

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Seeing Things Differently
Stuart Golodetz constructs 3D models in C++.

10 DynamicAny (Part 2)
Alex Fabijanic measures the performance of
dynamic typing.

16 On Management: Focus, Quality, Time-
boxes and Ducks
Allan Kelly concentrates on keeping projects in
line.

20The Model Student: Can Chance Make Fine
Things? (Part 1)
Richard Harris analyses some of the mathematics
behind evolution.

27 Performitis (Part 3)
Klaus Marquardt looks at how to prevent
Performitis from occuring.

OVERLOAD 87

October 2008

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 88 should be submitted to
the editor by 1st November 2008 and
for Overload 89 by 1st January
2009.

EDITORIAL RIC PARKIN
The Invisible Hand
Large groups can behave as one,
but how predicatable are they?
Welcome to Overload 87. If you were thinking the post
had something missing, then you’d be right – there’s no
CVu this month. This is the first of the new monthly
mailings, and we’re starting with Overload. You’ll get
the next edition of CVu next month followed by

Overload the month after, and so on. In this period of change it would be
good to have a think about what we’d like from CVu and Overload, what’s
good, and what could be improved. I welcome opinions and ideas on this
or any other issue.

The domino effect
I’m writing this at the end of September, after a few quite remarkable
weeks in international finance and the markets, after a year of the so called
Credit Crunch crisis. Perhaps by the time you read this the causes and
consequences will be clearer, but I thought one story in particular was
interesting because of the role of technology.
Our world now uses computers to do huge amounts of work. Examples
include online newspapers plus their archives, indexing for searching,
automatic collation of information sources, processing vast numbers of
market trades, and even automating tasks using rule-based systems.
But recently all these examples came together and caused major headaches
for United Airlines [BBC].
What appears to have happened started with a newspaper, the Florida Sun-
Sentinel, which has an online version with an archive of all past stories.
For some unknown reason, enough people clicked on a story about United
Airlines to put a link to it on its ‘Most Popular Stories’ section. Unusually
this story was an old one from around 2002, when many airlines were
struggling with the aftermath of 9/11, and was about United filing for
Chapter 11 protection (which roughly means bankruptcy). However,
when you looked at the web page the only date visible was the current date:
September 7th, 2008.
Google News’ web crawler found the page, and reasoning that as it hadn’t
seen that link last time and the only date it could find was recent, decided
that it was a new news story and duly indexed and published it. As airlines
are having a rough time due to high oil prices recently, such a story was
plausible and of interest, causing plenty of people to read it, which made
it rise up the rankings, gaining even more attention. Then someone thought

it important enough to put it on the Bloomberg
newswire service that is used by the financial

markets.

At which point traders and automated trading systems saw the bad news
and sold United Airlines stock, causing the price to drop quickly. This
triggered automatic stop-loss rules (that is, if the price falls below a pre-
set limit, sell your shares to avoid losing even more), which sent the price
even lower, triggering more automatic stop-loss rules and panicking
traders, and so on in a vicious cycle. By the time the stock was suspended,
it had lost around 75% of its value, around $1 billion, in just fifteen
minutes! All because a few people had clicked on an old story...
Interestingly, pretty much everyone had acted rationally and cannot really
be blamed (I would say the exceptions are the original website’s
developers for not clearly tagging stories with a date and time, and the
journalist who posted the story to Bloomberg without checking it
sufficiently.) And yet the consequences were anything but rational.
One big problem here was the way computers automated some simple
rules which were fine in isolation, but when combined with many other
similar rules led to the computer equivalent of a market panic. Because of
course, markets aren’t as perfectly efficient and rational as some simple
theories make out, for two reasons – they involve people who can respond
irrationally to rumour or panic or exuberance; and computers blindly
carrying out rules, that while locally rational in normal market conditions,
interact with the rest of the system to produce an overall irrational result
in unusual situations.
This is just one example of how when things are highly interconnected,
effects can ripple out and unexpected emergent behaviour can arise
suddenly. (A version of the Law Of Unintended Consequences
[Wikepedia])
These can be almost impossible to predict, and take some tricky
mathematics to model, but computers are making it possible to process the
vast amounts of data involved, or even simulate these huge networks of
autonomous agents, and understand some of the resulting behaviours. This
could be very useful for policy makers trying to predict the effects of new
laws, taxes, incentives etc, which cause all sorts of unexpected results as
people try to work around or game the new systems.
The book Critical Mass [Ball] is a readable introduction to how some of
these problems can be tackled, looking at the ways large groups act
according to the statistical laws that were first used to model molecule
velocities in a fluid. So while each agent acts independently and
unpredictably according to their own desires and circumstances, the
higher-level pattern that emerges is often highly ordered and predictable.
As well as the trading patterns of markets, other examples include the
properties of matter arising from the interactions of atoms and molecules;

Ric Parkin has been programming professionally for nearly 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him and is now organising the ACCU Cambridge local meetings. He can be
contacted at ric.parkin@gmail.com.
2 | Overload | October 2008

EDITORIALRIC PARKIN
the structure of galactic spiral arms (which are thought to be pressure
waves and not static structures [SpiralArms]); traffic flow and how
congestion occurs; how birds flock; epidemiology; the spread of email
viruses along social networks; prediction of power grid usage; population
changes and urban planning; and the evolution of populations and
genomes.
This latter is an interesting one: the basics of evolution are so simple – all
you need is reproduction (so successful populations grow), heritable
variation (to produce a range of creatures), and inadequate resources (so
that not every creature can reproduce) – and yet the results are enormously
complex. Partly because the sheer enormity of the time involved allows
changes to accumulate, but also because of the complex feedback of each
creature itself being part of the environment that determines which
genomes survive (a classic example is the arms race between preditor and
prey). For a taster, Richard Harris looks at some of the maths behind how
natural selection builds complexity.

The black art of estimating release dates
These sorts of ideas can also be applied to trying to work out when a
product will be good enough to ship. A simple rule-of-thumb is to look at
a graph of open bugs over time and estimate when it will go down to zero.
Of course this is an overly simplistic model – depending on where you are
in the development cycle, the number of bugs could be increasing!
So obviously there are different phases that have their own distinctiveness:
such as development of features, stabilization, first mass test, release
preparation, and post-release.
We can categorise bugs in many ways, such as the probability of being
triggered, how severe are their effects, what effort is needed to fix them,
and the risk of the fix causing further bugs (and what sort those are). Each
development phase has a different mix of bugs. For example, early on
creating new features will cause many new bugs to be created of many
different types, from trivial spelling mistakes to serious design flaws;
conversely, close to release most of the easy bugs will have been found
and fixed, the design has settled down, and what remains will be the hard
bugs whose fix will likely cause many more bugs.
Thinking about this reminded me of Ross Anderson’s keynote at the
conference a few years ago [Anderson] which analysed what would be the
expected number of security flaws in open and closed source software.
Doing a similar analysis of expected bug numbers based on the number
of bugs already found, the number of testers, and the rate of fixes, could
provide a much better set of rules that can be easily applied. For example,

when in the pre-release phase, work out how much effort it took to get bug
numbers halved from the peak, and the expected effort to get it to zero will
be twice that. (This is just my guess based on the fact that you won’t have
found all the bugs yet, mostly the hardest bugs will be left, and fixes will
cause further bugs).
Others have done just such an analysis: a quick search for terms such as
Reliability Growth Models, or Software Release Estimation reveals plenty
of examples and research into their effectiveness. And yet I’ve rarely seen
or heard about people doing much more than simple extrapolation and
guestimates. This is probably good enough for a rough guess for non-
critical software, but as most projects are classed as ‘failed’ due to being
later than predicted there’s plenty of room for improvement.
As an example of how using even slightly more sophisticated models can
help, I once worked on a team where things always took longer than the
estimates. So I introduced a sightly different technique. Instead of asking
how long something would take, I asked for estimates in three situations:
a best case estimate if everything went really well, most likely (which is
the estimate people usually give you), and a worst case if things go badly.
These numbers tell you several things: if they vary wildly, it indicates the
task is risky and probably not very well understood. But interestingly they
are rarely symmetrical – e.g. a task that is most likely to take 10 days will
have a best case estimate of 7 days, but a worst case of 20. By combining
these three numbers in a simple weighted distribution, something like
E=(best + 4 x likely + worst)/6, you get the Expected time, which was
always a little bit longer than the ‘likely’ time, e.g. (7 + 4x10 + 20)/6 is
11.16. By using this number in the plans instead (and
adding a half day a week for synchronising with the main
code base and checking in), the estimates became
remarkably accurate, and everyone became a lot happier.

References
[Anderson] Anderson, Ross ‘Open and Closed Systems are Equivalent

(that is, in an ideal world)’ http://www.cl.cam.ac.uk/~rja14/Papers/
toulousebook.pdf

[Ball] Critical Mass – Philip Ball. ISBN 0374281254
[BBC] http://news.bbc.co.uk/1/hi/business/7605885.stm
[SpiralArms] http://www.astronomynotes.com/ismnotes/s8.htm
[Wikipedia] http://en.wikipedia.org/wiki/Unintended_consequence
October 2008 | Overload | 3

FEATURE STUART GOLODETZ
Seeing Things Differently
The Multiple Material Marching Cubes (M3C)
algorithm builds 3D models from 2D slices.
Stuart Golodetz introduces it and provides a
C++ implementation.
Stuart Golodetz has been programming for 13 years and is
studying for a computing doctorate at Oxford University. His
current work is on the automatic segmentation of abdominal
CT scans. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk Figure 2

Each cube has 8 labels associated
with it, one for each of its vertices.

isualizing organs and other features of interest (such as the spine, or
tumours, etc.) in 3D is an important process in the medical domain.
It makes it much easier for doctors to picture the overall size of a

tumour and its relative spatial location if they can see it in 3D, rather than
having to try and mentally visualize what’s going on after looking through
a series of 2D slices. As part of my medical imaging work during my
doctorate, I recently spent some time implementing the multiple material
marching cubes (M3C) algorithm [Wu03], one of the methods currently
used for this process, and (as is often the case when implementing
algorithms from research papers, which can only ever give you an
overview of the process) the experience turned out to be rather interesting.
In my next couple of articles, I’d like to describe not just the algorithm
itself (which is probably described more precisely in the original research
paper), but how it can be implemented at a code level.

A 3-stage process
First of all, though, let’s discuss the algorithm at a somewhat higher level.
M3C takes a labelled volume (grid) of data as input, and produces a
coloured triangle mesh as output (see Figure 1).

Mathematically-speaking, given a label set L = {i | i in [0, n)}, the input
is a scalar field f : R3 | [0,X) x [0,Y) x [0,Z) -> L, such that f(x,y,z) indicates
the label assigned to grid point (x,y,z). (For example, point (1,2,3) could
be labelled with the number 5, which might correspond to the kidney, and
indicate that point (1,2,3) should be considered as being inside the kidney.)
Such a labelled volume can be constructed, with varying degrees of
automation, from a sequence of medical images by a process known as

segmentation (something I’ve referred to in previous articles
[Golodetz08]).
The algorithm works in 3 stages: in the first stage, a basic mesh is generated
from the volume. This is generally stair-stepped (meaning exactly what it
sounds like) and contains far more triangles than it is possible to render at
a reasonable frame-rate. The second and third stages thus smooth the mesh
(to mitigate the stair-stepping) and decimate it (to drastically reduce the
triangle count) respectively.

Stage 1: Basic mesh generation (overview)
The mesh generation process treats the volume as a 3D array of voxels
(volume elements) or, to put it another way, as a large number of small
cubes. Each label in the volume corresponds to one of the vertices at the
points where adjacent cubes meet (as opposed to each voxel having a
particular label), thus each cube has 8 labels associated with it, one for each
of its vertices (see Figure 2). These labels may all be the same, or all
different, or somewhere in between. (In principle, there are thus 88

different combinations which can arise, since there are 8 vertices, and 8
possible label choices per vertex. Note that it doesn’t matter that there are

V

Figure 1

M3C converts a labelled volume
(left) into a coloured triangle mesh
(right). (Note that I ’ve used
symbolic rather than numeric
labels here for clarity only; the
actual labels are numeric. Note
also that the labelled volume on
the left here is not the actual
labelled volume for the mesh on
the right, which is huge!)
4 | Overload | October 2008

FEATURESTUART GOLODETZ
more than 8 labels in the entire volume when saying this, since there can
only be at most 8 in the same cube at once.)
The mesh is generated on a cube-by-cube basis by adding faces to separate
adjacent labels which do not match. This has to be done in a cunning way
to ensure that the mesh pieces in adjacent cubes ‘match up’. To get a feel
for how this process works, we’ll first examine the 2D analogue, namely
multiple material marching squares (M3S). M3S turns out to be an
important subroutine when we repeat the process in 3D, as we’ll see later.
Consider Figure 3a, which shows the result of ‘meshing’ a 6x6 labelled
area in 2D. We treat each square individually, and match it against a set
of patterns (see Figure 3b). In each case, the pattern dictates how to mesh
the square by (potentially) adding vertices at the midpoints of the square’s
edges and its centre, and adding mesh edges to join them together. When
a vertex is added, it is assigned a set of labels based on the material types
it separates. A node at the midpoint of one of the square's edges is assigned
the labels of the two corner vertices that edge connects; the centre node (if
any) is assigned all the labels present in the square. The mesh piece for
each square will contain between 0 and 5 vertices (there are 4 midpoints,
plus the square centre) and between 0 and 4 mesh edges. Note that adjacent
squares share the midpoint vertices: they can be thought of as belonging
to the square edge rather than the square itself.
The patterns themselves are mostly straightforward (note that those not
explicitly drawn out are derived by symmetry), and adjacent patterns are
guaranteed to match up by design. The only tricky point occurs in Case 3
(the top-right pattern), where there is an ambiguity over whether the
material labelled 0 or that labelled 1 should remain contiguous. This was
a known problem with the single-material marching cubes algorithm,
which M3C extends. It is resolved here by partially-ordering the materials
and keeping the lower label contiguous; thus 0 has priority over 1 here.
Having seen how M3S works, we are now ready to consider the equivalent
in 3D. The idea here is similarly to generate mesh pieces for each cube so
that adjacent mesh pieces join up to form a valid mesh. The way we ensure

validity is to use M3S (the 2D analogue) to generate patterns on each cube
face; we then connect the vertices generated on the cube faces with
triangles within each cube. Since the cube faces (and thus the patterns on
them) are shared between adjacent cubes, this guarantees that the mesh
pieces will join up appropriately.
The trick now is in how to generate the triangles within each cube.
Unfortunately, this turns out to be a somewhat intricate process (but at least
it’s fun!). The first step is to count the number of centre nodes that have
been created by M3S on the cube faces. There are three distinct cases with
which to deal: 0 such nodes, 2, or more than 2 (Wu proved in his
dissertation that there can’t be exactly one face-centred node). The goal in
all cases is to try and determine a number of node loops (see Figure 4) that
we can then triangulate, as we’ll see shortly.
In the case of 0 face-centred nodes, we don’t need to do anything special.
The nodes and edges added by M3S already form closed loops, and their
nodes share the same labels. The situation is more complicated when there
are two or more face-centred nodes. In the former situation, we need to
add an edge between the two face-centred nodes to form the node loops
(see Figure 5). The loops are then distinguished by the fact that there are
exactly two labels in common for all the nodes in a loop.
The situation with more than two face-centred nodes is even more
complicated, and necessitates adding an extra node at the centre of the cube
itself. This is assigned all the labels in the cube, and an edge is added
between it and each face-centred node.
Having ensured that the node loops (or triangulatees, as I will now call
them, since they are entities that will later need to be triangulated in one
of two ways) we’re looking for are actually present, the next step is to find
them. This process is not described in the original paper, but we can use
an algorithm similar to depth-first search to do the job.
We find triangulatees one at a time, until there are no more left to find.
The key to this is to find a start node for a loop with exactly two material
IDs and a remaining edge. (Once no more such nodes exist, we’ve found

Figure 3

Meshing a 6x6 labelled area in
2D (left) using the patterns
shown (right). The patterns show
(top-to-bottom, left-to-right) how
to handle squares with 2 labels
split (1,3); 2 labels split (2,2)
opposite; 2 labels split (2,2)
diagonal; 3 labels opposite; 3
labels diagonal; and 4 labels.

