

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Software Development in the 21st Century
Alan Griffiths and Marc Allan present a case study of
the future of Agile development.

7 Testing State Machines
Matthew Jones shows how to make state machines
more testable.

13 If You Can’t See Me, I Can’t See You
Stuart Golodetz looks into the next room.

18 The Model Student: A Rube-ish Square (Part 2)
Richard Harris explores the behaviour of his rube-ish
square model.

24 On Management: Product Managers
Allan Kelly considers the role of the Product Manager.

28 An Introduction to FastFormat (Part 2): Custom
Argument and Sink Types
Matthew Wilson delves into the implementation of his
Fast Format library.

36 WRESTLE: Aggressive and Unprincipled Agile
Development in the Small
Teedy Deigh introduces the latest trend in Agile
developments.

37 Array Problems: Range Iteration Logic for Object
Oriented Languages
Issac Bickerstaff makes a modest proposal to avoid a
common mistake when using C-style arrays.

OVERLOAD 90

April 2009

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 91 should be submitted by
1st May 2009 and for Overload 92 by
1st July 2009.

EDITORIAL RIC PARKIN
Back to School
Much is made of the Knowledge Economy.
But just how can you keep up to date?
What do you love most about being a programmer? For
me it’s knowing that everyday there’s going to be
something different to do and find out – a new bug to
track down and fix; some design work that needs
thinking about; a meeting to discuss what the product

requirements are; investigating the latest and greatest technology; reading
books and newsgroups for new ideas; and sitting down and writing code
to solve these problems.
What I dislike is when things get samey and repetitive – especially when
the root cause of this repetition is known about but somehow never gets
improved.
This struck me recently as I was reading Allan Kelly’s book Changing
Software Development: Learning to become Agile [Kelly], and the first
few chapters are all about learning and building up knowledge. Not just
how people learn, but also how the organisations we are in learn, and how
the software we produce reflects this.
Indeed, a program can be considered as encoded knowledge. The
understanding of the requirements by people such as the customer, product
manager, and marketing, are used by developers to come up with a
solution that addresses those requirements and teaches the computer
makes life better for the final end user. This information is channeled
through processes and eventually produce a product. That product reflects
not only the information about the requirements, but also the processes
used to create the final code.
This applies very much over time, which can result in what I only half-
jokingly call ‘Software Archeology’ – when you try to understand some
odd piece of code you can gain useful insights if you think of it as
accumulated layers of historical code changes made by past actors each
with their own motives. Sometimes an appreciation of why something was
done in an initially unexpected way becomes much clearer if you can work
out what problem they were trying to solve – perhaps what you are seeing
is a perfectly valid work round for an awkward problem in a tight deadline
situation, both of which are long gone. A classic example would be a
kludgy expression to avoid a compiler bug in a long-gone version. So
instead of seeing some odd looking code and thinking ‘Which idiot wrote
this?’ it’s better to think ‘What odd constraints forced them to do it like
that?’, which is not only a more realistic way of looking at code, but also
avoids a blame culture.
But the knowledge is not just in the code – it’s also written in the obvious
documents that are generated – this knowledge is explicit – but less well

appreciated is in the minds of people and the
processes tha t have grown around such

knowledge. This knowledge is known as tacit –
implied and not consciously thought about (or if

you will excuse the Rumsfeldian term, it’s an ‘Unknown Known’). This
is one reason that Documentation and Code Handovers work so badly,
whether it’s for something that has been outsourced, handing over from
one team to another, or during the final few weeks before leaving a job.
Writing documents just captures the Known Knowns, or at least the ones
you remember to write down (and it might not even be read), and a huge
amount of vital knowledge can be lost.
Tacit knowledge is a remarkably useful resource. For example some
programmers will get to know an area of code in great detail – not so much
the technical aspects, but at a deep ‘gut feel’ level. It might show itself in
the form of a rapid evaluation of a bug symptom into a likely area of code
to investigate (‘Oh, the Foobaz handling has always been a bit fragile –
I’d start looking there’), or a deep understanding of why some code is
tricky (‘Even though this area is complex, it’s because it’s having to deal
with complex and contradictory requirements – a big rewrite won’t
improve things much as it will still have to reflect that complexity’). Sadly
such tacit knowledge can be easily overlooked, partly because people
don’t realise it’s there, partly because it’s harder to justify hard decisions
based on ‘gut instincts’, and partly because the people who have most first-
hand experience of a system (and thus have most tacit knowledge of it)
are often the people least likely to be making major decisions about it’s
future. (The pattern Architect Always Codes is a way of avoiding this –
keeping them in touch with their own designs helps them keep their
knowledge of how it really works up to date.)

It is not hard to learn more. What is hard is to unlearn when
you discover yourself wrong.

~Martin H. Fischer

If we only learnt from our immediate work environment then we’d be in
danger of staying in a rut, falling into groupthink problems (‘We do it this
way because we’ve always done it this way’), or just failing to take on
board new ideas and new observations. One way is to keep in touch with
people in similar situations (and a few wildly different ones), and
exchange anecdotes, experiences, and techniques. For example, I read
quite a few software and management books, programming newsgroups
and mailing lists, a few blogs, and of course Overload and CVu.
Plus of course there are conferences and smaller get-togethers, where on
top of the obvious value of the presentations and sessions, the informal
chats in the bar can be amazing learning experiences and huge eye openers
– they might not tell you a solution, but it might just make you think and
realise you have a problem in the first place.

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | April 2009

EDITORIALRIC PARKIN
And learning opportunities don’t have to be from software specific
sources. There was an interesting thread on accu-general recently asking
what non-fiction books would you recommend, things that were
‘Influential classics, non-fiction, books about people’s original ideas.
Ideas that changed the world. Great thinkers, who influenced the way we
think, with what they wrote. Politics, philosophy, science, and to a lesser
extent, economics, history, psychology.’ (Thanks to Thaddaeus Frogley
for starting the thread)
Here I reproduce some of the ones I thought were of most interest
(apologies to those I left out):
� How to Read a Book, by Doren and Adler (a cheat as it has a reading

list itself)
� The Republic, by Plato
� On the Origin of Species, by Darwin
� Lateral Thinking by Edward de Bono
� The Prince, by Machiavelli
� Predictably Irrational, by Dan Ariely
� Godel, Escher, Bach: An Eternal Golden Braid, by Douglas

Hofstadter
� Relativity: The Special and General Theory, by Einstein
� The Design of Everyday Things, by Donald Norman
� The Timeless Way of Building, by Christopher Alexander
� How Buildings Learn, by Stewart Brand
� The Earth: an intimate history, by Richard Fortey
� The Great Crash, 1929, by Galbraith
� The Making of the Atomic Bomb, by Richard Rhodes
� The Soul of a New Machine, Tracy Kidder
� Seven Habits of Highly Effective People, by Stephen Covey
� The Science of Cooking, by Peter Barham

and, intriguingly:
� Principles of Helicopter Flight, by Jean-Pierre Harrison

Interestingly enough, while none of the above are directly about software,
several have strongly influenced relevant ideas, in particular Alexander’s
works led to the patterns movement (and in turn their need to collaborate

on pattern writing led to the invention of the Wiki); Brand’s ideas are about
system design and ongoing maintenance; and Norman’s ideas apply to UI
design. We can learn from many sources.

Some people will never learn anything, for this reason,
because they understand everything too soon.

 ~Alexander Pope

Sometimes though, people just doesn’t want to learn. A depressing story
was related to my by a friend who I’ve been trying to persuade to come
to the ACCU Conference. He was very keen, but apparently his
management turned him down with the excuse that he was ‘senior enough
to just need books’, which I thought missed the point of conferences rather
spectacularly. Plus, if there’s one thing I’ve learnt over the years, is that
the ‘experts’ who write the books are the first ones to admit the gaps in
their knowledge, but want to find out – and will write a book about it.
I wonder how many other organisations and people have such an attitude
to learning? Many of the developers and companies I know are self-
selecting in that regard – I know them via communities of people who do
want to learn, so all I see are the ‘good’ ones. But I don’t know of all the
other communities, and ultimately if people don’t want to learn and join
such groups then I won’t hear about them at all.
This is why there’s a common interview question along the lines of ‘what
was the last technical book you read?’, or ‘how do you keep up to date
with new innovations?’ The answers can give some insight into how much
that person approaches their work (caveat: as with all such open interview
questions there are no right or wrong answers, just extra information that
can be put together to form a fuller picture of that candidate, so an informed
judgement of their suitability for the role can be made.)
And the questions work the other way too – if
interviewing how would you answer ‘How do you help
developers improve?’

References
[Kelly] http://eu.wiley.com/WileyCDA/WileyTitle/

productCd-047051504X.html
April 2009 | Overload | 3

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047051504X.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047051504X.html

FEATURE ALAN GRIFFITHS AND MARC ALLEN
Software Development
in the 21st Century
What’s the future of software development? Alan Griffiths
and Marc Allan have a timely look at recent experiences.
oftware development is an observational science rather than an
experimental one: that is, it is difficult if not impossible to try varying
the conditions that affect the outcome one at a time to disentangle

their effects. Observing projects can be difficult though: some
organisations are hostile to their intimate practices being exposed and
observers filter their observations through their individual perceptions of
what is important.
The current authors are as prone as others to subjective reporting, but hope
that the following experience report describing a project lifting itself from
primordial chaos to 21st century Agility will provide useful examples to
others working in this field.

In the beginning
Despite all the progress made in the latter half of the 20th century a lot of
software development is still a disorganised mess which delivers results
only through heroic developers sacrificing their lives (or at least their home
lives) for the good of the project. Such are the beginnings of our tale.
When one of the authors was first asked to consider working on the project
it was known by management to be in difficulties – the project manager
(who was based on the far side of the Atlantic to the rest of the team) had,
despite frequent visits and long phone calls, difficulty understanding what
work was being undertaken and why. As is often the case, the lead
developer came under criticism for not communicating effectively, the
situation worsened when frustration forced a senior developer on the team
to tender his resignation. The brief was simple: get things back on track!
The software involved was a server-side system supporting numerous end-
user applications around the globe all of whom were competing to get their
favoured features implemented. Luckily most of the developers of these
applications were co-located in London with the developers on the project.
This meant that user requirements capture and eliciting feedback were
never problematic during our time with the project.

We join the team
Timing was good – one of us had a week’s handover from the departing
developer which afforded a sure footing and a rapid start. The reality on
the ground bore some resemblance the situation described at interview –
although it has to be said that the lead developer was willing to explain

what he was doing and why, the difficulties arose as he was interacting
directly with the clients in the same office and, understandably, failing to
report every conversation about issues, features and changing priorities
across the Atlantic.
The first step was to consolidate the current issues, feature requests and
state of work in a form that was accessible to everyone involved. As there
was an existing project Wiki this was used for the purpose. This got a lot
of positive feedback from both the project manager and from the client
teams all of whom could see what was going on for the first time. It was
during this exercise that the second author joined the team.
However, despite the initial enthusiasm for the Wiki based task display it
slowly became obvious that these web pages only make progress visible
if people visit those pages. And so, as the novelty wore off these slowly
fell into neglect. Even regular planning ‘meetings’ (conference phone calls
to review the Wiki) failed to keep the information flowing. This became
dramatically apparent when emails began to circulate with the project
manager demanding to know why a feature wasn’t being worked on only
days after he’d ran a conference call with the users that had agreed on the
work for the iteration.

Organisational changes happen
While we were pondering how to address this problem some changes
happened that presented an opportunity. In this case there were some
changes at board level which resulted in the appointment of a new project
manager located in the same office as the project team!
This made a major difference, as he could interact directly with user groups
and quickly discovered that the work being done was not giving the best
return. In particular, the team was working on a fourth generation
implementation of the system whilst the production environment was a
patchwork of the second and third generations. He decided to stop work
on the fourth generation and focus effort on completing the roll-out of the
third generation. The lead developer quit in disgust.
Shortly after this we moved offices and the opportunity arose to acquire a
whiteboard: there were several allocated to the office, but as they had not
been assembled we found them languishing in the corner of a side office.
By assembling one behind our desks we established possession and moved
our planning onto this display.
We divided the whiteboard horizontally into three columns – for the
release being rolled out, for the release being developed and for future
activities. A post-it was used to denote each task and moved from the
bottom (not started) to the middle (started) to the top (completed). Planning
meetings became brief and increasingly informal and centred around the
whiteboard. (Figure 1)
While this was happening we also managed to get continuous integration
running. Part of the legacy of the first developer who quit was a set of
functional tests – after a bit of work on these they turned into a test suite
that gave us (and the other users of the UAT environment) the ability to
automate the promotion of each ‘successful’ build into the UAT
environment. This got us early feedback from other teams about new

S

Alan Griffiths is an independent software development
practitioner who fixes development processes as well as code
(in C++, Java, C#, Python and JavaScript). He is a long-
standing contributor to the ACCU journals, mailing lists and
conferences. For more, see www.octopull.co.uk

Marc Allen has been a professional programmer since this
morning and is hoping his new-found career lasts until lunch.
He helps organise the Loebner/Turning Prize whenever it
visits the UK and currently writes software for a former
investment bank. Marc can be contacted at
marc.j.allen@gmail.com
4 | Overload | April 2009

FEATUREALAN GRIFFITHS AND MARC ALLEN

Unfortunately, as all too often is the
case, the new approach fell foul of

its own success
features – one of whom had an independent ‘acceptance test suite’ that they
ran regularly (and that caught our errors a couple of times before we got
our own tests right – our system had features we didn’t know about).
Time passed, the team grew and we successfully introduced a ‘test first’
culture. The legacy ‘second generation’ system was withdrawn from
service and a raft of important new features made it into production. We
had a steady ‘heartbeat’ of releases improving the system and good
feedback from users.

Outsourcing
The next hurdle came when the manager decided that there were problems
with the whiteboard planning system. These were varied: the
unavailability of the whiteboard for other teams to use (particularly other
ones he managed); the ‘danger’ of losing information if post-its fell off or
were moved accidentally; and, the lack of visibly outside the office. It was
probably the latter that was decisive (as his desk in a side office didn’t have
line of sight, there were client teams in another building, and he was
considering outsourcing some of the development work to Yorkshire).
In any event, the corporate standard for project planning was a web based
system: Jira. This avoided the principle problem encountered with the
earlier Wiki based system (that people didn’t see progress if they didn’t
visit the Wiki). With Jira stakeholders could subscribe to tasks that interest
them and receive email notifications when they were updated.
With the arrival of the inevitable mandate to migrate the project planning
system to Jira, the development team downed IDEs for web browsers for
an afternoon. Converting each and every post-it to a Jira ticket was soon
accomplished and the (now blank) whiteboard became (for many weeks)
a monument to the past. Developers from the outsourcing company were
each brought in for an introductory period to learn the system and meet

the rest of the team. It seemed like no time before the goal of a
geographically diverse team was accomplished.
The new approach propelled a new wave of productivity as new
functionality passed through UAT into production, Jira streamlined the
development team’s efforts and, thanks to integrated report generation,
promoted a higher degree of transparency with management and end users.
Unfortunately, as all too often is the case, the new approach fell foul of its
own success. With increased productivity, release confidence and
management support all on the increase – the publicity not only spurred
on more interest in the project (affording a steady stream of functionality
requests) but also promoted the project as a campaign poster child for Jira.
(And outsourcing to Yorkshire!)
Quite frankly the support teams had understandably not requisitioned
sufficient hardware resources to sustain the mushroom cloud that was to
follow the eruption of Jira adopters. The knock on effect of this was that
the beloved tool which had served the team so well now became a
bottleneck. But success breeds success and the project budgets would now
support a few upgrades – not only to servers but to desktops.
While multiple 24-inch monitors were a delight to the developers the
project manager was especially pleased with getting a massive screen
installed in a nearby conference room. (We didn’t pay for this directly –
but as a star outsourcing department we needed to demonstrate meetings
with our offsite team members – the group ‘outsourcing project’ funded
this on the basis that we were willing to share.)

April showers
Although our project continued it’s meteoric progress during the recent
recession this was not true of other parts of the organisation and it soon
became apparent that our private conference room was going to have
squatters (moved from another building that was no longer needed). So,
one quiet evening we swapped the still blank whiteboard for the sexy
display screen from the conference room.
We even ‘found’ (ok, one of us was sad enough to write it) a new
screensaver for it that would show the project’s Jira homepage – regaining
the visibility of project progress that we’d missed since the whiteboard
went blank. We could still conference with our rural colleagues – although,
as a result of ‘downsizing’, there did seem to be fewer and fewer of them
as time progressed until there were finally none left.
In addition to ‘our’ conference room these organisational changes also lost
us the office formerly occupied by the manager. He was given, and took,
the ‘opportunity’ to improve the in-team communications by joining the
rest of us in the main office.

Jira gets an upgrade!
We were still rolling out enhancements at a steady rate when the project
manager pointed out a cool new plugin for Jira: GreenHopper. ‘What’s
GreenHopper?’ we asked. Anyway, it turned out that this new plugin,
amongst other things, allowed Jira to displayed tasks as ‘post-its’ and one
could move those by ‘click and drag’. Before very long our status screen

Figure 1
April 2009 | Overload | 5

FEATURE ALAN GRIFFITHS AND MARC ALLEN

We had avoided a lot of unnecessary
keystrokes and reached a pinnacle
of automation
was demonstrating the advantages of a proper use of technology over the
whiteboard based ‘prototype’ we’d used earlier in the project. Not only did
we have a high-visibility display of the state of the project, it could be
viewed over the internet and could generate the all-important status emails
automatically. (Figure 2)
The one thing it didn’t do ‘out of the box’ was to allow us to walk up to
the screen and move the post-its by hand. This, naturally, was too much
of a temptation – very soon some ‘gesture sensitivity’ was added to the
screensaver. It is so cool waving a task note from ‘in progress’ to
‘completed’ – Tom Cruise eat your heart out!
Naturally this was so good that we had to make it better – we only needed
to get the integration between Subversions and Jira working properly and
attach webcams to all the workstations and we could automate closing
tickets by smiling as we checked in the code. By pulling up the Jira page
and glancing in the right direction we could allocate the next piece of work.
We had avoided a lot of unnecessary keystrokes and reached a pinnacle of
automation.

