

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 The PfA Papers: The Clean Dozen
Kevlin Henney continues the history of
‘Parameterise from Above’.

6 Blue-White-Red – an Example Agile
Process
Allan Kelly looks at how his project management
techniques have evolved.

9 Functional Programming Using C++
Templates
Stuart Golodetz investigates the unexpected
parallels between Haskell and C++.

14 auto_value: Transfer Semantics for Value
Types (Part Three)
Richard Harris concludes his series on auto_value
by beting strict with ownership.

OVERLOAD 81

October 2007

ISSN 1354-3172

Guest Editor

Ric Parkin
ric.parkin@gmail.com

Editor

Alan Griffiths
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Farnsworth
simon@farnz.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for
publication in Overload 82
should be submitted to the
editor by 1st November 2007
and for Overload 83 by
1st January 2008.

EDITORIAL RIC PARKIN
While the Cat’s Away…
…instead of spending your time playing, why not
learn to be multi-lingual in a multi-cultural world?
Hello and welcome to Overload #81.
In a change to our scheduled programming, I’ve taken
over editing this issue while Alan’s been away. And
thanks to the sterling efforts and helpful advice from
everyone involved it has all been remarkably stress-free

for me (well apart from the moment when I realised I’d have to write an
editorial – I thought I’d stopped doing essays years ago!)
But it’s all been worth it and we’ve another great issue for you with
highlights including the next installment in the thrilling soap opera that is
‘Paramaterise from Above’, and Allan Kelly showing us some card tricks.

Raising standards
In Overload #80, the editorial talked about some odd things happening in
the Standardization organisations. Since then there have been more reports
of irregularities in the OOXML process [Groklaw], with several national
groups raising objections, both to the standard and the way the votes have
been conducted.
I won’t comment on what’s going on – that’s a long conversation over a
few beers I suspect – but one thing struck me as very interesting: the
Internet Society Netherlands suggested [ISN]:

ISOC.nl recommends that the ISO procedures – and more specific
the Fast Track procedure – be adapted significantly to better deal
with controversial standards like DIS 29500/Office Open XML in
order for ISO to maintain relevant. This includes demanding two
interoperable and independent full implementations prior to
accepting a submission for a Fast Track procedure.

This reminded me of the heroic failure that is ‘export’ in C++: an
interesting idea that was a theory without practice when it was
standardized. In the subsequent years, I only know of a single
implementation [EDG] that has actually appeared after a huge effort, and
the reported benefits were much less than originally hoped for. Other
vendors have reportedly decided never to even try to support it, reasoning
that the cost/benefits just don’t stack up. If an attempt to implement it had
been tried before it was standardized, I think it would have been clear quite
quickly that it wasn’t going to be worth the effort and it would have been
abandoned.
Fortunately this lesson appears to have been heeded, as the more

interesting parts of the next C++ standard (usually
dubbed C++0x) are being tested out in real

compilers and libraries to prove their worth and
smooth out the resulting implementations before

they get into the standard. After all, a lot of standardization is meant to be
about formalizing existing practice so that alternative vendors can produce
a new implementations and existing code will be able to work with any
implementation. In this sense, it’s the interface between the compiler
vendor and the user that gives guarantees about what should happen (and
makes clear what is undefined or implementation defined, so you know
when you're straying into such grey areas). Looked at like this it makes
sense that something like export didn’t work – we all know how bad an
interface can be if it has been written in isolation without it actually being
used.
One of the new features that does look very well thought through makes
an appearance in the final part of Richard Harris’s auto_value series.
I feel confident that future articles will start to cover more of the new
language features as time goes on.

Multi-lingual
How many languages do you know? I don’t mean the usual embarrassing
haul of English with a smattering of Restaurant French half remembered
from school, but how many programming languages? And how many
types of languages? After all, if you know C#, VB.net isn’t a big leap, but
a dynamic language such as Python does things quite differently, and a
functional language such as Lisp requires a completely new way of
thinking.
So what if you follow the advice ‘Learn at least a new language every year’
[Pragmatic]? If you know multiple types of languages, you’ll have a much
richer set of tools and ways of thinking about a problem, so if something
is hard in one language but is very natural in another, you’re more likely
to be able to choose the right tool for the job or gain new insights by
bringing the ideas of one language into the domain of another.
A good example of such cross-fertilization is Lambda functions –
originally found in functional languages, partially implemented in
boost.lambda [Boost], and now proposed for C++0x [WG21]. Another is
the whole idea of functional programming itself, whose parallels with
some C++ features Stuart Golodetz investigates.

Nuts and bolts
One of the main pieces of IT news in recent weeks (no, NOT the iPhone)
has to be the EC’s anti-competitive ruling on Microsoft with a record fine
of €497M. While that’s small change compared to their income and can
easily be absorbed, the wider effects will only become clear over time
(assuming an appeal isn’t launched). While the rulings on the bundling of

Ric Parkin has been programming professionally for nearly 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him and is now organising the ACCU Cambridge local meetings. He can be
contacted at ric.parkin@gmail.com.
2 | Overload | October 2007

EDITORIALRIC PARKIN
certain applications such as Media Player is fascinating stuff (especially
as I’m someone who recently bought a new PC and was frustrated to find
I couldn’t play a DVD so gave up and downloaded VLC instead), I was
more interested in the rulings on publishing server interoperability
protocols. In and of themselves, they’re not very interesting, but the
principle is – how much should a company publish product APIs that allow
a competitor’s products to talk to it?
I don’t think there’s an easy business answer to that one – it depends on
many things such as the technology, market size and the company
dominance. For example, a small company that’s invented a new
technology may wish to open up its protocols and let other people make
compatible products in the hope that it will drive adoption faster than they
could on their own, at the cost of having a smaller share of a much bigger
market. Different situations will result in a different answer.
But why not publish all protocols and APIs? What would happen? Think
about it as a thought experiment for a moment and you’ll spot a lot of the
arguments on both sides. Revealing too much may lead to a company’s
hard work and clever ideas being copied, and they get no benefit so won’t
bother again – the hope of reward drives a lot of innovation. But
conversely the ability to ‘mix and match’ parts provides a market for
someone who can make a better and cheaper widget, as long as it can work
with the rest of the system, so having open protocols encourages a richer
eco-system of suppliers, also driving innovation. Obviously there’s a
balance somewhere – just where is what this ruling was trying to establish
in this particular case, and Standards bodies have a similar intent to define
the points of interoperability such that you do have a choice of what goes
on either side, just the like the size standards of nuts and bolts [ISO].

“Learn as if you were to live forever”
I’ve been interviewing a lot recently due to expanding our team, and have
got to wondering what exactly to look for in a software developer. We tend
to follow Joel Spolsky’s advice in The Guerrilla Guide To Interviewing
[Spolsky] where he recommends trying to find ‘Smart people who get
things done’. Now that’s fine as far as it goes, but I’d go one further: ‘Smart
people who get things done and want to improve’.
I think this is vital because this industry doesn’t stand still – there are
always new technologies coming out, new competitors with a rival
product, and more and more things become possible as power and storage
improve. So you want people who’ll be able to adapt and do new things

– personally I don’t care too much if a candidate doesn’t know that much
about the ins and outs of a particular area unless they’re being hired as an
expert for that niche, but I think it’s vital that they’ll learn what they need
very fast and not stay stuck in a rut trying to solve every problem with the
same tools and ideas.
It reminds me of an anecdote I heard years ago about someone trying to
find what made someone into a Guru. They interviewed all the people
regarded as the Ones Who Know to find out what was their super-hero
ability – the things that made them so respected and productive – with the
idea that if they trained others this core skill set they’d have lots of experts
really quickly. When the results came in, they found that there was only
one common skill – they used the help system to find the answers they
didn’t know and they used it a lot. The only thing that made them better
than everyone else was the ability and desire to know more.
So what sort of things would show that someone wants to learn and are
one of the better programmers? Well, if they did things like going on
training courses or being mentored, going to conferences, reading
programming mailing lists and magazines, meeting with
like-minded people to exchange ideas.... in fact a lot like
what the ACCU provides.

References
[Boost] www.boost.org/libs/lambda/
[EDG] Edison Design Group’s C++ front end http://www.edg.com/ used

by compiler vendors such as Comeau
http://www.comeaucomputing.com/

[Groklaw]
http://www.groklaw.net/article.php?story=20070902123701843
http://www.groklaw.net/article.php?story=2007081708383138

[ISN] http://isoc.nl/michiel/nodecisiononOOXML.htm
[ISO] http://www.engineersedge.com/iso_hardware_menu.shtml
[Pragmatic] http://www.pragmaticprogrammer.com/loty/
[Spolsky] http://www.joelonsoftware.com/articles/

GuerrillaInterviewing3.html
[WG21]

www.open-std.org/JTC1/SC22/WG21/docs/papers/2006/n1958.pdf
October 2007 | Overload | 3

FEATURE KEVLIN HENNEY
The PfA Papers: The Clean Dozen
Patterns are social animals and are often found in
the company of others. This issue, Kevlin Henney
looks at where ‘Parameterise from Above’ has been
hanging out.
n this second instalment of ‘The PfA Papers’ we look at how the
PARAMETERIZE FROM ABOVE (PFA) pattern came of age. It got a name
for itself and joined a touring company of recommendations, the

Programmer’s Dozen.
Last time [Henney2007] I described the genesis of the (to date
undocumented) PARAMETERIZE FROM ABOVE pattern in a review of a
system for a client of mine. It was described originally under the heading
of ‘Parameterisation from the Top’. The theme of the original write-up was
to (1) make globals parameters rather than globals and (2) move them to
the top layer of the system, from where they would be passed down as
parameters. This upward movement is the key and applies to many kinds
of objects, not just simple configuration constants.