Figure 4

An example showing a cube with
two node loops (based on Figure 6b
in [Wu03]: see that paper for further
examples).

Figure 5

If there are exactly two face centres,
we need to add an edge joining them
to connect up the node loops. (The
symbols – square, circle, star –
indicate edges which belong to the
same node loop. The edge we need to
add – shown without a symbol – is
shared between the three node loops.)
This image is based on Figure 7a of
[Wu03], but is slightly simplified.
October 2008 | Overload | 5

FEATURE STUART GOLODETZ
all the triangulatees for the cube and can move on to actually triangulating
them.) Assuming such a node can be found, we follow the trail laid by the
labels until we get back to the start node again (note that this can require
backtracking). At each step, we follow an unused edge to an adjacent node
with at least the two material IDs of the start node. If no such adjacent node
exists, we back up and try another route. If one of the nodes is the cube
centre node, we make a note (for a reason we’ll see in a minute) and carry
on. Once we get back to the start node again, we’ve found one of the
triangulatees. This is guaranteed to happen eventually because our earlier
work ensured that there is a loop back to each valid start node.
Having found a node loop, we next iterate through its edges, removing
from future consideration in other node loops any edge that has at least one
endpoint with only two material IDs. Finally, we store the node loop for
later triangulation and carry on searching for other loops. The way we will
ultimately triangulate the loop depends on whether it passes through the
cube centre node, which is why we made a note of that above. Loops which
pass through the centre node can be triangulated using a simple fan
triangulation scheme. Other loops must instead be triangulated by a divide-
and-conquer method which I will refer to as Schroeder triangulation
because it appears in [Schroeder92].
Eventually, then, we’ll have found all the triangulatees for a particular cube
and be ready to triangulate them, using whichever method is appropriate.
I’ll assume we all agree that fan triangulation is a relatively trivial process

(if you don’t agree, a quick Google search for ‘triangle fan’ should point
you in the right direction), so I won’t labour the point, but Schroeder
triangulation is a different story. The difficulty it aims to solve is that each
of the remaining node loops we need to triangulate is not guaranteed to lie
in a plane: this makes it impossible to use the usual 2D triangulation
algorithms. Instead, we solve the problem by divide-and-conquer as
follows, relying on the fact that the node loops we’re trying to triangulate
can be projected onto a plane without self-intersecting.
First, we calculate the ‘average’ plane for the node loop. To do this, we
average the positions of all the nodes in the loop and treat that as a point
on the plane. We then imagine the loop to be fan-triangulated from that
point (see Figure 6). The average plane normal is calculated as the
normalized weighted average of the triangle normals (where the weights
are the areas of the triangles in question):

The plane can then be easily constructed by deducing the plane distance
value to be d = n.c, where c is the imaginary average point at the centre
of the node loop.
Having constructed the average plane, we now try and find a diagonal of
the node loop (an imaginary edge joining two non-adjacent points on the
loop) that divides the loop into two in such a way that the projections of
the two halves onto the average plane are on opposite sides of the
projection of the diagonal. We don’t actually do this by projecting the
points as it’s unnecessary: instead, we construct a dividing plane which is
perpendicular to the average plane and passes through the diagonal we’ve
selected. We then classify all the unused points in the node loop against
this plane and check that the two halves lie on opposite sides.
Assuming that we can find at least one such diagonal (if we can’t, this
particular triangulation process fails, but in practice that only happens with
more complicated loops than you see in M3C), we now have a choice to
make among the potential candidates. Any suitable criterion can in
principle be used for this, but the usual one tries to keep the aspect ratio
of the generated triangles as good as possible. The metric used for this is
the minimum distance of a point from the diagonal, divided by the length
of the diagonal.
Having chosen a diagonal, we divide the loop in two and recurse on both
halves until we reach loops with only three nodes. At that point, the
recursion terminates, and we return the triangle formed by those three
points (see Figure 7).
At this point, we’ve finished our description of the basic mesh generation
process. Let’s now look at the implementation in a bit more detail.

Stage 1: Basic mesh generation (implementation)
For implementation purposes, the mesh generation process can essentially
be divided into two pieces. The first task is to generate the mesh vertices
on the cube faces, since they’re shared between adjacent cubes. Each node
stores its position and labels, and the indices of any adjacent nodes (mesh
edges are thus stored implicitly during the process). We store the nodes
themselves in a node map, which allows us to look them up either by global
index or by their location in the volume, and the indices of which nodes
lie on which face in a cube face table. The designs of these two data
structures are key to the whole algorithm: see Listing 1 for their interfaces.
(For what it’s worth, my code implements the NodeMap by using a
std::vector to store the actual nodes, and a std::map to look them
up by volume location. The CubeFaceTable is implemented as a
straightforward std::map internally. The abstraction proved useful,
though, because it allowed me to try out several different implementations
and pick the best one.)
With these data structures in place, we can now think about actually
generating the nodes on the various cube faces. The way I’ve written it,
there are two main parts to this: (a) we need to write a routine to generate
the edges on an arbitrary cube face with some given labels, and (b) we need

n
areaini

i
∑

areai
i
∑

-------------------------=

Figure 6

We calculate the average
plane of the node loop by
imagining a fan-triangulation
of it from an imaginary centre
po in t and per forming a
weighted average of the
normals of the fan triangles to
deduce the average plane
normal.

Figure 7

The Schroeder triangulation process as a tree. At each stage, we
divide the node loop (shown here as a polygon) across one of its
diagonals and recurse on both halves. Eventually, we end up with
triangles at the leaf nodes (unless a suitable diagonal could not be
found at any point, which only happens with more complicated
node loops that do not crop up in M3C). Bear in mind that the node
loops are generally non-planar (although this page is!).
6 | Overload | October 2008

FEATURESTUART GOLODETZ
to map the nodes connected by these edges to their global equivalents
(which we create/look up in the node map) and store the edges implicitly
in the global nodes. The interface for (a) is as shown in Listing 2 (I’m happy
to provide source code by email if anyone’s interested – it’s a bit lengthy
so I won’t show it here). The code for (b) is shown in Listing 3, which
shows filling in the global node map and cube face table via mapping the
generated local edges and points onto their global counterparts.
Having generated the global nodes we need and ensured that it’s possible
to look up which nodes are in a given cube, things are now looking good.
The second part of the mesh generation process is now to generate triangles
for each cube. As explained before, to do this we need to first determine
the number of face centres needed for the cube. This is actually quite
simple, because we stored the local node map for each cube face in the face
table. We now simply need to check whether the MIDDLE node for each
face was used or not. Given the number of face centres, we then add edges
or extra nodes as necessary (as described in the previous section). Adding

Listing 1

template <typename Label>
class NodeMap
{
private:
 typedef Node<Label> NodeL;
public:
 enum NodeDesignator
 {
 NODE_001, // node at the midpoint of the +z
 // edge emerging from a point
 NODE_010, // node at the midpoint of the +y
 // edge emerging from a point
 NODE_011, // node at the centre of the +y+z
 // emerging from a point
 NODE_100, // node at the midpoint of the +x
 // edge emerging from a point
 NODE_101, // node at the centre of the +x+z
 // face emerging from a point
 NODE_110, // node at the centre of the +x+y
 // face emerging from a point
 NODE_111, // node at the centre of the +x+y+z
 // cube emerging from a point
 };
 NodeMap();
 NodeL& operator()(int n);
 const NodeL& operator()(int n) const;
 int find_index(int x, int y, int z,
 NodeDesignator n);
 //...
};
class CubeFaceTable
{
public:
 enum FaceDesignator
 {
 FACE_XY,
 FACE_XZ,
 FACE_YZ
 };
 CubeFace& operator()(int x, int y, int z,
 FaceDesignator f);
 bool has_face(int x, int y, int z,
 FaceDesignator f) const;
};

Listing 2

template <typename Label, typename PriorityPred>
std::list<Edge> edges_on_face(Label topleft,
 Label topright, Label bottomleft,
 Label bottomright);

Listing 3

// The local node map initially contains UNUSED
// for each node, indicating that the relevant
// node wasn't needed.
std::vector<int> localNodeMap(
 POTENTIAL_NODE_COUNT, UNUSED);

// Run through all the edges and mark the endpoints
// with USED in the node map: this indicates that
// we need to lookup the global nodes for them.
for(std::list<Edge>::const_iterator
 it=edges.begin(), iend=edges.end(); it!=iend;
 ++it)
 localNodeMap[it->u] = localNodeMap[it->v] =
USED;

// Build the mapping from local node indices to
// global coordinates.
TripleI locs[POTENTIAL_NODE_COUNT];
NodeMapL::NodeDesignator
 nodeDesignators[POTENTIAL_NODE_COUNT];
switch(faceDesignator) {
 case CubeFaceTable::FACE_XY:
 locs[TOP] = TripleI(x,y+1,z);
 nodeDesignators[TOP] = NodeMapL::NODE_100;
 //...
 break;
 //...
}

// Lookup the global node indices.
for(int i=0; i<POTENTIAL_NODE_COUNT; ++i)
 if(localNodeMap[i] == USED)
 localNodeMap[i]
 = m_nodeMap->find_index(locs[i],
 nodeDesignators[i]);

// Fill in the labels for each node.
if(localNodeMap[TOP] != UNUSED) {
 NodeL& n = (*m_nodeMap)(localNodeMap[TOP]);
 n.labels.insert(topleft);
 n.labels.insert(topright);
}
if(localNodeMap[MIDDLE] != UNUSED) {
 NodeL& n = (*m_nodeMap)(localNodeMap[MIDDLE]);
 n.labels.insert(topleft);
 n.labels.insert(topright);
 n.labels.insert(bottomleft);
 n.labels.insert(bottomright);
}
//...

// Run through the edges and replace the local node
// indices with their global equivalents.
// Update the adjacent node entries in the global
// nodes at the same time.
for(std::list<Edge>::iterator it=edges.begin(),
 iend=edges.end(); it!=iend; ++it) {
 it->u = localNodeMap[it->u];
 it->v = localNodeMap[it->v];
 NodeL& uNode = (*m_nodeMap)(it->u);
 NodeL& vNode = (*m_nodeMap)(it->v);
 uNode.adjacentNodes.insert(it->v);
 vNode.adjacentNodes.insert(it->u);
}

// Fill in the cube face in the global face table.
(*m_faceTable)(x, y, z,
 faceDesignator) = CubeFace(localNodeMap);
October 2008 | Overload | 7

FEATURE STUART GOLODETZ
edges just involves modifying the adjacent node sets of global nodes;
adding a new node just involves finding its index in the node map and using
that to retrieve it (as per Listing 4).
Having set things up, we then iteratively find all the triangulatees as
described in the previous section. The first step is to create a local node
map (see Listing 5: Creating a local node map which only references nodes
in the current cube), since nodes in the global map refer to adjacent nodes
which are not in the current cube.
Having done that, we then find triangulatees using the depth first search-
style routine in Listing 6.
The only remaining step is to triangulate the results. I won’t show the code
for this, because it’s rather lengthy and not especially difficult to construct
given the description above, but if you’d like to see the code then feel free
to drop me an email.
Figure 6 shows an example image.

Summary
In this article, we have seen the first stage of the mutliple material marching
cubes algorithm for generating meshes from labelled volumes. As can be
seen in the example image (which shows a portion of the right kidney and
aorta), the output is a bit crude at this stage (and note that we’re only able
to render a smaller mesh), but the results are still quite good. In the next

article, I’ll explain the remainder of the algorithm, namely how to smooth
and decimate the results to make the rendering of larger, nicer-looking
meshes possible.

References
[Golodetz08] Golodetz, SM, ‘Watersheds and Waterfalls’ (Parts 1 and 2),

Overload 83/84, February/April 2008.
[Schroeder92] Schroeder, WJ, et al., Decimation of Triangle Meshes,

1992.
[Wu03] Wu, Z, and Sullivan Jr., JM, ‘Multiple material marching cubes

algorithm’, International Journal for Numerical Methods in
Engineering, 2003.

Listing 4

int cubeCentreIndex =
 m_nodeMap->find_index(TripleI(x,y,z),
 NodeMapL::NODE_111);
NodeL& c = (*m_nodeMap)(cubeCentreIndex);

Listing 5

std::map<int,NodeL> localNodeMap;
for(std::set<int>::const_iterator
 it=nodeSet.begin(), iend=nodeSet.end();
it!=iend; ++it) {
 std::map<int,NodeL>::iterator loc =
 localNodeMap.insert(std::make_pair(*it,
 (*m_nodeMap)(*it))).first;
 NodeL& n = loc->second;
 std::set<int> relevantNodes;
 std::set_intersection(n.adjacentNodes.begin(),
 n.adjacentNodes.end(), nodeSet.begin(),
 nodeSet.end(), std::inserter(relevantNodes,
 relevantNodes.begin()));
 n.adjacentNodes = relevantNodes;
}

Figure 6

Listing 6

Triangulatee_Ptr
find_triangulatee(std::map<int,NodeL>&
localNodeMap, int cubeCentreIndex)
{
 // Step 1: Find a start node with exactly two
 // material IDs and a remaining edge. If no such
 // node exists, we've found all the loops.
 int startIndex = -1;
 for(std::map<int,NodeL>::const_iterator
 it=localNodeMap.begin(),
 iend=localNodeMap.end(); it!=iend; ++it)
 {
 const NodeL& n = it->second;
 if(n.labels.size() == 2 &&
 !n.adjacentNodes.empty())
 {
 startIndex = it->first;
 break;
 }
 }
 if(startIndex == -1) return Triangulatee_Ptr();
 // Step 2: Follow the trail laid by the material
 // IDs - at each step, follow an unused edge to
 // an adjacent node with at least the two
 // material IDs of the start node. If no such
 // adjacent node exists, back up and try another
 // route. If one of the nodes is the cube centre
 // node, make a note and carry on - we'll need
 // to triangulate this loop using a fan approach.
 // Terminate when we reach the start node again.
 // The way M3C works guarantees that there is a
 // loop back to each valid start node, so
 // termination is guaranteed.
 std::map<Edge,bool> used;
 for(std::map<int,NodeL>::const_iterator
 it=localNodeMap.begin(),
 iend=localNodeMap.end(); it!=iend; ++it)
 {
 const int u = it->first;
 const NodeL& n = it->second;
 for(std::set<int>::const_iterator
 jt=n.adjacentNodes.begin(),
 jend=n.adjacentNodes.end(); jt!=jend; ++jt)
 {
 const int v = *jt;
 used.insert(std::make_pair(Edge(u,v),
 false));
 }
 }
 NodeL& startNode = localNodeMap[startIndex];
 std::vector<Label> labels(
 startNode.labels.begin(),
 startNode.labels.end());
8 | Overload | October 2008

