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EDITORIAL RIC PARKIN
Plus ça change
Our job titles seem to be dictated as much by fashion 
as by anything else. Does it matter? It does to some. 
Oh, and Overload has a new editor.
Hello, and welcome to Overload 85. 
Here I am, a newish face at the helm, and this time not
as a one-off guest editor. Alan is bowing out after quite
a few years, leaving Overload in excellent shape. I’d like
to thank Alan for all his work – being editor is one of

those jobs where people don’t really know exactly what’s involved, so it’s
not given the recognition deserved. But after talking to many people at the
Conference about my taking over, it was clear just how much people enjoy
the journals and rate them highly, even more so in a world where many
other computing magazines have stopped publishing. He can be rightly
proud of what he has achieved.

What’s in a name?
Talking of jobs, I had an embarrassing moment on accu-general the other
week. A couple of people had been mailed by an agency about a
contracting job, but part of the description amused one so much that they
posted it for discussion. It read:

This is not a Web Application Developer role, nor a Programming
role. This is a position for a Software Engineer.

What a strange turn of phrase! Even more intriguingly, it was in my local
area, so I asked those who’d received it who on earth it was for. The
embarrassing part turned out that this was not just about a job at my current
employers, it was for a contractor doing something pretty much identical
to my job. Looks like I’m not a programmer after all.
The phrase had actually come about because our recruiter was trying to
explain to an agency what sort of role it was, and was having trouble
getting them to understand that it wasn’t a web 2.0 application or whatever
– the above was the final frustrated attempt after they still hadn’t grasped
it. Unexpectedly the agency just wrote it down and used it verbatim in their
mail shots.
But it did get me thinking about how we describe our jobs, in the software
industry in particular, and how it has changed over the years. For example,
in my first job, I was a plain old ‘Programmer’. This was fair enough as
it was the main part of the job, but it wasn’t the only thing I did. There
was also talking to customers to gather requirements, architectural
decisions, software design, programming, build systems, testing, on-site
installation, graphic design, and digitising maps (at which I freely admit

that I was rubbish). This wide range was helped by
it being a small firm, so everyone just mucked in

to do what was needed – in a larger place you’d

tend to have different people dedicated full time to these different tasks.
Since then I’ve been a Software Developer, a Software Engineer, a Risk
Developer (which sounds excitingly edgy, but in fact referred to the sort
of software – Financial Risk Models – that was very much not exciting
until the sub-prime crisis happened), and currently back to a Software
Developer. Other job names I’ve seen include things like Architect,
Analyst, Field Application Engineer, Release Engineer, Build Manager,
Scientist, Consultant, Web Developer, Technologist, and even Evangelist.
Then these root names often get tagged with some sort of grade or title,
and I’ve seen ones like Graduate, Junior, Senior, Principal, Lead etc. and
sometimes a tag to describe the product or field, such as my Risk
Developer, or Materials Scientist.
So what are these names trying to describe?
Well, those Junior/Senior type labels are trying to indicate what level of
experience, and more importantly, responsibility, people have. One thing
to be careful of is that they can’t refer to age or years of experience – that’s
now illegal. Instead I think of them as describing what sort of tasks,
decisions, and responsibility the role demands. They can sometimes be a
rough label, or come from a more detailed and formal grading system
where these labels describe a certain level.
Some try to describe the product, science, or technology area you’re
working in, hence things like ‘Risk Developer’, or ‘Materials Scientist’.
These tend to occur when the area is rather unusual and a particular
expertise is needed. Other names could describe a particular area of
responsibility, for example ‘Build Engineer’, but this only works when
you’re concentrating on just that one niche, whereas most jobs cover a
range of technology and roles.
Fashion plays a part too, evidenced by the changes from ‘Programmer’ to
‘Developer’ to ‘Engineer’ and back to ‘Developer’. I think I’m happiest
with the term Developer – it’s what I do, it doesn’t describe the details of
how I do it, or limit the tasks to just programming, and it doesn’t try to
elevate it to precision engineering, or worse, a science.
This theme crops up periodically on accu-general – is what we do
‘Engineering’, or is it a ‘Craft’, or even ‘Art’. Personally, I tend to favour
thinking of it as a ‘Craft’ with parts of engineering involved, based on
some theoretical underpinnings that could be described as a science. I
justify this view partly by comparing what we do to how people design
and build buildings – you need structural engineers to make sure your
foundations are good enough and so on, but the people who actually put
things up, make the tweaks so that things fit, and the people who adjust
the building over the years of use are not engineers – they are much closer

Ric Parkin has been programming professionally for nearly 20 years, mostly in C++, for a range of 
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail 
of new members behind him and is now organising the ACCU Cambridge local meetings. He can be 
contacted at ric.parkin@gmail.com.
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EDITORIALRIC PARKIN
to the artisan craftsmen, with years of practical experience of getting
things done, and enough knowledge of when to go back and check with
the engineers. Craft doesn’t imply ‘slapped together’ though – the best
craftsmen build with great skill and elegance, making things that cope well
with the inevitable adjustments and changes to requirements. They just
accept that not everything has to be perfectly engineered, and in fact would
argue that having it too perfect leads to over-optimized brittleness – things
change and what was once just right is no longer adequate.

So how good are these names? Well it depends on what you are trying to
describe, and who you are describing it to.

We started with a job spec. This is trying to describe two different things
– it comes from what the company wants the employee to do; but also it’s
trying to describe the sort of people who might be suitable for the role,
which is much broader and seems surprisingly hard to describe in practice.
After all a job advert should be getting people to think ‘I could do that’,
and ‘That sounds interesting’. This is going to be a combination of selling
the product or company, and roughly describing the role so that the reader
thinks they’re suitable – but beware of too detailed a description as you’ll
put off people because they no longer think that they fit.

Then there’s the job title once you’re in it. This is mainly so that other
people know what your expertise and responsibilities are, and for HR to
grade you so you get paid enough (although they’ll most likely do that with
a much more detailed scheme of which your job title is a reflection). As
such I don’t think the details are actually that important, although some
people seem to take it very seriously. 

And then there’s on your CV, when you’re trying to sell yourself to a
prospective employer who is trying to match you to a role. Here’s where
your job title has some importance as you want to sound responsible and
multi-talented, but not too specific which would make it sound like you’d
only be able to do exactly the same again. And surely worse are those weird
job titles where you haven’t a clue what they did. You can go into details
of the job in the rest of the CV, but the job title is the headline to get the
reader’s attention.

So how does the original job description phrase fare against these criteria?
Well, it isn’t developing web applications, so it would have been bad to
describe it so incorrectly. A programming role? That’s certainly a part of
it, but not exclusively so this would be too limited a description. A
‘Software Engineer’? Although I don’t think software is really an
engineering discipline – I would prefer ‘Software Developer’ (which is in
fact the real job title) – this terminology is quite common for this type of
wider role, and it works quite well describing it for advertising, HR, and
CV purposes.

Not quite so embarrassing after all.

Back in the real world
But there’s more to life than your job, and things have been happening in
the outside world. 
The OOXML standard finally got approved and renamed OXML and is
now officially ISO/IEC 29500, which has caused some controversy in
certain quarters. There’s lots of comment online so I won’t add to it, but
did notice that one issue seemed to be the voting-in of lots of last minute
changes to a very large document (one report mentioned thousands of
changes to a document that is several thousand pages long), which has the
odd result that the de facto file format that it was meant to standardize is
now incompatible without lots of changes! See [Brown] for one such test.
With something that big and important, I have to wonder whether fast-
tracking was the best way of getting a good quality standard.
This is in stark contrast to the other big standardization process that will
be of interest to many of you – the new version of C++ [WG21]. This has
been proceeding steadily for the last few years and is now on the final
stretch. There’s a draft version of the new standard [N2588], which is now
around 1254 pages – up from around 800 in C++98 reflecting the extra
features. Searching the web will find various compilers that have some of
the new features implemented eg ConceptGCC [Concept] and have been
used for ‘road testing’ various ideas. My understanding of the timetable
is that the standard is pretty much ‘feature complete’, then there will be
revisions and ‘bug fixes’ for the following 18 months,
and it is due to be finally approved around December
2009. I’m pleased to say that several ACCU members are
heavily involved in this process and have been giving
talks at conferences and local meetings to update people
on what’s in it. There seems to be a lot of interest, and I
fully expect Overload will be covering many of these new features in depth
in the run up to standardization. Watch this space.

References
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Postscript
Just before publication I checked my job title: my business card says
‘Senior Development Engineer’...
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FEATURE KLAUS MARQUARDT
Performitis
Patterns try to solve problems. Klaus Marquardt 
looks at one from a medical perspective.
atterns for software systems are a success story. They provide
insights that have been gained over years and decades, and convey
them in a conveniently accessible way. Programmers and software

architects can use them as instant solutions.

