

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Floating Point Fun and Frolics
Frances Buontempo investigates the dark corners of
floating point numbers.

9 On Management: The Business Analyst Role
Allan Kelly continues his look at roles in software
management.

12 Complexity, Requirements and Models
Rafael Jay considers the problem of excess software
complexity.

16 An Introduction to FastFormat (Part 3): Solving
Real Problems, Quickly
Matthew Wilson shows FastFormat in practice.

26 The Model Student: The Enigma Challenge
Richard Harris poses a historical problem.

29 Boiler Plating Database Resource Cleanup
(Part 2)
Paul Grenyer finds a better way to clean up in Java.

36 ACCU 2009
Giovanni Asproni provides a report.

OVERLOAD 91

June 2009

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 92 should be submitted by
1st July 2009 and for Overload 93 by
1st September 2009.

EDITORIAL RIC PARKIN
A Good Craftsman Knows
His Tools
Are you using the right ones?
Ric Parkin looks in his toolbox...
At the highly enjoyable ACCU conference this
year, I took part in a patterns hatching workshop.
This took the form of a brainstorming round where
people came up with names of possible patterns
(and not just design patterns – organisational ones
were also prominent), followed by further rounds

where other people tried to fill in the details, for example what
problem it solves, what sort of circumstance it applies in, and the
consequences of the solution, both positive and negative (always good
to remind people that a pattern is not a silver bullet and always has
effects which lead to further problems to solve).
But one stuck in my mind as being oddly unsatisfactory: ‘Use Tools’.
We really struggled to fill in the details for this one. Initially it sounds
uncontroversial: who wouldn’t use tools after all! But in a way that’s
its weakness – if it’s universally applicable, then it's not actually a very
interesting pattern. Also, we couldn’t really find anything much to say
about the details – what sort of tools, what problem do they solve etc.,
as we could think of so many different possible things, but they were
all to do with more specific ideas. I eventually came to the conclusion
that it is just too broad a idea to encapsulate in a single pattern form,
although there are lots of patterns within it.

Man is a tool-making animal – Benjamin Frankin
But it did get me thinking about tools. Until relatively recently it was
considered that a defining trait of Humans was to be the use of tools.
But recent discoveries that not only many primates [BBC] but many
other species use tools [Species], and even some crows are true tool
makers including passing on new uses culturally [Crow]. But it is the
sheer scale of tool use amongst humans that still impresses. Combine
this with the ability to communicate, which helps to spread new ideas
quickly, and it is easy to understand how an otherwise unremarkable
species can dominate its environment.
So what is a tool? A useful definition is that they are something used
intentionally to magnify our ability to do something. It could be as
simple as using a picked up stone to break another in two, or using a
branch as a lever to move a bigger rock than you could otherwise
handle. More advanced is to deliberately shape objects to work as

better tools, such as chipping a stone to create a
sharp edge to be used when butchering, or

sharpening the branch to become a spear.
Increasing our strength is one possible

improvement – better accuracy and repeatability are others, and all
help to make best use of otherwise limited resources.
So what sort of tools do we use in the world of software development?
We could start with the hardware – a modern computer is a general
purpose computing tool. The really clever and important part is in fact
the software that turns it into a specialized computing tool. A quick
look at the history of computing shows that some of the really
momentous breakthroughs were moving away from custom built to
general purpose tools, which could be more easily built and then
customised as needed. A prime early example was the Jacquard Loom
[Jacquard], which made making complex textiles easier and more
flexible, because instead of having a different machine for each
pattern (or relying on a slow error-prone human) it was a general
machine that allowed the pattern made to be programmed and changed
easily. A similar significant step was the creation at Bletchley Park of
Colossus which was the first true programmable computer
[CodesAndCiphers]. Before that, the machines used to crack codes
were hardwired for a particular code – if the rotors on an Enigma
machine changed, you had to physically rebuild your machines.
But Colossus and similar early machines were still pretty hard to
program, using technologies such as a plug-board and cables to wire
up your program. A real step forward was to create tools that helped
you write programs. There are many different types, but we’ll start
with a major one that is the very bedrock of a computer – the Operating
System. This provides the platform upon which every other tool rests,
and so it influences hugely your choice of further tools. This could be
a major restriction until you consider cross-platform development –
with that you can choose a development platform distinct from the
target platform your project will eventually run on. This is essential
where the target platform isn’t itself capable of hosting your
development tools, which will be true of many embedded devices,
mobile platforms, and games consoles. There can still be some lock
in: if a vendor only produces the tools to run on a particular operating
system, then you don’t have much choice.
The operating system will often come with many simple utilities,
which can be useful as a box of Lego bricks to build custom tools. Unix
systems are notably rich in command shells that run script languages,
and for small, specialised programs that take input, process it in some
way, and pipe it on to the next program, which can make it easy to
write the small utilities that ease day to day tasks. As an example, a
few years ago I wrote a simple Integration Build Server. It was a
simple bash script that kept an eye on the source code repository; if it

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | June 2009

EDITORIALRIC PARKIN
saw the root time stamp change it would wait a until it hadn’t changed
again for 10 minutes (this was to allow people to check in a series of
changes one by one); it then checked out the latest code, ran the build
script (which itself tied together many different tools), captured the
output and mailed the results to the development team. The script was
only around a hundred lines long, and ran on both Unix and Windows
(using a port of the unix utilities), but saved the team a lot of pain from
broken builds and reliability.

The next obvious category of tools would be the platform for the actual
product itself. This could be the major infrastructure such as database,
web server, or content management system. These will often be tightly
aligned to the choice of operating system, and often the choice is
imposed on us by business or client needs.

The choice of programming language is another major choice,
although one we can more often influence to some extent. It could be
an interpreted language such as python, a web toolkit such as Ruby
On Rails, or a traditional compiled language such as C++, or more
commonly a combination of several different technologies. The
choice will often be constrained by non-technical influences such as
fashion for the latest cool thing, prejudice for or against certain tools,
and the existing areas of expertise of the deciding team, and the ability
to hire developers with knowledge in that area.

Then there are the tools that help you craft your product. The text
editors, code browsers, unit test systems, debuggers, profilers,
graphics editors, dialog layout tools and so on.

And finally there are the various ancillary tools that help you manage
your team and the development processes – email, messaging tools,
meeting calendars, UML editors, the humble word processor for
documentation, source code repository tools.

All these tools come together to help you build your product, which
is itself likely to be a tool for your clients to do their own work.

If the only tool you have is a hammer, you tend to see
every problem as a nail – Abraham Maslow
We all come with a variety of experiences and history of using various
tools. But beware: this can lead us into the trap of only considering
the tools we are already familiar with for our next project, and rejecting
those we have no knowledge of, or only poor experiences whether or
not it was the fault of the tool itself. While choosing
the unfamiliar is itself a risk, being closed to other
opt ions could lead us to use comple te ly
inappropriate tools, which can vastly increase our
development costs and risks.

References
[A.P.R.I.L.F.O-O.L] http://accu.org/var/uploads/journals/

overload90.pdf – contents
[Bickerstaff] http://en.wikipedia.org/wiki/Isaac_Bickerstaff
[BBC] http://news.bbc.co.uk/1/hi/sci/tech/4296606.stm
[CodesAndCiphers] http://www.codesandciphers.org.uk/lorenz/

colossus.htm
[Crow] http://en.wikipedia.org/wiki/New_Caledonian_Crow
[Jacquard] http://en.wikipedia.org/wiki/Jacquard_loom
[Species] http://en.wikipedia.org/wiki/Category:Tool-using_species
[Tool] http://en.wikipedia.org/wiki/Tool

Readers of Overload 90 may have noticed that an article – ‘Array
Problems: Range Iteration Logic for Object-Oriented
Languages’ [A.P.R.I.L.F.O-O.L] was advertised as on page 37
of a 36 page magazine. We have Swiftly apologised to the author
[Bickerstaff] for this one-past-the-end error, and will endeavour
to avoid a repeat during the next 12 months.

Corrections and Clarifications
June 2009 | Overload | 3

FEATURE FRANCES BUONTEMPO
Floating Point Fun and Frolics
Representing numbers in computers is a
non-trivial problem. Frances Buontempo
finds using them is hard, too.
It is unworthy of excellent persons to lose hours
like slaves in the labour of calculation.

Gottfried Wilhelm von Leibniz

his article is a summary of a recent discussion on accu-general
concerning floating point numbers. First, we look at how numbers are
represented on computers, starting with whole numbers and moving

on to real numbers. Next, we consider comparing numbers stored in
floating point representation, noting pitfalls and common mistakes along
the way. The third section investigates performing calculations with
floating point numbers, noting the significance the order of calculations
makes and gives warning of clever tricks that might not actually be all that
clever. Mathematical proofs of the accuracy of the algorithms and tricks
presented are not given: the purpose of this article is simply to give a taster
of what is possible and what should be avoided. Working with floating
point numbers is hard, frequently mistake ridden, but with care and
attention can be done sensibly.

Representations
Let us begin with non-negative integers or whole numbers. These can be
easily represented in binary. Using 32 bits, we can represent numbers
between 0 and 232-1. For signed numbers, we could use a bit to represent
the sign, and the remaining bits to represent a magnitude. Alternatively
integers can be encoded using the more common two's complement. A
non-negative number is stored as the binary representation, while a
negative number -y is stored as 232-y. This is equivalent to switching the
bits and adding one. For example, let us see how -1 is represented. Flipping
the bits on 1 gives
 11111110

Adding 1 gives the representation of -1 as
 11111111

As a sanity check, we should find if we add 1 we get zero.
 11111111
 +00000001
 00000000 (ignoring the overflow carry bit)
This representation allows subtraction to be performed using just the
hardware for addition. Overflow can occur for either approach, since only
a fixed number of bits are available. This is dealt with in different ways
by different programming languages. Only a finite set of integers can be
represented: work is required to represent arbitrarily large or small
numbers.

Rational numbers, or fractions, can be represented symbolically by storing
the numerator and denominator, though arbitrarily large integers will still
need to be represented to cover all the rational numbers. This symbolic
representation requires several extra calculations for basic arithmetic. It
does not allow exact representation of irrational or transcendental
numbers, such as √2 or π. The obvious alternatives are fixed or floating
point encodings, allowing the representation of real numbers with a degree
of precision.
Fixed point representation uses one bit for the sign, a field of a fixed
number of bits before the decimal point, and a fixed length field for the
fractional part after the point. If 32 bits are used, with one bit for the sign,
8 bits before and 23 bits after the decimal point, we can only represent
numbers between 2-23 and 28– 1. In addition, numbers can now underflow
(anything less than 2-23), as well as overflow (anything greater than or
equal to 28), and the numbers we can represent are not dense (in lay
person’s terms they have gaps in-between, unlike rational or real numbers:
whichever two you think of, no matter how close, you can always find
another one in between) and so we will have rounding errors to consider.
An alternative is floating point, based on scientific notation. Any real
number, x, is written as a sign followed by a mantissa or significand, S,
and a magnitude or exponent, E, of a base, usually 2 or 10. Nowadays,
computers commonly use base 2. For example:

x = ± S . 10E

The decimal point ‘floats’ as the exponent changes, hence the name.
Under-and overflow still occur if a fixed number of bits are used for the
exponent and mantissa, however a greater range of numbers can now be
represented than with fixed point.
This general sketch of floating point representation gives much scope for
discussion. How many digits should the significand and the exponent be?
How do you represent the sign of the exponent? ‘Anarchy, among floating-
point arithmetics implemented in software on microprocessors, impelled Dr.
Robert Stewart to convene meetings in an attempt to reach a consensus
under the aegis of the IEEE. Thus was IEEE p754 born.’ [IEEE98]
IEEE defines several representations of floating point data, along with
negative zero, denormal or subnormal numbers, infinities and not-a-
numbers (NaNs) [IEEE87]. It also covers rounding algorithms and
exception flags. As with any floating point representation, a finite number
consists of three parts: a sign, a significand (or mantissa), and an exponent.
This triple is encoded as a bit string, whose length varies depending on
which representation is being used. The IEEE standard gives ‘three basic
binary floating-point formats in lengths of 32, 64, and 128 bits, and two basic
decimal floating-point formats in lengths of 64 and 128 bits’. [IEEE87] A
conformant programming environment provides one or more of these
formats. The base may be either 2 or 10, and each limits the possible ranges
for S, giving the precision, and E, giving minimum and maximum possible
exponents, emin and emax.
Of course, the floating point representation of a specific number will not
be unique without a convention: + 1.0 x 20 == + 0.1 x 21. In order to give
a unique encoding for floating point number, the significand S is chosen

T

Frances Buontempo has an undergraduate degree in Maths
+ Philosophy, an MSc in Pure Maths and a PhD in technically
Chem Eng, but mainly programming and learning about AI and
data mining. She has been a programmer for over 10 years
professionally and learnt to program by reading the manual for
her Dad’s BBC model B machine. She can be reached at
frances.buontempo@gmail.com
4 | Overload | June 2009

FEATUREFRANCES BUONTEMPO

Mapping a real number to a floating point
representation may incur rounding, which

signals an inexact event
so that either E = emin, or S>=1. If S<1, the number is denormal or
subnormal, having reduced precision but providing gradual underflow.
They cause special issues for rounding: the error bounds on underflow
differ from those on normal numbers. For normal numbers using base 2
the rounding error will be at most one unit in the last place, ulp, 2-(p-1),
where p is the precision. This does not hold for denormal numbers. Without
these numbers, the gap between zero and the smallest representable
number is larger than the gap between two successive small floating point
numbers. More details on their controversial introduction are given in
[IEEE98].
The signed bit is 0 for positive and 1 for negative for all representations.
For a 32-bit format, 8 bits are used for the exponent, ranging between -126
and 127. This is stored as a biased exponent adding 127 to get a value in
the range 1 to 254. For double precision the bias is 1023. For single
precision, exponents of zero and 255 have special meanings, leaving 23
bits. If we are representing normalised numbers in binary, they all start
1.x1x2x3..., so there is no point in storing the 1. If the exponent is all zero,
we are dealing with denormalised numbers, 0.x1x2... .
Let us consider the bit pattern of some single precision binary numbers.
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
 0 1......8 9.................... 31

Note first, we have two zeros:
 0 00000000 00000000000000000000000 = 0
 1 00000000 00000000000000000000000 = -0

As mentioned, all the ones for the exponent have special meanings:
 0 11111111 00000000000000000000000 = Infinity
 1 11111111 00000000000000000000000 = -Infinity
 0 11111111 00000100000000000000000 = NaN
 1 11111111 00100010001001010101010 = NaN

Otherwise, for non-zero exponents we have
 0 10000001 10100000000000000000000
 = +1 * 2129-127 * 1.101 = 6.5
 1 10000001 10100000000000000000000
 = -1 * 2129-127 * 1.101 = -6.5

And finally we have denormal numbers, such as
 0 00000000 00000000000000000000001
 = +1 * 2-126 * 0.00000000000000000000001
 = 2-149

For w exponent bits, the biased exponent allows every integer between 1
and 2w-2 inclusive to encode normal numbers, the reserved value 0 is used
to encode ±0 and subnormal numbers, and the reserved value 2w-1 to
encode ±Inf and NaNs (quiet and signalling). A quiet NaN is the result of
an invalid operation, such as 0/0 or a operation with a NaN for one operand,
and silently propagates through a series of calculations. Whenever a NaN
is created from non-NaN operands, an INVALID flag is raised. A signalling
NaN must be explicitly created and raises a floating point exception when
accessed which could be picked up by a trap handler. They can be used to
detect uninitialised variables. As we have seen, all the bits in the biased
exponent field of a binary NaN are 1. In addition, a NaN will contain

diagnostic information in its ‘payload’, giving a family of NaNs. Note that
NaNs ‘compare unordered with everything, including itself’. [IEEE87]. Infs
are constructed as the limits of arithmetic with real numbers, allowing
operations with them to be exact rather than signalling an exception event.
As an aside, note that IEEE allows decimal floating point numbers to have
more than one encoding: numerically equal ‘cohorts’ are identified.
Different cohorts can then be chosen for different operands. The specifics
of Infs and NaNs differ, but they are still easily represented.
Mapping a real number to a floating point representation may incur
rounding, which signals an inexact event. There are five IEEE rounding
options. It can be round to the nearest number: for ‘ties’, such as 4.5,
rounding is either to the nearest even number, here 4.0, which is the default,
or away from zero: for 4.5 this will be 5.0. The former, also known as
bankers’ rounding, makes sense, as it will sometimes round down, and
sometimes round up, so in theory all the small differences will come out
in the wash. Consider 0.5 + 1.5. This should be 2.0. If we round each
number away from zero to the nearest whole number, we calculate 1.0 +
2.0 = 3.0. If bankers’ rounding is employed, the sum is 0.0 + 2.0 = 2.0,
giving the correct answer. Other forms of round can be set: round towards
zero, or truncation, and round towards plus or minus infinity.
Exceptions are error events, rather than language specific exceptions.
There are five possible events: underflow, overflow, division by zero,
inexact and invalid operations, such as square root of a negative number.
By default, a flag will be set to indicate if such an event has occurred,
though this behaviour can be overridden for example by installing a trap
handler. The specifics are platform dependent. Once a flag has been set, it
is ‘sticky’, that is it remains set until explicitly cleared.
Many gotchas can occur with floating points. Rounding errors occur before
any calculation for some numbers when more bits are required than are
available in the representation. Similarly underflow or overflow can cause
problems. This includes comparison and calculations. Unintuitive things
occur, since floating point operations are neither commutative nor
associative. Furthermore, some compiler optimisers assume algebraic
properties hold and make mistakes. What do you think x1 and x2 will be
in your favourite C++ compiler?
 double v = 1E308;
 double x1 = (v * v) / v;
 double temp = (v * v);
 double x2 = temp/v;

See [Monniaux08] for further fun and frolics your compiler, platform and
optimiser can cause.