FEATURESTUART GOLODETZ
Listing 6 (cont’d)

 for(int i=0; i<nodeCount; ++i)
 {
 int j = (i+1)%nodeCount;
 int curIndex = nodeLoopArray[i];
 int adjIndex = nodeLoopArray[j];
 NodeL& curNode = localNodeMap[curIndex];
 NodeL& adjNode = localNodeMap[adjIndex];
 // Remove the edge iff one of its endpoints
 // has only two material IDs.
 if(curNode.labels.size() == 2 ||
 adjNode.labels.size() == 2)
 {
 curNode.adjacentNodes.erase(adjIndex);
 adjNode.adjacentNodes.erase(curIndex);
 }
 }

 // Step 4: Construct the triangulatee according
 // to whether or not the 'fan' flag was set in
 // Step 2.
 if(fanTriangulation)
 {
 return Triangulatee_Ptr(new FanTriangulateeL(
 nodeLoop, cubeCentreIndex));
 }
 else
 {
 return Triangulatee_Ptr(
 new SchroederTriangulateeL(nodeLoop,
 m_nodeMap->retrieve_nodes()));
 }
}

Listing 6 (cont’d)

 std::list<int> nodeLoop;
 int curIndex = startIndex;
 bool fanTriangulation = false;
 do
 {
 nodeLoop.push_back(curIndex);
 if(curIndex == cubeCentreIndex)
 fanTriangulation = true;
 NodeL& curNode = localNodeMap[curIndex];
 int adjIndex = -1;
 for(std::set<int>::const_iterator
 it=curNode.adjacentNodes.begin(),
 iend=curNode.adjacentNodes.end();
 it!=iend; ++it)
 {
 NodeL& adjNode = localNodeMap[*it];
 // If the edge has not yet been used, and the
 // adjacent node has at least the two labels
 // of the start node, traverse the edge.
 if(!used[Edge(curIndex, *it)] &&
 adjNode.labels.find(labels[0]) !=
 adjNode.labels.end() &&
 adjNode.labels.find(labels[1]) !=
 adjNode.labels.end())
 {
 adjIndex = *it;
 break;
 }
 }

 if(adjIndex != -1)
 {
 used[Edge(curIndex, adjIndex)] = true;
 curIndex = adjIndex;
 }
 else
 {
 // If we couldn't find an adjacent node
 // with the right material IDs, backtrack
 // and try another route. Note that there's
 // no danger of setting the current index
 // back to the start index here: the
 // first step will always be a valid one.
 nodeLoop.pop_back();

 if(!nodeLoop.empty())
 {
 curIndex = nodeLoop.back();
 nodeLoop.pop_back();
 }
 else
 {
 throw Exception("Something went wrong:
 couldn't find an adjacent node with the
 right material IDs.");
 }
 }
 }

 while(curIndex != startIndex);
 // Step 3: Remove edges from further
 // consideration in future loops if at least
 // one of their endpoints has only two
 // material IDs.
 std::vector<int> nodeLoopArray(nodeLoop.begin(),
 nodeLoop.end());
 int nodeCount =
 static_cast<int>(nodeLoopArray.size());
October 2008 | Overload | 9

FEATURE ALEX FABIJANIC
DynamicAny (Part 2)
Alex Fabijanic uncovers the internals of
DynamicAny with some performance and
size tests.
n the first installment of this article, Poco::DynamicAny class was
presented, along with rationale for it as well as practical usage
examples. The convenient advantages, such as direct dynamically

typed mapping from an external data source to the program storage were
described. Like boost::any, DynamicAny readily provides storage and
value extraction of an arbitrary user defined data type. The most common
data types conversions are supported out-of-the-box through
specializations provided by POCO framework, while the ones for user
defined types can be added through value holder template specialization.
In this installment, we delve into the internals of the class and run some
tests to compare DynamicAny to similar C++ data type conversion
facilities.

Performance
It is well known that there is no such thing as a free lunch. DynamicAny
shall clearly pay a hefty price in CPU cycle currency for its flexibility and
safety. But how well does DynamicAny perform compared to bare-bone
static C++ casts and other dynamic typing solutions?
Two types of tests were performed:

conversion (Int32 in, double out; Int32 in, Uint16 out;
std::string in, double out)
extraction (double in, double out; std::string in,
std::string out)

Various Any extractions are compared with the DynamicAny extraction.
As described in the first part of the article, Any is not capable of doing
conversions. For conversions, we are comparing DynamicAny with
boost::lexical_cast. The test code is shown in Listing 1.
Tests have been executed on different platforms, with results shown in
Table 1 as well as Figure 1a and 1b (Windows) and 2a and 2b (Linux)1. It
is worth mentioning that the relative performance comparison between
different implementations of comparable functionalities is what we were
after here, not the absolute values comparison between the two sets of test
results (i.e. the two platforms). To get measurable results, the tested code
must be called multiple times. Since compiler optimizations undoubtedly
count in the real world, it was desirable to obtain the results reflecting the
optimization benefits. At the same time, loop optimization could cause
results to be misleading. In order to reconcile the opposing forces,
executables were compiled at a reasonable level of optimization2, with
actual conversion code placed in functions (see Listing 2.) located in a

I

Aleksandar Fabijanic Alex is a C++ and POCO enthusiast.
He is using POCO at work for industrial automation and
process control software development. Alex spends a lot of his
free time contributing, supporting and managing the project.
Contact him at alex@appinf.us

Listing 1

// Static cast Int32 to double
Int32 i = 0;
double d;
Stopwatch sw; sw.start();
do { staticCastInt32ToDouble(d, i); }
while (++i < count); sw.stop();
print("static_cast<double>(Int32)",
sw.elapsed());

Any a = 1.0; i = 0; sw.start();
do { unsafeAnyCastAnyToDouble(d, a); }
while (++i < count); sw.stop();
print("UnsafeAnyCast<double>(Int32)",
sw.elapsed());

// Conversion Int32 to double
i = 0; sw.start();
do { lexicalCastInt32ToDouble(d, i); }
while (++i < count); sw.stop();
print("boost::lexical_cast<double>(Int32)",
sw.elapsed());

DynamicAny da = 1;
i = 0; sw.restart();
do { convertInt32ToDouble(d, da); }
while (++i < count); sw.stop();
print("DynamicAny<Int32>::convert<double>()",
sw.elapsed());
i = 0; sw.restart();
do { assignInt32ToDouble(d, da); }
while (++i < count); sw.stop();
print("operator=(double, DynamicAny<Int32>)",
sw.elapsed());
// Conversion signed Int32 to UInt16
// …
// Conversion string to double
// …
// Extraction double
a = 1.0; i = 0; sw.restart();
do { anyCastRefDouble(d, a); }
while (++i < count); sw.stop();

i = 0; sw.restart();
do { anyCastPtrDouble(d, a); }
while (++i < count); sw.stop();

da = 1.0; i = 0; sw.restart();
do { extractDouble(d, da); }
while (++i < count); sw.stop();
// Extraction string
//

1 Black bars represent DynamicAny, grey bars represent Any/
lexical_cast results; shorter bar means better performance.

2 /02 for MSVC++, -02 for G++
10 | Overload | October 2008

FEATUREALEX FABIJANIC

It is well known that there is no
such thing as a free lunch
separate compilation unit. This arrangement ensured that all tests incur the
same function call penalty, thus preserving the performance ratios, while
benefiting from the tested functionality optimization improvements. As
the test results demonstrate, DynamicAny performs significantly better
than competition in conversion and approximately the same in extraction

Listing 2

void staticCastInt32ToDouble(double& d, int i)
{ d = static_cast<double>(i); }

void unsafeAnyCastAnyToDouble(double& d, Any& a)
{ d = *UnsafeAnyCast<double>(&a); }

void lexicalCastInt32ToDouble(double& d, int i)
{ d = boost::lexical_cast<double>(i); }

void convertInt32ToDouble(double& d,
 DynamicAny& da)
{ d = da.convert<double>(); }

void assignInt32ToDouble(double& d,
 DynamicAny& da)
{ d = da; }

void lexicalCastInt32toUInt16(UInt16& us,
 Int32 j)
{ us = boost::lexical_cast<UInt16>(j); }

void convertInt32toUInt16(UInt16& us,
 DynamicAny& da)
{ us = da.convert<UInt16>(); }

void assignInt32toUInt16(UInt16& us,
 DynamicAny& da)
{ us = da; }

void lexicalCastStringToDouble(double& d,
 std::string& s)
{ d = boost::lexical_cast<double>(s); }

void convertStringToDouble(double& d,
 DynamicAny& ds)
{ d = ds.convert<double>(); }

void assignStringToDouble(double& d,
 DynamicAny& ds)
{ d = ds; }

void anyCastRefDouble(double& d, Any& a)
{ d = RefAnyCast<double>(a); }

void anyCastPtrDouble(double& d, Any& a)
{ d = *AnyCast<double>(&a); }

void extractDouble(double& d, DynamicAny& da)
{ d = da.extract<double>(); }

Listing 2 (cont’d)

void anyCastPtrString(std::string& s, Any& as)
{ s = *AnyCast<std::string>(&as); }

void extractString(std::string& s,
 DynamicAny& ds)
{ s = ds.extract<std::string>(); }

Table 1

Operation Windows Linux

Static cast Int32 => double

static_cast<double>(Int32) 31.25 29.11

UnsafeAnyCast<double>(Int32) 78.13 60.10

Conversion Int32 => double

boost::lexical_cast<double>(Int32) 41187.50 14469.90

DynamicAny<Int32>::convert<double>() 78.13 76.85

operator=(double, DynamicAny<Int32>) 78.13 76.79

Conversion Int32 => unsigned short

boost::lexical_cast<UInt16>(Int32) 33546.90 8631.60

DynamicAny<Int32>::convert<UInt16>() 218.75 84.85

operator=(UInt16, DynamicAny<Int32>) 218.75 84.85

Conversion std::string => double

boost::lexical_cast<double>(string) 37312.50 13999.70

DynamicAny<string>::convert<double>() 6046.88 3858.34

operator=(double, DynamicAny<string>) 6031.25 3858.89

Extraction double

RefAnyCast<double>(Any&) 171.88 131.26

AnyCast<double>(Any*) 140.63 102.21

DynamicAny::extract<double>() 171.83 98.71

Extraction string

RefAnyCast<string>(Any&) 890.63 189.33

AnyCast<string>(Any*) 906.25 160.26

DynamicAny::extract<string>() 906.25 152.99

Loop count: 5,000,000

Results in milliseconds
October 2008 | Overload | 11

12 | Overload | October 2008

FEATURE ALEX FABIJANIC

Figure 1a

St
at

ic
 c

as
t I

nt
32

 to
 d

ou
bl

e

st

at
ic

_c
as

t<
do

ub
le

>(
In

t3
2)

Un
sa

fe
A

ny
Ca

st
<d

ou
bl

e>
(In

t3
2)

Co
nv

er
si

on
 In

t3
2

to
 d

ou
bl

e

bo
os

t::
le

xi
ca

l_
ca

st
<d

ou
bl

e>
(In

t3
2)

Dy
na

m
ic

A
ny

<I
nt

32
>:

:c
on

ve
rt<

do
ub

le
>(

)
op

er
at

or
=(

do
ub

le
, D

yn
am

ic
A

ny
<I

nt
32

>)

Co
nv

er
si

on
 s

ig
ne

d
In

t3
2

to
 U

in
t1

6

bo
os

t::
le

xi
ca

l_
ca

st
<U

In
t1

6>
(In

t3
2)

Dy

na
m

ic
A

ny
<I

nt
32

>:
:c

on
ve

rt<
UI

nt
16

>(
)

op
er

at
or

=(
UI

nt
16

, D
yn

am
ic

A
ny

<I
nt

32
>)

Co
nv

er
si

on
 s

tri
ng

 to
 d

ou
bl

e

bo
os

t::
le

xi
ca

l_
ca

st
<d

ou
bl

e>
(s

tri
ng

)
Dy

na
m

ic
A

ny
<s

tri
ng

>:
:c

on
ve

rt<
do

ub
le

>(
)

op
er

at
or

=(
do

ub
le

, D
yn

am
ic

A
ny

<s
tri

ng
>)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

m s

Ex
tra

ct
io

n
do

ub
le

Re
fA

ny
Ca

st
<d

ou
bl

e>
(A

ny
&)

A
ny

Ca
st

<d
ou

bl
e>

(A
ny

*)

Dy
na

m
ic

A
ny

::e
xt

ra
ct

<d
ou

bl
e>

()

Ex
tra

ct
io

n
st

rin
g

Re
fA

ny
Ca

st
<s

td
::s

tri
ng

>(
A

ny
&)

A
ny

Ca
st

<s
td

::s
tri

ng
>(

A
ny

*)

Dy
na

m
ic

A
ny

::e
xt

ra
ct

<s
td

::s
tri

ng
>(

) 0

100

200

300

400

500

600

700

800

900

1000

m s

Figure 1b

October 2008 | Overload | 13

FEATUREALEX FABIJANIC

Figure 2a Figure 2b

St
at

ic
 c

as
t i

nt
 to

 d
ou

bl
e

st

at
ic

_c
as

t<
do

ub
le

>(
in

t)
Un

sa
fe

A
ny

Ca
st

<d
ou

bl
e>

(in
t)

Co
nv

er
si

on
 in

t t
o

do
ub

le

bo
os

t::
le

xi
ca

l_
ca

st
<d

ou
bl

e>
(in

t)
Dy

na
m

ic
A

ny
<i

nt
>:

:c
on

ve
rt<

do
ub

le
>(

)
op

er
at

or
=(

do
ub

le
, D

yn
am

ic
A

ny
<i

nt
>)

Co
nv

er
si

on
 s

ig
ne

d
in

t t
o

un
si

gn
ed

 s
ho

rt

bo

os
t::

le
xi

ca
l_

ca
st

<u
ns

ig
ne

d
sh

or
t>

(in
t)

Dy
na

m
ic

A
ny

<i
nt

>:
:c

on
ve

rt<
un

si
gn

ed
 s

ho
rt>

()
op

er
at

or
=(

un
si

gn
ed

 s
ho

rt,
 D

yn
am

ic
A

ny
<i

nt
>)

Co
nv

er
si

on
 s

tri
ng

 to
 d

ou
bl

e

bo

os
t::

le
xi

ca
l_

ca
st

<d
ou

bl
e>

(s
tri

ng
)

Dy
na

m
ic

A
ny

<s
tri

ng
>:

:c
on

ve
rt<

do
ub

le
>(

)
op

er
at

or
=(

do
ub

le
, D

yn
am

ic
A

ny
<s

tri
ng

>)

0

2000

4000

6000

8000

10000

12000

14000

16000

m s

Ex
tra

ct
io

n
do

ub
le

Re
fA

ny
Ca

st
<d

ou
bl

e>
(A

ny
&)

A
ny

Ca
st

<d
ou

bl
e>

(A
ny

*)

Dy
na

m
ic

A
ny

::e
xt

ra
ct

<d
ou

bl
e>

()

Ex
tra

ct
io

n
st

rin
g

Re
fA

ny
Ca

st
<s

td
::s

tri
ng

>(
A

ny
&)

A
ny

Ca
st

<s
td

::s
tri

ng
>(

A
ny

*)

Dy
na

m
ic

A
ny

::e
xt

ra
ct

<s
td

::s
tri

ng
>(

) 0

20

40

60

80

100

120

140

160

180

200

ms

FEATURE ALEX FABIJANIC

Dynamic typing in C++ is a
niche functionality with limited
application domain
scenarios. Tests have additionally been compiled and executed on Solaris
with Sun CC compiler yielding similar results. For conciseness purposes,
those results are not included here but can be obtained from
[DynamicAny].
It is important to mention that the performance results were obtained using
the most recent development snapshot from the POCO source code
repository [POCO]. The DynamicAny::extract<>() code used for
performance testing purposes performs approximately two times faster
than the code from the last release (1.3.2)3. The improvement was achieved
by substituting the dynamic_cast with typeid() check in conjunction
with static_cast. Additionally, the performance of AnyCast<>()
and RefAnyCast<>() has been improved in the development code base
through inlining.
Dynamic typing in C++ is a niche functionality with limited application
domain and certainly not aimed for use in code on the high-end of the
performance requirements spectrum. Nevertheless, we felt that
performance is a relevant concern for DynamicAny. Given the database
querying scenario mentioned in the first installment of the article, it is easy
to envision circumstances where code performs acceptably with small data
sets but performance significantly deteriorates as data sets grow. As
demonstrated in performance tests, in such circumstances milliseconds
rapidly accumulate into seconds or even minutes. The attention given to
performance definitely yields a nice return on investment in such scenarios
and provides a wider scale range available for comfortable type-agnostic
coding.

