


CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed 
as such. The use of such terms is not intended to support nor disparage any trade mark claim. 
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author. 
By submitting material to ACCU for publication, an author is, by default, assumed to have granted 
ACCU the right to publish and republish that material in any medium as they see fit. An author 
of an article or column (not a letter or a review of software or a book) may explicitly offer single 
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) 
members to copy source code for use on their own computers, no material can be copied from 
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers 
who care about professionalism in 
programming. That is, we care about 
writing good code, and about writing it in 
a good way. We are dedicated to raising 
the standard of programming.

The articles in this magazine have all 
been written by ACCU members - by 
programmers, for programmers - and 
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 I Think I’ll Parse
Stuart Golodetz writes a simple parser.

10 Quality Matters: Introductions and 
Nomenclature
Matthew Wilson considers the idea of Software 
Quality.

17 Code Rot
Tom Guest experiences Good Code Gone Bad.

20 The Model Student: A Primal Skyline
Richard Harris studies some properties of the factors 
of integers.

27 The Generation, Management and Handling of 
Errors (Part 1)
Andy Longshore and Eoin Woods present a collection 
of Patterns for Error Handling.

33 No ‘Concepts’ in C++0x
Bjarne Stroustrup explains the latest changes to the 
upcoming C++ standard.

OVERLOAD 92

August 2009

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in 
Overload 93 should be submitted by 
1st September 2009 and for 
Overload 94 by 1st November 2009.



EDITORIAL RIC PARKIN
Moments in History
Technology shapes our world. Ric Parkin 
looks back at 40 years of change.
I start to write this on the morning of Thursday 16th
July 2009, exactly 40 years after Apollo 11 was
launched, and I’ll be writing the rest of this over the
days of the mission. The TV schedules are filled with
documentaries talking about this stunning technical
achievement that united the world in awe...but how

did the world experience it, and what sort of world was it after all? 40 years
is a long time in technology, and it was a very different place.

Some amateurs actually tracked the craft using simple optical
equipment (it wasn’t that hard to spot the dot of light of the craft, at
least until it got too close to the glare of the moon itself) [Keel].
Everyone else had to follow events via the official communications
channels – photo and film cameras for bringing back high definition
images, and the direct feeds: radio – think of hearing ‘The Eagle has
landed’ in the control room – and television. The thing most people
seem to remember was watching it on the television, in a massive
global event with a live audience of an estimated 600 million.
Interestingly, the transmitted feed was in quite high definition, but was
not compatible with the terrestrial networks. In order to convert and
broadcast as soon as possible, they did the only thing they could do
without powerful computers to do it on the fly – they showed the feed
on a compatible monitor, and pointed a TV camera at it! [parkes] This
is why the live footage we know is so poor quality. Recently, tapes of
the original feed recorded at the Australian down-link have been
recovered, and much better quality versions have been shown. There
have even been new photographs taken of the landing sites by the
Lunar Reconnaissance Orbiter, with such resolution you can actually
see the landers and their shadows [LRO]
It wasn’t the first such televisual event. In 1953 the coronation of
Elizabeth II was shown in the biggest live broadcast by the BBC up
until then, an event where many people bought one those newfangled
televisions – which cost a lot of money in those days – and the
neighbours came round to watch it live, giving an estimated audience
of 20 million. And even earlier, broadcasting such a global spectacle
was used for more overt propaganda purposes at the 1936 Olympics
[earlytelevision].
But why am I mentioning such a disparate group of events? New
technologies – in this case, mainly television – had enabled a huge

amount of people to share in an event en masse,
bringing them all together, often in ways that

were unprecedented and unexpected. Such
events can even change the way we think of

ourselves:  consider the
impact  of  such  famous
photographs  as  tha t  o f
Earthrise taken from Apollo
8 [Nasa] – a fragile blue ball
lost in a huge dark cosmos.
The technologies in use in
Apollo 11 are remarkably
different to what we would
expect nowadays. Mostly
systems were mechanical,
hydraulic, or electrical. They
did use computers, but of
such primitiveness that we would hardly recognise them as much
beyond a giveaway calculator nowadays. [Apollo Computer]. Since
then the power and complexity of computing technology has
increaded greatly, although the same basic architectural ideas are still
in use.
It’s not the only time that new technologies have changed the way we
interact. Even further back we have the cliche of the family sitting
around the wireless, whether listening to The Archers, or to get the
news during the War; the telephone and before that the telegraph,
which allowed really fast communications across large distances,
arguably a major influence on creating modern America. And even
further back, the invention of the Penny Post (after an analysis by
Charles Babbage), newspapers, the printing press, and writing itself.
At around the same time as Apollo, the first early networks were being
developed at DARPA. In fact, October 29th will be the 40th
anniversary of the first link in ARPANET, which would eventually
become the Internet we know today. I think this too was an important
moment when things changed: you no longer had to have everything
on your computer locally, but could distribute your computing
resources in a much more flexible way. And development continues,
from the introduction of IPv6, or a new protocol designed to work with
the time lags in deep space [DTN]
But of course the Internet is only a conduit – it’s what you do with it
that makes things interesting, and that tends to fall into two discrete
types. The first is a distributed information storage and retrieval
service. Early uses including circulating and depositing academic
papers, but has grown over the years to include services like Gopher
[Gopher] and the HTTP protocol and HTML that made the Web, which

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of 
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail 
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | August 2009



EDITORIALRIC PARKIN
led to a proliferation of services such as Wikipedia, YouTube, photo
hosting web sites, and storing documents online ‘in the cloud’. I
myself use the latter a lot in the role of editor – I have a status
spreadsheet to keep track of what articles I have, what stage they’re
in, and what I need to do. Then I can access it and keep it up to date
from any computer, as soon as an article or review feedback comes in.

The second is communication. Email is an obvious application. In fact
it predated ARPANET, being created around 1965 as a way for
multiple users of a time-sharing mainframe computer to communicate,
even if there weren’t around at the same time. Apparently it was used
a lot when the original Internet protocols were being developed,
allowing widely separated parties to collaborate much faster.  It is a
fantastic tool for non-immediate communication, where you want to
send something even if the other party is not currently there, for them
to read later. Looked at in this way it’s not surprising that mobile phone
SMS took off so well – it’s a cheap, quick version of email.