Comparisons
Let’s start with a simple example of what can go wrong when floating point
numbers are compared. Consider:
 bool test = 0.10000000000000001
 == 0.10000000000000000;

What is the value of test? What would a 10 year old tell you? Your
computer will tell you the value on the left hand side is in fact equal to the
June 2009 | Overload | 5

FEATURE FRANCES BUONTEMPO

I have seen code out there in the wild that
just checks if two numbers are within
epsilon of one another. This will (almost)
never be what is required.
one on the right, whether you try this in C, C++, Python or Haskell. This
happens because of the underlying IEEE representation of the number.
Simply put, ‘Squeezing infinitely many real numbers into a finite number of
bits requires an approximate representation’. [IEEE87] So, how should
floating point numbers be compared?
Numbers could be compared to a pre-specified number of decimal places
[ACCU09]:
 bool equal(double x, double y, double places)
 {
 return floor(x * pow(10.0, places) + 0.5) ==
 floor(y * pow(10.0,places) + 0.5);
 }

Multiplication by 10places moves the required number of digits to the left
of the decimal place. Addition of 0.5 ensures that numbers ending with the
digit 5 are rounded up. This is a common trick. This comparison will be
unsatisfactory in general. How many decimal places are required? What
happens for really big or really small numbers? Comparison to a specific
number of decimal places is probably not sensible. Instead, what is
required is a function that detects whether two numbers are close. The
decimal place comparison above can be adopted to check if two numbers
are equal to a given number of significant figures. Alternatively, the
relative difference can be employed.
Consider the function [ACCU09]:
 bool equal(double x, double y, double precision)
 {
 return fabs(x-y) < precision;
 }

This certainly checks if two numbers are within a given range of one
another. However, it will be hard to use, as the precision is an absolute
difference, and must vary with the two numbers being compared. What
value is suitable for
 equal(1000000000001,1000000000002, ???)?
What about
 equal(0.000000000001,0.000000000002, ???)?
E p s i l o n m a y s p r i n g t o m i n d , f o r e x a m p l e i n C + + ,
std::numeric_limits<double>::epsilon().

This is the smallest number that can be added to 1.0 to obtain a number
that doesn't compare equal to 1.0 The C++ standard defines ‘Machine
epsilon: the difference between 1 and the least value greater than 1 that is
representable’ [C++03]. I have seen code out there in the wild that just
checks if two numbers are within epsilon of one another. This will (almost)
never be what is required. For bigger or smaller numbers, we require a
multiple of epsilon, or our chosen precision, giving the relative difference.
[ACCU09]
 bool equal(double x, double y, double precision)
 {
 return fabs(x-y) < fabs(x)*precision;
 }

This relative error approach still raises questions. How do we decide
whether to multiply by x or y?
I suspect rounding errors, particularly ones in production systems initiating
support calls at 3am, cause programmers to first start thinking about
comparing floating point numbers. Numbers are required to be close
enough, allowing for computational rounding. We can check if two
numbers are within the worst-case difference that can be caused by
rounding errors. For one rounding error, resulting from one calculation, the
absolute difference will be less than fabs(x)*epsilon, as used in the
relative error above. For n IEEE floating point operations, a seemingly
sensible comparison is therefore [ACCU09]
 fabs(x-y) <= double(n)*fabs(x)*epsilon;

However, what happens if x is zero? We then check the difference is less
than or equal to zero, which is not the intention. It is safer to use [ACCU09]
 fabs(x-y) / sqrt(x*x + y*y + epsilon*epsilon)
 < n * epsilon;

Calculations
Comparison of floating point numbers is just the beginning of the matter:
the order of calculations can also make a difference. Consider three ways
of summing some floating point numbers. See Figure 1.
This gives sum1 as 1000000000.0000000, and sum2 and sum3 as
1000000000.0000001. Addition is neither associative nor commutative in

Figure 1

double sum1 = 1000000000.0 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 +
 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 +
 0.00000001;

double sum2 = 1000000000.0 + (0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 +
 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 +
 0.00000001);

double sum3 = 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 +
 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 + 0.00000001 +
 1000000000.0;
6 | Overload | June 2009

FEATUREFRANCES BUONTEMPO

Catastrophic cancellation occurs if two numbers are
close and are the result of previous calculations, so

have inaccuracies in the lower digits
floating point arithmetic, giving a very strange number system. Sorting the
numbers to be summed so that the smallest numbers are aggregated first
will be more accurate, however this will be time consuming. A better
approach is the Kahan Summation Formula [Goldberg91]. This takes into
account the lower order bits, avoiding some rounding errors as it runs. For
the sum of an array of n floating point numbers, x, Kahan's summation is
calculated as follows:
 double sum = x[0];
 double small_bits = 0.0;
 for(int j = 1; j < n; ++j)
 {
 double y = x[j] + small_bits;
 double temp = sum + y;
 small_bits = y - (temp - sum);
 sum = temp;
 }

This illustrates one approach to calculations – compensating for lower
order bits that would otherwise get lost. On the first step round the loop,
for sum1, sum = 1000000000.0, so the smaller 0.00000001 has got
lost. However, it is remembered in the small_bits, and will be taken
into account in the final result.
We have seen how addition can cause problems: so can subtraction.
Catastrophic cancellation occurs if two numbers are close and are the result
of previous calculations, so have inaccuracies in the lower digits. Most of
the accurate digits may cancel as a result of subtraction, leaving behind
cruft in the lower order digits. On the other hand, if the operands are exactly
known rather than calculated their difference is guaranteed to have a very
small relative error, which is referred to as benign cancellation. Consider,
the mathematically identical formulae x2 − y2 and (x + y)(x − y). Though
they are identical algebraically, they may not be computed to be equal.
[Goldberg91] demonstrates why the right hand side is usually a more
appropriate computational approach. Intuitively, when x and y are close,
x2 − y2 will be very small, giving a potentially large relative error.
However, although the expression (x − y)(x + y) does not cause a
catastrophic cancellation, it is slightly less accurate than x2 − y2 if x is much
smaller than y or vice versa . In this case, (x − y)(x + y) has three rounding
errors, but x2 − y2 has only two since the rounding error committed when
computing the smaller of x2 and y2 does not affect the final subtraction.
[Goldberg91]
Sometimes it is tempting to rearrange a mathematical formula for greater
efficiency, but mathematically equivalent formulae have different
‘stability properties’ [Highham96]. Consider calculating the variance of an
array of numbers.
 variance = 1/(n-1) sum(x-mean(x))

where
 mean = 1/n(sum(x))

This involves two passes through the numbers, once to calculate the mean
and a second time to calculate the difference from the mean.
Mathematically this is identical to the sum of squares method [Cook]

 variance = 1/n(n-1) (n.sum(xi^2) – (sum(xi)^2))

This second formulation can lead to difficulties. For example, the variance
can become negative if the numbers are large with comparatively small
differences. Try it with 1.0e09 + 4, 1.0e09 + 8, 1.0e09 + 13. This gives
about -156.77. This will cause trouble if we wish to calculate the standard
deviation, that is the square root of the variance.
A better approach is Welford’s method [Welford62], which is an ‘on-line
algorithm’–- that is, it provides the new result in one step for a new value
of x, rather than having to recalculate everything from the start, so will give
us the efficiency we require but without the potential instability. This is
achieved via a recurrence relationship or iteration, which calculates the
new value from the previous value. If we have the current mean for k – 1
numbers, for a new value x
 mean = previous_mean + (x - previous_mean)/k

The variance can then be calculated from
 sum_variance = previous_sum_variance +
 (x - previous_mean)*(x-mean)

as variance = sum_variance / k;
This version is both a one-pass algorithm and does not suffer from the same
potential rounding problems as the sum of squares method. Any formula
can be expressed in more than one way. It is worth considering the
rounding errors that can occur and looking for ways to rearrange the order
of the calculation to avoid them. As a quick finger in the air test of a
formula, compare the output for the same sequence of numbers presented
in different orders: if they differ you probably have a rounding error. Then
try different rearrangements try for your formula, with the inputs presented
in different orders. This can be a quick way to detect rounding errors.
Another approach is to try one formula with different rounding modes set.
Furthermore, your optimiser can also wreak havoc with your carefully laid
plans. Changing your optimisation settings, re-running your program and
examining the results can reveal some fun and frolics.

Other representations
Each of the rounding errors considered so far stem from the way real
numbers are represented on a machine. Many real numbers cannot be
represented precisely in binary using a fixed number of bytes. There are
many ways to represent the real numbers on a computer. These include
binary-coded decimal (BCD) [Wikipedia], p-adic numbers [Horspool78]
and IEEE floating point standard [IEEE87].
BCD typically uses four bits to represent each digit. For example, 127
would be encoded as
 0001 0010 0111
It takes more space than floating point representation, but decimals like
1/10 which recur in binary (0.0001100110011...) can be represented
exactly. Using base ten, any rational number which cannot be written with
a denominator that is an exact power of 10 recurs, for example 1/3 is
0.333..., while 1/2 = 5/10 = 0.5. Similarly using base two, any rational
June 2009 | Overload | 7

FEATURE FRANCES BUONTEMPO
number whose denominator is not an exact power of two will require a
recurring representation. If a floating point representation with a fixed
precision is used, such numbers will be rounded. In BCD, as many decimal
places as required can be used. Other benefits include quick conversion of
BCD numbers to ASCII for display since each digit is in a byte. More
circuitry is required for calculations in BCD, though the calculations are
still straightforward.
Consider adding 9 and 8 in binary coded decimal. Adding the digits as one
would usually gives
 1001
 + 1000
 0001 0001

The first 0001 is a carry digit. If the number were in binary this would be
sixteen, but since it only represents ten the extra six, 0110, must be added
whenever we have a carry digit:
 1001
 + 1000
 0001 0001
 + 0110
 0001 0111

This represents a one followed by a seven, giving 17 as required. For any
carry digits or invalid BCD numbers (1010 to 1111), six must be added
to give a valid BCD.
Other less well-known representations of the rational numbers are
possible. One I have come across recently is the p-adic numbers
[Horspool78]. They can represent any rational number exactly. It uses a
compact variable length format. Addition, subtraction and multiplication
are familiar and straightforward. Division is slightly more difficult.
The numbers are represented as a series , where di are the digits
and b is the base. The p-adic numbers do not require a decimal point and
many of them involve an infinite, but repeating, sum. The natural numbers
are represented as they would usually be in the chosen base. For example,
using base two, 9 is 1001. If a prime number is chosen as the base each
rational number can be represented uniquely. For negative numbers using
base two, note that
 ...11111
 + 00001
 ...00000

This means –1 can be represented by ...11111. Though this sequence
repeats indefinitely, it repeats and so can be represented finitely. Some
irrationals and complex numbers can be represented. Consider rational
numbers. For example 1/3 is ...0101011, since three of them sum to unity:
 ...0101011
 + 0101011
 + 0101011
 ...0000001

[Horspool78] gives further details on this interesting representation of real
numbers.

Further issues
This article has looked at representations of numbers on computers,
various ways to compare floating point numbers, touched on issues
concerning calculations, including the order of operations and tricks to
compensate for rounding errors. Many other issues have not been
considered including platform specifics, such as such as how to control
IEEE rounding modes, and how to find out if an exception event has
signalled. Other more general points have not been raised, including
troubles that occur when floating point numbers are streamed into a string.
What does this output?

 #include <iomanip>
 #include <iostream>
 int main()
 {
 std::cout << std::fixed << std::setprecision(2)
 << 5000.525 << "\n";
 }

VS2005 rounds down to 5000.52, when you might expect to get 5000.53.
What does your compiler do with this?
 double x = 0.00000000000001234567890123456789;

Various myths concerning floating point calculations abound. Hopefully
it is now clear why the following are myths:

Since C’s float (or double) type is mapped to IEEE single (or
double) precision arithmetic, arithmetic operations have a uniquely
defined meaning across platforms.
Arithmetic operations are deterministic; that is, if I do z=x+y in two
places in the same program and my program never touches x and y
in the meantime, then the results should be the same.
A variant: ‘If x < 1 tests true at one point, then x < 1 stays true later
if I never modify x’.
The same program, strictly compliant with the C standard with no
‘un-defined behaviours’, should yield identical results if compiled
on the same IEEE-compliant platform by different compliant
compilers. [Monniaux08]

I am still left with the feeling I have more to learn and consider regarding
floating point numbers. I suspect there is still much I do not fully
understand or appreciate, however that is enough for now. As Wittgenstein
said, ‘Whereof we cannot speak, we must remain silent’.

Acknowledgements
A big thanks to everyone who helped review this – you know who you are.

References
[ACCU09] accu-general discussion, March 2009
[C++03] C++ standard 2003. 18.2.1.2
[Cook] http://www.johndcook.com/standard_deviation.html
[Goldberg91] David Goldberg ‘What every computer scientist should

know about floating-point arithmetic’ ACM Computing Surveys, Vol
23(1), pp 5-48, March 1991

[Highham96] ‘Accuracy and stability of numerical algorithms’ Nicholas
J. Higham, 1996

[Horspool78] R.N.S.Horspool, E.C.R.Hehner: ‘Exact Arithmetic Using a
Variable-Length P-adic Representation’, Fourth IEEE Symposium
on Computer Arithmetic, p.10-14, Oct 1978

[IEEE87] IEEE Standard 754-1985 for Binary Floating-point Arithmetic,
IEEE 1987

[IEEE98] IEEE 754: ‘An Interview with William Kahan’ Charles
Severance, IEEE Computer, vol. 31(3), p. 114-115, March 1998

[Knuth] Knuth. The Art of Computer Programming.
[Monniaux08] ‘The pitfalls of verifying floating-point computations’

David Monniaux May 2008. hal-00128124 http://hal.archives-
ouvertes.fr/docs/00/28/14/29/PDF/floating-pointarticle.pdf

[Welford62] B. P. Welford ‘Note on a method for calculating corrected
sums of squares and products’. Technometrics Vol 4(3), pp 419-420,
1962 (cited in [Goldberg91])

[Wikipedia] http://en.wikipedia.org/wiki/Binary-coded_decimal

dib
i∑
8 | Overload | June 2009

FEATUREALLAN KELLY
On Management: The
Business Analyst’s Role
Some management titles are poorly defined.
Allan Kelly disentangles a knotty one.
n my previous article I looked at the role of Product Manager [Kelly09].
Usually this role only exists inside software product companies, that is,
companies which produce software products which customers buy.

But, as we saw in a previous article there are two other types of software
development organization that need to be considered.
Inside corporate IT departments – which create software for the
corporation’s own use – and external service providers (ESPs, companies
which write bespoke software for a specific customers) someone must still
decide what is required. Even if requirements documents are not written
there needs to be someone who decides what should be included in the
software, what should not be included and what priorities should be
assigned.
In such organizations this is the role of the Business Analyst, or BA. While
the BA role has similar responsibilities towards the development team as
a Product Manager the role is very different and requires different skills
and experience.
Scrum – and other Agile methods – have a Product Owner role. This title
describes a role in the method. In general Product Owner can be considered
an alias for either a Product Manager or Business Analyst.

Difference between Product Managers and Business
Analysts
The main difference between Product Managers and BAs is that the latter
is inward facing. They look inside the company, they look at processes and
practices inside a single company and how these can be improved through
the use of software technology. In contrast Product Managers are outward
facing, they look at the market and at multiple independent customers.
The second difference between the two roles is that BAs perform work in
support of another. Somewhere in the organization there is someone – or
some group – who wants different systems. Those systems will enable to
the organization to reduce costs, improve service, or bring a new product
to market. However, BAs are a supporting role, they are proxy customers
for those who want to see the change happen.
Product Managers are usually responsible to someone else in the
organization but they play the role of informed customer. For BAs the
ultimate customer is the person whose budget pays for the IT work and/or
receives the benefit of the work. If they had the time and skills they could
take on the role themselves – after all, they are the ultimate owner.
In a small organization such a person may be able to play the Product
Owner/BA role but as the organization grows they will find demands on
their time prevent them from filling the role adequately. This is the time
when a proxy customer should be introduced: someone who has the time
and skills to fill the role properly.

Lesson 1: Product Owners need to give time to the role.
Development teams need time from the Product Owner, and the
Product Owner needs time to understand the issues.