Size
So far, it all went nice and well for DynamicAny. It provides more features
than boost::any with no performance penalty for the overlapping ones.
The conversions are significantly faster than boost::lexical_cast.
However, when it comes to software, size definitely matters and the
moment of truth is inevitably coming. What exactly is the memory
overhead of this luxury and how much memory does this class hierarchy
consume? Holding only a pointer, the size of DynamicAny on a 32-bit
architecture is exactly the same as the size of boost::any (or integer,
for that matter) – four bytes. Where DynamicAny pays its price is the code
size. There is a significant amount of code doing the heavy lifting behind
the scenes and it clearly shows in the size. See Listing 3a for size test source
code, Listing 3b for binary sizes and Listing 3c for source code line counts.
The results were obtained by compiling non-debug, statically-linked code
and running SLOCCount tool [Wheeler] on relevant source code files.

Implementation internals
Based on the information provided in the first installment and the tests
results, DynamicAny clearly champions convenience and performance in
an optimal way. How was this winning combination achieved? Let’s peek
into DynamicAny’s internal implementation. At the heart of
DynamicAny is the value holder class with virtual conversion function for

each supported type. Conversions between numeric types are performed
by implementation specializations in following manner:

implicitly between ‘sibling’ types for widening conversions
through static_cast for narrowing and signedness conversions
(after series of thorough signedness and numeric limits checks)

Listing 3c

Lines of code:

Any 145
DynamicAny* 3,588
lexical_cast 971

Listing 3a

// AnySize.cpp
static Poco::Any a = 1;
static int ai = *Poco::AnyCast<int>(&a);

// DynamicAnySizeExtract.cpp
static Poco::DynamicAny da = 1;
int dai = da.extract<int>();

// DynamicAnySizeConvert.cpp
static Poco::DynamicAny dac = 1;
static std::string das = dac;

// lexical_cast_size.cpp
static int lci = 1;
static std::string lcis =
boost::lexical_cast<std::string>(lci);

Listing 3b

Binary sizes:

Linux

 5160 AnySize.o
23668 DynamicAnySizeExtract.o

25152 DynamicAnySizeConvert.o
 9600 lexical_cast_size.o

Windows

 26,924 AnySize.obj
 96,028 DynamicAnySizeExtract.obj

103,943 DynamicAnySizeConvert.obj
 84,217 lexical_cast_size.obj

3 Release information accurate at the time of writing the article.
14 | Overload | October 2008

FEATUREALEX FABIJANIC

The objectives were to achieve
optimal dynamic coding convenience

within limits of standard C++
Conversions between numeric and string values are performed by means
of Poco::NumberFormatter and Poco::NumberParser classes.
These classes perform the conversion by means of the sprintf() and
sscanf() standard C library functions. The pair of otherwise much
dreaded functions is used in a controlled and safe way with target buffers
properly sized, so the security problems usually associated with those
functions are not a concern [Seacord06]. The performance benefits are
o b v i ou s f r o m t h e c o m p a r i s o n o f t h e t e s t r e s u l t s w i t h
boost::lexical_cast equivalent functionality.
A portion of conversion code for signed 16-bit integer specialization is
shown in Listing 4.

Conclusion
During the development of POCO Data library, we wanted to provide a
convenient RecordSet class capable of internally storing results and
providing values without having programmer worrying about the exact

data types returned and the column order thereof. The objectives were to
achieve optimal dynamic coding convenience within limits of standard
C++ while retaining as much efficiency as possible for a dynamic typing
scenario. Additionally, conversion safety and data loss prevention were
addressed as well. Through DynamicAny class hierarchy we were able to
achieve the objectives. Of course, this work was possible thanks to a solid
foundation being laid down by our predecessors. DynamicAny is built on
boost::any foundation as well as crucially important C++ features such
as C language compatibility, operator overloading and free-standing
functions as interface extensions.
Readers curious about implementation and usage details are invited to
download POCO from the links supplied at the end of this article. POCO
is distributed under Boost license. The community features weblog, forum,
mailing list and a friendly attitude toward newcomers. General interest
inquiries, bug reports, patches, feature requests as well as code
contributions are encouraged and very much appreciated.

Acknowledgements
Kevlin Henney is the originator of the idea and author of boost::any
class. Kevlin has provided valuable comments on the article.
Peter Schojer has ported boost::any to POCO, implemented major
portions of DynamicAny and provided valuable comments on the article.
Günter Obiltschnig has written majority of the POCO framework. Günter
has provided valuable comments on the article as well as advice for test
code.
Laszlo Keresztfalvi has provided valuable development and testing
feedback, sample usage code as well as valuable comments on the article.

References
[DynamicAny] Article code and test results archive – http://appinf.us/

poco/download/DynamicAny/DynamicAnyArticle.zip
[POCO] C++ Portable Components development repository – http://

poco.svn.sourceforge.net/viewvc/poco/
[Seacord] Robert C. Seacord. Secure Coding in C and C++, Addison-

Wesley, 2006
[Wheeler] David A. Wheeler. ‘SLOCCount’ – http://www.dwheeler.com/

sloccount/

Further reading
Bjarne Stroustrup. The C++ Programming Language, Addison-Wesley,

1997
Herb Sutter. ‘Modern C++ Libraries’, Proceedings, SD West 2007
Kevlin Henney. ‘Valued Conversions’, C++ Report, July-August 2000
Boost libraries – http://www.boost.org
C++ Portable Components – http://poco.sourceforge.net
Article code repository – http://poco.svn.sourceforge.net/viewvc/poco/

poco/articles/DynamicAny/

Listing 4

template <>
class DynamicAnyHolderImpl<Int16>: public
DynamicAnyHolder
{
public:

// ...

 // implicit widening conversion
 void convert(Int32& val) const {
 val = _val;
 }

 // safe narrowing conversion
 void convert(Int8& val) const {
 convertToSmaller(_val, val);
 }

 // safe signed/unsigned conversion
 void convert(UInt64& val) const {
 convertSignedToUnsigned(_val, val);
 }

 // static_cast based conversion
 void convert(float& val) const {
 val = static_cast<float>(_val);
 }

 // conversion to std::string
 void convert(std::string& val) const {
 val = NumberFormatter::format(_val);
 }
// ...
};
October 2008 | Overload | 15

FEATURE ALLAN KELLY
On Management: Focus, Quality,
Time-boxes and Ducks
Project success depends on organisation. Allan
Kelly looks at how to keep things in order.
Figure 1

Figure 2

oftware development is easy. I was 12 when I started programming
and I picked it up no problem. Businesses are full of people who
program without even knowing it: Excel is programming by another

name. To paraphrase someone at the ACCU conference a few year or two
ago ‘My organization bases its software on SOA – Spreadsheet Oriented
Architecture.’
Yes, programming is really easy – just read C for Dummies. People can,
and do, create small world-changing programs without ever really being
taught how to program. But... software development is also one of the
hardest things human kind attempts. In fact, developing good software is
so complex it might be the most complex thing man has ever attempted.
Writing a small piece of software can be (but is not always) very easy.
Problems set in when you want to grow the software, want more people
to use it, when you want to sell it, or package it, to re-use the code or ideas,
take bugs out of the system, add features, make it run 24x7x365.
It becomes hard because: more people need more co-ordination, more
people need to understand what is needed, expectations rise, objectives get
confused, costs are higher, money has to come from somewhere and who
ever provides it expects to get a return on their investment.
Programming might be easy but managing the effort is difficult.

Ducks in a row
It is very easy to write simple software and have it do something useful.
It is an order of magnitude harder to get it to commercial quality and keep
doing it. And, to make it harder, there is no single accepted method for
doing this and getting it right.
It sometimes amazes me that anyone ever gets this right. More amazing is
that software which is fundamentally flawed works, or at least seems to
work. Stuff that by any ‘engineering’ criteria is broken is used by
companies every day and businesses depend on it.
Developing good software, delivering on time, producing with sufficient
quality, etc. etc. – all the things you expect from ‘professional systems’ is
a matter of getting your Ducks in a Row. When everything goes right the
effort can hit the target – illustrated in Figure 1, a successful project.
Creating good software, meeting expectations, delivering on time and the
rest is not just a matter of getting one thing right. It is a matter of getting
many things ‘right’ – or at least workable. You can get some of these wrong
and still deliver something – maybe a little late, or lacking features but you
will do something.

Lesson 1: On a software project there are very few things that
can happen which will kill the project immediately. Failure
comes through many small diversions, mistakes, errors and
poor decisions. Delivering a software project is about making
thousands of small decisions right rather than a few big ones.

Each time you do something badly, each time one of your ducks is out of
position, you won’t break the whole thing. Instead each duck out of
position reduces your productivity slightly, creates a little distance from
the target, or reduce quality slightly. With each duck that moves out of
position it gets worse but it still works, somehow – illustrated in Figure 2.
No one duck causes the project to fail but each duck out of position
increases the distance from the target. If creating ‘the best software ever’
means scoring 100:

S

Allan Kelly After years at the code-face Allan realised that
most of the problems faced by software developers are not in
the code but in the management of projects and products. He
now works as a consultant and trainer to address these
problems by helping teams adopt Agile methods and improve
development practices and processes. He can be contacted
at allan@allankelly.net and maintains a blog at
http://allankelly.blogspot.net.

‘Getting ducks in a row’ is an expression (possibly American) used to
describe situation were many elements or details need to be put in their
correct position to ensure success. Think of the way a mother duck leads
her ducklings, each duck follows the mother in a straight line, one behind
the other. The ducks know whom to follow and should one deviate it is
immediately clear.

In early versions of 10-pin bowling the pins were called ducks and needed
to be positioned manually. Thus, setting up a game was a case of getting
the ducks in a row.

Others have suggested the expression comes from the fairground airgun
game of shooting metallic ducks to win prizes. Since the ducks are
moving on a conveyer belt at the start of the game they need to be lined
up before the game begins.

Yet another explanation of the phrase comes from shipbuilding where
devices known as ducks are used to position the keel. Before building
can begin all the ducks need to be in a row.

Ducks in a Row?
16 | Overload | October 2008

FEATUREALLAN KELLY

One of the reoccurring problems in the
software industry is the willingness to

pursue short-term objectives
Lose 10 points for not co-locating the development teams
Deduct 10 points for starting work without talking about design
Lose 10 points for spending the first three months talking about
design and drawing UML
Work to a fixed specification or work to no specification, lose 10
points.
‘We don’t need no management, developers know best’ – deduct 10
points
Fire developers half way through the project, lose 10 for lost
productivity, and lose 10 for morale
Project’s looking late, add more developers, lose 10 for invoking
Brooks’ Law.
And lose 50 if you believe ‘Developers are the problem, our
consultants say we fire them and snap together Lego bricks from
their toy box’

Getting the ducks in a row is the role of management. In this series of
articles I hope to show how to get the ducks in a row. However every case
is different so it’s hard to describe specifics without knowing the details
of a project and the problems the team faces. All I can do is provide
guidance and theories.

Quality
There are two aspects of quality: internal and external. External quality is
that which other people see and use, it measures the degree to which the
product is ‘fit for purpose’. Internal quality concerns the things most users
never see – in other words the software code.
External quality is obviously important, internal quality is also important
but not so obviously. Neither quality has to be so perfect that it is flawless,
it only needs to be good enough that nobody has cause to question it and
ask for rework.
It is acceptable for an online purchase system to lose the odd order, say
one in 1000, if the owners are willing to accept that. Similarly, it is
acceptable for software code to use procedural programming where object-
oriented might be better, provided the code works and is maintainable.
Quality doesn’t mean gold-plating systems or over-engineering systems.
To do so adds to costs without adding significantly to benefits. Provided
quality is high enough not to cause unacceptable future problems then it
is good enough.
When quality falls below this level problems emerge. In the case of
software this means bugs and poor usability. When this happens there are
two effects.
The immediate or direct effect is the problem itself. A customer finds a
bug, the customer is not happy, the bug has to be reported, fixed, tested
and the software reshipped. All this takes time and money.
The second, indirect effect is perhaps more damaging still: the workflow
is disrupted. Instead of doing new work, managers, developers and testers

have to devote time to rework. Either the usual routine is disrupted or extra
resources must be kept ready to fix problems.

Lesson 2: Rework costs far more than most people realise.
Many of the costs are hidden.

One of the reoccurring problems in the software industry is the willingness
to pursue short-term objectives – such as meeting a deadline – rather than
invest in quality. The competitive environment start-up companies find
themselves in sometimes allows no other choice. Accepting lower quality
today stores problems for tomorrow.

Lesson 3: Accepting lower quality today stores up problems for
later.

The software industry is not the first to face this problem. Nearly 30 years
ago Philip Crosby identified and described these problems in other
industries. This led to his seminal book Quality is Free [Crosby80]. This
lesson has been described again and again in industries such as car
manufacturing [Womack91] and semi-conductor manufacturing [Reid85].
Those managing software development projects need to put a greater
emphasis on quality - both internal and external – than is often the case
today. The days when making a deadline meant trading quality for time
are over.

Lesson 4: The software industry needs to collectively raise the
standard of produce and reduce tolerance for rework.

Raising the game on quality starts with attitude: deciding on higher quality
is essential. Then it moves to approach: allowing time for quality,
rewarding quality work and prioritising quality over new features.
Approach gives way to practices: requirement inspection, code reviews,
test driven development and other techniques.
Critically, quality cannot be tested into a product. Improving quality is not
about employing more Software Testers and fixing more bugs. It is about
stopping bugs from happening in the first place. Again there isn’t anything
new here, W. Edward Deming preached this mantra from the 1940s
onwards.
When faults do occur they should be seen as the result of the production
system not the individuals performing the work. Systems allow, even
encourage, individuals to make mistakes. If a developer creates a bug it is
because the system they are working within allowed the bug to be created.
To make the opposite assumption - the put the fault at the feet of the
developers – is not a very useful approach. First it creates a blame culture
which breeds fear. Neither fear nor blame is useful in the workplace.
Secondly this view limits the scope to improve things, asking a developer
to ‘stop writing bugs’ is unlikely to improve things.
October 2008 | Overload | 17

FEATURE ALLAN KELLY

allow the discussion to progress by
focusing on what the customer requires
and when
Under the systems view, as advocated by W. Edwards Deming, the
next step would be to ask: What caused the developer to make the
mistake? What can be done to prevent that happening again?