If you wanted a real-time conversation, there are a host of chat
protocols, such as IRC and the various instant messaging services,
which all have the immediacy of a phone call, and of course VoIP
services such as Skype reproduce a voice call itself, with added
features such as sending files, and video calls.

As well as the different latencies, there are also the various
multiplicities of communication. A one-to-one  channel is like a phone
call or personal email. A one-to-many is like a broadcast, such as
publishing on the web, or services such as Twitter, or YouTube. A
many-to-many mode is ideal for networks such as a social group where
everyone can talk to everyone else, reminicent of a conversion in a pub
with a big group of people. Email lists used like that were an early
version of a social networking. Newsgroups can also have a similar
function, even though they can be used like a notice board. They do
look rather old-fashioned now, what with all the web-based
networking sites allowing all manner of plugins and media. These are
so popular and easy to do stuff, that they allow a group of people to
quickly organise and affect the world, whether it was the campaign to
get Wispa bars reintroduced, a speed up of word-of-mouth
recommendations that can have a real effect [BBC], to the use of
Twitter to export news of the Iranian presidential elections, despite
curbs on traditional media. The effect of this on governments was
acknowledged recently by the Prime Minister at an appearance at the
TED Global conference in Oxford [TED]

With such a range of communications channels, it is now possible to
organise people into teams where geographic location is much less
important. This seems to be really prevalent in the IT industry, perhaps
because we have to use the computers that make this work anyway,

and we are more aware of the new technologies and so are the early
adopters. It is not uncommon for a project to involve people in many
locations and timezones, all using various communication
technologies to collaborate. This really makes sense when you think
of the process of developing things like software – a large amount of
the time and effort is to decide what to develop by talking to the
relevant people, then deciding how to split the work up so that multiple
people can work on it, then having to work out how to integrate the
seperate parts, and then verify that what has been produced does in fact
meet the requirements. As each of these stages involves people with
different skills, knowledge, and opinions, the need for communication
is clear. In many failing projects (or just the ones which are horrible
to be in), quite often a major issue is when the communication fails.
As for the future, what sort of changes could we look forward to? Some
trends are obvious – more mobile ‘always on’ computers connected
to a fast pervasive network, whether it be done by making phones more
powerful or netbooks smaller. Location and orientation sensitive
phones and software are becoming common, leading to some
interesting applications as well as potential privacy concerns. The shift
to mobility will highlight the problems of too-small
screens and fiddly input devices. There are already
systems that are trying to solve these issues, but it
is too early to know which will eventually succeed.
The future starts today.

References
[Apollo Computer] http://en.wikipedia.org/wiki/

Apollo_Guidance_Computer
[BBC] http://www.bbc.co.uk/blogs/technology/2009/07/

bruno_and_bonos_box_office_blu.html
[DTN] http://www.nasa.gov/home/hqnews/2008/nov/HQ_08-

298_Deep_space_internet.html 
[earlytelevision] http://www.earlytelevision.org/1936_olympics.html
[Gopher] http://en.wikipedia.org/wiki/Gopher_(protocol) 
[Keel] http://www.astr.ua.edu/keel/space/apollo.html
[LRO] http://www.nasa.gov/mission_pages/LRO/multimedia/lroimages/

apollosites.html
[Nasa] http://commons.wikimedia.org/wiki/File:NASA-Apollo8-Dec24-

Earthrise.jpg
[parkes] http://www.parkes.atnf.csiro.au/news_events/apollo11/

tv_from_moon.html
[TED] http://news.bbc.co.uk/1/hi/technology/8161650.stm
August 2009 | Overload | 3



FEATURE STUART GOLODETZ
I Think I’ll Parse
A parser is a fundamental tool in software 
development. Stuart Golodetz looks at how you 
might tackle writing one.
n my opinion, writing a parser manually is something everyone should
do once. Any less than that, and you’d be missing out on an interesting
bit of coding; any more, and you’d make the efforts put into Lex and

Yacc [LexYacc] to save you the time and trouble (and the risk of making
silly mistakes) look like a waste. (Lex and Yacc take lexical and grammar
rules as input, respectively, and produce code in a language such as C to
do the actual lexing and parsing. Modifying the input rules is substantially
easier than modifying actual code, hence the reductions in necessary time
and errors.)
Accordingly, in this article I’m going to discuss how you go about writing
a simple parser for XML in C++ (without worrying too much about
adhering 100% to the XML specification, since that’s not the primary focus
here). To more experienced readers, this may seem quite simple: in that
case, I very much welcome comments/bug reports! To anyone who has
never done any parsing before, hopefully this article will provide a useful
introduction to the topic.

The plan
Our goal here is to turn a source XML file into an abstract syntax tree, or
AST (see Listing 1). Once we have the AST, information from it (and thus
from the file from which it was created) can be easily extracted for use in
other code. The whole process is a (very) well-studied problem in
computer science, partly because it forms part of the front-end of the

compilation process [DragonBook]. (So this is exactly the sort of thing that
happens behind the scenes when you compile your programs.)
As Listing 1 shows, there are two key steps to the process: lexical analysis,
and parsing itself. Lexical analysis (lexing, for short) is the process of
converting a source file to a sequence of tokens to be consumed by the
parser. For instance, the text <article type="short"> could perhaps
be lexed as the token sequence [LBRACKET, IDENT("article"),
EQUALS, VALUE("short"), RBRACKET]. Note that data can be
associated with each token, e.g. an identifier token can carry around the
name of the identifier. Parsing is the process of turning a sequence of
tokens into an AST.
It is important to note that the two steps can run concurrently. The parser
generally doesn’t need to see the entire token sequence at once. Rather, a
pipeline approach is used. The parser queries the lexer when it wants the
next token, and the lexer reads the source file as necessary in order to
produce it. The advantage of this approach is that fewer tokens need to be
held in memory at any one time; additionally, it makes the local decision-
making nature of the parser explicit.