Multiple hats
While the Product Manager role is often overlooked, the BA role is often
misunderstood. This is because under the title of Business Analyst there
are many different types of BA. Some of these roles carry the BA title
erroneously; things would be simplified if some BAs were given the title
‘System Analyst’ or ‘Assistant Product Manager’.
BAs may be called upon to fill a number of difference jobs all under the
one job title. So an individual BA may on one project work as an internal
consultant to help invent a solution. The next project may be somewhat
simpler and only need the BA to capture requirements. Later in the same
project the same BA would be well placed to help with the testing of the
final software.
There is debate within the BA community itself as to the proper role for
analysts. Therefore it is important not to look on the role either too
narrowly or to assume that all BAs work the same way.
One definition of core BA role states:

An internal consultancy role that has the responsibility for
investigating business systems, identifying options for improving
business systems and bridging the needs of the business with the
use of IT. [Paul06]

In order to better understand the BA role it helps to first understand the
different ways in which the title is used (and abused).

Non-IT Business Analyst
These Analysts have nothing to do with IT. They analyse businesses,
business trends, markets, competitors and anything else that is connected
with commerce and helps their employer. But they don't do it in order to
create or change IT systems.
There is nothing wrong with this type of BA, it is just necessary to point
out that not everyone with the title Business Analyst is concerned with IT
systems.

Business Analyst as Systems Analyst or Software Designer
Before Business Analysts became a common in IT departments it was
normal to find Systems Analysts. These analysts perform a similar
function - deciding what should be in the system and what should not - but
they focused on the computer system not the business. (Many Business
Analyst are actually titled as Business Systems Analyst but for brevity the
middle word gets dropped.)
This type of analysis creates a technology focus for work which should be
business focused. Delivering a faster, better computer system should not

I

Allan Kelly realised after years at the code-face that most of
the problems faced by software developers are not in the code
but in the management of projects and products. He now
works as a consultant and trainer, helping teams adopt Agile
methods and improve development practices and processes.
He can be contacted at allan@allankelly.net and
http://allankelly.blogspot.net.
June 2009 | Overload | 9

FEATURE ALLAN KELLY
be the objective. Satisfying a business need – which might mean a faster
better computer system – should be.

Lesson 2: Business Analysis is not System Analysis. If a
company really needs a System Analyst then they should
appoint one. (It should first explain to itself why the system
analysis cannot be undertaken by the development team or and
Architect.)

Some BAs, and Systems Analysts, are expected to take a role in designing
the software. This is a misuse of the BA role. The BA role needs to focus
on the business; software design should be left to the specialists.
Usually BAs do not have the skills to design software. In asking them to
do so ‘the business’ may believe it is more likely to get what it wants from
development teams. The net effect is to move some of the design activity
from those who are best placed to do it to those who are less able.

Lesson 3: BAs should not design software. BAs should confine
their role to analysis and determining what the business needs
from the software and systems.

A BA who undertakes specification from a systems point of view, or
undertakes system design is neglecting their true responsibility. When
systems analysis is needed it is either the team as a whole or of a designated
Architect who should undertake the work. Similarly software design is not
the responsibility of the BA, it is either a responsibility on the whole team
or on a designated Architect.
By concentrating on the business need the BA provides the team with room
to create a solution. The more a BA specifies system constraints, or design
details, the greater the restriction on the team. When this happens
requirements contain design constraints.

Business Analyst as Product Manager
In some companies Product Managers exist, they fulfil the type of external
analysis described in the previous article but they bear the title Business
Analyst. This may be because the company has its origins in corporate IT
– perhaps it was spun out of a corporate IT department.

Lesson 4: Some BAs are Product Managers with incorrect
titles.

Occasionally companies that have both Product Managers and Business
Analysts. Usually the BA is not really filling a BA role, they are a Junior
Product Manager or they are a System Analyst. But occasionally it makes
sense.
As we noted before there is a lot of work for a Product Manager to do. One
way of reducing the work load is to appoint specialists to help them in some
way. In these cases a BA works as an assistant to the Product Manager on
some specific aspect of the product.
For example, a BA may pick up the competitor monitoring work from the
Product Manager. The BA will able to spend more time monitoring,
investigating and analysing the competition then feed this information to
Product Manager.

Lesson 5: Some BAs are Assistants to Product Managers.

Business Analyst as Subject Matter Expert
It is possible to work in IT and yet know little about the application domain
under development. For example, a Java developer may use their
knowledge of Java programming for a bank, or an oil company, or for a
telecoms company. A Project Manager may manage projects at an oil

company one month and at an airline the next. While it helps with have
domain knowledge it is often not essential. Skills like Java programming
and project management are transferable.
Complex domains need individuals who have in depth understanding.
Banks need banking experts; telecoms companies need communication
experts, etc. etc. For these individuals skills such as coding are secondary
to their knowledge of the domain. Such people are often known as Subject
Matter Experts.

Lesson 6: Some BAs are Subject Matter Experts, their
knowledge is more important in understanding what needs to be
done than actual analysis.

Since the Business Analyst role entails understanding and describing
organizations and technical domains Subject Matter Experts (SMEs) may
gravitate to this title.
Yet it is not a foregone conclusion that a BA needs to be an expert in the
domain to perform their role. Indeed, being an expert in current practices
may blind one to opportunities for change. Starting an analysis assignment
with an open mind, or blank sheet of paper, may be advantageous.

Lesson 7: The core BA skill is analysis: the ability to analyse,
to understand a domain and a problem, then to communicate
what needs to be done to change it. Therefore, it is not essential
for a BA to have extensive domain experience.

Lesson 8: Some BAs are Subject Matter Experts and can fill
their role because of deep knowledge. Other BAs are experts
in analysis and fresh thinking; they can fill their role because of
clear thinking.

The Business Analyst role
In the IT context a BA is someone concerned with information systems
for business applications. The role is IT centric and extends beyond the
pure technology system to include the processes and practices of people
who use the system. As such it may also cover change management.
BAs are concerned with the analysis of systems, processes, practices and
operations within an organization. They are tasked with understanding
these things and proposing changes. But they are not tasked with designing
those changes in detail.
In understanding these systems, and suggesting changes the BA is
expected to take into account the overall business objectives and direction.
It is unlikely the BA will have responsibility for revenue or cost saving
but they will need to include these in their analysis.
As with the Product Manager the BA role entails requirements discovery.
That is, enquiring and analysing the application domain to uncover the
requirements of a technology system to improve the domain. Although it
is likely the Product Manager will be far closer financial targets. Senior
Product Managers may even have responsibility for meeting financial or
other targets.
Sometimes the BA role is one of collecting business needs in order to
communicate the needs to those responsible for technology solutions. On
other occasions the BA acts as an internal consultant, helping the business
understand what is possible and envisaging a different way of working by
using technology.

Lesson 9: When a business knows what it wants the BA will
collect the needs and communicate them to the technology
providers. When a business is less clear on what is needed the
BA will work as a consultant to analyse the problem and
envisage a solution.
10 | Overload | June 2009

FEATUREALLAN KELLY
Given the variety of work expected of BAs finding a definition of the role
is problematic. The authors who supplied the definition of BA work above
[Paul06] noted this variety too:

Although there are different role definitions, depending on the
organization, there does seem to be an area of common ground
where most business analysts work. ...to investigate business
systems ...

To identify actions required to improve the operation of the
business

To document the business requirements for the IT system"

(Paul and Yates 2006)

Product Owner role and the team
As already noted, in the Agile teams - and particularly for teams following
Scrum - it has become common to talk of a Product Owner. Yet outside
of the description of the Agile process these methods say little about what
the Product Owner does. Or rather, vanilla-Scrum and vanilla-XP only
describe what the role does in the process.
Outside of the time the Product Owner spends in the Scrum process they
need to use their time to support the process so they can speak from a
position of knowledge. To do this the Product Owner needs the skills of a
Product Manager or Business Analyst.
For the development team it matters little whether the Product Owner is a
BA or Product Manager, the role is the same. The Product Owner decides
what goes into a product, in what order and approves what is created. (To
put it in technical terms, both BAs and Product Managers are
implementations of the Product Owner role.) However there is a big
difference in how BAs and Product Managers fill this role.

Lesson 10: A Scrum (and other Agile methods) Product Owner
should normally be a Product Manager or a Business Analyst.
In general, the title Product Owner can be considered an alias
for Product Manager or Business Analyst.

On rare occasions the Product Owner may be from another background.
They might, XP-style, be an actual customer. Or, for product which is
technical facing the Product Owner may come from a technical
background. For example, a Scrum team developing display drivers may
have a video engineer as a Product Owner. However before accepting a
technician as Product Owner look for alternatives first.
Just to complicate matters, and having spent this and the previous article
sketching the two different roles the world is changing. Once up on a time
the difference between a product company employing Product Managers
and a corporate IT department employing BAs was clear. Now however
the two are merging.
Consider for example an imaginary package travel company. Prior to the
year 2000 all package holidays were sold via travel agents or over the
telephone. IT systems existed to track customers, manage inventory,
handle administration and so on. These were for internal use only so it
made sense to use BAs for analysis.
Starting in 2000 the company has increasingly sold holidays over the web.
The number of agent bookings has declined, retail stores have been closed
but online bookings have soared. The web systems which handle these
bookings are extensions to existing internal systems. To the end customer
this internal/external difference is meaningless. Part of the holiday
experience is the booking process.

In such a situation it is not clear whether the company should use BAs or
Product Managers. To use BAs may neglect the customer experience side,
while to use Product Managers may neglect the internal aspects. A mix of
skill sets is required.

Lesson 11: Product Owners increasingly need a mix of
Business Analyst and Product Manager skills.

Product Manager, Project Manager or Business
Analyst?
As if the confusion between BA, Product Manager and Product Owner
were not enough there is a third role which is sometimes added to the mix:
the Project Manager.
Like Business Analyst the Project Manager role is somewhat ill-defined
and quite elastic. The standard text for the PRINCE 2 method (a popular
project management technique in the UK) does not define the role of
Project Manager [TSO05].
As a rule-of-thumb BAs and Product Managers are concerned with the
‘what’ of a development while Project Managers are concerned with the
‘when’. Beyond this different organizations slice-and-dice responsibilities
differently.
While PRINCE 2 contains processes to ensure the ‘what’ and ‘why’ are
defined (in the business case) it is silent on who should create these
documents. Neither is there any guidance on how to create a business case
or what skills are required to write one. This is because writing a business
case is not a project manager's responsibility.

Lesson 12: Project Managers are not Product Owners, neither
are they Business Analysts or Product Managers. Project
Managers have different training, different objectives and often
different experiences.

To complicate matters further, some companies use the title Architect for
Product Managers. At the end of the day it is better to look at what
individuals actually do rather than their title when trying to understand
roles.

Finally
Hopefully this article and the previous one have gone some way to
clarifying and disentangling the roles of Product Manager and Business
Analyst. Along the way I hope to have convinced you that the Product
Owner role is important – whether it is filled by a Product Manager or BA
– and that there is more to it than meet the eye. Consequently it should be
clear that these are not roles developers can do in their spare time.

References
[Kelly09] Kelly, A. 2009. ‘The Product Manager role’ ACCU Overload

(90).
[Paul06] Paul, Debra and Yates, Donald. 2006. Business Analysis.

Swindon: British Computer Society.
[TSO05] Commerce, Office of Government. 2005. Managing Successful

Projects with PRINCE2. Fourth Edition. London: TSO (The
Stationary Office).
June 2009 | Overload | 11

FEATURE RAFAEL JAY
Complexity, Requirements
and Models
Programs can be unnecessarily complex. Rafael
Jay examines a technique for doing better.
ou have the requirements for a new feature. Your customers need it
done on time. You start designing. You know it will touch a few areas
of your codebase so you start by looking at those. It’s hard to get a

clear picture of how they work so you draw a few class and sequence
diagrams. Eventually you think you understand, but there’s a lot of detail
and you have to keep referring back to your diagrams. Deadlines are
looming so you start coding. A week in you realise that strange dependency
which didn’t seem important actually disguised a key connection to
another part of the system. Your design doesn’t quite work. You don’t have
time to go back to the drawing board so you hack something together. You
feel bad but you have to meet your customer commitments.
Next time round you’re wiser. You know that code is tricky so you ask
your manager for a couple of extra weeks to refactor it first. But refactor
it into what? It’s hard to draw a boundary around the area you’re looking
at and other parts of the code. And it’s not entirely clear what you should
refactor it into anyway – where should each class go? You do your best to
apply some patterns and good software engineering techniques, but you
keep having to back off because of unexpected dependencies. Two weeks
later you’ve cleaned up a few localized issues, but you’re not convinced
you made that much difference overall. And behind that you have a
nagging suspicion that this wasn’t even the worst part of the codebase.
Maybe you should have spent the time refactoring something else.
If these experiences sound familiar, your code is probably too complex.
But what is complexity? We know what too much feels like: you discover
one more thing to think about and suddenly your head explodes. You can’t
keep a clear picture of how it all fits together any more. This kind of
anecdotal measure – how much it makes your head hurt – is perfectly valid
and there’s no reason why you shouldn’t use it as an input into your
refactoring efforts. But it’s hard to compare different developers’ sore
heads to identify the most problematic areas, and it doesn’t offer much
insight into why their heads are hurting. We could do with something a bit
more scientific.

Kettles
One explanation of complexity I have often found useful comes from
Christopher Alexander’s 1964 book Notes on the Synthesis of Form
[Notes]. This book is concerned with the design of complex artefacts,
which I’m sure most people would agree includes software. Alexander
invites us to consider each requirement of an artefact as a light bulb which
goes off only when the currently proposed design satisfies that
requirement. For example, a kettle must be of adequate capacity, durable,
not too heavy to lift, cheap to make, and many things besides. The initial
design – a blank sheet of paper – actually satisfies some of these. A non-
existent kettle never wears out, is easy to lift and cheap to make. So the

light bulbs representing those requirements are off. However it does not
have adequate capacity, so at least one light bulb is on. The design still
needs some work.
Requirements are interconnected. Let’s say we redesign the kettle so it’s
made of finest titanium with a capacity of two litres. The capacity light bulb
goes out, but titanium is expensive, so the cost light bulb comes on.
Alexander models connections between requirements by connecting their
bulbs. Each connection between two bulbs implies a certain probability
that while one of the bulbs is lit, the other bulb will also light up. This
represents the probability of breaking the connected requirement while
trying to fix the original. (See Figure 1.)
A software product, like a kettle, is an artefact that must meet certain
requirements. This is why we typically start off with a functional
requirements document, or a set of stories and acceptance tests, or at any
rate some kind of breakdown of what the product is actually meant to do.
We can model those requirements as light bulbs and connections.
Let’s look more closely at the connections between requirements. If not
for connections, it wouldn’t matter how many requirements a product had,
because we could address them all as independent, trivial problems. This
might take a long time if there were a large number, but the challenge
would be perseverance rather than brainpower. At the other end of the
scale, a product where every requirement was connected to every other –
where work to address one requirement could potentially break all the
others – would rapidly exceed the capacity of our limited human minds.

Light bulbs
Alexander illustrates these issues by considering various systems of
interconnected light bulbs where, in any given second, there’s a 50%
probability of any lit bulb turning off and a 50% probability of a bulb
coming on if its neighbour is on. For each system he asks how long, given
an initial stimulus of a single bulb coming on, it will take for the ripples
of illumination to die out – how long the system will take to reach an
equilibrium state where every bulb is off. In software terms this is

Y

Figure 1

Light bulbs and connections. Each bulb represents a
requirement. When it is off, the requirement is satisfied. While
a bulb is on, there is a possibility that each connected bulb may
also come on. This represents the possibility that addressing
one requirement may inadvertently break others.

Rafael Jay has been programming professionally for over a
decade. He is a technical lead at Trayport Ltd, a software
house developing trading platforms in C++ and .NET. He can
be contacted at rafaeljay@bcs.org.uk
12 | Overload | June 2009

FEATURERAFAEL JAY

A connection between lights indicates a
possibility that work done to address one

might break the other
equivalent to asking how long after fixing a bug you’ll be able to declare
the work, and all its ramifications, finished. Unsurprisingly, the more
numerous and stronger the connections, the longer it takes to reach
equilibrium. In a system of one hundred maximally interconnected bulbs,
Alexander calculates it will take longer than the lifetime of the universe
for them all to go off. This equates to a never-ending cycle of design, realise
you’ve broken some requirements, redesign, realise you’ve broken some
more requirements, and so on. The lesson we can draw is that there’s no
point trying to address design problems with large numbers of densely
interconnected requirements – we simply don’t have the intellectual
capacity to solve them.
Nevertheless, a glance at any sizeable requirements document will confirm
that we frequently do address software design problems that have hundreds
of requirements. The key, according to Alexander, is how effectively the
system decomposes into independent groups. He calculates that a system
of one hundred light bulbs decomposed into ten distinct groups – densely
and strongly interconnected within each group, but not between groups –
would take about fifteen minutes to reach equilibrium. Fortunately for us
as developers, and indeed as humans, most of the design problems we face
fall more into this latter category than the former. Their requirements
decompose naturally into smaller subgroups which we can solve as more
or less independent problems.