Lesson 5: Systems, not individuals, are responsible for bugs.
Improve the software production system to improve quality.

The reward for improved quality is not just happier customers; it is less
disruption in the workplace, improved product flow, happier workers and
more predictable results. Or, as Philip Crosby would say: Quality is Free.

Time boxing
It is traditional in software projects to ask individuals how long they thing
each task will take, aggregate the estimates – perhaps using a Gannt or
PERT chart – and produce an estimated completion date. Almost anyone
who has ever worked on a software project with formal project
management will recognise the technique. But, estimates are just that:
estimates. In the world of software engineering estimates are notoriously
poor indicators of how long a piece of work will take,
There are exceptions: some individuals and organizations monitor their
estimates, apply adjustment factors and as a result have reliable estimates.

However these organizations are the exceptions, most struggle with
estimates. For such organizations estimates are more trouble than benefit.
An alternative approach is to turn the question around. Fix the length of
time available and ask What can be achieved in this time? Reduce each
work item into small pieces which can deliver benefits and can fit within
the time allowed.
This approach is called time boxing. People find it difficult to accurately
estimate how long something will take so instead they are asked what they
can fit into a given time. Then they are asked to commit doing the work
in the time given.
The iterations and sprints used in Agile methods are examples of time
boxing. Time boxes can be applied outside of Agile methods too. A team
might decide to do a monthly release and stick to the date no matter what.
Importantly time boxes are the same length and are relatively short – one
or two weeks is typical. Because work is divided into a series of time boxes
of the same length people get fixed reference points to measure their
progress by.

Lesson 6: People are poor at estimating how long a piece of
work will take. So turn the problem around. Set the time allowed
and ask: What can be achieved in this time?

One time box is followed by another. When a piece of work is large it is
broken down into several smaller pieces and allocated over several time
boxes. If there is any question of the work not being completed within the
time box then it is broken down into several smaller pieces. Each piece of
work should represent some measurable improvement in the system.
Using time boxes creates a rhythm to work. People are better able to
understand what can be achieved in any set period when they always work
to the same schedules. Like the rowers in a boat race, there is a
predictability that allows co-ordination.
However time boxing does not answer that age old question: When will it
be ready? If experience teaches anything in software development it is
that this question cannot be answered with predictability.

Lesson 7: When will it be ready is not a useful question, and
the answer is almost certainly wrong. Such questions and
answers lay the foundations for disappointments.

Again the question needs to be turned on its head. This time the one
question is replaced with two: When do you need it by? and What is it?

When we do this we change the nature of the conversation. The
conversation changes from a confrontation between two or more parties
about when some item may be available into a discussion about
prioritisation and possibilities. Confrontation is replaced with negotiation.
These two questions allow the discussion to progress by focusing on what
the customer requires and when. When will it be ready? is not a useful

The cost of work to fix faults – and bugs – is graphically demonstrated
by the contrast between General Motors (GM) and Toyota told in The
Machine that Changed the World (Womack et al. 1991).

The researchers visited a GM car factoring in 1986 where they found the
production line running at full capacity constantly. Anything that might
stop the production line was to be avoided because that would mean lost
production. When the car reached the end of the line it was inspected for
faults that may have occurred during production.

Cars that failed inspection were put in a queue for repair. The direct costs
of repairs included: the parts to replace, workers time to do the fix, storage
space while the car was waiting for repair and then re-inspection (testing).
There were also indirect costs because the company could not predict
when a particular car would be ready to ship. The repair process did not
disrupt assembly directly because it was so routine but it did require
management time to administer the process and extra (specialist)
workers.

Next the researches visited a Toyota factory. Here all workers looked for
defects as the car was being assembled. If one was detected the whole
production line was stopped, the fault was fixed and an investigation
launched into how the fault had occurred. When the reason was found
the cause would be fixed and the production line restarted.

At first sight Toyota might not have the throughput as GM but the savings
from the repair work more than made up for this. Over time Toyota
debugged their production system – rather than faulty cars – their
production system actually got faster and faster. Productivity was higher
than GM.

Rework is lost work
18 | Overload | October 2008

FEATUREALLAN KELLY

In order to hit a target the team needs
to aim at the target
question for a software developer, it tells them nothing of priorities and
needs. Knowing exactly what is needed and by when is much more useful.
If the what cannot be delivered by the when, then conversation can proceed
to break down the what into smaller pieces and possible compromises or
interim solutions. In contrast, if the answer to When will it be ready? is
not acceptable to the questioner the conversation tends to become
confrontational.

Lesson 8: Schedule discussions need to be rich conversations.
Understanding what the customers require and when they
require it allows alternatives to be discussed and options
examined.

Shared focus
Leave to one side the distractions of the work environment, office politics,
the office move, the state of the kitchen. Leave aside personal distractions,
painting the house, cleaning the car, your new girlfriend. Leave aside the
distractions of everyday human life, this morning’s late train, the football
match and the new sandwich shop. Software projects need clear focus.
Software development is no longer an individual sport; large programs and
systems are created and operated by teams. All members of the team need
to be focused on the same thing and pulling in the same direction.
Unfortunately software projects are full of distractions. Ambiguous
requirements may give different team members different understandings
of what is required. Time schedules that lack credibility mean nobody
knows when a product should complete let alone when it will. Debates over
technical merits of technology X over technology Y mean neither is used.
Successful teams need focus. Focus removes distractions and channels all
efforts in one direction. Individuals need to share objectives and work
together.
In order to hit a target the team needs to aim at the target. So the team needs
to know as much about the target as possible: what is it, when is it, why is
it and where is the team now. Sports teams always know the score, software
teams need to know where they are relative to the target.

Lesson 9: The first responsibility of any leader is to create a
shared focus. Squeezing out ambiguity, wherever it is found,
allows work to proceed more productively.

The larger the work effort and the longer the time scales the more difficult
it is for a team to hold shared focus. In order to create focus software
development teams need to shorten their time horizons and reduce the
number of things they are attempting to accomplish.
Software is very abstract stuff so it can be difficult to create focus. When
tasks, deadlines and constraints are made physical it becomes easier to
focus on them. So a team might display the deadline on a large banner

across the work area. Tasks might be written on cards or flips charts and
ticked off as they are done.
Time boxing can help here too. Work is reduced into small pieces which
can be focused on for a short while. Raising the quality bar is another, when
everyone knows quality will not be compromised then the discussion goes
away.
In developing software there are many, many, options and consequently
many decisions to be made. After all, software is soft, everything is
malleable. The development process is one of turning ideas into physical
code, from abstraction to execution.
The temptation is to keep all options open and allow infinite flexibility in
the development process. However this only increases the decisions to be
made and provides more opportunities to make inconsistent decisions – to
move a duck out of position.
Closing options, denying ourselves some of the tools helps reduce the
decision space and the unpredictability encountered. Setting out a
framework in which to operate reduces uncertainty and increases focus.

Summary
If teams are to be focused they need to know what they are trying to
achieve. If work is broken down into pieces somebody needs to know
which pieces are meaningful and which are waste. When work is worth
doing it is worth doing well, with high quality. Doing unnecessary work
poorly is not a compromise but a waste.
Project management is about delivering something, in some time frame.
Project Managers are trained to report on progress, to manage a delivery
and to adjust the delivery schedule to meet a time frame.
Project management is the dominant paradigm in the software
development world. As such it tends to squeeze out the other aspects of
management but it is not the only aspect of management in software
development. Getting the ducks in a row involves other aspects of
management.
Project success however should not be defined by delivering something
but on delivering meaningful value to customers. Work packages should
not be sliced and diced to fit a schedule, they should be sliced and diced
to deliver value. The what is delivered is key to determining the when.
Future pieces in this series will look at other management aspects of
software development and specifically at managing the what will be
delivered.

References
[Crosby80] Crosby, P. B. 1980. Quality is free: the art of making quality

certain: New American Library.
[Reid85] Reid, T.R. 1985. Microchip Glasgow: William Collins & Sons.
[Womack91] Womack, J.P., D.T. Jones and D. Roos. 1991. The machine

that changed the world. New York: HarperCollins.
October 2008 | Overload | 19

FEATURE RICHARD HARRIS
The Model Student: Can Chance
Make Fine Things? (Part 1)
Evolution involves a random process. Richard Harris
compares the mathematics to that of blind chance.
n the 28th May 2007, the Creation Museum [Creation] opened its
doors to the public for the first time. Located in Kentucky USA, its
purpose is to present scientific evidence in support of the thesis of

Young Earth Creationism. This holds that Genesis is a literal account of
the creation of the universe, that the Earth was created in six days between
six and ten thousand years ago, that fossil beds were laid down during the
flood and that human evolution is unsubstantiated religious doctrine. They
propose that an international conspiracy of politically motivated secular
humanists have duped the people of the world into accepting their faith as
scientific truth [MatriscianaOakland91].
I must say that I find the claims of an international conspiracy somewhat
surprising; I’ve certainly never been invited to contribute. That said, being
a secular humanist unmotivated to the verge of apathy, I’d probably be the
last person they’d want to enlist.
I can understand the doubt many creationists have that evolution can
account for the rich array of complex life we find surrounding us. After
all, it’s fundamentally a random process and life exhibits a remarkable
degree of organisation.
William Paley [Paley02] famously expressed this doubt by pointing out
that if we were to come across a watch lying upon the ground, we should
inevitably deduce the existence of a watchmaker. Richard Dawkins
rejoinders this in his book The Blind Watchmaker [Dawkins86] with the
familiar argument that it is the accumulation of small beneficial random
changes rather than single large random changes that account for the
emergence of order.
Unsurprisingly, my first instinct is to construct a simple model to
investigate this argument.
I propose that we model iterated improvement by measuring how long it
takes to randomly count from zero to a given threshold, t, in the range
[0, n). I use the term randomly counting to describe subtracting one, doing
nothing or adding one with equal probability and choosing the better of
the original and the changed value 90% of the time. In other words we have
six possible outcomes, as illustrated in Figure 1.
For comparison we will randomly select numbers from the range and
measure how long it takes before we have one greater than or equal to the
threshold.
There will be no need to run any simulations since the model is so simple
that a comprehensive probabilistic analysis is relatively straightforward.
Let’s start with the second of these; the number of times we need to
randomly select numbers before we reach the threshold.
There are n-t numbers greater than or equal to t in the range. The
probability of picking one of these is therefore

The expected number of steps before we reach the threshold is simply the
reciprocal of this probability.

To calculate the number of steps that iterated improvement requires, we
should note that the expected increase from each step can be found by
multiplying the value of each step by the probability that we take it and
summing them. For simplicity, we’ll allow the value to step below zero,
so that every step is the same.
The expected number of steps is then the threshold divided by the expected
step increase.

This doesn’t look good for iterated improvement. It will only take fewer
steps than the totally random scheme if

O
n t–

n

Er
n

n 1–
------------=

Ei
1

1 1
3
--- 9

10
------ 1 1

3
---× 1

10
------×–××

--=

30t
9 1–
------------=

15
4

------t=

15
4

------t n
n t–
----------<

Figure 1

Move Select Probability

+1 accept

+1 reject

1
3
--- 9

10
------×

1
3
--- 1

10
------×

Move Select Probability

-1 accept

-1 reject

1
3
--- 1

10
------×

1
3
--- 9

10
------×

Move Select Probability

0 accept

0 reject

1
3
--- 9

10
------×

1
3
--- 1

10
------×

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
20 | Overload | October 2008

FEATURERICHARD HARRIS

iterated improvement is not enough to
explain why evolution should be any more

effective than guesswork
Rearranging, we find that we require

Now, since t is strictly less than n, the right hand is smaller than the left
for most choices of n and t, and hence iterated improvement is generally
going to be even worse than random sampling. To make this absolutely
clear let’s pick some specific values, say one hundred for n and fifty for t.

I think that this demonstrates the point; iterated improvement is not enough
to explain why evolution should be any more effective than guesswork.
So does this weaken the argument for evolution?
Well, no. It does highlight a significant weakness in my model however.
A better model would reflect the fact that evolution operates upon many
different attributes simultaneously. We can extend our model to account
for this by using a d dimensional vector of integers instead of a single
integer.
This time each step will randomly change the value of every element and
we will consider the result to be a retrograde step if any of the elements
are smaller than they were.
Given that the each element is changed independently of the others, the
expected number of random guesses we need to take before every element
is greater than the threshold is simply the product of the expected number
of guesses needed for each of them.

With iterated improvement the calculation is slightly more complicated.
We can still exploit the independence of the elements since every element
will have the same expected increase at each step.
If the given element takes a positive step, it will be considered a success
only if all of the remaining elements do not take a negative step. Once again
we can exploit the independence of the elements by simply multiplying
the probabilities that each of them is not negative.

The probability of any of the remaining elements taking a retrograde step
is simply one minus this.

The probability that an element takes a positive step is therefore

If an element takes a negative step, the whole step is necessarily considered
retrograde. The probability of taking it is therefore

The expected increase of an element from each step is therefore

Since all of the elements change at the same rate, the expected number of
steps needed for every element to reach the threshold is simply the
threshold divided by δ.

So the advantage of iterated improvement is that, for a sufficiently large
threshold, it scales far better than random guessing does as the number of
dimensions increases. Note that sufficiently large means greater than just
one third of the upper bound. Using the same values for t and n as before,
Figure 2 illustrates the expected number of steps each scheme requires
various numbers of dimensions.
At seventeen dimensions, iterated improvement becomes more efficient
than simple random sampling. This may seem like a lot, but the threshold
we chose wasn’t particularly high. Figure 3 illustrates the dimensions at
which iterated improvement is better than sampling for various thresholds
for our n of one hundred.
One criticism of this as a model for evolution is that the rate of change is
rather rapid and that the better candidate is selected far more often than
would be expected in reality. However, if we consider each step to be the
cumulative result of many generations, these choices start to look more
reasonable.