Lexing XML
The first step when building a lexer is to decide what types of token it
should output. If you’re lucky in having some sort of formal specification
for the language to hand, this may already have been done for you; if not,
you’ll have to invent one by looking at representative example source files
and deducing the structure of the language. In this instance, we’ll do the
latter. The source file in Listing 1 is representative of the XML files we
want to support. With a bit of creativity, it doesn’t take much effort to come
up with the possible token list shown in Table 1.
The next question is how to convert the source into tokens. This is
generally done using a finite state machine: we read characters from the
source and change states until we’re sure we’ve read a token, at which point
we yield it to the parser. A certain amount of lookahead is sometimes
required for this: for instance, when we read a < here, we don’t know
whether it’s an LBRACKET token, or the first character of an LSLASH. To
find out, we have to read in an additional character from the source file
and check whether it’s a /. If it is, we yield an LSLASH token; if not, we

I

Token Type Regular Expression

EQUALS =

IDENT [A-Za-z0-9.][A-Za-z0-9._]*

LBRACKET <

LSLASH </

RBRACKET >

RSLASH />

VALUE ".*"

Table 1

Stuart Golodetz has been programming for 13 years and is 
studying for a computing doctorate at Oxford University. His 
current work is on the automatic segmentation of abdominal 
CT scans. He can be contacted at 
stuart.golodetz@comlab.ox.ac.uk

Listing 1

// Source File:

<article type="short">
  <para text="Not much" font="Arial"/>
</article>

// (Lexical Analysis)
// Token Sequence:

LBRACKET, IDENT("article"), IDENT("type"), 
EQUALS, VALUE("short"), RBRACKET, LBRACKET, 
IDENT("para"), ..., LSLASH, IDENT("article"), 
RBRACKET

// (Parsing)

Abstract Syntax Tree:
XMLElement article [type="short"]
  XMLElement para [text="Not much", font="Arial"]
4 | Overload | August 2009



FEATURESTUART GOLODETZ

Certain details of the lexer
are difficult to show in a

finite state machine graph
yield an LBRACKET and push whatever character we actually read onto a
lookahead list: it’s the first character of the next token, so we can’t simply
discard it.
The design of a finite state machine for the XML lexer is shown in Figure 1.
The key things to note are the extra states needed to handle things like
RSLASH and VALUE tokens. For example, when reading an RSLASH token,
we read the / first and end up in the HALF RSLASH state. If we then see
a >, we’ve read a whole RSLASH token and can yield it; if we see anything
else, there’s an error in the source file. Note that the " self-transition from
HALF VALUE just means ‘keep reading characters until we encounter a "
or the end of the file, denoted <eof>’.
Certain details of the lexer are difficult to show in a finite state machine
graph. In particular, the data payloads yielded for IDENT and VALUE
tokens are not shown. Also, what happens when we reach the end of the
file whilst reading a token? If the token could be finished (for instance, we
encounter <eof> whilst in the IDENT state), then we yield the token and
set the state to EOF. If the token definitely isn’t finished, we instead
transition to the BAD state (and thereby throw an exception). The details
can be seen in the code in Listing 2.

Writing the parser
Having written the lexical analyser, we can now turn our attentions to
parsing proper. The grammar for the language we are trying to parse is
shown in Listing 3. It’s worth noting that the opening and closing tags for
a composite element must have the same identifier, so the grammar is not
context-free. Furthermore, as written, the grammar accepts documents
with multiple root elements (this is not standard XML, but it will make the
parser more flexible).

Figure 1 Listing 2

XMLToken_Ptr XMLLexer::next_token()
{
  if(m_state == LEX_EOF) return XMLToken_Ptr();
  else m_state = LEX_START;
  std::string value;

  for(;;)
  {
    switch(m_state)
    {
      case LEX_START:
      {
        unsigned char c = next_char();
        if(m_eof) { m_state = LEX_EOF; }
        else if(c == '=') {
           m_state = LEX_EQUALS; }
        else if(c == '/') {
           m_state = LEX_HALF_RSLASH; }
        else if(c == '"') { 
           m_state = LEX_HALF_VALUE; }
        else if(c == '<') {
           m_state = LEX_LBRACKET; }
        else if(c == '>') {
           m_state = LEX_RBRACKET; }
        else if(isalpha(c) || isdigit(c) ||
           c == '.') { m_state = LEX_IDENT;
           value += c; }
        break;
      }
      case LEX_EOF:
      {
        return XMLToken_Ptr();
      }
      case LEX_EQUALS:
      {
        return XMLToken_Ptr(
           new XMLToken(XMLT_EQUALS, ""));
      }
      case LEX_HALF_RSLASH:
      {
        unsigned char c = next_char();
        if(m_eof) {
           m_state = LEX_BAD; value = ">"; }
        else if(c == '>') {
           m_state = LEX_RSLASH; }
        else { m_state = LEX_BAD; value = ">"; }
        break;
      }
      case LEX_HALF_VALUE:
      {
        unsigned char c = next_char();
August 2009 | Overload | 5



FEATURE STUART GOLODETZ
We’ll write a recursive descent-style parser here for simplicity. The top-
level parsing function (that for documents) is shown in Listing 4. It creates
the root node of the AST and then parses a sequence of XML elements and
adds them as children of the root.
The function to parse elements (see Listing 5) reads in elements while there
are any remaining, and adds them to a list. This list is then returned.
The remaining parsing function (see Listing 6), which reads in an
individual XML element, is the real core of the parser. It starts by trying
to read in the next token. If there isn’t a next token, then there’s no element
to parse, so we (effectively) return NULL; if there is, but it’s not < (the
opening token for an element), then we add whatever token we actually
did read to the lookahead list and also return NULL. This happens when
we reach the end tag of the enclosing XML element, e.g. if we read
<article><para/></article>, this will happen when we reach the
LSLASH token at the start of </article>.