Relative configuration
The concern most commonly addressed by PFA is that of configuration, a
common motivation (or excuse) for globals of different types: global
constants scattered arbitrarily across different headers and classes or
coincidentally grouped into a single uncohesive header; global objects
representing raw or encapsulated handles to external resources, such as
registries and configuration files; free functions offering sometimes
stateful APIs to these external resources; SINGLETON objects that offer
apparent absolution of the guilt of globals through the blessing of a
recognised pattern. Free functions in a namespace or static methods in
a class may have scope etiquette, but they are globally accessible
nonetheless.
In discussions I had at the time with Hubert Matthews he suggested the
name ‘Configuration from Above’. And I am pretty sure that it was Hubert
rather than me who suggested the more relative – ‘... from Above’ – rather
than absolute – ‘... from the Top’ – naming of the practice. This name also
plays to the recursive, recurrent and typically scale-free nature of software
structure [Potanin+2002]. The practice is not simply about hoisting the
configuration decisions all the way up to the top of the system, the idea
applies consistently to any calling, usage or client-supplier relationship we
find, whether a layer-to-layer, a package-to-package, a class-to-class or a
function-to-function relationship. Importantly, even when there is no
obvious ‘top’ to speak of, the recommendation still applies.
The discussions we had also made clear to me the styles of usage and range
of applicability of this pattern, clarifying in my mind that although
configuration was one of the most common motivators, it was not the only
one. The parameterization applies to many cases where we pull out some
common parameter – whether a runtime variable or a compile-time type

– and have the user (or its user) responsible for making the policy decision.
Hence my preference for sticking with a name that focused on
parameterization rather than just configuration.

Programmer’s dozen
The shift in name from ‘Parameterization from Above’ to ‘Parameterize
from Above’ was motivated by considering PFA to be an active
recommendation rather than simply a passive description of structure. This
took place – and the pattern took its place – in the context of a set of thirteen
recommendations I named the Programmer’s Dozen.
Like PFA, the Programmer’s Dozen grew out of code and design
consultancy on a client’s C++ code base. In looking for a way to organise
and present specific recommendations, I found twelve headings that
worked well, each one phrased positively as a guideline. I published these
guidelines in two of my C++ Workshop columns in Application
Development Advisor [Henney2002a] [Henney2002b].
However, even before these two articles had been published, during the
many months between article submission and the echo of print, I had
consol idated, reorganized, general ized and augmented the
recommendations. Some of the recommendations were merged because
they could be considered two different takes on the same guideline. Some
new ones were introduced, which is when PARAMETERIZE FROM ABOVE
made its appearance. The recommendations were also no longer presented
as C++-specific recommendations: I had found them useful in Java-related
work, as well as elsewhere. And there were no longer twelve of them: there
were thirteen. The creative tension between my lingering fondness for the
numerical convenience of the original dozen and the obvious inequality
with the number thirteen ultimately inspired the name Programmer’s
Dozen.
I first presented the Programmer’s Dozen in a talk at the JAOO conference
in Aarhus in 2002 [Henney2002c]. I have had a long-standing interest in
the idea of ‘less code, more software’ and ‘decremental development’, and
I found that the thirteen recommendations tended to enforce this. This was
one reason they were presented under the heading of ‘Minimalism: A
Practical Guide to Writing Less Code’. That, and the fact that I submitted
the talk abstract before realising that the dozen would fit the bill! It was a
short talk, so each recommendation took only a slide. Here is the
presentation of PFA:

Global packages, Singletons and bundles of constants should be
rationalised or eliminated. They introduce coincidental coupling, so
code is less adaptable and harder to test.
Use arguments and interfaces to invert dependencies.

There is, of course, (a lot) more to say on it than just this, but all the
ingredients are there – including an explicit mention of SINGLETON. Later
presentations also tended to use the phrase ‘parameterize with parameters’,
which helps make both the motivation and the style of PFA clear.
Although the names and ordering of the Programmer’s Dozen changed a
couple of times from 2002 to 2004, the actual set of recommendations has

I

Kevlin Henney is a long-standing member of ACCU, joining
before it actually was ACCU and contributing to Overload
when it was numbered in single digits. He recently co-authored
two volumes in the Pattern-Oriented Software Architecture
series, A Pattern Language for Distributed Computing and On
Patterns and Pattern Languages. Kevlin can be contacted at
kevlin@curbralan.com.
4 | Overload | October 2007

FEATUREKEVLIN HENNEY
been stable since its inception. Here’s the full dozen as they currently
stand:

0. Prefer Code to Comments
1. Follow Consistent Form
2. Employ the Contract Metaphor
3. Express Independent Ideas Independently
4. Encapsulate
5. Parameterize from Above
6. Restrict Mutability of State
7. Favour Symmetry over Asymmetry
8. Sharpen Fuzzy Logic
9. Go with the Flow
10. Let Code Decide
11. Omit Needless Code
12. Unify Duplicate Code

They fall into four categories: (0-2) code meaning; (3-7) code
dependencies; (8-10) code execution; (11-12) code consolidation. Since its
creation I have used Programmer’s Dozen as a teaching aid, a reviewing
framework, a conference tutorial and a standalone seminar. It has not
escaped my attention – or indeed the attention of publishers, conference
goers and colleagues – that the Programmer’s Dozen would make a good
book. Who knows, that may happen.
But I digress. This series of articles exists because, more specifically,
PARAMETERIZE FROM ABOVE would make a good article.

Of patterns and recommendations
It may sound like there is a contradiction or conflict in containing
PARAMETERIZE FROM ABOVE, which is normally referred to as a pattern,
within a set of recommendations. So, is it a pattern or is it a
recommendation? It is both: there is no exclusive-or relationship between
the two concepts. By definition, a pattern makes a recommendation. A
pattern is neither a law nor a hard rule but a recommendation that addresses
a particular recurring problem. A pattern is contingent and contextual
rather than unconditional and universal. In such cases whether a practice
is considered a recommendation or a pattern is mostly a matter of form and
presentation. In presenting a pattern, there are matters of style and content
that are normally considered important – context, problem forces, solution
structure, consequences – that a reader may consider less valuable if they
are looking for a more conventional exposition of a practice, one that is
perhaps less problem focused and less constrained in its prose and
presentation.
The term recommendation also sets a different expectation in the mind of
the reader and the listener, one that is perhaps less charged and sometimes
more accessible than pattern. Although recommendation needs a little
qualification – e.g., weaker than a rule, stronger than a consideration – it
is a less polarised and misunderstood term than pattern, which can be
appreciated and reasoned about at many different levels and from many
different perspectives [Buschmann+2007]. On the other hand, one of the
benefits of focusing on a recommendation as a pattern is that it encourages
a strong focus on the rationale for the recommendation and the empirical
support for it. It is a useful exercise to examine your own development
habits and design preferences and the recommendations of others in this
light. You may find the process of identifying the nature of the problem,
including its context and forces, and weighing up the consequences of the
proposed solution, both pros and cons, reveals both surprising insights and
contradictions.

Although I have favoured a more conventional presentation of the
Programmer’s Dozen recommendations, the pattern perspective has never
been far from my thoughts, especially for PARAMETERIZE FROM ABOVE –
and not just because of some nagging sense of guilt that I should write it
up! The advice to PARAMETERIZE FROM ABOVE offers an obvious
counterbalance to the common alternative – which, for the sake of
comparison, we could term HARDWIRE FROM BELOW. The pattern
perspective can encourage a more rigorous and balanced assessment of a
practice, which is no bad thing when the alternative pattern space is
populated and popularised with SINGLETON, MONOSTATE and the assorted
application of global and static variables.
Of course, simply because something is made as a recommendation or
documented as a pattern, does not mean that it is necessarily good.
SINGLETON and co are often expressed as unconditionally good ideas –
assuming that pattern good or ‘it’s popular, so it must be good’ – whereas
in practice they are either dysfunctional at heart or dysfunctionally applied
[Buschmann+2007]. The benefit of really working through a documented
pattern form is that, if studied and applied diligently, limitations and
conflicts should become more obvious than is often the case when a
recommendation is described in more freeform prose.
When Programmer’s Dozen was first drawn up I also put together notes
for writing up and connecting the recommendations as a pattern language.
A pattern language is a collection of patterns that are connected in a form
that supports incremental application and growth. However, this work
never saw the light of day. In its original form, apart from seeing them as
a collection of mutually supporting patterns, the dozen did not obviously
form an actual pattern language: the individual patterns were easy to
describe, but a simple, non-web-like set of interconnections eluded me. If
I were to return to it today, the current ordering of the patterns (as listed
earlier) offers a more obvious progression than the order I used five years
ago, and is therefore a better pattern sequence around which to form a
language. There’s a lot more to be said on how to document patterns,
pattern sequences and pattern languages, as well as on the role of pattern
collections in capturing a particular development style, but that is beyond
the scope of the current series of articles [Buschmann+2007].

