

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Letters to the Editor

5 Software Product Line Engineering with
Feature Models
Danilo Beuche and Mark Dalgarno share some
ideas that help when developing a product line.

9 A Perspective on Use of Conditional
Statements versus Assertions
Simon Sebright offers us the benefit of his
experience.

12 Implementing Synchronization Primitives
for Boost on Windows Platforms
Anthony Williams on the popular Boost library.

18 Design in Test-Driven Development
Adam Petersen considers the impact of TDD on
the development process.

22 C++ Unit Test Frameworks – a Comparison
Chris Main shares his experience.

24 A Practical Form of OO Layering
Teedy Deigh re-examines some popular design
ideas.

OVERLOAD 78

April 2007

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editor

Paul Johnson
paul@all-the-johnsons.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Farnsworth
simon@farnz.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 79 should be submitted to
the editor by 1st May 2007 and for
Overload 80 by 1st July 2007.

EDITORIAL ALAN GRIFFITHS
New Tricks for an Old Dog
Times change – as do development practices and tools. C++
was once the new kid on the block with all the latest gadgets.
Agile methods have changed the focus away from language
features and towards ways of working with the language. Can
C++ continue to move with the times?
It is always hard to know what is happening in a field as
broad as software development. Particularly as we so
often are under pressure to deliver a new product, new
version or just to fix the one we have delivered. This
pressure takes its toll, and I know that I have, on

occasion, ‘surfaced’ after months of intense focus to discover that there
are new interesting things that everyone else knows all about.
One way to ensure that these periods of several months do not turn into
years is to ensure that I make it to the ACCU conference. If I’ve missed
something, then someone will bring it to my attention there! (There are,
naturally, other ways to achieve the same effect – the local meetings of
the ACCU, the Extreme Tuesday Club and the SPA conference have all
worked for me – and I’m sure that if I found time to attend XPDay that it
would do the same. You will all have your own favourites – but I’m sure
it isn’t a coincidence that I meet the same people at many of these places.)
The point is that we all need to keep fresh and be on the lookout for the
great new ideas and tools that will make it possible to deliver the next
system we work on.
It has always been apparent that the tools are continually becoming
capable of doing more for us. I remember re-reading The Mythical Man
Month [Brooks 1974] some time ago and noticing that a task that it
describes as requiring a dedicated person has all but disappeared. This was
the process of incorporating updates to project documentation – which was
done by merging replacement pages into a ring-binder. Managing
documents in electronic form is definitely easier – especially when it
comes to distributing and tracking changes.
I’m sure that everyone reading Overload will be aware of the popularity
of ‘agile methods’. What may not be so apparent is that many of the
techniques advocated are reliant on today’s technology. Honestly! Just
think what ‘continuous integration’ relies on – the availability of a build
server, automated access to a shared version control system and reliable
and a way of publishing results. Some of us can still remember the days
of ‘sneaker net’ – when the only way to get code from one machine to
another was to copy it to a diskette (get one of the old timers to explain)
and walk across the office with it.

Continuous integration
Shortly after the days of ‘sneaker net’, a team I

worked on employed a contractor whose main task
was to perform an integration build of the system
each day. It took him all day every day. (Even after
I took over and automated most of the steps so they

could run overnight it still took around 8 hours. As the system grew this
started taking longer – until it got to around 16 hours and steps were taken
to speed it up).
Changes in technology make for dramatic changes in what is practical to
achieve. We must not let the opportunity go by – because our value lies
in the ability to deliver software. And delivering software is hard enough
without denying ourselves the best tools available.
It is apparent that the agile software development movement has been
effective in pushing effective tools. I’ve used CruiseControl to perform
continuous integration on a number of projects now – it integrates nicely
with several version control systems (I’ve used CVS, ClearCase and
Subversion with it), it can build projects in different languages (I’ve used
it for both Java and C++ projects), it runs on any platform that supports
Java (I’ve used it on both Linux and Windows), it publishes notifications
by email (I’ve used it in organisations using both Notes and
ExchangeServer), and it presents its functionality via a nice web page. A
great piece of software – it does one job and it does it well. There may be
other products that do this job, but I’m not aware of one that is equally
agnostic the environment it is used in.

Unit test frameworks
Unit testing underlies the agile practices of ‘relentless refactoring’ and
‘test driven development’. Over the last decade or so a range of testing
frameworks have become widely known. Although JUnit (for Java) is
probably the best known it derives from the earlier SUnit (for SmallTalk).
C# has NUnit.
Python has PyUnit.
And C++ has boost.Test, CppUnit, CppUnitLite, Aeryn, CUTE,
FRUCTOSE, CricketTest, CxxTest, and more.
While I know there are alternatives to JUnit in Java and PyUnit their use
is unusual: I’ve not met a Java developer who is not familiar with this
JUnit. The situation with C++ is somewhat different – although there are
many frameworks, I’ve met many C++ developers who are not familiar
with any of them! And many developers who prefer not to use the ones
they are familiar with. This probably says something about both C++ and
C++ developers. It definitely says something about test frameworks for
C++: it isn’t easy to produce one that is accepted by by the community.

Integration test frameworks
While I can assume that most of you know what unit tests and continuous
integration are I feel I have to explain integration test frameworks. These

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. His homepage
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | APR 2007

EDITORIALALAN GRIFFITHS
APR 2007 | Overload | 3

are tools that allow interactions that involve a significant portion (or all)
of the system to be scripted in a way that allows the system to be tested.
So for example, if the system being tested is a junk mail generator then it
should be possible to supply a template letter, a mailing list and the
expected list of letters. Running the test would supply the inputs to the
system and validate the resulting addresses, salutations and letter contents.
I’ve dabbled with FitCpp (and the separate but related FitNesse) but,
despite overcoming the technical barriers, cannot yet report a successful
use in a real project. Others, working with Java have had mixed success
applying Fit to this work.

Refactoring editors
One area where I’ve noticed significant progress is in the automation of
editing tasks – after Fowler published his refactoring catalogue
[Fowler1999], editing tools began competing against each other to provide
automated support for these activities. Progress has been good in some
modern languages1 – in Java the Eclipse and IntelliJ IDEs initially ran out
ahead of the field, and while I hear that NetBeans has now joined them all
the Java developers I know are using Eclipse. C# also has refactoring tools
– but progress has been slow in C++ tools.
What is that Edward? Oh yes, ‘what is refactoring?’ Yes, I should explain.
It is a reorganisation of code that doesn’t change the functionality, but
makes it easier to work with. One example would be to change the
signature of a function, and make the matching change to all the current
invocations of the function. Another would be to extract a block of code
from a function, place it in a new function and place an invocation of the
new function where the code came from.
There are a number of reasons for the slow progress in C++: is is much
more complex to parse, it has more dependencies of context, and the
activities of the preprocessor causes significant difficulties for tools (as
well as humans). Over the last couple of years I’ve been disappointed by
the tools I’ve tried – but they are getting there at last. As always, as soon
as someone proves that it can be done it will become commonplace. I hope
that this will be the year that C++ gets its refactoring editors.

Functionality vs usefulness
The tools I’ve mentioned above – CruiseControl, JUnit, Fit, Eclipse – all
focus on doing one clearly delimited job well. This is sadly very rare in
the field of software – too many products make themselves less useful by
tying in too many ancillary features. IBM once had (maybe still has) a
great Java editor – VisualAgeJava, that was essentially useless because it
included its own substitute for a file system and version control. These are
useful features, but if you wanted to use text processing tools on your code,

or your project required a common version control repository for Java and
files that are not Java, then this approach got messy quickly.
I’ve seen code follow the same path at a lower level – classes (and
functions) that try to do too much and fail to be useful. It is almost three
years since I described the fate of a ‘properties’ class that I wrote as part
of a client application. I think this was Overload 62 – but I don’t have a
copy to hand in order to check. Since I know that some of you won’t have
a copy either I’ll repeat the story here.
This C++ class mirrored the Java class java.util.Properties – it
allowed keys (of type std::string) to be used to store and retrieve
values (also of type std::string). I suspect that classes with this
functionality have been developed a number of times in different contexts.
I tried to avoid this implementation being too specific to the context it was
being used by limiting the functionality to that needed.
I left this class alone and went on with other things – until I was looking
for something to do this same job and discovered that it was gone! It didn’t
take long to find what had happened: it had grown some additional
functionality and changed its name. The new name and functionality
related to the solution domain in which it was originally developed – it
was now calculation_options which has the additional ability
serialise and deserialise its contents into an application specific message
format. Unfortunately, while the original ‘properties’ class would have
solved my problem this new class had too much baggage to be useful to
me (I didn’t want to pull in the message format and associated protocols).
It is only a small example, but it illustrates a paradoxical point: the more
functionality a piece of software acquires the less useful it becomes.

Is there life in the old dog?
At the conference this year I’m running a workshop [Griffiths2007] that
I hope will help us determine how useful C++ is going to be in the future.
As a language C++ is rich in functionality. But to exploit
this effectively the developer need tools to match those
available when working in other languages. My plan is
to collate the experiences of those present and to identify
the tools that we need for the third millenium.
See you there!

References
[Brooks 1974] Brooks, The Mythical Man Month and Other Essays on
Software Engineering, Addison Wesley, ISBN 0201006502
[Fowler1999] Fowler, Refactoring: Improving the Design of Existing
Code, Addison Wesley, ISBN 0201485672
[Griffiths2007] Griffiths, http://www.accu.org/index.php/conferences/
a ccu _c on f e re nc e_ 20 0 7 /
accu2007_sessions#Reviewing%20the%20C++%20toolbox

1. SmallTalk was probably the first language to support a refactoring
browser – but is hardly mainstream

LETTERS
Letters to the Editor
Exceptional Design
Raoul Gough asks a question about Hubert Matthews’ ‘Exceptional
Design’ article, published in Overload 77 (February 2007):

In the article ‘Exceptional Design’, Hubert Matthews shows a
couple of ways of including error severity information in an
exception. Try as I might, I cannot understand why he would even
suggest this as a good idea.
Surely the whole point of using exceptions is when non-local
recovery is necessary, which means that the throw point cannot
possibly know how severe the condition is to the system as a whole.
Rather, it is only at the catch point where the severity is knowable.
For example, whether a missing file is a warning, severe or fatal
depends entirely on what the file is for – a missing config file might
well be fatal, but a missing $HOME/.plan probably isn’t! Or how
about an out of memory error – surely that’s a fatal error, right?
Well, not necessarily – maybe you can discard some cached data and
continue, so in fact it wasn’t even really a warning.
So I’m struggling to see what value there is in including severity
information in an exception object (whether via its type or its
members). I would even go so far as to suggest it leads to thinking
about exceptions in the wrong way – rather than reporting the nature
of an error, it is trying to pre-determine the ‘correct’ handling of that
error. Maybe Hubert can explain his rationale for this a bit better?
Regards,
Raoul Gough.

Hubert replies:

Exception handling acts in effect like a communications protocol
between the point where the exception is thrown and the point where
it is caught. Whenever there is a protocol there is coupling through
shared knowledge. Think of something like an SMTP email server;
both sides have to understand who says what and what the messages
mean. In the case of exceptions, the two ends (throw and catch)
have to agree on the message format (the exception object) and what
information it contains. In some cases it is acceptable to throw an
exception without any additional information. In others, a message
alone suffices. In both these cases there is a one-way dependency
from catch to throw; the throw knows nothing about the catch. In
the case where severity information is included (usually where a
multi-level recovery strategy is being used) then there is a two-way
mutual dependency as the throw now needs to have knowledge

about how to indicate what level of error this is. The alternative is
to use some form of error type indicator and let the catch decide
what to do, which then makes the dependency one way only again.
Note that an error level is only advisory; it does not preclude the
catch ignoring the level indicator and treating all exceptions as fatal
for instance.
This concept of exceptions as an error signalling protocol can be
extended to dealing with retries, and alternative or compensating
actions. Calls down towards the leaves of the call tree are attempts
by the system to achieve some goal and exceptions are out-of-band
signals in the reverse direction regarding problems.
Hubert Matthewshubert@oxyware.com
Software Consultanthttp://www.oxyware.com/

C++ Unit Testing Framework (CUTE)
Peter Sommerlad announces a new plugin for the CUTE
framework:

Hi all,
In the past, you have shown interest in my C++ Unit Testing
Framework, CUTE.
I am sending you this mail to announce the pre-release of an Eclipse
Plugin that makes C++ Unit Testing with CUTE almost as easy as
Unit Testing for Java with JUnit in Eclipse. (Thanks to Emanuel
Graf!)
We created an eclipse plugin for Eclipse CDT (current release) that
includes Cute and visualizes test results like the JUnit plugin for
Java.
You can install it from its update site (within Eclipse):
http://ifs.hsr.ch/cute/updatesite/
More information on my wiki:

http://wiki.hsr.ch/PeterSommerlad/wiki.cgi?CuTeDownload
http://wiki.hsr.ch/PeterSommerlad/wiki.cgi?CuTe

NB: the current version of CUTE has some syntactic/cosmetic
changes to my original Overload article. The wiki page reflects this
already.
More on it at ACCU conference.
Pete Sommerlad
4 | Overload | April 2007

FEATUREDANILO BEUCHE AND MARK DALGARNO
Software Product Line
Engineering with Feature Models
Delivering on software product is hard, delivering a line of
products is harder. Mark Dalgarno and Danilo Beuche share
some ideas that help.

lthough the term “Software Product Line Engineering” is becoming

more widely known, there is still uncertainty among developers
about how it would apply in their own development context. In this

article we tackle this problem by describing the design and automated
derivation of the product variants of a Software Product Line using an easy
to understand, practical example.
One increasing trend in software development is the need to develop
multiple, similar software products instead of just a single product. There
are several reasons for this. Products that are being developed for the
international market must be adapted for different legal or cultural
environments, as well as for different languages, and so must provide
adapted user interfaces. Because of cost and time constraints it is not
possible for software developers to develop a new product from scratch
for each new customer and so software re-use must be increased. These
types of problems commonly occur in portal or embedded applications,
e.g. vehicle control applications [Ste04] but are also seen in desktop
applications. Software Product Line Engineering (SPLE) offers a solution
to these increasingly challenging, problems [Cle01].
The basis of SPLE is the explicit modelling of what is common and what
differs between product variants. Feature Models [Kan90] [Cza00] are
frequently used for this. SPLE also includes the design and management
of a variable software architecture and its constituent (software)
components.
This article describes how this is done in practice, using the example of a
Product Line of meteorological data systems. Using this example we will
show how a Product Line is designed and how product variants can be
derived automatically.