Not long before the end
Unfortunately and perhaps quite predictably, the state of software
development nirvana was about to undergo some radical change. Whilst
the project’s deliveries continued to roll out to production at a steady,
maintainable pace; the powers that be thought they knew better. It turns
out, quite ironically, Jira was making us look bad. The magic that went on
behind the scenes to ensure the team’s efforts were focused on functional
requirements had become an intricate part of the day’s activities. The
resulting stream of Jira update e-mails soon overwhelmed our
stakeholders’ inboxes. Very soon rules were set up to ‘mark as read’ and
‘delete’ the daily ‘spam’ generated by the team.
Management finally realised that something special was happening – not
only were features being delivered on (or before) schedule, but despite the
loss of our offsite developers the pace of deliveries was accelerating.
Clearly, they thought, the only thing holding progress back was the
developers. No sooner was this thought formulated than it led to action –
the authors wished the project success, invited the manager to a leaving
do and found alternative, less modern, employment (where their talents
were still needed). We trust that the management insight was valid and the
project continues to progress with even greater efficiency – we will report
further if we hear details. �

Figure 2
6 | Overload | April 2009

FEATUREMATTHEW JONES
Testing State Machines
State machines are a common design pattern.
Matthew Jones seperates their concerns to make
testing easier.
nyone can code up a state machine, but can you make such a machine
fully testable? Can you prove that it is? Can you do this repeatably?
In other words, can you present an inquisitor with a test suite that

proves your state machine fully implements a given state transition
diagram?
Depending on your background, you might choose to write your state
machine using the C switch() idiom, with a #define per state, or better
still, an enum. You might go so far as to have a function per state, with
another switch() for each input event. It meets the requirements and it
will probably work. But you know you can do better than that.
You might decide to go for a fully fledged GoF [Gamma] pattern-based
design with a class per state and maybe a state factory. Now you are in the
familiar territory of ‘proper’ OO and patterns. If you take this approach,
surely the result will be perfect.

The trouble with testing
Whichever approach is taken, most people will naturally include code, in
the state machine, that is concerned with implementing the outputs of the
states. It makes a lot of sense, and it is the path of least resistance. The effort
has already been put into decoding the state and handling the new input
event. Having got that far it is very easy to simply add a line or two of code
to finish the job, i.e. implement the ‘action’ part of the transition. While
this code might be trivial, its impact is often not so. In the worst case (e.g.
an embedded system), it might involve writing to hardware, turning on
motors, lighting lights etc. Whatever the context, the state machine will
be exposed to the application, and will therefore have dependencies on that
application code. And this in turn makes the testing complicated.
To test a ‘traditional’ state machine, i.e. one where the output code is mixed
with the state transition code, typically you would have to run the
application, stimulate it somehow, and look for secondary evidence that
the state machine is working. You might even have to resort to primary
evidence: good old printf(). It is even worse in the embedded scenario:
you could be forced to have real equipment, or an adequate simulation, just
to run the code. This is obviously not good. You will have do an awful lot
of work to produce any form of automated test. TDD will be hard because
of the intrusion of the application. In the worst cases, where ‘application’
involves hardware, repeatable testing could even be impossible. At this
point we would naturally give up on the goal of automated testing and
resort to the bad old ways of testing the code once, manually, declaring it
fit, and never going back. And with this approach comes the inevitable fear
of later changes to that area since it is rightly considered fragile.
There are any number of tricks to get round this problem, but they will all
emit ‘bad smells’ [Fowler]. You might stub the application by substituting
a test version of application.cpp. You might add test instrumentation
to the application. It might even be conditionally compiled so you can
switch it off in the ‘real’ system. These are all poor solutions and will have
you be tying yourself in knots of test-only code which will pollute the
deliverable code and make it hard to read, understand, and maintain.

So by starting out innocently enough and harmlessly mixing state machine
logic with the application, you can easily end up seriously compromising
your development. But there is a better way. Of course there is: there are
probably many, and if you are already a master or mistress of testable state
machines, congratulations: stop reading now. For everyone else, the rest
of this article describes an approach I developed recently. The background
to this work is embedded software, and so the problem of testing a state
machine is far more apparent than where hardware is not involved.

What is a state machine?
If we ask ourselves ‘what is a state machine?’, the answer (in a software
context) should be something like ‘code that manages the state of
something, responding to external events, and translating them into actions
to be implemented by the system’. State transitions will result in output
actions that are communicated to the system, but only in an abstract, or
event-like way. The detail of carrying out these actions is not part of the
state machine, because ‘detail’ implies exposure of the state machine to
knowledge of the application. It is this last point that is usually overlooked,
leading to the blurring of the state machine and the application. It might
appear to be somewhat picky, but if we allow the state machine to do two
jobs (state management and controlling the application), we lose
separation of concerns [Wikipedia1] and reduce cohesion [Wikipedia2].
This stripped down definition translates perfectly to an object oriented
approach: we have an interface describing the input events, and an
interface describing the output actions. The state machine implements the
events interface, and the application implements the actions interface. It
really can be as simple as that. See Figure 1.

A

Figure 1

Matthew Jones started programming with BBC Basic,
and then learned C on a summer job between school and
VI form. He has been in programming professionally for
over 15 years, having moved on to C++, and is happiest
working on large embedded systems. He can be
contacted at m@badcrumble.net
April 2009 | Overload | 7

FEATURE MATTHEW JONES
We have isolated the state machine from the application with two
interfaces: Events and Actions. This is one of the fundamental principles
of good design: partitioning [Griffiths]. We reduce the coupling between
the state machine and the application to two simple interface classes. This
allows us to test the state machine with mock, or test, objects [Mackinnon].
Later, we can implement the ‘proper’ version of the interface in all its
application-ridden glory, safe in the knowledge that the state transition
logic is perfect. It also allows the application to be tested with a mock state
machine, should we wish to, by substituting the implementation of the
Events interface.

An example
At this point we need to introduce an example and start talking in more
direct terms. Figure 2 shows a state transition diagram for an external
security light. The example is obviously trivial but I tried working through
a few larger ones (e.g. 10 states) and it quickly turns from a useful example
to 500+ lines of code showing most of a real system. Crucially, this
example also includes interaction with hardware, so that a traditional
implementation would require manual testing.
The security light moves between two high level states: day, when the lamp
is off; and night, when the lamp is controlled by a movement sensor.
Transition between these states is controlled by an ambient light level
sensor. In the night state, when movement is sensed, the lamp is turned on
and a timer is started. When movement ceases, the lamp is turned off by
the timer. Note that although the sensors and timers might have thresholds,
or return variable readings, in the realm of this state machine they are
reduced to valueless events.
To turn this into code, we need four main classes: the Events interface,
the Actions interface, the StateMachine and a State base class.
The Events interface declares the events that stimulate the state machine.
These are the state machine inputs.
The Actions interface declares the actions that the state machine may
cause. These are the state machine outputs.
The State class is the base class from which all states are derived. It
inherits the Events interface because every state must be able to react to
every event. There are a lot of details missing here. (If you are really
interested, the fully worked example is available here: http://accu.org/
content/journals/ol90/TestableStateMachines.zip). For instance the state
must have some way to change to a new state. In practice each state should
be constructed with a StateContext, which includes a StateFactory
for creating new states; a StateChanger, to allow the new state to be
passed to the state machine; and an Actions instance. There is one
important detail, though, and that is that all State classes are themselves
state-less. They are constructed with sufficient context to function, but no
more. It might be that in a more complex system this would not be practical,

but in this example, and all my real world implementations so far, it has
held true. Incidentally, having stateless State classes also simplifies the
problem of creating and changing state: one permanent instance of each
State can be created by the StateFactory, and repeatedly handed out when
required. There is no need to create new objects dynamically.
The StateMachine class brings everything together. It inherits the
Events interface so that the application can signal events to it. Every
event is delegated to the current State. This is the classic State pattern
[Gamma]. The StateMachine must be constructed with an Actions
instance. The Actions instance is added to the StateContext (not
shown) which is passed to every State on construction.
The key classes are summarised in Listing 1.
Given this framework, and a number of helper classes already alluded to,
we can concentrate on implementing the state transition diagram correctly.
The realisation of the state transition diagram is the implementation of the
Event interface, in each of the State class. Given the State class
hierarchy in Listing 2, the translation of Figure 2 into code is completed
in Listing 3.
The simple example has turned into two interfaces and eight classes. It
should already be obvious that there is one thing missing: the application,

Figure 2

Listing 1

class Events
{
public:
 virtual ~Events() {};
 virtual void Dark () = 0;
 virtual void Light () = 0;
 virtual void Movement () = 0;
 virtual void NoMovement () = 0;
 virtual void Timeout () = 0;
};
class Actions
{
public:
 virtual ~Actions() {};
 virtual void LampOn () = 0;
 virtual void LampOff () = 0;
 virtual void StartTimer () = 0;
};
class State : public Events
{
private:
 Actions &actions;
public:
 State (Actions &a) : actions(a) {}
};
class StateMachine : public Events
{
private:
 Actions &actions;
 State *currentState;
public:
 StateMachine (Actions &a)
 :
 actions(a),
 currentState (day)
 {}
 // Implement Events interface
 void Dark () {currentState->Dark();}
 void Light () {currentState->Light();}
 void Movement () {
 currentState->Movement();}
 void NoMovement () {
 currentState->NoMovement();}
 void Timeout () {currentState->Timeout();}
};
8 | Overload | April 2009

http://accu.org/content/journals/ol90/TestableStateMachines.zip
http://accu.org/content/journals/ol90/TestableStateMachines.zip

FEATUREMATTHEW JONES
and this is precisely the point of this whole approach. Describe and write
the state machine in terms of state transition logic and nothing more.

Testing the example
All we need to do now is write a test implementation of the Actions
interface, and then we can start some serious testing. Listing 4 shows one
way to do this.
In our test harness, we are now able to construct a StateMachine and
pass in a TestActions object. We can then devise a set of state transition
tests, run them, and inspect the contents of TestActions::v. The term
‘devise’ it rather strong, in fact, since we should be pedantic and test all
the inputs to all the states, there isn’t much to tax the imagination. In other
words we should extract a complete state transition table from the code and
compare this to what is expected. Listing 5 shows an abbreviated version
of such a harness. It makes assumptions about a number of features to aid
testabili ty, such as StateMachine::ChangeState() and
StateMachine::ReportState(). Although it is clearly excessive to
test such a simple example, it scales very well to realistic levels of
complexity. The important point to note is that given the enum, struct,
and helper functions, main() is straightforward, clear, and self-
documenting. With a bit more effort, the helper functions can also output
helpful information when tests fail, helping debugging.
At this point we have exhaustively tested our state machine, which is
designed to control real hardware, in a software-only test harness. We can
prove that it is a faithful implementation of the original design. Armed with
this powerful approach to testing, we can start to write state machines with
a new level of confidence.
When I was working all this out for the first time, I stopped at this point
and offered up my ‘perfect’ new module of code for system testing. It
worked, of course, but system testing revealed a number of subtle defects
in the design of the state machine itself. I had perfectly implemented a
flawed design, and I could prove it. Fortunately, the solution was close at
hand.

Testing transition sequences
The test mechanism can be very easily extended to provide a second
extremely useful facility. If more than one input event is allowed in a test
vector, and it tests more than one expected output action, we can test
sequences of transitions. This means we can test what amounts to use cases
for the state machine. For example a single sequence test might be:

day --> off(night) --> moving --> timing --> off --> day
For realistic levels of complexity this testing offers more value than simply
proving correct transition logic. Of course we would still retain the simple
transition tests. This is what I did for my development system: I worked
out the normal, and abnormal, routes round the state transition diagram,
and added them to the test harness. And the problems jumped out
immediately in the form of unexpected actions. Although each transition
on the diagram seemed right, I had not worked through real examples, and
the results of combinations of transitions. The original design allowed the

Listing 2

// Basic implementation of State interface giving
// default behaviour.
class StateImpl : public State
{
 // ...
};

class Day : public StateImpl
{
public:
 void Dark ();
};

class Night : public StateImpl
{
public:
 void Light ();
};
class Off : public Night
{
public:
 void Movement ();
};

class Moving : public Night
{
public:
 void NoMovement ();
};

class Timing : public Night
{
public:
 void Timeout ();
 void Movement ();
};

Listing 3

void Day::Dark ()
{
 context.changer.ChangeState(
 context.factory.OffState());
}
void Night::Light ()
{
 context.actions.LampOff();
 context.changer.ChangeState(
 context.factory.DayState());
}
void Off::Movement ()
{
 context.actions.LampOn();
 context.changer.ChangeState(
 context.factory.MovingState());
}
void Moving::NoMovement ()
{
 context.actions.StartTimer();
 context.changer.ChangeState(
 context.factory.TimingState());
}
void Timing::Timeout ()
{
 context.actions.LampOff();
 context.changer.ChangeState(
 context.factory.OffState());
}

Listing 4

class TestActions : public Actions
{
public:
 enum ActionType
 {
 LAMP_ON,
 LAMP_OFF,
 START_TIMER
 };
 std::vector <ActionType> v;
 void LampOn () { v.push_back(LAMP_ON); }
 void LampOff () { v.push_back(LAMP_OFF); }
 void StartTimer () {
 v.push_back(START_TIMER); }
};
April 2009 | Overload | 9

FEATURE MATTHEW JONES
Listing 5

enum StartingState { START_DAY, START_OFF, START_MOVING, START_TIMING };
struct TestVector
{
 // Type for a pointer to void (void) member function of StateMachine.
 typedef void (StateMachine::* SMFunctionPointer) (void);
 const char * testTitle;
 StartingState startingState;
 SMFunctionPointer eventFunctionToApply;
 const char * expectedState;
 const TestActions::ActionType *firstAction;
 // etc. for other actions if required...
};
void TestOneAction (TestActions &actions, const TestActions::ActionType &expected)
{
 if (!actions.v.empty())
 {
 TestActions::ActionType &action = *actions.v.begin();
 assert (action == expected);
 actions.v.erase (actions.v.begin());
 }
 else
 assert ("action list unexpectedly empty");
}
void TestOneTransition (const TestVector &v)
{
 TestActions resultingActions;
 StateMachine uut (resultingActions);
 switch (v.startingState)
 {
 case START_DAY: uut.ChangeState (uut.DayState()); break;
 case START_OFF: uut.ChangeState (uut.OffState()); break;
 case START_MOVING: uut.ChangeState (uut.MovingState()); break;
 case START_TIMING: uut.ChangeState (uut.TimingState()); break;
 default:
 assert ("Unknown starting state");
 return;
 }
 // clear the results of changing to the starting state.
 resultingActions.v.clear();
 cout << "Starting state is: " << uut.ReportState() << endl;
 (uut.*(v.eventFunctionToApply))();
 if (v.firstAction)
 TestOneAction (resultingActions, *v.firstAction);
 while (!resultingActions.v.empty())
 {
 assert ("Found unexpected action");
 resultingActions.v.erase (resultingActions.v.begin());
 }
 cout << "Resulting state is " << v.expectedState << endl;
 assert (strcmp (uut.ReportState(), v.expectedState) == 0);
}
static const TestActions::ActionType L_On (TestActions::LAMP_ON);
static const TestActions::ActionType L_Off (TestActions::LAMP_OFF);
static const TestActions::ActionType Start_T (TestActions::START_TIMER);
int main (void)
{
 TestActions ta;
 StateMachine sm(ta);
 const TestVector v[] = {
 { "Day + dark -> off", START_DAY, StateMachine::Dark, "Off", 0 },
 { "Day + light -> no change", START_DAY, StateMachine::Light, "Day", 0 },
 { "Day + movement -> no change", START_DAY, StateMachine::Movement, "Day", 0 },
 { "Day + no_movement -> no change", START_DAY, StateMachine::NoMovement, "Day", 0 },
 { "Day + timeout -> no change", START_DAY, StateMachine::Timeout, "Day", 0 },
 { "Off + dark -> no change", START_OFF, StateMachine::Dark, "Off", 0 },
 { "Off + light -> lamp off; day", START_OFF, StateMachine::Light, "Day", &L_Off },
 { "Off + movement -> lamp on; moving", START_OFF, StateMachine::Movement, "Moving", &L_On },
 { "Off + no_movement -> no change", START_OFF, StateMachine::NoMovement, "Off", 0 },
10 | Overload | April 2009

FEATUREMATTHEW JONES
state machine to get the application into an illegal state. But now that we
had automatic transition and use case tests, it was very easy to change the
design, and then prove it again.
Like all good examples, our simple security light has a bug, and the tests
in Listing 5 do not reveal it. A carefully chosen extended sequence test
would show that it does not restart the timer each time movement is
detected while the lamp is still on. There should be a transition from timing
to moving for the movement event. For example the sequence of events
dark, movement, no_movement, movement, no_movement, timeout (i.e.
a second movement while the lamp was still on) would result in lamp_on,
start_timer, lamp_off, when it should cause lamp_on, start_timer,
start_timer, lamp_off. Therefore we find that we need to add:
 void Timing::Movement (void)
 {
 context.changer.ChangeState(
 context.factory.MovingState());
 }

Dealing with values
The overriding theme throughout has been to keep the application at arms
length. Reducing the world outside the state machine to void (void) actions
and events is an extreme simplification. In many cases it might appear to
be a step too far. What about actions that need parameters? What about
events that carry information? I would argue that a state machine deals
with logic, not quantities. The code immediately surrounding the state
machine, its immediate context, needs to deal with these quantities, and
translate them to events and from actions on behalf of the state machine.
A very contrived example might be that our security light should control
the brightness of the lamp according to the speed of movement. This simple
control function would sit outside the state machine, storing speed and
converting it to brightness when LampOn is called.
It would be feasible to allow properly encapsulated application logic inside
the state machine, but validating the outputs would turn a simple test
harness into a monster. I suspect the resulting pressure to revert to the bad
old ways would be great when faced with such a complex task.