14
5

------t n t–() n<

14
5

------t 14
5

------t 1
n
---⎝ ⎠
⎛ ⎞– 1<

14
5

------t 14
5
------t 1

n
---⎝ ⎠
⎛ ⎞ 1+<

15
4
------ 50 15

4
------<× 50 50

100
---------⎝ ⎠
⎛ ⎞× 1+

750
4

--------- 750
8

--------- 1+<

1500 758<

Er
n

n t–
----------⎝ ⎠
⎛ ⎞ d

=

p success() 2
3
---⎝ ⎠
⎛ ⎞ d 1–

=

p failure() 1 2
3
---⎝ ⎠
⎛ ⎞–

d 1–
=

p +1() 1
3
--- p success() 9

10
------× p failure() 1

10
------×+⎝ ⎠

⎛ ⎞=

1
3
--- 2

3
---⎝ ⎠
⎛ ⎞ d 1– 9

10
------ 1 2

3
---⎝ ⎠
⎛ ⎞ d 1–

–⎝ ⎠
⎛ ⎞ 1

10
------×+×⎝ ⎠

⎛ ⎞=

1
3
--- 2

3
---⎝ ⎠
⎛ ⎞ d 1– 8

10
------ 1

10
------+×⎝ ⎠

⎛ ⎞=

1
30
------ 8 2

3
---⎝ ⎠
⎛ ⎞ d 1–

1+⎝ ⎠
⎛ ⎞=

p 1–() 1
3
--- 1

10
------× 1

30
------= =

δ 1 p +1() 1 p 1–()×–×=

1
30
------ 8 2

3
---⎝ ⎠
⎛ ⎞ d 1–

1+⎝ ⎠
⎛ ⎞ 1

30
------–=

4
15
------ 2

3
---⎝ ⎠
⎛ ⎞ d 1–

=

Ei
15
4

------ 3
2
---⎝ ⎠
⎛ ⎞ d 1–

t=
October 2008 | Overload | 21

FEATURE RICHARD HARRIS

evolution within a species, called
microevolution, and the evolution from one
species to another, called macroevolution
We can illustrate this by performing the same analysis using different
probabilities of change and selection, say 1% chance of improvement, 1%
chance of degradation and 51% chance of selecting the better of the two
vectors. This yields an expected increase per step of

The proportional change in the number of steps we need to take before we
have the same expected increase as before is simply the original expected
increase divided by this new one

Whilst this may seem like a large number, it reduces rather quickly as the
number of dimensions increases. Furthermore, even the worst factor of
approximately 1,667 would result in one aggregate step in as little as 40
weeks for bacteria with a reproduction rate of one generation per hour.
The stated position of Answers in Genesis [Genesis], the owners of the
Creation Museum, is that evolution is true, but in a limited form. They
make the distinction between evolution within a species, called
microevolution, and the evolution from one species to another, called
macroevolution. They accept that the former is true, it can be observed in

the adaptation of bacteria to antibiotics for example, but reject the latter
claiming that nobody has ever seen one species evolve into another.
One of the arguments they use to refute the suggestion that given sufficient
time a large number of small changes will accumulate into a large change
is the assertion that evolution can only remove information, not create it.
In this light, it could be argued that my model presupposes the goal, that
the answer I seek is encoded into the very vector that is subjected to iterated
improvement; counting is, after all, what integers are for.
To investigate this, we’ll need some code with which to run experiments.
To begin with we’ll need a source of random numbers. The one we used
in our last project will be fine and is reproduced in Listing 1.
Next, we’ll need a class to represent one of our hypothetical creatures. In
a fit of originality, I’ve called it individual and its definition is given
in Listing 2.
The thus far undefined biochem class is an interface class that we will
use to abstract the details of the model, allowing us to fiddle with them
without rewriting all of our code. Before discussing the individual class
further it’s probably worth taking a look at the definition of the biochem
class, given in Listing 3.
We represent the genetic makeup of our model individuals with the
genome_type defined here and their features with the phenome_type.
These terms, like many I shall use in this project, originate from the field
of biology. The important thing to note about them is that the genetic

δ' 2
10 000,
------------------ 99

100
---------⎝ ⎠
⎛ ⎞ d 1–

=

p δ
δ'
----=

4
15
------ 2

3
---⎝ ⎠
⎛ ⎞ d 1–

2
10 000,
------------------ 99

100
---------⎝ ⎠
⎛ ⎞ d 1–

--=

40 000,
30

------------------ 200
297
---------⎝ ⎠
⎛ ⎞ d 1–

=

1 667 2
3
---⎝ ⎠
⎛ ⎞ d 1–

,=

Figure 2 Figure 3

Listing 1

double
rnd(double x)
{
 return x * double(rand())/
 (double(RAND_MAX)+1.0);
}

22 | Overload | October 2008

FEATURERICHARD HARRIS

namespace evolve
{
 class individual
 {
 public:
 typedef biochem::genome_type genome_type;
 typedef biochem::phenome_type phenome_type;
 individual();
 explicit individual(const biochem &b);
 const individual & operator=(
 const individual &other);
 void reset();
 const genome_type & genome() const;
 const phenome_type & phenome() const;
 void swap(individual &other);
 void reproduce(individual &offspring) const;

Listing 4

evolve::individual::individual() : biochem_(0)
{
}
evolve::individual::individual(
 const biochem &biochem) : biochem_(&biochem),
 genome_(biochem.genome_size(), 0)
{
 develop();
}

void
evolve::individual::reset()
{

makeup is discrete in nature (i.e. integer valued) whereas the features are
continuous (i.e. floating point valued).
The genome_size and phenome_size member functions determine
the size of the two vectors. The genome_base member function
determines the range of integers that constitute the elements of the genome.
The develop member function maps a particular genetic makeup to a set
of features. Finally, the p_select member function indicates the
probability that we select the better of two individuals; remember that this
was 0.9 in our original analysis.
In addition to managing the representation of the genome and phenome,
the individual class is responsible for the reproductive process. As in
our earlier analysis this involves a random change to a single element of
the genetic makeup.
Before we can do this, however, we must initialise the individual so
let’s begin by taking a look at the constructors (Listing 4).
An interesting point to note is that whilst we pass the biochem by
reference we store it by pointer. This is because we will want to store
individuals in standard containers and they require contained classes
to be both default initialisable and assignable. These are tricky properties
to support for classes with member references since, unlike pointers, they
cannot be re-bound.

Note that by default, we initialise the genome with 0. If we want to
randomly initialise the individual, we need to call the reset member
function, illustrated in Listing 5.
The reset function is pretty straightforward; it simply sets each element
of the genome to a random number picked from zero up to, but not
including, genome_base.
Like the constructor, it ends with a call to the develop member function.
This is responsible for mapping the genome to the phenome and is shown
in Listing 6.
This simply forwards to the biochemistry object which will initialise
the phenome according to whatever plan we wish.
Now we’re ready to take a look at the reproduce member function. As
Listing 7 illustrates, this simply copies the individual to an offspring
and subsequently mutates and develops it.

Listing 2

 private:
 void develop();
 void mutate();
 const biochem * biochem_;
 genome_type genome_;
 phenome_type phenome_;
 };
}

Listing 3

namespace evolve
{
 class biochem
 {
 public:
 typedef
 std::vector<unsigned long> genome_type;
 typedef
 std::vector<double> phenome_type;
 virtual size_t genome_base() const = 0;
 virtual size_t genome_size() const = 0;
 virtual size_t phenome_size() const = 0;
 virtual double p_select() const = 0;
 virtual void develop(
 const genome_type &genome,
 phenome_type &phenome) const = 0;
 };
}

Listing 5

 if(biochem_->genome_base()<2)
 throw std::logic_error("");
 genome_type::iterator first = genome_.begin();
 genome_type::iterator last = genome_.end();
 while(first!=last)
 {
 *first++ = (unsigned long)rnd(double(
 biochem_->genome_base()));
 }
 develop();
}

Listing 6

void
evolve::individual::develop()
{
 if(biochem_==0) throw std::logic_error("");
 biochem_->develop(genome_, phenome_);
}

Listing 7

void
evolve::individual::reproduce(
 individual &offspring) const
{
 if(biochem_==0) throw std::logic_error("");
 offspring.biochem_ = biochem_;
 offspring.genome_.resize(genome_.size());
 std::copy(genome_.begin(), genome_.end(),
 offspring.genome_.begin());
 offspring.mutate();
 offspring.develop();
}

October 2008 | Overload | 23

FEATURE RICHARD HARRIS

Listing 8

void
evolve::individual::mutate()
{
 if(biochem_==0) throw std::logic_error("");
 if(biochem_->genome_base()<2)
 throw std::logic_error("");
 size_t element =
 size_t(rnd(double(genome_.size())));
 size_t change =
 biochem_->genome_base()+size_t(rnd(3.0))-1;
 genome_[element] += change;
 genome_[element] %= biochem_->genome_base();
}

namespace evolve
{
 class population
 {
 public:
 typedef std::vector<individual>
 population_type;
 typedef population_type::const_iterator
 const_iterator;
 population(size_t n, const biochem &b);
 size_t size() const;
 const individual & at(size_t i) const;
 const_iterator begin() const;
 const_iterator end() const;
 void reset();
 void generation();
Note that we use resize and copy rather than assignment since for most
of our simulation the offspring will already be the correct size, so we
may as well reuse its genome_.
So the final member function of interest is therefore mutate. This simply
picks a random element of the genome and, as in our earlier analysis, with
equal probability increments, decrements or leaves it as it is (Listing 8).
We decide on the change we’ll make to the selected element by generating
a random unsigned integer less than three and subtracting one from it,
leaving us with either minus one, zero or plus one. To ensure that we don’t
underflow the element if we try to decrement below zero, we add
genome_base to the change, d. Since the change is ultimately made
modulo genome_base to ensure that the changed element remains in the
valid range this is cancelled out at the end of the calculation.
So now that we have a class to represent individual creatures we need a
class to maintain a collection of them which, in another display of stunning
originality, I will call population (Listing 9).
Whilst the basic purpose of the population class is to maintain a set of
individuals, it is also responsible for managing the steps of the
simulation. It does this with the generation member function which
controls the reproduction and selection of individuals.
We initialise the population class with the constructor (Listing 10).
Note that, unlike for individual, we store the biochem by reference.
This is because we will not need to store population objects in standard
containers.
The constructor initialises the population_ member with n biochem_
initialised individuals and the offspring_ member with 2*n
uninitialised individuals. The former represents the population upon
which we will perform our simulation, whilst the latter provides a buffer
for the reproduction and selection process.
Finally, the constructor calls the reset member function to randomly
initialise the population (Listing 11).
The reset member function simply iterates over population_ calling
reset to randomly initialise each member.
As mentioned above the final member function, generation, is
responsible for running each step of the simulation and it is illustrated in
Listing 12.
This simply forwards to the reproduce and select member functions.
The former is responsible for reproducing each individual in the

population_ member into two individuals in the offspring_
buffer. The latter is responsible for competitively selecting members of the
offspring_ buffer back into the population_ (Listing 13)
Again, this is a relative simple function since the reproduction of each
individual is delegated to the individual itself.
The select member function is a little more complex (Listing 14).
The select member function ensures that every offspring competes for
inclusion in the new population. It does this by randomly reordering them,
using std::random_shuffle, and then having each adjacent pair
compete for selection (Listing 15).
This competitive selection more or less follows the scheme we used in our
initial analysis. The main difference is rather than having an offspring
compete with its parent, we now have offspring competing against each
other.
To this end, we simply select the better of the two individuals, as
determined by the pareto_compare function, with the probability given
by the biochem_. The pareto_compare function returns true if each
element in the first iterator range is strictly less than the equivalent element
in the second range.
The terminology originates in mathematics. If we take a set of points in
more than one dimension, those that are not less than any of the others in
the set on at least one axis are known as the Pareto optimal front and
represent the set of valid trade offs between the values on each axis. For
example, if we had two values representing the efficiency and power of

Listing 9

 private:
 void reproduce();
 void select();
 const individual & select(const individual &x,
 const individual &y) const;
 const biochem & biochem_;
 population_type population_;
 population_type offspring_;
 };
}

Listing 10

evolve::population::population(size_t n,
 const biochem &biochem) :biochem_(biochem),
 population_(n, individual(biochem_)),
 offspring_(2*n)
{
 reset();
}

Listing 11

void
evolve::population::reset()
{
 if(biochem_.genome_base()<2)
 throw std::logic_error("");
 population_type::iterator first =
 population_.begin();
 population_type::iterator last =
 population_.end();
 while(first!=last) first++->reset();
}

24 | Overload | October 2008

FEATURERICHARD HARRIS

void
evolve::population::reproduce()
{

assert(2*population_.size()==offspring_.size());
 population_type::const_iterator first =

Listing 12

void
evolve::population::generation()
{
 reproduce();
 select();
}

a

n engine, we may be willing to sacrifice power for the sake of efficiency,
or efficiency for the sake of power. All other things being equal, we should
not compromise on both. The Pareto optimal front therefore gives us the
set of acceptable compromises.
Figure 4 illustrates the Pareto optimal front for a set of points randomly
distributed inside a quarter circle.
The signature of the pareto_compare function is inspired by
std::lexicographical_compare and since it must therefore deal
with ranges of different lengths is a little more general than we require.
We deal with ranges of different lengths by hypothetically extending the

shorter range with values strictly less than those in the longer range. In
practice this means if we reach the end of the first range without
encountering an element not less than one from the second range, the first
range is considered lesser than, or in mathematical parlance dominated by,
the second (Listing 16).
Given that std::lexicographical_compare was the inspiration for
the design of this function, we might as well generalise it to cope with
arbitrary comparison functions.
So, returning to the select member function, we ensure that we choose
the best with the correct probability by setting the probability of selecting
the first to p_select or 1-p_select depending on whether it is the best
of the pair or not. By generating a random number from zero up to, but not
including, one and comparing it to this probability we can select the first
exactly as often as required.
We now have all the scaffolding we need to start simulating evolution for
a given biochem. All that’s left to do is implement a biochem with a
sufficiently complex mapping from genotype to phenotype, and we shall
do that next time.

Listing 13

 population_.begin();
 population_type::const_iterator last =
 population_.end();
 population_type::iterator out =
 offspring_.begin();
 while(first!=last)
 {
 first->reproduce(*out++);
 first++->reproduce(*out++);
 }
}

Listing 14

void
evolve::population::select()
{

assert(offspring_.size()==2*population_.size());
 population_type::iterator first =
 offspring_.begin();
 population_type::iterator last =
 offspring_.end();
 population_type::iterator out =
 population_.begin();
 std::random_shuffle(first, last);
 while(first!=last)
 {
 const individual &x = *first++;
 const individual &y = *first++;
 if(x.genome().size()!=y.genome().size())
 {
 throw std::logic_error("");
 }
 if(x.phenome().size()!=y.phenome().size())
 {
 throw std::logic_error("");
 }
 *out++ = select(x, y);
 }
}

Figure 4

Listing 15

const evolve::individual &
evolve::population::select(const individual &x,
 const individual &y) const
{
 if(x.phenome().size()!=y.phenome().size())
 {
 throw std::logic_error("");
 }
 double px = 0.5;
 if(pareto_compare(y.phenome().begin(),
 y.phenome().end(), x.phenome().begin(),
 x.phenome().end()))
 {
 px = biochem_.p_select();
 }
 else if(pareto _compare(x.phenome().begin(),
 x.phenome().end(), y.phenome().begin(),
 y.phenome().end()))
 {
 px = 1.0 - biochem_.p_select();
 }
 return (rnd(1.0)<px) ? x : y;
}

October 2008 | Overload | 25

FEATURE RICHARD HARRIS
Acknowledgements
With thanks to Keith Garbutt and Lee Jackson for proof reading this article.

References
[Creation] http://www.creationmuseum.org
[Dawkins86] Dawkins, R., The Blind Watchmaker, Longman, 1986.
[Genesis] http://www.answersingenesis.org
[MatriscianaOakland91] Matrisciana, C. and Oakland, R., The Evolution

Conspiracy, Harvest House Publishers, 1991.
[Paley02] Paley, W., Natural theology, or, Evidences of the existence and

attributes of the Deity collected from the appearances of nature,
Printed for John Morgan by H. Maxwell, 1802.

Further reading
Frankham, R., Ballou, J. and Briscoe, D., Introduction to Conservation

Genetics, Cambridge University Press, 2002.
Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, 1989.
Hiroyasu, T. et al., Multi-Objective Optimization of Diesel Engine

Emissions and Fuel Economy using Genetic Algorithms and
Phenomenological Model, Society of Automotive Engineers, 2002.

Holland, J., Adaptation in Natural and Artificial Systems, University of
Michigan Press, 1975.

Karr, C. and Freeman, L. (Eds.), Industrial Applications of Genetic
Algorithms, CRC, 1998.