Listing 2 (cont’d)

        if(m_eof) {
           m_state = LEX_BAD; value = "\""; }
        else if(c == '"') { m_state = LEX_VALUE; }
        else { value += c; }
        break;
      }
      case LEX_IDENT:
      {
        unsigned char c = next_char();
        if(m_eof)
        {
          m_state = LEX_EOF;
          return XMLToken_Ptr(new XMLToken(
             XMLT_IDENT,value));
        }
        else if(isalpha(c) || isdigit(c) ||
           c == '.' || c == '_')
        {
          value += c;
        }
        else
        {
          m_lookahead.push_back(c);
          return XMLToken_Ptr(new XMLToken(
             XMLT_IDENT, value));
        }
        break;
      }
      case LEX_LBRACKET:
      {
        unsigned char c = next_char();
        if(m_eof)
        {
          m_state = LEX_EOF;
          return XMLToken_Ptr(new XMLToken(
             XMLT_LBRACKET, ""));
        }
        else if(c == '/')
        {
          m_state = LEX_LSLASH;
        }
        else
        {
          m_lookahead.push_back(c);
          return XMLToken_Ptr(new XMLToken(
             XMLT_LBRACKET, ""));
        }
        break;
      }
      case LEX_LSLASH:
      {
        return XMLToken_Ptr(new XMLToken(
           XMLT_LSLASH, ""));
      }
      case LEX_RBRACKET:
      {
        return XMLToken_Ptr(new XMLToken(
           XMLT_RBRACKET, ""));
      }
      case LEX_RSLASH:
      {
        return XMLToken_Ptr(new XMLToken(
           XMLT_RSLASH, ""));
      }
      case LEX_VALUE:
      {
        return XMLToken_Ptr(new XMLToken(
           XMLT_VALUE, value));
      }

Listing 2 (cont’d)

      default:  // case LEX_BAD
      {
        throw Exception("Error: Expected " + 
value);
      }
    }
  }
}
unsigned char XMLLexer::next_char()
{
  if(m_lookahead.empty())
  {
    unsigned char c = m_is.get();
    if(m_is.eof()) m_eof = true;
    return c;
  }
  else
  {
    unsigned char c = m_lookahead.front();
    m_lookahead.pop_front();
    m_eof = false;
    return c;
  }
}

Listing 3

CompositeElement -> LBRACKET IDENT(name) Params 
RBRACKET Elements LSLASH IDENT(name) RBRACKET
Document -> Elements
Element -> SimpleElement | CompositeElement
Elements -> <empty> | Element Elements
Param -> IDENT EQUALS VALUE
Params -> <empty> | Param Params
SimpleElement -> LBRACKET IDENT Params RSLASH

Listing 4

XMLElement_CPtr XMLParser::parse()
{
  XMLElement_Ptr root(new XMLElement("<root>"));
  std::list<XMLElement_Ptr> children =
     parse_elements();
  for(std::list<XMLElement_Ptr>::
     const_iterator it=children.begin(),
     iend=children.end(); it!=iend; ++it)
  {
    root->add_child(*it);
  }
  return root;
}

6 | Overload | August 2009



FEATURESTUART GOLODETZ
Assuming we’re actually parsing an element, the next step is to read in the
element identifier (e.g. article). To read in any parameters, we then read
the next token to see whether it’s an IDENT: if so, we keep reading to find
the rest of the parameter and iterate. Note that any erroneous tokens we
might encounter are handled using read_checked_token(), which
will throw an exception if the token we read is of the wrong type.

Listing 5

std::list<XMLElement_Ptr> 
XMLParser::parse_elements()
{
  std::list<XMLElement_Ptr> elements;
  XMLElement_Ptr element;
  while(element = parse_element())
  {
    elements.push_back(element);
  }
  return elements;
}

Listing 6 (cont’d)

      std::list<XMLElement_Ptr> children =
         parse_elements();
     for(std::list<XMLElement_Ptr>::
        const_iterator it=children.begin(),
        iend=children.end(); it!=iend; ++it)
      {
        element->add_child(*it);
      }

      // Read the element closing tag.
      read_checked_token(XMLT_LSLASH);
      token = read_checked_token(XMLT_IDENT);
      if(token->value() != element->name()) throw
         Exception("Mismatched element tags:
         expected " + element->name() + " not "
         + token->value());
      read_checked_token(XMLT_RBRACKET);
      break;
    }
    case XMLT_RSLASH:
    {
      // The element is complete, so just break
      // and return it.
      break;
    }
    default:
    {
      throw Exception("Unexpected token type");
    }
  }
  return element;
}

void XMLParser::check_token_and_type(
   const XMLToken_Ptr& token,
   XMLTokenType expectedType)
{
  if(!token)
  {
    throw Exception("Token unexpectedly missing");
  }
  if(token->type() != expectedType)
  {
    throw Exception("Unexpected token type");
  }
}

XMLToken_Ptr XMLParser::read_checked_token(
   XMLTokenType expectedType)
{
  XMLToken_Ptr token = read_token();
  check_token_and_type(token, expectedType);
  return token;
}

XMLToken_Ptr XMLParser::read_token()
{
  if(m_lookahead.empty())
  {
    return m_lexer->next_token();
  }
  else
  {
    XMLToken_Ptr token = m_lookahead.front();
    m_lookahead.pop_front();
    return token;
  }
}

Listing 6

XMLElement_Ptr XMLParser::parse_element()
{
  XMLToken_Ptr token;
  token = read_token();

  if(!token)
  {
    // If there are no tokens left, we're done.
    return XMLElement_Ptr();
  }

  if(token->type() != XMLT_LBRACKET)
  {
    // If the token isn't '<', we're reading
    // something other than an element.
    m_lookahead.push_back(token);
    return XMLElement_Ptr();
  }
  token = read_checked_token(XMLT_IDENT);

  XMLElement_Ptr element(new XMLElement(
     token->value()));
  token = read_token();

  while(token && token->type() == XMLT_IDENT)
  // while there are attributes to be processed
  {
    std::string attribName = token->value();
    read_checked_token(XMLT_EQUALS);
    token = read_checked_token(XMLT_VALUE);
    std::string attribValue = token->value();
    element->set_attribute(attribName,
       attribValue);
    token = read_token();
  }
  if(!token) throw Exception(
     "Token unexpectedly missing");

  switch(token->type())
  {
    case XMLT_RBRACKET:
    {
      // This element has sub-elements, so parse
      // them recursively and add them to the
      // current element.
August 2009 | Overload | 7



FEATURE STUART GOLODETZ
When the next token is no longer an IDENT (i.e. when we’ve reached the
end of the parameter list), we check to see whether we’re dealing with a
simple element or a complex element. If the former, we’ll encounter an
ending RSLASH. If the latter, we’ll instead see an RBRACKET, at which
point we recursively read in any sub-elements, followed by the closing
element tag, carefully checking that the names match in the process. Either
way, we return the element once it’s complete.