Further work
The example above has rather a lot of code for such a simple state machine.
This is because it is a condensed version of a real implementation that was
complex enough to warrant that approach. Now that we have a complete
regression test harness, we could easily, and safely, refactor it into to a
leaner and more concise version.
Something I have not tried yet is to add the Actions and Events
interfaces to an existing state machine as a way to instrument it and help
to bring it under better coverage of unit tests. Once a full set of transition

tests has been written they provide enough of a safety net to allow
refactoring.

Conclusions
This all started as an innocent attempt to write a ‘nice clean’ state machine
using principles of coding to interfaces, and good separation of the roles
of classes. It quickly turned into a revelation that ‘there is a better way’ to
approach state machines and their testing in general. We all think we know
how to write a state machine, but it is healthy to challenge this every now
and then.
In the embedded world that spawned this work, faulty state machines are
often the root cause of defects. It is the inability to test them effectively
and repeatably that is the root cause of their unreliability. Eliminating this
problem yields a significant improvement in the intrinsic quality of the
code. By lifting the state machine up to the same level as more general
application code, to which TDD is easily applied, it is no longer a poor
relation, and can be treated equally.
I have only applied this technique a couple of times so far, but with no
problems. I would be foolish to assume it will always work, but I look
forward to confirming the assumption. �

References
[Fowler] Refactoring: Improving the Design of Existing Code, Fowler,

Beck, Brant, Opdyke and Roberts.
[Gamma] Design Patterns: Elements of Reusable Object-Oriented

Software, Gamma, Helm, Johnson and Vlissides.
[Griffiths] ‘Separating Interface and Implementation in C++’,

Griffiths and Radford. http://www.twonine.co.uk/articles/
SeparatingInterfaceAndImplementation.pdf

[Mackinnon] ‘Endo-Testing: Unit Testing with Mock Objects’,
Mackinnon, Freeman and Craig. http://connextra.com/aboutUs/
mockobjects.pdf

[Wikipedia1] http://en.wikipedia.org/wiki/Separation_of_concerns
[Wikipedia2] http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Acknowledgments
Ric Parkin for guidance and support throughout the 'ordeal' of writing my
first article.
My family, and the Overload review team, for constructive comments on
the drafts.
di.fm, snakenet, and beer, for accompaniment whilst writing.

Listing 5 (cont’d)

 { "Off + timeout -> no change", START_OFF, StateMachine::Timeout, "Off", 0 },
 { "Moving + dark -> no change", START_MOVING, StateMachine::Dark, "Moving", 0 },
 { "Moving + light -> lamp off; day", START_MOVING, StateMachine::Light, "Day", &L_Off },
 { "Moving + movement -> no change", START_MOVING, StateMachine::Movement, "Moving", 0 },
 { "Moving + no_movement -> timing", START_MOVING, StateMachine::NoMovement, "Timing", &Start_T },
 { "Moving + timeout -> no change", START_MOVING, StateMachine::Timeout, "Moving", 0 },
 { "Timing + dark -> no change", START_TIMING, StateMachine::Dark, "Timing", 0 },
 { "Timing + light -> lamp off; day", START_TIMING, StateMachine::Light, "Day", &L_Off },
 { "Timing + movement -> no change", START_TIMING, StateMachine::Movement, "Timing", 0 },
 { "Timing + no_movement -> no change", START_TIMING, StateMachine::NoMovement, "Timing", 0 },
 { "Timing + timeout -> lamp off; off", START_TIMING, StateMachine::Timeout, "Off", &L_Off },
 // terminate the tests
 { 0, START_DAY, StateMachine::Dark, 0, 0 } };
 for (unsigned i = 0; v[i].testTitle; i++)
 TestOneTransition (v[i]);
 return 0;
}

April 2009 | Overload | 11

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://www.twonine.co.uk/articles/SeparatingInterfaceAndImplementation.pdf
http://www.twonine.co.uk/articles/SeparatingInterfaceAndImplementation.pdf
http://connextra.com/aboutUs/mockobjects.pdf
http://connextra.com/aboutUs/mockobjects.pdf

FEATURE STUART GOLODETZ
If You Can’t See Me,
I Can’t See You
Knowing where the doors are is only the start. Stuart
Golodetz works out what he can see through them.
n my last article, I talked about how to generate a set of portals
(doorways) in a 3D world using a BSP tree. These portals can be very
useful on their own (e.g. it’s possible to write a portal engine), but they

also have an application in determining a potential visibility relation
between the empty leaves of the BSP tree, and it’s that application that I
will discuss in this article.
One of the early challenges faced when writing a 3D engine is how to avoid
rendering your entire level when you can only see a small bit of it, since
this slows your frame-rate to a crawl. This was a serious problem for the
developers of the original Quake [Abrash]. The solution eventually
adopted by id Software’s John Carmack (and thereby popularized) was to
precompute the set of empty leaves potentially visible from each empty
leaf (also known as the PVS, or potentially visible set, of each leaf), using
a method originally described in [Teller]. This solves the scale problem
and allows you to have large levels with a high frame-rate (of course, it
still doesn’t mean that you can have large numbers of polygons all in the
same room and maintain your frame-rate, but that’s an entirely separate
challenge). The idea is essentially that once the potentially visible sets for
each leaf have been calculated, you can get away with rendering only the
polygons in the leaves which are in the PVS of the current viewer’s leaf:
in other words, you render only the polygons that can potentially be seen
from somewhere in the current room in which the viewer resides. This
greatly reduces the number of polygons that need to be rendered each
frame (see Figure 1: only the grey leaves need to be rendered from the
specified viewer position).

Door-to-door
The challenge here is in how to calculate the PVS in the first place. Clearly,
since it’s computed offline, we could theoretically sit down for each level
and fill in the O(n2) entries by hand, but this isn’t a very attractive
proposition when n (the number of empty leaves in the level) is even
moderately large.

The method we use in practice involves the portals we generated last time.
We observe that each leaf can potentially see the union of what its outgoing
portals can potentially see: in other words, if I’m standing somewhere
arbitrary in a room, I can potentially see exactly what can potentially be
seen from all the openings (doorways, windows, skylights, etc.) leading
out of that room. The leaf-to-leaf visibility problem can thereby be reduced
to a portal-to-portal visibility problem (see Figure 2: note that only the
portals relevant to the example have been shown), and it turns out that there
is a direct method for generating a portal-to-portal visibility relation.

Antipenumbrae
The basic idea is shown in Figure 3. We imagine the source leaf as a volume
light source, and note that its antipenumbra is the volume in which it can
be partially seen (see Figure 3a). For our purposes, however, we will define
an antipenumbra as a set of clip planes separating two portals (see
Figure 3b): the analogy is obvious, but the latter definition is a more
practically useful one.
To calculate the (portal) PVS for a given source portal (see Figure 4a), we
start by considering all the target portals leading out of its neighbour leaf,
i.e. the leaf into which it points (for example, the neighbour leaf of the
source portal is the target leaf here). We add any target portal that can be
seen from the source portal to the source portal’s PVS, and use it to build
an antipenumbra which represents the volume that can be seen from the
source leaf through the source and target portals. Next, we clip the
(outgoing) portals of the target portal’s neighbour leaf (the generator leaf)
to this volume (see Figure 4b). If a generator portal is not entirely clipped
out of existence by this process, then we build a reverse antipenumbra
from the generator portal to the target portal (see Figure 4c), and try and
clip the source portal to that (this is an optimization that may allow us to
clip further bits off our portals and speed up the algorithm). If the source

I

Figure 1

Figure 2

Stuart Golodetz has been programming for 13 years
and is studying for a computing doctorate at Oxford
University. His current work is on the automatic
segmentation of abdominal CT scans. He can be
contacted at stuart.golodetz@comlab.ox.ac.uk
12 | Overload | April 2009

April 2009 | Overload | 13

FEATURESTUART GOLODETZ

Figure 3

Figure 4

a
b

a b

c d

This greatly reduces the number of
polygons that need to be rendered

FEATURE STUART GOLODETZ
portal is not entirely clipped out of existence either, then we add the
generator portal to the source portal’s PVS and recurse, using the generator
po r t a l a s t he ne w t a rge t po r t a l (s e e F i gu re 4d) .
Despite its recursive nature, the implementation of this algorithm is
actually easier if done iteratively (see Listing 1). We store a stack of portal
triples, (source, inter, target), where the inter portal is the portal that was
the target when the target portal was the generator. When initialising the
stack with the visible portals from the original target leaf, of course, these
intermediate portals do not exist, so we just use null (the intermediate
portals are actually only an optimization, in any case).

Listing 1

/**
Calculates the set of portals that are potentially
visible from the specified portal, and updates the
portal visibility table accordingly.

@param originalSource
The portal for which to calculate the PVS
*/
void VisCalculator::calculate_portal_pvs(
 const Portal_Ptr& originalSource)
{
 int originalSourceIndex =
 portal_index(originalSource);
 Plane originalSourcePlane =
 make_plane(*originalSource);
 std::stack<PortalTriple> st;
 // Initialise the stack with triples targeting
 // all the portals that can be seen from the
 // original source. If only part of a target
 // portal can be seen, we simply split it.
 const std::vector<int>& originalCandidates =
 m_portalsFromLeaf[neighbour_leaf(
 originalSource)];
 for(size_t i=0, size=originalCandidates.size();
 i<size; ++i)
 {
 Portal_Ptr target =
 m_portals[originalCandidates[i]];
 int targetIndex = originalCandidates[i];
 if((*m_portalVis)(originalSourceIndex,
 targetIndex) != PV_NO)
 {
 if((*m_classifiers)(originalSourceIndex,
 targetIndex) == CP_STRADDLE)
 {
 target = split_polygon(*target,
 originalSourcePlane).front;
 }
 st.push(PortalTriple(originalSource,
 Portal_Ptr(), target));
 (*m_portalVis)(originalSourceIndex,
 targetIndex) = PV_YES;
 }
 }
 // Run the actual visibility calculation process.
 while(!st.empty())
 {
 PortalTriple triple = st.top();
 Portal_Ptr source = triple.source, inter =
 triple.inter, target = triple.target;
 int targetIndex = portal_index(target);
 st.pop();
 Antipenumbra ap(source, target);
 const std::vector<int>& candidates =
 m_portalsFromLeaf[neighbour_leaf(target)];
 for(size_t i=0, size=candidates.size();
 i<size; ++i)
 {
 Portal_Ptr generator =
 m_portals[candidates[i]];
 int generatorIndex = candidates[i];
 // If this generator portal might be visible
 // from both the intermediate portal (if it
 // exists) and the target portal, then we
 // need to clip it to find out.
 if((!inter || (*m_portalVis)
 (portal_index(inter),
 generatorIndex) != PV_NO) &&
 ((*m_portalVis)(targetIndex,

Listing 1 (cont’d)

 generatorIndex) != PV_NO))
 {
 Portal_Ptr clippedGen =
 ap.clip(generator);
 if(clippedGen)
 {
 Antipenumbra reverseAp(
 clippedGen->flipped_winding(),
 target);
 Portal_Ptr clippedSrc =
 reverseAp.clip(source);
 if(clippedSrc)
 {
 st.push(PortalTriple(clippedSrc,
 target, clippedGen));
 (*m_portalVis)(originalSourceIndex,
 generatorIndex) = PV_YES;
 }
 }
 }
 }
 }
 // Any portals which haven't been definitely
 // marked as potentially visible at this point
 // can't be seen.
 int portalCount =
 static_cast<int>(m_portals.size());
 for(int i=0; i<portalCount; ++i)
 {
 if((*m_portalVis)(originalSourceIndex,i) !=
 PV_YES)
 (*m_portalVis)(originalSourceIndex,i) = PV_NO;
 }
}

Listing 2

/**
Constructs an antipenumbra from a source portal to
a target portal.
For each antipenumbral plane p (except the source
plane), it is guaranteed to be the case that:
- classify_polygon_against_plane(*source, p)
 == CP_BACK
- classify_polygon_against_plane(*target, p)
 == CP_FRONT

@param source The source portal
@param target The target portal
*/
Antipenumbra::Antipenumbra(
 const Portal_Ptr& source,
 const Portal_Ptr& target)
{
 m_planes.push_back(make_plane(*source));
 // Note: In both cases here, source lies behind
 // the generated planes and target lies in front
 // of them.
14 | Overload | April 2009

FEATURESTUART GOLODETZ
Clipping
Having seen the core visibility calculation process, we need to look at how
we construct an antipenumbra in the first place, and then clip to it.
Constructing an antipenumbra is a relative simple process (see Listing 2).
The idea is to add planes which separate the source portal from the target
portal. To do this, we consider each edge on the source portal in turn, and
iterate through the target vertices until we find a vertex such that the plane

Listing 2 (cont’d)

 add_clip_planes(source, target, CP_BACK);
 // add planes from source to target, with source
 // behind them
 add_clip_planes(target, source, CP_FRONT);
 // add planes from target to source, with target
 // in front of them
}
/**
Adds clip planes which separate portal 'from' and
portal 'to'. The classifier specifies on which side
of the generated planes portal 'from' should lie.
@param from The from portal
@param to The to portal
@param desiredFromClassifier The side of the
 planes on which portal from should lie
*/
void Antipenumbra::add_clip_planes(
 const Portal_Ptr& from, const Portal_Ptr& to,
 PlaneClassifier desiredFromClassifier)
{
 int fromCount = from->vertex_count();
 int toCount = to->vertex_count();
 for(int i=0; i<fromCount; ++i)
 {
 const Vector3d& a = from->vertex(i);
 const Vector3d& b = from->vertex(
 (i+1)%fromCount);
 for(int j=0; j<toCount; ++j)
 {
 const Vector3d& c = to->vertex(j);
 Plane_Ptr plane = construct_clip_plane(
 a, b, c);
 if(!plane) continue;
 PlaneClassifier cpFrom =
 classify_polygon_against_plane(*from,
 *plane);
 if(cpFrom == CP_BACK || cpFrom == CP_FRONT)
 {
 PlaneClassifier cpTo =
 classify_polygon_against_plane(*to,
 *plane);
 if((cpTo == CP_BACK || cpTo == CP_FRONT)
 && cpTo != cpFrom)
 {
 // If we get here, either cpFrom ==
 // CP_BACK && cpTo == CP_FRONT, or
 // vice-versa.
 if(cpFrom != desiredFromClassifier)
 m_planes.push_back(plane->flip());
 else m_planes.push_back(*plane);
 break;
 }
 }
 }
 }
}
/**
Returns the plane through a, b and c.
@param a The first vector in the plane
@param b The second vector in the plane
@param c The third vector in the plane
@return As stated
*/
Plane_Ptr Antipenumbra::construct_clip_plane(
 const Vector3d& a, const Vector3d& b,
 const Vector3d& c)
{
 Vector3d v1 = b - a;
 Vector3d v2 = c - a;

Listing 3

/**
Clips the specified polygon to the antipenumbra.

