have test suites:
typedef std::vector<test> suite;
suite &operator+=(suite &left, suite const &right);
suite &operator+=(suite &left, test const &right);

Assertions and failures
A unit testing framework wouldn’t be complete without a means to
actually check something in a convenient way. One principle of testing is
to fail fast, so any failed test assertion will abort the current test and signal
that failure to the top-level runner. You might already have guessed that
throwing an exception is the corresponding mechanism. Since we want to
know later on, where that test failed, I introduced an exception class
cute_exception that takes the filename and line number of the source
position. Java can do that automatically for exceptions, but as C++
programmers we have to carry that information ourselves and we have to
rely on the preprocessor to actually know where we are in the code.
Another std::string allows sending additional information from the
test programmer to the debugger of a failing test.
This is how cute.h looks without the necessary #include guards and
#include of <string>:

namespace cute{
struct cute_exception {
 std::string reason;
 std::string filename;
 int lineno;
 cute_exception(std::string const &r,
 char const *f, int line)
 :reason(r),filename(f),lineno(line)
 { }
 std::string what() const ;
};
}

12 | Overload | October 2006

FEATUREPETER SOMMERLAD

One principle of testing is to fail fast, so any
failed test assertion will abort the current
test and signal that failure to the top-level

runner
For actually writing test assertions I provided macros that will throw, it a
test fails. I deliberately used lower case spelling for these macros to make
them easier to use.

This is all for you to get started. However, some convenience is popular
in testing frameworks. But convenience often tends to be over-engineered
and I am not yet sure if the convenience functionality I provided is yet
simple enough. Therefore I ask for your feedback on how to make things
simpler or encouragement that it is already simple enough.

Equality - overengineered?
Testing two values for equality is may be one of the most popular tests.
Therefore, all testing frameworks provide a means to test for equality.
JUnit, for example, provides a complete amount of overloaded equality
tests. C++ templates can do that as well with less code. For more complex

data types, such as strings, it might be hard to see the difference between
two values given, when they are simply printed in the error message.

void anothertest(){
 assertEquals(42,lifeTheUniverseAndEverything);
}

One means to implement assertEquals would be to just #define it
to map to t_assert((expected)==(actual)). However, from my
personal experience of C++ unit testing since 1998, this is too simplistic
in cases where the comparison fails. Especially for strings or domain
objects seeing the difference between two values is often important for
correcting a programming mistake. In my former life, we had custom error
messages for a failed string compare to spot the difference easily.
Therefore, CUTE provides a template implementation of assert_equal
that again is called by a macro, to enable file position gathering.
I speculated (maybe wrongly) it would be useful to be able to specify your
own mechanism to create the message if two values differ, which also is
implemented as a to-be-overloaded template function. (See Listing 2.)
I encourage readers to criticize this design to help me to come up with
something simpler.

Listening customization
You’ve already seen, that the runner class template can be specialized
by providing a listener. The runner class is an inverted application of the
Template Method Design Pattern ![GoF]. Instead of implementing the
methods called dynamically in a subclass, you provide a template
parameter that acts as a base class to the class runner, which holds the
Template Methods runit() and operator(). (See Listing 3).
If you look back to runner::runit, you will recognize that if any
reasonable exception is thrown, it would be hard to diagnose, what the
reason for an error is. Therefore, I included catch clauses for
std::exception, string and char pointers to get information
required for diagnosis. The demangling is required for GNU g++ to get a
human-readable information from the exception’s class name.

 } catch (std::exception const &exc){
 Listener::error(t,test::demangle(
 exc.what()).c_str());
 } catch (std::string &s){
 Listener::error(t,s.c_str());
 } catch (char const *&cs) {
 Listener::error(t,cs);

Again I ask you for feedback if doing so seems over-engineered. Are you
throwing strings as error indicators?
As you can see, there are a bunch of methods delegated to the base class
given as runner’s template parameter (begin, end, start, success,
failure, error). The default template parameter null_listener
applies the Null Object Design Pattern and provides the concept all fitting
Listener base classes. (Listing 3).