Software product lines
Before we introduce the example, we’ll take a small detour into the basis
of SPLE. The main difference from ‘normal’, one-of-a-kind software
development, is a logical separation between the development of core,
reusable software assets (the platform) and actual applications. During
application development, platform software is selected and configured to
meet the specific needs of the application.
The Product Line’s commonalities and variabilities are described in the
Problem Space. This reflects the desired range of applications (‘product
variants’) in the Product Line (the ‘domain’) and their inter-dependencies.
So, when producing a product variant, the application developer uses the
problem space definition to describe the desired combination of problem
variabilities to implement the product variant.
An associated Solution Space describes the constituent assets of the
Product Line (the ‘platform’) and its relation to the problem space, i.e. rules
for how elements of the platform are selected when certain values in the
problem space are selected as part of a product variant. The four-part
division resulting from the combination of the problem space and solution
space with domain and application engineering is shown in Figure 1.
Several different options are available for modelling the information in
these four quadrants. The problem space can be described e.g. with Feature

Models, or with a Domain Specific Language (DSL). There are also a
number of different options for modelling the solution space for example
component libraries, DSL compilers, generative programs and also
configuration files [Cza00].
In the rest of this article we will consider each of these quadrants in turn,
beginning with Domain Engineering activities. We’ll first look at
modelling the problem space – what is common to, and what differs
between, the different product variants. Then we’ll consider one possible
approach for realising product variants in the solution space using C++ as
an example. Finally we’ll look at how Application Engineering is
performed by using the problem and solution space models to create a
product variant. In reality, this linear flow is rarely found in practice.
Product Lines usually evolve continuously, even after the first product
variants have been defined and delivered to customers.
Our example Product Line will contain different products for entry and
display of meteorological data on a PC. An initial brainstorming session
has led to a set of possible differences (variation points) between possible
products: meteorological data can come from different sensors attached to
the PC, fetched from appropriate Internet services or generated directly by
the product for demonstration and test purposes. Data can be output
directly from the application, distributed as HTML or XML through an

A

Mark Dalgarno’s software industry experience spans over
twenty years, primarily in product development and
management. In 2004 he established Software Acumen as a
specialist supplier of tools and services for organizations
developing Software Product Lines. He blogs at ‘The Variation
Point’ (http://blog.software-acumen.com/).

Danilo Beuche is the managing director of pure-systems
GmbH, which specializes in services and tool development for
the application of Product Line technologies in embedded
software systems. He also works as a consultant in the area of
Product Line development, mainly for clients from the
automotive industry.

Figure 1
April 2007 | Overload | 5

FEATURE DANILO BEUCHE AND MARK DALGARNO
integrated Web server or regularly written to file on a fixed disk. The
measurements to make can also vary: temperature, air pressure, wind
velocity and humidity could all be of interest. Finally the units of measure
could also vary (degrees Celsius vs. Fahrenheit, hPa vs. mmHg, m / s vs.
Beaufort).

Modelling the problem space
We will now convert the informal, natural-language specification of
variability noted above into a formal model in order to be able to process
it. Specifically, we will use a Feature Model. Feature models are simple,
hierarchical models that capture the commonality and variability of a
Product Line. Each relevant characteristic of the problem space becomes
a feature in the model. A definition of the term ‘feature’ is given in
Definition 1.
Feature models have a tree structure, with features forming nodes of the
tree. Feature variability is represented by the arcs and groupings of
features. There are four different types of feature groups: ‘mandatory’,
‘optional’, ‘alternative’ and ‘or’. When specifying which features are to
be included in a variant the following rules apply:
If a parent feature is contained in a variant,

all its mandatory child features must be also contained (‘n from n’),
any number of optional features can be included (‘m from n,
 0 < = m<=n’),
exactly one feature must be selected from a group of alternative
features (‘1 from n’),
at least one feature must be selected from a group of or features
(‘m from n, m>1’).

Unfortunately, no single standard has yet been agreed for the graphical
notation of feature models. However, in the literature, the graphical
notation of the original Feature-Oriented Domain Analysis (FODA)
method [Ste04] is common. However, this is representable with standard
text tools and graph libraries only with difficulty. Therefore in this article
a simplified notation has been used. Alternatives and groups of or features
are represented with traverses between the matching features. In this
representation both colour and box connector are used independently to
indicate the type of group. Our notation is shown in Figure 2. Using this
notation, our example feature model, with some modifications, is shown
in Figure 3.
Each Feature Model has a root feature. Beneath this are three mandatory
features – ‘Measurements’, ‘Data Source’ and ‘Output Format’.
Mandatory features will always be included in a product variant if their
parent feature is included in the product variant. Mandatory features are
not variable in the true sense, but serve to structure or document their
parent feature in some way. Our example also has alternative features, e.g.
‘External Sensors’, ‘Demo’ and ‘Internet’ for data sources. All product
variants must contain one and only one of these alternatives.
At this stage we can already see one advantage that feature modelling has
over a natural-language representation – it removes ambiguities – e.g.
whether an individual variant is able to process data from more than one
source. When taking measurements any combination of measurements is
meaningful and at least one measurement source is necessary for a sensible
weather station, to model this we use a group of Or features. Usually simple
optional features are used, such as the example of the Alarm. Further
improvements can also be made by refining the model hierarchy. So the
strict choice between Web Server output formats – HTML or XML – can
be made explicit.

Feature models also support transverse relationships, such as ‘requires’
and ‘mutually exclusive’, in order to model additional dependencies
between features other than those already described. So, in the example
model, a selection of the ‘Freeze Point’ alarm feature is only meaningful
in connection with the temperature measurement capability. This can be
modelled by a ‘Freeze Point’ requires ‘Temperature’ relationship (not
shown in the figure). However, such relations should be used sparingly.
The more transverse relations there are, the harder it is for a human user
to visualize connections in the model.
When creating a feature model it can be difficult to decide exactly how
problem space variabilities are to be represented in the model. In this case
it is best to discuss this further with the customer. It is usually better to
base these discussions around the feature model, since such models are
easier for the customer to understand than textual documents and / or UML
models. Formalising customer requirements in this way offers significant
advantages later in Product Line development, since many architectural
and implementation decisions can be made on the basis of the variabilities
captured in the feature model. In the example, the use of the output format
XML and HTML can be clarified. The model explicitly defines that the
choice of output format is only relevant for Web Server, a format selection
is not possible for File or Text output. However, in the context of a
discussion of the feature model it could be decided that HTML is also
desirable for the on-screen (Window) representation and could also be
applicable for file storage.
This results in the modified feature model shown in Figure 4.
We have added ‘Plaintext’ to the existing features; this was implicitly
assumed for output to the screen or to a file. We have modelled the mutual
exclusion of XML and screen display (‘Text’) using a (transverse)
relationship between these features (not shown).
The previous discussion describes the basic feature model approach
commonly found in the literature, but a number of people have extended
this basic approach. To complement the so-called hard relations between
features (‘requires’ and ‘conflicts’) the weakened forms ‘recommends’
and ‘discourages’ have been added to many feature model dialects. A few
tools also support the association of named attributes with features. This
allows numeric values or enumerated values to be conveniently associated
with features e.g. the wind force required to activate the storm alarm could
be represented as a ‘Threshold’ attribute of the feature ‘Storm Alert’.
An important and difficult issue in the creation of feature models is
deciding which problem space features to represent. In the example model
it is not possible to make a choice from the available hardware sensor types
(e.g. use of a PR1003 or a PR2005 sensor for pressure). So, when
specifying a variant, the user does not have direct influence on the selection
of sensor types. These are determined when modelling the solution space.
If the choice of different sensor types for measuring pressure is a major
criterion for the customer / users, then appropriate options would have to
be included in the feature model. This means that the features in the
problem space are not a 1:1 illustration of the possibilities in the solution

Figure 2

Features are an abstract concept for describing commonalities and
variabilities. What this means precisely needs to be decided for each
Product Line.

A feature in this sense is a characteristic of a system relevant for some
stakeholder. Depending on the interest of the stakeholders, a feature can
be, for example, a requirement, a technical function or function group, or
a non-functional (quality) characteristic.

Definition 1: Features
6 | Overload | April 2007

FEATUREDANILO BEUCHE AND MARK DALGARNO
space, but only represent the (variable) characteristics
relevant for the users of the Product Line. Feature models are
a user-oriented (or marketing-oriented) representation of the
problem space, not the solution space.
After creating the problem space model we can use it to
perform some initial analysis. For example, we can now
calculate the upper limit on the number of possible variants
in our example Product Line. In this case we have 1,512
variants (the model in Figure 3 only has 612 variants). For
such a small number of variants the listing of all possible
variants can be meaningful. However, the number of variants
is usually too high to make practical use of such an
enumeration.

Modelling the solution space
In order to implement the solution space using a suitable
variable architecture, we must take account of other factors
beyond the variability model of the problem space. These
include common characteristics of all variants of the problem
space that are not modelled in the feature model, as well as
other constraints that limit the solution space. These typically
include the programming languages that can be used, the
development environment and the application deployment
environment(s).
Different factors affect the choice of mechanisms to be used
for converting from variation points in the solution space.
These include the available development tools, the required
performance and the available (computing) resources, as well
as time and money. For example, use of configuration files can
reduce development time for a project, if users can administer
their own configurations. In other cases, using preprocessor
directives (#ifdef) for conditional compilation can be
appropriate, e.g. if smaller program sizes are required.
There are many possibilities for implementation of the
solution space. Very simple variant-specific model
transformations can be made with model-driven software
development (MDSD) tools by including information from
feature models in the Model-Transformation process.
[Voel05] gives an example using the openArchitectureware
model transformer. Aspect-oriented programming (AOP) can
also be used as a means for the efficient conversion of
variabilities in the solution space. Product Lines can also be
implemented naturally using ‘classical’ means such as
procedural or object-oriented languages.