References
[Buschmann+2007] Frank Buschmann, Kevlin Henney and Douglas C

Schmidt, Pattern-Oriented Software Architecture, Volume 5: On
Patterns and Pattern Languages, Wiley, 2007

[Henney2002a] Kevlin Henney, ‘Six of the Best’, Application
Development Advisor, May 2002, available from http://
www.curbralan.com

[Henney2002b] Kevlin Henney, ‘The Rest of the Best’, Application
Development Advisor, June 2002, available from http://
www.curbralan.com

[Henney2002c] Kevlin Henney, ‘Minimalism: A Practical Guide to
Writing Less Code’, JAOO, September 2002, available from http://
www.curbralan.com

[Henney2007] Kevlin Henney, ‘The PfA Papers: From the Top’,
Overload 80, August 2007, http://accu.org/index.php/journals/1411

[Potantin+2002] Alex Potanin, James Noble, Marcus Frean and Robert
Biddle, ‘Scale-free Geometry in Object-Oriented Programs’,
Victoria University of Wellington Computer Science Technical
Report, December 2002, http://www.mcs.vuw.ac.nz/comp/
Publications/CS-TR-02-30.abs.html, published in Communications
of the ACM, May 2005
October 2007 | Overload | 5

FEATURE ALLAN KELLY
Blue-White-Red, an Example
Agile Process
When it comes to running a project, one size rarely
fits all, but Allan Kelly finds that tailoring a core idea
over time has led to repeated success.
lue-White-Red is a simple Agile system originated by Liz Sedley and
me for a London company transitioning to Agile development. There
wasn’t a great deal of up front thought that went into this system, we

just started trying to approximate XP [Beck00] and at first it was a poor
approximation. We modified our process as we went along. Looking back
there is a heavy Scrum [Schwaber02] influence but mainly this is what
worked for us.
This process originated at one company and eventually Liz and I left the
company and went our separate ways. We both took the same basic process
and implemented it elsewhere with modifications. This description also
draws on our experience since, so although I’ve described it as one
company it is more of a composite image.
I have come to the conclusion that you can’t just take an Agile, or any other,
process off the shelf and use it. You have to create a process that works
for you. If you do want to take an existing process and implement it then
you are going to need help. In fact I would go as far as saying I doubt you
can actually implement XP unless you have Kent Beck, Ward Cunningham
or one of the other process authors on your team. The same goes for any
other process you care to choose, DSDM, Scrum, Crystal, etc.

Basics
The whole system revolved around a large magnetic white board upon
which index cards were placed to represent work. The cards themselves
were blue, white or red and held on the board with magnets. The board was
marked with important information like iteration deadline, a record of how
much work was done in previous iterations and was divided into four
columns: work to do, in progress, waiting for test and completed work.
Product Managers produced Product Requirements Documents. Pieces of
work from these documents, usually features, would be written on blue
index cards. The information on these feature cards only needed to be brief,
perhaps a title and a document section. These could be prioritised and the
highest priority cards looked at in more depth.
According to most Agile methods each card should represent a complete
piece of deliverable work. However the nature of our product, the existing
code base and perhaps our own inexperience meant that one ‘feature’ was
more work than could be done in a short space of time. So we put the
features on blue cards and developers would break the work down into a
set of tasks written on white index cards. For every blue feature card there
would be multiple white task cards. Each white card could be achieved in
a day or two. If it couldn’t we tried to break it down further.

The break down from blue to white was usually done during the bi-weekly
planning meeting. If the feature was very complicated or poorly
understood a special meeting might be held to discuss the work and break
it down. Developers could also add white task cards to the work pile if they
felt some piece of remedial work was needed, e.g. larger refactorings.
Iterations were two weeks long. They would finish in the morning – a
Tuesday, Wednesday or Thursday, never a Monday or Friday. The online
systems would complete with a release to live. Then in the afternoon we
would convene a planning meeting. (More recently I have been running
one week iterations with monthly releases to a live server.)

Planning
In the planning meeting the Product Manager would select the features to
be implemented during the next iteration. During the iteration the team
would focus on only these features and their associated tasks. Other blue
cards would be held offline in an index card box. Since each feature could
be quite large there would normally only be a few (one, two or three)
feature cards in play at any one time.
Work estimation was done in abstract points. At first this caused some
confusion but teams quickly converged on a shared understanding of how
much work could be accomplished in a single point. Estimates usually
ranged between half a point and two points. Occasionally zero point cards
would be written to remind ourselves of things or for trivial tasks.
Although each team placed a slightly different value on a single point we
normally found that a card with a point value of more than three needed
to be broken down further. We also found that the more words used on a
white card to describe the task the more accurate the estimate. Cards with
brief descriptions were usually poorly understood and poorly estimated.
The first task in the planning meeting was to clear the board and count the
point value of the cards completed in the previous iteration. This was
recorded and used as a guide for the coming iteration’s capacity. The team
could accept slightly more points into the iteration than had been
completed the previous week on the understanding that some might not
get done.
With blue cards and white cards prepared and our estimate of work that
could be done the Product Manager would prioritise all the white cards.
Developers would advise of any dependencies between cards, risks,
opportunities and such but the final say on prioritisation was the Product
Manager’s. All cards were prioritised in absolute order – 1, 2, 3, and so
on. No two cards were allowed the same priority. This made it clear what
was the top priority and which the last. When priorities are set as ‘must
have’, ‘should have’ and ‘nice to have’ teams typically end up with too
many ‘must have’s to tackle in one go so the actual work order gets decided
by the team. If a business abdicates its responsibility to articulate its needs
and priorities to developers then it should not be surprised by the results
(although it might be difficult to communicate this message to the
business.)
Once work was prioritised the cards could be placed on the board. This
formed the work queue. Wherever possible we tried to avoid associating

B

Allan Kelly Allan served his apprenticeship developing
software for financial, communication and utility systems. He
is now a consultant and interim manager who specialises in
advising and helping the most challenged development teams
deliver and improve. His first book, Changing Software
Development, is published by John Wiley and Sons early next
year. Allan can be reached at allan@allankelly.net.
6 | Overload | October 2007

FEATUREALLAN KELLY

some developers would cherry pick cards
they felt they could do as ‘background tasks’

or during spare moments
individuals with pieces of work. When someone is named as the individual
responsible for a given piece of work the queue does not get worked from
top to bottom. Other individuals skip a card which is associated with
someone else even if it has a high priority. Of course sometimes you need
a particular individual to work on a particular piece of work, but on the
whole we tried to avoid this.

Knowing how many points of work the team had completed in previous
weeks meant we could be quite confident of what would and would not
get done during the coming iteration. Say a team had done 10 points in the
previous iteration; we would put about 13 or 14 point on the board for the
coming iteration. We could be fairly sure 7 would get done, hopefully
another 4 would be cleared and if we were lucky then we might get more.

Developers were not supposed to work on more than one card at a time;
this was intended to keep focus. However some developers would cherry
pick cards they felt they could do as ‘background tasks’ or during spare
moments. While well intentioned this tended to be disruptive. Developers
usually picked refactoring cards and because it was a secondary task it
became difficult to track the status. On one occasion I found several cards
on a developer’s desk, he had intended to do them in ‘spare time’ but the
fact that they were on his desk meant the work was hidden.

Each day the team would hold a short stand up meeting and select the cards
they would work on from the work queue. Some developers would choose
to pair on some work but we did not pair all the time. If work was completed
without pairing it would be subject to a short desk based code review before
checking into source code control.

Testing
Developers tried to write unit tests for the new features. However due to
the existing legacy code base this was not always possible. There were no
unit tests for code that already existed so refactoring existing code was
difficult. All unit tests were run each night after the nightly build was
completed. Should the build or any tests fail the whole team received mail
and the first person in started to investigate the failure.

Each team had a software tester who was responsible for accepting a
completed white card. When the developer felt a card was complete it
would be moved to the waiting for test column on the whiteboard and the
developer would take another card. Only when the tester was satisfied the
work was completed would it be marked and moved into the completed
column.

Testers had a variety of ways of testing cards: they could perform a manual
test, they might ask to verify the unit tests were working and they might
ask for proof the code had been reviewed. If they were not satisfied, or a
defect was found, then the card would move back to the in progress queue
with a high priority.

Finally, if a fault did slip into the system, or was reported by another team
and it was added to the team’s work load it would be written up on a red
card. Red cards automatically took priority as the next piece of work to be
started. Unfortunately the nature of the system meant it was difficult to
eliminate such tasks but over time the number did fall.

Each team that has used this process has modified it in different ways. No
team was able to eliminate all manual testing because it was not possible
to retrofit unit tests to parts of the legacy code base. Over time unit test
coverage increased but never covered the whole application.

One project that used extensive COM components had particular problems
with Test Driven Development (TDD). Testing at the component level
tends to be too general, one COM call tends to do too much stuff to test
properly, neither is it possible to test the state of the object satisfactory after
the COM call. Testing inside the component, below the COM interface
tends to be difficult because COM gets into code in all sorts of odd ways.
Whether it is memory management, COM pointers, lifetime, startup, or
shutdown issues, COM makes it difficult to isolate code for testing.

Micro project variation
I term projects with very little developer resource micro-projects.
Typically a micro project has less than two full time developers. Even if
there are more than two developers attached to the project, when they are
split between multiple projects the net effort may be less than two full time
people. For example, developer Fred is full time on the project but Pete is
split between three different projects.

One variant of the Blue-White-Red process was used on a one developer
micro-project where I played the role of Product Manager with additional
responsibility for project management. Here we made several
modifications. Firstly the code base was smaller and leant itself more to
one feature, one task, one card so we were able to dispense with blue cards
altogether and just work with white and the occasional red.