A communication view of patterns
Patterns are not just solutions; they are a key mechanism in passing on the
software discipline’s heritage. Looking at how knowledge and experience
is passed on elsewhere, we can see a spectrum: from highly formal
languages in mathematics, through examples in arts and architecture, to
some cultural and ethical insight hidden in stories and fairy tales. Patterns
about software design and architecture are certainly more on the formal
side of this spectrum.
Patterns embrace the value of examples to give credibility to their message.
However, story telling is virtually irrelevant to patterns. Not surprisingly,
it is not irrelevant to the software people themselves. When a group of
software people gathers in a canteen or a bar, patterns play, if anything, a
minor part in the conversation. Stories about projects are dominant, often
told without references and from merely indirect experiences. Some
resemble more the characteristics of urban legends rather than sound
research. Still, we love to hear these stories and we learn from them.
So what is missing from patterns that can be found in our traditions and
collective knowledge?
The project stories hardly mention fundamental technical problems – in
contrast with patterns, which are usually about technical problems and
their solutions. (While there are numerous exceptions to this, these happen
to be less popular and well known.) This observation triggers two thoughts.
First, if projects fail they appear to fail for non-technical reasons only.
Second, a technical problem also has a project context. This context offers
many non-technical reasons for the technical solution chosen by the
developers.

Beyond design: diagnosis patterns
Team culture, organization structure, and software solutions mutually
influence each other. Conway’s Law [Conway68] is probably the best
known coupling force, but there are other less well known relationships,
and our stories and anecdotes are attempts to bring some light to them.
Again, a look at other disciplines brings further insights. Medicine is as
old as mankind. Medical doctors have learned that beyond injuries and
diseases, their patients’ sociological situation influences their health.

Depending on the individual, scientific western, traditional eastern, or
alternative medicine may be most effective. Pragmatists have come to
accept that whatever cures is right. And even more pragmatic, a patient
need not be cured to feel much better and gain perceived (and possibly
objective) health.
We could probably make use of the approaches medical doctors use to help
their patients. They have found ways to identify many influences on a
disease, and in turn know many different treatments that may address
symptoms, or causes, or just help for whatever reason.
This resembles an important aspect of what senior developers, architects,
and consultants do. Facing an unfamiliar situation or a project in trouble,
which is the rule rather than the exception, their task is problem solving
rather than developing a master plan. They observe on many different
levels, and they start acting before everything is known. 
The idea behind the pattern form of diagnoses and therapies is that these
diagnoses collect knowledge from the non-technical regime and combine
therapy options from different angles. This is not a contradiction to design
and architecture patterns, but a complement acknowledging the actual
needs in project dynamics. Finally, diagnoses make use of stories from real
or fictitious projects to trigger memories and thoughts.

The doctor will see you now
As an example, the rest of this article describes a disease found in some
software systems. PERFORMITIS arises from an overly narrow focus on
performance during development. While it appears a technical issue at
first, closer examination shows that its foundations are people and process
issues. Accordingly, PERFORMITIS should be treated by team and process
therapies as well as technical, and a combination of both is typically most
successful.

P

Klaus Marquardt is a technical manager and system architect with 
Dräger Medical in Lübeck, Germany. His experience includes life 
support systems and large international projects. Klaus is particularly 
interested in the relations between technology, organization, people 
and process. He has contributed sessions to many conferences 
including OOP, JAOO, ACCU, SPA and OOPSLA. Klaus can be 
contacted at marquardt@acm.org patter@kmarquardt.de

Once we start with some medical terminology, a whole bunch of
concepts, vocabulary, and approaches comes to us. The good news is
that these concepts have been in use for ages and can safely be
considered more mature than patterns. The bad news is that they sound
only vaguely familiar. How does a doctor work? 

To get to a diagnosis, doctors start with an examination. They watch for
symptoms in the broadest sense: physical findings, movements,
behaviour, clothing, smell, speech. Unlike many engineers, doctors often
start some treatment even without a clear diagnosis. In emergency
situations it is essential to keep a patient alive regardless of his injuries.
And if you happen to have a fever you’d appreciate paracetamol and a
broad-band antibiotic before someone has identified the exact germ.

In case of doubt, and if the consequences would be significant, a
differential diagnosis might be required with a more detailed examination.
Finally, a number of treatment options are considered and a treatment
scheme initiated. As the disease and the cure proceeds, the treatment
is adjusted appropriately. Often a therapy is continued while the doctors
"proactively wait" and observe.

Medical approach
4 | Overload | June 2008
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All decisions for tuning measures are
made individually on a local scale
Diagnosis: PERFORMITIS
Every part of the system is directly influenced by local performance
tuning measures. There is either no global performance strategy,
or it ignores other qualities of the system such as testability and
maintainability.

With PERFORMITIS developers use every opportunity to optimize their
code, and are eager to discuss different performance measures with their
peers. While each single measure may be perfectly justifiable, check
whether you observe the majority of the strategies from the following list:

Usage of C or C++ and its language specific low level features.
Extensive and early usage of language specific constructs that
favour local performance gains over other qualities like
encapsulation, reusability or portability. Examples would be public
attributes, or inlining compromising the design.
Avoidance of indirections, at the expense of tighter coupling,
limited extensibility and increased effect of individual changes.
Examples for indirection range from virtual functions to entire
encapsulation layers.
Keeping control of implementation details by preferring hand
written code over advanced language or library features. E.g.,
extensive usage of pointer arithmetic instead of advanced specific
data types (C/C++). 
Avoidance of code libraries that are not controlled within the
organization, due to the expectation that its performance will be less
optimal than when implemented for the specific project.
Responsibility of code modules is clustered according to execution
threads rather than to consistent logical responsibilities.
Wide-spread usage of environment specific features, like direct calls
to OS, DB triggers and stored procedures, linker directives, or
scheduling priorities.
Application specific code contains knowledge of technical issues
and their optimization. Examples would be knowledge of network
package size and frequencies, or database structure and joins.

These techniques are applied by more than a small minority of the
programmers involved, and all over the source code. Trying to improve

qualities that have been neglected due to performance tuning would cause
expensive changes to large portions of the code.
The most significant observation is that there is no overall evaluation or
strategy in place that determines where and when which of the above
measures is taken. All decisions for tuning measures are made individually
on a local scale.
The project is staffed with experienced developers who are familiar with
the domain and the task at hand. This is not the first project the key team
members have worked on, and they have learned some important lessons
in their previous projects. The key developers all agree that performance
is the single property that is hardest to achieve, and that it could cause a
project to fail even when it is presumably almost completed. They exhibit
a strong desire to get the performance aspects right first, paying merely lip
service to other quality aspects.
When new colleagues join the project, or some contractor gets insight into
the system, discussions about the way to ensure performance and other
intrinsic qualities will arise. These discussions tend to become emotional
quickly because they are at the heart of the individual working style and
value system – and they could potentially exhibit deficits in the high level
systems design. PERFORMITIS is only resident in projects that are either
closed against outside influences, or have developed mechanisms to
terminate discussions that raise inconvenient questions. Look out for the
closed project society (if you have the chance).
PERFORMITIS infected systems are unstable with respect to technology or
requirement changes. Because the structure ignores logical separations,
the changes have a large impact and are costly and timely. The effort
related to such changes sometimes exceeds the effort required for initial
feature development. Look out for fear of changes and explicitly
scheduled, often postponed technology updates.
The negative effects of PERFORMITIS are also visible to upper management.
For all but the most experienced teams, delivery dates can frequently be
missed. Performance oriented development neglects qualities like
testability, and creating tests is an expensive endeavour.  The project
typically provides little tests on code level and integrates late in the
development cycle. The spread-out local tuning measures make it difficult
to fix the problems that arise with testing and integration while preparing
the delivery. It is ironic that the measures taken then may dramatically
degrade performance. Look out for more than one seemingly surprising
schedule slip immediately before releases, or for an extremely high effort
in test and integration of limited functionality.
Not all of these symptoms are unique to PERFORMITIS, and some only
become visible in late states of the disease. Early and sufficient signs are
the combination of the spread of local optimizations, the lack of a global
strategy, and the team attitude.
The pathogen is the limited experience of key developers. Humans tend
to remember their failures better than their successes, and many developers
have learned particular painful lessons. Mainly in distributed or embedded
systems, projects can miserably fail due to performance problems – which
none of the participants will ever forget. The limitation in their minds is

Tuned Trabant 601, GDR, 19kW [Trab03]
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A number of different practices are used to 
increase local performance at the expense 
of other qualities
like a Pavlovian Reflex that happens especially to developers with
extensive experience in a particular domain only. They will not realise that
different systems need to balance different qualities.