Designing a variable architecture
A Product Line architecture will only rarely result directly
from the structure of the problem space model. The solution
space which can be implemented should support the
variability of the problem space, but won't necessarily be a 1:1
correspondence with the architecture. The mapping of
variabilities can take place in various ways.
In the example Product Line we will use a simple object-
oriented design concept implemented in C++ . A majority of
the variability is then resolved at compile-time or link-time;
runtime variability is only used if it is absolutely necessary.
Such solutions are frequently used in practice, particularly in
embedded systems.
The choice of which tools to use for automating the
configuration and / or production of a variant plays a
substantial role in the design and implementation of the
solution space. The range of variability, the complexity of
relations between problem space features and solution
constituents, the number and frequency of variant production,
the size and experience of the development team and many
further factors play a role. In simple cases the variant can beFigure 3 Figure 4
April 2007 | Overload | 7

FEATURE DANILO BEUCHE AND MARK DALGARNO
produced by hand, but automated tools in the form of Excel and / or small
configuration scripts, and also model transformers, code generators or
variant management systems will speed production.
One approach for modelling and mapping of the solution space variability
is to use a separate Solution Model to model the solution space, to associate
solution space elements with problem space features, and to support the
automatic selection of solution space elements when constructing a
product variant. This separation of concerns also has the advantage of
allowing both models to evolve independently.
Solution models have a hierarchical structure, consisting of logical items
of the solution architecture, e.g. components, classes and objects. These
logical items can be augmented with information about ‘real’ solution
elements such as source code files, in order to enable automatic production
of a solution from a valid feature model configuration (more on this later).
For each solution model element a rule is created to link it to the solution
space. For example, the Web Server implementation component is only
included if the Web Server feature has been selected from the problem
space. To achieve this, a hasFeature('Web Server') rule is attached
to the ‘Web Server’ component . Any item below ‘Web Server’ in the
Solution model can only be included in the solution if the corresponding
Web Server feature is selected.
In our example, an architectural variation point arises, among other
possibilities, in the area of data output. Each output format can be
implemented with an object of a format-specific output class. Thus in the
case of HTML output, an object of type HtmlOutput is instantiated, and
with XML output, an XmlOutput object. There would also be the
possibility here of instantiating an appropriate object at runtime using a
Strategy pattern. However, since the feature model designates only the use
of alternative output formats, the variability can be resolved at compile-time
and a suitable object can be instantiated using code generation for example.
In our example solution space a lookup in a text database is used to support
multiple natural languages. The choice of which database to use is made
at compile-time depending on the desired language. No difference in
solution architectures can be detected between two variants that differ only
in the target language. Here the variation point is embedded in the data
level of the implementation.
In many cases managing variable solutions only at the architectural level
is insufficient. As has already been mentioned above, we must also support
variation points at the implementation level, i.e. in our case at the C++
source code level. This is necessary to support automated product
derivation. The constituents of a solution on the implementation level, like
source code files or configuration files which can be generated, can also
be entered in the solution model and associated with selection rules.
So the existence of the Web Server component in a product variant is
denoted using a #define preprocessor directive in a configuration
Header file. In addition, an appropriate abstract variation point variable
‘WEB SERVER’ must first be created of the type ps:variable in the
solution model. The value of this variable is determined by a Value
attribute. In our case this value is always 1 if the variable is contained in
the product variant. An item of type ps:flagfile can now be assigned
to this abstract variable. This item also possesses attributes (file, flag),
which are used during the transformation of the model into ‘real’ code. The
meaning of the attributes is determined by the transformation selected in
the generation step.
Separating the logical variation point from the solution makes it very
simple to manage changes to the solution space. For example, if the same
variation point requires an entry in a Makefile, this could be achieved with
the definition of a further source element, of the type ps:makefile,
below the variation point ‘WEB SERVER’.

Deriving product variants
The solution model captures both the structure of the solution space with
its variation points and the connection of solution and problem space. The
direction of this connection is important since problem space models in
most cases are much more stable than solution spaces; linking the solution
space to the problem space is more meaningful than the selection of

solution items by rules in the problem space. This also increases the
potential for reuse, since problem space models can simply be combined
with other (new, better, faster) solutions.
Now we have all the information needed to create an individual product
variant. The first step is to determine a valid selection of characteristics
from the feature model. In the case of some tools, the user is guided towards
a valid and complete feature selection and for a large feature model this
can reduce the time to create a complete and consistent selection by an
order of magnitude. Once a valid selection is found, the specified feature
list as well as the solution model serve as input for the production of a
variant model. Then, as is described above, the rules of the individual
model items are checked. Only items that have their rules satisfied are
included in the finished solution.

Open issues in SPLE
So far we have highlighted some of the most common issues that will be
encountered when working with Software Product Lines. In this section
we highlight some additional issues.
Even with visualization support from specialist tools, the visual
representation of very complex model structures is a not a completely
solved problem. Larger feature models can have several hundred features
and the solution space can have several thousands or more constituents.
Thus it can be hard to understand the implications of modifications to these
models just through use of model diagrams.
Issues around Product Line evolution are also very important. Evolution
must be managed since changes that positively affect one or more variants
could have a negative effect on other variants and these issues may only
show up when variants are produced long after the changes have been
implemented.
Finally, testing a Product Line also represents a significant challenge. Most
Product Lines offer more potential variability than is in use at any one time,
and testing all possible variants is usually impossible and in some cases a
waste of time. Testing just those variants that are produced is already a
difficult problem where there is a high number of variants. However, it is
still necessary to co-ordinate testing with variant production in some way.
One approach is to create test asset variants as one does for the (software)
solution space variants – effectively creating a parallel test solution space
that is driven from the Feature model. Reduction of test effort is still an
open issue though for many Product Lines.

Closing remarks
We’ve shown above how the variability of the problem space of a Product
Line can be described very simply using feature models. Automated
production of solution variants is the logical next step, for which we have
shown one example. We have also highlighted some of the approaches and
issues that need to be considered when using Software Product Lines.
These are covered in more depth in [Bos00], a standard work on Software
Product Lines. The authors also welcome comments and questions on any
aspect of Software Product Lines Engineering.

References and links
[Bos00] J. Bosch, Design and Use of Software Architectures: Adopting

and Evolving a Product Line Approach, Addison-Wesley, 2000
[Cle01] P. Clements, L Northrop, Software Product Lines: Practices &

Patterns, Addison-Wesley 2001 (see also www.sei.cmu.edu/
productlines/framework.html

[Cza00] K. Czarnecki, U.W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000

[Kan90] K. Kang, et al., Feature Oriented Domain Analysis (FODA)
Feasibility Study, Technical report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, 1990

[Ste04] M. Steger et al., ‘Introducing PLA RK Bosch Gasoline of System:
Experiences and Practices’ in: Proc. of the Software Product Line
Conf. 2004, S. 34-50

[Voel05] M. Voelter, Variantenmanagement in the context of MDSD, in:
JavaSpektrum 5/05
8 | Overload | April 2007

FEATURESIMON SEBRIGHT
A Perspective on Use of
Conditional Statements versus
Assertions
Simon Sebright offers us the benefit of his experience.
his article seeks to examine the use of two mechanisms to handle
‘errors’ in code. Two types of error are identified – runtime and
design-time (see later for how these are defined) – both manifesting

themselves when a program is run. Two mechanisms are identified for
dealing with errors – program logic flow and assertions. I suggest that
runtime errors should only be handled with logic flow (usually the if
keyword) and that design-time errors should not. The latter should be
handled by assertions or other design-time mechanisms.
I also put forward that if a function accepts a pointer to an object as an
argument, then by default, the design decision should be that that pointer
must not be NULL.
I know that some are going to have objections to what I say here, so I
present this as my point of view, not industry best practice. Having said
that, I have found in real projects that the technique put forward here helps
to produce cleaner and more robust code, particularly not having silent
failures, and not having to constantly check what parameters are valid, and
which are not. I welcome any counter arguments, either as letters to the
editor, or indeed another article.
First a proviso: my experience is based in the application development
world, not safety-critical or embedded systems where continuity might be
an issue (for example, an aircraft system would want to keep the plane
flying in the right direction even if there was a bug in the toilet light
module). The things I have to say may well apply there, with some
modifications, but for the article, think of a desktop application, console
application, or perhaps a web-based application. In these circumstances, I
think it is better to fail fast – that is bail out altogether – than process things
incorrectly.
This is a discussion relevant to C++ in particular. It may well be relevant
to other languages. Indeed, C#, Java and VB.Net all have alias concepts
which allow NULL, so the general principle will apply there.

Options for handling errors
We have at least two options for handling errors – program logic flow using
a conditional statement (if, for example) and assertions. However, I
usually favour design-time mechanisms to avoid error possibilities. This
is briefly discussed later in the context of whether or not to allow NULL
pointers into functions.

Conditional statements
These, in particular if, act as a fork for control flow. In the context of this
discussion, I am talking about detecting error conditions, and doing
something about it. That might be to silently ignore by returning early,
throwing an exception, doing some extra work, missing out some work,
diagnostic output, etc. The point is that it is the intention of the program
to do something about it.

Assertions
Assertion refers to the general category of functions/macros which a
programmer puts into code to catch specific ‘errors’ when a program runs,

and alert the user (hopefully the developer acting as a user) in a drastic way.
The results of this might be to terminate the program, or to pop up a nasty-
looking error dialog offering the chance to debug or abort. The C++
standard only mentions assert in the context of the headers <assert.h>
and <cassert>, which provides the assert() function on my system.
Also defined in various implementations are _ASSERT, ASSERT and
others. I’ll deal with these collectively as ‘assertions’.
They usually take an expression as an argument which can be converted
to a Boolean value. In the case it evaluates to false, the drastic behaviour
occurs.

Not orthogonal concepts
The crux of the matter is that a given condition should either be handled
by a conditional statement or an assertion. The former should handle the
error; the latter should bail out of the program (or do whatever drastic
behaviour the particular assertion being used performs). Under no
circumstances, should one see both in action for the same check.
But one does see that. Why? The answer usually comes in the form of ‘belt
and braces’. This is to me a pejorative term, referring to a style in which
multiple attempts to ‘handle errors’ occur, just in case it is not handled
properly by the first. The term comes from the real world scenario of the
two ways to hold up your trousers. Of course in the real world, either your
belt or your braces might wear out, break, or just come undone.
But in the software world, code does not rot once written (see sidebar –
Bit Rot (or not?)). If your software belt works in a given environment, it
will always work, ditto with the software braces. You have to decide which
you really need, depending on the circumstances. That can be the hard part,
and the reason why it is not done rigorously.
It boils down to distinguishing between two types of error, and using the
appropriate mechanism for each.

Two types of error

Runtime/external errors
What I call runtime or external errors are things which are beyond the
influence of your program. These are things it must take into account in
order to behave sensibly in ‘expected’ circumstances. It may be the case
that for your program to fulfil its purpose, certain external factors need to
be in place, but as long as it cannot control them, it should be able to handle
the absence of these factors in a purposeful way. That may be as simple
as outputting a message to say that the program’s installation is faulty,
please reinstall, or it might prompt the user to go off and find something
which it can’t.

T

Simon Sebright Simon has been programming for 10 years,
mainly in multi-tier C++ application development. Recently, he
has been designing and developing web/database-based
applications using C# and asp.net. He can be contacted at
simonsebright@hotmail.com
April 2007 | Overload | 9

FEATURE SIMON SEBRIGHT
It should not crash, cause any inconsistencies in data, or do any other kind
of harm to the system.
Let’s look at some examples. It might be looking for a particular file,
registry key, or database connection. These can fail to be there for a number
of reasons. The installation may have failed, the network might be down,
the user may have tinkered with something, there might not be enough
memory available, or another program may have interfered. It doesn’t
matter what happened, just that you identify these possible scenarios. In
programming, it doesn’t matter how likely they are to occur, you have to
program as if it will occur every time. It’s all or nothing – you either check
the condition or you don’t. Whether the external error actually occurs when
the program is run is obviously not knowable. You hope that it won’t occur,
but should not need to pray.
In addition, don’t forget that just because you check something once, it still
might go wrong later, a file could be deleted at any time, for example. This
means that in principle, every use of that file should have a check first.
However, especially considering concurrency, it becomes very difficult to
guarantee absolutely that an external factor will be available, even if your
code checks for it. Such a discussion is beyond the scope of the current
article, though.

Design/internal errors
This is a totally different kettle of fish. These are things which are
fundamentally about the program’s design. When they go wrong, it means
that you have made an assumption, an incorrect design decision, or just
coded something incorrectly. It needs to be fixed. It will only be a matter
of time, or particular data input, which will cause the thing to blow up.

This kind of situation calls for an assertion in the code. This states that a
given condition is expected to be true by design. It is a strong statement,
one you have to make with confidence, because if it turns out not be true,
things can go badly wrong with your program.
Assertions often get omitted from release versions of code, for reasons of
performance. This is the source of much debate. It is arguable that leaving
the assertions in the release build will give you better testing, as well as
give good diagnostics should something go wrong in the field. Of course,
a big hairy message box saying that the program has misbehaved is

something you don’t want your customer to see. But, more importantly,
you don’t want them to get misbehaving software in the first place.
Certainly for some classes of application, it is better to bail out, than, for
example to buy a lot of something you don’t need, at the wrong price, or
process only half the data, etc.

Why not have them together?
So, we have a point in the code. We have been passed a pointer, and we
want to access that object. Sometimes you will see one of the options in
Listing 1.
Apart from causing the compiler to complain sometimes (because the
ASSERT macro can expand to give a redundant check for p), I maintain
that this is bad practice. At first sight, it might look very diligent. The
careful programmer has covered all the options. The problem is that this
lack of clarity blurs the issue of what we can expect from p, it blurs the
issue of the design of the function, the whole class even.
Coming to this code from the outside, if you saw this in a function which
you had cause to alter, what could you deduce about p? Suppose the person
who checked it into source control is not available, or doesn’t remember
anymore.
You have to check in some code and you have to live with the
consequences if it blows up. More than likely, you will opt to assume that
p might be NULL. You might consider taking out the assertion in that case,
but be careful, because we might really want to know if p is NULL here.
You just don’t know.
In one project, I spent time backtracking up the function-call trees to see
where values were coming from. More often than not, it turned out that
there was no way we could have got a NULL pointer, so I changed the code.
It was quite common for certain members of the team to check collections
of pointers for NULL before using them in a loop, a practice I tried to put
a stop to. Simply don’t put NULL pointers into the container in the first
place!
In the ideal scenario, you would have 100% code coverage in your unit
tests, so could simply run them and check. In the real world, you probably
don’t work in such an organised place.