Second, there was no tester on the project and neither had the developer
attended the TDD training course our other developers had. So in the last
day or two of the iteration development would stop and the developer
would test. If necessary, others would join in too. Since this was an online
system we could put interim versions of the software onto a staging server
during the iteration for preview by customers and feedback.
Finally, there was a pre-planning meeting where the developer and myself
(as Product Manager) would get together a few days before the end of the
iteration and assess what had been done, what work was coming up, and
how long it might take. After this meeting I would be able to decide my
priorities prior to the planning meeting

Good luck
What I didn’t recognise at the time was how lucky we were to start with.
For example, we had source code control and a regular build in place. We
couldn’t do intra-day builds, it just took too long, but we could know within
a day if things were broken.

We were also fortunate that a well-established product owner system was
already in place in the form of Product Managers. Although Agile
development is good at handling vague and changing requirements you
still need someone to articulate what the requirements are and answer
questions about how the system would work. In too many organizations
developers are left without this guidance and have only their own resources
October 2007 | Overload | 7

FEATURE ALLAN KELLY
to fall back on. This can work when a product is mature or when developers
are close to the final customers. At other times the business requesting the
software seems to rely on direct thought-transference.
Some things we weren’t so lucky with. When you start with a large legacy
code base, getting unit tests in place is hard. It is not impossible but it is
hard. I think there are two main problems here. Firstly there is a mental
block: too many developers have a kind of automatic dislike of the word
‘test’. ‘Testing’ is associated with ‘software testers’ who are obviously
paid less and therefore better suited to testing while developers, well,
develop.
We had managed to persuade our management that TDD was a good thing
and they had paid to bring a trainer in house to deliver a series of training
courses. Although most of our developers were trained in TDD some did
not feel it was worth doing or believed it took too much time. Unfortunately
the management who had paid for the courses declined to make the use of
TDD mandatory so usage was patchy in the company apart from the blue-
white-red teams.
Still most developers do not have experience of adding tests to legacy code
so they simply don’t know how to do it. There is one book on the subject
[Feathers04] but as good as this is it is no substitute for experience. In
retrospect I recognise the need to employ a part-time TDD coach to work
with the team in addition to the training.

Retrospectives
The other thing I would do differently is to do more retrospectives. This
is hard because we did hold some. Our problem was getting the rest of the
company to help implement the recommendations that came out of the
retrospective.
Any retrospective will suggest a number of changes in the way people
work and the processes followed. When these changes are entirely within
the team they are relatively easy to change. But inevitably, over time, these
changes are made leaving the more difficult ones to make.
The more difficult changes typically need the involvement of people
outside the team and the support of more senior managers. Unless these
managers take part in the retrospective it can be hard for them to see the
need or opportunity for the change. However trying to persuade a manager
to spend several hours in a retrospective is hard.
Like our process our retrospectives were a simplified form and again we
used blue, white and red cards. Normally I would start by constructing a
timeline [Kerth01]. This is useful because it helps the team remember the
early days of the project, without a timeline people tend to concentrate on
the most recent events. The time line also helps put the whole project in
perspective.
I would put a generous supply of cards on the table and at any time in the
retrospective people could write on the card and throw them in a pile in
the middle of the table. The rule was:

Blue cards for thing that worked and we should do again.
White cards for suggestions for change: these were specific
suggestions to do something different.
Red cards for puzzles, things we don’t understand and would like to
discuss some more. (Recently I have experimented using Red cards
to capture things ‘To avoid’ doing.)

As we created the timeline (usually on the wall with Post-It notes) people
would suggest ideas, write them on cards and throw them into the pile.

Once the timeline was built we would walk through it and discuss the
events and their sequence. As we did so more cards would be written.
Eventually we would reach a point were we understood the project better.
Then it was time to start to wrap up. I would take the cards and sort them
into three piles, one for each colour. There was no strict rule but I usually
worked through the red cards first. By this stage we had normally answered
a lot of the puzzles already. Some of the puzzles would be beyond our
understanding and others we could resolve and produce blue and white
cards
Next we would start on the blue cards. I would read them out and we would
agree (or not) to keep the activity on the card.
Finally the white cards: things to do differently. Quite often people would
have suggested the same things. Here it depended on the team and the items
in the pile. Some items everyone would agree on and they were within our
power to change. Other items we might not agree on, maybe some people
would want to change and others would not. Sometimes I would have the
team vote on the top three things to change. By limiting the items to change
effort can be focused.
Since coming up with this formula Agile Retrospectives [Derby06] has
been published. There are more exercises in this book which I will try to
incorporate in future retrospectives.

Conclusion
In writing this up I hope to convey a sense of how an Agile process can
work, and how you can start with something quite simple and build up.
Inevitably I've hidden some details, knocked off some rough edges and
highlighted our successes. Simply deciding to follow this, or any other,
process doesn't remove all your problems overnight. You still have to work
at them.
What this process does do is increase focus and expose problems. Once
problems are exposed you can go about fixing them. This is where great
improvements can be made. This process provided us with a framework
which allowed us to start adopting Agile ideas and to start improving.
Unfortunately exposing problems does not make you popular. Showing the
slow pace of development does not look good even if it is true. Exposing
problems means someone needs to fix them rather than not ignore them.
The technique I now call Blue-White-Red has worked, with modifications,
at three different companies. I don't think this makes it universally
applicable but it does show that you can roll-your-own Agile process and
I encourage more people to give it a try.

References
[Beck00] Beck, K. (2000) Extreme programming explained, Addison-

Wesley.
[Derby06] Derby, E. and D. Larsen (2006) Agile Retrospectives,

Pragmatic Programmers.
[Feathers04] Feathers, M. (2004) Working Effectively with Legacy Code,

Prentice Hall.
[Kelly07] Kelly, A. (2007) Changing Software Development: Learning to

Become Agile, John Wiley & Sons.
[Kerth01] Kerth, N. L. (2001) Project Retrospectives, New York, Dorset

House.
[Schwaber02] Schwaber, K. and M. Beedle (2002) Agile Software

Development with SCRUM.

Iteration Retrospective

Blue cards Feature under development Things we did right (should do again)

White cards Development task Suggestions for improvement

Red cards Fault (to be fixed as priority) Puzzles (variation: things to avoid)

Summary of Card Uses
8 | Overload | October 2007

FEATURESTUART GOLODETZ
Functional Programming Using
C++ Templates (Part 1)
Template metaprogramming can initially seem
baffling, but exploring its link to functional
programming helps shed some light on things.

Introduction

omputing can be a surprisingly deep field at times. I find that the
more I learn about it, the more I’m struck by quite how many
similarities there are between different areas of the subject. I was

browsing through Andrei Alexandrescu’s fascinating book Modern C++
Design recently when I read about a connection which I thought was worth
sharing.
As I suspect most of you will already be aware, C++ can be used for
something called template metaprogramming, which makes use of C++’s
template mechanism to compute things at compile time. If you take a look
at a template metaprogram, however, you’ll find that it looks nothing like
a ‘normal’ program. In fact, anything but the simplest metaprogram can
start to look quite intimidating to anyone who’s unfamiliar with the idioms
involved. This makes metaprogramming seem hard, and can put people off
before they’ve even started.
Surprisingly, the key to template metaprogramming turns out to be
functional programming. Normal programs are written in an imperative
style: the programmer tells the computer to do things in a certain order,
and it goes away and executes them. Functional programming, by contrast,
involves expanding definitions of functions until the end result can be
easily computed.
Programmers who have studied computer science formally at university
are likely to have already come across some form of functional
programming, perhaps in a language such as Haskell, but for many self-
taught programmers the idioms of functional programming will be quite
new. In this article, I hope to give a glimpse of how functional
programming works, and the way it links directly to metaprogramming in
C++.
For a more detailed look at functional programming, readers may wish to
take a look at [Thompson] and [Bird]. Anyone who’s interested in template
metaprogramming in general may also wish to take a look at the Boost
MPL library [Boost]. Finally, for a much deeper look at doing functional
programming in C++, readers can take a look at [McNamara].