Prescription
Now that we have a diagnosis, treatment can be applied. Next time we’ll
introduce some therapeutic patterns and possible application strategies. 
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1. A term closer to the medical nomenclature would be ‘performance related softwareosis’. Any chronic disease is called an ~osis. Furthermore, it
is not the performance that is infected but the system itself. However, ‘performitis’ is a more popular name.

Figure 1

Diagnosis: PERFORMITIS1, also known as PERFORMANCE BLOAT.

Symptoms checklist

A number of different practices are used to 
increase local performance at the expense of 
other qualities

These practices are not limited to a 
dedicated portion of the code, but spread all 
over the project

There is no strategy for which local tuning 
practices are applied where

Performance is considered by far the most 
significant system quality

There is no objective measure of what 
performance is required

The project closes itself against external 
influence

Changes occupy large parts of the schedule 
and are frequently postponed

Either a lot of effort is spent in tests and 
integration, or several milestone dates have 
not been met with very little warning time
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The Model Student:
A Knotty Problem, Part 2
Tying yourself in knots is easy. Richard Harris 
cuts through the complexity.
ast time we took a look at the number of self crossings of a random
walk with the intention of shedding some light on why headphone
cables and the like behave so malevolently. We developed some code

to exhaustively search through all possible walks of a given length, but as
is often the case this gets computationally burdensome for large problems.
What we really need is to find a formula for the expected number of self
crossings which we will hopefully be able to exploit to deduce the
likelihood that a walk will contain any given number of crossings, or to
use the technical term, the distribution of crossings.
To that end, the first thing we should observe is that it is relatively easy to
calculate the probability that a walk of n steps will end at its starting point.
It is simply the probability that the number of steps to the left is equal to
the number of steps to the right and the number of steps forward is equal
to the number of steps back [Feller, 68].
To construct the formula we need to derive an expression for the
probability that a walk of n steps will have exactly i steps to the left and
right, or equivalently forward and backward.
If we didn't allow a step to leave the walk in the same place, the number
of ways we could have i steps to the left, and hence n-i steps to the right,
would simply be the number of ways we could choose i from n things,
given by the combination formula:

The probability that these numbers of left and right steps occur is
determined by the binomial distribution. To calculate it we need only
multiply the number of ways it can occur by the probability of each of those
ways.

Since we have an equal probability for each kind of step, this simplifies to

The probability that we will take i steps to the left, j steps to the right and
hence n-(i+j) non moving steps is given by the related trinomial
distribution.

So the probability that we return to the start with exactly i steps to the left
and right is given by

Therefore the probability that we return to the starting point after n steps,
at least in one dimension, is simply the sum of the probabilities that with

return with every possible number of steps to the left and right. These range
from zero up to ½n.

The weird brackets at the top of the summation mean the largest integer
less than or equal to ½n, by the way.
To transform this into the probability that we return to the starting point
in two dimensions we need only observe that the probabilities in each
dimension are independent; the likelihood of our being in the same place
horizontally has no bearing on the likelihood of our being in the same place
vertically. We can therefore simply multiply the two, identical as it
happens, probabilities.

The next step in our derivation is to deduce the expected number of times
a walk will return to its starting point. This is simply one times the
probability that it returns after one step plus one times the probability that
it returns after two steps and so on. In other words we simply sum the
probabilities from the first to the last step.

The final step is to note that at each point in the walk, we can consider
ourselves to be at the starting point of a shorter walk. The total expected
number of knots should therefore be the sum of the expected number of
returns for every walk from one to n-1 steps.

Unfortunately we’re going to run into a few problems calculating this
number. The factorial at the heart of the formula is an O(n) operation and
thus the entire calculation is O(n4); a rather daunting task. Furthermore,
as was pointed out in the analysis of the travelling salesman problem, the
factorial grows very quickly as its argument increases. Very, very quickly;
13! is too large to fit into a 32 bit unsigned integer and at 171! we'll exceed
the maximum value of an IEEE 64 bit floating point number.
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The former problem can be mitigated with 
judicious use of caching
We can address the latter problem using logarithms. As you are no doubt
aware, the logarithm of a product is equal to the sum of the logarithms of
its terms.

Since the trinomial distribution divides an n! term by three factorial terms
and a further 3n term, we can be confident that it will not overflow as
quickly as the terms n! will. We will be therefore better off working with
log factorials and inverting the logarithm at the end. The inverse of the
logarithm is the exponential function; we can recover the final value by
taking the exponential of its logarithm. Exploiting the remaining properties
of logarithms, we have

The former problem can be mitigated with judicious use of caching. Both
the log factorial and the probability of return, pn

2, are calculated multiple
times for the same arguments. If we cache the results of pn

2 we can reduce
the complexity of the calculation by two orders of magnitude to O(n2);
much less daunting. Caching the results of the log factorial similarly
reduces the cost of calculating pn

2. This only results in a further constant
factor improvement in efficiency, but will probably be useful in future, so
we might as well implement it.
When we need a log factorial not already in the cache, we can exploit the
fact that we have already done some of the work. Rather than iterate all
the way from one to n, we need only work our way up from the greatest
value we already have, populating the intervening entries in the cache on
the way (Listing 1).
As it stands the cache could grow uncontrollably, severely reducing the
efficiency of the function. If we were planning to use this as a general
purpose algorithm we should probably address this problem. One approach
would be to set a fixed upper limit, after which we return infinity
(Listing 2).
The problem with this is that it puts an artificial limit on the maximum
factorial we can calculate. Fortunately, there is an approximation we can
use instead; a (relatively) modern improvement [Robbins, 55] on a long
standing approximation known as Stirling’s formula.

For values of n greater than a few thousand or so, the relative error in the
logarithm of this approximation is of the order of 10-12, which is probably
sufficient for our needs (Listing 3).
An exact value can be derived for all n, up to numerical overflow at least,
from the Gamma function. This is a fundamental mathematical function
that crops up in a variety of situations and is defined by

n!ln iln
i 1=

n

∑=

pn i, e n! 2 i! n 2i–( )!ln n 3ln––ln–ln
=

n! 2πn n
e
---⎝ ⎠
⎛ ⎞ n

e
1

12n
---------

≈

Listing 1

namespace knots
{
  double log_factorial(size_t n);
}

double
knots::log_factorial(size_t n)
{
  static std::vector<double> results(1, 0.0);
  if(n>=results.size())
  {
    size_t i = results.size();
    results.reserve(n+1);
    while(i!=n+1)
    {
      results.push_back(
         results.back() + log(double(i++)));
    }
  }
  return results[n];
}

Listing 2

double
knots::log_factorial(size_t n)
{
  static const size_t max_n = 2047;
  if(n>max_n)
    return std::numeric_limits<double>::infinity();
    ...
}

Listing 3

double
knots::log_factorial(size_t n)
{
  static const size_t max_n = 2047;
  static const double pi = 2.0*acos(0.0);
  if(n>max_n)
  {
    return 0.5*log(2.0*pi*double(n)) +
           double(n)*(log(double(n))-1.0) +
           1.0 / (12.0 * double(n));
  }
  ...
}
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We finally have the scaffolding in place to
calculate the expected number of knots
Unfortunately it has no closed form solution. It can be approximated
numerically, Press et al [Press, 92] provide an implementation, but it’s not
particularly straightforward so I’m going to stick with Stirling’s formula.
The next step is to implement a function to calculate the probability of
return, pn

2 (Listing 4).
Once again, we simply resize the cache if we get a request for a value we
have not yet calculated and populate it for all values up to the one we need.
Unfortunately, this time there’s no approximation we can rely on to restrict
the growth of the cache. Since this function isn’t really useful outside of
this analysis we don’t have to take possible future applications into
account, so it doesn’t present quite so much of a problem as it did for the
log factorial calculation.
Most of the work is done in the inner loop; it is simply the calculation of
pn. As discussed we use log factorials to calculate the log of each term and

take the exponential at the end in order to avoid overflow. Finally, we
square the probability to transform it to two dimensions before storing it
in the cache.
We finally have the scaffolding in place to calculate the expected number
of knots. The last two functions we need to implement are E0, n and En
and, fortunately, both are relatively simple. They are illustrated in Listing 5
(which is calculating the expected proportional number of knots) and, in
ke ep ing  wi th  wha t  t he y  r e p r e s e n t , w e  r e f e r  t o  E 0 , n  a s
expected_returns_to_start and En as expected_knots.
So how does this function compare to the observations we’ve already
made? Not very well as it happens (Figure 1):