Software: requirements
Let’s look at an example. An online retailer handles orders, which link
stock items to customers who want to buy them. It’s not hard to see how
the functional requirements for this part of the product would decompose
into groups for orders, items and customers (Figure 2).

The groups are not arbitrary. Each exists because the requirements cluster
around an abstract domain concept, such as orders, items or customers. The
domain concept explains why the requirements in each group are tightly
linked, why work done to address one of them is likely to affect the others.
Thus in many ways an Alexander-style requirements diagram like the one
in Figure 2 is equivalent to a domain model, or models, from the world of
domain driven design.
Alexander’s approach, however, can give us more of an insight into the
artefact’s complexity. The number of requirements and the number,
strength and pattern of connections between them gives us the basis of a
less subjective measure of complexity, one we can use to compare different
products and to compare different parts of the same product. We can expect
it to have a real correlation with how much working on those areas will
make our heads hurt.
Sadly it isn’t adequate. I have worked on a number of products with
broadly comparable complexity of requirements, and some of them have
been a lot more painful than others. The number of requirements and
connections between them tell us how complicated a product has to be –
the necessary degree of complexity inherent in an artefact capable of
satisfying all those requirements simultaneously. But by itself it does not
completely measure the thing we wanted to measure: the size of the
headache it will give us as developers.

The humble developer
Thus far we have focused almost exclusively on the artefact – the software.
But what about the developer? Complexity is only a problem because the
human mind has limits. We can only hold so many things in our heads at
once. To understand the problem of complexity we must examine not only
the artefacts but also the people who design them. What do developers do?
The bulk of our time as developers is spent implementing new features or
fixing bugs. A bug means a requirement of our software product isn’t
satisfactorily met – a light is on. A feature means one or more new lights
are ‘plugged in’ to the existing ones, with at least one of the new lights
being on (otherwise there’s no new work to do – the feature is already
provided by the existing product). Our job as developers is to make all the
lights go off again, to fix the bug or implement the new feature without
breaking the implementation of any of the other features.
To do this we need to know not only which lights are currently on, but also
which lights those ones are connected to. A connection between lights
indicates a possibility that work done to address one might break the other.
As developers we need to be aware of that possibility so we can check the
corresponding areas of code and adjust them as necessary. For example,
if I change how we store a customer’s date of birth to accommodate a new
feature, I might need to change connected parts of the existing code to
compensate. If I miss a connection, I risk introducing a regression bug –
a requirement which used to be met but which I’ve now inadvertently
broken. We’re all familiar with the cost of these, particularly if they go
unnoticed until later stages in the production process. However there’s also
a cost to false positives. If I believe there’s a connection when there isn’t,
I waste time investigating irrelevant code. This is harder to measure thanFigure 2

Items
Customers

Orders
June 2009 | Overload | 13

FEATURE RAFAEL JAY

The code is the only thing that . . . you can
guarantee a developer will have to look at to
accomplish their work
regression bugs, but it nevertheless siphons off development time that
could more usefully be spent implementing new, saleable features.
Of course it’s not just the immediate connections that I need to worry
about. If work on my immediate target causes a directly connected light
to come on, then there’s a chance that work done to turn that light off will
trigger further lights to come on; and work on those further lights may in
turn trigger others. I have to chase an expanding wave front of broken
requirements through the code base. It’s at this point that knowledge of
the groups of requirements is very useful.

The groups can help
Groups of requirements exist whether we’re aware of them or not. The
online retailer system has groups of densely interconnected requirements
for items, customers and orders regardless of whether I, as a developer,
know that those groups exist or take them into account in my design and
implementation. The fact that they do exist means that even if I’m not
aware of them I’ll probably reach a satisfactory design for the system
eventually, turning all the lights off, because the wave fronts of broken
requirements will be naturally limited. But the process is likely to be
clumsy and time-consuming, tackling each broken requirement in a
random order, constantly having to remember all the details of which lights
are connected to which; and most likely getting it wrong fairly frequently
due to the number of things I have to bear in mind all at once. The end
result is usually features that throw up a barrage of unexpected extra work
items as you implement them, then haunt you with regression bugs for
months or even years afterwards.
If, on the other hand, you know which groups the immediate targets are in
and how those groups relate to other groups then you can design a lot more
rationally. You know that you need to consider the other requirements in
the target groups, and pay especial attention to the points where those target
groups connect to other groups – the interfaces. For example, on changing
how we represent a customer’s date of birth, I know I need to look closely
at the code which implements the other customer requirements, and keep
a tight grip on the interfaces between the customer code and other code
which depends on it, preferably leaving the interfaces between them
unchanged. I also know that I don’t need to look at code which implements
unrelated groups of requirements. This allows me to focus my limited
development time much more closely on those areas where it’s most
needed.

Knowledge
So, to do a good job as a developer you need to know the connections
between requirements and how they decompose into groups. Where does
this knowledge come from?
There are three main repositories: external documentation such as design
documents, requirement specs, etc; other developers; and the code itself.
It’s here that the ways in which software is not like a kettle start to become
important. A kettle is typically designed once, probably by a single
individual, based on requirements that change very little over time. Most
substantial software applications, by contrast, are continually redesigned

by an ever-changing team of developers to meet ever-expanding
requirements. Under such circumstances you cannot rely on external
documentation to stay up-to-date, or the other developers to have a full and
accurate knowledge of how the system works. The code is the only thing
that absolutely has to be complete and accurate, and moreover it’s the only
thing that you can guarantee a developer will have to look at to accomplish
their work. This is not to say that documentation and other developers don’t
have an important part to play, but the code is the most effective repository
of knowledge about requirements and how they decompose into groups.
The easier you make it for developers to acquire this knowledge from the
code, the better and faster they will be able to work.

Software: design
Let’s look at a first draft design for the online retailer’s system (Figure 3).
The Customer and Item classes go together in a BaseDataTypes
module because they’re the basic system types, combining to make up an
Order. I’ve also added a Database module because there are
requirements that Customers, Items and Orders be permanently
recorded.
There are two main things wrong with this design, things that might well
flummox a developer coming fresh to the code. Firstly, the Database
module implements each data type’s persistence requirements. Effectively
it implements a light bulb from each of the customer, item and order
requirements groups. This is confusing because we now have to look in
two places to identify all the requirements in each data type’s group.
Furthermore, it’s not obvious that we need to look in two places. As a
developer I expect a Database module to be about databases – integers,
strings, tables, columns and whatnot. I don’t expect it to implement

Figure 3

BaseDataTypes Orders

Database

DBFacade

+Store(:Item)
+Store(:Customer)
+Store(:Order)

Customer Item
Order
14 | Overload | June 2009

FEATURERAFAEL JAY
requirements for Customers, Items and Orders. There’s a fair chance
that if I change one of those data types I’ll forget to check that its
persistence code still works, introducing a regression bug.
The second problem is with the BaseDataTypes module. It crowds
together the Customer and Item implementations, suggesting to the
unwary developer that the customer and item requirements might be
connected. In fact, as we saw above, they are not. But because the code is
together it may well take some valuable time to reach this conclusion.
Moreover, a developer tasked with changing customer or item
requirements will have to spend time hunting for the relevant code.
‘BaseDataTypes’ doesn’t give you much of a hint as to what the module
contains. Nor will it help much when deciding where new code should go.
What exactly is a ‘base’ data type? Modules with this kind of ill-defined
name often end up as dumping grounds for all manner of more or less
unrelated code.
The above design makes it hard to find the groups of requirements by
looking at the code. Even when you’ve found them, you have to constantly
remember that Database implements some persistence requirements,
and BaseDataTypes holds two separate groups. This uses up valuable
brain capacity before you even start work. Of course in a small example
like this it’s not too much of a problem. But in large software products the
burden of translating between the code on the screen and the working
model in your head can become an enormous drag on development
activity. In severe cases it simply takes too long to deduce a useful working
model from the code and you end up hacking away blind, hoping the
compiler will tell you if you do something wrong.

Software: design revisited
Let’s have another go (Figure 4).
The Database module now represents a database and nothing else. Each
data type is responsible for storing itself in the database. The requirement
groups for customers, items and order are now each implemented in a
single module, rather than split across two, and it's easy to find where each
is implemented because the modules are appropriately named.
There are still issues with this design. In particular it’s questionable
whether the data types should need direct knowledge of the database. Such
inappropriate dependencies are often a good warning sign that there’s
further work to be done, and it’s much easier to spot them if the modules
themselves make sense. It’s much easier to question why Customers
depends on Database than why BaseDataTypes depends on
Database, because it’s much clearer what Customers is all about.
Nevertheless, from a complexity point of view, this new design is a big
step forward from what we had before.

Complexity and modules
We saw above that the number of requirements and the number, strength
and pattern of connections between them serves as a useful measure of how
complex a software product has to be, but is inadequate as a measure of

how complex it actually is. It doesn’t fully explain why some products
make developers’ heads hurt so much more than others. The missing factor
seems to be ease of perception: how hard it is for a developer to perceive
the requirements and their connections by looking at the code. The more
brainpower you have to spend constructing and holding onto an accurate
mental map of what requirements are implemented where, the less
brainpower is left over to actually reason about them. You are more likely
to make poor design decisions, increasing the complexity and making the
next feature even harder to implement.
The obvious conclusion is that we should try to keep actual complexity as
close as possible to necessary complexity – make it as easy as possible to
see the requirements through the code. And it’s particularly important to
help developers identify the groups into which those requirements
decompose. As our online retailer example demonstrated, modules have
a vital role to play here.
A good module is one which implements all the requirements from a
particular requirements group and no others, and is named after the abstract
domain concept behind that group. Modules with these qualities make it
very easy for a developer to see the requirements and their connections
through the code. In our initial design above, none of the modules were
good. The Database module implemented all the database requirements,
but it also implemented requirements from the data types’ groups.
Correspondingly, Orders and BaseDataTypes were missing some of
the requirements that rightly belonged to them. BaseDataTypes was
trying to hold two unrelated groups; unsurprisingly therefore it wasn't
named after any kind of recognizable domain concept. A good rule of
thumb for module quality is to ask how easily, given its name, you could
decide whether the module would be involved in any particular feature or
bug. For good modules it should be easy.

In conclusion
Let’s revisit the opening scenarios for a code base with good modules.
You have the requirements for a new feature. Your customers need it done
on time. You start designing. The domain concepts used to describe the
feature tie in naturally with the domain concepts used to name the modules,
so it’s easy to see which parts you need to start looking at and how they
relate to the rest of the code base. Because each module represents a single,
coherent domain concept it’s proved easy for your colleagues and
predecessors to add a little high-level documentation to each, so you
quickly get to grips with any parts you don’t already know. The time you
save locating and understanding the code can now be spent designing your
new feature; and you can do a better job because you understand that code
more clearly. Ultimately you implement your feature faster and leave the
code in a better state.
Of course there are still problem areas you want to refactor. Armed with
a deeper understanding of complexity you can survey the code base for the
worst areas. Which modules have incoherent names such as
‘BaseDataTypes’? Where is the coupling between modules unexpectedly
high, perhaps indicating that some bits of code are in the wrong place? Are
there dependencies which don’t sound right, such as Database
depending on Orders, or vice versa? When you have a vision of what the
code base should look like it becomes easier to identify and prioritize the
problems and come up with appropriate solutions. Furthermore if your
whole team shares the vision then all your refactoring efforts fit in with
each other. A virtuous circle of reduced complexity and better design
begins.

References
[Notes] Notes on the Synthesis of Form, Christopher Alexander, Harvard

University Press 1974. ISBN 0674627512.

Figure 4

ItemsCustomers Orders

Database

DBFacade

+Insert(:Row)
+Update(:Row)
+Delete(:Key)

Customer

+Store(:DBFacade)

Order

+Store(:DBFacade)

Item

+Store(:DBFacade)
June 2009 | Overload | 15

FEATURE MATTHEW WILSON
An Introduction to FastFormat (Part 3):
Solving Real Problems, Quickly
A good library must be useful in practice. Matthew
Wilson looks at usability and extendability.
his article, the third and last of the current series on the FastFormat
formatting library, discusses several use cases, from real world
projects and discussion forums, that illustrate how the library can be

used to achieve concise, transparent application code while utilising its
flexibility and performance advantages. It is about solving real formatting
problems, quickly: both in speed of development and speed of executed
code.
Along the way, we’ll look at some of the more esoteric aspects of the
application layer, customisation of the format specification defect
handling, and consider cases where suppressing unused argument
exceptions is useful.

Introduction
This article is divided into two halves. The first half describes six use cases,
four of which are from real applications, four of which demonstrate
improvements to application code, and four of which involve performance
benefits. (Not the same four.) I’ll present performance measures for each
scenario for which it is relevant, putting more flesh on the performance
characteristics suggested in the Yaffle scenario from part 1 [FF1]. The
second half of the article is a mix of miscellaneous but useful tips for taking
your use of the library further. Along the way we’ll see examples of
FastFormat interoperability with MFC, ATL, and the Pantheios logging
library [PAN].
The first two scenarios are pedagogical, contrasting the use of FastFormat
for formatting columnar floating-point data, and in formatting according
to absolute tabulations. The benefit of using FastFormat in these cases is
primarily in performance.
The next two are extracts from client codebases, and involve server
connection logging and database insert statement preparation. These
demonstrate improvements both in application code transparency and
performance.
The last two scenarios do not involve performance improvements. (Well,
they might, but that’s unimportant.) Rather, they involve substantial
improvements in the transparency of application code by dint of
FastFormat’s expressiveness and flexibility.

FastFormat in action
Several of the scenarios described here are extracted from clients’ work,
and so names have been changed and types simplified. Also, the samples
assume the inclusion of the fastformat/ff.hpp header to alias the
fastformat namespace to ff, and the inclusion of whatever other
headers are required for the various types and libraries involved. The full

source of all the programs are included with the FastFormat distribution
(version 0.4+).
Except where stated otherwise, the performance of each scenario was
ascertained by invoking each of the statements 10,000 times, and repeating
that loop three times, taking the times on the third outer iteration to
minimise environment effects (since we’re writing to stdout). The
output was piped to a bit-bucket program – just a getchar() loop – to
remove the latency of writing to the console/terminal from the measured
times. The results are presented in milliseconds. The tests were conducted
on Mac OS-X with GCC 4.0 (32-bit), on Linux with GCC 4.1 (64-bit), and
on Windows with Visual C++ 9 (32-bit).

Floating-point columns
The first scenario is based on a question about C++ formatting on
StackOverflow [SO], which asked how to do the following using the
IOStreams:
 printf("%-14.3f%-14.3f\n", 12345.12345,
 12345.12345);

resulting in the output (where · represents a space):
 12345.123·····12345.123·····

The implementations for IOStreams, Boost.Format, and FastFormat are
shown in Listing 1. Note that I’ve added enclosing square braces as an aid
to verifying that they all produce identical output. (This was done simply
by running them all through uniq, a little trick I learned from a UNIX guru
long ago.)
All present clear and transparent code except, in my opinion, the
IOStreams, due to the verbosity of the code and the inconsistent semantics
between the manipulators setprecision (sticky) and setw (non-
sticky). Of course, some may argue that the explicit nature of something
like setprecision is far more transparent than an arcane squiggle such
as "%-14.3f". So the issue of transparency here is somewhat subjective.
Totally objective, however, are the performance results, in milliseconds,
are shown in Table 1. It’s no big surprise to see that Streams is the standout
performer here (since all the others form their floating-point arguments in
terms of sprintf()).

T

Times (in ms) for 10,000 invocations of the Floating-Point
Columns scenario

Library GCC 4.0 (32) GCC 4.1 (64) VC++ 9 (32)

Streams 14.7 33.5 43.9

IOStreams 81.1 91.8 152.2

Boost.Format 103.3 104.0 223.8

FastFormat.Format 21.6 42.5 64.7

Boost.Format (1-arg) 109.7 105.6 224.9

FastFormat.Format (1-arg) 13.4 27.2 38.9

Table 1

Matthew Wilson is a development consultant specialising in
performance and robustness, and author of numerous articles,
books, and open-source software libraries. He prides himself
on writing faster software than anyone else, yet is abashed
that his books are slower to write (and to sell) than everyone
else’s. He can be contacted at stlsoft@gmail.com.
16 | Overload | June 2009

FEATUREMATTHEW WILSON

The issue of transparency here is somewhat
subjective. Totally objective, however, are

the performance results
Since Boost.Format and FastFormat.Format both allow an
argument to be reused, we can simplify the statements and just have one
argument, as in Listing 2 (floating-point column solutions reusing a single
parameter). While there’s little realism for the current scenario, there are
cases where it is useful to use arguments multiple times, so it’s interesting
to see the effect. The times are shown in the bottom two rows of Table 1.
As expected, FastFormat’s time drops, making it even faster than Streams
for this edge case. The Boost.Format times stay almost exactly the
same, so we may assume that it must perform the argument conversion
twice.

Tabulations
One of Boost.Format’s advanced features is the ability to apply
absolute tabulations, something none of the other examined libraries is
able to do. The example given on the library’s website, assumes three
vectors of strings, such that when used with the following statement

 std::cout
 << boost::format("%1%, %2%, %|30t|%3%\n")
 % forenames[i]
 % surnames[i]
 % tels[i];

the output is as follows:
 Marc-François Michel, Durand, 0123 456 789
 Jean, de Lattre de Tassigny, 0987 654 321

As I mentioned in part 1 [FF1], FastFormat is able to support absolute
tabulations with a little indirection. The above output can be obtained as
shown in List ing 3 (synthesising absolute tabluat ions with
FastFormat.Format)..