Elementary, Watson
The only remaining piece of the puzzle is the design of the XMLElement
class: how do we actually represent and use the AST generated by the
parser? The structure I came up with is shown in Listing 7. There’s nothing
particularly complicated about this bit, so I won’t dwell on it. What is worth
illustrating instead is how easy it is to use (see Listing 8, which shows a
snippet of code from a function to load an Ogre mesh file [Ogre]). 

Other parsers near you
There’s a lot more to parsing than I’ve been able to show here with a simple
example. Parsers in general can be either top-down or bottom-up (the
recursive descent parser shown in this article is an example of the former).
Top-down parsers try and turn the start symbol of the grammar (e.g. in our
example in Listing 3, this would be Document) into the token sequence
observed, by replacing left-hand sides of productions with right-hand
sides. For example, in our case, we start off knowing we have a Document,
which means we must have a sequence of Elements, etc. The alternative

Listing 7 (cont’d)

XMLElement_CPtr XMLElement::find_unique_child(
   const std::string& name) const
{
  ChildrenCIter it = m_children.find(name);
  if(it != m_children.end())
  {
    const std::vector<XMLElement_CPtr>& 
       children = it->second;
    if(children.size() == 1) return children[0];
    else throw Exception( "The element has more
       than one child named " + name);
  }
  else throw Exception(
     "The element has no child named " + name);
}

bool XMLElement::has_attribute(
   const std::string& name) const
{
  return m_attributes.find(name) !=
     m_attributes.end();
}

bool XMLElement::has_child(
   const std::string& name) const
{
  return m_children.find(name) !=
     m_children.end();
}

const std::string& XMLElement::name() const
{
  return m_name;
}

void XMLElement::set_attribute(
   const std::string& name,
   const std::string& value)
{
  m_attributes[name] = value;
}

Listing 7

typedef shared_ptr<class XMLElement>
   XMLElement_Ptr;
typedef shared_ptr<const class XMLElement>
   XMLElement_CPtr;

class XMLElement
{
private:
  typedef std::map<std::string,
     std::string> AttribMap;
  typedef AttribMap::const_iterator AttribCIter;
  typedef std::map<std::string,
     std::vector<XMLElement_CPtr> > ChildrenMap;
  typedef ChildrenMap::const_iterator 
ChildrenCIter;

private:
  std::string m_name;
  AttribsMap m_attributes;
  ChildrenMap m_children;

public:
  XMLElement(const std::string& name);

public:
  void add_child(const XMLElement_Ptr& child);
  const std::string& attribute(
     const std::string& name) const;
  std::vector<XMLElement_CPtr> find_children(
     const std::string& name) const;
  XMLElement_CPtr find_unique_child(
     const std::string& name) const;
  bool has_attribute(
     const std::string& name) const;
  bool has_child(const std::string& name) const;
  const std::string& name() const;
  void set_attribute(const std::string& name,
     const std::string& value);
};

XMLElement::XMLElement(const std::string& name)
:  m_name(name)
{}

void XMLElement::add_child(
   const XMLElement_Ptr& child)
{
  m_children[child->name()].push_back(child);
}

const std::string& XMLElement::attribute(
   const std::string& name) const
{
  AttribCIter it = m_attributes.find(name);
  if(it != m_attributes.end()) return it->second;
  else throw Exception( "The element does not have
     an attribute named " + name);
}

std::vector<XMLElement_CPtr>
   XMLElement::find_children(
   const std::string& name) const
{
  ChildrenCIter it = m_children.find(name);
  if(it != m_children.end()) return it->second;
  else return std::vector<XMLElement_CPtr>();
}

8 | Overload | August 2009



FEATURESTUART GOLODETZ
is bottom-up parsing. This starts from the observed token sequence and
tries to turn it into the start symbol by applying production rules in reverse.
For instance, if we see IDENT EQUALS VALUE, we know we’re dealing
with a Param, and so on.
Different parsing algorithms have different strengths and weaknesses:
generally speaking, there’s a trade-off between how general a grammar a
parser can recognise, and the runtime and implementation costs (i.e. the
more general parsers tend to be harder to implement and take longer to
run). To give you a flavour of some of the algorithms out there, here’s a
quick description of a few alternatives:

Table-based LL parser (top-down).
Calling the left-hand sides of productions ‘non-terminals’ and the
actual tokens like IDENT, etc., ‘terminals’, this sort of parser takes
a numbered series of rules and a parse table of type Terminal x Non-
Terminal -> Rule Number. It operates using a stack, which initially
contains only the starting non-terminal. It iteratively examines the
top element of the stack and the next character in the input stream.
If the top element of the stack is a terminal, then either it matches the
next input character (in which case they are consumed), or it doesn’t
(there’s a syntax error). If the top element is a non-terminal, the
correct rule to apply is looked up in the parse table (indexing on the
top stack element and the next input character), and the top stack
element is replaced with the right-hand side of the appropriate rule
(note that the input character is not consumed). If there’s no rule for
this case in the parse table, there must be a syntax error.Finally, if
the stack is empty, then either there’s no next input character (we’re
done parsing), or there is (yet another type of syntax error).

Shift-reduce parser (bottom-up).
This works using a stack and the input sequence. At each iteration,
it decides whether to shift (push the next input token onto the stack)
or reduce (apply a grammar rule to the things on top of the stack).
The goal is to empty the input sequence and reduce the stack to the
start symbol.
GLR (Generalized Left-to-right Rightmost derivation) parser.
A hardcore parser designed for nondeterministic and ambiguous
grammars.