Compile-time lists
As a concrete example, I want to consider a simple list implementation.
For those who are unfamiliar with them, Haskell lists are constructed
recursively. A list is defined to be either the empty list, [], or an element
(of the appropriate type) prefixed, using the : operator, to an existing list.
The example [23,9,84] = 23:[9,84] = 23:9:[84] =
23:9:84:[] shows how they work more clearly. Working only with lists
of integers (Integers in Haskell) for clarity at the moment, we can define
the following functions to take the head and tail of a list:

 head :: [Integer] -> Integer
 head (x:xs) = x

 tail :: [Integer] -> [Integer]
 tail (x:xs) = xs

The head function takes a list of integers and returns an integer (namely,
the first element in the list). The tail function returns the list of integers
remaining after the head is removed. So far, so mundane (at least if you’re
a regular functional programmer).
Now for the interesting bit. It turns out that you can do exactly the same
thing in C++, using templates. (This may or may not make you think
‘Aha!’, depending on your temperament.) The idea (à la Alexandrescu) is
to store the list as a type. We declare lists of integers as follows:

 struct NullType;
 template <int x, typename xs> struct IntList;

The NullType struct represents the empty list, []; the IntList template
represents non-empty lists. Using this scheme, our list [23,9,84] from
above would be represented as the type IntList<23, IntList<9,
IntList<84, NullType> > >. A key point here is that neither of these
structs will ever be instantiated (that’s why they’re just declared rather than
needing to be defined): lists are represented as types here rather than
objects.
Given the above declarations, then, we can implement our head and tail
functions as shown in Listing 1.
Already some important ideas are emerging here. For a start, if we ignore
the fact that the C++ version of the code is far more verbose than its Haskell
counterpart (largely because we’re using C++ templates for a purpose for
which they were never designed), the two programs are remarkably
similar. We’re using partial template specialization in C++ to do the job
done by pattern-matching in Haskell. Integers are being defined using

C

Stuart Golodotz Stuart has been programming for 13 years
and is currently studying for a computing doctorate at Oxford
University. His next project involves the geometric modelling
of kidney cancer. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk

Listing 1

template <typename T> struct Head;
template <int x, typename xs>
 struct Head<IntList<x,xs> > {
 enum { value = x };
};

template <typename T> struct Tail;
template <int x, typename xs>
 struct Tail<IntList<x,xs> > {
 typedef xs result;
};
October 2007 | Overload | 9

FEATURE STUART GOLODETZ

the analogy between functional
programming in Haskell and compile-time
programming in C++ is extremely deep
enums and lists are defined using typedefs (remember once again that
lists are represented as types).
Using these constructs is rather clumsy. A program outputting the head of
the list [7,8], for example, currently looks like:

 #include <iostream>

 int main() {
 std::cout << Head<IntList<7,IntList<8,
 NullType> > >::value << std::endl;
 return 0;
 }

To improve this sorry state of affairs, we’ll use macros (this is one of those
times when the benefits of using them outweigh the disadvantages). In a
manner analogous to that used for ‘typelists’ in Modern C++ Design, we
define the macros in Listing 2 to help with list creation.
We also define macros for head and tail:

 #define HEAD(xs) Head<xs>::value
 #define TAIL(xs) Tail<xs>::result

The improvement in the readability and brevity of the code above is
striking:

 std::cout << HEAD(INTLIST2(7,8)) << std::endl;

From now on, we will assume that when we define a new construct, we
will also define an accompanying macro to make it easier to use.

Outputting a list
Before implementing some more interesting list algorithms, it’s worth
briefly mentioning how to output a list. It should come as no surprise that
the form of our output template differs from the other code in this article:
output is clearly done at runtime, whereas all our other list manipulations
are done at compile-time. We can output lists using the code in Listing 3.

Sorting
Computing the head and tail of a list constructed in a head:tail form may
seem a relatively trivial example. Our next step is to try implementing

something a bit more interesting: sorting. Perhaps surprisingly, this isn’t
actually that difficult. The analogy between functional programming in
Haskell and compile-time programming in C++ is extremely deep, to the
extent that you can transform Haskell code to C++ template code almost
mechanically. For this article, we’ll consider two implementations of
sorting, selection sort and insertion sort (it would be just as possible, and
not a great deal harder, to implement something more efficient, like
quicksort: I’ll leave that as an exercise for the reader). I’ve confined my
implementation to ordering elements using operator<, but it can be
made more generic with very little additional effort.

Selection sort
A simple selection sort works by finding the minimum element in a list,
moving it to the head of the list and recursing on the remainder. We’re thus
going to need the following: a way of finding the minimum element in a
list, a way of removing the first matching element from a list and a sorting
implementation to combine the two. Listing 4 shows how we’d do it in
Haskell.
We can transform this to C++ as shown in Listing 5.
The important things to note here are that each function in the Haskell code
corresponds to a C++ template declaration, and each pattern-matched case
in the Haskell code corresponds to a specialization of one of the C++
templates.

Listing 2

#define NULLLIST NullType
#define INTLIST1(n1) IntList<n1, NULLLIST>
#define INTLIST2(n1,n2) IntList<n1, INTLIST1(n2)>
#define INTLIST3(n1,n2,n3) IntList<n1, INTLIST2(n2,n3)>
#define INTLIST4(n1,n2,n3,n4) IntList<n1, INTLIST3(n2,n3,n4)>
...

Listing 3

template <typename T> struct OutputList;

template <> struct OutputList<NullType> {
 void operator()() {
 std::cout << "Null" << std::endl;
 }
};

template <int x, typename xs>
 struct OutputList<IntList<x,xs> > {
 void operator()() {
 std::cout << x << ' ';
 OutputList<xs>()();
 }
};
10 | Overload | October 2007

FEATURESTUART GOLODETZ

we need to generate one of two different
types depending on the value of a boolean

condition, which is non-obvious
Insertion sort
Implementing insertion sort is quite interesting. The essence of the
algorithm is to insert the elements one at a time into an ordered list,
preserving the sorted nature of the list as an invariant.
A simple Haskell implementation of this goes as follows:

 insert :: Int -> [Int] -> [Int]
 insert n [] = [n]
 insert n (x:xs) = if n < x
 then n:x:xs else x:(insert n xs)

 isort :: [Int] -> [Int]
 isort [] = []
 isort (x:xs) = insert x (isort xs)

Translating the insert function to C++ is not entirely trivial. The
problem is that we need to generate one of two different types depending
on the value of a boolean condition, which is non-obvious. There are (at
least) two solutions to this: we can either rewrite the Haskell function to
avoid the situation, or we can write a special C++ template to select one
of two typedefs based on a boolean condition.
Rewriting the Haskell code could be done as follows:

 insert :: Int -> [Int] -> [Int]
 insert n [] = [n]
 insert n (x:xs) = smaller : (insert larger xs)
 where (smaller,larger) = if n < x then (n,x)
 else (x,n)

This solves the problem (generating one of two different values depending
on the value of a boolean condition is easy), but at the cost of a less efficient
function.

The template version (using the Select template borrowed directly from
Andrei’s book) does a better job:
template <bool b, typename T, typename U>
 struct Select {
 typedef T result;
};
template <typename T, typename U>
 struct Select<false, T, U> {
 typedef U result;
};

Listing 4

minElement :: [Int] -> Int
minElement [m] = m
minElement (m:ms) = if m < least then m else least
 here least = minElement ms

remove :: Int -> [Int] -> [Int]
remove n (n:ms) = ms
remove n (m:ms) = m : (remove n ms)

ssort :: [Int] -> [Int]
ssort [] = []
ssort ms = minimum : ssort remainder
 where minimum = minElement ms
 remainder = remove minimum ms

Listing 5

// Finding the smallest element of a list
template <typename T> struct MinElement;
template <int x>
 struct MinElement<IntList<x,NullType> > {
 enum { value = x };
};
template <int x, typename xs>
 struct MinElement<IntList<x,xs> > {
 enum { least = MinElement<xs>::value };
 enum { value = x < least ? x : least };
};

// Removing the first element with a given value
// from a list
template <int n, typename T> struct Remove;
template <int n, typename xs> struct Remove<n,
 IntList<n,xs> > {
 typedef xs result;
};
template <int n, int x, typename xs>
 struct Remove<n, IntList<x,xs> > {
 typedef IntList<x,
 typename Remove<n,xs>::result> result;
};

// Sorting the list using selection sort
template <typename T> struct SSort;
template <> struct SSort<NullType> {
 typedef NullType result; };
template <int x, typename xs>
 struct SSort<IntList<x,xs> > {
 enum {
 minimum = MinElement<IntList<x,xs> >::value };
 typedef typename Remove<minimum,
 IntList<x,xs> >::result remainder;
 typedef IntList<minimum,
 typename SSort<remainder>::result> result;
};
October 2007 | Overload | 11

FEATURE STUART GOLODETZ

we can make lists of anything that can be
represented by integers at compile-time
This allows us to straightforwardly transform the more efficient form of
the Haskell code to C++ (Listing 6).

It turns out that in C++ this still isn’t as efficient as it could be. The culprit
is in the second specialization of Insert – by defining the before and
after typedefs in the specialization itself, we force them both to be
instantiated even though only one is actually needed. The solution is to
introduce an extra level of indirection (Listing 7).

This solves the problem, because now the chosen IntList template only
gets instantiated if it is actually needed.

Maps and filters
One of the best things about writing in a functional language has
traditionally been the ability to express complicated manipulations in a
simple fashion. For example, to apply the same function f to every element
of a list xs in Haskell is as simple as writing map f xs. Similarly, filtering
the list for only those elements satisfying a boolean predicate p would
simply be filter p xs. A definition of these functions in Haskell is
straightforward enough:

 map :: (a -> b) -> [a] -> [b]
 map f [] = []
 map f (x:xs) = (f x) : map f xs

 filter :: (a -> Bool) -> [a] -> [a]
 filter p [] = []
 filter p (x:xs) = if p x then x : remainder
 else remainder
 where remainder = filter p xs

Achieving the same thing in C++ initially seems simple, but is actually
slightly subtle. The trouble is in how to define f and p. It turns out that
what we need here are template template parameters. Both f and p are
template types which yield a different result for each value of their
template argument. For instance, a ‘function’ to multiply by two could be
defined as:

 template <int n> struct TimesTwo {
 enum { value = n*2 };
 };

and a predicate which only accepts even numbers could be defined as

 template <int n> struct EvenPred {
 enum { value = (n % 2 == 0) ? 1 : 0 };
 };

The Map and Filter templates can then be defined as in Listing 8.

Note that we again make use of the Select template to choose between
the two different result types in Filter.