Clearly it’s not as transparent as the Boost.Format statement, but it’s
not opaque either. And given the relative performances (Table 2), the
picture’s not too bad.

Server connection Log
This next scenario is extracted from a client’s proprietary internetworking
server (UNIX and Windows), which writes out connection event logs
containing connection identifier, addresses + port, time and bytes
transferred. Consider the following fictionalised structure:

Listing 2

// FastFormat.Format
ff::fmtln(
 std::cout
, "[{0}{0}]"
, ff::to_f(12345.12345, -14, 3)
);

// Boost.Format
std::cout
 << boost::format("[%1$-14.3f%1$-14.3f]\n")
 % 12345.12345;

Listing 3

std::string scratch;

ff::fmtln(
 std::cout
, "{0,40,,<}{1}"
, ff::fmt(
 scratch
 , "{0}, {1}, "
 , forenames[i]
 , surnames[i]
)
, tels[i]
);

Listing 1

// Streams
printf(
 "[%-14.3f%-14.3f]\n"
, 12345.12345
, 12345.12345
);

// IOStreams
std::cout
 << '['
 << std::setiosflags(std::ios::fixed)
 << std::left
 << std::setprecision(3)
 << std::setw(14)
 << 12345.12345
 << std::setw(14)
 << 12345.12345
 << ']'
 << std::endl;

// FastFormat.Format
ff::fmtln(
 std::cout
, "[{0}{1}]"
, ff::to_f(12345.12345, -14, 3)
, ff::to_f(12345.12345, -14, 3)
);

// Boost.Format
std::cout
 << boost::format("[%-14.3f%-14.3f]\n")
 % 12345.12345
 % 12345.12345;
June 2009 | Overload | 17

FEATURE MATTHEW WILSON

Providing equivalent functionality is
going to involve extra effort
 struct connection_t
 {
 std::string connectionId;
 struct in_addr remoteAddress;
 struct in_addr localAddress;
 unsigned short port;
 unsigned long numBytesTransferred;
 struct tm completionTime;
 } conn;

 conn.remoteAddress.s_addr = htonl(0xC0A8A0f7);
 conn.localAddress.s_addr = htonl(0x7f000001);
 conn.port = 5651;
 conn.numBytesTransferred = 102401;
 conn.completionTime = . . . // now
 conn.connectionId = "channel-1";

Currently, the format of the log is (though this may change):
 <id> <time> <remote-addr> <local-addr> <port>
 <bytes>

giving an output along the lines of:
 channel-1 May 03 03:50:41 2009 192.168.160.247
 127.0.0.1 5651 102401

This can be achieved simply with both FastFormat APIs, as shown in
Listings 4 and 5. In this case I think the FastFormat.Format version
is more transparent, and makes reordering of the replacement parameters
a trivial matter (as suggested by the non-sequential format string in the
example).

Listing 4 shows a FastFormat.Write implementation of the
Server Connection Log scenario
Listing 5 shows a FastFormat.Format implementation of the
Server Connection Log scenario

With Streams, IOStreams or any other library that does not support the
automatic insertion of struct in_addr and struct tm, providing
equivalent functionality is going to involve extra effort. Consider the
Streams version (Listing 6), which is pretty close to the original
implementation. There’s considerably more code, and it’s clear why the
log format was originally difficult to change.
The brittleness of the Streams example format string can be obviated by
using IOStreams, although it does require the definition of two inserters

(Listing 7: IOStream Inserters for struct tm and struct in_addr)
in order to cut down on the amount of application code.
With these, we can now write a much improved version using IOStreams
(Listing 8).
It’s worth noting that the compatibility for struct tm and struct
in_addr that is afforded to FastFormat (and other libraries, such as
Pantheios [PAN]) by STLSoft’s string access shims (see [FF2, XSTLv1,
IC++] for more details) is automatic. You don’t have to define anything
to make use of it, merely ensure the right #includes are made. This is a
clear win for FastFormat over IOStreams in the case of struct
in_addr, since the dotted-decimal format (e.g. 127.0.0.1) is widely
accepted. However, with struct tm, it is only convenient by accident,
since the string access shim format – a là strftime() – is equivalent to
that required by the server log. If any other format was required, then you’d
either have to write an inserter function or customise via the

Times (in ms) for 10,000 invocations of the Tabulations
scenario

Library GCC 4.0 (32) GCC 4.1 (64) VC++ 9 (32)

Boost.Format 237.2 141.8 366.8

FastFormat.Format 37.0 46.0 149.1

Table 2

Listing 4

void log_connection(connection_t const& conn)
{
 ff::writeln(
 stm
 , conn.connectionId
 , " "
 , conn.completionTime
 , " "
 , conn.remoteAddress
 , " "
 , conn.localAddress
 , " "
 , conn.port
 , " "
 , conn.numBytesTransferred
);
}

Listing 5

void log_connection(connection_t const& conn)
{
 ff::fmtln(
 std::cout
 , "{0} {5} {1} {2} {3} {4}"
 , conn.connectionId
 , conn.remoteAddress
 , conn.localAddress
 , conn.port
 , conn.numBytesTransferred
 , conn.completionTime
);
}

18 | Overload | June 2009

FEATUREMATTHEW WILSON

However, it is only convenient
by accident
filter_type mechanism (see [FF2]), each of which is equivalent to the
effort of defining an inserter.
The relative performances are shown in Table 3. It’s no surprise that the
IOStreams solution fairs poorly, but it is interesting to see how FastFormat
(in either guise) is on a par, or even better in some cases, than Streams in
a non-trivial real-world example. Given the substantial differences in
transparency of the code, FastFormat would appear to be a clear winner in
this case.

Database insert statement
This next scenario is from a client’s (UNIX) codebase. The particular code
is to form a database insert statement, part of a high volume data processing
subsystem. The client does, er, financial things, and they’re extremely
cagey about their work, so I hope you’ll forgive the heavy obfuscation of
names and types.

Listing 6

void log_connection(connection_t const& conn)
{
 char time[21];
 size_t n0 = strftime(
 &time[0], STLSOFT_NUM_ELEMENTS(time)
 , "%b %d %H:%M:%S %Y"
 , &conn.completionTime);
 STLSOFT_ASSERT(
 n0 < STLSOFT_NUM_ELEMENTS(time));

 uint32_t ra_l =
 ntohl(conn.remoteAddress.s_addr);
 uint32_t la_l =
 ntohl(conn.localAddress.s_addr);

 fprintf(
 stdout
 , "%.*s %.*s %d.%d.%d.%d %d.%d.%d.%d %d %lu\n"
 , int(conn.connectionId.size())
 , conn.connectionId.data()
 , int(n0), time
 , ((ra_l >> 24) & 0xff),
 ((ra_l >> 16) & 0xff),
 ((ra_l >> 8) & 0xff),
 ((ra_l >> 0) & 0xff)
 , ((la_l >> 24) & 0xff),
 ((la_l >> 16) & 0xff),
 ((la_l >> 8) & 0xff),
 ((la_l >> 0) & 0xff)
 , conn.port
 , conn.numBytesTransferred
);
} Listing 7

inline std::ostream& operator <<(
 std::ostream& stm
, struct tm const& t
)
{
 char time[21];
 size_t n0 = strftime(
 &time[0], STLSOFT_NUM_ELEMENTS(time)
 , "%b %d %H:%M:%S %Y"
 , &t);
 STLSOFT_ASSERT(n0 <
 STLSOFT_NUM_ELEMENTS(time));
 return stm.write(time, n0);
}

inline std::ostream& operator <<(
 std::ostream& stm
, struct in_addr const& addr
)
{
 uint32_t ra = ntohl(addr.s_addr);

 return stm
 << ((ra >> 24) & 0xff)
 << '.'
 << ((ra >> 16) & 0xff)
 << '.'
 << ((ra >> 8) & 0xff)
 << '.'
 << ((ra >> 0) & 0xff);
}

Listing 8

void log_connection(connection_t const& conn)
{
 std::cout
 << conn.connectionId
 << ' '
 << conn.connectionTime
 << ' '
 << conn.remoteAddress
 << ' '
 << conn.localAddress
 << ' '
 << conn.port
 << ' '
 << conn.numBytesTransferred
 << std::endl;
}

June 2009 | Overload | 19

FEATURE MATTHEW WILSON

The primary discriminant in this case
is performance
The original implementation was done using std::stringstream to
form the statement, along the lines shown in Listing 9.
The member_?? variables are all integers. The makeSlice() helper
function converts an integer to a string except where it is equal to the
application-defined sentinel constant intNan, in which case it is
converted to the string "0N", as in:

 std::string BusinessAdapter::makeSlice(
 const int val)
 {
 m_slice.str("");
 if (val == intNaN)
 m_slice << "0N";
 else
 m_slice << val;
 return m_slice.str();
 }

The client is a heavy (and happy) user of a customised version of Pantheios
[PAN], and wished to know whether there were similar performance gains
to be had in a more general way in the manipulation of strings. This was
at a time before FastFormat had been released (and this was a primary
impetus to my getting it out there), and I was able to show them the
performance speed-up shown in Table 4; in this case the times are
measured in microseconds for 10,000 invocations (since there’s no I/O).
The two FastFormat implementations are shown in Listings 10 and 11.
Neither can be said to be significantly more transparent than the original.
Actually, in this case I’d concede that FastFormat.Format is less
transparent, simply because having 21 replacement parameters in a format
string is a challenge to maintenance. None of the solutions are easy on the
eye, probably because a string is being built from 21 arguments. The
primary discriminant in this case is performance. I would observe that at
least the FastFormat.Format version has an extra level of error-checking
over the other two, since if there are too many or too few arguments, an
exception will be thrown.

Listing 10 shows a FastFormat.Format implementation of the
Database Inserter Statement scenario
Listing 11 shows a FastFormat.Write implementation of the
Database Inserter Statement scenario

Readers of part 2 [FF2] should recognise aspects of the implementation of
the make_slice() inserter function (Listing 12), which provides
equivalent semantics to the original makeSlice() but uses shim strings
[XSTLv1, FF2] to avoid memory allocations, and to reuse the existing
FastFormat integer-to-string conversions.

Times (in ms) for 10,000 invocations of the Tabulations
scenario

Library GCC 4.0 (32) GCC 4.1 (64) VC++ 9 (32)

Streams 53.0 59.5 86.6

IOStreams 94.4 111.3 248.5

FastFormat.Format 56.0 55.0 86.7

FastFormat.Write 49.7 47.8 86.5

Table 3

Listing 9

const int intNaN = 0x7fffffff;

class BusinessAdaptor
{
 . . .
public:
 std::string m_tablename;
 int m_id_1;
 std::stringstream m_ss;
 std::stringstream m_slice;
};

std::string BusinessAdapter::insertRecord(
 const BusinessRecord& r
)
{
 m_ss.str("");
 m_ss << "insert[" << m_tablename << ";(";
 m_ss << makeSlice(r.member_1) << ";";
 m_ss << makeSlice(r.member_2) << ";";
 m_ss << makeSlice(r.member_3) << ";";
 m_ss << makeSlice(r.member_4) << ";";
 m_ss << makeSlice(m_id_1) << ";";
 m_ss << makeSlice(r.member_5) << ";";
 . . . // same for members 6 => 18
 m_ss << makeSlice(r.member_19) << ")]";
 return m_ss.str();
}

Times (in μs) for 10,000 invocations of the Database Insert
Statement scenario

Library GCC 4.0 (32) GCC 4.1 (64) VC++ 9 (32)

IOStreams 1210 1546 5378

FastFormat.Format 533 456 569

FastFormat.Write 468 396 530

Table 4
20 | Overload | June 2009

FEATUREMATTHEW WILSON

The number of memory allocations have
been reduced from five to one
CComBSTR, std::string, std::wstring and CString
This example is heavily edited from a client’s codebase. Please don’t try
to understand the functions’ original purposes, just focus on the

formulation of the result string. Listing 13 shows the old version of
GetFilter() (along with some other things, representative of the
original code, that are required just to get the snippet to compile)
The comments indicate the number of memory allocations, involved in a
typical invocation. The type transitions in this case are std::string ->
CString (x2), wchar_t const* -> CString, and CString ->
CComBSTR. Listing 14 shows the new version of GetFilter() that is
implemented in terms of FastFormat.Write, using the sink for
CComBSTR.
As you can see, the original five statements have been reduced to two, and
the number of memory allocations have been reduced from five to one.
Were it not for the need to compress the main statement into the narrow
display confines of this magazine, it would be evident that it’s also more
transparent than the original. There’s no performance test for this case –
the main aim in the change was to increase transparency and
maintainability, and aiding in the project-wide task of removing
dependency on the MFC library (incl. CString).

MessageBox
This last example, another extract from a commercial project, is also about
improvements to transparency. The original code in this case was far too
big to include here, and I really didn’t want to have to think up all the
obfuscated names. Furthermore, it did not have the same level of
functionality, so only the new version is shown (Listing 15). The code
comes from a Windows GUI application that needs to process files and,
as shown, report to the user if the file cannot be accessed. For localisation
purposes, message strings, and windows error strings, are obtained at
runtime.
Assume fileName is "abc.def", and that no such file exists. Further
assume that the module designated by hinst has a string resource with
the identifier IDS_FMT_MISSING_FILE whose value is
 "The file '{0}' could not be processed: {2}"

Listing 10

std::string BusinessAdapter::insertRecord(
 const BusinessRecord& r
)
{
 std::string result;
 ff::fmt(
 result
 ,
"insert[{0};({1};{2};{3};{4};{5};{6};{7};{8};{9};
{10};{11};{12};{13};{14};{15};{16};{17};{18};{19}
;{20})]"
 , m_tablename
 , make_slice(r.member_1)
 , make_slice(r.member_2)
 , make_slice(r.member_3)
 , make_slice(r.member_4)
 , make_slice(m_id_1)
 , make_slice(r.member_5)
 . . . // same for members 6 => 18
 , make_slice(r.member_19)
);
 return result;
}

Listing 11

std::string BusinessAdapter::insertRecord(
 const BusinessRecord& r
)
{
 std::string result;
 ff::write(
 result
 , "insert[", m_tablename
 , ";(", make_slice(r.member_1)
 , ";", make_slice(r.member_2)
 , ";", make_slice(r.member_3)
 , ";", make_slice(r.member_4)
 , ";", make_slice(m_id_1)
 , ";", make_slice(r.member_5)
 . . . // same for members 6 => 18
 , ";", make_slice(r.member_19)
 , ")]"
);
 return result;
}

Listing 12

stlsoft::basic_shim_string<char, 20>
 make_slice(const int val)
{
 if(intNaN == val)
 {
 return stlsoft::basic_shim_string<char,
 20>("0N");
 }
 else
 {
 return fastformat::filters::filter_type(val,
 &val, static_cast<char const*>(0));
 }
}

June 2009 | Overload | 21

FEATURE MATTHEW WILSON

This class represents a façade over the
Windows Resources API functions
In that case, a message box will be displayed, as a child of the parent
window, with the type MB_ICONWARNING (the yellow triangle with an
exclamation mark in it), and the message
"The file 'abc.def' could not be processed: The
system cannot find the file specified"

Obviously, there’s a lot going on here: formatting, looking up resources,
looking up error code strings. Let’s break it down according to the separate
FastFormat components at play.
First, an instance of the fastformat::windows_resource_bundle
class is declared, taking hinst in its constructor. This class represents a
façade over the Windows Resources API functions, providing a simple
mapping of id to string, throwing an exception if a given id does not
represent a string resource.
Second, the creator function fastformat::sinks::MessageBox()
[XST Lv1] cons t ruc t s a n i n s t ance o f t he s i nk c l a s s
fastformat::sinks::MessageBox_sink, which will receive the
formatted statement results and then invoke the Windows function

Listing 13

#define atFilter 1
#define strFilterSeparator L"-"
enum dimension_t;
HRESULT XXGetFilterEx_(
 dimension_t dimension
, int newIndex
, std::string* fg
, std::string* fv
); // Assign to *fg and *fv
int offset_to_new_index_(
 int filter
, dimension_t dimension
, int index
); // calc index, e.g. 'return index + 1;'
HRESULT GetFilter(
 dimension_t dimension
, short index
, BSTR* filter
)
{
 std::string szFG;
 std::string szFV;
 int newIndex = offset_to_new_index_(
 atFilter, dimension, index);
 XXGetFilterEx_(dimension, newIndex,
 &szFG, &szFV);
 CString flt(szFG.c_str()); // +1
 flt += strFilterSeparator; // +2
 flt += szFV.c_str(); // +1
 CComBSTR filter(flt); // +1
 *filter = filter.Detach();
 return S_OK;
}