Justification for putting them together
‘Yes, but you just don’t know what is going to happen in the future of that
code. What if somebody does eventually pass a NULL pointer? Somebody
might, and it might only happen in a release build where the assertions have
been omitted.’
My answer here is that firstly, we put the assertion in as soon as the function
is written, so we never have to shut the stable door after the horse has
bolted. Secondly, this is just an argument propping up poor development
practices. Are you saying that you can’t write the code surrounding a
function properly to honour its requirements?

Bit rot is a recognized concept, actually one that I hadn’t come across
until this article was reviewed! Wikipedia refers in the most part to
decay of storage media, and that the suggestion that code itself can
rot is facetious.
My position is that this is correct. Assuming that the bits of a
program’s code do not get corrupted, it will always execute the same
way in response to the same input. Input, however, is not as simple
as what the user types into the search box, or where a mouse click
occurs in a UI. It must include memory state, available resources,
and the like. Thus, there is the common phenomenon of seemingly-
random errors in release builds of programs, where code is using
memory which has (by incorrect coding) not been initialised. The
input in this case changes if the memory address referred to happens
to contain different values in different invocations of the program.
Particularly with regard to operating system changes, a program’s
environment can change. This may also lead to previously-unseen
bugs appearing. In this case, we could include the environment in
the term ‘input’. For example, as mentioned elsewhere, if your code
was passing a NULL pointer to strlen(), then from one version of
Windows to the next, your code will suddenly start to crash. This is
not bit rot, but a combination of incorrect coding and a change in
input.

Bit Rot (or not?)

Listing 1

void MyFunc(Thing* p)
{
 ASSERT(p != NULL);
 if (p == NULL)
 return;
 DoSomethingUseful(p);
}
or
void MyFunc(Thing* p)
{
 ASSERT(p != NULL);
 if (p != NULL)
 {
 DoSomethingUseful(p);
 }
 DoABitMore();
}

Assertions often get omitted from
release versions of code, for
reasons of performance.
10 | Overload | April 2007

FEATURESIMON SEBRIGHT
Let’s take an example. You have a UI showing objects, which the user can
select. The user selects one and chooses to delete it. We end up at a call to
RemoveObject(Object* p). Code that ends up here with the
possibility of passing a NULL pointer is going to have other problems,
because it is not in control of things. The UI layers should be monitoring
the selection, and only invoking actions which make sense. I have seen the
result of the silent return early code. People don’t realise when it happens,
their broken code gets checked in, built upon, and creates a mess. Enter
the onion.

The onion, a place for assertions
Let’s take a step back, to the kitchen. If you cook much, you will probably
be familiar with onions. They are comprised of a number of layers, each
one shielding the one inside it. Often a bad onion is only bad in one or two
layers, the rot stopping at the layer boundary.
Software can be like an onion, with the emphasis on the layering, rather
than it making you cry (although that is often the case). Most software
could be considered to be comprised of modules, there being many ways
to define a module. However you choose to think of a module, think of it
as an onion. The outer layer to that onion, or module, is the key one. It’s
where external factors call your code, where you can choose your policies
for handling input. And that must include policies for handling input errors.
See CodeCraft [Goodliffe] by Pete Goodliffe for a good discussion of
different error handling strategies.
There are numerous policies you could follow. Doing nothing would be
the most simplistic. Sometimes this is referred to as garbage in-garbage
out, it being your own fault if you pass silly values.
Silently returning is also unfortunately common. Returning early with
error codes is a viable option, requiring documentation of what the error
codes mean.
In a language which supports it, throwing exceptions could be used for this
purpose, as input errors ought to be exceptional.

Be aggressive with assertions inside the onion
Whatever your choice, once the control path gets inside the first layer, you
can be justified in making assumptions about design choices. So, you can
be very aggressive about checking and stating conditions with assertions.
That function above becomes cleaner:
 void MyFunc(Thing* p)
 {
 ASSERT(p != NULL);
 DoSomethingUseful(p);
 }

That’s better. You ought to do this from the outset of the project, though.
Once code has been written and run with no assertions, you run the risk
that come code elsewhere has gone through there and ‘got away’ with bad
behaviour. Having a test suite somewhat mitigates this, as does taking a
firm stance as soon as possible.

Documenting non-null pointers with the signature
Some say that references are the way to state non-nullability of an alias
parameter. Personally, I disagree. I have only ever had bad experiences
when null pointers were allowed. If you haven’t got an object, don’t call
a function expecting one. You wouldn’t try to call a member function on
a NULL pointer, would you? Suffice it to say that assertions support the
firm stance on parameters, if used once we are inside the outer layer of that
‘module’ we talked about.
As an aside, you could document your function’s requirements on its
pointer by making it take a smart pointer, whose policies dictate that nulls
are not allowed [Alexandrescu]. However, personally, I don’t think it
makes sense to allow null pointers into a function. It is only there to
alleviate the calling code from the responsibility. I’d favour a mechanism
where the default is that pointer parameters are valid, and to document/

police it explicitly if otherwise. Then everyone would know what to
expect.
I remember a time when in the Windows API, the strlen() function was
changed (implementation, that is). Previously, it used to accept a NULL
parameter, and return 0. Later versions didn’t and crashed. Fair enough, I
say. What’s the point of measuring the length of a string object which
doesn’t exist? Of course, it might make some surrounding code have to do
an extra check. I contend that by choosing a strategy of only using valid
objects, the whole codebase can become cleaner.

The ambiguity of NULL pointers
Of course, certain things are going to be non-deterministic. For example,
the user enters a search term, but none of your objects match that. So, your
find function returns a NULL pointer? No, a better design would be to return
an empty collection. The program design here is making the statement that
the results of this find operation is a collection, and if you just specify a
simple container like vector, then it can have nothing in it, no problem.
But what if you have a function which is only interested in one object?
What might that be? One often finds interfaces of the kind:
FindFirstObject(), FindNextObject(). This is quite common in
the Win32 API, where the interface is a C interface. The failure to find any
objects results in FindFirstObject() returning a NULL pointer. OK,
but in C++ we have iterators and collections as standard, so I suggest that
where possible, we construct interfaces to explicitly tell us when we have
found nothing. An empty collection is one way, or return an iterator equal
to end(). Note that in both these examples, we have an extra level of
indirection introduced, which nicely solves the problem of duality of

pointers (that duality being either valid object, or no object in one variable,
a kind of union really). I note that pointers might be considered a type of
iterator. However, idiomatic use of iterators is different to idiomatic use
of raw pointers.
One of the most used functions which accepts this ambiguity is the
delete operator. It is specified to be safe if given a NULL pointer, there
being nothing done in that case. Whilst it means that code calling it does
not have to make the NULL check first, I think it blurs the responsibility
of the function, and is therefore a poor design. With a multitude of smart
pointers to choose from, most code should not be calling delete directly
anyway, and those places where it does should be limited to core
functionality, so it would not hurt. In addition, consider that silently
allowing NULL might be hiding errors where objects are not initialised
properly.

Conclusion
There are two kinds of error in code – runtime and design-time. The former
needs to be handled with logic flow in the code; the latter is a good
candidate for assertions. Do not mix these two concepts; it should always
be a clear choice.
Once inside the boundaries of a software module, making aggressive
choices about the values you pass to functions can make code cleaner. It
goes hand-in-hand with the practice of creating cleaner interfaces, which
automatically remove ambiguity.

Acknowledgments
Thanks to Richard Blundell and Paul Thomas for comments and
suggestions. Also, in my last article, I forgot to put the acknowledgements
in. So, retrospective thanks to Phil Bass, Richard Blundell, Alan Griffiths
and Anthony Williams.

Software can be like an onion, with
the emphasis on layering, rather

than making you cry
April 2007 | Overload | 11

FEATURE ANTHONY WILLIAMS
Implementing Synchronization
Primitives for Boost on Windows
Platforms
Anthony Williams on the popular Boost library.
Without explicit instructions to say otherwise, data loaded from main
memory is generally kept in the CPU cache for as long as possible,
since retrieval from main memory is a slow operation, and the CPU
will stall if the data it needs is not in the cache. In addition, data may
be stored in the CPU cache before being written to main memory.
On a single-CPU, single-core system this is not a problem, but on
systems with multiple CPUs, or CPUs with multiple cores, this can
be a problem if data is to be shared, as stored data may not make it
to main memory for other CPUs/cores to see, and they may not
reload it from main memory anyway, if that memory location is stored
in their cache.

With CPUs that can reorder instruction execution, reads and writes
might not necessarily happen in the order anticipated, which
therefore compounds the problem.

Consequently, in general, without special instructions, data written
by one CPU may or may not be visible to other CPUs, and writes
that appear sequential on one CPU may become visible on other
CPUs in any order.

There are special CPU instructions which can force the CPU to
synchronize the cache with main memory, and which restrict the
reordering of instructions These are called memory barrier
instructions, and come in several flavours, which determine the level
of synchronization done.

Memory visibilityIntroduction
he project to rewrite the Boost1 thread library started in 2005, as part
of the drive to have the whole of Boost covered by the Boost Software
License2; Boost.Thread was under a different (though similar)

license, and the original author could no longer be contacted. Though this
issue has now been resolved, as the original author was contacted and
agreed to the license change, efforts were underway to reimplement the
library and they continue unabated. The reimplementation effort is driven
in part due to the proposals for threading to be added to the next version
of the C++ Standard, scheduled to be released in 2009.
This article describes the Windows implementations of mutexes for boost
in CVS on the thread_rewrite branch3 at the time of writing. As
discussions continue, and alternative implementations are proposed, the
final version used in Boost release 1.35 may differ from that described
here.

What's a mutex
Mutex is short for ‘mutual exclusion’, and they are used to protect data –
only one thread is permitted to ‘own’ the mutex at one time, so only one
thread is permitted to access that data at once, the rest are excluded. The
other important job performed by a mutex is to ensure that when a thread
owns the mutex, the values it sees for the protected data are exactly the
same as the values seen by the last thread to own the mutex, including any
writes made by that thread. This is particularly important on systems with
multiple CPUs, where the threads might be running on different CPUs, and
the data will reside in the associated CPU caches for some indeterminate
amount of time without specific instructions to ensure cache coherency,
and visibility of the data between CPUs.

Native Windows synchronization objects
Windows provides an assortment of synchronization objects:
CRITICAL_SECTIONs, Semaphores, Events and Mutexes. Though all
of them can be used to ensure that only one thread at a time has access to
a given block of data, CRITICAL_SECTIONs and Mutexes are the only
ones designed for the purpose.
A CRITICAL_SECTION is a relatively light-weight object, and can only
be used within a single process. Use of a CRITICAL_SECTION requires
use of the CRITICAL_SECTION-specific API. In contrast, the other
synchronization objects are kernel objects, and can be used to provide
synchronization between processes, as well as within a single process. All
these objects can be used with the generic HANDLE-based APIs, such as
WaitForSingleObject and WaitForMultipleObjectsEx.

Atomic operations
As well as the synchronization objects described above, the Windows API
provides a set of atomic operations, commonly implemented as compiler
intrinsics that compile down to a single processor instruction. The most
basic of these is the InterlockedExchange API, which atomically
swaps two 32-bit values, such that all CPUs and cores in the system will
see either the original value, or the new value.
This property is common to all the atomic APIs (all of which share the
Interlocked prefix), which include increment, decrement, add, and
compare-and-exchange. The latter (which comes in both 32-bit and, on
Windows Vista, Windows Server 2003, and 64-bit platforms, 64-bit
variants) is the basic workhorse of thread synchronization – all other
operations can be built on it.
The semantics of these basic atomic operations also include the full
memory barrier semantics necessary for synchronization between threads
running on different CPUs – all writes to memory that occur in the source
code before the atomic operation will be completed (and made visible to
other CPUs) before the atomic operation, and all reads that in the source
code after the atomic operation will not proceed until the atomic operation
has complete.

T

Anthony Williams is the Managing Director of Just Software
Solutions Ltd. He has been programming professionally for
over 10 years, having programmed as a hobby for a good
many before that. He is a strong believer in the benefits of
Test Driven Development, Refactoring, and being able to see
the sea from his office.
He can be contacted at anthony@justsoftwaresolutions.co.uk

1 http://www.boost.org
2 http://www.boost.org/LICENSE_1_0.txt
3 http://boost.cvs.sourceforge.net/boost/boost/boost/thread/win32/?path-

rev=thread_rewrite
12 | Overload | April 2007

FEATUREANTHONY WILLIAMS

The primary reason for using anything other
than a Windows Mutex kernel object is the

need for speed
Newer versions of Windows such as Windows Server 2003 and Windows
Vista also provide additional variants of some of the atomic operations that
only provide a write barrier (the xxxRelease variants), or a read barrier
(the xxxAcquire variants), but these are not used for the implementation
under discussion.