@param poly The polygon
@return The clipped version of the polygon
*/
template <typename Vert, typename AuxData>
shared_ptr<Polygon<Vert,AuxData> >
Antipenumbra::clip(
 const shared_ptr<Polygon<Vert,AuxData> >& poly)
{
 typedef Polygon<Vert,AuxData> Poly;
 typedef shared_ptr<Poly> Poly_Ptr;
 Poly_Ptr ret = poly;
 for(std::vector<Plane>::const_iterator it=
 m_planes.begin(), iend=m_planes.end();
 it!=iend; ++it)
 {
 switch(classify_polygon_against_plane(
 *ret, *it))
 {
 case CP_BACK:
 {
 // The polygon is completely outside the
 // antipenumbra.
 return Poly_Ptr();
 }
 case CP_COPLANAR:
 {
 // The polygon lies on the antipenumbra
 // boundary and can't be seen properly
 // from the source.
 return Poly_Ptr();
 }
 case CP_FRONT:
 {
 // Nothing to clip: move onto the next
 // clip plane.
 break;
 }
 case CP_STRADDLE:
 {
 // Split the polygon across the clip plane
 // and keep the bit inside the
 // antipenumbra.
 ret = split_polygon(*ret, *it).front;
 break;
 }
 }
 }
 return ret;
}

Listing 2 (cont’d)

 Vector3d n = v1.cross(v2);
 if(n.length_squared() < EPSILON)
 return Plane_Ptr();
 return Plane_Ptr(new Plane(n,a));
}

April 2009 | Overload | 15

FEATURE STUART GOLODETZ
of the triangle it makes with the source edge separates the two portals. We
then make sure the plane in question is facing away from the source portal
and towards the target portal (for consistency: we could have done it the
other way round as well), and add it to the list.
Clipping a portal to an antipenumbra is also relatively straightforward (see
Listing 3). All we have to do is classify the portal against each clip plane
in turn: if it’s behind the plane, it’s completely outside the antipenumbra,
so we dump it; if it’s in front of the plane, we need to carry on clipping it
against the other planes; if it straddles the plane, we split it and keep the

Listing 4

/**
Performs the first phase of the visibility
calculation process. In this phase, portals which
obviously can't see each other (e.g. one portal is
fully behind another) are marked as such in the
portal visibility
table. This helps avoid a lot of unnecessary
clipping later on.
*/

void VisCalculator::initial_portal_vis()
{
 int portalCount =
 static_cast<int>(m_portals.size());
 m_portalVis.reset(
 new PortalVisTable(portalCount,
 PV_INITIALMAYBE));

 // Calculate the classification relation between
 // the portals. Specifically, classifiers(i,j)
 // will contain the classification of polygon j
 // relative to the plane of i.
 // Note: This bit could potentially be
 // optimized if we required that portal pairs
 // occupied consecutive indices in the list (e.g.
 // if 1 were necessarily the reverse portal of 0,
 // etc.).
 m_classifiers.reset(
 new ClassifierTable(portalCount));
 for(int i=0; i<portalCount; ++i)
 {
 const Plane plane = make_plane(*m_portals[i]);
 for(int j=0; j<portalCount; ++j)
 {
 if(j == i) (*m_classifiers)(i,j) =
 CP_COPLANAR;
 else (*m_classifiers)(i,j) =
 classify_polygon_against_plane(
 *m_portals[j], plane);
 }
 }

 // Run through the portal visibility table and
 // mark (*m_portalVis)(i,j) as PV_NO if portal
 // i definitely can't see through portal j.
 for(int i=0; i<portalCount; ++i)
 {
 for(int j=0; j<portalCount; ++j)
 {
 if(j == i)
 {
 (*m_portalVis)(i,j) = PV_NO;
 continue;
 }
 // Note: Portals can only see through the
 // back of other portals.
 // If portal j is behind or on the plane of
 // portal i, then i can't see it.
 if((*m_classifiers)(i,j) ==
 CP_BACK || (*m_classifiers)(i,j) ==
 CP_COPLANAR) (*m_portalVis)(i,j) = PV_NO;
 // If portal i is completely in front of
 // portal j, then it's facing i and i can't
 // see through it.
 if((*m_classifiers)(j,i) == CP_FRONT)
 (*m_portalVis)(i,j) = PV_NO;
 }
 }
}

Listing 5

/**
Performs the second phase of the visibility
calculation process, namely flood filling. This is
used to refine the initial portal visibility table
before calculating the final version, the aim being
to speed up the final calculation process.
*/
void VisCalculator::flood_fill()
{
 int portalCount =
 static_cast<int>(m_portals.size());
 for(int i=0; i<portalCount; ++i)
 {
 flood_from(i);
 // If any portals previously thought possible
 // didn't get marked by the flood fill,
 // then they're not actually possible and
 // need to be marked as such.
 for(int j=0; j<portalCount; ++j)
 {
 if((*m_portalVis)(i,j) == PV_INITIALMAYBE)
 (*m_portalVis)(i,j) = PV_NO;
 }
 }
}

/**
Peforms a flood fill from a given portal to refine
its approximate PVS before it is calculated for
real.

@param originalSource The portal from which to
flood fill
*/
void VisCalculator::flood_from(int originalSource)
{
 std::stack<int> st;
 st.push(originalSource);
 while(!st.empty())
 {
 int curPortal = st.top();
 st.pop();
 if(curPortal != originalSource)
 (*m_portalVis)(originalSource, curPortal) =
 PV_FLOODFILLMAYBE;
 int leaf = m_portals[curPortal]
 ->auxiliary_data().toLeaf;
 const std::vector<int>& candidates =
 m_portalsFromLeaf[leaf];
 for(size_t i=0, size=candidates.size();
 i<size; ++i)
 {
 if((*m_portalVis)(originalSource,
 candidates[i]) == PV_INITIALMAYBE)
 st.push(candidates[i]);
 }
 }
}

16 | Overload | April 2009

FEATURESTUART GOLODETZ
front half (the bit potentially inside the antipenumbra); if it’s on the plane,
we treat it as if it were outside the antipenumbra, since it can’t be seen
properly from the source.

Pre-processing
The visibility calculation process is the main part of the algorithm, but
before it takes place, we should first construct an initial portal-to-portal vis
table to avoid doing lots of redundant work later. At a minimum (see
Listing 4), we should fill in entries where:
� Portal i can’t see portal j because j is behind or on the plane of i
� Portal i can’t see portal j because the two portals are facing each

other (portals can only see through the back of other portals)
We can do better than this initial portal vis, however, if we next perform
a flood fill from each portal (see Listing 5): this allows us to eliminate even
more possibilities before we get to the more expensive part of the vis
process. These optimizations are essential to make the vis process run in
a decent amount of time: without them, it can take ages. Once the flood-
filling has taken place, we’re ready to run the actual visibility calculation
process described initially.

Post-processing: portal vis to leaf vis
Once the visibility calculations are complete, we have a portal-to-portal
visibility table, but what we really need is a leaf-to-leaf table which will
tell us which rooms can be seen from which other rooms. To convert the
portal vis table to a leaf vis table, we use our earlier observation that a leaf
can see precisely the union of whatever its (outgoing) portals can see. The
process is slightly complicated by the fact that for implementation reasons,
no portal is contained within its own PVS in the code (i.e. portal i can’t
see itself for coding purposes), but by and large the process is quite simple
(see Listing 6). The result is a leaf-to-leaf visibility table we can use to
speed up not only in-game rendering, but also lightmapping calculations
for static level lighting.

Conclusion
In this article, we’ve seen how to generate a leaf-to-leaf visibility table for
a BSP-based level from a set of portals. This allows us to render larger
levels at a reasonable frame-rate. As can be seen from Figure 5, using the
PVS approach allows us to render larger levels at a reasonable frame-rate
– because we can’t possibly see most of the inside of this building, we don’t
need to render it. �

References
[Abrash] Graphics Programming Black Book (Special Edition), Mike

Abrash, Coriolis Group Books, July 1997.
[Teller] Visibility Computations in Densely Occluded Polyhedral

Environments, Seth Teller, PhD Thesis, October 1992.

Listing 6

/**
Constructs a leaf visibility table from the portal one. The result of the visibility calculation process
is actually this leaf visibility table, not the portal one, but the latter is more convenient during the
calculation process itself: we thus convert the one to the other once we've finished calculating.
*/
void VisCalculator::portal_to_leaf_vis()
{
 const int portalCount = static_cast<int>(m_portals.size());
 m_leafVis.reset(new LeafVisTable(m_emptyLeafCount, LEAFVIS_NO));
 for(int i=0; i<m_emptyLeafCount; ++i)
 {
 // Leaf i can see itself, plus the union of whatever leaves its portals can see.
 (*m_leafVis)(i, i) = LEAFVIS_YES;
 const std::vector<int>& ps = m_portalsFromLeaf[i];
 for(std::vector<int>::const_iterator jt=ps.begin(), jend=ps.end(); jt!=jend; ++jt)
 {
 const int j = *jt;
 // Leaf i can see the leaf pointed to by portal j (even though portal j can't see itself).
 (*m_leafVis)(i, m_portals[j] ->auxiliary_data().toLeaf) = LEAFVIS_YES;
 // Leaf i can see all the leaves pointed to by portals portal j can see.
 for(int k=0; k<portalCount; ++k)
 {
 if((*m_portalVis)(j,k) == PV_YES)
 {
 (*m_leafVis)(i, m_portals[k] ->auxiliary_data().toLeaf) = LEAFVIS_YES;
 }
 }
 }
 }
}

Figure 5
April 2009 | Overload | 17

FEATURE RICHARD HARRIS
The Model Student:
A Rube-ish Square (Part 2)
A rube-ish square embodies some simple group
theory. Richard Harris explores its properties.
n the previous article in this series, presumably to counter a lifetime of
the humiliation of being the only person in my socially maladjusted peer
group unable to solve Rubik’s Cube, I introduced the Rube-ish Square;

a two dimensional version of that fiendish puzzle that even I might be able
to solve. The Rube-ish Square is manipulated by rotating its rows and
columns, with the element pushed out being returned on the opposite side,
as illustrated in figure 1.

As you will no doubt recall, in an unforgivably maths heavy discourse, we
exploited group theory to describe the properties of this simplified version
of the cube. Remember that a group is defined as a set of elements together
with an operator (usually denoted by) which satisfies the following
rules:

Closed:

Associative:

Identity:

Inverse:

Since they are not common programming notation, I feel that I should
probably remind you that the upside down A means for all, the backwards
E means there exists and the rounded E means within.
So translating this formal definition into English again, these rules mean
that for a group G:

Closed: For all a and b within G, is within G

Associative: For all a, b and c within G,

Identity: There exists a unique element i within G such that for
all a within G,

Inverse: For all a within G, there exists a unique element a-1

within G such that

Specifically we showed that the Rube-ish Square is fully described by the
group representing the permutations of a vector of nine elements that
involve swapping an even number of pairs of elements; namely the
alternating group of degree nine.
Hence we were able to show that the Rube-ish Square has

possible states.
This time we shall address a question that still remains unanswered for
Rubik’s Cube; what is the largest number of moves ever required to return
the square to its initial state? And for this, as promised, we shall abandon
the harsh mistress of mathematics and return to the warm safe embrace of
C++.

Make with the C++ already
The first things we’re going to need are some classes to represent the board
and our interactions with it.
Listing 1 illustrates the move_type structure that we shall use to indicate
how we wish to manipulate the square. The decision to use a structure
rather than a class reflects this type’s intended use to simply bind together
the three pieces of data describing a move; the direction, the id of the row
or column and the count of how many squares to the left or right, n. The
constructors are straightforward, as shown in Listing 2.
The default constructor is required since we will eventually want to store
objects of this type in a standard sequence container and it leaves the
member data uninitialised since they have no meaningful default values.
Listing 3 illustrates the board class that we will use to represent the state
of the Rube-ish square and manipulate it.

I

Figure 1

°

a b G a ° b G∈⇒∈,∀

a b c, G a° b°c() a°b() °c=⇒∈,∀

i G such that a G a ° i i ° a a= =∈∀∈∃

a G∈ a 1– G such that a ° a 1–∈∃⇒∀ a 1– ° a i==

a°b

a° b°c() a°b() °c=

a ° i i ° a a= =

a ° a 1– a 1– ° a i==

9!
2
----- 9 8 7 6 5 4 3 2 1××××××××

2
---=

9 8 7 6 5 4 3×××××× 180 000,≈=

Listing 1

 enum direction
 {
 horizontal,
 vertical,
 };

 struct move_type
 {
 direction dir;
 size_t id;
 long n;

 move_type();
 move_type(direction dir, size_t id, long n);
 };

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
18 | Overload | April 2009

FEATURERICHARD HARRIS

what is the largest number of moves
ever required to return the square to

its initial state?
The first thing to note is that by enabling construction with different
lengths of side n this class represents a more general puzzle than the one
we are currently investigating. The move and undo member functions
provide the means to manipulate the state of the square, and the remaining
public member functions the means to observe it.
The private member functions provide the state manipulation mechanism
that will be used by both move and undo.
Finally, the member data board_ and buffer_ represent the board itself
and a temporary area to assist in the manipulation of its rows and columns.
Listing 4 illustrates the implementation of the constructors.

The default constructor need do nothing since both the member data have
default constructors that do what we require; namely create a container of
length 0.
The initialising constructor is of slightly more interest. This initialises the
board with n2 elements that will hold the row-wise elements of the board
and initialises the working buffer with n elements that will hold the
elements of a single row or column whilst they are being manipulated. It
then proceeds to fill the board with integers counting up from 1 to create
the initial, solved, state.
The size member function returns the length of side of the square and
exploits the fact that the number of elements in the working buffer is equal
to the number of rows and columns, as illustrated below:
 size_t
 board::size() const
 {
 return buffer_.size();
 }

The state access member functions are fairly straightforward, generally
simply forwarding on to the underlying data type, as illustrated in
Listing 5. The p1most complex of these, the at member function, simply
maps the row and column onto a row-wise element of the board_
member, throwing an exception if an attempt is made to access an element
out of the board’s limits.
The move and undo member functions simply forward on the requests to
manipulate the state of the board to the private member functions
move_row and move_col as shown in Listing 6.
As you can see, undo is simply the opposite operation to a move. Listing 7
illustrates how the private member functions perform the required state
manipulation.
So we can see that the move_row and move_col member functions
simply copy the row or column to be manipulated into the working buffer
and then copy the elements back into the board starting from the required

Listing 2

 move_type::move_type()
 {
 }

 move_type::move_type(
 direction dir, size_t id, long n) : dir(dir),
 id(id),
 n(n)
 {
 }

Listing 3

class board
{
public:
 typedef size_t value_type;
 typedef std::vector<value_type> board_type;
 typedef board_type::const_iterator
 const_iterator;
 board();
 explicit board(size_t n);
 size_t size() const;
 void move(move_type m);
 void undo(move_type m);
 const board_type & data() const;
 const_iterator begin() const;
 const_iterator end() const;
 value_type at(size_t row,
 size_t col) const;

private:
 void move_row(size_t row, long n);
 void move_col(size_t col, long n);
 value_type & at(size_t row, size_t col);
 board_type board_;
 board_type buffer_;
};

Listing 4

board::board()
{
}
board::board(size_t n) : board_(n*n, 0),
 buffer_(n, 0)
{
 static const size_t max_n = 1UL<<(
 std::numeric_limits<size_t>::digits/2);
 if(n>=max_n) throw std::invalid_argument("");
 size_t i = 1;
 board_type::iterator first = board_.begin();
 board_type::iterator last = board_.end();
 while(first!=last)*first++ = i++;
}

April 2009 | Overload | 19

FEATURE RICHARD HARRIS
offset, using modular arithmetic to ensure that we correctly wrap them
around the left and right or top and bottom.

We’ve got a Rube-ish square and we’re not afraid to
use it
So, now we have the implementation of the board we are ready to use it
to investigate the question of what is the largest number of moves required
to return the square to its initial state from any other state.
To answer this, we shall represent the 180,000 or so states of the square
as nodes, each of which is connected to 12 others by lines representing the
12 distinct rotations of rows and columns with which we transform the
square from one state to another.
The technical name for this kind of structure is a graph, although the term
network is also occasionally used. Figure 2 provides an illustration of a
small graph of just 9 nodes.
Graphs played a big role in the early days of artificial intelligence
[Russell95], where they were used to represent the states of an artificial
world, often a game such as chess, and the actions that transform it between
states. A number of algorithms were developed to efficiently search these
graphs for a series of transformations that would lead from an initial to a
desired state.
Unfortunately, the real world rarely provides us with such well-defined
states and transformations and so these algorithms never led to the goal of
machines that demonstrate intelligent behaviour. Within the field of
computer gaming, however, we often do have rigidly defined rules and
goals and consequently these types of algorithms still form the basis for
many game playing machines. A particularly striking example is IBM’s
chess playing machine, Deep Blue, which defeated world champion Gary
Kasparov in 1997 by searching through some 200 million states per second
[Hsu02].
If we disallow returning to a node already visited, the paths through a graph
may be represented by a simpler structure; namely a tree. Numbering the
nodes in our example graph, the first three levels of the tree of all paths
starting at the uppermost node are illustrated in Figure 3.
Strictly speaking, we could also represent paths that allowed nodes to be
revisited with a tree, although if we wished to examine all possible paths
it would need an infinite number of levels.
Structuring the problem in this form is highly suggestive of a way to search
the paths through the graph. Starting at the first node we can recursively
descend the leftmost branch until we reach the bottom, then reverse up a
level and descend the next leftmost, and so on until we have traversed every
non-returning path starting at the first node. Figure 4 illustrates the full 9
steps of the search.
This approach is known as depth-first search, and is one of the simpler
graph traversal algorithms. Its principal drawback is that, when searching
for a path to a node with a particular property, it often follows a large
number of fruitless paths before discovering a relatively short one that has
the desired result. Specifically, if the rightmost branch leads to a node with

Listing 5

const board::board_type &
board::data() const
{
 return board_;
}
board::const_iterator
board::begin() const
{
 return board_.begin();
}
board::const_iterator
board::end() const
{
 return board_.end();
}
board::value_type
board::at(size_t row, size_t col) const
{
 if(row>=size() || col>=size()) throw
 std::out_of_range("");
 assert(row*size()+col<board_.size());
 return board_[row*size()+col];
}

Listing 6

void
board::move(move_type m)
{
 if(m.dir==horizontal) move_row(m.id, m.n);
 else move_col(m.id, m.n);
}

void
board::undo(move_type m)
{
 if(m.dir==horizontal) move_row(m.id, -m.n);
 else move_col(m.id, -m.n);
}

Listing 7

void
board::move_row(size_t row, long n)
{
 if(row>=size()) throw std::out_of_range("");
 if(n<0)n = size() - (-n)%size();
 for(size_t i=0;i!=size();++i) buffer_[i] =
 at(row, i);
 for(size_t j=0;j!=size();++j) at(row,
 (j+n)%size()) = buffer_[j];
}
void
board::move_col(size_t col, long n)
{
 if(col>=size()) throw std::out_of_range("");
 if(n<0)n = size() - (-n)%size();
 for(size_t i=0;i!=size();++i) buffer_[i] =
 at(i, col);
 for(size_t j=0;j!=size();++j) at((j+n)%size(),
 col) = buffer_[j];
}
board::value_type &
board::at(size_t row, size_t col)
{
 assert(row<size() && col<size() &&
 row*size()+col<board_.size());
 return board_[row*size()+col];
}