template <typename EXPECTED, typename ACTUAL>
std::string diff_values(EXPECTED const &expected
 ,ACTUAL const & actual){
// construct a simple message...
 std::ostringstream os;
 os << "(" << expected<<","<<actual<<")";
 return os.str();
}
// special overloaded cases for strings
std::string diff_values(
 std::string const &,std::string const &);
std::string diff_values(
 char const * const &exp,std::string const &act);

template <typename EXPECTED, typename ACTUAL>
void assert_equal(EXPECTED const &expected ,
 ACTUAL const &actual
 ,char const *msg,
 char const *file,int line) {
 if (expected == actual) return;
 throw cute_exception(
 msg + diff_values(expected,actual),file,line);
}
#define assertEqualsm(msg,expected,actual) \
 cute::assert_equal(\
 (expected),(actual),msg,__FILE__,__LINE__)
#define assertEquals(expected,actual) \
 assertEqualsm(\
 #expected " expected but was " #actual,\
 expected,actual)

#define t_assertm(msg,cond) if (!(cond)) \
 throw cute::cute_exception((msg),__FILE__,__LINE__)
#define t_assert(cond) t_assertm(#cond,cond)
#define t_fail() t_assertm("fail()",false)
#define t_failm(msg) t_assertm(msg,false)

Listing 2

October 2006 | Overload | 13

FEATURE PETER SOMMERLAD
struct null_listener{
 // defines Contract of runner parameter
 void begin(suite const &s, char const *info){}
 void end(suite const &s, char const *info){}
 void start(test const &t){}
 void success(test const &t,char const *msg){}
 void failure(test const &t,
 cute_exception const &e){}
 void error(test const &t,char const *what){}
};

So whenever you need to collect the test results or you want to have a nice
GUI showing progress with the tests, you can create your own specific
listener.
Again you can employ an inverted version of a GoF Design Pattern, to
stack listeners. This is application of an inverted Decorator using C++
templates, for example to count the number of tests regarding their
category, see Listing 4.From the schema in Listing 4, you can derive your
own stackable listener classes, e.g. one showing the progress of running
the tests and their results in a GUI. If you do so, share your solution.

Test extensions
With the idea of allowing all non-parameter Functors to be eligible as tests,
it is relatively simple to provide test-wrappers for different kind of
functionality.

Exception testing
Good practice of unit testing is also to check if things go wrong as intended.
So you want to expect a specific exception from a test functor. The code
to do that can easily be canned for reuse in a template and with CUTE it
is activated by a macro call like:
 suite s;
 s += CUTE_EXPECT(
 functor_that_throws(),std::exception);

The implementation of that mechanism is as you have expected (see
Listing 5).

template <typename Listener=null_listener>
struct counting_listener:Listener{
 counting_listener()
 :Listener()
 ,numberOfTests(0),successfulTests(0)
 ,failedTests(0),errors(0),numberOfSuites(0){}

 counting_listener(Listener const &s)
 :Listener(s)
 ,numberOfTests(0),successfulTests(0)
 ,failedTests(0),errors(0),numberOfSuites(0){}

 void begin(suite const &s, char const *info){
 ++numberOfSuites;
 Listener::begin(s,info);
 }
 void start(test const &t){
 ++numberOfTests;
 Listener::start(t);
 }
 void success(test const &t,char const *msg){
 ++successfulTests;
 Listener::success(t,msg);
 }
 void failure(test const &t,
 cute_exception const &e){
 ++failedTests;
 Listener::failure(t,e);
 }
 void error(test const &t,char const *what){
 ++errors;
 Listener::error(t,what);
 }
 int numberOfTests;
 int successfulTests;
 int failedTests;
 int errors;
 int numberOfSuites;
};

template <typename Listener=null_listener>
struct runner : Listener{
 runner():Listener(){}
 runner(Listener &s):Listener(s){}
 bool operator()(test const &t){
 return runit(t);
 }
 bool operator()(suite const &s,
 char const *info=""){
 Listener::begin(s,info);
 bool result=true;
 for(suite::const_iterator it=s.begin();
 it != s.end();++it){
 result = this->runit(*it) && result;
 }
 Listener::end(s,info);
 return result;
 }
private:
 bool runit(test const &t){
 try {
 Listener::start(t);
 t();
 Listener::success(t,"OK");
 return true;
 } catch (cute_exception const &e){
 Listener::failure(t,e);
 } catch(...) {
 Listener::error(
 t,"unknown exception thrown");
 }
 return false;
 }
};

template <typename EXCEPTION>
struct cute_expect{
 test theTest;
 std::string filename;
 int lineno;
 cute_expect(test const &t,char const *file,
 int line)
 :theTest(t), filename(file), lineno(line){}
 void operator()(){
 try{
 theTest();
 throw cute_exception(
 what(),filename.c_str(),lineno);
 } catch(EXCEPTION &e) {
 }
 }
 std::string what() const{
 return theTest.name() + " expecting "
 +
test::demangle(typeid(EXCEPTION).name());
 }
};
#define CUTE_EXPECT(tt,exc) \
 cute::test(cute::cute_expect<exc>(\
 tt,__FILE__,__LINE__),tt.name())