If you’re interested in parsing, I advise you to have a read through
[DragonBook]; it contains a lot of very interesting stuff. It has to be
emphasised, however, that these days parsing is considered essentially a
solved problem. If you need a parser for real-world use, it’s rarely the case
that you should roll your own: you’re usually much better off using Yacc
or something like it [LexYacc]. (You might also want to investigate the
Spirit parser framework: indeed I’m reliably informed that there have been
a couple of Overload articles [Guest04, Penhey05] about it before!) All the
same, it’s always a good idea (and indeed fun) to understand what these
things are doing under the hood as well.

Conclusion
In this article, I’ve shown how to construct a basic XML parser (email me
if you want the full source code) and given a brief overview of some other
types of parser you might like to investigate. It’s worth noting that often
one of the problems you’re likely to have with parsing is not actually in
reading text that is syntactically valid: it’s dealing with invalid text and
outputting suitable error messages. This is a particular problem for
compilers. Whilst it’s outside the scope of this article, one of the problems
is that good error messages have to be readable by humans in order to help
them correct the error: this often requires an understanding of intent.
Another issue is that stopping at the first parse error you encounter often
isn’t good enough: real-world parsers need to carry on and attempt to parse
the rest of the input, and we’d ideally like them not to output a load of
spurious error messages while they’re doing it. All in all, it’s a fascinating
topic, and something I highly recommend investigating further. 

Acknowledgements
Many thanks to the Overload review team for the many improvements
suggested to the original article.

References
[DragonBook] Compilers: Principles, Techniques and Tools (1st Ed.), A 

Aho, R Sethi, J D Ullman, Addison Wesley, January 1985.
[Guest04] ‘Mini-project to Decode a Mini-language’, Thomas Guest, 

Overload #64, December 2004.
[LexYacc] The Lex and Yacc Page, http://dinosaur.compilertools.net.
[Ogre] Open Source 3D Graphics Engine, http://www.ogre3d.org.
[Penhey05] ‘With Spirit’, Tim Penhey, Overload #69, October 2005.

Listing 8

XMLLexer_Ptr lexer(new XMLLexer(filename));
XMLParser parser(lexer);
XMLElement_CPtr root = parser.parse();
XMLElement_CPtr meshElt
   = root->find_unique_child("mesh");

XMLElement_CPtr submeshesElt 
   = meshElt->find_unique_child("submeshes");

std::vector<XMLElement_CPtr> submeshElts
   = submeshesElt->find_children("submesh");
size_t submeshCount = submeshElts.size();

std::vector<Submesh_Ptr> submeshes;
for(size_t i=0; i<submeshCount; ++i)
{
  const XMLElement_CPtr& submeshElt 
     = submeshElts[i];
  std::string materialName 
     = submeshElt->attribute("material");

//...
August 2009 | Overload | 9



FEATURE MATTHEW WILSON
Quality Matters: Introductions, 
and Nomenclature
There are many aspects of Software Quality. 
Matthew Wilson introduces us to some of the concepts.
t's been a few years since I stopped my column-writing (for C/C++
Users Journal and Dr. Dobb’s), and I’ve rather gotten out of the habit
of disciplined writing, much to the chagrin of my long-suffering

Addison-Wesley editor. (Sorry, Peter, but this stuff will help with the
coming books, I promise.) Anyway, I plan to get back into the swing and
hope to provide material that will cause some of you to ponder further as
you read your issue of Overload every second month, and I’d like to thank
Ric Parkin for giving me the opportunity to foist my opinions on a captive
audience once again.
So, what’s the deal with ‘Quality Matters’? Well, as the cunning linguists
among you may have realised, the title is a double-meaning pun, which
appeals to me greatly (and no less so to Ric). But the overloading is
apposite. In one sense it means that quality is important. Which it is. The
other is that what is to be discussed will be issues of quality.
But what is quality? For sure, when you drive a nice car, stay in a nice hotel,
eat a nice meal, watch a nice film (or movie, if you will), read a nice book,
or have a nice conversation, you can feel the quality. But defining it is
exceeding hard; it takes more than just a subjective ‘nice’.
In all my programming related activities – author, consultant, programmer,
trainer – quality is crucial, and having spent enough years doing these
things I am able to sniff out quality (and its absence). I am comfortable to
go into any client’s development team and poke around the codebase with
confidence, invariably producing useful analyses of what I find. But when
asked to pontificate about ‘software quality’ absent context of a codebase
or design documents, I find myself coming up a little dry. At such times I
wonder at the abilities of those who have, or at least appear to have, a
software dictionary in their heads.
My eldest son and I have recently taken up fencing – the one where you
attempt to disembowel your opponent with a sword, rather than the one
where you hit lumps of wood into the ground with a hammer (although
that would also be fun, I think) – and it has brought into clear focus just
how much we rely on training for a great many things. I’ve been cycling
for more than 20 years, and the act of moving about a bike in response to
where I want to go seems entirely subconscious. At least I hope my
subconscious is handling it, because I know I’m not! Similarly, I’ve been
programming professionally for 15+ years (and unprofessionally for 25+
if we count Vic-20s, ZX-81s, BASIC and 6502 assembler), and by now a
huge proportion of what I do is also subconscious. It’s only when training
other programmers, or (attempting to) write books and articles that I get
to glimpse some of the other 90% of the iceberg of software lore that has
been accreted into my programming super-ego.
So, in part, this column will be a journey about codifying what my
conscious mind has forgotten, in the hope of stringing together a cogent
philosophy. Time will tell …

Being a practical sort of chap – I’d rather write a software component than
write a software component specification – the prognostications in this
column will all be based around practical issues, usually, I predict, around
some block of code that’s offended or inspired me. I intend to examine
successful (and some unsuccessful) software libraries and applications,
and rip them apart to look at what has been done well, and what could be
changed to improve them. I also plan to demonstrate how intrinsic and
diagnostic improvements can be applied without damaging or detracting
from the existing functionality, robustness or efficiency.
Despite these promises of greasy rags and dirty finger nails, we will need
a theoretical framework on which to base the analyses. To that end I’m
going to start the journey by identifying three groups of software quality
related subjects, which reflect the method I bring to bear in my consulting
work.
Most/all of the subjects mentioned in this introductory instalment will be
given further treatment in later instalments.