Listing 7

template <int n, int x, typename xs>
 struct InsertBefore {
 typedef IntList<n, IntList<x,xs> > result;
};

template <int n, int x, typename xs>
 struct InsertAfter {
 typedef IntList<x,
 typename Insert<n,xs>::result> result;
};

template <int n, int x, typename xs>
 struct Insert<n, IntList<x,xs> > {
 typedef InsertBefore<n,x,xs> before;
 typedef InsertAfter<n,x,xs> after;
 typedef typename Select<(n < x), before,
 after>::result::result result;
};

Listing 6

// Inserting a value into an ordered list
template <int n, typename T> struct Insert;

template <int n> struct Insert<n, NullType> {
 typedef IntList<n, NullType> result;
};

template <int n, int x, typename xs>
 struct Insert<n, IntList<x,xs> > {
 typedef IntList<n, IntList<x,xs> > before;
 typedef IntList<x,
 typename Insert<n,xs>::result> after;
 typedef typename Select<(n < x), before,
 after>::result result;
};

// Sorting the list using insertion sort
template <typename T> struct ISort;

template <> struct ISort<NullType> {
 typedef NullType result; };

template <int x, typename xs>
 struct ISort<IntList<x, xs> > {
 typedef typename Insert<x,
 typename ISort<xs>::result>::result result;
};
12 | Overload | October 2007

FEATURESTUART GOLODETZ

we need to generate one of two different
types depending on the value of a boolean

condition, which is non-obvious
Extensions
So far, we’ve only seen how to implement integer lists. There’s a good
reason for this – things like doubles, for example, can’t be template
parameters. All isn’t entirely lost, however. It turns out that we can make
lists of anything that can be represented by integers at compile-time! The
code looks something like Listing 9.
The important change is in how we treat the head of the list – now we write
typename x wherever we had int x before, and use the type’s value
field to get its actual value if we need it. The rest of the code can be
transformed to work for generic lists in a very similar fashion. There’s
something to be said about how we handle ordering, but that’s a topic for
the next article!

Conclusion
In this article, we’ve seen how template metaprogramming is intrinsically
related to functional programming in languages like Haskell, and
implemented compile-time lists using C++ templates. Next time, I’ll show

one way of implementing ordering in generic lists, and consider how to
implement compile-time binary search trees.
So what are the uses of writing code like this? One direct use of compile-
time BSTs would be to implement a static table that is sorted at compile
time. This can prove extremely helpful, particularly in embedded code.
There are also indirect benefits derived from learning more about template
metaprogramming in general. Writing code like this can be seen as a useful
stepping stone towards understanding things like the typelists described in
Andrei’s book. The capabilities these provide are quite astounding and can
provide us with real benefits to the brevity and structure of our code.
Till next time...

Acknowledgements
Thanks to the Overload review team for the various improvements they
suggested for this article.

References
[Bird] Introduction to Functional Programming, Richard Bird and Philip
Wadler, Prentice Hall
[Boost] http://www.boost.org/libs/mpl/doc/index.html
[McNamara] Functional Programming in C++, Brian McNamara and
Yannis Smaragdakis, ICFP '00
[Thompson] Haskell: The Craft of Functional Programming, Simon
Thompson, Addison Wesley

Listing 9

template <int n> struct Int {
 typedef const int valueType;
 static valueType value = n;
};

template <int n, int d> struct Rational {
 typedef const double valueType;
 static valueType value;
};

template <int n, int d> const double
 Rational<n,d>::value = ((double)n)/d;

template <typename T> struct Head;
template <typename x, typename xs>
 struct Head<List<x,xs> > {
 typedef x result;
};

#define HEAD(xs)Head<xs>::result::value

Listing 8

template <template <int> class f,
 typename T> struct Map;
template <template <int> class f>
 struct Map<f, NullType> {
 typedef NullType result;
};

template <template <int> class f, int x,
 typename xs>
struct Map<f, IntList<x, xs> > {
 enum { first = f<x>::value };
 typedef IntList<first,
 typename Map<f,xs>::result> result;
};

template <template <int> class p, typename T>
 struct Filter;
template <template <int> class p>
 struct Filter<p, NullType> {
 typedef NullType result;
};

template <template <int> class p, int x,
 typename xs>
struct Filter<p, IntList<x,xs> > {
 enum { b = p<x>::value };
 typedef typename Filter<p,xs>::result remainder;
 typedef typename Select<b, IntList<x,remainder>,
 remainder>::result result;
};
October 2007 | Overload | 13

FEATURE RICHARD HARRIS
auto_value: Transfer Semantics
for Value Types
In his quest to pass around values efficiently, Richard
Harris concludes by looking at ways of transferring
ownership, now and in the future.

ast time we took a look at string and discussed the implications of the

copy-on-write, or COW, optimisation. I concluded that despite its
many shortfalls, I was unwilling to dismiss this type of optimisation

out of hand.
This time, I’ll explain why.

auto_string
Recall that it’s auto_ptr rather than shared_ptr that is designed to
manage ownership transfer. So, why not consider auto_ptr rather than
shared_ptr semantics to eliminate the copy?
Let’s look at a slightly different definition of string (Listing 1).

Here, the data is stored in a scoped_array (like scoped_ptr but uses
delete[]) rather than a shared_array and we’ve picked up a few
extra functions, all of which refer to a new type, auto_string.
Let’s have a look at the definition of auto_string (Listing 2).
So, auto_string is simply a wrapper for an auto_array (which also
uses delete[]) that hides its data from everything but string.
This gives us an explicit mechanism for stating that we wish to transfer
ownership of a string, through the release member function (Listing
3).
The constructor and assignment operator can now be overloaded to take
advantage of the fact that we are transferring ownership (Listing 4).
Now, when we assign an auto_string returned from a function to a
string (Listing 5), we have the sequence of events shown in Listing 6
and at no point is the string data copied.

L

Richard Harris Richard Harris has been a professional
programmer since 1996. He has a background in Artificial
Intelligence and numerical computing and is currently
employed writing software for financial regulation.

Listing 1

class string
{
public:
 typedef char value_type;
 typedef char * iterator;
 typedef char const * const_iterator;
 typedef size_t size_type;
 //...

 string();
 string(const char *s);
 string(const string &s);
 string(const auto_string &s);

 string & operator=(const string &s);
 string & operator=(const auto_string &s);
 string & operator=(const char *s);

 auto_string release();

 const_iterator begin() const;
 const_iterator end() const;
 iterator begin();
 iterator end();
 //...

private:
 size_type size_;
 scoped_array<char> data_;
};

Listing 2

class auto_string
{
 friend class string;

 auto_string(string::size_type n,
 const auto_array<char> &s) throw();

 string::size_type size_;
 auto_array<char> data_;
};

Listing 3

auto_string
 string::release()
 {
 return auto_string(size_, data_.release());
 }

Listing 4

string::string(const auto_string &s) :
 size_(s.size_), data_(s.data_)
{
}

string &
string::operator=(const auto_string &s)
{
 string tmp(s);
 swap(tmp);
 return *this;
}

14 | Overload | October 2007

FEATURERICHARD HARRIS

at every step of copy construction or
assignment, the string data is owned by one

and only one object
The advantage this has over the shared_array version is that at every
step of copy construction or assignment, the string data is owned by one
and only one object. In other words, we no longer have aliasing of the data
and consequently don’t have to deal with the headaches that that causes.
Of course, since the compiler can optimise the copy away anyway, all we
have succeeded in doing is to create a slightly better version of a
completely pointless optimisation.
Well, not quite.
Thank you for your patience, by the way.

vector
There is, in fact, another benefit to explicit lifetime control but this is much
better illustrated with a class representing a mathematical vector.
To start, let’s have a brief recap of valarray. Just kidding – see Listing 7.
The principal difference between this and a std::vector<double> is
that we want to support mathematical vector operations.
Let’s use vector addition as an example (Listing 8).
Now this isn’t the most efficient implementation, creating an uninitialised
vector and filling it with the result of the addition would have 3n read and

write operations whereas this has 4n. Still, it does enable us to reuse the
in-place addition operator.
Note that we are assuming that both in-place addition and out-of-place
addition require 2n operations, with out-of-place addition incurring a
further n to copy the results. Strictly speaking this is not the case since the
processor must make 3n reads and writes from main memory in both cases.
However, for many processors in-place addition will make much better use
of the processor cache and as a result will generally be more efficient.