Listing 5Listing 3

Listing 4
14 | Overload | October 2006

FEATUREPETER SOMMERLAD
No need to implement the try-catch again by hand for testing error
conditions. What is missing, is ability to expect a runtime error recognized
by the operating system such as an invalid memory access. Those are
usually signalled instead of thrown as a nice C++ exception.
With a similar wrapper you can implement a class for repeatedly running
a test. There isn’t even a template required.

Member functions as tests
Having boost::bind() at your disposal, it is easy to construct a functor
object from a class and its member function. Again this is canned in a
macro that can be used like:

CUTE_MEMFUN(testobject,TestClass,test1);
CUTE_SMEMFUN(TestClass,test2);
CUTE_CONTEXT_MEMFUN(contextobject,TestClass,test3);

The first version uses object testobject, an instance of TestClass,
as the target for the member function test1. The second version creates
a new instance of TestClass to then call its member function test2
when the test is executed. The last macro provides a means to pass an
additional object, to TestClass’ constructor, when it is incarnated. The
idea of incarnating the test object and thus have its constructor and
destructor run as part of the test comes from Kevlin Henney and is
implemented in Paul Grenyer’s testing framework Aeryn.
The macro CUTE_MEMFUN delegates its work to a template function as
shown in Listing 6.
The template function makeMemberFunctionTest employs
boost::bind to create a functor object that will call the member function
fun on object t, when called. Again we can employ C++ reflection using
typeid to derive part of the test object’s name. We need to derive the
member function name again using the preprocessor with a macro. To
allow to use also const member functions, the template function comes
in two incarnations, one using a reference as shown and the other one using
a const reference for the testing object.

Test object incarnation
I will spare you all details, but give you the mechanism of object
incarnation and then calling a member function for the case, where you
can supply a context object. (See Listing 7).
This will allow you to use test classes with a constructor setting up a test
fixture and a destructor clearing it again. So there is no longer a need for
writing Java like setUp() and tearDown() methods.

Limitations and outlook
One big difference between C++ and other languages is the lack of method-
level introspection. The only means for getting a list of tests to execute is
having a programmer specifying it, i.e., by registering test objects
somewhere. If anybody is aware of how to get rid of that and have tests
registered automatically please let me know. CppUnit compensates this by
the ability to automatically load shared libraries with test classes. On the

other hand, this makes writing tests, using CppUnit and its implementation
more complex.
CUTE is still in a nascent state at the time of this writing. It comes with a
small test suite for itself, but especially with all the templates it might still
suffer from problems in its use, not yet encountered by me. If you haven’t
yet written unit tests for your code, try starting now using CUTE and tell
me how it feels and works. You can download the currently released
version of CUTE in source form from my wiki web at http://wiki.hsr.ch/
PeterSommerlad/ .
There are many ideas for extending CUTE to make it a more convenient
environment to live in. For example, better IDE integration to directly
navigate from a failed test is a must for professional use. Tell me your
ideas, or just implement them. Thank you in advance.

References
[Aeryn] Paul Grenyer http://www.aeryn.co.uk
[CppUnit] http://cppunit.sourceforge.net/cppunit-wiki
[CppUnitCookbook] http://cppunit.sourceforge.net/doc/lastest/

cppunit_cookbook.html
[GoF] Gang of Four, E. Gamma, R. Helm, R. Johnson, J. Vlissided:

Design Patterns - Elements of Reusable Object-Oriented Design
[JUTLAND] Kevlin Henney, Java Unit Testing Light Adaptable ‘N’