A nomenclature for software quality
There are a multitude of possible ways of slicing and dicing the software
quality landscape, and a multitude of software quality metrics offered by
different thinkers on the subject. There are terms such as adaptability,
cohesiveness, consistency, correctness, coupling, efficiency, flexibility,
maintainability, modularity, portability, reliability, reusability,
robustness, security, testability, transparency, understandability, and on
and on it goes. What do they all mean? Are they all useful?
I couldn’t hope to distil down all these different ideas down into a single
set, and I won’t pretend to try. What I’m going to talk about in this column
are aspects of software quality that I understand and utilise in my
consultancy, training and my own software development activities. They
break down, more or less neatly, into three groups:

Intrinsic characteristics
(Removable) diagnostic measures
Applied assurance measures

In this instalment I’ll flesh out the definitions of the first group, since
they’ll occupy much of my interest in the next few instalments. I’ll also
offer brief discussions of the second and third groups now, and go into
more detail about the individual items in later instalments when they’re
relevant (and when there’s the space to give them adequate treatment).

Intrinsic software quality characteristics
To be of any use, software quality characteristics have to be definable, even
when the definitions involve relativism and subjectivity. To this end, I
spent a deal of effort when writing my second book – <plug>Extended
STL, volume 1: Collections and Iterators [XSTLv1]</plug> –
considering the notion of quality for software libraries. I came up with
seven characteristics of quality:

Correctness/reliability/robustness
Efficiency

I

Matthew Wilson is a software development consultant and 
trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of 
articles and books that attempt to do the same. He can be 
contacted at matthew@synesis.com.au.
10 | Overload | August 2009



FEATUREMATTHEW WILSON

software quality characteristics have to be
definable, even when the definitions

involve relativism and subjectivity
Discoverability and transparency
Modularity
Expressiveness
Flexibility
Portability

Each of these characteristics is innate to a given software entity. Regardless
of whether its authors or users know or care about such characteristics, and
regardless of whether anyone takes the trouble to measure/assess it in
respect of them, every component/library/ sub-system has a level of
robustness, efficiency, discoverability and transparency, etc. that can be
reasoned about.
For everyone who has not managed to get further than the prologue of
Extended STL, volume 1, I’ll offer definitions of these again now. For those
who have, you will probably benefit from reading them, as I’ve refined
some ideas in the last couple of years.

Correctness, reliability and robustness: first pass
Forgetting for the moment all the other issues about how fast it runs,
whether it can be easily used/re-used/changed, the contexts it can be used
in, and so forth, the sine qua non for any piece of software is that it must
function according to the expectations of its stakeholders.
Battle-hardened software developers will (hopefully) have bristled at the
vagueness of that last phrase ‘function according to the expectations of its
stakeholders’. But I am being deliberately vague because I believe that this
area of software quality is poorly defined, and I hope to come to a better
definition than any I’ve found so far.
Three terms are commonly used when it comes to discussing the expected
(or unexpected) behaviour of software: correctness, reliability and
robustness. The first of these has an unequivocal definition:

Correctness is the degree to which a software entity’s
behaviour matches its specification.

Cunningly, the definition is able to avoid equivocation by passing off to
the definition of ‘specification’. And that’s no small thing, to be sure. I am
going to skip discussion of what form(s) specifications might take until the
next article, for reasons that will become clear then.
I’m also going to skip out on discussing the issues of robustness and
reliability, because there is a lot of equivocation on their definitions in the
literature – I’m thinking mainly of McConnell [CC] and Meyer [OOSC]
here, but they’re not alone – and the only sense I can make of them is when
dealing with the specification question.
I will, however, leave you to with something to ponder, which will inform
the deliberations of the next instalment: I call it the Bet-Your-Life? Test
(see sidebar).

Assume a perfect operating environment of unfailing hardware and
perfect implementations of all layers of software abstraction below the
ones at which the following software entities are written. Would you bet
your life on them being able to be written to ‘function according to the
expectations of its stakeholders’?

(That these are all C is a reflection of the first C in ACCU and also of my
need to keep the listings as small as possible. The choice of language
is largely, though not completely, irrelevant, since we have already
stipulated that the underlying layers of software abstraction are perfectly
implemented.)

  // 1. A boolean inversion: return == !b
  bool invert(bool b);

  // 2. A string comparison
  int strcmp(char const* lhs, char const* rhs);

  // 3. A base-64 conversion [B64_ENCODE]
  size_t b64_encode(
    void const* src,  size_t srcSize
  , char*       dest, size_t destLen
  );

  // 4. A recursive file-system search
  // [RECLS_SEARCH]
  RECLS_API Recls_Search(
      char const* searchRoot
  ,   char const* pattern
  ,   int         flags
  ,   hrecls_t*   phSrch
  );

Well, I'd bet my life, and those of my wife and sons, on my being able to
implement (1) perfectly. I’d expect all of you to be comfortable to make
a similar compact with your most precious lives.

Conversely, I can tell you that I definitely would not ever be prepared to
bet anything of grave importance on the implementation of (4). This is
despite my having used my implementation of it, seemingly entirely
successfully, probably tens of thousands of time over the last several
years.

Beyond those two definitive positions, I’m somewhat up in the air on the
other two. Since I’m a programmer, I’m instinctively driven to believe that
I could implement perfect implementations of both (2) and (3). And I have,
in fact, implemented both before, numerous times in the case of
strcmp(). And as far as I am aware, both are perfect. But I still wouldn’t
bet my life on it.

Obviously, the interesting part of this thought experiment is why I hold
those different positions, and the criteria I have considered in forming
them. The key is in understanding the difference between correctness
and robustness and/or reliability, and between contract specification and
testing, all of which will be discussed in the next instalment. In the
meanwhile, I’d be keen to hear from readers on their positions.

The Bet-Your-Life? Test
August 2009 | Overload | 11



FEATURE MATTHEW WILSON
Discoverability and transparency
Discoverability and transparency are a pair of software quality
characteristics that pertain to the somewhat nebulous concept of how ‘well-
written’ a software entity might be. They are defined as follows [XSTLv1]:

Discoverability is how easy it is to understand a component in
order to be able to use it.

Transparency is how easy it is to understand a component in
order to be able to change it.