Γ x( ) tx 1– e t– td
0

∞

∫=

Listing 4

namespace knots
{
  double p_returns_after(size_t n);
}

double
knots::p_returns_after(size_t n)
{
  static std::vector<double> results(1, 0.0);
  if(n>=results.size())
  {
    size_t i = results.size();
    results.reserve(n+1);
    while(i!=n+1)
    {
      double next = 0.0;
      for(size_t j=0;2*j<=i;++j)
      {
        double term = log_factorial(i) 
                    - 2*log_factorial(j)
                    - log_factorial(i-2*j)
                    - double(i)*log(3.0);
        next += exp(term);
      }
      next *= next;
      results.push_back(next);
      ++i;
    }
  }
  return results[n];
}

Listing 5

namespace knots
{
  double expected_returns_to_start(size_t n);
  double expected_knots(size_t n);
}

double
knots::expected_returns_to_start(size_t n)
{
  double result = 0.0;
  for(size_t j=1;j!=n+1;++j) 
     result += p_returns_after(j);
  return result;
}

double
knots::expected_knots(size_t n)
{
  double result = 0.0;
  for(size_t i=1;i!=n+1;++i)
  {
    result += expected_returns_to_start(i);
  }
  return result / double(n);
}

Figure 1

n calculated E(knots)/n observed E(knots)/n

6 0.2969 0.2492

7 0.3200 0.2623

8 0.3408 0.2737

9 0.3598 0.2837
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Congratulations to those of you who’ve 
already spotted the error in my reasoning
Congratulations to those of you who’ve already spotted the error in my
reasoning; it took me a while to figure it out. The problem is that when we
add up the expected number of returns, we’re not taking into account the
probability that we’ve already visited the current position.
To illustrate this point imagine that a random walk has returned to the
starting point on the second step. We should not therefore include the
expected number of returns to the second point in the calculation; since it
is the starting point they have already been accounted for. Unfortunately
this over-count occurs whenever we return to a point we have already
visited during a given walk. Quite frankly, it’s surprising that the
approximation isn’t much, much worse.
A further irritation is that I can’t quite see how to figure it into the
calculation. We can make some progress by observing that a random walk
looks the same both forwards and backwards. The probability that the nth
step is into a previously unvisited position is therefore equal to the
probability that we never return to the starting point in an n step random
walk. This can be expressed with a conditional probability; it is the
probability that the nth step doesn’t return to the start given that none of
the previous steps have. This naturally recursive property could be used
to construct the desired result. Well, it could if I could work out what the
value of the conditional probability actually is.
Formally, the conditional probability of an event A occurring given that
an event B already has is given by

I should point out that the caret like symbol is one of the mathematical
representations of ‘and’.

If the events A and B are independent then the probability of them both
occurring is simply the product of the probabilities of each of them
occurring. The conditional probability then simplifies to:

The trouble is, our steps are not independent, and their mutual dependence
is too complicated for me to express the conditional probability
mathematically.
We can, however, try to approximate the expected number of returns by
assuming that the steps are independent, allowing us to simply multiply
the probabilities that each remaining step does not return to the current
position.
We already have an expression for the probability that a step does return.
The probability that it doesn’t is simply this value subtracted from one. The
probability that the nth position is unique is therefore

I’m using the u superscript to distinguish this probability of uniqueness
from that of a walk returning to its starting point.
The giant  is the mathematical notation for the product of a series of
terms and is analogous to the use of  to represent sums. In fact they were
both chosen because they are the Greek versions of the first letters of
product and sum, respectively.
The implementation is pretty straightforward as Listing 6 illustrates, which
calculates the probability that a step enters an unvisited position.

To avoid double counting the knots from positions we have already visited
we need only to multiply the expected number of returns to a given step
by the probability that it’s unique.

The change to the implementation is equally straightforward (See
Listing 7, which calculates the expected proportional number of knots.)

p A B( ) p A B∧( )
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----------------------=
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Listing 6

namespace knots
{
  double p_is_unique(size_t n)
}

double
knots::p_is_unique(size_t n)
{
  double result = 1.0;
  for(size_t i=0;i!=n;++i) 
     result *= 1.0-p_returns_after(n-i);
  return result;
}

Listing 7

double
knots::expected_knots(size_t n)
{
  double result = 0.0;
  for(size_t i=1;i!=n+1;++i)
  {
    result += expected_returns_to_start(i)
       *p_is_unique(n-i);
  }
  return result / double(n);
}
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it’s a bit tricky to come up with a satisfying
method to randomly generate one of a fixed

number of arbitrary states
Figure 2 documents the impact of this change on the calculated value of
the expected number of knots.
As you can see, it’s a much better approximation. The question remains
as to how well it fits for lengthy walks. Exhaustively enumerating long
walks is out of the question, so we’re going to have to take random samples.
We’ll need an equivalent to std::random_shuffle with which we can
generate them. Ideally, it should be as general as our next_state
function. The trouble is that it’s a bit tricky to come up with a satisfying
method to randomly generate one of a fixed number of arbitrary states. The
best I can think of is to use a sequential container of states and randomly
generate indices into it. Admittedly, it’s not very natural for integer types,
but at least we can use it with any type we want. (Listing 8: Generating
random states.)
Listing 9 illustrates the code to take a random sample of a walk of length n.
So how does the new formula rate for long walks? Figure 3 shows the
results for one million samples from walks of various lengths.

Clearly, the assumption of independence is inappropriate; the calculated
number of knots diverges from the observed number pretty quickly.
Unfortunately, this does not bode well for the distribution I had suspected.
That distribution is the Poisson distribution. This is the distribution of the
expected number of occurrences of events with exponentially distributed
waiting times. Now this may not sound as general as the normal
distribution since that's the limit distribution of sums of independent
random numbers drawn from almost any given distribution. It would be a
mistake to dismiss it too quickly though.
If the average time we need to wait before an event occurs is independent
of the amount of time we have already been waiting, then the waiting times
must be exponentially distributed. And these kinds of events show up a

Figure 2

n calculated E(knots)/n observed E(knots)/n

6 0.2476 0.2492

7 0.2598 0.2623

8 0.2701 0.2737

9 0.2790 0.2837

Listing 8

double
rnd(double x)
{
  return x * double(rand())/
    (double(RAND_MAX)+1.0);
}

template<class BidIt, class States>
void
random_state(BidIt first, BidIt last,
   const States &states)
{
  while(first!=last)
  {
    *first++ = states[size_t(
       rnd(double(states.size())))];
  }
}

Listing 9

namespace knots
{
  void sample_crossings(
   knot_histogram &h, size_t samples);
}

void
knots::sample_crossings(knot_histogram &h,
                        size_t samples)
{
  if(h.walk_length())
  {
    std::vector<size_t> states(9);
    for(size_t i=0;i!=states.size();++i)
       states[i] = i;

    walk w(h.walk_length());

    while(samples--)
    {
      random_state(w.begin(), w.end(), states);
      h.add(crossings(w));
    }
  }
}

Figure 3

n calculated E(knots)/n observed E(knots)/n

10 0.2867 0.2928

20 0.3315 0.3499

50 0.3704 0.4196

100 0.3843 0.4655
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Figure 4
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this universe favours a high proportion of self
crossings and hence, presumably, knots
lot; consider how long we should wait before rolling a six on a fair die. Of
course this is a discrete, rather than continuous, time example but should
give you an idea of how common these types of events really are.
The Poisson distribution gives the probability that r events will occur given
that the expected number occurrences is  and is defined by the formula

 

So how does it compare to the observed results? Figure 4 compares the
observed and approximate histograms for a walk of nine steps.
Well, they’re sort of similar I suppose. Not very much so, though. It seems
that I was right to be concerned about the inaccuracy of the independence
assumption.
Does the situation improve for these longer walks? I suspect not given that
the approximation of the expected number of knots seems to get less
accurate for longer walks. Still, it’s a simple matter to check, so let’s take
a look at some longer walks.
The sample distributions from which we derived the expected number of
knots above are shown in Figure 5. Top left shows walks of 10 steps; top
right of 20 steps; bottom left of 50 steps and bottom right of 100 steps.
Figure 6 compares the difference between the observed and Poisson
approximation for the one hundred step walk.
As expected, the approximation is not really any better for lengthy walks.
So, we shall have to rely upon the sample data. They certainly seem to
indicate that this universe favours a high proportion of self crossings and
hence, presumably, knots. The question that remains is whether or not the
universe is out to get us. Would we be liberated from the foul machinations
of stringy things if we lived somewhere else?

Well, to answer that let’s take a look at what life might be like if we lived
in a universe with four spatial dimensions. Firstly, we’ll need to change
the position class to represent a point in three dimensional space
(Listing 10).
The changes to the member functions are fairly obvious, as Listing 11
illustrates.
Next we need to update the calculation of the number of crossings in a
given walk. Again, it’s reasonably straightforward (Listing 12).
The main point here is that we now have twenty seven valid states rather
than nine. The extraction of the steps in each direction follows the approach
used for the two dimensional case, with a little additional complexity to
cope with the third dimension.