Choosing a mutex implementation
The simplest way to implement a mutex would be to write a wrapper class
for one of the native Windows synchronization objects; after all, that’s
what they’re there for. Unfortunately, they all have their problems. The
Mutex , Event and Semaphore are kernel objects, so every
synchronization call requires a context switch to the kernel. This can be
rather expensive, especially so when there is no contention.
Boost mutexes are only designed for use within a single process, so the
CRITICAL_SECTION looks appealing. Unfortunately, there are problems
with this, too. The first of these is that it requires explicit initialization,
which means it cannot reliably be used as part of an object with static
storage duration – the standard static-initialization-order problem is
compounded by the potential of race conditions, especially if the mutex is
used as a local static. On most compilers, dynamic initialization of objects
with static storage duration is not thread-safe, so two threads may race to
run the initialization, potentially leading to the initialization being run
twice, or one thread proceding without waiting for the initialization being
run by the other thread to complete.
The second problem is that you can’t do a t imed wait on a
CRITICAL_SECTION, which means we need another solution for a mutex
that supports timed waits, anyway.
There is also another problem with using CRITICAL_SECTIONs as a
high-performance mutex, which is that a thread unlocking the
CRITICAL_SECTION will hand-off ownership to a waiting thread. More
on this below.

The need for speed
The primary reason for using anything other than a Windows Mutex
kernel object is the need for speed – otherwise, the ease of implementation
when using a Mutex object would make it an obvious choice. The fastest
way to lock a mutex is using atomic operations – do an atomic exchange
of the ‘locked’ flag to set it, and check the old value; if it was already
locked, this thread has to wait, otherwise it has the lock – but the problem
comes with the ‘this thread has to wait’ part. A waiting thread has to
consume as near to zero CPU time as possible until the mutex becomes
unlocked, in order to not slow down the running threads. (See Listing 1)
The simple answer, which is the one used by the Windows
CRITICAL_SECTION, is to use a Windows auto-reset Event to handle
contention. When a thread tries to lock the mutex, and finds it already
locked, then it blocks on the event. When the thread that owns the lock

In multithreaded code, a race condition is anything where the
outcome depends on the relative ordering of execution of
instructions on two threads. They are particularly problematic where
there are two separate operations that need to be done together: if
the thread performing the operations is interrupted after doing the
first part, and before doing the second, then another thread may see
the overall operation as half-done. Not only that, but without
synchronization, due to memory visibility issues, the thread might
see the result of the second operation, and not the result of the first.
If the second thread is also operating on the same data, this may then
end in a garbled mess.

As a concrete example, consider a 64-bit counter on a 32-bit system.
This is therefore implemented as a pair of 32-bit unsigned integers,
one for the high part, and one for the low part. If we have two threads
incrementing this counter without synchronization, we have a
potential for problems:

 Thread A reads low part=0xffffffff

 Thread A read high part=0

 Thread A increments counter

 Thread B reads low part=0xffffffff

 Thread A writes low part=0

 Thread A writes high part=1

 Thread B reads high part=1
 // oops thread B now sees low=0xffffffff, high=1

 Thread B increments counter

 Thread B writes low part=0

 Thread B writes high part=2

Thread B has now just increased the counter by 2^32, rather than
by 1. If this counter is a reference count, then the same issue in
reverse when decrementing the count could cause the reference-
counted object to be freed whilst other threads still had references.

Race conditions can be the causes of hard-to-find bugs, since they
don’t replicate well, and often disappear entirely in the debugger.

Race conditions

Listing 1

long flag;
void lock()
{
 while(!InterlockedExchange(&flag,1))
 {
 wait();
 }
}
void unlock()
{
 InterlockedExchange(&flag,0);
 wake_a_waiting_thread();
}

April 2007 | Overload | 13

FEATURE ANTHONY WILLIAMS

Plain lock() is essentially a try_lock() in a
loop, waiting on an event
unlocks it, if there is a thread blocked on the Event, it signals the event
to wake the waiting thread. This also handles contention and priority
neatly, in that Windows will wake exactly one thread waiting on an auto-
reset Event, and the kernel can choose the highest priority thread to wake.
The hard part here is the ‘if there is a thread blocked on the Event’ part.
Windows won’t tell us, so we have to maintain a count of waiting threads
in the mutex. We could just set the Event every time, rather than keeping
a count, but that would lead to a potentially-unnecessary kernel API call
on unlock, and would also cause the first thread to enter the wait loop
afterwards to wake immediately, as the Event would stay set. This
spurious wake up would just consume CPU for no gain.

Keeping count
The simplest way to keep count is just to increment the flag rather than
always set it to 1. If we just incremented it to 1, then we’re the only thread,
so we’ve got the lock. Otherwise, someone else has the lock, so we must
wait.
On unlock, we can decrement the count. If it hits zero, it was just us, so
we do nothing, otherwise we must wake another thread, and that thread
now has the lock – see Listing 2.

Hand-off
This is essentially how CRITICAL_SECTIONs work, and is a nice simple
scheme. Unfortunately, it suffers from a problem called ‘hand-off’. When
the current thread unlocks the mutex, if there are any other threads waiting,
it ‘hands off’ the mutex to one of these even if that thread is lower
priority than the unlocking thread. If the mutex is being locked and
unlocked in a loop, the high priority thread may come round to the lock
again, before the lower priority thread (which now owns the mutex) wakes
up. In tight loops, this is quite likely, since the high priority thread won’t
yield to the lower priority thread until it either blocks or hits the end of its

timeslice. This means that the high priority thread now has to wait for the
lower priority thread, even when it could have continued.
To solve this, we need a different scheme, where the mutex is truly
unlocked by unlock(), however many waiting threads there are.

Avoiding hand-off with compare-and-swap
The solution I’ve implemented is to reserve one bit of the flag for the
‘locked’ state, whilst keeping the remaining bits for the count of
‘interested’ threads. Consequently, this can no longer be implemented as
a single atomic instruction, since it is not a simple addition, or even a
simple mask. This is where compare-and-exchange/compare-and-swap
(CAS) comes into its own: by using CAS in a loop, you can do any
operation you like to a single 32-bit field (or 64-bit field, on those platforms
that support it). CAS only sets the field to the new value if it was equal to
the specified ‘old value’, but it returns the old one, whatever it was. That
way you know whether your set succeeded, and you can decide whether
to try again, and what the new value should be based on the actual current
value.
Consequently, try_lock() looks like Listing 3, which basically says:
take the current value, increment the ‘interested threads’ count and set the
lock flag. If we succeed in this, we’ve got the lock. If not, the state must
have changed, so try again, unless another thread has the lock, in which
case we’re done.
Plain lock() is essentially a try_lock() in a loop, waiting on an event.
The first time through, we increment the ‘interested threads’ count,
whether or not we get the lock, to mark that we’re waiting. If the lock flag

Listing 2

void lock()
{
 if(InterlockedIncrement(&flag)!=1)
 {
 wait_on_event();
 }
}

void unlock()
{
 if(InterlockedDecrement(&flag)!=0)
 {
 wake_a_waiting_thread();
 }
}

Listing 3

bool try_lock()
{
 long old_flag=0;
 do
 {
 long const new_flag=(
 old_flag+1)|lock_flag_value;
 long const current_flag=
 InterlockedCompareExchange(&flag,
 new_flag,old_flag);

 if(current_flag==old_flag)
 {
 return true;
 }
 old_flag=current_flag;
 }
 while(!(old_flag&lock_flag_value));
 return false;
}

14 | Overload | April 2007

FEATUREANTHONY WILLIAMS
was set already, then we wait on the event. When we wake, we just try and
set the lock flag. If it was still set, we wait on the event again. See Listing 4.
In contrast, the unlock() code is quite straight-forward, since the
modification to the flag value is simple: clear the lock flag, and take one
off the count. Since we know the lock flag is always set, this is a simple
subtraction, which we can do with the atomic exchange-and-add operation.

Listing 4

bool lock()
{
 long old_flag=0;
 while(true)
 {
 long const new_flag=(
 old_flag+1)|lock_flag_value;
 long const current_flag=
 InterlockedCompareExchange(&flag,new_flag,
 old_flag);

 if(current_flag==old_flag)
 {
 break;
 }
 old_flag=current_flag;
 }
 while(old_flag&lock_flag_value)
 {
 wait_on_event();
 do
 {
 long const new_flag=
 old_flag|lock_flag_value;
 long const current_flag=
 InterlockedCompareExchange(&flag,
 new_flag,old_flag);

 if(current_flag==old_flag)
 {
 break;
 }
 old_flag=current_flag;
 }
 while(!(old_flag&lock_flag_value));
 }
}

Listing 5

void unlock()
{
 long const offset=lock_flag_value+1;
 long const old_flag_value=
 InterlockedExchangeAdd(&flag,-offset);
 if(old_flag_value!=offset)
 {
 wake_a_waiting_thread();
 }
}

Listing 6

bool timed_lock(timeout_type timeout)
{
 long old_flag=0;
 while(true)
 {
 long const new_flag=(
 old_flag+1)|lock_flag_value;
 long const current_flag=
 InterlockedCompareExchange(&flag,
 new_flag,old_flag);

 if(current_flag==old_flag)
 {
 break;
 }
 old_flag=current_flag;
 }
 while(old_flag&lock_flag_value)
 {
 if(!wait_on_event(
 milliseconds_remaining(timeout)))
 {
 InterlockedDecrement(&flag);
 return false;
 }
 do
 {
 long const new_flag=
 old_flag|lock_flag_value;
 long const current_flag=
 InterlockedCompareExchange(&flag,
 new_flag,old_flag);

 if(current_flag==old_flag)
 {
 break;
 }
 old_flag=current_flag;
 }
 while(!(old_flag&lock_flag_value));
 }
 return true;
}

April 2007 | Overload | 15

FEATURE ANTHONY WILLIAMS

The only issue here is the fact that the
timeout on the wait and the decrement of
the count are not a single atomic operation.
If the old value returned by the exchange-and-add shows there was another
thread waiting, signal the event to wake it. See Listing 5.

Timing out
Adding a timeout to the lock function is relatively straight-forward with
this scheme. We need to add a timeout to the wait_on_event() call,
and if it times out, then we decrease the count of ‘interested threads’ and
return false to indicate that we haven’t got the lock. If the wait doesn’t
time out, then we proceed just like lock(), returning true if we do get
the lock.
The only issue here is the fact that the timeout on the wait and the
decrement of the count are not a single atomic operation. Consequently,
if this thread is the only waiting thread, and the current owner unlocks the
mutex between the wait timing out and the flag being decremented, then
the event will be signalled, even though there are no waiting threads. This
will cause a spurious wake-up of the next thread to wait on the mutex,
which is unfortunate, but not a disaster. The alternative, which is that rather
than just decrementing the count, we try and acquire the lock, and only
decrement the count if we don’t get it, also has the potential for spurious
wake-ups. If the timing-out thread is not the only waiting thread, but the
mutex is unlocked between the timeout and the decrement, then another
of the waiting threads will wake. If we acquire the lock instead of just
decrementing the count, then the other waiting thread will have woken for
no reason.

Events and initialization
Up to now I ’ve g lossed over the wait_on_event() and
wake_a_waiting_thread() calls, but they’re quite important to the
whole scheme. They’re also rather simple:

bool wait_on_event(unsigned milliseconds=INFINITE)
{
 return WaitForSingleObject(
 get_event(),milliseconds)==0;
}
void wake_a_waiting_thread()
{
 SetEvent(get_event());
}

Since we’re using an auto-reset event, the event object is automatically
r e se t when the f i r s t wa i t i ng t h r ead wakes f rom the
WaitForSingleObject call. The complication is get_event(). In
order to permit static initialization, our mutex cannot have a constructor,
so the members have to be initialized with fixed values – this was one of
the problems with CRITICAL_SECTIONs. Therefore, we need to create
the event object in the get_event() call, in such a way that if multiple
threads call get_event() concurrently, they all return the same event
object. We do this with yet more atomic operations – first we read the
current Event handle; if it’s NULL, then we create a new Event, and try

and swap it into place. If we succeeded, then we’re using the Event we
created, otherwise another thread beat us to it, so we use that, and destroy
the one we created. See Listing 7.
Initialization is thus straight-forward: for objects with static storage
duration, zero initialization will suffice, and for objects with non-static
storage duration, explicit initialization to zero using an aggregate
initializer will suffice.

void f()
{
 static mutex sm;
 // zero init works OK for static

 mutex m={0};
 // aggregate initialization required for auto

 static mutex sm2={0};
 // aggregate init works OK for static, too
}

Listing 7

HANDLE event;

HANDLE get_event()
{
 HANDLE* current_event=
 InterlockedCompareExchangePointer(
 &event,0,0);
 if(current_event)
 {
 return current_event;
 }
 HANDLE* new_event=
 CreateEvent(NULL,false,false,NULL);
 if(!new_event)
 {
 throw thread_resource_error();
 }
 current_event=
 InterlockedCompareExchangePointer(&event,
 new_event,0);
 if(!current_event)
 {
 return new_event;
 }
 else
 {
 CloseHandle(new_event);
 return current_event;
 }
}

16 | Overload | April 2007

FEATUREANTHONY WILLIAMS
This is important, as any use of a constructor would require dynamic
initialization, which occurs at runtime, and therefore may be subject to race
conditions. This is particularly a problem for objects with static storage
duration at block scope, since the constructor is run the first time control
passes through the definition of the object; if multiple threads are running
concurrently, it is possible for two threads to believe they are ‘the first’,
and thus both run the constructor. It is also possible that one thread will
start running the constructor, and another thread will then proceed before
the constructor has completed.