Listing 15

void ProcessFile(
 HINSTANCE hinst
, HWND parent
, LPCTSTR fileName
)
{
 WIN32_FIND_DATA fd;
 HANDLE h = ::FindFirstFile(fileName, &fd);

 if(INVALID_HANDLE_VALUE == h)
 {
 DWORD err = ::GetLastError();
 ff::windows_resource_bundle bundle(hinst);

 ff::ignore_unreferenced_arguments_scope
 scoper;

 ff::fmt(
 ff::sinks::MessageBox(parent, "Problem"
 , MB_ICONWARNING)
 , bundle[IDS_FMT_MISSING_FILE]
 , filename
 , err
 , winstl::error_desc(err));
 }
 else
 {
 // . . . do something useful with file data
 }
}

Listing 14

HRESULT GetFilter(dimension_t dimension, short
index, BSTR* filter)
{
 . . . // as before
 CComBSTR filter;
 *filter = fastformat::write(
 filter
 , szFG
 , winstl::w2m(strFilterSeparator)
 , szFV
).Detach(); // +1
 return S_OK;
}

22 | Overload | June 2009

FEATUREMATTHEW WILSON

We want to be able to use different resource
strings without breaking the application
MessageBox() to display the message. In this case, the two arguments
required are the filename ({0}) and a temporary instance of the
winstl::error_desc class ({2}), which is used to elicit the string
form of an error code via the Windows FormatMessage() function.
Note that we remember the error code associated with the failure to open/
stat the file before doing any error display processing, since any subsequent
Windows API failure would change the thread’s last error code, and lead
to a potentially misleading cause being presented to the user.
Third, you may have noticed that there are actually three format arguments:
filename, err, and winstl::error_desc(err), but the example
format string contains just two replacement parameters. By default, all
format specification defect conditions result in the throwing of an
exception (derived from fastformat::fastformat_exception).
The purpose of the scoper instance of the succinctly named
fastformat::ignore_unreferenced_arguments_scope class
is to suppress this, and allow the string to be formatted despite the
mismatch. During its lifetime it suppresses the throwing of a
fastformat::unreferenced_argument_exception. (We’ll
discuss how this works later.)
We do this because we want to be able to use different resource strings
without breaking the application. This is usually for localisation purposes,
but may also be to give more information in debug builds (such as the
numeric value of the error code err). For example, for some locales we
might want to change IDS_FMT_MISSING_FILE to:
"The file '{0}' could not be processed"

And in debug builds we might want to use the format string:
"The file '{0}' could not be processed: error code
{1}: {2}"

Note that scoper only suppresses exceptions with unreferenced arguments,
however. If the format changed to
"The file '{0}' could not be processed: please
inform {3}"

then a fastformat::missing_argument_exception would be
thrown, and we don’t want to squash that. (If we did, we’d declare an
instance of fastformat::ignore_missing_arguments_scope,
with the effect that {3} would be replaced with the empty string.)

Windows format strings
One last note on format strings on Windows. Windows message files (used
via FormatMessage) and MFC (used via AfxFormatString*()) use
a different format syntax, where the format string would instead be
 "The file '%1' could not be processed: %3"

As a convenience, the windows_resource_bundle class is able to use
these format strings, and performs a translation if the original contains one
or more Windows replacement parameters and zero FastFormat
replacement parameters. This allows an easy upgrade from MFC-based
resource formatting to FastFormat, which is particularly useful if your
application is localised to several locales.

Format specification defect handlers
Let’s now consider the format specification defect handler mechanism. As
discussed in part 1 [FF1], format specification defects involve both badly
formed format strings, and a failure to match all replacement parameters
to all given arguments. We’ll consider only the mismatch case; the two
aspects follow the same pattern.
Control of mismatch behaviour involves an enumeration, a handler
function prototype, a structure, and four API functions, to get+set the
handler for thread+process. Thread handlers, if set, take precedence over
process ones; in single-threaded builds they are the same.
The relevant aspects of the API are shown in Listing 16. (I apologise for
the long names.)
With this, as shown in Listing 17, we’re in a position to see how the
fastformat::ignore_unreferenced_arguments_scope class
works.
Th e c l a s s i s de r i ve d (p r iv a t e ly) f r om th e c l a s s
fastformat::mismatched_arguments_scope_base, which
handles (de-)registration of a derived class instance and its handler
method f o r t h e d u r a t i o n o f i t s l i f e t im e , v i a t h e c l a s s

Listing 16

enum ff_replacement_code_t
{
 FF_REPLACEMENTCODE_SUCCESS = 0
 , FF_REPLACEMENTCODE_MISSING_ARGUMENT
 , FF_REPLACEMENTCODE_UNREFERENCED_ARGUMENT
};
typedef int (*fastformat_mismatchedHandler_t)(
 void* param
, ff_replacement_code_t code
, size_t numParameters
, int parameterIndex
, ff_string_slice_t* slice
, void* reserved0
, size_t reserved1
, void* reserved2
);
struct ff_mismatched_handler_info_t
{
 fastformat_mismatchedHandler_t handler;
 void* param;
};
ff_mismatched_handler_info_t
 fastformat_getThreadMismatchedHandler();
ff_mismatched_handler_info_t
 fastformat_setProcessMismatchedHandler(
 fastformat_mismatchedHandler_t handler
 , void* param
);
. . . // same for process handlers
June 2009 | Overload | 23

FEATURE MATTHEW WILSON

Note that the gains, if any, are strongly
platform-dependent
fastformat_setThreadMismatchedHandler(). (The use of
get_this_() is an old trick for avoiding compiler warnings about use
of a partially constructed instance in its own member initialiser list; see
[IC++].)

The meat of this component is in the derived class’s handler() method,
which intercepts an unreferenced argument code, and instructs the
FastFormat replacement engine to ignore it. All other codes are passed, via
the parent class’s handle_default(), to the previous handler, if any,
in the chain. The consequence of this is that, for the lifetime of scoper, any
unre fe r e nc ed a rgum en t s w i l l no t c ause an
fastformat::unreferenced_argument_exception to be
thrown.
You’re not limited to the scoping classes provided with the distribution.
FastFormat allows you to customise its behaviour in light of ill-formed
format strings and/or of mismatched arguments, on a per-process and/or
per-thread basis, to do whatever funky things your heart desires.

Choosing output sinks
A last note on output sinks. If you’re determined to squeeze out every last
cycle, you might choose to use stdout as your sink rather than
std::cout, as in:
 #include <fastformat/sinks/FILE.hpp>
 //#include <fastformat/sinks/ostream.hpp>

 FILE* stm = stdout;

 // FastFormat.Format
 ff::fmtln(
 stm
 , "[{0}{1}]"
 , ff::to_f(12345.12345, -14, 3)
 , ff::to_f(12345.12345, -14, 3)
);

The inconvenience with this is that you’ll likely have to declare a sink
variable, as shown in the example, because stdout is often not an instance
at all, but rather some #define into part of an implementation-defined
structure, such as (&_iob[1]) for Visual C++, or (&_streams[1])
with Borland. The same is needed for stderr.
Note that the gains, if any, are strongly platform-dependent. On Linux it
gives between 5% and 10% improvement, on Mac OS-X between 2% and
6%. On Windows, with VC++ 9 it actually slows down by a small margn.
Obviously, the advice is to get it working (with std::cout) and then
optimise (with stdout) if you really need to. That’s only likely to be if
you’re writing to a file – using an arbitrary FILE* handle rather than an
arbitrary fstream instance – since console/terminal output is far too
much affected by other factors for such low-percentage performance
improvements to be significant.

FastFormat for logging?
Several people have enquired about the use of FastFormat for application
logging. As we’ve seen in the Server Connection Log example, for some
kinds of logging it’s a good solution. For what I call application logging,
however – the presence of statements throughout the code that allows an
interested observer to follow what is happening now, and what has alreadyListing 17

// in namespace fastformat
class ignore_unreferenced_arguments_scope
 : private mismatched_arguments_scope_base
{
public:
 typedef ignore_unreferenced_arguments_scope
 class_type;
 typedef mismatched_arguments_scope_base
 parent_class_type;
public:
 ignore_unreferenced_arguments_scope()
 : parent_class_type(class_type::handler,
 get_this_())
 {}
private:
 void* get_this_() throw()
 {
 return this;
 }
 static int handler(
 void* param
 , ff_replacement_code_t code
 , size_t numParameters
 , int parameterIndex
 , ff_string_slice_t* slice
 , void* reserved0
 , size_t reserved1
 , void* reserved2
)
 {
 class_type* pThis =
 static_cast<class_type*>(param);
 if(FF_REPLACEMENTCODE_UNREFERENCED_ARGUMENT
 == code)
 {
 return +1; // Ignore unreferenced argument
 }
 else
 {
 return pThis->parent_class_type::
 handle_default(param, code,
 numParameters, parameterIndex, slice,
 reserved0, reserved1, reserved2);
 }
 }
}

24 | Overload | June 2009

FEATUREMATTHEW WILSON
ha ppe ned , a t a h i gh l eve l o f g r anu l a r i t y – t he use o f
FastFormat.Format, or any other replacement-based API [FF1], is not
advisable. The same goes for any library that is less than 100% type-safe.
The reason is that the programmer should be able to have full confidence
that an application logging statement will be processed and emit output.
This is because many uses of log statements are in places in the code are
impossible, or exceedingly difficult, to test, and usually these statements
are the ones you most need to be able to rely on.
I’ve mentioned my other, older, logging API library, Pantheios, a couple
of times in this article series. I hope to write an article about that at some
time in the future, and will go into more detail about the how/why/when/
what of logging. For the moment, however, I’ll show you a sneaky trick
that allows you to use FastFormat.Write (or FastFormat.Format,
if you must) with Pantheios.
The Pantheios application layer contains severity level pseudo-constant
symbols that are actually stateless global instances of specialisations of a
severity level class template:
 namespace Pantheios
 {
 namespace
 {
 static level<PANTHEIOS_SEV_DEBUG> debug;
 . . . // and so on
 static level<SEV_ALERT> alert;
 static level<SEV_EMERGENCY> emergency;
 }
 }

These are not declared const, even though no-one should be attempting
any mutations of them, precisely so they can be used as ‘sinks’ to
Fas tFo rm a t , by de f i n ing t he fo l l owing ov e r load o f
fastformat::sinks::fmt_slices [FF2]:
This ‘works’ because the definitions of ff_string_slice_t and
pan_slice_t – the thing ff_string_slice_t was copied from in
the first place – are identical, and therefore binary compatible. The two
static asserts [IC++] are there to ensure that any changes that invalidate
that assumption are not missed. Then it’s as simple as casting from one
array of string alices to the other, and passing to the core Pantheios logging
function.
This allows code such as the following:
 catch(std::exception& x)
 {
 ff::write(pan::warning,
 "Something bad has happened: ", x);
 }

and
 HRESULT GetFilter(dimension_t dimension,
 short index, BSTR* filter)
 {
 // NOTE: can pass 'dimension' variable
 // directly if string access shims are
 // defined for the dimension_t enum
 ff::write(pan::debug, "GetFilter(dimension=",
 dimension, "; index=", index, ", ...)");

As I said at the start of this section, there are several reasons to prefer using
a proper logging solution, such as Pantheios, but this technique will get
you a fair way along to a good solution.

Summary
This article completes the introduction to FastFormat, a C++ library that
applies advanced generic conversion techniques to provide robust, flexible
and efficient formatting, providing answers to the deficiencies of the
current standard and widely used third-party libraries. It is in ongoing
development, and readers are invited to use, criticise and contribute, as
they see fit.

References
[FF1] ‘An Introduction to FastFormat, part 1: The State of the Art’,

Matthew Wilson, Overload #89, February 2009; http://accu.org/
index.php/journals/c249/

[FF2] ‘An Introduction to FastFormat, part 2: Custom Argument and Sink
Types’, Matthew Wilson, Overload #90, April 2009; http://accu.org/
index.php/journals/c251/

[IC++] Imperfect C++, Matthew Wilson, Addison-Wesley 2004; http://
www.imperfectcplusplus.com/

[PAN] The Pantheios Logging API Library, http://www.pantheios.org/;
to see why it’s the best choice in C++ logging APIs, check out http:/
/www.pantheios.org/performance.html#sweet-spot, which shows
graphically how Pantheios can be up to two-orders of magnitude
faster than the rest.

[PragProg] The Pragmatic Programmer, Dave Thomas and Andy Hunt,
Addison-Wesley, 2000; http://www.pragmaticbookshelf.com/

[SO] http://www.stackoverflow.com/questions/586410/
[XSTLv1] Extended STL, volume 1, Matthew Wilson, Addison-Wesley

2007; http://www.extendedstl.com/

Listing 18

// in namespace fastformat::sinks
template <int L>
pantheios::level<L>& fmt_slices(
 pantheios::level<L>& sink
, int /* flags */
, size_t /* cchTotal */
, size_t numResults
, ff_string_slice_t const* results)
{
 STLSOFT_STATIC_ASSERT(sizeof(
 pantheios::pan_slice_t) ==
 sizeof(fastformat::ff_string_slice_t));
 STLSOFT_STATIC_ASSERT(offsetof(
 pantheios::pan_slice_t, len) ==
 offsetof(fastformat::ff_string_slice_t,
 len));

 pantheios::pantheios_log_n(
 sink
 , numResults
 , stlsoft::sap_cast<pantheios::
 pan_slice_t const*>(results)
);
 return sink;
}

June 2009 | Overload | 25

FEATURE RICHARD HARRIS
The Model Student:
The Enigma Challenge
Codebreaking was instrumental to computing history. Richard
Harris presents a simplified Enigma code for you to crack.
was fortunate enough to be invited to assist in the ACCU's charitable
efforts for Bletchley Park at this year’s conference by creating a
cryptographic puzzle that would form part of the fundraising effort. It

was intended to be simpler to solve by hand than by computer, and to
encourage the former included a question that could not be answered if one
simply wrote a program to examine every potential solution. In fact, it was
designed so that it should be possible to solve the challenge by hand with
pen and paper in about 15 to 30 minutes, albeit only if one had spotted the
properties of the puzzle that made such a speedy solution possible.
So that you too might enjoy the challenge it is presented below, followed
by an historical justification and then its solution.

The challenge

Encoding
The enemy are using a 36 character alphabet encoded with 2 digit base 6
numbers such that the numerical value of the character is equal to 6 times
the first digit plus the second digit. The # character is a control code
indicating that the following two digits should be interpreted as a two digit
base 6 integer in the range 0 to 35, rather than as a letter or punctuation.
The full table of character mappings is given below:
 000000111111222222333333444444555555
 012345012345012345012345012345012345
 #abcdefghijklmnopqrstuvwxyz ?!.+-*/=

Encryption
The encryption scheme used by the enemy is an Enigma variant with two
6 digit rotors of the form shown in Figure 1.

When a plaintext digit is entered it is mapped to an intermediate value by
the first rotor (which may be either A or B) and then to the cyphertext by
the second rotor along the connecting lines. For example, given the setting
above, where rotor A is the first and rotor B the second, the digit 1 would
be mapped by rotor A to an intermediate value of 5 and then by rotor B to
the cyphertext digit 4.
After each digit (i.e. half a character) is entered the connections on the
second rotor rotate 1 digit clockwise. After every 6 digits, the connections
on the first rotor also rotate 1 digit clockwise.
The order and orientation of the initial setting of the rotors is unknown.

Plaintext
We know that the enemy prefix their plaintext messages with a single base
6 digit (i.e. half a character) representing the message’s priority. We also
know that they foolishly sign the plaintext so that the last characters are
always of the form:
 NN…NNDDMMM

where N stands for the surname of the agent, D for the day and M for the
month. For example:
 harris04feb

Cyphertext
Decrypting the following cyphertext will reveal which drop to deposit your
ticket in:
 514524110354101255444144222503405

Bonus question
Defining use to mean ‘consider the implications for more than any two
digits (i.e. one character’s worth of data) in the cyphertext’, how many
initial rotor settings must we use in the worst case to guarantee that we
correctly decrypt this message?