Klockgether, J. and Schwefel, H., ‘Two-Phase Nozzle and Hollow Core
Jet Experiments’, Proceedings of the 11th Symposium on
Engineering Aspects of Magnetohydrodynamics, Californian
Institute of Technology, 1970.

Koza, J., Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, 1992.

Rechenberg, I., Cybernetic Solution Path of an Experimental Problem,
Royal Aircraft Establishment, Library Translation 1122, 1965.

Vose, M., The Simple Genetic Algorithm: Foundations and Theory, MIT
Press, 1999.

Listing 16

namespace evolve
{
 template<class InIt1, class InIt2>
 bool pareto_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2);
}
template<class InIt1, class InIt2>
bool
evolve::pareto_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2)
{
 while(first1!=last1 && first2!=last2 &&
 *first1<*first2)
 {
 ++first1;
 ++first2;
 }
 return first1==last1;
}

Listing 17

namespace evolve
{
 template<class InIt1, class InIt2, class Pred>
 bool pareto_compare(InIt1 first1, InIt1
last1,
 InIt2 first2, InIt2 last2, Pred pred);
}
template<class InIt1, class InIt2, class Pred>
bool
evolve::pareto_compare(InIt1 first1, InIt1 last1,
 InIt2 first2, InIt2 last2, Pred pred)
{
 while(first1!=last1 && first2!=last2 &&
 pred(*first1, *first2))
 {
 ++first1;
 ++first2;
 }
 return first1==last1;
}

26 | Overload | October 2008

FEATUREKLAUS MARQUARDT
Performitis (Part 3)
Prevention is better than cure. Klaus Marquardt
suggests some treatments to avoid problems.
Both diagnoses and therapies follow their own forms, including sections
that contribute to the medical metaphor.

With each diagnosis, symptoms and examination are discussed and
concluded by a checklist. A description of possible pathogens and the
etiology closes the diagnosis.

Each diagnosis comes with a brief explanation of applicable therapies.
This includes possible therapy combinations and treatment schemes that
combine several therapies. These are suggested starting points for a
successful treatment of the actual situation.

Therapies are measures, processes or other medications applicable to
one or several diagnoses. Their description includes problem, forces,
solution, implementation hints and an example or project report. Their
initial context is kept rather broad since most can be applied for different
diagnoses.

In addition to the common pattern elements, therapeutic measures
contain additional, optional sections of pharmaceutical information.
These are introduced by symbols:

the mechanisms of a
therapy and how it
works;

the involved roles and
related costs;

counter indications,
side and overdose
effects;

cross effects when
combined with other
therapies.

Pattern form and approach
ast time we discussed how to overcome Performitis, and learned about
technical approaches that basically resemble what I’d call sound
software engineering practices. If the teams had followed them,

Performitis would never have had a real chance to emerge.
However, slips in sound practice do happen – and not necessarily by novice
developers. Seasoned developers abandon solid practices because of their
convictions, prejudices, and assumptions.

Process and attitude
While an extensive process cannot compensate for sloppy engineering,
there are process elements that can help to keep the technical issues from
becoming quality issues that endanger a release.

A TEST-ORIENTED PROCESS supports early feedback and fosters a
quality driven attitude. While it is not necessarily directed towards
performance or against Performitis, it helps to soothe most of the
symptoms. When the tests include performance criteria, both the
overall design quality can be improved and the performance goals
met.
TIME BOXED RELEASES discourages spending time on activities
with low return – such as too early, too detailed performance tuning
measures that can lead to Performitis.

Both process elements reduce the overall project risk and are advocated
by agile development methods [Agile01]. While it is always a good idea
to reduce risk, these two process elements are particularly helpful in
compensating for Performitis.
When Performitis occurs, how the architect interprets his role is essential,
as well as how he is perceived by the other project participants. In many
teams the architect is as tangled in prejudices and assumptions as any
developer. A new interpretation of the architect’s responsibilities can help:
if the architect is not just a technical decision maker but a coach for all
developers, he needs to stand back and reflect about the project and what
to coach. This ARCHITECT ALSO COACHES stance is much less determined
to result in Performitis, both due to the reflection and to the coaching.
During this coaching or in separate workshop settings, the team can
explore the SYNERGIES BETWEEN QUALITIES that the project offers.

Change
The technical symptoms of Performitis can be attacked by sound practice
or suppressed by extensive process. The causes of Performitis can be
taught and the team led to avoid and master it.
However, sometimes sound practices do not happen, the process does not
help, and all costly initiatives create more friction than effect. Let’s face
it, it’s not the technology and not the process, it’s the people. A change is
needed. In this situation any organizational change is good per se – as there
is no point in continuing the old way.
Projects endangered by Performitis have a size that typically results in an
explicit team structure. This follows either the technical domains involved,

or the feature aspects of the application domain. Projects need to cover both
dimensions and fill the entire matrix that is spanned, but the organization
necessarily focuses on one aspect. To REORGANIZE THE PROJECT TEAM
along another dimension changes the focus of the developers and can lead
to remission of Performitis.
When the team is still inclined towards Performitis, STAFF EXCHANGE is
the last resort of management. Remember that Performitis thrives best in
teams that close themselves against external influence. When the people
cannot cure the project, the project has to cure itself.
Chance removes known paths and rites, and induces further change at a
smaller scope as reaction. Bringing in experience from other cultures
causes friction; the project’s progress will degrade before something
actually improves. Combine the therapies of change with other process and
technical therapies to ensure a positive learning curve with respect to
performance and intrinsic qualities.

L

Klaus Marquardt is a technical manager and system architect with
Dräger Medical in Lübeck, Germany. His experience includes life
support systems and large international projects. Klaus is particularly
interested in the relations between technology, organization, people
and process. He has contributed sessions to many conferences
including OOP, JAOO, ACCU, SPA and OOPSLA. Klaus can be
contacted at pattern@kmarquardt.de
October 2008 | Overload | 27

FEATURE KLAUS MARQUARDT

Table 1

 An overview of the therapies discussed

Applicability Effect Related therapies

TEST-ORIENTED PROCESS Preferably early in the project Palliative; remission possible

TIME BOXED RELEASES Preferably early in the project Palliative; remission possible Combine with TEST-ORIENTED PROCESS

SYNERGIES BETWEEN QUALITIES Any time during the project Remission possible

ARCHITECT ALSO COACHES
(EMPHASIZE ~ILITIES)

Preferably early in the project.
Whenever team composition changes

Remission possible Requires a DEDICATED ARCHITECT

REORGANIZE THE PROJECT TEAM Once or twice, late in the project Side effects of change, no
deterministic result

Combine with process or technical
therapies

STAFF EXCHANGE Any time during the project Side effects of change, no
deterministic result

Combine with process or technical
therapies
TEST-ORIENTED PROCESS

Applies to projects whose major implementation decisions are
derived from the developers’ gut feelings. No effort is made to find
out whether these decisions are appropriate.

In a development team that is overly concerned about specific system
properties, expensive measures are taken without evidence of necessity or
possible prove of effectiveness. Important aspects of the project goals are
hidden behind the self adopted blinkers.

Experienced developers have gone through extensive learning
processes,
...but every new project comes with problems you have not yet
experienced.
It is unlikely that somebody learns from theoretical lessons without
a match in the daily practice,
...but each project has stakeholders whose practice differs from the
developers’ world and promote their particular foci.
Changing the development methodology can be much harder than
changing some technology,
…but tackling a process issue with process actions causes the least
friction.

Therefore, focus the development on testable achievements and create a
test for every development step. Consider no functionality completed until
it has been tested. Explicitly include things that are hard to test, like the
architecture, and the system performance.
Most blinkers are based on previous experience, much like a Pavlov reflex.
Typically the developers can well describe what the actual problem back
then was, how it was discovered, and what they would do differently to
avoid similar problems in future projects. From here, defining some kind
of test is usually a small step. Messed up dependencies can be tested by
evaluating generated dependency graphs; insufficient or unfavourable
architectures can be tested by reviews according to self defined criteria;
failed performance goals can be tested by load tests and frequent profiling
against estimated thresholds. If a blinder cannot be expressed in terms of
some test, it is probably just a prejudice instead of an experience.
When changing the project’s way of working, make sure that the people
with the greatest level of concern feel like the winners. If possible, push
them into suggesting tests themselves. Never insist that the idea comes
from you, and never fully expose why you were so eager to introduce tests.

This appears to be the obvious thing for every software developer who has
seen some kind of development methodology. Testing is the broadest
intersection between waterfall-like and agile ways of thinking.
Management and quality control will appreciate your initiative. The
project development progress becomes visible and easily traceable, while
the releases inherently bring a minimal level of quality that makes formal
testing much easier.

We started to introduce integration tests on a unit test granularity,
for each completed function that was available on multiple
platforms. These helped to limit the negative effect of changes to a
common code base that were impossible to test on all systems
employing the code with reasonable effort. Performance was an
issue, so we expanded the test framework with time measurement.
A function that had at least once caused a performance problem
became accompanied by an additional unit test with no functional
test criterion, but with an execution time criterion. The code had to
satisfy the timing requirements of the most performance limited
client, otherwise the test was not considered passed.

TIME BOXED RELEASES

Applies to projects that spend their time preparing for some future
event that might never come, meanwhile neglecting sound software
engineering practices.

TEST-ORIENTED PROCESS is effective against all diagnoses that
stem from process related blinkers. Its mechanism is to relate
all experiences to a common currency called ‘test’ – similar to
business decisions that require all known influences to be
converted into ‘money’ for comparison. This offers a global
view on a lot of different aspects of development, including
missing ones as well as blinding ones.

Changing the development process requires buy-in from all
project stakeholders. Like all changes to the way of working,
the key costs are proportional to the resistance they create.
Agree on compromises that help to reduce resistance. Suggest
the changes early while the team is still small, and the blinkers
have not had a severe effect.

The only real counter indication against TEST-ORIENTED
PROCESS would be to introduce it near the end of the project,
and it is not definitely sure that it will fail without drastic
measures. The side effects are the reason you introduce it in the
first place: attention to previously blind spots, and time and
effort spend there. The overdose effect would be to test to an
extent that is no longer cost effective – but you are not very
likely to experience it.

TEST-ORIENTED PROCESS goes well together with all other
therapies that do not change the development process. If you
need to introduce other methodology changes as well, like a
focus on architecture, it might be appropriate to find the
common ground among the changes first, and then change the
process according to which risks are the most important ones
in the current situation.
28 | Overload | October 2008

FEATUREKLAUS MARQUARDT
In a development team that has lost focus of the project’s purpose or the
key architectural solution issues, you need to reinforce the main objectives
of the project.

Former experience leads to anticipation of problems to come,
…but when the problems do not come, you lose the effort spent on
anticipation.
Preparing for future possibilities requires time,
…but the time is best spent on the problems you have at hand, and
on increased customer value.
Time pressure reduces the willingness to spend effort in quality
work,
…but adequately balanced internal qualities enable the team to
proceed faster, and cope with yet unforeseen situations.

Therefore, schedule the releases of your software in frequent, small
intervals. Convince your management that sticking to the release dates is
of major importance, just as important as keeping the internal VISIBLE
QUALITIES.
When the team remains unchanged, the only variable you can negotiate is
the scope, the expected functionality contained in each delivery. However,
all project stakeholders will strive to have as much usable functionality
with each release. This leads to a strongly perceived lack of time to care
for tiny details early in the project, including early tuning measures except
when well motivated as MEASUREMENT-BASED TUNING.

TIME BOXED RELEASES are a two-edged sword. I have been at a
team that was forced to implement features, and ignore
performance for a long time. When performance had degraded to
a degree that the customer could no longer reasonably execute his
acceptance and usability tests, the next iteration became dedicated
to performance tuning alone. TIME BOXED RELEASES are a cure for
many effects, but you might experience situations where
unintended scenarios emerge. In that project, we were ignoring
performance issues for too long.

ARCHITECT ALSO COACHES

(Also known as: EMPHASIZE ~ILITIES)
Applies to project teams that focus their work and thoughts to a few
essential ideas, but ignore all other issues that might also be or become
important to the project’s success.
In a development team that has an informal design and architecture process
without a dedicated role assignment, and that focuses on a particular issue
of development, you need to address further important system qualities
that are essential to adequately manage the system architecture.

People’s experience is valuable to the project,
…but the experience needs to fit the current project’s size and
criticality; building a large system requires attention to issues that
hardly matter in smaller systems.
Education opportunities for developers are readily available in
courses and classes,
…but learning as you do your job is more efficient, and has the
potential to teach lessons that you never forget.
An architect’s experience and view on the software world is limited,
…but the architect has the broadest view of the developers.
Neglecting internal qualities can cause a large system to break under
its own weight,
…but the system can not become any better than the architect and
the team know how to build it.

Therefore, the architect becomes responsible for coaching the
development team about the internal qualities (the ‘~ilities’) that are
essential to crafting large software systems. This is an efficient way to
succeed in his core duties – maintain the BIG PICTURE ARCHITECTURE
[Marquardt02b], support management and development, balance the
different forces on the architecture, ensure consistency, and broaden the
architectural view – because it involves all developers and avoids
resistance.
This sounds simple, but its implementation requires serious effort. While
most project situations can live with a developer informally taking that
role, ARCHITECT ALSO COACHES requires significant time and effort. You
need to have the architect's role defined and assigned, as in DEDICATED
ARCHITECT.
The internal qualities the architect needs to emphasize correspond to the
size and complexity of the solution under construction. Testability is a
favourite one that pays off quickly. Ensuring testability is closely related
to a design with a clear distribution of responsibilities and strict adherence
to dependency rules. These two are also needed to allow parallel
development of several tasks and potentially several teams.
Maintainability is another key quality for a large project, as during initial
development the first of its components are already being maintained.

The mechanism of TIME BOXED RELEASES is to focus the
development team, and spend only effort in those tasks that pay
off within the next weeks. Implicitly, everything that has only
a vague chance to pay off will not be started unless all
alternatives are worse.

TIME BOXED RELEASES require management decisions and
affects the entire team as well as the project's other
stakeholders. Its costs are comparable to other substantial
process change costs, and are not caused by the mere measures
themselves. Due to reduced project risk and less effort spend in
vain on irrelevant topics, it probably pays off quickly.

Counter indications to TIME BOXED RELEASES are violations to
the entry conditions. Internal qualities may be hard to achieve
when under time pressure, and the temptation to ignore them is
high. Do not start with TIME BOXED RELEASES unless you have
established some taboo on the internal qualities. Side effects are
the desired emphasis changes of the projects. Some developers
might feel uncomfortable with the increased time pressure, with
their personal ways of reaction blocked, so prepare for some
demotivation and help to establish a fearless environment.
Overdose effects are reached when the time boxes are so small
that your development environment does not allow for
significant achievements, or when you fail to mitigate the side
effect risks and induce stress and fear to individual team
members.

Accompany with quality oriented process measures. It is
necessary to ensure that the VISIBLE QUALITIES are established
and taken seriously. A TEST-ORIENTED PROCESS helps with the
necessary frequent integration, to measure progress, and to
achieve internal qualities. Introduce MEASUREMENT-BASED
TUNING as the standard way to motivate tuning measures.

The mechanism behind ARCHITECT ALSO COACHES is respect
and trust, and to spread knowledge. The team will respect an
architect that knows the system, has a stake in it, and solves the
day-to-day problems. Trust is necessary to learn and to change
the own behavior. Spreading the knowledge helps convincing
developers and avoiding resistance.

ARCHITECT ALSO COACHES involves the architect and
potentially all team members. The costs can become significant
because you need to dedicate a lot of time to it. However, the
costs for education and consistency will reduce the project risk
and likely pay off over the project’s course.