Figure 2
20 | Overload | April 2009

FEATURERICHARD HARRIS
the desired property after one step, depth-first search is going to waste a
lot of time on the leftmost branches.
As a result, it is generally not the algorithm of choice for many problems.
That said, the alternatives require maintaining a great deal more state,
trading computational expense for memory usage.
The first thing we should note is that , so we can generate a
unique identifier for any given state of the 3 by 3 square that fits inside a
32 bit integer. The scheme we shall use is to represent the state as a 9 digit
base 9 number:

where nij is the number in row i and column j of the square in the given
state. Note that we must subtract 1 from each element since they range from
1 to 9, rather than from 0 to 8.
Listing 8 illustrates the addition of such an id member function to the
board class.
This scheme is fairly wasteful of bits, since for the 3 by 3 square can only
exhibit even permutations of the integers from 1 to 9; approximately 218.47

states. We could certainly do better by identifying each permutation with
no gaps, which would allow us to use a sequential rather than an associative
container to record the set of already visited states. Unfortunately, this
would be rather more complicated to implement.Figure 3

Figure 4

3

5

1

2

954 5 8

7 3

5

1

2

954 5 8

7 3

5

1

2

954 5 8

7

3

5

1

2

954 5 8

7 3

5

1

2

954 5 8

7 3

5

1

2

954 5 8

7

3

5

1

2

954 5 8

7 3

5

1

2

954 5 8

7 3

5

1

2

954 5 8

7

99 228.53≈

id n11 1–() 98× n12 1–() 97× n13 1–() 96×

n21 1–() 95× n22 1–() 94× n23 1–() 93×

n31 1–() 92× n32 1–()+ 91× n33 1–()+ 90×

+ +

+

+ +

+

=

April 2009 | Overload | 21

FEATURE RICHARD HARRIS
Furthermore, as you may have guessed from the first line of the function,
it won’t work for board sizes greater than 3. This is because the result of
the formula won’t fit into a 32 bit integer if the board size is 4 or greater.
In fact, even the total number of possible states won’t fit into a 32 bit integer
for a 4 by 4 board, so the more efficient scheme wouldn’t do us any good
either. For a 5 by 5 board, we wouldn’t even have enough space if we had
64 bits to work with.
Figure 5 illustrates just how quickly the number of states and the upper
bound of our encoding scheme grow with the size of the board, n..
Clearly we’re going to run out of bits pretty quickly no matter how large
our integers are. Giving up the encoding scheme and using vectors of
integers to represent the board state doesn’t help much either since instead
of running out of bits, we’ll run out of memory.
Given the enormous difficulty we will clearly have representing the full
set of states of large boards, I’m reasonably happy to accept the weaknesses
of this encoding scheme. In any event, the board we are studying is just 3
by 3, so it’s something of a moot point.
So, all that said, exactly how inefficient is a depth first search going to be?
Unfortunately, it’s going to be pretty damn well inefficient since we may
very well visit all 180,000 states during traversal of the leftmost sub-tree
of the root node, only to replace them with shorter paths later in the search.
Thankfully, we can dramatically improve our algorithmic performance by
setting an upper bound on the depth of the tree.
To do this, we need only describe a naïve scheme for solving the puzzle;
namely find the worst case for returning each number to its initial position
in turn, whilst leaving previously returned numbers in place. I shall simply
assert what these worst cases are and how many moves they take, so you
may wish to take a moment to confirm that I’ve got them all right.

� For 1, the worst case is when it is in neither the first row nor the first
column, requiring 2 moves.

� For 2, whilst leaving the 1 in the correct position, the worst case is
if it is in the first row and third column, requiring 3 moves to ensure
that 1 remains in the correct position.

� For 3, whilst leaving the 1 and the 2 in the correct positions, the
worst case is when it is in neither the first row nor the third column,
requiring 2 moves.

� For 4, whilst leaving the previous elements in their correct positions,
the worst case is if it is in the third row and the first column,
requiring 4 moves.

� For 5, whilst leaving the previous elements in their correct positions,
the worst case is if it is in the third row and the second column,
requiring 4 moves.

� For 6, whilst leaving the previous elements in their correct positions,
the worst case is if it is in the third row and the third column,
requiring 4 moves.

� For 7, whilst leaving the previous elements in their correct positions,
the worst case is if it is in the second or third column, requiring 1
move.

� At this point, 8 and 9 must be in their correct positions since if they
weren’t we’d have an odd permutation of the square and, as we so
tediously demonstrated last time, that just isn’t possible.

So, that gives us an upper bound of just 20 moves, significantly reducing
the worst case number of branches we must traverse.
Adding a typedef for a std::map from the board state id to the number
of moves required to get there from the initial state to the board, we are
ready to begin searching for the state that requires the most moves to return
the square to its initial state.

The final piece of the puzzle
Listing 9 illustrates the definition of the record of moves and the
declaration of the max_moves static member function that we’ll use to
find the state requiring the most moves to solve.
Note that the hint argument will be used to inform the algorithm of any
upper bound on the depth of the search tree that we have been able to
deduce. For our analysis this will of course be 20 moves. We’ll use the
default value of 0 as an indication that we haven’t done our homework and
are unaware of any such upper bound.
The max_moves function simply initialises a board and a move count and
forwards on to another function, examining its result for the worst case,
as illustrated in Listing 10.
So, the real work is being done by the as yet undefined all_moves
function, given in Listing 11.
This simply checks whether the current state of the board has been visited
before and if not, or if so but after a greater number of moves, adds it to
the record of states and the number of moves required to reach them. It
then recursively takes a further step by calling the next_moves member

Listing 8

class board
{
public:
 ...
 unsigned long id() const;
 ...
};
unsigned long
board::id() const
{
 if(size()>3) throw std::out_of_range("");
 unsigned long i = 0;
 const_iterator first = begin();
 const_iterator last = end();
 while(first!=last)
 {
 i *= size()*size();
 i += *first++ - 1;
 }
 return i;
}

Figure 5

n States Encoding

2 25 28

3 217 229

4 244 264

5 283 2116

6 2138 2186

Listing 9

class board
{
public:
 ...
 static size_t max_moves(size_t n,
 size_t hint = 0);
 ...
private:
 typedef std::map<unsigned long, size_t>
 move_counts_type;
 ...
};
22 | Overload | April 2009

FEATURERICHARD HARRIS
function, which in turn relies upon a next_move function, both of which
are illustrated in Listing 12.
So next_moves simply iterates over the rows and columns of the board
and calls next_move to continue the search with each move that can be
applied to them. Note that the number of squares through which we rotate
the rows and columns by starts at 1 rather than 0, since the latter would
trivially have no effect upon the square. We don’t have to worry about the
inner loop running into trouble if the board has a size of 0, since in that
case the outer loop will terminate immediately.
Now we are finally ready to calculate the worst case number of moves
required to solve our Rube-ish Square, and upon doing so we discover that
it is, rather anti-climactically, 8.
Before I leave you again, I thought it might be rather fun to give you a
couple of examples of 8-move states of the square in Figure 6, so that you
can have a crack at solving them.
As a final thought, I’d like you to imagine that the elements of the square
are also labelled on the underside and that, in addition to rotating its rows
and columns, we allow the whole square to be turned over, swapping the

1st and 3rd, the 4th and 6th and the 7th and 9th pieces. This is an odd
permutation, so trivially doubles the number of possible states. The
question is, what effect does it have on the worst case number of moves?
Until next time, dear reader, happy puzzling. �

Acknowledgements
With thanks to Astrid Byro, Keith Garbutt and John Paul Barjaktarevic for
proof reading this article.

References and further reading
[Hsu02] Hsu, Feng-hsiung, Behind Deep Blue: Building the Computer

that Defeated the World Chess Champion, Princeton University
Press, 2002

[Russell95] Russell, S. & Norvig, P., Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995

Listing 10

size_t
board::max_moves(size_t n, size_t hint)
{
 move_counts_type move_counts;
 board b(n);
 all_moves(b, move_counts, 0, hint);
 move_counts_type::const_iterator first =
 move_counts.begin();
 move_counts_type::const_iterator last =
 move_counts.end();
 size_t result = 0;
 while(first!=last)
 {
 if(first->second>result) result =
 first->second;
 ++first;
 }
 return result;
}

Listing 11

class board
{
 ...
private:
 static void all_moves(board &b,
 move_counts_type &move_counts,
 size_t depth, size_t hint);
 ...
};
void
board::all_moves(board &b,
 move_counts_type &move_counts,
 size_t depth, size_t hint)
{
 size_t id = b.id();
 move_counts_type::value_type current_count(id,
 depth);
 std::pair<move_counts_type::iterator, bool>
 current = move_counts.insert(current_count);
 if((current.second || depth<current.first
 ->second) && (hint==0 || depth<=hint))
 {
 if(!current.second) current.first->second =
 depth;
 next_moves(b, move_counts, depth, hint);
 }
}

Listing 12

class board
{
 ...
private:
 static void next_move(board &b, move_type m,
 move_counts_type &move_counts,
 size_t depth, size_t hint);
 static void next_moves(board &b,
 move_counts_type &move_counts,
 size_t depth, size_t hint);
 ...
};
void
board::next_move(board &b, move_type m,
 move_counts_type &move_counts,
 size_t depth, size_t hint)
{
 b.move(m);
 all_moves(b, move_counts, depth+1, hint);
 b.undo(m);
}
void
board::next_moves(board &b,
 move_counts_type &move_counts,
 size_t depth, size_t hint)
{
 for(size_t i=0;i!=b.size();++i)
 {
 for(size_t n=1;n!=b.size();++n)
 {
 move_type h(horizontal, i, n);
 move_type v(vertical, i, n);
 next_move(b, h, move_counts, depth, hint);
 next_move(b, v, move_counts, depth, hint);
 }
 }
}

Figure 6
April 2009 | Overload | 23

FEATURE ALLAN KELLY
On Management:
Product Managers
Product Management is a poorly understood activity.
Allan Kelly sheds some light on its mysteries.
f all the roles that play a part when software is created only one is
essential: Coders. You can get by without Testers, either because the
Coders are so good you don’t need to test or through sheer bloody

mindedness. And if you are very lucky the Coders will be able to work out
what is required directly from the people who want the software. But
generally speaking it helps to have someone decide what is needed from
software before coding begins.
This is not to make a case for big requirements document – or indeed any
documentation. Documentation may help, but it is only a medium for
communication. The spoken word is another, and requirements are often
better communicated by a conversation. The advantage of conversation is
that it is a two way process. The listener can ask questions during a
conversation and they can resume the conversation at a later date if they
need clarification – both difficult to do with a document.
However the requirements are communicated, somebody needs to decide
what they are. Scrum calls this person the Product Owner. It is the person
(or persons) who decides what is needed, what is to be created, and what
the priorities are. However Scrum has nothing to say about how the Product
Owner finds or decides what is required.
Similarly XP has a role called the Customer. However, again XP has
nothing to say about how this role is performed. On the original XP team
the customers’ role was to translate what the current system did so the C3
team could make the new system do something similar.
For any system of size, knowing what needs to be created and what the
priorities are is a process of discovery. Unless a team is building a
replacement system with no added functionality requirements, then
requirements discovery is complicated and involved process.
Fortunately there are people with these skills and experience. In most
organizations these people are either known as Business Analysts or
Product Managers. Their role is to decide what needs to be built and
communicate it to the developers.
Unfortunately the roles of Business Analyst and Product Manager are not
always clear. More unfortunately still the role Project Manager is often
mistaken for that of a Business Analyst or Product Manager.

Lesson 1: The term Product Owner is an alias for Product
Manager or Business Analysts. In some organizations the
Product Owner will be a Product Manager and in others they will
be a Business Analyst. For the development team the net result
is the same: a Product Owner with the authority and legitimacy
in the organization to decide what needs to be done.

In this article and the next article I would like to try and unravel these roles
and examine them in a little more depth.

Product Managers and Business Analysts are
different
Basically, Product Managers work at companies that create software that
sells in a market. They are outward facing. They know they need to seek
out customers and find out what they need to make their lives better.
Product Managers are concerned with competitor products and change
outside the company.
In contrast, Business Analysts work at companies that develop software
for their own internal use, or on specific developments for other
companies, which will be used internally. Thus they are normally found
in corporate IT departments and external service provider (ESP)
companies.
Business Analysts look inwards, they look at the operations and needs
inside a company. They know exactly who their users are, indeed, in some
cases there may only be one user. When Business Analysts look outside
the company they are looking at suppliers as alternatives to development
not as competitors in the market.

O

Allan Kelly realised after years at the code-face that most of
the problems faced by software developers are not in the code
but in the management of projects and products. He now
works as a consultant and trainer, helping teams adopt Agile
methods and improve development practices and processes.
He can be contacted at allan@allankelly.net and
http://allankelly.blogspot.net.

I spent the first ten years of my professional career working in and around
London. I worked for a variety of companies but I never met a Product
Manager.

Then I went to work in Silicon Valley for a bit. Here it seemed I met Product
Managers all the time. Not just in the office but socially. There are a lot
of Product Managers in Silicon Valley.

Since then I’ve made a point of understanding what Product Managers
do, I’ve worked as Product Manager myself, I’ve been on Product
Manager training and I’ve read a lot about what they do and how they do
it. And I’ve become convinced that good Product Management is one of
the key differentiators between successful software product companies
and the unsuccessful ones.

Without someone who knows what customers value in a product and why
they use it then all attempts to improve and enhance the product are just
a shot in the dark. Success and failure come down to luck.

This person, whether they actually have the title Product Manager or not,
needs the authority and legitimacy inside the organization to direct the
product and guide its development.

This is vital for software products – software which people are expect to
pay for directly or indirectly. Companies that create software for their own
use, or develop bespoke software for customers who pay for the software
to be written have a very different user base. When this software is
delivered customers have little choice but to use it. The software has
already been paid for.

There are lots of successful Silicon Valley software companies using
Product Managers and acting as role models for new software
companies. In the UK there are fewer successful software companies
and fewer role models. While things have improved in the UK the Product
Manager role is still not as widely known as it needs to be.

Product management in the UK
24 | Overload | April 2009

FEATUREALLAN KELLY

it is the hundreds, thousands, of small
decisions made every day that make

the difference
Lesson 2: The Product Manager and the Business Analyst
roles are different. Not enough people appreciate the difference.

What does the Product Manager do?
The Product Manager role is summarised in Figure 1. The most obvious
activity for the Product Manager is talking to the development team. This
is a two way conversation during which the Product Manager tells the team
what is needed.
Or rather, the Product Manager specifies what the goal is: they should not
propose solutions, and neither should they get involved in technical design.
However, they may review several proposed solutions and express a
preference for one when the solution makes a difference to how customers
relate to the product. For example, a Product Manager would not review
alternative database schema designs, but they would review and comment
on different user interface designs. One is visible to the final customer and
the other invisible. As shown in Figure 1, product managers sit in the centre
of many conversations.

Lesson 3: Product Managers work with the development team,
customers, senior managers, sales and keep watch on the wider
market, including competitors.

Product Managers continue the dialogue about what is needed as the
product is built. Developers come and ask for clarification, ‘Do you mean
this? or that?’ Whenever there is a decision that makes a difference to how
the product functions to the customer, Product Managers need to be
consulted.
On products with a non-trivial user interface, development teams should
include a user interface designer. In matters of UI design and operation,
they will deputise for the Product Manager on UI decisions. However in

the absence of a UI designer these kind of decisions should be made by a
Product Manager rather than a developer.
In addition, Product Managers talk to the development team about what is
technologically possible. Both about the development in hand at the
moment, and about for future work. Product Managers need to reconcile
what the technology can do with what customers need. To do this they need
to stay abreast of technology developments.
It also means that Product Managers need to be in an ongoing dialogue with
customers. Both customers who have already bought the product and are
using it and potential customers, the kind of customers the company wants
to have.
Product Managers need to visit, observe and research the customer market
as a whole. They need to identify the problems customers have for which
the software product is a solution. They need to understand how this relates
to the customers’ tasks, problems and daily routines. Importantly they need
to understand what will make the customer part with money.
There are various ways a Product Manager can do this. When customers
are not known, the first task is to find them. Once the customers are known
there needs to be a dialogue. The Product Manager may ring them up and
talk to them directly. Better still is a face-to-face visit.

Lesson 4: Product Managers need to be in regular contact with
customers.

Traditional market research methods like surveys and focus groups are part
of the Product Manager’s toolkit. So, too, is win–loss analysis. Product
Managers visit (without a salesman) customers who have bought the
product, and potential customers who have not bought the product. The
objective is not to make a sale, or turn around a failing one but to
understand why one customer bought and another one didn’t.
Product Managers need to look at the wider market and at competitors.
They need to attend trade shows and read trade journals, watch
competitors’ websites and talk to customers about competitors.
Once information is gathered, Product Managers combine it all into
product roadmaps and strategies. These they present to senior managers,
but before they can do so they need to understand what senior managers
are trying to achieve with the company. What is the company strategy?
And how does this product play a part?

Lesson 5: Product Managers both follow corporate strategy
and influence it.

There are even more tasks that naturally fall to Product Managers but are
not so core. They may be asked to visit customers with sales staff to talk
about the product, present product roadmaps. and listen to customer issues.
Product Managers are never very far from Product Marketing and are often
the public face of the product. (Product Marketing is described below.)Figure 1
April 2009 | Overload | 25

FEATURE ALLAN KELLY
They may be asked to speak at conferences or to the press, they may need
to advise on how the product is presented in marketing literature.