Cleaning up
Since such a mutex uses a Windows Event object, it needs to tidy up after
itself, otherwise you have a resource leak, which is less than ideal.
For automatic and dynamic mutexes, clean-up is easy: the destructor
should destroy the Event. For statics, clean-up is a bit more complicated.
Destructors for objects with static storage duration are called in the reverse
order of their construction. Unfortunately, this is not necessarily the best
order, especially for block-scope statics. Block-scope statics have the
additional problem of a potential race condition on ‘the first time through’,
which can lead to the destructor being run multiple times on popular
compilers, which is undefined behaviour – compilers often use the
equivalent of a call to atexit in order to ensure that destruction is done
in the reverse order of construction, and the initialization race that may
cause the constructor to be run twice may also cause the
destructor to be registered twice. If any threads continue after
main, this problem is compounded, as the unpredictable
destruction order means that the mutex may be accessed after
it has been destroyed, again leading to undefined behaviour.
We do know, however, that Windows Objects allocated by a
program are freed when the program exits, so for objects of
static storage duration, we can get by without a destructor,
which neatly sidesteps the ‘access after destruction’ and ‘multiple
destruction’ issues. It does make it hard to use the same class for static
objects and non-static objects, though.

Copping out
The current boost spec requires that instances of the mutex type are usable
without an explicit initializer. This means that it is not possible to satisfy
the requirements for both static and non-static storage duration without
resorting to compiler-specific techniques, or some form of ‘named mutex’
technique that doesn’t require storing state within the mutex.
The current implementation of boost::mutex cops out, and has a default
constructor and a destructor. This makes it dangerous to use as a block-
scope static, but yields correct behaviour for objects with non-static
storage duration, and objects of namespace scope, provided care is taken
with initialization order.
Though this is the same as for previous boost releases, this situation is less
than ideal, however, and the search continues for a way of ensuring correct
initialization in all cases.
It has been suggested that boost adds a static_mutex, which would then
be portable to other platforms, but this is not available at this time, and
building a safe-for-all-uses mutex would be preferable.
The basic_timed_mutex used in the Windows implementation has no
constructor or destructor, and could therefore safely be used with static
storage duration as described above. Use at non-static storage duration
requires calling the init() and destroy() member functions in place
of the constructor and destructor. This class is a detail of the current
thread_rewrite Windows implementation, however, and its use is not
therefore recommended.

Generalizing to other platforms
Whilst the implementation described here is Windows-specific, the
majority of the code is just using the InterlockedXXX functions. These
functions are generally just compiler intrinsics for single CPU instructions,
so could easily be implemented on non-Windows platforms with a bit of

inline assembly, or by replacing them with the equivalent calls to OS
functions.
The larger bit of non-portability comes from the use of Event objects.
These are essentially just binary semaphores, so can easily be replaced by
semaphores on those systems that support them (e.g. POSIX systems).
POSIX semaphores are not quite ideal, though – they would have to be
dynamically allocated using new or malloc in get_event, and they
aren’t limited to just set/unset, so there is the potential of spurious
wake-ups. This wouldn’t prevent the scheme described from working,
since it allows for spurious wake-ups, but it would be less than ideal. A
condition variable could be used instead, but that also has the potential for
spurious wake-ups, and might have more overhead, since it requires use
of an OS mutex in addition.

Future plans
Work is still under way to identify a solution to the initialization and clean
up problems. Under the new C++ Standard, initialization may be easier,
as there is a proposal under consideration for generalized constant
expressions4, which would enable simple default constructors to be used
for static initialization, and thus solve the race conditions due to
initialization. Unfortunately, this does not solve the corresponding clean
up problems. There are also proposals under consideration to address
thread-safe initialization of static objects.

In any case, the new C++ Standard won’t be published before 2009, and
it will then be a few years before compilers supporting it become common,
so this is still an important issue.

Conclusion
Implementing synchronization primitives is hard. Ensuring they are
correct is hard enough, but fairness issues and initialization problems just
make the whole thing harder.
Thankfully, most of the time we can just rely on libraries such as Boost,
and not have to think about the issues. It does mean that as the implementor
of such a library it is even more important to get things right.
As a library user, understanding the issues involved can help us to see the
reason behind particular restrictions the library places on us, and can help
us write better code.

Acknowledgements
Thanks to Peter Dimov and Alexander Terekhov who pointed out the hand-
off problem to me, and suggested using a swap-based method to avoid it.
Thanks also to Roland Schwarz for reviewing the code, and proposing
alternative initialization and implementation techniques.

4 http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2006/n2116.pdf

it is not possible to satisfy the
requirements for both static and non-static

storage duration without resorting to
compiler-specific techniques
April 2007 | Overload | 17

FEATURE ADAM PETERSEN
Design in Test-Driven Development
With its roots in Japanese just-in-time manufacturing, Test-Driven
Development (TDD) puts the traditional development process on its
head. Adam Petersen discusses when to use TDD, how to use it
successfully, and its use in up-front design.
The roots of TDD
hile best known to originate from Extreme Programming [Beck
& Andres], TDD really has its roots in the Toyota Production
System (TPS). Taiichi Ohno, the brilliant engineer behind TPS,

was obsessed with eliminating waste in production. The main problem was
how to supply the number of parts needed just-in-time. Ohno approached
the problem by reversing the production flow: ‘a later process goes to an
earlier process to pick up only the right part in the quantity needed at the
exact time needed’ [Ohno]. And here’s the core of TPS: now the earlier
process only have to make the number of parts actually needed, thereby
approaching zero inventory. It also puts focus on quality by detecting
deficiencies early in the process. The communication between the steps in
the production chain is solved by kanban (sign board).
How does TPS relate to software? Toyota is about cars, isn’t it? Well, I
consider eliminating waste very relevant for software development too. A
very common type of waste is code that’s written but not integrated until
weeks and even months later. In this case, the main waste arises from the
late feedback and the missed opportunity to improve the code from the
knowledge gained. Further it indicates a waste because something was
developed but there obviously wasn’t any true need for it. At least not
immediately and the time spent could have been invested in an activity
adding immediate value.
TDD achieves just-in-time exactly the same way as Toyota does: by
inverting the steps in the traditional process using a failing unit test as its
kanban. That is, the failing testcase is the need that triggers production and
ensures that no unnecessary code (i.e. waste) is developed. Of course it also
provides immediate feedback.

TDD crash course
TDD is dead simple. At least in theory. Here are the two only rules [Beck]:

1. Write new code only if an automated test has failed
2. Eliminate duplication

Simple to remember but hard to apply. As Kent Beck puts it ‘These are
two simple rules, but they generate complex individual and group behavior
with technical implications’ [Beck].
The first rule forces us, at least if we’re hardcore TDDers, to write a test
before writing any production code. I always wanted to be a space pilot,
so using Java and the unit test framework JUnit [JUnit] I’ll try to explore
the characteristics and responsibilities of a spaceship (Listing 1).
There are not many lines of test code and no production code at all, yet I
have specified several design decisions in the test in Listing 1.

Object creation: I have decided how a spaceship comes into
existence and the initial state of a spaceship object (a speed of zero
m/s). A typical spaceship will probably have many more
characteristics, but I’ll leave that for now. With TDD, I’ll try to
address one problem at a time (TDDers refer to this as organic
design) and right now I want to drive at high speed; both with the
development as with the spaceship.
API design: The unit tests are the first usage of the code and provide
immediate feedback, actually even before the code exists, on how
easy it is to use the API.
Decoupling: The Spaceship class is decoupled from the concrete
driving modes and only knows about the DrivingMode interface.
This is in line with the design principle of programming to an
interface, not an implementation and is a typical TDD pattern.
Besides being good design, it allows full control of the unit under
test through the test stub (the anonymous class implementing the
DrivingMode interface). I avoid depending upon concrete classes
particularly because they add another factor of uncertainty and in
TDD I never want more than one at a time.
Side-effects specified: Shifting driving mode means that the new
speed will equal the top speed in the current mode. It’s stated
explicitly in code what it means to shift driving mode.

The first test-case for a class is typically the one that involves most
exploration. When I have it in place, I write the first version of the
Spaceship:
Unless the implementation is obvious (as it is in Listing 2), I start with a
stub implementation where I return a hardcoded value. The main reason
is that it ensures that I’m testing the right thing, which gets harder as the

W

Adam Petersen is a software developer whose prime
professional interests include C++, patterns, agile
development, modeling and Lisp. Besides spending way too
much time reading tech books, Adam also has somewhat
healthier hobbies like chess, music, modern history and
Russian literature.

Listing 1

// SpaceshipTest.java
public class SpaceshipTest extends TestCase {
 public SpaceshipTest(String testName) {
 super(testName);
 }
 public void testDrivingMode() {
 Spaceship spaceship = new Spaceship();
 assertEquals(spaceship.speed(), 0);
 final int speedOfLight = 299792458;

 DrivingMode hyperSpeed = new DrivingMode() {
 public int topSpeed() {
 return speedOfLight;
 }
 };
 spaceship.shiftDrivingModeTo(hyperSpeed);
 assertEquals(spaceship.speed(),
 speedOfLight);
 }
}

18 | Overload | April 2007

FEATUREADAM PETERSEN

the single most common error developers
make as they start to test-drive is taking too

large steps
body of code grows. It also makes it easier to explore alternatives; because
I haven’t really put much effort into the code it is easier to just delete the
code and start over if I am dissatisfied with it, something that’s much
harder mentally if I go for a full implementation directly. After I’ve run
the test and got a green bar, I’ll check for duplications and potential
improvements. What I don’t like above, is the speed() method;
depending on state, the speed is set at two different places and the
conditional is an unnecessary complexity. Let’s factor it out by taking full
advantage of DrivingMode (see Listing 3).
After my refactoring I run the test again and ensure that I still have a green
bar in JUnit. In this last example, the testcases take on their second role;
instead of driving the design they now function as regression tests.

Iterate again and again
These small iterations are the foundation of TDD and the single most
common error developers make as they start to test-drive is taking too large
steps. This is a hard balance; taking too small steps is inefficient, taking
too large steps is a sure way to lose the feedback that TDD provides. With
small steps, as a unit test fails it is immediately clear where the problem
is (if it isn’t you’re not taking small enough steps). Every time I have to
enter the debugger during development I know that I’ve rushed away with
the coding and have to take smaller steps.
Small steps are also a good way to stay on track. In the average large
software organization there are lots of disturbing factors such as phone
calls, e-mails, and background noises. With a small testcase, there’s less
information necessary to regain as I pick up the coding after a distraction.
Unit tests help relieve my mind by keeping knowledge in the world instead
of in the head. It is also the way I prefer to leave a coding session at the

end of the day; a small, failing unit test that functions as a memory aid, a
written and executable note to my future self.
I believe that it is impossible to give a general guideline on the size of the
steps; the optimal step probably varies depending on personality and
experience of the programmer. For example, as I use a new language or
start working in a new problem domain the steps I take are shorter than
the one above.

Design at different levels
These days it seems popular to bash Extreme Programming (XP) where
TDD is a vital component. Matt Stephens and Doug Rosenberg even
devoted a whole book to dissecting and, partly, ridiculing XP [Stephens
& Rosenberg]. While they credit unit testing as important and state that it
can complement more traditional up-front design, they make sure to push
their own silver-bullets (Use Cases and Sequence Diagrams, which is
hardly surprising as Doug has written two books about it): ‘The clean
allocation of operations to classes you can achieve on a sequence diagram
will eliminate the need for a whole bunch of Constant Refactoring After
Programming’. This begs the question, how much design do I want up-front
and how does it impact the role of my unit tests?
The first question is impossible to answer without a context. For example,
I used to work on safety-critical software for the railway industry. One of
the safety techniques was diversified programming, which basically means
that the same program is written twice by two independent teams. The two
programs are run in parallel and the results are compared between the
programs at predefined points, everything in real-time. If the programs
don’t agree on the result, it means an emergency stop of all trains (hardly
popular, particularly not for the passengers). It is a very expensive way to

Listing 3

// Parked.java
public class Parked implements DrivingMode {
 public int topSpeed() {
 return 0;
 }
}
// Spaceship.java
public class Spaceship {
 private DrivingMode drivingMode;
 public Spaceship() {
 drivingMode = new Parked();
 }
 public int speed() {
 return drivingMode.topSpeed();
 }
 void shiftDrivingModeTo(DrivingMode newMode) {
 drivingMode = newMode;
 }
}

Listing 2

// DrivingMode.java
public interface DrivingMode {
 public int topSpeed();
}

// Spaceship.java
public class Spaceship {
 private DrivingMode drivingMode;
 public int speed() {
 int speed = 0;
 if(drivingMode != null) {
 speed = drivingMode.topSpeed();
 }
 return speed;
 }
 void shiftDrivingModeTo(DrivingMode newMode) {
 drivingMode = newMode;
 }
}

April 2007 | Overload | 19

FEATURE ADAM PETERSEN

Trying to test correctness into diversified
software is a dead end ... the main design
has to be defined up-front, if the two
programs are ever going to agree
develop. Think about how hard it is to get one program working. Trying
to test correctness into diversified software is a dead end and it is obvious
that the main design has to be defined up-front, if the two programs are
ever going to agree on their state of the world. Here well-defined use cases
and complementary models are invaluable, particularly to make the
transition from problem space, as defined by the requirements, to the
solution space and the design. Still, at a certain point it makes more sense
to switch to code as a design medium. The reason is requirements
explosion.