Discreet, presentation at JAOO 2005 and private communication

template <typename TestClass,typename MemFun,
 typename Context>
struct
 incarnate_for_member_function_with_context_object
 {
 MemFun memfun;
 Context context;

incarnate_for_member_function_with_context_object(
 MemFun f,Context c)
 :memfun(f),context(c){}
 void operator()(){
 TestClass t(context);
 (t.*memfun)();
 }
};
template <typename TestClass, typename MemFun,
 typename Context>
test makeMemberFunctionTestWithContext(
 Context c,MemFun fun,char const *name){
 return test(

incarnate_for_member_function_with_context_object
 <TestClass,MemFun,Context>(fun,c),
 test::demangle(typeid(TestClass).name())
 +"::"+name);
}

template <typename TestClass>
test makeMemberFunctionTest(TestClass &t,
 void (TestClass::*fun)(),char const *name){
 return test(boost::bind(fun,boost::ref(t)),
 test::demangle(typeid(TestClass).name())+
 "::"+name);
}
#define CUTE_MEMFUN(testobject,TestClass,\
 MemberFunctionName)\
 cute::makeMemberFunctionTest(testobject,\
 &TestClass::MemberFunctionName,\
 #MemberFunctionName)

Listing 6 Listing 7

October 2006 | Overload | 15

FEATURE THOMAS GUEST
From CVS to Subversion
Thomas Guest reflects on migrating his organisation’s
version control system from CVS to Subversion.
Introduction
he time had come to upgrade our source control system. As CVS
users, the obvious choice was Subversion. This article describes how
the upgrade went and provides some practical advice for anyone

considering making a similar move.

The reason for change
CVS is an excellent source control system: fast, powerful and flexible. We
had no concerns regarding its reliability and some effort had been put into
integrating it into our automated build, test and release system. What's
more, everyone in the team knew how to use CVS and how to work around
its wrinkles. We all had our favourite clients. Why ever would we want to
change?
There were a number of reasons:

The team had grown and so had the codebase. The CVS server no
longer served high volumes of files as quickly as we’d have liked.
As the codebase grew, it had become apparent that some files were
in the wrong places or had the wrong names. CVS supports
versioning of files but not of file-systems, meaning that we couldn’t
fix these issues in a controlled way. Subversion fixes this CVS
limitation.
CVS does not support atomic commits (see Sidebar) – another
feature built in to Subversion.
Subversion sets out to be a ‘compelling replacement for CVS’ and,
after a quick skim through the documentation, it looked as though
the transition would be painless.

Evaluation
We did pause – albeit briefly – to consider whether an alternative version
control system might better meet our needs. We couldn’t think of any. The
decision was somewhat political since we’d recently been acquired and the
parent company had its own preferred version control system. The move
to Subversion could be passed off as an upgrade of our current system
rather than a truly subversive act.
Our next step, then, was to evaluate Subversion. The aims of the evaluation
were:

measure the performance of Subversion
build some expertise in Subversion administration
confirm Subversion’s core capabilities consider how best to actually
use Subversion
if all looked good, put a transition plan in place.

Clearly, the first step was to set up a Subversion server and import a
snapshot of our CVS repository to practise on.

Setting up the trial server
Setting up the trial server was straightforward. On (Mandriva) Linux, after
the usual package selection and update process we had an svn user ready
to serve the repository, and an /etc/xinet.d/svnserve configuration
file, the contents of which are shown in Listing 1.
Most of the contents of this configuration file should be easy to figure out.
The actual program which will serve the repository is /user/bin/
svnserve (run as a daemon by xinetd) and it should be run by user svn
with arguments -i (inetd mode) and -r /var/lib/svn/
repositories (root of directory to serve).
Once we had created the repository (see next section) in the configured
location, we enabled the Subversion server as follows:

 su # root runs xinetd
 chkconfig svnserve on # enable svnserve service
 xinetd restart

T

Thomas Guest is an enthusiastic and experienced computer
programmer. He has developed software for everything from
embedded devices to clustered servers. His website can be
found at http://www.wordaligned.org and you can contact him
at thomas.guest@gmail.com

Suppose a single logical change to the codebase – a bugfix
perhaps – requires six files to be changed. The programmer
makes the change and commits the new versions of the files to
the CVS repository. Although a single commit command is
executed, as far as CVS is concerned six changes have been
made, and each individual file moves to its own new revision. If
another programmer wishes to patch the bugfix to another code
branch, all six files will need to be patched – but it's tricky to find
this out from CVS. Information has been lost.