Time
What should be obvious by now is that there is a lot for a Product Manager
to do. When the work is done well it really can make the difference between
a big success and an also-ran product. What isn’t so clear is that it’s too
easy for the role to be squeezed and become ineffective.
Squeezing happens for two reasons. Firstly, everyone in the company,
from CEO to Receptionist, has an opinion on what the product could do,
should do and what will make money. The Product Manager will have
these feelings too, but they need to find the facts to support their decisions.
Only when armed with these facts can they make rational decisions and
deny others their requests.
But getting facts brings us to the second reason for the squeeze: time. With
so much to do, Product Manager time is at a premium. Visiting a customer
may involve two days of travel for a two hour meeting. This might not seem
like an effective use of time but without these meetings the Product
Manager will be blind to customer needs.

Lesson 6: It costs to acquire information; but without this
information and facts money will be wasted elsewhere chasing
guesses and opinions.

One solution is simply to have more Product Managers working on a
Product. How many you need depends on the nature of your product, the
number and type of customers, how new the product is and many other
factors.
As a rough guide, I recommend one Product Manager for every three to
seven developers. If a product has been around for a while, the market is
stable, and no big new innovation is planned then one Product Manager
can probably keep seven developers busy.
If however the product is new, the product is innovative, the market is
developing rapidly, and there are many needs to be addressed then one
Product Manager for three developers is more realistic.

Lesson 7: Appoint one Product Manager for every 3 to 7
developers. Without a Product Manager to guide them, a team
will be guessing, success will be based on luck.

When a development team is larger and multiple Product Managers are
needed then things become more complicated because different Product
Managers must co-ordinate their work. One answer is to have a Tactical
and a Strategic Product Manager – TPM and SPM respectively.
The SPM does most of the customer visits, most of the conversations with
management and does the long term roadmaps. The TPM spends more of
their time working with the developers, helping sales and the near term
roadmaps. Importantly the SPM and TPM talk regularly, they should sit
next to each other. This arrangement also makes it easier to arrange visits
to customers and debrief afterwards. (By now you may have realised that
Product Managers need to travel a lot.)

In-bound versus out-bound marketing
Another way to refactor the Product Manager role is to ensure it does not
involve any outbound marketing. Strictly speaking this is the role of
Product Marketing.
In the purest form, marketing is about both discovering customer needs and
communicating solutions to the customer. Discovering needs is in-bound
marketing, it’s about finding out what is needed. Once there is a solution
available the focus is then on communicating about the product. This
second form of marketing is what most people think of as marketing, but
strictly speaking this is out-bound marketing and is known as Product
Marketing.

Product Management is, at heart, an in-bound marketing role. However the
role is often caught up with out-bound marketing, communicating about
the product. This is particularly true at small companies who might not be
able to afford an additional person. As a company grows these
responsibilities should be passed to a dedicated Product Marketing
Manager.
The Product Marketing function, often filled by Product Marketing
Managers, is concerned with communicating to customers that the product
exists, the benefits of the product, and changes to the product. This is done

Within product management circles there is an accepted way of creating
requirements documents. Of course, organizations and even individuals
differ in exactly what they expect from each document, and what they say
in each document but as a general rule it goes like this.

First it starts with a Business Case, or Business Requirements Document
– a BRD for short. This outlines the business opportunity and how it might
be exploited, and what the return might be. For example, it might say:
‘Telesales staff (who have the problem) waste a lot of time calling to
customers who do not wish to receive telesales calls (the problem to be
solved); a product which automatically prevents numbers on the national
“do not call” list being called (solution) would increase productivity
(benefit).’

The BRD might also give some indication of market size, number of
potential customers and so on. Sometimes there is no need to write a
BRD, perhaps because the product is a development of an earlier one,
or because the business case is implicit in the company’s purpose.

Next comes the Market Requirements Document, the MRD. This is the
document that examines what the market needs. The MRD will take any
BRD as a starting point and develop the ideas further. It discusses the
problems a product would need to address, who would buy the product,
makes some suggestions on the functionality needed, what the
performance characteristics would need to be and examine the potential
competition.

In some cases the BRD may be merged into the MRD, forming the first
few pages of the MRD. When it exists as a stand-alone document, it
should be a short document.

Neither the BRD or MRD addresses the features of the product in depth.
The MRD might say ‘User access needs to be controlled’ and might
discuss current market standards but it would not go into detail. The MRD
would also lay out the constraints on the product: ‘Needs to sell for less
than $100 to be competitive.’

Next comes the Product Requirements Document. The PRD translates
the requirements in functionality into features with essential details. The
PRD may also refine statements on the performance and constraints.

Again, sometimes the MRD and the PRD get merged together. In my view
this is a mistake because the MRD should focus on the need, and the
PRD is the start of the solution. While the BRD (if it exists) and MRD
should be created by a the business side (Product Manager or higher
executive), the PRD is the start of the engineering process. As such the
engineering group should contribute to, or even write the PRD, with the
Product Manager.

What happens after the PRD is less well defined. Sometimes the PRD
is enough to get started on. Other times the PRD may be further refined
as an functional specification – sticking with the convention this would
be called a Functional Requirements Document or FRD. Software
developers might like to respond to the PRD with a design document.

If this all sounds very waterfall-ish that’s because it is. One document
leads to another and eventually some code gets written. However the
idea of separating the market need and business case from the product
requirements and the functionality to meet those needs holds in iterative
and evolutionary models. These documents need to become living
documents. Market needs change and so the MRD can be expected to
change over time.

Document creation needs to overlap. The BRD kick-starts the work with
a small team, Product Managers continue to develop the MRD and
engineers respond with PRD changes or directly in code. As the scale
of the work becomes apparent the team may increase in size.

MRD–PRD model
26 | Overload | April 2009

FEATUREALLAN KELLY
through advertising, public relations, press releases, online websites and
other media.

Lesson 8: Outbound Product Marketing is a different and
distinct activity from inbound Product Management.

(Just to complicate things, Product Manager as described in this article and
as practiced by successful software companies is different to the Product
Manager found in many non-technology companies. The role of Product
Manager at a company like Proctor & Gamble is an out-bound marketing
role, one usually involved with brand management.)

A Product Manager cannot be a Developer
A Product Manager needs to be technically knowledgeable, they need to
understand what technology can and cannot do and they need to understand
their products. Thus it is not uncommon to find Developers moving into
a Product Manager role. However anyone taking this route must accept that
their coding days are behind them for several reasons.
Firstly, perhaps unsurprisingly: time. As already outlined the Product
Manager role is a full time role. It is wrong to think a Product Manager
will have time to talk to customers, decide what is needed, survey the
competition and so on, then change hats and write the code.
That said I have come across developers who, in the absence of a Product
Manager, take on many of the duties. Often this happens unofficially, and
often the developer doesn’t do the complete role. While this is
understandable, it is a sign that there is a role to be filled.

Lesson 9: In the absence of an official Product Manager, others
are likely to fill the role.

Secondly the priorities of the two roles conflict. Good developers have an
empathy for the code base and the product architecture. The code speaks
to them. It says things like ‘refactor me’ and ‘add a database abstraction
layer’. Good developers hear these messages and do their best to give the
code what it wants.
Product Managers also have a relationship with the product but their
empathy needs to be with the customers. The messages they hear are
‘simplify the UI’ and ‘Give me the product on Oracle’.
Asking one person to keep all this in their mind, and empathise equally
with customers and code is too much. It would be like asking one person
to present two personalities.
Anyone who tries to fill both roles will inevitably tend towards one side
or the other. For a Developer moving into product management they
continue to listen to the code when they should be listening to the customer.

Conclusion
Although Product Managers have the word ‘Manager’ in their title, they
are not managers in some the senses of the word. They manage a thing,
not people. Their power rests on their legitimacy and knowledge rather
than their direct authority.
Without a Product Manager directing the direction of development the
success of a commercial product is down to luck and chance. Product
Managers are the people who take the luck out of developing software
products.
Product Management is not a misunderstood role, it is simply an
overlooked role. Too many software companies are either ignorant of what
good product management can do for them or they simply believe that
developers know best.

Lesson 10: If you work at a software company which sells its
products – either shrink wrapped or online via the web – to
multiple customers then you need Product Managers working
with the development team.

Further reading
Unfortunately, there is still a lack of good books on product management.
Any aspiring Product Manager should certainly read The Inmates are
Running the Asylum [Cooper04] and Crossing the Chasm [Moore99] – and
probably the sequel, Inside the Tornado [Moore05] is also worth reading.
Clayton Christensen’s Innovator’s Dilemma and Innovator’s Solution are
also to be recommended [Christensen97] [Christensen03].
Although I’ve not read Tuned In [Stull08] and Beyond Software
Architecture [Hohmann03], I’ve heard good reports about both. Some
background in marketing and business strategy – especially in technology
– is also a good idea.
Over the last five years I have been writing a set of patterns about the
software business. Many of these patterns relate to the product
development process and product management function. For example, the
patterns include ‘Single Product Company, Product Roadmap’ [Kelly08]
and ‘Same Customer, Different Product’ [Kelly07]. These patterns and
some more can be found at http://www.allankelly.net/patterns/
business.html. �

References
[Christensen97] Christensen, Clayton M. 1997. The Innovator’s

Dilemma. Boston, Mass.: Harvard Business School Press.
[Christensen03] Christensen, Clayton M. and Michael E. Raynor. 2003.

The Innovator’s Solution: Harvard Business School Press.
[Cooper04] Cooper, A. 2004. The Inmates Are Running the Asylum: Que.
[Hohmann03] Hohmann, Luke. 2003. Beyond software architecture :

creating and sustaining winning solutions. Boston: Addison-Wesley.
[Kelly07] Kelly, A. 2007. ‘More patterns for Technology Companies.’ In

EuroPLoP, eds. L. Hvatum and T. Schümmer. Irsee, Germany: UVK
Universitassverlag Konstanz GmbH.

[Kelly08] Kelly, A. 2008. ‘Business Strategy Patterns for Product
Development.’ In EuroPLoP (European conference on Pattern
Languages of Program design). Iresee, Germany.

[Moore99] Moore, G.A. 1999. Crossing the Chasm. Capstone publishing.
[Moore05] Moore, G.A. 2005. Inside the Tornado: Collins.
[Stull08] Stull, Craig, Phil Myers and David Meerman Scott. 2008. Tuned

in : uncover the extraordinary opportunities that lead to business
breakthroughs. Hoboken, N.J.: J. Wiley & Sons.

Back in the first article of this series I used the word fungible, I described
it like this: ‘Money is, economists like to tell us, fungible. Which is another
way of saying it can be exchanged for other things very easily. Money
can be exchanged for resources such as a new developer, thereby
increasing our resources.’

Actually, I got it wrong. My Oxford English Dictionary says: ‘fungible ...
replaceable by another identical item’.

So while a £20 note is fungible – one £20 is the same as another – the
exchanging of the note for 15 minutes of developer services is not.
Exchanging money for services or goods is an example of liquidity.

I was trying to convey the idea that, because money can substitute (via
liquidity) for many things, there is no need to consider different types of
resources.

Apologies to all, and thanks Edmund Stephen-Smith for point out my
mistake.

Fungible – a correction
April 2009 | Overload | 27

FEATURE MATTHEW WILSON
An Introduction to FastFormat (Part 2):
Custom Argument and Sink Types
A library should be customisable and have good performance.
Matthew Wilson shows how to achieve both.
his article, the second in the series on the new FastFormat formatting
library, discusses various ways in which the library can be extended.
In doing so, it reveals some important aspects of the FastFormat

design, and discusses some of the mechanisms by which it achieves its high
performance characteristics.

Introduction
The two main subjects of the article are custom argument types – usually
in the form of user-defined classes – and custom sink types. It would be
natural to discuss the use of custom argument types first, because that is
likely to be the most common way in which the library is extended. Both
subjects involve performance considerations, but examining how custom
sinks are defined will give you a better appreciation for the internals of
FastFormat, and make clearer some of the design decisions that come into
play when defining custom argument adaptors.
Before I start on either of those, though, I’m going to have a bit of a soapbox
moment, to get you in the mood.

Performance? Really??
One of my fun-but-in-a-different-way day jobs is writing and/or
conducting technical interviews for senior engineers, architects and
development managers on behalf of my clients. One of my favourite, most
revealing, questions is a seemingly simple parsing scenario, with loose
similarities to the examples we’ve already seen. It seems to matter little
what programming language candidates wish to employ, the devil is in the
detail of the algorithms they choose to use, and the adjustments they make
in answer to my (ceaselessly) changing requirements.
Let’s look again at the main Professor Yaffle example discussed in part 1,
wearing a language-independent programming hat.
 std::string forename = "Professor";
 char surname[] = "Yaffle";
 int age = 134;
 std::string result;

 AcmeFormat(result, "My name is %0 %1; I am %2
 years old; call me %0", forename, surname, age)

Picture a whiteboard, some coloured pens, a penetrating and relentless
interviewer, and just a few minutes to come up with an efficient
replacement strategy. If I were to ask you in what form, rather than how,
you would effect the replacements, you may well come up with the
following:

1. Take the "My name is " bit of the format
2. Take the forename
3. Take the " " bit of the format
4. Take the surname
5. Take the "; I am " bit of the format
6. Take the age and turn it into a string
7. Take the " years old; call me " bit of the format
8. Take the forename again
9. Concatenate them all together

Suppose I then gave you a large-square-grided sheet of paper (memory),
a pair of scissors (malloc()) and some pens (memcpy()) and asked you
to produce a 1xN rectangle piece containing exactly the result described
above. In that case, I hope that your algorithm would be:

1. Calculate the sum of all part lengths to determine the total length of
the result, which in this case is 11 + 9 + 1 + 6 + 7 + 3 + 20 + 5 = 58

2. Cut out a 1x58 square sheet of paper.
3. Copy the exact number of characters for each part of the resulting

statement, starting each at the square after the last one in the
preceding part.

I hope that you would not use an algorithm such as:
1. Cut out a 1x12 piece and write "My name is " in it.
2. Repeat Step 1 for the remaining 7 individual parts to give a total of

eight pieces.
3. Take the first two pieces from this pile, and determine their

combined length.
4. Cut out a piece of this size.
5. Copy in the contents of the first piece.
6. Copy in the contents of the second piece, directly after the last

square occupied by the first piece’s contents, e.g. "My name is
Professor"

7. Discard the first two pieces in the pile – "My name is " and
"Professor" – and place the new piece on top of the pile.

8. Repeat steps 3–6 (a further 6 times) until only one piece, the result,
remains.

Sound like fun? Definitely not! Not to mention the amount of wasted paper.
The second algorithm would not help you in the interview. So why is it
that we’re prepared to tolerate such things operating in many (if not most)
of the world’s largest and most important software systems?
The main reason that FastFormat is so much faster than its peers is that
they follow the second algorithm, and it follows the first. Neither the
FastFormat core nor the application layer do any intermediate memory
allocation, copying or concatenation. Naturally, the question is how. That
will be discussed as we go through the remaining parts of this series.

Custom sink types
Before we look at the sink mechanism, we have to discuss string slices. A
slice is a view onto a contiguous area of memory. In the case of a

T

Matthew Wilson is a development consultant specialising in
performance and robustness, and author of numerous articles,
books, and open-source software libraries. He prides himself
on writing faster software than anyone else, yet is abashed
that his books are slower to write (and to sell) than everyone
else’s. He can be contacted at stlsoft@gmail.com.
28 | Overload | April 2009

FEATUREMATTHEW WILSON
(character) string, a slice is a read-only view onto an array of character
elements forming part, or the whole, of a string.
In Fas tFo rma t , a s t r i ng s l i c e i s r e p re s e n t e d b y t he t yp e
ff_string_slice_t, which is defined as a length + a pointer.
(ff_char_t is char or wchar_t, for multibyte or wide string builds,
respectively.)
 struct ff_string_slice_t
 {
 size_t len; // # of chars
 ff_char_t* ptr; // ptr to 1st char
 };

This is the only type understood by the FastFormat core. Furthermore,
pointers to arrays of slices are the type that sinks receive to represent the
replacement/concatenation results. Let’s look at how this works. Say we
want to write a sink for the Windows OutputDebugString() API
function:
 void OutputDebugString(TCHAR const* s);

There are three important things to note about this function. First, it takes
a single C-style string, so whatever we pass to it must be nul-terminated.
It should also be non-NULL, by the way.
Second, the function outputs to a debug stream potentially shared by all
threads on the host system. Although the function itself operates
atomically, it means that if you try to do things such as the following it is
possible, indeed likely, that the three parts of your output will be
interleaved with output from other threads/processes on the system.
 void fn(char const* str);
 {
 OutputDebugString("fn(");
 OutputDebugString(str);
 OutputDebugString(")\n");
 … // rest of fn()

This means that we must combine all parts of the statement, including new-
line, if required, before sending it to OutputDebugString().
Finally, what appears as a single function is actually a #define to one of
the following two actual functions, depending on whether the UNICODE
pre-processor symbol is defined.
 void OutputDebugStringA(char const* s);
 void OutputDebugStringW(wchar_t const* s);
 #ifdef UNICODE
 # define OutputDebugString OutputDebugStringW
 #else /* ? UNICODE */
 # define OutputDebugString OutputDebugStringA
 #endif /* UNICODE */

Standard string sinks
Befo re we ge t i n t o t he imp le men ta t i on o f t he s i nk fo r
OutputDebugString(), I’d like to walk you through the stock sink
support, which works with any type, particularly std::basic_string,

which provides the reserve() and append() methods defined in
Listing 1. The function is an action shim [XSTLv1] – a composite shim
type that both controls and may modify its primary parameter – called
fastformat::sinks::fmt_slices, meaning that it is an overload
of a function named fmt_slices() defined in the namespace
fastformat::sinks.
First consider the signature. It’s a function template – to support either
std::string or std::wstring, depending on the ambient character
encoding of the build – with five parameters. The first parameter, sink,
is a mutating reference to the sink, which allows for it to be changed. The
second parameter is a bit-mask of flags that moderate the formatting
operation: currently two stock flags are defined:
� fastformat::flags::ff_newLi
� fastformat::flags::ff_flush