Listing 5

auto_string
f()
{
 string result("hello, world");
 return result.release();
}

void
g()
{
 string s;
 s = f();
}

Listing 6

call g
default construct s;

call f
construct "hello, world" into result
transfer s into temporary auto_string
transfer temporary auto_string into return value
exit f

transfer auto_string into tmp
swap data with tmp
exit g

Listing 7

class vector
{
public:
 typedef double value_type;
 typedef double * iterator;
 typedef double const * const_iterator;
 typedef size_t size_type;
 //...

 vector();
 vector(const vector &v);
 vector(const auto_vector<T> &v);
 explicit vector(size_t n);

 vector & operator=(const vector &v);
 vector & operator=(const auto_vector &v);

 auto_vector release();

 const_iterator begin() const;
 const_iterator end() const;
 iterator begin();
 iterator end();
 //...
 vector& operator+=(const vector& v);
 //...

private:
 size_type size_;
 scoped_array<double> data_;
};

Listing 8

vector
operator+(const vector &l, const vector &r)
{
 vector tmp(l);
 tmp += r;
 return tmp;
}

October 2007 | Overload | 15

FEATURE RICHARD HARRIS

it allows us to indicate when we no longer
care what happens to an object
A few crude experiments with my compiler supported this, showing that
out-of-place addition did indeed take approximately 1.5 times as long as
in-place addition, so we shall maintain these complexity assumptions as a
convenient fiction.
We can effectively address the efficiency concern when l is bound to a
function return value by redefining the operator as shown in Listing 9.
Now we are exploiting copy elision to reduce the number of reads and
writes to 2n, even better than if we were to use an uninitialised vector to
store the result.
Unfortunately, we’ll still pay for the extra copy when l is a variable. This
is especially irritating if r is a function return value and hence a candidate
for in-place addition. Since reference to T and value of T are afforded the
same status during function overload resolution we can’t use overloading
to address this. Unless we use a different type for our temporaries. Like
auto_vector, for example (Listing 10).
The implementation of each overload will look like our first version,
except that we will prefer to construct the temporary from an
auto_vector whenever possible, so that we can avoid copying one of
the arguments (Listing 11).
So the long awaited advantage of this approach is that it allows us to
indicate when we no longer care what happens to an object, which we can

exploit both for transfer initialisation and for transforming out-of-place
operations into in-place operations.
Note that by returning auto_vectors from the addition operators we can
eliminate the construction of a series of temporaries in a compound
expression (Listing 12).
With the original implementation of addition, the cost of the summation
would have been:

2 copies to temporary values at 2n read/writes each
2 in-place additions at 2n read/writes each

This gives us a grand total of 8n read/write operations.
Recall that if we were willing to forego reuse of the in-place addition
operator, we could remove one of the read/write operations from creating
each of the temporary values, making the cost of summation:

2 additions at 2n read/writes each
2 copies to temporary values at n read/writes each

Reducing the total to 6n read/write operations.
With auto_vector, however, this becomes:

5 transfers to temporary values at O(1) read/writes each

Listing 9

vector
operator+(vector l, const vector &r)
{
 l += r;
 return l;
}

Listing 10

auto_vector operator+(const vector &l,
 const vector &r);
auto_vector operator+(const auto_vector &l,
 const vector &r);
auto_vector operator+(const vector &l,
 const auto_vector &r);
auto_vector operator+(const auto_vector &l,
 const auto_vector &r);

Listing 11

auto_vector
operator+(const auto_vector &l, const vector &r)
{
 vector tmp(l);
 tmp += r;
 return tmp.release();
}

Listing 12

auto_vector
f()
{
 vector x;
 //...
 return x.release();
}

auto_vector
g()
{
 vector x;
 //...
 return x.release();
}

auto_vector
h()
{
 vector x;
 //...
 return x.release();
}

void
i()
{
 vector sum = f()+g()+h();
}

16 | Overload | October 2007

FEATURERICHARD HARRIS
2 in-place additions at 2n read/writes each
Giving us a final total of 4n + O(1) read/write operations. Not too shabby.
There are two principal disadvantages to this approach.
Firstly we have to write overloaded versions of every function and
secondly we have to write a lot of boilerplate code.
Don’t we?
The crux of the first problem is that we only want to overload a function
if there is an advantage to us to do so. In other words, we only want to
overload functions which can exploit the reuse of temporary objects. A lot
of functions can’t and we really don’t want to make work for ourselves by
having to overload them. See Listing 13, for example.
Thankfully, in such cases it’s perfectly OK to pass an auto_vector
instead of a vector. This is because the compiler is allowed to bind a
const reference to a temporary that is the result of a conversion. And a
vector can be conversion constructed from an auto_vector.
The second problem is a little trickier to resolve.

auto_value
What we really need is a class that can manage the value transfer semantics
for us. Much like auto_ptr does for pointers.
The class definition is actually pretty straightforward (Listing 14).
It’s the implementation that’s the problem.
What we really need to find is a generic way to transfer ownership of the
controlled value to and from the auto_value.
Fortunately, for most of the types we are interested in, one already exists
in swap.
Let’s see how we can use it to implement the member functions of
auto_value (Listing 15).

The chief problem with using swap rather than transferring the state
directly is that we have to default construct a value before we can swap
the transferred value in. This pretty much limits auto_value to types
with relatively inexpensive default constructors.
Note that we’ve supplied an explicit transfer constructor for the original
value. This is more in keeping with the auto_ptr interface and removes
the need to add a release method to the class.
There’s not much we can do about the conversion constructor and
assignment operator that need to be implemented in the class itself.
Fortunately, these are pretty simple (Listing 16).
We could make it easier still if we were to abandon our sensibilities and
define these functions inline using a macro.
I can’t quite bring myself to write it though.
There’s only one thing left that’s really lacking from the auto_value
interface and that’s operator.. This would allow us to use the
auto_value as a proxy for calls to the transferred object’s member
functions in the same way that operator* and operator-> do for
auto_ptr.
Shame it doesn’t exist.
Fortunately, there’s another way to do this.
That other way is inheritance. If our auto_value were to inherit from
rather than contain the value it controls, it would trivially be able to act as
a proxy.
Let’s have a look at the changes we need to make (Listing 17).
The unfortunate side effect of this is that the auto_value and the value
it controls are now the same entity, and hence a const auto_value
implies a const value. Now, you’ll recall that function return values can’t
be bound to non-const references and that swap is a non-const member
function that has a non-const reference argument.

Listing 14

template<typename X>
class auto_value
{
public:
 typedef X element_type;

 explicit auto_value(X &x) throw();
 auto_value(const auto_value &x) throw();

 auto_value & operator=(const auto_value &x)
throw();

 X & get() const throw();

private:
 mutable X x_;
};

Listing 15

template<typename X>
auto_value<X>::auto_value(X &x)
{
 x_.swap(x);
}

template<typename X>
auto_value<X>::auto_value(const auto_value &x)
{
 x_.swap(x.get());
}

template<typename X>
auto_value<X> &
auto_value<X>::operator=(const auto_value &x)
{
 x_.swap(x.get());
 return *this;
}

Listing 13

double
abs(const vector &v)
{
 double sum_square = 0.0;
 vector::const_iterator first = v.begin();
 vector::const_iterator last = v.end();

 while(first!=last)
 {
 sum_square += *first * *first;
 ++first;
 }

 return sqrt(sum_square);
}

Listing 16

X::X(const auto_value<X> &x)
{
 swap(x.get());
}

X &
X::operator=(const auto_value<X> &x)
{
 swap(x.get());
 return *this;
}

October 2007 | Overload | 17

FEATURE RICHARD HARRIS
That’s right. We can’t use swap to implement our transfer semantics any
more. Not unless we cast away the constness, that is (Listing 18).
Pretty slick, I’m sure you’ll agree.
There’s just one tiny little problem with this code. Hardly even worth
mentioning.
It’s implementation-defined whether or not this will invoke the dreaded
undefined behaviour.
There’s a clause in the C++ standard stating that compilers are allowed to
bind const references to function returns in one of two ways. They can
either bind to the value itself, or they can copy it into a const value and
bind to that.
Seems innocuous enough, but there’s another clause that states that trying
to modify a const value results in undefined behaviour. Which we all know
could mean anything from doing exactly what you expect to washing away
our coding sins with the cleansing fire of a thermonuclear explosion.
I can’t think of any compiler vendors who’d go for the latter option though.
Well, on reflection…
Actually, no, not even them.

transfer
Fortunately we can avoid invoking undefined behaviour if we are willing
to force users of auto_value to do a little additional work.
Specifically, we’ll need them to implement an ownership transfer
mechanism that will work for const objects. Let’s call it transfer and
have a look at how vector might implement it (Listing 19).
Firstly, we’ve added a typedef that defines auto_vector as an
auto_value of vector. Secondly, we’ve added a protected member
function transfer to manage the ownership transfer. Finally, we’ve made
the data_ member mutable so that the const transfer function can affect
it.
A protected member function? Yeah, yeah, I know.
If you’re real ly bothered by i t you can grant f r iendship to
auto_value<vector> and make it private instead. The point is that the
transfer me mber m us t be acce s s ib l e by t h e de r i ve d
auto_value<vector>, but probably shouldn’t be public since it will
violate the perfectly reasonable expectation that const objects won’t
change.
Some of you may also balk at the thought of forcing client classes to make
their state mutable.
Well, I can give two reasons why you shouldn’t worry too much about it.
Firstly, we have no choice. By making the state mutable we are allowed
to change it even if the object is really const. This enables us to neatly side
step the clause in the standard that allows compilers to copy a return value
into a const object.
Secondly, it doesn’t matter. Const methods are already allowed to change
the state of the object.
You may find the second point a little surprising, so I’ll elaborate.
The vector class, like most container types, stores its state in a memory
buffer. If you took a look at the definition of scoped_array, you’d notice

that the access member functions are all const, but return non-const
pointers or references. This means that the elements of the array can be
changed even when accessed through a const method. Whilst this may
seem a little counter intuitive, it’s exactly how a pointer data member
would behave. They key point to note is that constness doesn’t propagate
through the pointer.
Namely:
 X * const x;

and:
 X const * const x;

do not mean the same thing. The former defines an immutable pointer to
a mutable value and the latter an immutable pointer to an immutable value,
and it is the former that is implicitly applied to pointer data members in a
const member function.
The behaviour we’ve come to expect from our container classes, that const
member functions will not change the value of any items in the container,
is enforced by the programmer rather than the compiler. When
implementing container classes we must always be careful not to change
the state through const member functions since the compiler is unlikely to
warn us that we are doing so. Making the state mutable therefore has little
effect on the effort we must spend designing the class.
Now we’re finished discussing the design choices, let’s take a look at the
implementation:

void
vector::transfer(const auto_value<vector> &v) const
{
 data_.swap(v.data_);
}

So transfer is actually just a swap for const objects, which shouldn’t
be particularly surprising since we’ve been using swap for ownership
transfer from the start.
We’ll need to provide new implementations of the conversion constructor
and assignment operator used for ownership transfer (Listing 18).
Again, these shouldn’t be particularly surprising. We’ve just replaced the
calls to swap with calls to transfer.
Finally, we need to rewrite the auto_value member functions to make
use of the transfer function (Listing 19).
Yet again, we have simply replaced the calls to swap with calls to
transfer.
So, there we have it, a simple class implementing explicit ownership
transfer that requires just a few trivial member functions and a relaxed
attitude to constness in its client classes.