λ

P X r=( ) e λ– λr

r!
-----=

Figure 6

Listing 10

namespace knots
{
  class position
  {
  public:
    position();
    position(long x, long y, long z);
    position move(long dx,long dy,long dz) const;
    bool   operator<(const position &rhs) const;
    bool   operator==(const position &rhs) const;

  private:
    long x_;
    long y_;
    long z_;
  };
}
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the universe really is out to get us, since it 
seems to have left our four dimensional 
neighbours relatively unmolested
The one million sample histograms for walks of ten, twenty, fifty and one
hundred steps are illustrated in Figure 7 (knot histograms for three
dimensional walks of length 10, 20, 50 and 100).
The difference between the two and three dimensional walks is fairly
dramatic, I’m sure you’ll agree. In the two dimensional case the most
probable number of knots seems to increase as a proportion of the number
of steps as the walk lengthens. In the three dimensional case it seems to
tend to 0.1 to 0.2 times the length of the walk.
Does this trend continue? Let’s compare the results for a really long walk,
say one thousand steps.
I think the evidence speaks for itself; the universe really is out to get us,
since it seems to have left our four dimensional neighbours relatively
unmolested.
Spared from the burden of ever having to untangle the power cables for
their diabolical death rays, any invading horde from the fourth dimension
is well set to spring a surprise attack upon us at a moment’s notice. We
can only be thankful that they haven't yet done so.
I honestly believe that we are not adequately prepared for such a
contingency.
Given the enormous difficulty they’ll surely have tying their shoelaces, I
suspect that a great many of their dread number will have to attack
barefoot. I therefore suggest that we should petition the government to arm
every household with an ample supply of brass tacks. If we are sufficiently
alert, we should be able to stop them dead in their tracks.
In the meantime, we should continue our research. I am out of ideas, but
if you, dear reader, can discover anything further please write in. The future
of humanity may depend upon it. 
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RSA Made Simple
RSA is a common public key cryptography algorithm. 
Stuart Golodetz explains the mathematics behind it 
and shows us how to use it in Java.
s we all know, when designing a protocol for electronic
communication we must continually bear in mind the security goals
we need to satisfy. For example, we may wish to prevent our

messages from being read by eavesdroppers, or to digitally sign our
messages to guarantee that no-one else could have sent them.
Cryptography, the science of encrypting and decrypting messages (almost
invariably using ciphers), is the method of choice for these tasks.
An alternative method of trying to avoid our messages being read by a third
party is steganography. This involves hiding the message being sent, e.g.
in the pixels of an otherwise innocuous-looking image. A famous example
is the message sent by Histiaeus of Miletus on the head of one of his slaves:
he shaved the man’s head, wrote the message and then waited for his hair
to regrow before sending him to deliver the message. It goes without saying
that this rather ingenious trick is only suitable for non-urgent messages.
One particularly interesting type of cryptography is asymmetric, or public
key, cryptography. The idea works as follows. Everyone has two keys, a
public key and a private key, neither of which can be derived from the
other. They publish the public key and keep the private key hidden
somewhere safe. The keys are such that:

Messages encrypted with one of the keys can only be decrypted
using the other.
Each key can only decrypt messages encrypted with its partner.

Thus, if Alice wants to send a message to Bob that only the latter can read,
she encrypts the message with Bob’s public key, and (provided the
encryption scheme is secure) can be sure that Bob is the only person who
can decrypt it again, as only he has knowledge of his own private key.
To digitally sign a message to Bob to guarantee that it came from her, on
the other hand, she would encrypt the message with her own private key.
The encrypted message can be read by anyone, since Alice’s public key is
public knowledge, but only Alice can have sent the message, as no-one else
had her private key and thus no-one else could have encrypted a message
which could only be read using her public key. The two security goals we
mentioned above can thus be amply satisfied by public key cryptography.
As a theory, this is all well and good, but it remains to be shown how to
implement such a scheme. This is where RSA enters the picture.

The RSA algorithm
The RSA algorithm was first described in a 1977 paper by Ron Rivest, Adi
Shamir and Leonard Adleman (hence the name), three researchers working
at MIT, although an equivalent algorithm had actually been invented (but

not published, for security reasons) by a GCHQ mathematician called
Clifford Cocks four years earlier. Its foundation is the belief that factoring
the product of two humongously large primes is computationally
infeasible, i.e. it can’t be done on a computer in a sensible amount of time.
In theory, it should be possible (by choosing suitably large primes) to make
it take an expected time longer than the expected lifetime of the universe,
even if we used all the computers on Earth, but in practice this is rarely
done. All that’s really necessary is to make sure it can’t be decrypted before
the encrypted information’s ‘use by’ date, i.e. the time at which the
information contained within the message ceases to be of any use to an
attacker. (It’s worth noting that not all systems in current use achieve even
this modest goal.)
Starting from the assumption of computational infeasibility, it is possible
to generate suitable public and private keys which are mutual inverses but
cannot be derived from each other. Let’s take a closer look at how this
works.

Key pair generation
We start by randomly guessing two large (distinct) primes, p and q. This
sounds difficult, but in practice it has been shown that the probability of a
given number n being prime is roughly 1/ln n. (As an example, for 100-
digit numbers this means that roughly 1 in every 230 numbers is prime.)
Furthermore, efficient primality-testing algorithms like Miller-Rabin can
be used to tell us whether a given number is prime or not. To pick two large
primes, therefore, we simply guess lots of large random numbers and keep
the first two primes we come across.
From these primes, we compute the product  and define

. (Note that under the assumption that n cannot be
factored,  cannot be derived from n without knowledge of p or q.)
We pick a small number e coprime to  (65537 is a common choice),
i .e.   and compute  using an
algorithm called the Extended Euclidean Algorithm. Finally, we publish
(e,n) as our public key and keep (d,n) as our private key. All of this relies
on a lot of mathematics (which is unfortunately beyond the scope of a short
article like this one), but the basic steps are relatively easy to follow. The
key point is that given either of the keys we’ve just generated and no
additional information, it is computationally infeasible to calculate the
other without being able to factor n, since we have no way of calculating

 from n.

Encryption and decryption
Encryption and decryption are both done the same way in RSA. Both use
something called modular exponentiation. This is very like raising

A

n p q×=
ϕ n( ) p 1–( ) q 1–( )=

ϕ n( )
ϕ n( )

gcd e ϕ n( ),( ) 1= d e 1– mod ϕ n( )=

ϕ n( )

Alice and Bob are traditional names in cryptography, presumably
because A and B (which they clearly represent) felt a bit too impersonal.
A third character, Eve, can be added when talking about eavesdropping.

A little aside on Alice and Bob
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Instead of encrypting our message with the
public key and decrypting it with the private

key, we swap them round
something to a power, but in modular arithmetic rather than the normal way
of doing things. As an example, , since 8 leaves remainder 3
when divided by 5. For RSA, then, we take a numeric encoding, m, of our
message, and encrypt it using

c = me mod n
To decrypt it, we do

m' = cd mod n
and we will find that m' = m. The reason this is true is down to a theorem
p ro d uc e d  b y  E u l e r ,  w h i c h  t e l l s  u s  t h a t  f o r  n  >  1  and

,

.

Assuming that , therefore, our proof that m' = m goes through as
follows:

The proof relies on various properties of modular arithmetic, such as that
, etc. The key point to note is

that  for some k, since . Having
finished this proof, we now know that encrypting and decrypting the
message will get us back to where we started from.
As mentioned before, it is also possible to use RSA for digital signing. This
turns out to be very simple. Instead of encrypting our message with the
public key and decrypting it with the private key, we swap them round. So
a signed version of m can be produced by doing

s = md mod n
and verified using

m' = se mod n.
Once again, m' = m, using an entirely analogous proof.