Requirements explosion
The single most frequent question I’ve gotten with respect to TDD is: ‘how
do I know the tests to write?’ It’s an interesting question. The concept of
TDD seems to trigger something in peoples mind; something that the
design process perhaps isn’t deterministic. I mean, I never hear the
question ‘how do I know what to program?’ although it is exactly the same
problem. As I answer something along the lines that design (as well as
coding) always involves a certain amount of exploration and that TDD is
just another tool for this exploration I get, probably with all rights, sceptical
looks. The immediate follow-up question is: ‘but what about the
requirements?’ Yes, what about them? It’s clear that they guide the
development but should the unit tests be traced to requirements?

My answer is a strong no, njet, nein. Requirements describe the ‘what’ of
software in the problem domain. And as we during the design move deeper
and deeper into the solution domain, something dramatic happens. Robert
L. Glass identifies requirements explosion as a fundamental fact of
software development: ‘there is an explosion of “derived requirements” [..]
caused by the complexity of the solution process’ [Glass]. How dramatic
is this explosion? Glass continues: ‘The list of these design requirements
is often 50 times longer than the list of original requirements’ [Glass]. It is
requirements explosion that makes it unsuitable to map unit tests to
requirements; in fact, many of the unit tests arise due to the ‘derived
requirements’ that do not even exist in the problem space!

Further, to capture all these derived requirements in a document or a UML
model requires the level of detail of a programming language. Languages
for that purpose do exist. The Object Constraint Language (OCL) [OCL]
for example is a formal language for adding details to modelling artifacts.
The problem is that extending the models with that kind of detailed
information may actually limit their use. Unless you go for full code-
generation a la MDA [MDA] where the model actually is the program (an
approach which has problems of its own), you’ll lose what I believe is the
most valuable quality of models: a higher level view than the code. The
models will in that case basically turn into a mixture of two different
abstraction levels. Detailed design taken to such lengths will also result in
a lot of overlap with the code; you’ll get the feeling that you already coded
the stuff ones before during the modelling. On projects where I worked
with such detailed designs I found it terribly hard to keep them up-to-date.
Every change results in a necessary update of the models, which isn’t very
productive. Sure, there are tools that may help by supporting reverse

engineering, but basically they only help covering the symptoms of a real
problem.

My advice is to care about designing the details but doing it in the medium
most suitable to express that level of detail: unit tests, written in the same
programming language as the production code.

The purpose of TDD
To me, TDD is primarily a design technique. Sure, the unit tests developed
during TDD do serve a very valuable verification purpose. However, they
verify code-correctness. Every software project has to complement them
with testing on other levels, such as acceptance- and requirements-testing.
The unit tests lay the foundation for the higher level tests and enable them
to focus on their true purpose in a more efficient way; as I work with system
tests I don’t want to be stopped by coding errors and this is where TDD
helps.

TDD is also a verification tool for the intent of the programmer. Like so
many other techniques descending from Extreme Programming, TDD
provides an interesting double-check mechanism. With TDD every
programmer states his/her intent twice; once in the unit test and once in
the production code. Only if they match do we get a green bar.

If you only want verification, you don’t have to do TDD (although you
need something else to carry out the low-level design, be it modelling,
formal specifications, genius or plain luck). In this case I still recommend
the unit tests to be written in close conjunction to the code. Writing unit
tests only with respect to verification is more straightforward as there are
no more design decisions to take. The major disadvantages are, of course,
that you lose an excellent opportunity for design and run the risk of writing
un-testable code.

Code coverage
Code coverage is a simple technique for providing feedback on the quality
of the unit tests. A technique I’ve found valuable is to build code coverage
analysis into the build system. In that way I can run the unit tests and get
a report on the coverage with one single command. However, I typically
don’t bother with analysing the coverage until I’ve finished the first
version of some module, but then it gets interesting. In theory, when using
TDD we will always get 100 percent coverage (remember, we’re only
supposed to write code as an automated test fails). While I have written
fairly large programs with full coverage I don’t believe it is an end in itself
nor particularly meaningful as a general recommendation; it’s just a
number. Instead the value I get is as feedback on my test writing skills. If
I have missed a line or branch during my test-drive I try to analyse the
cause; perhaps it is okay to leave it as it is, but more often there was some
aspect of the solution that I initially overlooked.

What code coverage analysis actually implies is an implicit code review
and that provides a great learning opportunity. But there’s more to it.
Another aspect where code coverage really helps is detecting broken
windows.
20 | Overload | April 2007

FEATUREADAM PETERSEN

The secret to successful modifications of
existing programs is to keep one factor

constant all the time
Broken windows
TDD works best when it’s actually used. Let me elaborate by connecting
to the heading. Broken Windows, at least in this context, has absolutely
nothing to do with operating systems; it’s a term from social psychology
that comes from the following example: ‘if a window in a building is broken
and is left unrepaired, all the rest of the windows will soon be broken’
[Wilson].

The analogy to software is apparent; a class without a unit test is a broken
window and just makes such an excellent excuse to code yet another class
without unit test. I think it’s something very fundamental in human nature
and I’ve been there myself. The original article on the subject puts it this
way: ‘one unrepaired broken window is a signal that no one cares, and so
breaking more windows costs nothing’ [Wilson]. From there things only get
worse; trying to repair a broken window by covering the code with tests
afterwards is tough, as the code probably isn’t designed with respect to
testing and now much effort has to be put into breaking dependencies in
order to make the code testable (in fact it is such a tough problem that
Michael Feathers has written a whole book about it [Feathers]).

On the other hand, as I extend or debug an existing program, if the program
was developed with full TDD from the very start, I just continue to write
tests as I go along. The value I get from unbroken windows is obvious and
during maintenance I learn to appreciate the unit tests as a regression test
suite. Writing code without covering tests would in such a case be breaking
the first window and that’s just too conspicuous.

TDD in a maintenance context
Software maintenance will always be hard but TDD may ease the pain. In
fact, due to the small and rapid iterations in TDD, the software is put in
maintenance mode almost instantly.

The secret to successful modifications of existing programs is to keep one
factor constant all the time. In TDD terms this means either changing the
unit test or the unit under test, but never both at the same time. After some
initial analysis of the necessary changes I turn to the unit tests and write
more of them. These may be either complementary tests to try out my
understanding of the software to modify or a testcase for the required
change. From now on the process is exactly the same as in TDD during
greenfield-development.

TDD recommendations
TDD is a high-discipline methodology. That makes it easy to slip. Below
are some recommendations on what I believe are the most important
practices to adhere to during TDD.

1. Keep the same quality on unit test code as on the code under test.
There’s apparent danger in mentally and qualitatively
differentiating between production code and test code. Remember,
the unit tests are your primary interface to the code during
development and maintenance and you do want that interface to
evolve clean and nice over time in order to keep it alive.

2. Write unit tests that are small and independent. Particularly, avoid
dependencies upon databases, network communication or files. It is
in the vein of good design to keep software loosely coupled. Failure
to follow this recommendation may have practical implications very
soon, as such unit tests do not only require complicated set-up and
clean-up code; they also take a long time to run. Unit tests that take
a long time to run will probably not be run often enough (the same
is true for the build process, if you’re using a compiled language the
unit tests have to be fast to build and run) and there’s a risk that the
unit tests get out of sync with the rest of the codebase and turn into
heavy baggage that’s finally abandoned.

3. Use consistent naming. My personal convention is to name the unit
tests equally to the unit they’re testing and appending ‘Test’ to the
name. Returning to my initial example where I test-drove a
Spaceship.java unit I named the corresponding unit test
SpaceshipTest.java. The rationale is that most IDEs sort files
and classes alphabetically making it easy to navigate between tests
and production code.

Summary
Test-Driven Development is a design technique that pays off soon and, at
the same time, an investment in the future that continues to add value in
subsequent versions of the software. TDD is not the long-sought silver
bullet of software. It doesn’t really make any of the traditional phases in
software development obsolete (possibly with the exception of desperate
bug-hunting close to a release, but that rarely turns out to be a pre-defined
and planned activity). Instead it inverses the order of coding and testing,
thereby providing an excellent medium for detailed design with immediate
feedback. TDD requires a lot of discipline and I hope that my
recommendations will help you on the quest to great software.

References
[Beck] Kent Beck, Test-Driven Development: By Example,

ISBN 10:0321146530
[Beck & Andres] Kent Beck and Cynthia Andres, Extreme Programming

Explained: Embrace Change (2nd Edition), ISBN 10:0321278658
[Feathers] Michael Feathers, Working Effectively with Legacy Code,

ISBN 10:0131177052
[Glass] Robert L. Glass, Facts and Fallacies of Software Engineering,

ISBN 10:0321117425
[JUnit] JUnit homepage: http://www.junit.org/index.htm
[MDA] OMG Model Driven Architecture, http://www.omg.org/mda/
[OCL] The Object Constraint Language (2nd Edition),

ISBN 10:0321179366
[Ohno] Taiichi Ohno, Toyota Production System: Beyond Large-Scale

Production, ISBN 10:0915299143
[Stephens & Rosenberg] Matt Stephens and Doug Rosenberg, Extreme

Programming Refactored: The Case Against XP,
ISBN 10:1590590961

[Wilson] Wilson, Kelling, ‘Broken Windows’, The Atlantic Monthly,
March 1982
April 2007 | Overload | 21

FEATURE CHRIS MAIN
C++ Unit Test Frameworks
– a Comparison

There are many Unit Testing frameworks for C++, but
which one to use? Chris Main shares his experience
of some of them.
ot another one’ was the immediate reaction of a work colleague on
seeing the article [FRUCTOSE] on the FRUCTOSE unit test
framework [Overload07] open on my desk. It had also been my

first reaction, but as I have always taken an interest in unit testing I made
the effort to study the article. I was pleasantly surprised to find that
FRUCTOSE has something to offer that other tools did not. The author,
Andrew Marlow, also explained in some detail why he had not used any
of a number of existing tools. I found this more satisfactory than a previous
article [Overload06] on CUTE [CUTE] where the author, Peter
Sommerlad, only explicitly considered CppUnit [CPPUnit] as an
alternative, even though Aeryn [Aeryn] was referenced in the article. The
FRUCTOSE article did not consider Aeryn, so I offer this comparative
evaluation. The focus of my evaluation is a narrow one: I am considering
frameworks specifically for unit testing C++, which can be run from a
command line.

Boost
For the last three and a half years I have been using an in-house framework
which is very similar to Boost [Boost] but with a richer set of assertion
macros and the facility to select tests from the command line. We would
have used Boost, except our compiler limited us to the header only
libraries. This confirms Andrew Marlow’s assertion that there are some
environments where the Boost framework cannnot be used. Where the
Boost framework can be used, though, it should not be dismissed too
hastily. It gives me the impression that it has evolved from something more
complex (an impression reinforced by the release notes). The
documentation is comprehensive, but could be better organised. I fear that
it obscures how very easy the framework is to use if you restrict your tests
to standalone functions taking no arguments and returning void. Having
worked within this restriction when using our in-house framework, I think
this is no problem at all. Test files follow the format in Listing 1.
In addition, you need a suite creator which is trivial to implement, as shown
below:
 #define BOOST_AUTO_TEST_MAIN
 #include <boost/test/auto_unit_test.hpp>

You then link together the suite creator, the boost test lib and as many test
files as required (from a single test file to all the test files for a library or
application). Hence Boost supports running the tests for a single file, but
in a way that scales up easily to running a full suite of regression tests.

Boost does not support selecting tests from the command line. This
inconvenience can be minimized by ensuring that any long running test is
isolated in its own test files.
Boost has a good selection of assertion macros, including allowing
tolerances for floating point comparisons. It doesn’t have _LT, _LE, _GT,
_GE variants which I have come to prefer to boolean assertions where
appropriate.
Boost supports two output formats (selectable from the command line) out
of the box: human readable and XML. This is a reasonable design. The
human readable format is good enough for most purposes, and the XML
can be post processed into any conceivable format when it isn’t.
In summary, Boost provides a simple to use, fully functional and scaleable
unit test framework, so long as you can build it on your platform. It also
provides many other features, which you can find in its documentation, but
bear in mind that you may not need them.