The final two parameters, numResults and results, define an array of
string slices representing all the constituent parts of the resulting statement.
The third parameter, total, is the total length of all the string slices. It is
an advisory, to enable optimisation in any allocation that may have to be

Listing 1

// File: fastformat/shims/action/fmt_slices/
// generic_string.hpp in namespace
// fastformat::sinks

template <typename S>
S& fmt_slices(
 S& sink
, int flags
, size_t total
, size_t numResults
, ff_string_slice_t const* results
)
{
 sink.reserve(sink.size() + total + 2);
 { for(size_t i = 0; i != numResults; ++i)
 {
 ff_string_slice_t const& slice = results[i];
 if(0 != slice.len)
 {
 sink.append(slice.ptr, slice.len);
 }
 }}
 if(flags::ff_newLine & flags)
 {
 const ff_string_slice_t newLine =
 fastformat_getNewlineForPlatform();
 sink.append(newLine.ptr, newLine.len);
 }
 return sink;
}

April 2009 | Overload | 29

FEATURE MATTHEW WILSON
performed to assemble the results. In this case, it facilitates the call to
reserve(), which means that there will only be, at most, one memory
allocation associated with preparing the result. This prescience regarding
required memory is one of the secondary reasons why FastFormat is fast.
The loop is pretty straightforward: each slice is appended to the sink via
the append() method, specifying the pointer and length. It is very
important that length is always used along with pointer, because (i) the
pointer may not point to a nul-terminated string, and (ii) the pointer may
ac tua l l y be NULL when t he l eng th i s 0 . I n t he ca se o f
std::basic_string, the requirement of 21.3.5.2/6 and 21.3.1/6
necessitate the conditional test against length.
The only remaining task of the function body is to handle the request – via
fmtln() or writeln() – for a new-line to be written. Once again, this
is achieved using the sink’s append() method. It writes from a special
instance of ff_string_slice_t returned from the helper function
fastformat_getNewlineForPlatform(). This function returns a
slice of one or two characters in length, depending on whether the
platform’s newline is "\r", "\r\n" or "\n". (Since specifying the
wrong value to reserve() does not result in a functional error, the use
of the magic number 2 is valid because I ‘know’ that it cannot be more
than that. If the newline slice ever changed, then I would change the
implementation of the string sink accordingly.)
Finally, the sink reference is returned, allowing for concatenation of format
statements, if required (which is seldom, by the way).
 std::string sink;
 ff::fmt(ff::fmt(sink, "{0}", 1), "{0}", 2);
 // sink => "12"
 ff::write(ff::write(sink2, 1), 2);

OutputDebugString sink
Armed with this knowledge, let’s look at the OutputDebugString()
s ink . One s t r ik ing d i f fe rence to t he string s ink i s tha t
OutputDebugString() is a function: there are no instances of a class
to use as sinks. So we must make one (Listing 2).
This would be used as follows:
 void fn(char const* str);
 {
 ff::sinks::OutputDebugString_sink sink;
 ff::fmtln("fn({0})", str);
 … // rest of fn()

The first question to ask when implementing the class and the associated
action shim function is whether the logic should go in the class, or in the
function. Some sink classes, such as speech_sink, are stateful,
remembering options that moderate their output behaviour. Therefore, for
consistency, I always place the logic in the class, and implement the action
shim function in terms of the class’s write() method, as shown in
Listing 3. If you’re sure your sink won’t need to be stateful, feel free to do
it all in the function and just have a simple empty struct for the sink type.

Now that we know the structure of the code, all that remains is to
implement the write() method. Remembering our first two design
constraints – the need to supply a non-NULL nul-terminated C-style string,
and the shared final output destination – it’s clear that we cannot follow
the example of the standard string sink and write out a slice at a time.
Rather, we must write into an intermediate buffer, appending a nul-
terminator, and a new-line if required.
The STLSoft libraries [STLSOFT] have a class template called
auto_buffer [EVAB] [IC++], which provides a middle ground between
the speed of stack allocation and the flexibility of heap allocation. Simply,
it has a fixed internal buffer from which it attempts to fulfil requests for
memory. If the request is too large, it is satisfied from the heap. In many
circumstances, this can lead to dramatic performance improvements
[EVAB] [IC++]. The more you learn about FastFormat, the more you’ll
see auto_buffer lending a high-performing hand in even the most
unexpected places. Use of auto_buffer is the third reason why
FastFormat is fast. (One point to note: even though it shares much with
the interface of std::vector, it is important to realise that it is not a
container, and you must not attempt to use it assuming any more
intelligence than it is documented to have. See section 16.2 of [XSTLv1]
for more discussion on this point.)
So what does this have to do with our new sink? Well, one of the utility
functions that comes with the library, concat_slices(), takes an
auto_buffer instance, along with the array of slices, and concatenates
them all together, resizing the buffer as necessary. We can use this to
simplify the implementation of write() (Listing 4).
In this case, we need to know exact lengths, so we get hold of the platform
newline at the start. We then calculate the exact length required for the
auto_buffer, which will throw std::bad_alloc if the request
cannot be satisfied. If all goes well, concat_slices() is invoked, and
the slice contents are written into the buffer.
The last parts of the preparation are to write in the newline, if requested,
and t o nu l - t e rmina t e t he s t r i ng . Then we j u s t i nvoke
OutputDebugString(). Q.E.D.
Except … as some eagle-eyed readers may already have pondered, this is
assuming consistency between the presence/absence of UNICODE and
FASTFORMAT_USE_WIDE_STRINGS, the pre-processor symbol whose
definition dictates whether the FastFormat library is built for wide strings
or left as multibyte strings. It’s possible that a user may demand that
FastFormat be wide string while not correspondingly defining UNICODE.
Putting aside whether you (or I) think this is meaningful/desirable, we can
easily side step the whole issue, by simply using overloading.
Along with the sink and the action shim, the fastformat/sinks/
OutputDebugString.hpp header also defines the helper structure
OutputDebugString_helper, to which we can defer the decision-
making (Listing 5).

Listing 2

// file: fastformat/sinks/OutputDebugString.hpp
// in namespace fastformat::sinks
class OutputDebugString_sink
{
 … // T.B.D.
};
inline OutputDebugString_sink& fmt_slices(
 OutputDebugString_sink& sink
, int flags
, size_t total
, size_t numResults
, ff_string_slice_t const* results
)
{
 … // T.B.D.
}

Listing 3

class OutputDebugString_sink
{
public: /// Member Types
 typedef OutputDebugString_sink class_type;
public: /// Construction
 OutputDebugString_sink()
 {}
public: /// Operations
 class_type& write(int flags, size_t total,
 size_t numResults,
 ff_string_slice_t const* results);
};
inline OutputDebugString_sink& fmt_slices(…)
{
 return sink.write(flags, total, numResults,
 results);
}

30 | Overload | April 2009

FEATUREMATTHEW WILSON
And that’s the final version. It writes atomically, provides nul-termination
and, if requested, appends a new line, and works regardless of the character
encodings of the library and/or the application.

Atomicity
Just a last word on atomicity: In Part 1 [FF1] I made just criticism of the
other libraries that do not support atomic output, and observed that it is
essential that it is the library, and not the user, that handles it. You can see
from the two action shim implementations we’ve considered that it is
possible to avoid paying the cost of copying and concatenating in a context
where atomicity is a moot point, while being able to easily apply it
otherwise. In this respect, FastFormat supports the best of both worlds,
with the simple caveat that the writer of a sink must do the right thing.

Custom argument types
Probably the most common way in which a user would wish to extend a
formatting library is in adding support for custom types. The remainder of
this article will illustrate how that is done.

First, we need a user-defined type to be passed as an argument to the format
statements. Listing 6 shows the definition of a simple superhero type.
Now let’s try and insert one into some format statements, in Listing 7.
If you compile this, you'll get a number of errors along the lines of:

. . ./fastformat/internal/generated/
helper_functions.hpp(160) : error:
'stlsoft::c_str_data_a' : none of the 4
overloads could convert all the argument types .
. . while trying to match the argument list
'(const superhero)' . . ./fastformat/internal/
generated/helper_functions.hpp(160) : error:
'stlsoft::c_str_len_a' : none of the 4 overloads
could convert all the argument types . . . while
trying to match the argument list '(const
superhero)'

The compiler has failed to find matching string access shim overloads –
of stlsoft::c_str_data_a() and stlsoft::c_str_len_a() –
for the superhero type. This is to be expected, since we haven’t yet defined
any.
In point of fact, it’s not actually necessary to define string access shims
for our type. Indeed, there are several options for working with a user-
defined type:
� Inserters (functions or classes)
� Type filters
� String access shims [IC++] [XSTLv1]

With the first two approaches, what you define is instead an intermediary
type for which string access shims are already defined. An obvious type
would be std::string (or std::wstring, for wide string builds),
although we’ll see later that there are better options.

Listing 4

#include <fastformat/util/sinks/helpers.hpp>

class_type& OutputDebugString_sink::write(
 int flags
, size_t total
, size_t numResults
, ff_string_slice_t const* results
)
{
 const ff_string_slice_t newLine =
fastformat_getNewlineForPlatform();
 stlsoft::auto_buffer<ff_char_t> buff(
 1 + total + ((flags::ff_newLine & flags) ?
 newLine.len : 0));
 fastformat::util::concat_slices(buff,
 numResults, results);
 if(flags::ff_newLine & flags)
 {
 ::memcpy(&buff[total], newLine.ptr,
 sizeof(ff_char_t) * newLine.len);
 total += newLine.len;
 }
 buff[total] = '\0';
 OutputDebugString(buff.data());
 return *this;
}

Listing 5

 struct OutputDebugString_helper
{
 static void fn(char const* s)
 {
 ::OutputDebugStringA(s);
 }
 static void fn(wchar_t const* s)
 {
 ::OutputDebugStringW(s);
 }
};
. . .
class_type& OutputDebugString_sink::write(. . .)
{
 . . .
 buff[total] = '\0';
 OutputDebugString_helper::fn(buff.data());
 return *this;
}

Listing 6

class superhero
{
public: /// Member Types
 typedef std::string string_type;
 typedef superhero class_type;
public: /// Construction
 superhero(string_type const& name, int weight,
 int strength, int goodness)
 : name(name)
 , weight(weight)
 , strength(strength)
 , goodness(goodness)
 {}
private:
 class_type& operator =(class_type const&);
public: /// Member Variables
 const string_type name;
 const int weight;
 const int strength;
 const int goodness;
};

Listing 7

#include <fastformat/ff.hpp>
#include <fastformat/sinks/ostream.hpp>
…
superhero thing("The Thing", 200, 99, 100);
superhero batman("Batman", 100, 80, 95);
ff::writeln(std::cout, "Ben Grimm is ", thing);
ff::fmtln(
 std::cout, "Bruce Wayne is {0}", batman);
April 2009 | Overload | 31

FEATURE MATTHEW WILSON
The hero format
Let’s stipulate that the format for a super-hero is as follows:
 <name> {weight=<weight>, strength=<strength>,
 goodness=<goodness>}

Inserter function
Let’s start by building the simplest option, an inserter function. When
defining stock inserters (for Pantheios [PAN], anyway, since I’ve not done
the FastFormat ones yet), it’s easy to think of names, such as
pantheios::integer, fastformat::real, and so forth. When it
comes to your own types, it can be a little trickier, since you want to be
succinct, and you can’t give the inserter the same name unless you put it
into a different namespace (which will hinder succinctness). For this
example, when dressing up a bunch of superheros I think the name is
obvious. Listing 8.1 shows a first attempt.
Well, that will work, but it’s ugly, not terribly maintainable, and not in the
slightest bit localised. Furthermore, it’s not efficient, and not strictly robust
(although no sprintf() should ever return a negative result in this case).
We can handle most of the performance issue just by adding in a call to
reserve() before the first concatenation, taking into account the length
of the name, the literal fragments, and the maximum sizes of the three
integer attributes (Listing 8.2)..
But that still leaves us with the other problems. What we really need here
is a good formatting library . . .
I hope you’re ahead of me here. We can rewrite this in terms of one of the
FastFormat APIs. If we want to maximise performance, and we are able
to forego localisation, then we’d use FastFormat.Write, as in Listing
8.3.
Note that we don’t return the result of ff::write(), because the
compiler doesn’t know that the returned value is actually result, and we
don’t want to stymie its ability to apply the named return value
optimisation [IC++].
If it must be localisable, then we’d use FastFormat.Format. Note the
double {{ to produce the literal { in the result; see Listing 8.4.

And to actually localise, we could use a resource bundle, as in Listing 8.5.
I hope you’ll see how convenient is the statelessness of FastFormat,
allowing us to implement an inserter function using the library itself.
With any of these inserter functions, we can now successfully format a
superhero:

 ff::writeln(std::cout, "Ben Grimm is ",
 edna(thing));
 ff::fmtln(std::cout, "Bruce Wayne is {0}",
 edna(batman));

The obvious little fly in the ointment is that edna() has to be called
explicitly, and this intrudes slightly on the expressiveness of our
application code.

Inserter class
If/when I write a future article on Pantheios, I’ll explain the reason why
inserter classes are preferred, since they can employ lazy evaluation to
forego paying costs if logging is not enabled. With FastFormat, arguments
to format statements are always used, so the use of classes is unnecessary,
and functions suffice. (This is good, because they’re a fair bit simpler.)

Type-filter
If we want to be able to have the original formatting statements work
(without edna()), we have two options. The more specific of these, the
filter-type mechanism, provides compatibility that only works with
FastFormat. It involves overloading a conversion shim [IC++] [XSTLv1]

Listing 8.1

std::string edna(superhero const& hero)
{
 std::string result;
 char num[21];
 result += hero.name;
 result += " {weight=";
 result.append(num, sprintf(num, "%d",
 hero.weight));
 result += ", strength=";
 result.append(num, sprintf(num, "%d",
 hero.strength));
 result += ", goodness=";
 result.append(num, sprintf(num, "%d",
 hero.goodness));
 result += '}';

 return result;
};

Listing 8.2

std::string edna(superhero const& hero)
{
 std::string result;
 char num[21];
 result.reserve(hero.name.size() + 32 + (
 3 * 20));
 result += hero.name;
 . . .

Listing 8.3

std::string edna(superhero const& hero)
{
 std::string result;
 ff::write(result, hero.name, " {weight=",
hero.weight
 , ", strength=", hero.strength, ",
goodness=", hero.goodness
 , "}");
 return result;
};

Listing 8.4

std::string edna(superhero const& hero)
{
 std::string result;
 ff::fmt(result, "{0} {{weight={1}, strength={2},
goodness={3}}"
 , hero.name, hero.weight
 , hero.strength, hero.goodness);
 return result;
};

Listing 8.5

#include
 <fastformat/bundles/properties_bundle.hpp>
ff::properties_file_bundle const& getAppBundle();
std::string edna(superhero const& hero)
{
 std::string result;
 ff::properties_file_bundle const& bundle =
 getAppBundle();
 ff::fmt(result, bundle["superhero.format"]
 , hero.name, hero.weight
 , hero.strength, hero.goodness);
 return result;
};
32 | Overload | April 2009

FEATUREMATTHEW WILSON
– a primary shim type that involves conversion of instances of
h e t e ro g e n e o us t y pe s t o a s i n g l e t yp e – c a l l e d
fastformat::filters::filter_type, meaning that it is an
overload of a function named filter_type() defined in the namespace
fastformat::filters.
Let’s look at how this can be implemented for our superhero type in
Listing 9.
The body of this should be immediately recognisable, as it’s a straight lift
from edna(). (I hope she’s not aggressively litigious!) What is probably
not so recognisable is the strange function signature of the shim overload.
What are the purposes of the second and third arguments, both of which
are unused?
To understand these parameters we must peek a little inside the FastFormat
application layer templates, which are responsible for translating your
nice, heterogeneous application layer statements into arrays of string
s l i c e s . Cons ide r t he two pa ra me t e r ove r load o f t he
fastformat::writeln() API function shown in Listing 10.
The third parameter simply informs the conversion shim overload which
character encoding it’s being asked to work with. The purpose of the
parameter is to allow different implementations for multibyte and wide
string forms. In our example, we only defined the char-form, and it will
only work in a multibyte build. We could instead have actually specified
the third parameter as ff_char_t const volatile*, which would
have allowed us to be encoding-agnostic.
The purpose of the second parameter is considerably less obvious. To
understand this, we need to have a review of C++ law (and lore).