RSA in Java
The theory behind RSA is interesting (if tricky in places), and I seriously
recommend that you look into it in more detail. For the rest of this article,
however, I want to approach things from a more practical standpoint and
discuss how to use RSA in your Java code. This turns out to be rather

simple, as an implementation already exists in the Java standard libraries.
It works internally by treating ASCII text as a number in base 256 and then
applying the  RSA algor i thm us ing the  modPow  method of
java.math.BigInteger. (For more details, you might want to
examine the files RSACipher.java and RSACore.java in the OpenJDK
implementation at http://openjdk.java.net.)
Let’s start by looking at how to generate keys (see Listing 1). The process
is relatively straightforward: we start by getting a KeyPairGenerator
instance which will generate RSA key pairs, initialise it using a key-size
(1024 bits) and a ‘cryptographically-secure’ pseudo-random number
generator (i.e. a random number generator which satisfies a number of
desirable cryptographic properties), and use it to generate the keys. Finally,
we extract the required private and public keys from the returned
KeyPair.
Having generated the keys, we can use them to encrypt and decrypt
messages. A simple example of this is shown in Listing 2. We get an
instance of Cipher to do the actual encryption, initialise it with the
required mode and RSA key, and set it to work on our message with a call
to doFinal. Decryption works the same way. Note that the doFinal
method works on byte arrays rather than strings (for various reasons, one
of which is to allow it to encrypt more arbitrary data), so we have to convert
between the two, but other than that there’s very little effort we have to
put in to get it to work.
Listing 2 shows a simple example using javax.crypto.Cipher.
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aϕ n( ) 1 mod n( )≡

m Zn*∈

m′ cdmod n=

memod n( )
d
mod n=

medmod n=

m1 kϕ n( )+ mod n=

m mkϕ n( )mod n( )×( )mod n=

m mϕ n( )mod n( )
k
mod n( )×( )mod n=

m 1kmod n( )×( )mod n=

m 1×( )mod n=

m=

ab mod n a mod n b mod n×( ) mod n=
ed 1 kϕ n( )+= ed 1 mod ϕ n( )+≡

Listing 1

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.SecureRandom;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;

...

KeyPairGenerator keyGen =
   KeyPairGenerator.getInstance("RSA");
SecureRandom random =
   SecureRandom.getInstance("SHA1PRNG", "SUN");

keyGen.initialize(1024, random);

KeyPair pair = keyGen.generateKeyPair();
RSAPrivateKey priv =
   (RSAPrivateKey)pair.getPrivate();
RSAPublicKey pub =
   (RSAPublicKey)pair.getPublic();

...
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The best cryptography in the world won’t 
help you if someone has access to your 
plaintext
Conclusions
RSA can be a complicated algorithm to fully understand, but using it in
Java is relatively simple. If you take a look at the internal implementation
of the algorithm (the source for the Java libraries is freely-downloadable),
you’ll see that the actual code which does the encryption and decryption
amounts to a single line, namely a call to BigInteger.modPow. The
only real work being done apart from that is converting between the textual
and numeric representations of a message, and even that is relatively
straightforward. This makes it easy to (for example) port the RSA
implementation to other languages. For one of my current projects, I’ve
ported it to PHP (another language for which a BigInteger class is
conveniently available) with much less than an hour’s work. Writing an
implementation I trusted from scratch could easily have taken several days.
Ultimately, I hope that the message you’ll take away from this article is
that cryptography is interesting and worth exploring further. Algorithms
like RSA may seem very mathematical and slightly scary, but with the
ever-increasing emphasis placed on the security of our communications,
it is vital that we make the effort to understand the tools we need to ensure
it. Existing implementations of algorithms allow us to see how the
mathematical theories translate into practical code, something that we as
programmers can more readily understand, and are thus a valuable
resource when trying to get to grips with a seemingly complicated
algorithm like RSA.

Addendum
During the review process for this article, a number of interesting points
were raised by the review team (many thanks). In particular, Roger Orr
highlighted one very good reason for the Java implementers to choose byte
arrays over strings for their implementation. Since the latter are immutable
and Java itself is a garbage-collected language, the data contained in strings
hangs around in memory until the garbage collector reclaims it. This can
present a security hole, since anyone who can access your process’s
memory can continue to access (for example) the plaintext of your
message, and you have no way to prevent this. Byte arrays, in contrast,
don’t suffer from the same issue, as the data in them can be manually
overwritten with random rubbish.
The motto of this tale is that there is more to security than just
cryptography. The best cryptography in the world won’t help you if
someone has access to your plaintext. This article doesn’t pretend to be
about security in general (it was intended more as a cryptographic taster),
but it does go to show that security in a wider context can be seriously
hard.

Listing 2

import javax.crypto.Cipher;

...

// Create the cipher
Cipher rsaCipher = Cipher.getInstance("RSA");

// Initialize the cipher for encryption
rsaCipher.init(Cipher.ENCRYPT_MODE, pub);

// Cleartext
byte[] cleartext = "This is just an example".getBytes();
System.out.println("Original cleartext: " + new String(cleartext));

// Encrypt the cleartext
byte[] ciphertext = rsaCipher.doFinal(cleartext);
System.out.println("Ciphertext: " + new String(ciphertext));

// Initialize the same cipher for decryption
rsaCipher.init(Cipher.DECRYPT_MODE, priv);

// Decrypt the ciphertext
byte[] cleartext1 = rsaCipher.doFinal(ciphertext);
System.out.println("Final cleartext: " + new String(cleartext1));

...
18 | Overload | June 2008



FEATURETOM GILB
Quality Manifesto
Software quality is a systems engineering 
job.Tom Gilb explains the importance of 
knowing where we’re going.
he main idea with this paper is to wake up software engineers, and
maybe some systems engineers, about quality. The software
engineers (sorry, ‘softcrafters’) seem to think there is only one type

of quality (lack of bugs), and only one place where bugs are found (in
programs). My main point here is that the quality question is much broader
in scope. The only way to get total necessary quality in software is to treat
the problem like a mature systems engineer. That means to recognize all
critically interesting types of quality for your system. It means to take an
architecture and engineering approach to delivering necessary quality. It
means to stop being so computer program-centric, and to realize that even
in the software world, there a lot more design domains than programs. And
the software world is intimately entwined with the people and hardware
world, and cannot simply try to solve their quality problems in splendid
isolation. I offer some principles to bring out these points.

A quality manifesto
A group of my friends spent the Summer of 2007 emailing discussions
about a Software Quality Manifesto. I was so unhappy with the result that
I decided to write my own. At least I was unhampered by the committee.
Headline: ‘Software Quality’ is a Systems Engineering Job.
Slogan:
Proposition:
‘Excellent system qualities are a continuous management and
engineering challenge, with no perfect solutions’.
Corollary:
‘when management and engineering fail to execute their quality
responsibilities professionally, the quality levels are accidental; and
probably unsatisfactory to most stakeholders.’

Quality manifesto/declaration
System Quality can be viewed as a set of quantifiable performance
attributes, that describe how well a system performs for
stakeholders, under defined conditions, and at a given time.
System Stakeholders judge past, present, and future quality levels;
in relationship to own their perceived needs/values.
System Engineers can analyze necessary, and desirable, quality
levels; and plan, and manage to deliver, a set of those quality levels,
within given constraints, and available resources. 
Quality Management is responsible for prioritizing the use of
resources, to give a satisfactory fit, for the prioritized levels of
quality: and for trying to manage the delivery of a set of qualities –
that maximize value for cost – to defined stakeholders. 

Quality principles: an overview
Heuristics for action:

1. Quality Design: Ambitious Quality Levels are designed in, not
tested in. This applies to work processes and work products.

2. Software Environment: ‘Software’ Quality is totally dependent on
its resident system quality, and does not exist alone; ‘software
qualities’ are dependent on a defined system’s qualities – including
stakeholder perceptions and values.

3. Quality Entropy: Existing or planned quality levels will deteriorate
in time, under the pressure of other prioritized requirements, and
through lack of persistent attention.

4. Quality Management: Quality levels can be systematically
managed to support a given quality policy. Example : ‘Value for
money first’, or ‘Most competitive World Class Quality Levels’.

5. Quality Engineering: A set of quality levels can be technically
engineered, to meet stakeholder ambitions, within defined
constraints, and priorities.

6. Quality Perception: Quality is in the eye of the beholder: objective
system quality levels may be simultaneously valued as great for
some stakeholders, and terrible for others.

7. Design Impact on Quality: any system design component,
whatever its intent, will likely have unpredictable main effects, and
side effects, on many other quality levels, many constraints, and
many resources.

8. Real Design Impacts: you cannot be sure of the totality of effects,
of a design for quality, on a system, except by measuring them in
practice; and even then, you cannot be sure the measure is general,
or will persist.

9. Design Independence: Quality levels can be measured, and
specified, independently of the means (or designs) needed to
achieve them.

10. Complex Qualities: many qualities are best defined as a subjective,
but useful, set of elementary quality dimensions; this depends on the
degree of control you want over the separate quality dimensions.1

T

Tom Gilb is an international consultant, teacher and author.

His 9th book is Competitive Engineering: A Handbook For Systems 
Engineering, Requirements Engineering, and Software Engineering 
Using Planguage (August 2005 Publication, Elsevier) which is a 
definition of the planning language ‘Planguage’.

He works with major multinationals such as Credit Suisse, 
Schlumberger, Bosch, Qualcomm, HP, IBM, Nokia, Ericsson, 
Motorola, US DOD, UK MOD, Symbian, Philips, Intel, Citigroup, 
United Health, Boeing, Microsoft, and many smaller and lesser known 
others. See www.Gilb.com for contact details.