The historical justification
Given that Bletchley Park was the intended beneficiary of our charitable
efforts it was a natural choice to base the puzzle on the Enigma machine,
an example of which is illustrated in Figure 1. The difficult part was
ensuring that the weaknesses I introduced into the puzzle reflected historic
weaknesses in the design and use of the Enigma machine.
Originally marketed to businesses as a secure means of corporate
communication, the Enigma machine was adopted by the German armed
forces between the years of 1926 and 1935; the Navy were the first to adopt
it and the Air Force the last [Copeland04].
The original machine had three rotors around the edge of which were
printed the 26 letters of the alphabet. They could be placed in any order in
the machine and were internally wired to create electrical paths connecting
pairs of letters. Figure 2 shows an Enigma machine (photo by K. Sperling).
Adjacent to the left-most rotor was a reflector board connecting pairs of
letters on the left-most rotor, resulting for each letter in a path leading

I

Figure 1

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
26 | Overload | June 2009

FEATURERICHARD HARRIS

The mechanism of the Enigma machine
ensured that the substitution rule

changed after every letter in the message
through the assembly from the right-most rotor to the left-most, through
the reflector board and back again from the left-most to the right-most,
conceptually illustrated in Figure 3.
After each key press the right-most rotor would rotate by one step. After
it had rotated through all 26 steps the middle rotor would rotate by one step
and after it, in turn, had rotated through all 26 steps the left-most rotor
would rotate by one (the rotation of the rotors was, in fact, slightly more
complicated than this, but this description captures the basic idea).
Finally, the keys used to input the message and the lamps lighting up the
encrypted letters were wired to the right-most rotor such that the

encryption was symmetric; if the key Q resulted in the letter A lighting up
for a given set-up, the key A would result in the letter Q lighting up, as
illustrated in Figure 4.
Hence to decrypt a message, one needed simply to type it into an Enigma
machine configured in exactly the same way as the one that was used to
encrypt it.
The encryption scheme resulting from this mechanism is a known as a
substitution cipher, in which each letter in the message is encrypted by
substituting it with another. When the substitution rule is fixed for the
whole message, this scheme is fairly easy to crack. The mechanism of the
Enigma machine ensured that the substitution rule changed after every
letter in the message and only cycled through all of the rules a given set-
up could represent after key presses. Furthermore,
since the 3 rotors could be arranged in 6 different ways, there were 6 times
as many initial settings and hence sequences of substitution rules.
The military version of the Enigma machine added further complexities
to increase first the number of initial settings and then the length of the
cycles of substitution rules.
The encryption scheme described in the Enigma challenge is clearly a
much simplified version of the Enigma machine. Whilst it follows the
same basic principle of implementing a substitution cipher using
connections between letters on rotors, and of changing the substitution rule
after each letter in the message by rotating them, it only has a 6 letter
alphabet, 2 rotors and it entirely does away with the reflector board.
Now that I have described the mechanism of the Enigma machine and how
the challenge is just a simplified version of the encryption scheme it
implemented, it’s time to describe a couple of its weaknesses which
inspired the specific details of the challenge that make it relatively simple
to solve.
One weakness of the Enigma machine was the order in which the rotors
were rotated after each key press; if the middle rotor had been the first to
rotate rather than the right-most it would have been considerably more
difficult to crack [Leavitt06].
To reflect this weakness, the Enigma challenge uses deliberately badly
designed rotors; the specific details are given in the solution, below.

Figure 2

Figure 3 Figure 4

26 26 26×× 17 500,≈
June 2009 | Overload | 27

FEATURE RICHARD HARRIS
The next weakness of the Enigma machine, at least in the early days of its
use by the German military, was that rather than use a daily pre-distributed
setting for encoding messages, they would use such a daily setting to
encode a 3 character message defining the rotor setting for the remainder
of the message. Whilst on the face of it this seems to be a pretty sensible
scheme, they further decided to repeat the message setting twice to allow
checking for errors in the settings or the message transmission. By
enforcing that the first 6 characters of the message were in fact a pair of
identical 3 character messages, the German military had provided their
enemies with a hint, or crib, as to what the daily rotor settings were.
This is reflected in the Enigma challenge by the message signature. By
consistently signing their messages in a specific format, our hypothetical
enemies have introduced a fatal weakness into the encryption scheme, as
detailed in the solution, below.

The solution
To decrypt this message, the first thing to note is the rotational symmetries
of the rotors, meaning that there are only 6 unique settings for each
ordering. The second thing to note is that reversing the order of the rotors
reverses the mapping of the digits, meaning that we can deduce the
mapping for both orderings by examining only one.
Naming the rotor positions as in their initial description and rotated
clockwise through their distinct states as A0, A1, A2, B0 and B1 respectively
and using permutation notation (in which each number in the top rows are
encrypted to the numbers below them) we have:

Next we note that the day in the signature will be an integer between 0 and
31, so will be encoded in the number format; namely two 0 digits followed
by the value in base 36. This means that the 9th and 10th digits from the
end of the encoded plaintext must both be 0. Hence, at that point in the
encryption we have:

This could only occur with the sequential rotor positions A0B1, A0B0 or
B0A1, B1A2.
Finally we note that the 10th digit from the end is the 24th from the start
and, since this is a multiple of 6, both rotors must turn after it is encrypted.
Hence the rotor positions at this point must be B0A1. Furthermore, since
24 is an even multiple of 6 and rotor B only has 2 unique states, the next

state must be equivalent to the starting position of the rotors, namely B1A2
and so the rotors must cycle through the sequence:
 B1A2, B1A0, B1A1, B1A2, B1A0, B1A1, B0A2, B0A0, B0A1, B0A2, B0A0, B0A1
Applying this to the cyphertext gives us:
 102132243000443024130230035140122

Hence the plaintext is:
 1bin #04 byro#35jan

or:
 (priority 1) bin 4 byro23jan

and we only need use 1 initial rotor setting to successfully decrypt the
message.

In closing
Well, I hope you enjoyed the Enigma challenge and that it gave you a taste
of the technical process of code breaking, or cryptanalysis. If this has
piqued your interest in the subject and you would like to read more about
it, Simon Singh’s The Code Book [Singh99] provides an enjoyable
layman’s treatment. For the more mathematically minded, there are many
textbooks on the subject: Handbook of Applied Cryptography
[Menezes97] is the one currently sitting on my desk.
I would also recommend a visit to Bletchley Park itself with its many
exhibits on the code breaking work undertaken there during the Second
World War and its fledgling Computer Museum [Bletchley]. Whilst we’re
about it, why not give them a donation? As a fundamental part of our
collective history as computer programmers and users, we owe it to
ourselves to see that this site is maintained for future generations.
This article has been something of a departure from our usual subject
matter, but given the importance of the beneficiary, I believe it to be a
justifiable one.
Next time, dear reader, normal service will be resumed.

And finally…
Congratulations to Jim Hague, Alan Brooks, Phil Bitis, Andrew
Bainbridge, Sam Saariste, Roger Orr, Per Liboriussen, Dave Hargreaves,
Jan Willem, Jonathan Wakely, Charles Tolman, Judy Booth, Seb Rose,
Jakob Gaardsted, George Vernon, Gary Duke, who all broke the code, and
especially to Duncan Grant, Matthias Hertel and Andrew Kemp who
successfully cryptanalysed the Enigma Challenge.
To everyone who took part, and to everyone who donated to Bletchley, we
should like to extend our deepest gratitude.

Acknowledgements
With thanks to Astrid Byro, John Paul Barjaktarevi? and Lee Jackson for
proof reading this article.

References and further reading
[Bletchley] www.bletchleypark.org.uk
[Copeland04] Copeland, B. (ed), The Essential Turing, Oxford University

Press, 2004
[Leavitt06] Leavitt, D., The Man Who Knew Too Much, Weidenfeld &

Nicolson, 2006
[Menezes97] Menezes, A. et al, Handbook of Applied Cryptography,

CRC Press, 1997
[Singh99] Singh, S., The Code Book, Fourth Estate, 1999

A0B0
0 1 2 3 4 5
2 4 5 1 3 0⎝ ⎠

⎜ ⎟
⎛ ⎞

= B0A0
0 1 2 3 4 5
5 3 0 4 1 2⎝ ⎠

⎜ ⎟
⎛ ⎞

=⇒

A0B1
0 1 2 3 4 5
4 0 3 5 1 2⎝ ⎠

⎜ ⎟
⎛ ⎞

= B1A0
0 1 2 3 4 5
1 4 5 2 0 3⎝ ⎠

⎜ ⎟
⎛ ⎞

=⇒

A1B0
0 1 2 3 4 5
3 5 1 4 0 2⎝ ⎠

⎜ ⎟
⎛ ⎞

= B0A1
0 1 2 3 4 5
4 2 5 0 3 1⎝ ⎠

⎜ ⎟
⎛ ⎞

=⇒

A1B1
0 1 2 3 4 5
1 3 5 0 2 4⎝ ⎠

⎜ ⎟
⎛ ⎞

= B1A1
0 1 2 3 4 5
3 0 4 1 5 2⎝ ⎠

⎜ ⎟
⎛ ⎞

=⇒

A2B0
0 1 2 3 4 5
5 2 4 0 1 3⎝ ⎠

⎜ ⎟
⎛ ⎞

= B0A2
0 1 2 3 4 5
3 4 1 5 2 0⎝ ⎠

⎜ ⎟
⎛ ⎞

=⇒

A2B1
0 1 2 3 4 5
3 4 0 2 5 1⎝ ⎠

⎜ ⎟
⎛ ⎞

= B1A2
0 1 2 3 4 5
2 5 3 0 1 4⎝ ⎠

⎜ ⎟
⎛ ⎞

=⇒

0 4 then 0 2→→
28 | Overload | June 2009

FEATUREPAUL GRENYER
Boiler Plating Database Resource
Cleanup (Part 2)
Timely disposal of resources is important. Paul Grenyer
applies this to database access in Java.
n my recent CVu [CVu] article, ‘Boiler Plating Database Resource
Cleanup – Part I’ [Part I] I explained that cleaning up after querying a
database in Java is unnecessarily verbose and complex and

demonstrated how boiler plate code could be developed to reduce the
amount of client code needed using the FINALLY FOR EACH RELEASE
pattern [AToTP]. In this article I am going to look at an alternative boiler
plate solution using the EXECUTE AROUND METHOD (EAM) [AToTP]
pattern. But first, let’s take another brief look at the problem.

The problem – revisited
The problem is simple. Cleaning up after querying a database in Java is
unnecessarily verbose and complex. Plain and simple. Listing 1 is the code
needed to lookup a single string in a database.
This is a lot of code to get one string out of a database and most of it must
be repeated every time a database is accessed. Most of it is error handling
and resource management. For a more detailed look at this code see Part I.

Execute Around Method
The EAM pattern is described by Kevlin Henney in his article ‘Another
Tale of Two Patterns’. EAM describes how to ‘encapsulate pairs of actions
in the object that requires them, not code that uses the object, and pass
usage code to the object as another object’.
The advantage of EAM over FINALLY FOR EACH RELEASE is that the client
is able to use a resource simply by implementing an interface, using the
resource passed to the subclass without worrying about how to clean up
and then simply pass an instance of the subclass to another object for
resource acquisition, execution and cleanup.

To check or not to check
Checked Exceptions [CheckedExceptions] in Java have their
advantages and disadvantages and are a source of much controversy. In
my previous article I made all of my interface methods throw Exception
(except for ConnectionPolicy, which throws its own custom

I

Listing 1 (cont’d)

 ResultSet rs = ps.executeQuery();
 if(rs.next())
 {
 System.out.println(rs.getString("url"));
 }
 try
 {
 rs.close();
 }
 catch(SQLException e)
 {
 e.printStackTrace();
 }
 }
 finally
 {
 try
 {
 ps.close();
 }
 catch(SQLException e)
 {
 e.printStackTrace();
 }
 }
 }
 finally
 {
 try
 {
 con.close();
 }
 catch(SQLException e)
 {
 e.printStackTrace();
 }
 }
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

Listing 1

try
 {
 Class.forName(driver);
 Connection con = DriverManager.getConnection(
 connectionString, username, password);
 try
 {
 PreparedStatement ps =
 con.prepareStatement(
 "select url from services where name =
 'Instruments'");
 try
 {

Paul Grenyer An active ACCU member since 2000, Paul is the
founder of the Mentored Developers. Having worked in industries as
diverse as direct mail, mobile phones and finance, Paul now works for
a small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com
June 2009 | Overload | 29

FEATURE PAUL GRENYER

I am forcing client code to catch and deal
with checked exceptions or translate and
rethrow them as runtime exceptions
exception) so that client code can throw almost any exception type it likes.
This effectively negates the checked part of checked exceptions.
Instead of using checked exceptions for the EAM design, I am forcing
client code to catch and deal with checked exceptions or translate and
rethrow them as runtime exceptions, by omitting any exception
specification from interface method signatures.
To aid with this I have written an ErrorPolicy interface (Listing 2) and
a DefaultErrorPolicy class (Listing 3) that translate Exception
into RuntimeException where appropriate.
The ErrorPolicy interface is designed to allow exceptions thrown as a
result of an error from using a database resource to be handled differently
to those thrown as a result of cleaning up a database resource. For example,
a user may want to rethrow only use exceptions and simply log or ignore
cleanup exceptions.
DefaultErrorPolicy only rethrows the first exception it is asked to
handle. This guarantees that a cleanup exception, which would generally
be thrown after a use exception, does not hide the use exception. If I was
including the ability to log in my design I would log all exceptions handled
by DefaultErrorPolicy.

The error policy must always be set and can always be used in the same
way. To provide the necessary consistency when setting the error policy I
wrote the following interface:
 public interface ErrorPolicyUser
 {
 void setErrorPolicy(ErrorPolicy errorPolicy);
 }

To provide a common, optional method of storing and accessing a
reference to the error policy I wrote the abstract class in Listing 4.

From policy to factory
The more I thought about and discussed the ConnectionPolicy
interface from my previous article, the more I felt it was more like an
Abstract Factory [GoF] than a policy. Therefore I have renamed it.
 public interface ConnectionFactory
 extends ErrorPolicyUser
 {
 Connection connect();
 void disconnect(Connection con);
 }

I want ConnectionFactory clients to be forced to accept an error
policy without relying on it being passed to subclass constructors the
interface has no control over. Extending the ErrorPolicyUser
interface also means that the error policy can be set internally by
ConnectionProvider (discussed next).
Most Connection objects are cleaned up in the same way, so having the
common code encapsulated in an abstract class prevents unnecessary code
duplication. An abstract class is also the ideal place for boiler plate error
policy handling (Listing 5).
AbstractConnectionFactory is a good example of how a class that
ne eds t o im p l emen t ErrorPolicyUser c a n ex t end

Listing 2

public interface ErrorPolicy
{
 void handleError(Exception ex);
 void handleCleanupError(Exception ex);
}

Listing 3

public class DefaultErrorPolicy
 implements ErrorPolicy
{
 private Exception firstException = null;
 @Override
 public void handleCleanupError(Exception ex)
 {
 handleError(ex);
 }
 @Override
 public void handleError(Exception ex)
 {
 if (firstException == null)
 {
 firstException = ex;
 throw new RuntimeException(ex);
 }
 }
}

Listing 4

public abstract class AbstractErrorPolicyUser
 implements ErrorPolicyUser
{
 private ErrorPolicy errorPolicy =
 new DefaultErrorPolicy();
 protected ErrorPolicy getErrorPolicy()
 {
 return errorPolicy;
 }
 @Override
 public void setErrorPolicy(
 ErrorPolicy errorPolicy)
 {
 this.errorPolicy = errorPolicy;
 }
}

30 | Overload | June 2009

FEATUREPAUL GRENYER
AbstractErrorPolicyUser to get the implementation and access to
the error policy for free.
The disconnect method is also a good example of how the error policy is
used to translate a checked exception into something else, in this case a
runtime exception. A little more thought needs to be put into the connection
creation factories to make sure all exceptions are caught and passed to the
error policy (Listing 6).

ConnectionProvider
The concept of a connection provider was suggested to me by Adrian Fagg.
The idea is that a single class is responsible for acquiring a connection,
providing it to another class for use and releasing it again. This is Execute
Around Method!
The advantage over DbResourceHandler from my previous article is
equal encapsulation while making the client less restricted by what they
can do with the connection. It does, however, suffer from the same
disadvantage that one method is required for uses of the connection which
return values and another for uses that do not.
To allow for this, two connection use interfaces are required. The
ConnectionUser interface is for uses of the connection that do not
return a value:

 public interface ConnectionUser
 extends ErrorPolicyUser
 {
 void use(Connection con);
 }

The ConnectionValue interface is parameterised for the type returned
from uses of the connection that return a value:
 public interface ConnectionValue<T>
 extends ErrorPolicyUser
 {
 T fetch(Connection con);
 }

The construction of the ConnectionProvider class is very straight
forward. The basic constructor takes a connection factory, creates a
DefaultErrorPolicy and passes them both to another constructor that
stores the references and passes the error policy to the connection factory.
This means that clients of the connection provider are free to use the default
error policy or provide their own. (Listing 7)
ConnectionProvider has two other methods. One that provides a
connection to a ConnectionUser and the other which provides a
connection to a ConnectionValue and returns the fetched value
(Listing 8).