Subversion solves this problem with a simplified change model:
version numbers apply to the repository as a whole, and each

 # default: off
 # description: svnserve is the server part
 # of Subversion.
 service svnserve
 {
 disable = yes
 port = 3690
 socket_type = stream
 protocol = tcp
 wait = no
 user = svn
 server = /usr/bin/svnserve
 server_args = -i -r /var/lib/svn/repositories
 }

Atomic Commits

Figure 1

16 | Overload | October 2006

FEATURETHOMAS GUEST

What we found, then, on the performance
side, was that the routine management of a

working copy was much quicker
Note here that although the root user starts the xinetd service, the svn
user actually owns and serves the repository.

Server options
There are two main options for serving a Subversion repository:

using the custom svnserve server
using Apache httpd with mod_dav_svn

A full discussion of the pros and cons of these options can be found in the
Subversion book: [Subversion].
This discussion is summarised in a table [Subversion2].
We opted to use the custom svnserve server because, according to the
documentation it would be easier to set up and somewhat faster.
Whilst I have no experience of using Apache as a Subversion server, I can
certainly confirm that svnserve is simple to set up.

Importing a copy of the CVS repository
Creating the trial repository was a little more time consuming. To perform
realistic tests we needed something like a full import of our CVS
repository.
Subversion provides a Python program, cvs2svn, to perform this import.
One thing you really shouldn’t do is try to import a live CVS repository,
which is of course a moving target. One thing we equally didn’t want to
do was take down the CVS server for any period of time. Fortunately, we
kept a mirror of the live repository; by taking a copy of this mirror (when
it wasn’t being mirrored!), we gave ourselves something to import.
The documentation for cvs2svn is rather thin. In fact, at the time of
writing this article, there’s not a huge amount over and above what the
command line tells you:
 cvs2svn --help

Fortunately, the program works. Most of the options aren’t even required
if you’re happy to go with the default repository layout, default database
backend, default keyword expansion mode, default end-of-line style and
so on. And, if cvs2svn does hit problems – which will almost certainly
be caused by ‘Garbage In’ – it exits smartly and tells you what to do next.
In our case, we had to clear up a little tag ambiguity, and then we were off.
The import took about four hours – this is for a CVS repository consisting
of about 64000 files, a few hundred tags and branches, and occupying
around 12Gb on disk.

Choice of database layer
At revision 1.3, Subversion provides a couple of database backends:

a Berkeley DB database
FSFS, where data is stored in ordinary flat files, using a custom
format.

The pros and cons of the two choices are discussed in the Subversion book
[Subversion3] and summarised in a table [Subversion4].

Although the FSFS backend is less mature it looked more suitable in every
other respect. The Subversion repository create tool, svnadmin create,
treats FSFS as the default database backend – and so does cvs2svn. We
decided to go with this default and have had no complaints.

More evaluation
To our surprise and disappointment, the speed of clean checkouts (by
‘clean’ I mean checking out the entire codebase into a new directory, rather
than simply updating an existing working copy) was underwhelming. CVS
sets a hard act to follow here since one of its strengths is its speed, but I
simply couldn’t imagine Subversion claiming to be a compelling
replacement for CVS unless it was equally fast. In fact, head-to-head, on
the same platform, our tests showed CVS to be measurably quicker for
clean checkouts.
What the trials did indicate was that disk access rather than network
bandwidth was the main source of pain. Every time it checks out a file,
Subversion replicates the base version of that file and its properties
(‘Properties’ is the Subversion term for metadata associated with a file –
such as whether it’s executable, for example.) into a hidden .svn
directory, so for every 100 files you checkout, at least 500 files will be
created on disk.
This replication is quite deliberate and is based on the principle that disk-
space is cheaper than network bandwidth. Subversion makes full use of
the cached file copies in your working area – so, for example, common
operations such as viewing your modifications to a file, or reverting these
modifications, do not require any interaction with the server.
What we found, then, on the performance side, was that the routine
management of a working copy was much quicker. Clean checkouts took
time, yes, but use of the svn update command keeps these to a minimum.
In fact, the only user who frequently performed clean checkouts was our
overnight automatic build.
Everything else went very well. Clearly, the authors of Subversion had
done a great job in fixing the problems with CVS, and they’d done so – at
least from a user’s perspective – by simplifying it.