1 CE Chapter 5, download, http://www.gilb.com/community/
tiki-download_file.php?fileId=26 will give rich illustration to this point.
See for example Maintainability, Adaptability and Usability. 
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It is a well-known paradigm that you ‘do not 
test quality into a system, you design it in’
Quality principles: detailed remarks
Heuristics for action:

1. Quality Design: Ambitious Quality Levels are designed in, not
tested in. This applies to work processes and work products.
There is far too much emphasis on testing and reviews, as a means
of dealing with defects and bugs. It is a well-known paradigm that
you ‘do not test quality into a system, you design it in’. We can look
at this problem from both an economic and an effectiveness point of
view. 
From an economic point of view, it pays off, by one or two orders of
magnitude, to solve problems early. 44–64% of all coding defects
are the results of defects in specifications (requirements, design)
given to programmers [GilbIFM], as reference for this and other
facts about test and reviews]. The cost of removal of defects at late
stages explodes by 10x to 100x and more. A stitch in time saves
nine.
From an effectiveness point of view, both tests and reviews are
ineffective. The range of effectiveness is roughly 25% to 75%
(probability of actually detecting defects that are present. [GilbIFM,
CapersJones96]. Jones reckons that if we had an effective series of
about 11 reviews and tests, we could only remove a maximum of
95% of the injected defects. My conclusion is that ‘cleaning up
injected defects’ is a hopeless cause. There are better options.
The interesting option is that ‘an ounce of prevention is worth a
pound of cure’. We have to learn to avoid the infection of defects in
the first place. It is clear that we can reduce the injection rates by at
least 100 to 1. Most requirements documents today (my personal
client measurements) contain about 100 major defects per page (300
words). The standard that advanced developers (IBM
[Humphrey89], NASA) have long since established is a tolerance
(process exit level) of less than 1.0 majors/page (IBM : 0.25,
NASA : 0.10). This is the primary focus of CMMI Level 5 (Defect
Prevention Process [IBM90]). It takes my clients about 6 months to
reduce injection by factor of 10, and another 2–3 years by another
factor of 10. This is obviously more cost-effective than waiting until
we can test for defects, or until customers complain.

2. Software Environment: ‘Software’ Quality is totally dependent on
its resident system quality, and does not exist alone; ‘software
qualities’ are dependent on a defined system’s qualities – including
stakeholder perceptions and values.
We tend to treat software quality as something inherently resident in
the software itself. But all qualities (example Security, Usability,
Maintainability, Reliability) are highly dependent on people, their
qualifications, and they way the use systems. The consequence is
that we must plan, specify and design with a stronger eye to
identifying and controlling the factors that actually decide the
system quality. We have to engineer the system as a whole, not just
the ‘code’). We must be systems engineers, not program engineers.

This has large implications for how we train people, how we
organize our work, and how we motivate people. We will also have
to shift emphasis from the technology itself (the means) to the
results we actually need (the ends, quality requirement levels).

3. Quality Entropy: Existing or planned quality levels will deteriorate
in time, under the pressure of other prioritized requirements, and
through lack of persistent attention.
Even the concept of numeric quality levels, for most qualities –
example usability, security, adaptability – is alien to most software
engineers, and to far too many systems engineers. But the basic
concept of quantified quality levels is old and well established in
engineering.
In spite of this poor starting environment, of too many people
satisfied with using words (‘easy to use’) instead of numbers (‘30
minutes to learn task X by Employee type Y’), we need to do more
than merely achieve planned quality levels upon initial delivery and
acceptance of systems. We need to imbed in the systems the
measurement of these qualities, and the warning systems needed to
tell us they are deteriorating or have drastically fallen. We need to
expect to take action to improve the quality levels back to planned
levels, and perhaps improve them even more in the future.

4. Quality Management: Quality levels can be systematically
managed to support a given quality policy. Example: ‘Value for
money first’, or ‘Most competitive World Class Quality Levels’. 
It is useful management if there is a policy about the levels of quality
we aspire to, both at a corporate level, and a project level. We cannot
really allow isolated individuals to make their dream levels of
quality be taken as requirements, without due balance towards the
priorities of the other competing levels. And we need to keep our
eyes on available resources and technological limits and
opportunities. 
We need to decide if we are there to ‘be the state of the art’ (as
Rockwell explained to me once) or ‘get the most value for money’,
as others need to worry about that more.
A policy like this might be generally useful: ‘Quality levels will be
engineered to a level that gives us arguably high return on the
investment needed to get them there, and so that the levels do not
steal resources for other parallel investment opportunities in quality,
or elsewhere.’

5. Quality Engineering: A set of quality levels can be technically
engineered, to meet stakeholder ambitions, within defined
constraints, and priorities.
It is a tricky business to decide which numeric quality levels are
appropriate. Initially we cannot decide the right levels in isolation.
We need to know about the larger environment, both the
environment for the single quality attribute, and for the set of
attributes – for their environment.
20 | Overload | June 2008



June 2008 | Overload | 21

FEATURETOM GILB

Elementary scalar requirement template <with hints>
Tag: <Tag name of the elementary scalar requirement>.

Type:

  <{Performance Requirement: {Quality Requirement,

    Resource Saving Requirement,

    Workload Capacity Requirement},

    Resource Requirement: {Financial Requirement,

    Time Requirement,

    Headcount Requirement,

    others}}>.

===================================================== Basic Information==============================================

Version: <Date or other version number>.

Status: <{Draft, SQC Exited, Approved, Rejected}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Owner: <Role/e-mail/name of the person responsible for this specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Brief description, capturing the essential meaning of the requirement>.

Description: <Optional, full description of the requirement>.

Ambition: <Summarize the ambition level of only the targets below. Give the overall real ambition level in 5–20 words>.

====================================================== Scale of Measure ============================================

Scale: <Scale of measure for the requirement (States the units of measure for all the targets, constraints and benchmarks) and the scale qualifiers>.

======================================================= Measurement ==============================================

Meter: <The method to be used to obtain measurements on the defined Scale>.

============================ Benchmarks ==================================== ‘‘Past Numeric Values’’ ====================

Past [<when, where, if>]: <Past or current level. State if it is an estimate> <- <Source>.

Record [<when, where, if>]: <State-of-the-art level> <- <Source>.

Trend [<when, where, if>]: <Prediction of rate of change or future state-of-the-art level> <-<Source>.

============================= Targets ====================================== ‘‘Future Numeric Values’’ ===================

Goal/Budget [<when, where, if>]: <Planned target level> <- <Source>.

Stretch [<when, where, if>]: <Motivating ambition level> <- <Source>.

Wish [<when, where, if>]: <Dream level (unbudgeted)> <- <Source>.

============================ Constraints ====================================== ‘‘Specific Restrictions’’ ===================

Fail [<when, where, if>]: <Failure level> <- <Source>.

Survival [<when, where, if>]: <Survival level> <- <Source>.

======================================================= Relationships ==============================================

Is Part Of: <Refer to the tags of any supra-requirements (complex requirements) that this requirement is part of. A hierarchy of tags (For example,
A.B.C) is preferable>.

Is Impacted By: <Refer to the tags of any design ideas that impact this requirement> <-<Source>.

Impacts: <Name any requirements or designs or plans that are impacted significantly by this>.

================================================== Priority and Risk Management =======================================

Rationale: <Justify why this requirement exists>.

Value: <Name [stakeholder, time, place, event]: Quantify, or express in words, the value claimed as a result of delivering the requirement>.

Assumptions:<State any assumptionsmade in connection with this requirement> <-<Source>.

Dependencies: <State anything that achieving the planned requirement level is dependent on> <- <Source>.

Risks: <List or refer to tags of anything that could cause delay or negative impact> <- <Source>.

Priority: <List the tags of any system elements that must be implemented before or after this requirement>.

Issues: <State any known issues>.

Figure 1
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Figure 2

Learnability: 

        Scale: the time needed for a defined [Stakeholder] to Master a defined [Process]. 

        Goal [Stakeholder = Top Manager, Process = Get Report] 5 minutes. 

        Goal [Stakeholder = Offshore Clerk, Process = Create New Account] 1 hour. 

Figure 4

Learnability: 

Scale: minutes to learn a Task by a User. 