Listing 5

public abstract class AbstractConnectionFactory
 extends AbstractErrorPolicyUser implements
ConnectionFactory
{
 @Override
 public void disconnect(Connection con)
 {
 if (con != null)
 {
 try
 {
 con.close();
 }
 catch(final SQLException ex)
 {
 getErrorPolicy().handleCleanupError(ex);
 }
 }
 }
}

Listing 6

public class StringConnection
 extends AbstractConnectionFactory
{
 ...
 @Override
 public Connection connect()
 {
 Connection con = null;
 try
 {
 Class.forName(driver);
 con = DriverManager.getConnection(
 connectionString, username, password);
 try
 {
 if (database != null)
 {
 con.setCatalog(database);
 }
 }
 catch(SQLException ex)
 {
 try
 {
 getErrorPolicy().handleError(ex);
 }
 finally
 {
 disconnect(con);
 }
 }
 }
 catch(ClassNotFoundException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 catch(SQLException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 return con;
 }
}

Listing 7

public final class ConnectionProvider
{
 private final ConnectionFactory conFactory;
 private final ErrorPolicy errorPolicy;
 public ConnectionProvider(
 ConnectionFactory conFactory)
 {
 this(conFactory, new DefaultErrorPolicy());
 }
 public ConnectionProvider(
 ConnectionFactory conFactory,
 ErrorPolicy errorPolicy)
 {
 this.conFactory = conFactory;
 this.errorPolicy = errorPolicy;
 this.conFactory.setErrorPolicy(
 this.errorPolicy);
 }
 ...
}

June 2009 | Overload | 31

FEATURE PAUL GRENYER
Both methods pass the error policy to the user of the connection, create
the connection, pass it to the user and cleanup the connection. They rely
on the connection factory to deal with any errors. The example in Listing 9
shows how the ConnectionProvider can be used.
The User class extends the AbstractErrorPolicyUser to get the
common error policy storage functionali ty and implements
ConnectionUser so that it can be handled by ConnectionProvider.
There is a single override where the connection is used.
Having to extend AbstractErrorPolicyUser and implement
ConnectionUser is not ideal . My original design had an
AbstractConnectionUser c l a s s t h a t e x t en de d
AbstractErrorPolicyUser and implemented ConnectionUser so
that clients only had to extend a single class. This meant having a similar
abstract class for every user and value variant, which did not seem worth
it when, as we will see later, the user and value variants are encapsulated
in another class unless the client wants something custom.

StatementProvider
The StatementProvider class (Listing 10) is a natural progressions
from the ConnectionProvider and uses EAM in the same way to
provide a Statement to a client without the client needing to worry about
acquisition or cleanup. The construction is simple and takes only a
Connection, from which to create the statement, and an error policy.
Again, it has two provideTo methods. One paramatised method that
passes the Statement to a StatementValue:
 public interface StatementValue<T>
 extends ErrorPolicyUser
 {
 T use(Statement stmt);
 }

and returns a value. The other method passes the Statement to a
StatementUser:
 public interface StatementUser
 extends ErrorPolicyUser
 {
 void use(Statement stmt);
 }

Listing 8

public final class ConnectionProvider
{
 ...
 public void provideTo(ConnectionUser user)
 {
 user.setErrorPolicy(errorPolicy);
 final Connection con = conFactory.connect();
 try
 {
 user.use(con);
 }
 finally
 {
 conFactory.disconnect(con);
 }
 }
 public <T> T provideTo(
 ConnectionValue<T> fetcher)
 {
 fetcher.setErrorPolicy(errorPolicy);
 final Connection con = conFactory.connect();
 T result = null;
 try
 {
 result = fetcher.fetch(con);
 }
 finally
 {
 conFactory.disconnect(con);
 }
 return result;
 }
}

Listing 9

class User extends AbstractErrorPolicyUser
 implements ConnectionUser
{
 @Override
 public void use(Connection con)
 {
 // Use the connection
 }
}
final ConnectionProvider cp =
 new ConnectionProvider(
 new StringConnection(...));
cp.provideTo(new User());

Listing 10

public final class StatementProvider
{
 private final Connection con;
 private final ErrorPolicy errorPolicy;
 public StatementProvider(
 Connection con, ErrorPolicy errorPolicy)
 {
 this.con = con;
 this.errorPolicy = errorPolicy;
 }
 public void provideTo(StatementUser user)
 {
 user.setErrorPolicy(errorPolicy);
 try
 {
 final Statement stmt =
 con.createStatement();
 try
 {
 user.use(stmt);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(SQLException ex)
 {
 errorPolicy.handleCleanupError(ex);
 }
 }
 }
 catch(SQLException ex)
 {
 errorPolicy.handleError(ex);
 }
 }
 public <T> T provideTo(
 StatementValue<T> fetcher)
 {
 fetcher.setErrorPolicy(errorPolicy);
 T result = null;
 try
 {
32 | Overload | June 2009

FEATUREPAUL GRENYER
Both methods pass the error policy to the user of the statement, create the
statement, pass it to the user, clean it up again and are responsible for error
handling.
The execution of statements that do not return a value is very straight
forward, so I wrote StatementUser for this purpose (Listing 11).

ResultSetProvider
Executing statements that return one or more values is less straight forward
and requires a ResultSetProvider (Listing 12).
Again, this is another natural progression from ConnectionProvider.
The ResultSetProvider takes the SQL query to execute to create the
result set, a Statement from which to create the record set and an error
policy. There is only a single paramatised provideTo method as a value
is always returned.

The ResultSet is provided to a ResultSetFunction:

 public interface ResultSetFunction<T>
 extends ErrorPolicyUser
 {
 T read(ResultSet rs);
 }

that is parameterised on return type. The method passes the error policy
to the user, creates the RecordSet from the Statement and SQL query,
passes the ResultSet to the ResultSetFunction, cleans up, handles
any errors and returns the value.
With the ResultSetProvider, executing a query that returns a value
is almost as simple as executing one that does not and can benefit from
similar boilerplate (Listing 13).
The ExecuteQuery class is paramatised on the return type from the
query. It takes a SQL query and ResultSetFunction via its
constructor. When an instance is passed to a StatementProvider
provideTo method it uses a ResultSetProvider and the
ResultSetFunction to execute and return the results of the query.

Listing 10 (cont’d)

 final Statement stmt =
 con.createStatement();
 try
 {
 result = fetcher.use(stmt);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(SQLException ex)
 {
 errorPolicy.handleCleanupError(ex);
 }
 }
 }
 catch(SQLException ex)
 {
 errorPolicy.handleError(ex);
 }
 return result;
 }
}

Listing 11

public class Execute
 extends AbstractErrorPolicyUser
 implements StatementUser
{
 private final String sql;
 public Execute(String sql)
 {
 this.sql = sql;
 }
 @Override
 public void use(Statement stmt)
 {
 try
 {
 stmt.execute(sql);
 }
 catch(SQLException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 }
}

Listing 12

public final class ResultSetProvider
{
 private final String sql;
 private final Statement stmt;
 private final ErrorPolicy errorPolicy;
 public ResultSetProvider(String sql,
 Statement stmt, ErrorPolicy errorPolicy)
 {
 this.sql = sql;
 this.stmt = stmt;
 this.errorPolicy = errorPolicy;
 }

 public <T> T provideTo(
 ResultSetFunction<T> fetcher)
 {
 fetcher.setErrorPolicy(errorPolicy);
 T result = null;
 try
 {
 final ResultSet rs = stmt.executeQuery(sql);
 try
 {
 result = fetcher.read(rs);
 }
 finally
 {
 try
 {
 rs.close();
 }
 catch(Exception ex)
 {
 errorPolicy.handleCleanupError(ex);
 }
 }
 }
 catch(SQLException ex)
 {
 errorPolicy.handleError(ex);
 }
 return result;
 }
}

June 2009 | Overload | 33

FEATURE PAUL GRENYER
Query
All of this boilerplate can be wrapped in a single class that provides two
static methods, one to execute methods that return a value and another for
ones that do not (Listing 14).
Both methods take a ConnectionProvider and a SQL query. The
method which returns a value also takes a ResultSetFunction to
process the result set into the return value. Both methods pass an instance
of a nested class to the connection provider.
The nested class that handles queries that do not return a value is called
User (Listing 15). It takes the SQL query via its constructor and, when
passed to a ConnectionProvider, uses the StatementProvider
and Execute classes to execute the query.
The nested class that handles queries that return a value is called Value
(Listing 16). It takes the SQL query and a ResultSetFunction via its
constructor and, when passed to a ConnectionProvider, uses the
StatementProvider and ExecuteQuery classes and the
ResultSetFunction interface to execute the query and return the result.

AbstractResultSetFunction
The ResultSetFunction interface needs a little further explanation as
it is the only interface most clients will need to implement albeit then only
for queries that return a value.

public interface ResultSetFunction<T>
 extends ErrorPolicyUser
{
 T read(ResultSet rs);
}

The interface extends ErrorPolicyUser, which means clients can
make use of AbstractErrorPolicyUser to get the common
implementation. As I will demonstrate later, it will often be useful to
extend ResultSetFunction using an anonymous class. Anonymous
classes cannot inherit from more than one class or interface, therefore I
have written an AbstractResultSetFunction class that does
nothing other than extend AbstractErrorPolicyUser and implement
ResultSetFunction:
 public abstract class AbstractResultSetFunction<T>
 extends AbstractErrorPolicyUser
 implements ResultSetFunction<T>
 {}

Now all clients have to do is extend AbstractResultSetFunction
and implement the read method.
The read method takes a ResultSet and returns a value. It is responsible
for extracting the results from the result set and processing them into
something that can be returned. As read does not have an exception
specification it is also responsible for error handling. For example,

Listing 13

public class ExecuteQuery<T>
 extends AbstractErrorPolicyUser
 implements StatementValue<T>
{
 private final String sql;
 private final ResultSetFunction<T> rsUser;
 public ExecuteQuery(
 String sql, ResultSetFunction<T> rsUser)
 {
 this.rsUser = rsUser;
 this.sql = sql;
 }
 @Override
 public T use(Statement stmt)
 {
 return new ResultSetProvider(sql, stmt,
 getErrorPolicy()).provideTo(rsUser);
 }
}

Listing 14

public final class Query
{
 …
 public static void execute(
 ConnectionProvider conProvider,
 String sql) throws Exception
 {
 conProvider.provideTo(new User(sql));
 }
 public static <T> T execute(
 ConnectionProvider conProvider,
 String sql, ResultSetFunction<T> rsUser)
 throws Exception
 {
 return conProvider.provideTo(
 new Value<T>(sql,rsUser));
 }
 private Query()
 {}
}

Listing 15

private static class User
 extends AbstractErrorPolicyUser
 implements ConnectionUser
{

 private final String sql;
 public User(String sql)
 {
 this.sql = sql;
 }
 @Override

 public void use(Connection con)
 {
 new StatementProvider(
 con,getErrorPolicy()).provideTo(
 new Execute(sql));
 }
}

Listing 16

private static class Value<T>
 extends AbstractErrorPolicyUser
 implements ConnectionValue<T>
{
 private final String sql;
 private final ResultSetFunction<T> rsUser;
 public Value(String sql,
 ResultSetFunction<T> rsUser)
 {
 this.rsUser = rsUser;
 this.sql = sql;
 }
 @Override
 public T fetch(Connection con)
 {
 return new StatementProvider(
 con,getErrorPolicy()).provideTo(
 new ExecuteQuery<T>(sql,rsUser));
 }
}

34 | Overload | June 2009

FEATUREPAUL GRENYER
retrieving a single string from a database table (Listing 17) or retrieving
multiple strings from a database table (Listing 18).

Putting it all together
To use the boilerplate to query a database, a client must first create a
connection factory:
 final ConnectionFactory conFactory =
 new StringConnection(DRIVER, CONNECTION_STRING)
 .setUser(USERNAME, PASSWORD)
 .setDatabase(DATABASE);

Then create a connection provider and pass it the connection factory and,
optionally, a custom error policy:
 final ConnectionProvider cp =
 new ConnectionProvider(conFactory);

Once created the connection factory and connection provider can be used
for any number of queries and therefore only need to be created once.

Executing a query that does not return any results can then be done with
a single statement:
 Query.execute(cp,
 "insert into services ([name],[url])" +
 "VALUES(
 'Log','http://prodserv01/axis/services/Log')");

Queries that return results only take a little more, almost all of which is
the anonymous class that processes the results from the result set
(Listing 19).

Conclusion
Boiler plating database resource cleanup with Execute Around Method
offers a high level of safety and encapsulation while not compromising on
control of the database resources in client code. Reducing the amount of
code that has to be written each time also reduces the possibility of
mistakes and resource leaks.

Acknowledgements
Thank you to Adrian Fagg for guidance into Execute Around Method, not
to mention quite a bit of help with the design.

References
[AToTP] ‘Another Tale of Two Patterns:’

http://www.two-sdg.demon.co.uk/curbralan/papers/
AnotherTaleOfTwoPatterns.pdf

[CheckedExceptions] ‘Checked Exceptions’ http://en.wikipedia.org/
wiki/Exception_handling#Checked_exceptions

[CVu] CVu: http://accu.org/index.php/journals/c77/
[GoF] Gang of Four: Design Patterns : Elements of reusable object-

oriented software by Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides. Addison Wesley ISBN-13: 978-0201633610

[Part I] ‘Boiler Plating Database Resource Cleanup’ – Part I: http://
www.marauder-consulting.co.uk/
Boiler_Plating_Database_Resource_Cleanup_-_Part_I.pdf

Listing 17

new AbstractResultSetFunction<String>()
{
 @Override
 public String read(ResultSet rs)
 {
 String result = null;
 try
 {
 if (rs.next())
 {
 result = rs.getString("url");
 }
 }
 catch(SQLException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 return result;
 }
}

Listing 18

new AbstractResultSetFunction<List<String>>()
{
 @Override
 public List<String> read(ResultSet rs)
 {
 List<String> result =
 new ArrayList<String>();
 try
 {
 while (rs.next())
 {
 result.add(rs.getString("url"));
 }
 }
 catch(SQLException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 return result;
 }
}

Listing 19

final String s =
 Query.execute(cp,
 "select url from services where name =
 'Instruments'",
 new AbstractResultSetFunction<String>()
 {
 @Override
 public String read(ResultSet rs)
 {
 String result = null;
 try
 {
 if (rs.next())
 {
 result = rs.getString("url");
 }
 }
 catch(SQLException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 return result;
 }
 });
June 2009 | Overload | 35

FEATURE GIOVANNI ASPRONI
ACCU 2009
The 2009 ACCU Conference took place in
March. The confernece chair, Giovanni
Asproni, provides a report.
he conference is over, and I’ve fully recovered – being the conference
chair is always very rewarding but also quite exhausting, even when
the conference goes smoothly (and, perhaps, staying up until late

drinking beers and chatting with the various delegates and speakers had
an impact on that as well).
Despite the current economic climate, the attendance was excellent – there
were about as many people as in 2008, and this at a time when several
conferences lost a big chunk of their size and others, like the Software
Development conferences series in the US, have been discontinued. In
hindsight, this is not so surprising: many speakers and delegates told me
they thought the programme was excellent. In a sense it was easy to achieve
that, since we received a great number of high quality proposals, but it
was also very difficult, because we could accept less than 50% of the
proposals received due to the limited number of slots available, leaving out
some very good ones.
The programme was also more intense than in previous years, with two
keynotes on the Wednesday, and two lightning talks sessions, one on the
Thursday and the other on the Friday.
The two Wednesday keynotes caused a bit of controversy – the first one
at the start of the day, from Robert Martin, ‘The Birth Of Software
Craftsmanship’, was followed at the end of the day by Nico Josuttis’
‘Welcome Crappy Code: The Death of Code Quality’. Fortunately, the
debate afterwards was very civilized, even if a bit heated – Bob Martin
wrote a blog entry about that [Martin] and Nico wrote his own thoughts
[Josuttis].
The lightning talks proved to be funny, informative, and were very well
received – and Kevlin surprised many of us by proving that he could
actually express some interesting ideas in five minutes only, without
running over time.
Some other highlights include the engaging keynote from Baroness Susan
Greenfield, ‘Geeks, Nerds and Other Prejudices’ – in which she debunked
some myths on gender differences – which was received with an huge
ovation (we had to ask people to stop applauding because we were running
late!) – and the money collection for Bletchley Park through a variety of
means: a raffle, voluntary donations (Astrid even convinced some other
guests of the conference hotel to donate money for the cause), and the
Enigma competition. Thanks to the generosity of our donors we managed
to collect a total of £1400 which has already been given to the museum.
The success of the conference was due to many people, and I want to thank
them all: the conference committee members; the people from Archer
Yates, Julie, Marsha, and Charlotte, who, as usual, did an outstanding job;
the sponsors, who allow us to keep the fees affordable; and all the speakers
and attendees who always make this conference unique. I also want to give

some very special thanks to a couple of friends, Allan Kelly and Kevlin
Henney, who were always available to share ideas and opinions with me
during the organization of the conference, and to Linda Rising, who kindly
accepted to deliver a keynote in place of Frank Buschmann, who,
unfortunately, had to pull out at the very last minute.
We are now working to the next edition with the aim of making the
conference even better. If you have any suggestions, or are thinking of
sending a proposal (and, perhaps, you want to check if your idea is
potentially interesting or not), feel free to send me an email at
conference@accu.org – the Call for Proposals is not out yet, but early
submissions and ideas are always welcome.

References
[Josuttis] http://www.josuttis.de
[Martin] http://blog.objectmentor.com/articles/2009/04/23/crap-code-

inevitable-rumblings-from-accu

T

Giovanni Asproni is the ACCU Conference Chair. If you
have an idea for next year’s conference, or just want to
give some feedback for this year, he can be reached at
conference@accu.org
36 | Overload | June 2009

	A Good Craftsman Knows His Tools
	Floating Point Fun and Frolics
	On Management: The Business Analyst’s Role
	Complexity, Requirements and Models
	An Introduction to FastFormat (Part 3): Solving Real Problems, Quickly
	The Model Student: The Enigma Challenge
	Boiler Plating Database Resource Cleanup (Part 2)
	ACCU 2009