The transition plan
There never seems to be a good time to change tools. There will always
be releases to make, builds to test, critical patches to issue, and it’s
understandably hard to justify even the smallest amount of downtime in
such real, customer-facing activity. Indeed, when there’s lots of this real
work to be done it’s equally hard to dedicate the time to take proper care
when executing such a tool change.
On the other hand, by taking such an argument to the extreme, software
developers end up stuck using Visual Studio 6.0 and grumbling (unfairly)
about Microsoft’s poor support for C++.
We were, then, keen to proceed. Our transition plan was simple. The
timescale was short but manageable – and we knew that if we missed the
slot, we wouldn’t get another chance for a while.
October 2006 | Overload | 17

FEATURE THOMAS GUEST

The problem we had was with binary files
which had (wrongly) been checked into CVS
as text files
As part of the evaluation, we’d created some backup scripts to mirror a
Subversion repository to our backup machine. Next, we set up a migration
script to:

disable scheduled jobs which might get in the way
take down the CVS server
copy the CVS repository
import this copy using cvs2svn
log any problems occurring in any of these steps.

So, to initiate the transition, all we had to do was schedule the migration
script to run overnight. In the morning, if the log files were clean, we could
kick off the Subversion backups, point the Subversion server at the newly
imported repository and start it up, restart the CVS server in readonly
mode, and we’d be done.

What we failed to do
A number of items on the evaluation and transition plan never happened.
We didn’t create any local training materials – it didn’t seem necessary,

given the high quality of Subversion’s built in documentation, and the fact
that we all knew CVS (see Sidebar: Subversion for CVS users). We
ordered printed copies of Version Control with Subversion and Pragmatic
Version Control Using Subversion, set up an FAQ page on the Wiki that
did little more than collect together a few links to offsite URLs, and left it
at that.
Despite encouragement, no-one had bothered to use the trial repository as
a sandbox for experimenting with Subversion (apart from the individual
actually running the trial). So, the evaluation of the product’s usability and
basic functionality was down to just one person. Again, this turned out not
to be a problem – and we weren’t really being lax when you consider how
many open source projects have switched, or are switching, to Subversion.
We just _knew_ Subversion worked.
We quite deliberately didn’t plan any reorganisation or pruning of the CVS
repository before importing it: Subversion would allow us to make such
changes in a better controlled way, once we got to the other side. For
similar reasons, we didn’t change keyword expansion properties on
import. Again, Subversion allows you to manage such properties better
than CVS does, and now was not the time to start arguing whether or not
we really thought keyword expansion was a good idea (keyword expansion
is discussed and assessed below - Alan).
We didn’t fix any of our build scripts in advance. As part of the evaluation
we’d grepped the source for all such scripts and it turned out you could
count the number of scripted calls to cvs on the fingers of one hand. We
were confident we could fix these pretty much as soon as our Subversion
server went live.
We didn’t even bother evaluating any advanced Subversion clients. I used
the command line almost exclusively for experimentation: others were
happy to defer setting up TortoiseSVN, Subclipse, psvn, etc., until they
actually had to.
The one crucial item we neglected from our plan was to perform
acceptance tests on the freshly imported repository. Fortunately we
discovered the problem with our carelessness almost immediately and
were able to recover swiftly.

The problem
The problem we had was with binary files which had (wrongly) been
checked into CVS as text files. On import, by default, cvs2svn does a
couple of things to text files which can seriously damage binary files:

keyword-expansion is enabled meaning that byte sequences which
match patterns such as $Id: $ get changed when you check the file
out.
(Strictly speaking, cvs2svn sets svn:keywords on CVS files to
author id date if the mode of the RCS file in question is either
kv, kvl or not kb.)
the end-of-line style property is set to native, meaning again that
the binary file you check out may not be the one you checked in,
since Subversion makes sure end-of-line sequences are the ones
preferred by your client platform.

If you’re familiar with CVS then Subversion will also seem
familiar. This is hardly surprising since Subversion’s stated aim
is to be a compelling replacement for CVS. So, the terminology
is almost identical: you ‘check out’ files from a ‘repository’, you
edit them, you ‘diff’ files to see what you – and others – have
changed, and you ‘check in’ your changes. You ‘update’ your
working copy to merge in changes made by other team members.
You can ‘log’ what changes have been made. You can ‘branch’
a project by copying it from the ‘trunk’ into a new place in the
repository; similarly you can ‘tag’ a fixed version of a project by
copying it into a new place in the repository. You can ‘merge’
changes made on the branch back to the trunk, and vice versa.