Aeryn
Aeryn requires a modern C++ compiler, so if you can’t build Boost you
may not be able to build Aeryn. It has no dependencies upon other libraries.
Unlike Boost, Aeryn feels like it has evolved from something simple. Its

‘N

Chris Main has been a programmer since 1989, writing his
first unit test framework in Ada soon after and porting it to C in
1992. C++ has been his main language since 1999, and he
joined ACCU the following year.

Listing 1

#include "factorial.hpp"

#include <boost/test/auto_unit_test.hpp>

namespace {
 BOOST_AUTO_UNIT_TEST(test_factorial)
 {
 BOOST_CHECK_EQUAL(factorial(3), 6);
 }
}

Listing 2

#include "factorial.hpp"
#include <aeryn/test_case.hpp>
#include <aeryn/test_registry.hpp>

namespace {
 void test_factorial()
 {
 IS_EQUAL(factorial(3), 6);
 }
 Aeryn::TestCase numeric_tests[] = {
 Aeryn::TestCase(USE_NAME(test_factorial)),
 Aeryn::TestCase() };
 REGISTER_TESTS_USE_NAME(numeric_tests)
}

22 | Overload | April 2007

FEATURECHRIS MAIN
design is very clean, and this is reflected in the User Guide which is a model
of clarity (once you recover from the picture of the leather clad young
woman on the title page!). You can use Aeryn in almost exactly the same
way as Boost; the difference is that you have to wrap your test functions
in TestCases, as in Listing 2.
This leaves scope for a programmer to write a test function but forget to
wrap and register it. It should be possible to write a macro to take a function
name, wrap it in a test case and register it all in one to to prevent this
happening. Building an executable is also very similar to Boost: link the
Aeryn main and core libs with as many test files as required.
Aeryn does support selecting tests from the command line. It has a more
limited set of assertion macros (no tolerance for floating point
comparisons, for example, you have to implement that yourself).
Aeryn supports selection of output format from the command line. A
number of human readable formats are provided out of the box, but not
XML or HTML. Aeryn provides an elegant mechanism for building
custom output formats into its framework: simply write a class which
inherits from Aeryn::IReport and implements its well documented
virtual member functions, then add the class to the report factory to make
it available from the command line.
In summary, Aeryn provides a simple to use, fully functional and scaleable
unit test framework, so long as you can build it on your platform.
Since, in my opinion, Boost and Aeryn are both excellent, mature unit test
frameworks I don’t understand what CUTE is trying to achieve, given that
it requires the same kind of platform as them.

FRUCTOSE
FRUCTOSE does have a clear niche: it’s a header file only framework that
doesn’t require a modern C++ compiler. I think it has the potential to be
worthwhile even outside of that niche. It has the richest selection of
assertion macros. I have had to insert tracing code to output loop indexes
often enough to think that the loop assertion macros are a good idea. It
supports selecting tests from the command line. It only supports a single,
human readable format. Personally, I think that customisable output is a
less important feature than a good set of assertion macros, so this doesn’t
put me off.
Although I usually work with a framework based upon standalone
functions, I find that for a large proportion of my unit tests the standalone
function is a wrapper around a test class. This is because there is usually
some setup I want to put in a class constructor. I don’t, therefore, see
FRUCTOSE’s requirement to derive test classes from a base class as a
great burden. As for incorporating implementation code into the test class
by public inheritance, I wouldn’t normally consider this good design.
However the sheer convenience it brings in this case, and the fact that test
classes will not be further derived from nor have instances passed around
as objects, leads me to take a pragmatic view of it (just as I pragmatically
accept the use of Singleton in the implementation of automatic test
registration, even though I normally avoid that pattern).

CxxTest
One weakness of FRUCTOSE when compared to Boost and Aeryn is that
its main function has to be hand coded. Possibly this could be remedied
using a similar automatic registration mechanism to them, but I think an
approach more in keeping with the spirit of FRUCTOSE may be to adopt
the design used by CxxTest [CxxTest]. This uses a Perl script to generate
the main function from the test code. (CxxTest is quite similar to
FRUCTOSE in that it has a good set of assertion macros, is distributed as

header files, has no other dependencies and will work with older compilers.
Its big drawback is that it does not allow selection of tests from the
command line; you have to comment out code for a particular test if you
wish to exclude it).
By defining a few macros, as shown in Listing 3, so that the test code looks
like Listing 4, it becomes very easy to write a parser for the test code.
The parser only needs to do basic text processing; it does not need to
understand the grammar of C++. The parser can then be used to generate
the main function automatically, and it is straightforward to write the
generator so that it can take any number of input test files. In this way
FRUCTOSE, although initially designed for testing a single class, would
be made as scaleable as the other frameworks.
The macros have the added advantage, in my opinion, of concealing the
Curiously Recurring Template Pattern and of relieving the programmer of
the need to remember the correct signature for test member functions.
These are simplifications, but some may consider that achieving them by
means of macros is a price not worth paying.

References
[FRUCTOSE] https://sourceforge.net/projects/fructose
[Overload07] Overload 77, February 2007
[Overload06] Overload 75, October 2006.
[CUTE] http://wiki.hsr.ch/PeterSommerlad/wiki.cgi?CuTeDownload
[Aeryn] http://www.aeryn.co.uk
[CPPUnit] https://sourceforge.net/projects/cppunit
[Boost] http://www.boost.org
[CxxTest] http://cxxtest.sourceforge.net

Listing 4

FRUCTOSE_CLASS(numeric_tests)
{
public:
 FRUCTOSE_TEST(test_factorial)
 {
 ...
 }
};

Listing 3

#define FRUCTOSE_STRUCT(_name_) struct _name_ :
 public fructose::test_base<_name_>
#define FRUCTOSE_CLASS(_name_) class _name_ :
 public fructose::test_base<_name_>
#define FRUCTOSE_TEST(_name_) void _name_(
 const std::string &test_name)

Feature Boost.test Aeryn FRUCTOSE CxxTest

Requires
modern C++
compiler

Yes Yes No No

External
dependencies

Boost None TCLAP
(header
files only)

Perl or
Python

Automatically
generated
test suites

Yes Yes No Yes

Assertion
macros

Good Adequate Very good Very good

Tests
selectable
from
command line

No Yes Yes No

Output format Human
readable
and XML

Human
readable and
customisable

Human
readable

Human
readable,
customisable
and GUI

Checklist
April 2007 | Overload | 23

FEATURE TEEDY DEIGH
A Practical Form of OO Layering

uch has been written about the pattern identified by Kevlin Henney
as PARAMETERIZE FROM ABOVE. Indeed, much has been written
about it (just search the Web for ‘Parameterize from Above’ and

‘Parameterise from Above’), but as a pattern it has never been written up.
Much has also been written on accu-general about how Kevlin should get
around to writing it up properly!
In lieu of a proper write-up, I think it is time to address some common
misunderstandings concerning this pattern, including misunderstandings
that Kevlin himself seems to have about it. Perhaps the most significant
area of clarification concerns the relationship between PARAMETERIZE
FROM ABOVE and SINGLETON, so we should start with that.
SINGLETON is a pattern that has come in for a lot of bad press in recent
years – unjustifiably so, I would contend. PARAMETERIZE FROM ABOVE
is often seen as an alternative design approach that clarifies the
responsibilities of components and a design style that essentially removes
the need for SINGLETON. This view of PARAMETERIZE FROM ABOVE
is clearly mistaken, and any comparison between SINGLETON and global
variables is nothing more than an attempt to introduce guilt by association.
SINGLETON is a mature and well understood pattern. Of course, it is not
without subtlety, but that's the point: patterns are not supposed to be easy;
they require great skill to master. We know SINGLETON is well understood
because of the amount of literature published – both online and on paper
– that addresses its various issues. Indeed, the column acreage devoted to
SINGLETON's problems, and the ingenious workarounds proposed, are
testament to the durability and quality of the pattern. Complex problems
demand complex solutions, and SINGLETON can be seen as a natural hub
for many complex solutions.
It is important to understand what is implied by the notion of above in
PARAMETERIZE FROM ABOVE, because it then becomes clear how this
pattern applies to and makes use of the role of SINGLETON. In the
conventional architectural view of LAYERS each layer is stacked on top of
the layer beneath it, with the lower layers holding mechanisms and
representation concepts and the higher layers structured in terms of
application and presentation concepts. The way PARAMETERIZE FROM
ABOVE is often interpreted is that, given such a bottom-to-top, stacked
view of layering, parameters that affect the behaviour of application
objects and mechanisms should be passed in from the top of the stack, such
as from manager objects and application controllers, rather than taken from
objects in the lower layers, where the instinct is to fix and centralise the
behaviour in SINGLETON objects. It is this topsy-turvy view of layering
that is the root problem and, when righted, it becomes clear that
SINGLETONs can play a dominant but benign role in any architecture.
When we consider layering more naturally from top to bottom, so that
application and presentation concepts are seen as details built beneath and
subordinate to more interesting mechanisms and representation-focused
code, we can understand what above really refers to. This mechanism-
oriented view is more natural to developers; architectures that work with
such instincts rather than fighting them should be encouraged. In other
words, the top layer is the one where we focus on the clever tricks of the
trade and tackle the true complexities of software development, with
patterns such as SINGLETON, and this layer sits above – and therefore
dictates and parameterizes – the less significant and simpler ideas, such as
the domain of the application. The value of simplicity is in keeping it in
its proper place – which, in this case, is beneath SINGLETON.

The problem of gratuitous flexibility and speculative generality is that
accidental and unwanted complexity is introduced into many systems.
However, it appears that one of the selling points of PARAMETERIZE
FROM ABOVE is that in loosening the coupling in a system, it naturally
offers more opportunities for unanticipated flexibility and reduced cost of
change than other approaches. This perspective is not only harmful, it is
incorrect. Rather than encouraging flexible parameterization through
pluggable patterns such as STRATEGY and INTERCEPTOR, a proper
interpretation of PARAMETERIZE FROM ABOVE ensures that such
flexibility is explicitly excluded, or at least made more difficult to achieve
by accident, by using explicit conditional logic – whether using if or #if
– and patterns such as the NON-VIRTUAL INTERFACE (NVI) idiom.
Unanticipated flexibility should be discouraged not just by considering it
a cautionary guideline, but by also writing code that makes it harder to
introduce and take advantage of.
In this vein, another capability that is often seen as a virtue of the
misinterpreted form of PARAMETERIZE FROM ABOVE is testability. For
example, being able to use MOCK OBJECTs to isolate external
dependencies and test interactions between core code and such
dependencies. Rather than supporting or even arising from a test-oriented
approach, the correct interpretation of PARAMETERIZE FROM ABOVE
offers nothing that enhances code testability, nor should it. There is no
virtue in being able to isolate units of code for fine-grained or integration-
oriented testing for one simple reason: testing is not a developer's
responsibility. Testing is, as the name suggests, strictly the job of testers.
And it is the job of testers to test the software at the level of the system,
not at the level of the code.
There is no benefit to testing at the code level as it is the responsibility of
developers to ensure that the code is correct by design. When that fails,
the approach they should fall back on is to drive a system through its user
interface and use the debugger to focus on the code. Twisting an
architecture to support some fashionable view of developer-based testing
is wasteful. For one thing, we know that developers are unlikely to find
all of the bugs they introduce, therefore it is not worth them doing any
testing: they should leave that to others, which naturally leaves developers
more time to debug code.
Testing is a tedious but necessary manual process that cannot be usefully
automated, and attempts to do so are typically misguided. The idea of
writing code to test code simply takes time away from writing more code,
which is one of the main responsibilities a developer has. It has been
suggested that coded tests act as a form of executable specification, and
are therefore a requirements and design framing tool as well as a
verification tool. Again, rather than taking time to write code that both
defines requirements on behaviour and confirms satisfaction of these
requirements, developers would be better off devoting time to debugging
and letting others test their code in the context of the whole system.
Because debugging is a difficult task to estimate, developers need all the
time they can get. Rather than additionally support changeability and
configurability in code – changing code typically introduces more bugs –
the structure of the code should be explicit and fixed into place to prevent
such change. There is no problem here that needs solving by
PARAMETERIZE FROM ABOVE or, indeed, any other pattern.
I hope this article has helped to clarify the proper spatial metaphor to be
used in interpreting the guideline to PARAMETERIZE FROM ABOVE, as
well as dealing with other dysfunctional memes that have arisen from
misinterpreting it. Beyond this clarification, I do not believe there is any
benefit to having further write-ups as this has clearly reinforced the
dominant position of SINGLETON in the developer’s toolkit. It is, after all,
the Highlander pattern: there can be only one!

M

Teedy Deigh has been a developer for a number of years and
rates her programming skills as second to none, possibly
closer. She is constantly on the look out for nifty techniques to
impress other developers and to make her day job more
interesting, whilst ensuring a certain level of job security.
24 | Overload | April 2007

	New Tricks for an Old Dog
	Letters to the Editor
	Software Product Line Engineering with Feature Models
	A Perspective on Use of Conditional Statements versus Assertions
	Implementing Synchronization Primitives for Boost on Windows Platforms
	Design in Test-Driven Development
	C++ Unit Test Frameworks - a Comparison
	A Practical Form of OO Layering