Listing 17

template<typename X>
class auto_value : public X
{
public:
 typedef X element_type;

 explicit auto_value(X &x) throw();
 auto_value(const auto_value &x) throw();

 auto_value & operator=(
 const auto_value &x) throw();
};

Listing 18

template<typename X>
auto_value<X>::auto_value(X &x)
{
 swap(x);
}

template<typename X>
auto_value<X>::auto_value(const auto_value &x)
{
 swap(const_cast<auto_value &>(x));
}

template<typename X>
auto_value<X> &
auto_value<X>::operator=(const auto_value &x)
{
 swap(const_cast<auto_value &>(x));
 return *this;
}

18 | Overload | October 2007

FEATURERICHARD HARRIS
If we are willing to accept this compromise, auto_value provides the
same functionality as a custom made value transfer type with a lot less
work.
Recalling the auto_vector addition operators (Listing 20).
We can implement these operators in the same way as before, by
constructing a temporary vector from an auto_vector argument (where
there is one) and performing the addition in-place (Listing 21).
In fact, since the auto_value copy constructor transfers ownership, we
can further simplify these operators by passing the auto_value
arguments by value. For example:
 auto_vector operator+(auto_vector l,
 const vector &r);

Now, instead of transferring the auto_vector into a temporary vector,
we can exploit the fact that auto_vector inherits from vector to
perform in-place addition directly (Listing 22), saving us a little bit of
typing and a few calls to transfer.
Once again, if we don’t care about reusing temporaries we simply provide
a single version of a function:
 double abs(const vector &v);

As before, this function will work for both vectors and auto_vectors
although now this is because auto_vector inherits from vector and
can therefore be bound directly to the reference.

namespace mojo
In his article ‘Generic<Programming>: Move Constructors’ (Dr Dobb’s
Journal, 2003), Alexandrescu describes the Mojo framework for
automatically detecting temporaries and using move semantics for them.
By its very nature this technique must rely upon implicit, rather than
explicit, conversion to transfer types and hence requires a little extra work
to ensure that temporaries are bound to the correct transfer type.
The upshot of this is that three overloads, rather than two, must be provided
for each function that exploits move semantics. Nevertheless, this is
arguably a more sophisticated solution to the problem.

T &&t
To close, it’s worth mentioning that the value transfer semantics we’ve
worked so hard to implement are trivial using the above notation.
If you’re wondering why on Earth I didn’t just go ahead and use it instead
of leading you down the garden path, it’s because it isn’t C++. Not yet.
The notation is for a new kind of reference proposed for the next version
of C++, the rvalue reference.
The rvalue reference differs from the familiar reference (hereafter known
as an lvalue reference) in eight ways. Paraphrasing the proposal slightly:

1. A non-const rvalue can bind to a non-const rvalue reference.
2. Overload resolution rules prefer binding rvalues to rvalue references

and lvalues to lvalue references.
3. Named rvalue references are treated as lvalues.
4. Unnamed rvalue references are treated as rvalues.
5. The result of casting an lvalue to an rvalue reference is treated as an

rvalue.
6. Where elision of copy constructor is currently allowed for function

return values, the local object is implicitly cast to an rvalue
reference.

7. Reference collapsing rules are extended to include rvalue
references.

8. Template deduction rules allow detection of rvalue/lvalue status of
bound argument.

Listing 19

class vector
{
public:
 typedef double value_type;
 typedef double * iterator;
 typedef double const * const_iterator;
 typedef size_t size_type;
 typedef auto_value<vector> auto_vector;
 //...

 vector();
 vector(const vector &v);
 vector(const auto_vector<T> &v);
 explicit vector(size_t n);

 vector & operator=(const vector &v);
 vector & operator=(const auto_vector &v);

 const_iterator begin() const;
 const_iterator end() const;
 iterator begin();
 iterator end();
 //...

protected:
 void transfer(const auto_vector &v) const;

private:
 mutable scoped_array<double> data_;
};

Listing 20

vector::vector(const auto_value<vector> &v)
{
 transfer(v);
}

vector &
vector::operator=(const auto_value<vector> &v)
{
 transfer(v);
 return *this;
}

Listing 21

template<typename X>
auto_value<X>::auto_value(X &x)
{
 transfer(x);
}

template<typename X>
auto_value<X>::auto_value(const auto_value &x)
{
 transfer(x);
}

template<typename X>
auto_value<X> &
auto_value<X>::operator=(const auto_value &x)
{
 transfer(x);
}

Listing 22

typedef auto_value<vector> auto_vector;

auto_vector operator+(const vector &l,
 const vector &r);
auto_vector operator+(const auto_vector &l,
 const vector &r);
auto_vector operator+(const vector &l,
 const auto_vector &r);
auto_vector operator+(const auto_vector &l,
 const auto_vector &r);
October 2007 | Overload | 19

FEATURE RICHARD HARRIS
For the purpose of eliminating copies, behaviours 1-3 are of particular
interest. Put simply, they mean that a non-const temporary can be bound
to a reference type through which we can legally modify them.
Specifically, we now have four kinds of reference (Listing 23).
In the same way that a non-const object is preferentially bound to a non-
const reference, an rvalue is preferentially bound to an rvalue reference and
an lvalue is preferentially bound to an lvalue reference.
Given the following function signatures:
 f(T &&t); //1
 f(T const &&t); //2
 f(T &t); //3
 f(T const &t); //4

and the following references:
 T &&t1;
 T const && t2;
 T & t3;
 T const & t4;

The rules mean that:
t1 binds to overloads 1, 2, 3 and 4 in that order of preference
t2 binds to overloads 2 and 4 in that order of preference
t3 binds to overloads 3, 4, 1 and 2 in that order of preference
t4 binds to overloads 4 and 2 in that order of preference

The original justification for disallowing the binding of rvalues to non-
const references was that it was generally a mistake to do so. Changing an
object which is about to go out of scope and be destroyed will, after all,
lose those changes.
This is especially nasty when the object in question is a temporary resulting
from an implicit conversion (Listing 24).
Since the character c is promoted to a long with an implicit conversion, f
receives a reference to the temporary long that is the result of that
conversion. The upshot of which is that, generally to the surprise and
consternation of the programmer, c never changes.
Move semantics, however, have brought to light a situation in which this
is a valid thing to want to do. The new rvalue references provide a

mechanism by which we can express that we deliberately wish to change
the value of a temporary object whilst avoiding the original problem.
Specifically, overloading on non-const rvalue reference and const lvalue
reference enables us to distinguish between destructively reusing a
temporary object and non-destructively referring to a non-temporary
object.
Which is, of course, exactly what we’ve been striving to achieve.

article::~ article()
So has this all been a tremendous waste of time?
I hope not.
Firstly, I hope that this has given you cause to think a little more about how
you can exploit ownership control.
Secondly, I hope that you may find auto_value, or something like it, a
useful stop gap.
And finally, I hope that you’ve enjoyed it.
If not, I refer you to Harris’s Addendum:

Nyah, nyah. I can’t hear you.

#include
[Alexandrescu, 2003] Alexandrescu, ‘Generic<Programming>: Move

Constructors’ (Dr Dobb’s Journal, 2003).
[Hinnant, 2004] Hinnant, Abrahams and Dimov, ‘A Proposal to Add an
Rvalue Reference to the C++ Language’ (ISO/IEC JTC1/SC22/WG21
Document Number N1690, 2004).
With thanks to Kevlin Henney for his review of this article and Astrid
Osborn, Keith Garbutt and Niclas Sandstrom for proof reading it.

Listing 24

auto_vector
operator+(auto_vector l, const vector &r)
{
 l += r;
 return l;
}

Listing 23

auto_vector
operator+(const auto_vector &l, const vector &r)
{
 vector tmp(l);
 tmp += r;
 return auto_vector(tmp);
}

Listing 25

//non-const reference to rvalue
typedef T && Ref1;

//const reference to rvalue
typedef T const && Ref2;

//non-const reference to lvalue
typedef T & Ref3;

//const reference to lvalue
typedef T const & Ref4;

Listing 26

void f(long &i);

void g()
{
 char c = 0;
 f(c); //oops
 //...
}

20 | Overload | October 2007

	While the Cat’s Away…
	The PfA Papers: The Clean Dozen
	Blue-White-Red, an Example Agile Process
	Functional Programming Using C++ Templates (Part 1)
	auto_value: Transfer Semantics for Value Types