If you use the command line client, svn, the command line
arguments are often identical to the ones used with the cvs client
(svn commit, svn checkout, svn status, svn annotate svn
diff, svn log, etc.).

The areas where CVS and Subversion differ are generally where
Subversion fixes a CVS deficiency or where Subversion actually
manages to simplify things. For example, as already mentioned,
Subversion fixes a well-known CVS deficiency by allowing you
to move files and directories; and Subversion’s transactional
model means that a version number (a revision number, in
Subversion terminology) is an incrementing integer applied to the
repository as a whole, which is easier to work with than the dot-
separated version numbers which apply to each CVS controlled
file.
 More information for CVS users migrating to Subversion can be
found at: http://svnbook.red-bean.com/en/1.2/svn.forcvs.html

Subversion for CVS Users
18 | Overload | October 2006

FEATURETHOMAS GUEST

We’d messed up but fortunately we’d
messed up in an immediately obvious way: a
number of binaries were broken, to the point

that they wouldn’t even execute
We’d messed up but fortunately we’d messed up in an immediately
obvious way: a number of binaries were broken, to the point that they
wouldn’t even execute.
This is one of those mistakes you only make once (until you make it the
next time and kick yourself even harder, that is). I guess we were lulled
into a false sense of security: everything seemed to be working so smoothly
... Subversion is better than CVS at handling binary files ... everything had
been working fine with CVS, so our CVS repository must be fine ...
cvs2svn would spot any problems.
Of course, our CVS repository wasn’t fine. We’d got away with binary
files marked as text for the simple reason that most of these files had been
used on Linux only.

Acceptance tests
What makes this mistake so chastening is the fact that a basic acceptance
test of the new repository would have been both simple and scriptable:

#!/bin/sh
 cvs co CVSARCHIVE fromcvs
 # Checkout from CVS, on the trunk
 svn co SVNREPOS/trunk fromsvn
 # Checkout from SVN, on the trunk
 diff -q -r fromcvs fromsvn > all_diffs
 # Spot the difference

If the all_diffs file is empty, the CVS and Subversion checkouts are
byte-for-byte compatible.
Unfortunately the all_diffs file wasn’t empty. Remember those
keyword expansions? Subversion is clever enough to replace CVS version
numbers with its own revision numbers and as a result the files differ when
checked out. Keyword expansion really is a bad idea!
Similarly, a number of text files were different because Subversion had
tidied up inconsistent line endings.
So, there were plenty of false hits as well as a list of files we needed to run
cvsadmin -kb on.
Incidentally, we could have chosen to clean up the files during import by
passing some more parameters to cvs2svn: a suitable combination of
--mime-types=FILE, --eol-from-mime-type and --no-
default-eol options would have done the job. We decided, though, that
the proper solution was to fix the root cause of the problem.

Recovery
So, we had to delay by a day to reinstate CVS, run the text-to-binary
corrections, re-run the migration, perform acceptance tests. This time we
were more cautious and we also tested builds made from the clean
Subversion checkout.

Scheduled backups
I won’t go into detail here about the differences between CVS and
Subversion. There’s plenty of solid documentation already available.
One thing worth mentioning is the strategy we adopted for Subversion
backups. Previously, our CVS repository had been mirrored to a backup
machine using a rsync job scheduled to run every couple of hours. Tape
backups of this mirror were kept offsite.
I had some reservations about this strategy, particularly since (thanks to
our hyperactive and insomniac automatic build user) the CVS archive was
rarely quiet. Simply treating the CVS archive as a bunch of files – which
is what rsync does – seemed risky. Would the mirror be in good shape
if rsync ran in parallel with a check-in?
Subversion provides the ability to make a hot backup of a live repository
using the svnadmin hotcopy command. The repository dump can be
loaded into a Subversion repository using svnadmin load. So,
something as simple as:

 svnadmin hotcopy /path/to/live/repository
 /path/to/mirror/repository

creates a full mirror of the live repository – if you’re prepared to wait a
while, that is.
Once this mirror has been created, it can be maintained by merging in
incremental changes using svnadnim dump --incremental to dump
the changes and svnadmin load to load them into the repository mirror.