If individual developers send signals that they would not accept
coaching, this might be a counter indication. ARCHITECT ALSO
COACHES has side effects on the work load that the team can
manage. It will decrease in the short term, but eventually
increase in the mid to long term.
October 2008 | Overload | 29

FEATURE KLAUS MARQUARDT
After the business case was established, the project had to change.
The effort and schedule estimations demanded that the team of
initially ten developers, located in two sites in different countries,
had to grow to sixty within one year. While one department started
growing the way management expected, the other team just grew
to sixteen developers within thirty months. Most developers came
straight from university, and the local architect and his manager took
significant time to coach them. Years later, the project had missed
the initial expectations. However, that smaller team was still working
with a high quality and at a good pace. The other department had
collapsed due to the mismatch between expectations and fulfilment,
and most of the developers had been fired.

SYNERGIES BETWEEN QUALITIES

Applies to projects in domains that require high system
responsiveness.

In a development team that is blinded by a particular experience and tends
to ignore or even deny all issues that do not fall into the selected category,
you need to address architectural needs that are critical to the success of
the project.

People tend to concentrate on a single issue, neglecting everything
else,
…but a broad overview uncovers connections among different
system qualities.
Some external qualities are more relevant to reach than other
external or internal ones,
…but in most cases achieving some quality does not necessarily
prevent other qualities.

Therefore, identify the relation between different qualities, and separate
actual contradiction from developers’ superstition. Outline which
technical methods and means would foster which internal and external
qualities, and which would prevent you from achieving them. Initiate those
actions that support multiple quality aspects of your system and that
complement each other. Teach your peers about the mutual amplification
of qualities, and show that many assumed or perceived contradictions are
not existent in reality.

The therapy patterns PERFORMANCE-CRITICAL COMPONENTS and
ARCHITECTURE TUNING exhibit one of the most popular virtual
contradictions. If you choose a clear, concise structure, you are (a) more
likely to quickly locate performance relevant issues, and (b) be able to fix
them with much less effort. In the end, you get a system that runs faster
and shows a better internal structure, increasing testability and
maintainability.
Furthermore, performance and the qualities fostered by separation of
concerns can go nicely together. However, you need to separate along the
lines that help increase responsiveness - which is probably not the way you
would initially decompose a system. Scalability immediate relates to
system performance. Testability can also increase performance and
responsiveness, both directly and indirectly by enabling layers that can be
mocked for testing and later replaced with an optimized implementation.
Even portability does not need to impose a performance penalty depending
on the techniques the team chooses.

Some years ago I worked for a business unit that was supposed to
build both a domain specific framework, and the first product based
on that framework. My role was product family architect, so I was
in close contact to the management and to future users of the
framework. Sensing tough decisions, I asked the management for
their priorities. Of the choices I offered to them, they selected two
things being both on top of the list: quality, and time to market. At
first, I was frustrated from not getting a clear priority. After some time
I learned that this priority combination strengthened the position of
the architecture a lot, and was a perfect motivation to emphasize a
healthy, consistent, concise and thus respected system architecture
– the best thing one could do to reach both goals.

After project failure (due to non-technical reasons), the intellectual
property and most of the framework team became absorbed by
other projects. While not initially intended, the architecture and the
team building started to pay off. More projects became more
successful than expected. Currently, its results are implicitly reused
in several products and form the basic of a now successful
framework.

REORGANISE THE PROJECT TEAM

Consider a project that is implemented by a team of more than a dozen
developers.
A software project team that is structured into several sub-teams, the
distribution of team responsibilities can only follow one possible view on
the system decomposition. Each project must satisfy a number of different
aspects and cover a multi dimensional decomposition.

The organization into sub-teams enables a focused work,
…but each project needs to have different foci, and priorities change
over time.
Different foci could be supported by having a multi dimensional
team structure,
…but reporting to different leads obtains more overhead than even
most large projects can afford.
Changes cause friction in reestablishing working teams,
…but important goals need to be reflected in the organization to get
significant attention.

Therefore, change your project organization occasionally during the
project’s course in a way that it reflects the highest project risk.
Dividing the project team into sub-teams according to functional
components or layers is a very natural thing for architects to suggest, and
can be highly effective in technical domains. Dividing the project team
according to user visible function and workflow enables the team to deliver
quickly what the user expects. All significant systems need to cover both
views, but the organization cannot reflect both at the same time (Conway’s
Law, see [Coplien04]).
A deliberate change in the organization forces all project participants to
think in multiple dimensions, those of the new and the former organization.
The implementation and architecture follows this change with a delay, a

The acceptance of the architect coaching is likely fostered when
you apply ARCHITECT ALSO IMPLEMENTS [Coplien04]. Pair
programming [Beck99] or JOINT DESIGN [Marquardt02] are
good opportunities to start coaching. When some team
members do not accept any coaching, consider STAFF
EXCHANGE.

SYNERGIES BETWEEN QUALITIES works by focusing attention
at the self-sustaining quality gains, and reflecting on unspoken
assumptions that are blinkers to developers and managers.

All developers need to be involved, and it is helpful to include
technical management as well to avoid contradicting your
efforts by restrictive management policies. The costs come
from the two phases of the therapy. Identifying measures and
effects to qualities require some preparation that depends on the
architect. The ongoing teaching is a mentoring effort that needs
to last for some time; its effort is similar to other mentoring or
coaching techniques.

There are no counter indications to SYNERGIES BETWEEN
QUALITIES. Possible side effects or overdose effects are not
attributable to SYNERGIES BETWEEN QUALITIES directly.

Combine SYNERGIES BETWEEN QUALITIES with VISIBLE
Q U A L I T I E S and wi th A R C H I T E C T AL S O C O A C H E S .
PERFORMANCE-CRITICAL COMPONENTS gives some concrete
examples of frequently perceived contradictions.
30 | Overload | October 2008

FEATUREKLAUS MARQUARDT
phase shift in time. The possibility of repeated organization reversion gets
the participants used to multilateral thinking and minimizes the influence
of Conway’s Law.

REORGANIZE THE PROJECT TEAM when other therapies have failed to
change the prevalent mindset. The maximum dosage is twice during the
project’s course. Do not apply it in the first quarter of the estimated project
time.
The new team organization needs to support the area of the highest project
risk. This will likely compensate for the costs and friction of the
restructuring. However, be aware that initiated changes cause further
changes in possibly unexpected areas, and that none of the symptoms of
the actual disease is directly addressed.

The initial prototype phase ended with a team of five that did not
need further substructure. When more developers joined the project
team, the tasks and later the teams were split into different areas:
database, GUI, and network. Further teams were established for
quality and for connection to particular devices. When field tests
began, the workflows slightly beyond the trivial standards failed or
were unstable. To overcome this deficiency, the team focus was
shifted towards making the workflow operable, and the team
structure was reorganized according to the workflows. The workflow
teams were composed so that each technical competence was
represented.

STAFF EXCHANGE

Applies to projects stuck with old ideas that work to some extend, but lead
to unsatisfying results.
In a development team that is stuck, caught within their own ideas, and
blinded by their own limited experience, you need to bring in new ideas.

People’s experience is valuable to the project,
…but repeated similar experiences can blind you and let you ignore
new possibilities.
Changing the staff of your project is risky both socially and by
means of the technical and organizational learning curve,
…but new people bring new ideas and different blinkers.

Therefore, suggest exchanging some members of the development team
for developers new to the domain or the company. Make sure that
management replaces at least one of the key team members, and looks for
replacements that are personally able to become key players within a short
time. Look for developers that bring experience, a strong personality and
good communication skills, so that the project really profits from their
knowledge.
Ensure that you have a stake in the job interviews. Be clear about your
goals and the difficult situation during the job interview, to avoid later

disappointment that could counter your intentions. Management could
make the first raise depending on the influence the newcomer gains during
his first months.

Before you consider exchanging the entire team, think of exchanging just
the architect. An architect in the wrong place can do more harm than good.
For indications of such a step, see the diagnoses in [Marquardt03].
Another important variant is to expel the consultants. Having consultants
in the role of an architect is particularly dangerous as significant
competency, the reasoning behind decisions, and key knowledge will be
gone at a time you cannot predict. Consultants that follow their own agenda
are also an obstacle.

A division of a consulting company specialized in technical projects
was particularly good at taking the entire technical leadership of
their customers projects. While about half the staff in the
development team was new to that kind of project, a large number
of experienced developers were distributed over the teams. They
also came to join particular projects as senior consultants when
problems occurred. The internal turn-over made sure that the
knowledge was spread, and the new developers became familiar
with different projects quickly while maintaining a common
understanding and corporate identity with the company.

A contractor had managed to become the mind monopole at one of
my customers. He motivated his queer data model with reasons
about local performance gains. When the system went productive,
it was a factor of 100 slower than comparable systems, which would
have caused annual operation costs of several 100,000 .
Confronted with radical ideas to save a factor of 1000, the contractor
reacted with denial, without being able to give reasons. Due to cost
saving measures, the contractor finally had to leave the project, and
system responsibility was passed to an internal team. For political
reasons, only the simplest of the suggested changes became
implemented, and these confirmed the initial performance gain
estimation.

Suggested treatment schemes
Now that the individual therapies are known in detail, it is time to think
about which therapy to apply when.
While some therapies are known to be risky, there is good news about
therapy combinations: no combination of the suggested therapies can be
harmful to the project. They all have mutually increasing effect. However,

The main mechanism is change, resulting in reactions and
further changes. Different aspects are addressed in the most
effective way, by changing the organization.

REORGANIZE THE PROJECT TEAM requires management
decision and can only be suggested by subordinates. Its costs
are similar to other costs caused by change and should be seen
as an insurance fee.

REORGANIZE THE PROJECT TEAM has a number of side effects
including communication changes, irritation, and tighter
integration. If the risks associated are higher than the chances
it is counter indicated. Overdose effects occur when you
reorganise too often: hidden communication due to fear,
ineffectiveness due to uncertainty, and an increase in staff
turnover.

An alternative team structure would be TEAM PER TASK
[Coplien04] that avoids a breakup into sub-teams and forms
teams for each small task. The tasks may both be technical or
application bound.

The mechanism of STAFF EXCHANGE is to influence the
development team by a factor they cannot ignore: new
colleagues. These bring new knowledge and different
experience and inject this into the developers’minds while the
entire team is going through all team building phases.

STAFF EXCHANGE is beyond the scope of an architect and can
only be suggested to management. There is no one-fits-all
answer on the related costs, but the required learning curve and
the intended friction make it expensive.

A strong counter indication to STAFF EXCHANGE is when at
least some of the key developers are willing to learn and accept
offered opportunities. A side effect is that you run into more
discussions than you really desire. Besides all irrationalities of
the newly started team forming process, the arising discussions
will cover development practice and methods, coding and
quality standards, architectural ideas, just to mention a few. An
overdose can cause the team to get lost in discussions, break its
motivation, and eventually loss of the project and valuable
employees. Another overdose effect could be that the company
loses the expertise it once had, without being able to adequately
replace it.

STAFF EXCHANGE is kind of an entropic therapy causing
undirected activities. You need to complement it by problem
and goal oriented therapies to focus the direction of its effect.
October 2008 | Overload | 31

FEATURE KLAUS MARQUARDT
too many therapeutic changes at the same time might break more than they
heal. Take your time to introduce one after another, and anticipate which
one will have the most effect in the current situation.
Figure 1 is one treatment scheme that might be useful for you if the project
has been on its way for a significant time. In this case, you need to focus
on therapies that can be used any time during the project. Which of these
you can trigger depends on your role and your ability to convince other
project participants.
First, establish MEASUREMENT-BASED TUNING – this one imposes small
costs, does not require major project changes, and is the basis for further
tuning measures. In case it is not accepted, you may need to wait until the
problems of the project are more severe. Then you can offer a DEDICATED
ARCHITECT role as an approach with a clear responsibility to ensure
adequate system performance.
With the acquired data, start ARCHITECTURE TUNING on the basis of the
observations and their interpretation. With this initiative you can prove that
performance is taken seriously and covers most concerns.
The following steps depend strongly on whether you succeed, or at least
perceive a growing acceptance. If you fail to get that acceptance, you
should consider addressing a missing DEDICATED ARCHITECT very soon.
In case some key developers remain ignorant, consult with management
and suggest process changes that help to reduce the overall project risk,
like TIME-BOXED RELEASES. Process changes possibly happen at the
expense of the developers’ motivation. So alternatively you could try to
influence QA to demand a TEST-ORIENTED PROCESS. You need to consider
that such a therapeutic schema against the team's adopted habits might lead
to an unintended STAFF EXCHANGE, and possible drawbacks will be
attributed to some scapegoat.
With growing acceptance, you can in parallel introduce VISIBLE
QUALITIES to start a team learning process. Over time, those developers

eager to learn will notice the SYNERGIES BETWEEN QUALITIES and will
have learned for their professional careers. Depending on the reactions, be
relaxed on the strict timing related to VISIBLE QUALITIES, it might be OK
to check them with every release only.
A very short treatment scheme (Figure 2) can be recommended whenever
the team composition changes. Take your time to coach new members for
a while and EMPHASIZE THE ~ILITIES of system architecture.

Annual health check
As with all diseases, the success of the healing depends on the patient, not
the doctor. While the doctor applies due diligence, offers support and
adequate medication, therapeutic success is the key interest of the patient
and ultimately his responsibility. The healing depends not only on the
quality of medication, but on compliance to the advice and on the
willingness to change personal habits and attitude.
The doctor is now satisfied with your situation. Please come back next year
for your annual health check!

Acknowledgements
Many thanks to Ric Parkin and the Overload team for their feedback and
engagement.
A word amongst colleagues: Dear fellow medical architects, if you could
report on your results with different therapies and patients, I’d be interested
to add this to the body of knowledge. Please contact me at
pattern@kmarquardt.de. Many thanks in advance!

References
Agile01 http://www.agilemanifesto.org

‘The best architectures […] emerge from self-organizing teams’
Beck99 Kent Beck: Extreme Programming Explained: Embrace Change.

Addison-Wesley 1999
Coplien04 James Coplien, Neil Harrison: Organizational Patterns of

Agile Software Development. Prentice-Hall 2004
Marquardt02 Klaus Marquardt: ‘Supporting the Software Architect:

Selected Patterns Covering Different Perspectives’. In: Proceedings
of EuroPLoP 2002

Marquardt02b Klaus Marquardt: ‘Patterns for the Practicing Software
Architect’. In: Proceedings of VikingPLoP 2002

Marquardt03 Klaus Marquardt: ‘Neglected Architecture’. In:
Proceedings of VikingPLoP 2003

Measurement-Based Tuning

Architecture Tuning

Project on its way

Time-Boxed Releases

Test-Oriented Process

Visible Qualities

address the technical problem

Dedicated Architect

basic therapy, easily accepted

Synergies Between Qualities

Dedicated Architect

might foster therapy acceptance

helpful to free necessary time

create awareness

address the process problem
influence beyond development team

explicit the learning experience

and to strengthen formal position

Architect also Coaches

...when the team
composition changes...

well spent effort

Project on its way

Figure 1

Figure 2
32 | Overload | October 2008

	The Invisible Hand
	Seeing Things Differently
	DynamicAny (Part 2)
	On Management: Focus, Quality, Time-boxes and Ducks
	The Model Student: Can Chance Make Fine Things? (Part 1)
	Performitis (Part 3)