Meter [Weekly Development, 2 Users, 10 Normal tasks] 

Meter [Acceptance Test, Duration 60 day, 200 Users, 10 normal tasks, 20 extreme tasks] 

Meter [Normal Operation, Sampling Frequency 2%, Tasks = All Defined]

Figure 3

On-line 
Support

On-line Help
Picture 

Handbook
On-line Help + 
Access Index

Learning
Past: 60 min <<-> 10 
min

Scale Impact 5 min 10 min 30 min 8 min

Scale Uncertainty ±3 min ±5 min ±10 min ±5 min

Percentage Impact 110% 100% 67% (2/3) 104%

Percentage Uncertainty ±6%
(3 of 50 
minutes)

±10% ±20% ? ±10%

Evidence Project Ajax, 
1996, 7 min

Other 
Systems

Guess Other 
Systems + 
Guess

Source Ajax report, 
p.6

World Report, 
p.17

John B. World Report 
+ John B.

Credibility 0.7 0.8 0.2 0.6

Development Cost 120K 25K 10K 26K

Benefit-to-Cost Ratio 110/120 = 
0.92

100/25 = 4.0 67/10 = 6.7 104/26 = 4.0

Credibility adjusted to 
B/C Ratio (to 1 decimal 
place)

0.92*0.7 = 0.6 4.0 * 0.8 = 3.2 6.7 * 0.2 = 1.3 4.0 * 0.6 = 2.4

Notes: Time Period is 
two years.

Longer 
timescale to 
develop

it is easier to be confident if no particular 
numeric impact is ever asserted
We need to learn to specify this environment
together with the requirement ideas themselves. It
will be easier to make decisions about the relative
levels of quality and their priority if we have a
decisive set of facts about each attribute. For
example, it is useful to know things like the:

Value for a level
The stakeholders for a quality and for various
levels
The timing needs of levels of quality
The planned strategies and their expected costs
for reaching given levels.

And quite a few other things – that will help us
reason about the right levels of quality.
Figure 1 is an example of a template that tries to
collect some of the information that I think we ought
to know about in order to decide how to prioritize
particular levels of quality for a single attribute.
[Gilb05] 

6. Quality Perception: Quality is in the eye of the
beholder: objective system quality levels may be
simultaneously valued as great for some
stakeholders, and terrible for others.
The point is that any really complex, large system
will have many different stakeholders. Even one
stakeholder category (Novice User, Call Center
Manager) can have many individuals, with highly
individual needs and priorities. The result will
inevitably be a compromise. But we can make that
compromise as intelligent as possible. We do not
have to design systems with only one level for all
stakeholders. We can consciously decide to have
different quality levels of the same quality, for
different stakeholders, at different times and
situations.
An example is shown in Figure 2.

7.  Design Impact on Quality: any system design
component, whatever its intent, will likely have
unpredictable main effects, and side effects, on
many other quality levels, many constraints, and
many resources.
I see far too much narrow reasoning, of the type: ‘we
are going to achieve great quality X using
technology X, Y and Z’. This reasoning is not with
numbers, but only nice words. Yet I have seen in it
$100 million projects, often!
22 | Overload | June 2008



FEATURETOM GILB

Maintainability:
Type: Complex Quality Requirement.
Includes: {Problem Recognition, Administrative Delay, Tool Collection, Problem Analysis,
Change Specification, Quality Control, Modification Implementation, Modification Testing
{Unit Testing, Integration Testing, Beta Testing, System Testing}, Recovery}.
Problem Recognition:
Scale: Clock hours from defined [Fault Occurrence: Default: Bug occurs in any use or test
of system] until fault officially recognized by defined [Recognition Act: Default: Fault is
logged electronically].
Administrative Delay:
Scale: Clock hours from defined [Recognition Act] until defined [Correction Action] initiated
and assigned to a defined [Maintenance Instance].
Tool Collection:
Scale: Clock hours for defined [Maintenance Instance: Default: Whoever is assigned] to
acquire all defined [Tools: Default: all systems and information necessary to analyze,
correct and quality control the correction].
Problem Analysis:
Scale: Clock time for the assigned defined [Maintenance Instance] to analyze the fault
symptoms and be able to begin to formulate a correction hypothesis.
Change Specification:
Scale: Clock hours needed by defined [Maintenance Instance] to fully and correctly
describe the necessary correction actions, according to current applicable standards for
this. Note: This includes any additional time for corrections after quality control and tests.
Quality Control:
Scale: Clock hours for quality control of the correction hypothesis (against relevant
standards).
Modification Implementation:
Scale: Clock hours to carry out the correction activity as planned. ‘‘Includes any necessary
corrections as a result of quality control or testing.’’
Modification Testing:

Unit Testing:
Scale: Clock hours to carry out defined [Unit Test] for the fault correction.
Integration Testing:
Scale: Clock hours to carry out defined [Integration Test] for the fault correction.
Beta Testing:
Scale: Clock hours to carry out defined [Beta Test] for the fault correction before official
release of the correction is permitted.
System Testing:
Scale: Clock hours to carry out defined [System Test] for the fault correction.

Recovery:
Scale: Clock hours for defined [User Type] to return system to the state it was in prior to
the fault and, to a state ready to continue with work.
Source: The above is an extension of some basic ideas from Ireson, Editor, Reliability
Handbook, McGraw Hill, 1966 (Ireson 1966).

Figure 5

We can never take critical qualities for
granted, or act as if they are stable

munity/
We have to learn to specify, analyze and think in
terms of ‘multiple numeric impacts of many designs,
on our many critical quality and cost requirements’.
Quality Function Deployment (QFD) takes this
position, but I am not happy with the way in which
numbers are used in QFD) – too subjective, too
undefined [GilbQFD]. 
We need to systematically, as best we can, estimate
all the multiple effects or each significant design.
Figure 3 shows a systematic analysis of four designs
on one quality level (10 minutes). This is an impact
estimation table. [Gilb05]. 

8. Real Design Impacts: you cannot be sure of the
totality of effects, of a design for quality, on a
system, except by measuring them in practice; and
even then, you cannot be sure the measure is
general, or will persist. 
I have seen books, papers, and project specifications
for software that confidently predict a good result
(not usually quantified) from a particular design,
solution, architecture or strategy. Maybe it is easier
to be confident if no particular numeric impact is
ever asserted.
In normal engineering, no matter what the
engineering handbook says, no matter what we
would like to believe; the prudent engineer takes the
trouble to measure the real effects.
We need to carefully do early measurements, then
repeat measurements when scaling up, at acceptance
times, and later in long-term operation. We can
never take critical qualities for granted, or act as if
they are stable.
We can plan this in advance to a reasonable degree
(see Figure 4).
Each ‘Meter’ specification defines or sketches a
different intended test to measure the quality level.

9. Design Independence: Quality levels can be
measured, and specified, independently of the means
(or designs) needed to achieve them.
There is far too much immediately coupling of
named design ideas, with named quality types. ‘We
will improve product agility using structured tools’
– type of specification. 

2 CE Chapter 10, download, http://www.gilb.com/com
tiki-download_file.php?fileId=77 will illustrate this point.
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Specifying a ‘design’, when you need to 
focus on the quality level, should be 
considered a major defect 
We need to focus our specifications on the quality levels we require,
and studiously avoid mentioning our favoured design idea in the
same sentence. 
Specifying a ‘design’, when you need to focus on the quality level,
should be considered a major defect in the specification. Dozens or
more such ‘false requirements’ per page of ‘requirements’ are not
uncommon in our ‘software’ culture.

10. Complex Qualities: many qualities are best defined as a subjective,
but useful, set of elementary quality dimensions; this depends on the
degree of control you want over the separate quality dimensions.2 
I think there is too little awareness of the fact that quality words
often are the name of a set of qualities. The only way to define such
complex qualities is to list all the components of the set. Only in this
way will we understand what the real requirements are. 
We need to learn the general patterns of the most common qualities,
as in the example below. 
We need to avoid oversimplification of qualities when the detailed
set of sub-attributes will give us a fair chance at getting control over
the critical qualities we want to manage. 

Figure 5 shows an example of Maintainability as a set of other measures
of quality. [Gilb05]. 

Summary
Purpose [of Quality Manifesto]:

To promote a healthy view of software quality.
Gap Analysis:
To help people get to where they really need to be in order to meet their
stakeholders expectations as well as resources permit.
Justifications [for positions taken here]

1. We must take a systems-centric, not a programming-centric view of
quality.
Because: Software only has quality attributes in relation to people,
hardware, data, networks, values. It cannot be isolated from the
related world that decides

which quality dimensions are of interest (critical)
which quality levels are of value to a given set of stakeholders. 

2. We must take a ‘stakeholder’ view – not customer or user or any
much-too-limited limited set of stakeholders.
Because: the qualities that must be engineered and finally present in
a software system depend on the entire set of critical stakeholders,
not a on a limited few.

3. We must make a clear distinction between various ‘defect’ types,
as good IEEE engineering standards already do.
Because: we cannot afford to confuse specification defects, with
their potential product faults, and product faults with potential
product malfunctions. See these definitions. 
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