How much should you import?
We never really explored the idea of restricting what we imported into
Subversion. Cvs2svn offers lots of choices:

you can topskim your repository, meaning you get no history, no
branches – a fresh start.
you can import absolutely everything, meaning you get every single
branch ever made, every bungled thirdparty import – everything!
you can import anything in between these two extremes by selecting
which tags and branches to import.

It’s hard to argue against the ‘import everything’ option: source control is
all about tracking and managing changes, so why should any change ever
be thrown away? And, as already mentioned, Subversion does provide a
‘delete’ option (of course, anything you delete can be recovered), so you
can tidy up at any point.
Since the initial import we’ve exercised svn delete rather a lot, and
every time we need to upgrade a vendor branch we end up moving things.
I still wonder if something closer to a topskim wouldn’t have been better.
We’ll never know. And I secretly wish we’d accidentally-on-purpose
turned off keyword expansion!
October 2006 | Overload | 19

FEATURE THOMAS GUEST

All too often a software upgrade means
buying in to more features and more
complexity
Changing tools revisited
As already mentioned, tool changes can be hard to justify. However,
despite the hiccup in the migration, CVS to Subversion required little effort
and led to almost no downtime. Perhaps the stated reasons for change
didn’t seem that compelling – if we’d lived without atomic commits and
version controlled file systems for so long, surely we didn’t really need
them? The paradox here is that you can’t really appreciate how important
these features are until you actually use them – and so, from the other side
of the change, we wonder how we ever did without them!
What I like most about Subversion though is that, from both a user’s and
an administrator’s perspective, it’s simpler than CVS. All too often a
software upgrade means buying in to more features and more complexity.
Think of all those new people joining the team, some of whom may never
have used source control. Consider explaining the Subversion model for
repository revisions, branches, tags. Now consider explaining the same
topics using the CVS model. Clearly less time will be needed getting
people up to speed.

Conclusions
Everyone likes the new source control system, which is important –
freedom of choice may be acceptable for editors, web browsers, and even
operating systems, but a team really must agree to share a source control
system. It’s important to like the tools you use every day.
CVS was good but Subversion is better. As already mentioned, head-to-
head, on the same hardware, CVS managed to beat Subversion on clean
checkouts – but who said we had to use the same hardware? We invested
in a powerful new computer to serve our powerful new source control
system, so even clean checkouts are quicker. Routine operations on a
working copy are much quicker.
Upgrading build scripts did indeed turn out to be simple.
Four clients are in active use (five if you count the command line client,
svn, itself). I use the psvn Emacs integration, which is very similar to
pcl-cvs. Subclipse, TortoiseSVN and kdesvn are also popular with
Eclipse, Windows and KDE users respectively.
So, CVS to Subversion makes good sense, but do beware of pitfalls in the
import procedure.

Further reading
More Subversion tips can be found at: http://blog.wordaligned.org/
articles/category/subversion

Other sources
CVS: http://www.nongnu.org/cvs/
Subversion: http://subversion.tigris.org/cvs2svn
A Python script that converts a CVS repository to a Subversion
repository: http://cvs2svn.tigris.org/
Subclipse, A Subversion Eclipse plugin: http://subclipse.tigris.org/

TortoiseSVN, A Subversion client implemented as a windows shell
extension: http://tortoisesvn.tigris.org/
psvn, Subversion interface for emacs: http://svn.collab.net/repos/
svn/trunk/contrib/client-side/psvn/psvn.el

Credits
My thanks to the editorial team at Overload for their help with this article.

References
[Subversion]

http://svnbook.red-bean.com/en/1.2/svn.serverconfig.html
[Subversion2]

http://svnbook.red-bean.com/en/1.2/svn.serverconfig.html
#svn.serverconfig.overview.tbl-1

[Subversion3]
http://svnbook.red-bean.com/en/1.2/svn.reposadmin.html
#svn.reposadmin.basics.backends

[Subversion4]
http://svnbook.red-bean.com/en/1.2/svn.reposadmin.html
#svn.reposadmin.basics.backends.tbl-1
20 | Overload | October 2006

	Life in the Fast Lane
	Letters
	Up Against the Barrier
	Inventing a Mutex
	C++ Unit Testing Easier: CUTE
	From CVS to Subversion