The pedantic pointer idiom
In C++, matching functions takes into account implicit conversions.
Consider the following class hierarchy, and three functions that dump out
information on instances of these classes.

 class superhero
 {};
 class extrasuperhero
 : public superhero
 {};

 void dump(extrasuperhero const* xhero);
 void dump(superhero const* hero);
 void dump(void const* pv);

If we declare instances of the two hero types, and pass their addresses to
dump(), all will be well.

 superhero hero;
 extrasuperhero xhero;

 dump(&hero);
 dump(&xhero);

If we now remove the dump(extrasuperhero const*) overload, the
code still compiles, but xhero will be dumped in the form of a
superhero. Since an extrasuperhero isa superhero, this is
probably ok, although that may not be so. If we now also remove the
dump(superhero const*) overload, the code still compiles, but both
heros will just be dumped like raw pointers. An ignominious end for such
great men (or women)!
Readers who read part 1 [FF1] will recognise this as the source of the
design flaws that prevent IOStreams and Boost.Format from being
adequately robust. The way around this is to define a single function
template, dump(), and to pass off the work to appropriately defined two-
parameter worker functions, as follows:

 template <typename T>
 void dump(T const* t)
 {
 dump(t, &t);
 }
 void dump(extrasuperhero const* xhero,
 extrasuperhero const**);
 void dump(superhero const* hero,
 superhero const**);
 void dump(void const* xhero, void const**);

We add a second pointer parameter that is the address of the first parameter.
By doing so, we sidestep any implicit conversions in the primary
parameter, because the implicit conversions do not apply at an extra level
of indirection. Just because superhero const* may happily convert
to void const*, superhero const** will not implicitly convert to
void const**.
So, if we now remove the dump(extrasuperhero const* xhero,
extrasuperhero const**) overload, we will find that the request to
dump &xhero will not compile.
I call this technique the pedantic pointer idiom. (For alliterative purposes,
I ache to call it the pedantic pointer pattern, but it can’t really claim to
be a pattern.) It is used in several STLSoft components, and in my
commercial work, to enforce 100% type-safety. Clearly it finds good use
in the FastFormat application layer, facilitating infinite extensibility while
enforcing total robustness.
The one issue is that each time you derive from superhero you need to
define a new two-parameter overload of dump(). You may see this as a
cost; I see it as a huge benefit: implicit conversion being far less worth thanListing 9

// in namespace fastformat:: filters
inline std::string filter_type(
 superhero const& hero
, superhero const*
, char const volatile*
)
{
 std::string result;
 ff::fmt(result, "{0} {{weight={1}, strength={2},
 goodness={3}}"
 , hero.name, hero.weight
 , hero.strength, hero.goodness);
 return result;
}

Listing 10

// file: fastformat/internal/generated/
api_functions.hpp
// in namespace fastformat

template<typename S
, typename A0, typename A1
>
inline S& writeln(S& sink
, A0 const& arg0, A1 const& arg1)
{
 return
fastformat::internal::helpers::write_outer_helper_
2(
 sink
 , flags::ff_newLine
 , fastformat::filters::filter_type(arg0,
&arg0, static_cast<ff_char_t const volatile*>(0))
 , fastformat::filters::filter_type(arg1,
&arg1, static_cast<ff_char_t const volatile*>(0))
);
}

April 2009 | Overload | 33

FEATURE MATTHEW WILSON
it is effort. Naturally, this also applies to the filter_type conversion shim
overloads. It’s hardly onerous though, since if you don’t need any new
formatting you can just use a forwarding function, as in Listing 11.
One last point I’d like to make: the type-filter mechanism takes effect
before any application of string access shims, so you can use a type-filter
to override an existing conversion of a type (implemented using string
access shims) that you don’t happen to care for.

String access shims
The type-filter mechanism defines conversions that are usable only with
FastFormat. Now, in most cases this is a positive thing. However, you may
also be using other STLSoft-related libraries – I’m mainly thinking of a
superlative logging API library here ☺ – and wish to share your types’ to-
string conversions between them all. If so, you may instead define string
access shims for your types. Let’s do that now for our superhero type.
To do so, you must understand the rules for access shims. Unfortunately,
there’s not the space here to explain all the rules for shims; for that you’ll
have to consult Imperfect C++ [IC++] and/or Extended STL, volume 1
[XSTLv1]. (The most comprehensive and definitive explanation will be
found in my next book, Breaking Up The Monolith, but since it’s not yet
finished, it’s not much good to you.) Instead, I will show you how to do
it, and point out the major issues as we go.
The string access shims are actually three sets of four shims. For simplicity
we will consider only the ones that are used with multibyte strings:
stlsoft::c_str_ptr_a, stlsoft::c_str_ptr_null_a,
stlsoft::c_str_data_a, stlsoft::c_str_len_a. Further
s i m p l i f y i n g , w e n e e d o n l y c o ns i de r t h e p a i r o f s h i m s
stlsoft::c_str_data_a and stlsoft::c_str_len_a for our
extension of FastFormat. Analogous versions exist of all four exist for
wide str ings, with the _w suffix, and you’l l need to define
stlsoft::c_str_data_w and stlsoft::c_str_len_w for your
extension if you wish to use FastFormat in wide string guise. (The use of
the _a suffix for multibyte, rather than _m, is just historical, but
unfortunately we’re stuck with it.)
All shims have name, intent, category and ostensible return type. A shim
is allowed to return any type that is implicitly convertible to the ostensible
return type. For our two shims these are (stlsoft::c_str_data_a; obtain a
pointer to the string representation of the given type; Access; char
const*) and (stlsoft::c_str_len_a; obtain the length of the string
representation of the given type; Access; size_t). The degenerate forms
of each are given in Listing 12.
It is a requirement that, for any matched pair, c_str_len_a() always
yields exactly the number of characters available at the pointer returned
by c_str_data_a(). Definitions for std::string are equally
simple, as shown in Listing 13.

The complexity comes when dealing with types that are not strings, and
do not already contain a viable string form representing their state. Our
superhero type is one such. In this case, we must synthesise the string on
the fly, as shown in Listing 14.
Once again, for convenience we’ve used FastFormat to implement the
conversion to string. If we were planning to use this string access shim in
a context without FastFormat we’d have to resort to sprintf() or plain
string concatenation. (But not IOStreams or Boost.Format, eh?!). Note that
this would not detract from FastFormat’s robustness claims, because the
correctness of a custom conversion component such as these string access
shim overloads can be assessed and verified independently of FastFormat

Listing 11

// in namespace fastformat:: filters

inline std::string filter_type(
 superhero const& hero
, superhero const*
, char const volatile*
);

inline std::string filter_type(
 extrasuperhero const& hero
, extrasuperhero const*
, char const volatile* p)
{
 superhero const& regular_hero = hero;
 return filter_type(regular_hero,
 ®ular_hero, p);
)

Listing 12

// in namespace stlsoft
inline char const* c_str_data_a(
 char const* s
)
{
 return s;
}
inline size_t c_str_len_a(
 char const* s
)
{
 return (NULL != s) ? ::strlen(s) : 0;
}

Listing 13

// in namespace stlsoft
inline char const* c_str_data_a(
 std::string const& s
)
{
 return s.data();
}
inline size_t c_str_len_a(
 std::string const& s
)
{
 return s.size();
}

Listing 14

inline stlsoft::basic_shim_string<char>
c_str_data_a(superhero const& hero)
{
 stlsoft::basic_shim_string<char>result;
 ff::fmt(result, "{0} {{weight={1}, strength={2}
 , goodness={3}}"
 , hero.name, hero.weight
 , hero.strength, hero.goodness);
 return result;
}
inline size_t c_str_len_a(
 superhero const& hero
)
{
 size_t n = hero.name.size() + 32;
 char buff[21];
 // NOTE: not checking -ve return value!
 n += sprintf(buff, "%d", hero.weight);
 n += sprintf(buff, "%d", hero.strength);
 n += sprintf(buff, "%d", hero.goodness);
 return n;
}

34 | Overload | April 2009

FEATUREMATTHEW WILSON
(i.e. in a (practically) exhaustive test harness). For the length, we’ve added
the length of the superhero format (minus the sizes of the insertions and
the { escape character) plus the length of the name, plus the lengths of the
string forms of the three integers. This is the common methodology of the
string access shim pairs when synthesising string forms: the
c_str_data[_a|_w]() overload creates the string form, and the
corresponding c_str_len[_a|_w]() overload calculates its exact
length.
You’re probably looking at the definitions with three questions:
� What is a shim string?
� What happens when it goes out of scope?
� Does that sprintf() stuff in the second function look a bit dodgy?

A shim string is a specialisation of stlsoft::basic_shim_string,
which is a component specifically designed to act as the intermediary
return value for string access shims. It has two important characteristics:
� It uses an stlsoft::auto_buffer internally, such that many

cases of conversion can be performed without a heap allocation
� It provides an implicit conversion operator to char const* (or

wchar_t const*, when specialised with wchar_t), which
means that it fulfils the requirements of the shim’s ostensible return
type.

The second question touches on an important part of shim lore. Because
conversion shims return instances of types by value, it is important that
they are either copied or are used within the expression in which the shim
is invoked. If not, crashes will ensue.
Access shims are a composite of attribute and conversion shims. Where you
would use an attribute shim to access the string form of a std::string,
because it is already in string form, you must use a conversion shim to
access the string form of, say, struct tm. This composite nature means
that the most restrictive rules from each of the primary shim categories
must apply. In the case of access shims, you must observe rule on the use
of return values of conversion shims [XSTLv1]:

The return value from an access shim must not be used outside the
lifetime of the expression in which the shim is invoked.

Thankfully, FastFormat, Pantheios and the other libraries and programs (I
know of) that make use of strings observe this rule, and all is well. A
temporary is returned, its value used, and then it is destroyed, all in the right
order. If you’re feeling adventurous, check out the fastformat/
internal/generated/helper_functions.hpp file in the
distribution to see how this is done.
The answer to the third question is: it depends. If I were writing for a non-
localised context, I would use another STLSoft component, the
integer_to_string() function suite [I2S] [IC++], to effect the length
calculation, as they’re quicker than sprintf(), and do not have a
(potential) failure return to worry us. However, all that would be moot if
I were writing for a localised context, since I would not consider the extra
cycles saved in making manual calculations worth the risk of getting them
w r on g . I n s t e a d , I w ou l d t a k e a d van t a ge o f t h e f ac t t h a t
stlsoft::basic_shim_string also has an implicit conversion
operator to size_t and implement c_str_len_a() as:

 inline size_t c_str_len_a(
 superhero const& hero
)
 {
 return c_str_data_a(hero);
 }

This looks strange, and indeed it is. It’s very rarely good design for a class
to have one implicit conversion operator [EC++] [GC++] [IC++], never
mind two! But for this special-purpose class, it is not only proper, it is also
very useful: the function pair is guaranteed to be correct (in terms of the
number of characters available), and because there’s likely to be no
memory allocation anyway, the performance impact of doing the
conversion twice is not likely to be that big. Nonetheless, it is not zero,
and so this length-safe double conversion is the exceptional way of doing
shims, not the norm.
As is always the case, you can have increased performance as long as
you’re prepared to wear the attendant increase in effort and/or risk.
FastFormat allows you to be master of your own domain.

Summary
This article has discussed customising FastFormat in terms of adding new
sinks, and of adding explicit and implicit support for user-defined types.
In doing so, it has shone light on several aspects of the design and
implementation that support the library’s superior robustness, flexibility
and performance, including introducing the pedantic pointer idiom.
The next and final part of the series will look at advanced functional usages
and performance customisations, how FastFormat co-exists and
cooperates with other libraries (both open-source and commercial), and
sees some examples from its use in real-world projects.
As before, requests, comments, abuse, and offers of help are all welcome,
via the project website on SourceForge: http://sourceforge.net/projects/
fastformat. �

References
[EC++] Effective C++, 3rd Edition, Scott Meyers, Addison-Wesley, 2005
[EVAB] ‘Efficient Variable Automatic Buffers’, Matthew Wilson,

C/C++ User’s Journal, December 2003
[FF1] ‘An Introduction to FastFormat, part 1: The State of the Art’,

Matthew Wilson, Overload #89, February 2009; http://accu.org/
index.php/journals/1539

[GC++] C++ Gotchas, Steve Dewhurst, Addison-Wesley, 2002
[IC++] Imperfect C++, Matthew Wilson, Addison-Wesley 2004;

http://www.imperfectcplusplus.com/
[I2S] ‘Efficient Integer To String Conversions’, Matthew Wilson, C/C++

User’s Journal, December 2002; http://www.ddj.com/cpp/
184401596

[PAN] ‘The Pantheios Logging API Library’, http://www.pantheios.org/;
to see why it’s the best choice in C++ logging APIs, check out
http://www.pantheios.org/performance.html#sweet-spot, which
shows graphically how Pantheios can be up to two-orders of
magnitude faster than the rest.

[STLSOFT] http://www.stlsoft.org/
[XSTLv1] Extended STL, volume 1, Matthew Wilson, Addison-Wesley

2007; http://www.extendedstl.com/

The feature comparison table from part 1 [FF1] had a few defects in it.
(This probably resulted from a manual preparation of its strings, rather
than concatenating them robustly. Ho hum!) It was entirely my fault, and
no reflection on the superb skills and dedication of the Overload staff. The
correct version is available at http://www.fastformat.org/errata/
overload/introduction-to-fastformat-part-1/table4.html.

Erratum
April 2009 | Overload | 35

[FF1]
http://accu.org/index.php/journals/1539
http://accu.org/index.php/journals/1539
http://www.imperfectcplusplus.com/
http://www.ddj.com/cpp/184401596
http://www.ddj.com/cpp/184401596
http://www.pantheios.org/
http://www.pantheios.org/performance.html#sweet-spot
http://www.stlsoft.org/
http://www.extendedstl.com/
http://www.fastformat.org/errata/overload/introduction-to-fastformat-part-1/table4.html
http://www.fastformat.org/errata/overload/introduction-to-fastformat-part-1/table4.html

FEATURE TEEDY DEIGH
WRESTLE: Aggressive and
Unprincipled Agile Development
in the Small
Agile development is all the rage. Teedy
Deigh introduces a popular variant.
he world of agile development can be an exciting and varied place,
especially for a consultant. It can, however, also be a dull place prone
to stasis, groupthink and no small amount of tree hugging. It is time

to rediscover some of the hidden core values.
To assist in this brief journey of rediscovery, we can also break away from
the hegemony of Scrum and XP by examining a new process for very small
teams: WRESTLE. Like the common miswriting of Scrum as SCRUM,
WRESTLE is not an acronym. However, it looks that little bit more
impressive and slightly more technical for having the suggestion that it
might actually stand for something. As we shall see, WRESTLE doesn’t
stand for very much, whether in terms of spelling, principles or patience.
Indeed, it has an impressively low tolerance for anything.
WRESTLE fills an important and, of late, neglected niche in the world of
software development process: the very small team. In the past, the soft
spot for agile development processes was considered to be small to
medium-sized teams, ideally collocated, and the question used to be
whether it could scale beyond this. These days it seems that agilistas spend
much of their time focusing on large-scale distributed development – so
much so that some have been prompted to ask whether or not agile
development is relevant to systems that are of modest size and teams that
are not geographically scattered! The overlooked scenario in all these cases
is the very small team of two developers. What agile processes are relevant
to these teams? This is the question that WRESTLE struggles to answer.
WRESTLE’s default team size is based on the fundamental unit of
development, the pair, although it can be scaled up to four by using two
pairs. A full house and beyond is seen to be the preserve of other less
resource-constrained agile processes. But rather than treating a pair as a
co-operative unit, WRESTLE believes that you get the best from
developers by establishing rivalry and heightened tension. To this end,
essential techniques such as mocking find a new and alternative expression
in WRESTLE. Confrontation is normally carried out in a daily stand-off,
but can also occur at other times, such as by the coffee machine, at the water
cooler or in front of the taken-to-task board.
Embedded within WRESTLE is a deep respect for values of simplicity in
design. For example, WRESTLE borrows and distils the central theme of
‘patterns are an aggressive disregard of originality’, simplifying it to just
‘aggressive disregard’. The notion of merciless refactoring is generalised,

so that broader decisions beyond basic refactoring are also taken without
mercy or consideration. To get things started, developers are encouraged
to do the simplest thing that could possibly irk.
Where some development processes are said to focus on exposing
organisational dysfunction, WRESTLE is a little more resilient and seeks
to distract from organisational dysfunction by providing a focus for the
natural pent up dissatisfaction often felt in such environments (as well
catering as for the general cynicism common among development types,
regardless of the surrounding organisational mood and temperament). The
traditional model of a developer as a solitary individual is also respected,
with plenty of time given over to introspectives, email and code tweaking.
Testing is most definitely left to other people and testers have no place on
a WRESTLE team.
The heavy but dull focus on business value and the customer that seems
to weigh down many other so-called agile processes is not present in
WRESTLE. Instead, WRESTLE is truly agile because it liberates the
developer from such constraints. Developers are free to tell the customer
stories about what they may or may not have developed, and customers’
schedules are pleasantly unburdened from frequent demos and discussions
of requirements, so they are free to pursue other activities and don’t have
to hang around on-site.
WRESTLE is a young process, so some of the terminology has yet to settle.
For example, timeboxed developed is said to be carried out in rounds, bouts
or matches, depending on personal disposition and organisational culture.
There is also a question of whether it would help to have some kind of
dedicated organisation, such as a federation, to standardise terminology
and to certify RingMasters, the official designation for project managers
in WRESTLE. That said, the question has also been raised as to how much
standardisation is needed of a process, especially given Parnas and
Clement’s insight: ‘A rational design process: How and why to fake it’. It
is indeed likely that most applications of WRESTLE will be staged for the
benefit of others. If you know how it’s fixed, it’s a process you can bet on
with confidence. �

T

Teedy Deigh developed WRESTLE in response to what she
felt was an obvious omission in the rainbow of agile
development processes, and has found it to be a useful
vehicle for justifying and sounding off about strongly held
opinions on software practice to a new and more receptive
audience, ranging from newbie developers to unreconstructed
hackers, from to agilist enthusiasts to old-school
management.
36 | Overload | April 2009

	Back to School
	Software Development in the 21st Century
	Testing State Machines
	If You Can’t See Me, I Can’t See You
	The Model Student: A Rube-ish Square (Part 2)
	On Management: Product Managers
	An Introduction to FastFormat (Part 2): Custom Argument and Sink Types
	WRESTLE: Aggressive and Unprincipled Agile Development in the Small