I believe that it’s self-evident that these two are hugely significant in the
success of software libraries. Particularly so with discoverability, since
people have very low tolerance for discomfort in the early stages of
adoption of a software library. (This is one of the reasons why I write so
many C++ libraries: I cannot discover the interface of many existing ones.)
The two characteristics have significant impact on the (uselessly vague and
overly general, in my opinion) notion of maintainability. If something is
hard to change, then the changing of it is going to be (i) unwillingly
undertaken and (ii) of high risk. Furthermore, if something is hard to use,
then its users will be poorly qualified to guide its evolution.
Consequently, I find mildly astonishing the absence of much concern over
these two quality characteristics in commercial developments. In my
opinion, discoverability and transparency have one of the biggest cost
impacts on software projects, and we should aim to maximise them as
much as is possible. The problem with that intent, however, is that, unlike
correctness, discoverability and transparency are subjective and non-
quantifiable. But there is hope, in the application of the idiom: ‘when in
Rome …’

Efficiency
Efficiency is the degree to which a software entity executes using the
minimum amount of resources. The resources we commonly think of are
processing time and memory, but other resources, such as database
connections and file handles, can be equally important, depending on
application domain.
Efficiency may be primarily concerned with:

Whether the algorithm chosen to implement the entity’s
functionality is implemented to use the minimum amount of
resources, and
Whether another algorithm may fulfil the entity’s functionality
using fewer resources

There are other factors that can influence efficiency, including:
The compilation environment used to translate and optimise the code
The execution environment used to execute the code (e.g. choosing
one JVM over another, single vs. multi-core hardware)

Doubtless we’ve all heard of Hoare/Knuth’s ‘premature optimisation is the
root of all evil’ quotation. The problem is, this has been misunderstood and
seized upon by a generation of feckless and witless programmers who
don’t care about their craft and should instead be spending their days
giving someone else’s profession a bad name, egged on by commercially-
driven mega-companies with giant frameworks and rich consulting
services to be foisted on under-informed clients.
I’ve never worked on a commercial software project where performance
was not important, and, frankly, I can’t think of a serious software
application where it would not be. The actual full quote was ‘we should
forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil’, which makes a whole lot more sense. It’s
not suggesting that programmers blithely ignore performance, rather it’s
an exhortation to focus on the most significant performance issues first,
rather than to ‘sweat the small stuff’. Now that makes a lot of sense.
As Herb Sutter has postulated [FREE-LUNCH], we have run out of the
performance free-lunch, and it’s time to start tightening our belts.

Expressiveness
Expressiveness is ‘how much of a given task can be achieved clearly in as
few statements as possible’ [XSTLv1]. Expressiveness is also known as
programming power (or just power), but it’s a poorer term for a variety of
reasons, and I won’t mention it further.
Some code examples will illustrate the point more clearly than words. The
first one involves file-system search on UNIX (and is parsimoniously lifted
from the section on expressiveness in the prologue of Extended STL,
volume 1 [XSTLv1]):
Contrast Listing 1 with Listing 2.
Here a C++ class – actually an STL Collection [XSTLv1] – combined with
a standard algorithm is used to provide a significantly more expressive
means of tackling the problem of removing all files from the current
directory. It achieves this by raising the level of abstraction – all possible
files are treated as a single entity, a collection – and by relying on language
facilities – deterministic destruction to handle resources, and namespacing
rules to define constants with natural names.
I hope it’s clear that the expressiveness of class + algorithm engenders a
substantial increase in the transparency of the application code. This is not
measured solely in the reduction of lines of code, but also in the removal
of pointers, the S_IF??? constants, and explicit resource management, and
in the ability to read the second statement as ‘for each item in entries,
remove [it]’. However, before we get carried away, we must balance such
gains in concision with the discoverability (or lack thereof) of the
components. The first ‘big thing to be known’ is the use of STL iterator-
pair ranges and algorithms. Certainly, to experienced C++ programmers
this is now as straightforward as tying one’s shoes. But STL is not, in my
opinion, intuitive. Of less magnitude (since it’s not a global idiom like STL
collection + algorithm), but still significant, is the dialecticism of all
abstractions, in this case the readdir_sequence class.
There’s an obviousness to this that’s teeth-grindingly painful to state, but
it needs to be stated nonetheless. Every meaningful software component
provides either a different interface or a different implementation, or both,
to all others. If it doesn’t, you find yourself the proud owner of a wheel
the same size and specification as your neighbour, and there’s precious
little use in that.
If, as is the more common case, your component has a different interface
to existing ones, then by definition you affect its discoverability. Users
must familiarise themselves with the component’s interface to be able to
use it. The challenge in this case is to restrict the non-normative aspects
to the minimum, without sacrificing other aspects of software quality or

Listing 1

DIR* dir = opendir(".");
if(NULL != dir)
{
  struct dirent* de;
  for(; NULL != (de = readdir(dir)); )
  {
    struct stat st;
    if( 0 == stat(de->d_name, &st) &&
        S_IFREG == (st.st_mode & S_IFMT))
   {
     remove(de->d_name);
   }
  }
  closedir(dir);
}

Listing 2

readdir_sequence entries(".",
   readdir_sequence::files);
std::for_each(entries.begin(), entries.end()
   , ::remove);
12 | Overload | August 2009



FEATUREMATTHEW WILSON
functionality. In the case of the readdir_sequence class, this is limited
to the construction of instances, which involving specifying a search
directory and/or search flags, and the collection’s value type (which
happens to be char const*). The rest of the functionality of the class
adheres to the requirements of an STL Collection [XSTLv1] – it provides
access to elements via begin() and end() iterator ranges – and therefore
can be used in the same, idiomatic manner as any other STL collections.
Conversely, if your component provides a new implementation, you will
have to reveal something about it to potential users, or they’ll have no
reason to use it. And like as not you’ll have to reveal something more
substantive than just saying ‘it’s faster’, so you’ll find yourself with a leaky
abstraction [LEAK, XSTLv1]. Whatever information that must be leaked
adds to the sum of knowledge that must be mastered for your component
to be used properly – it affects its discoverability. An example of this might
be a fast memory allocator that works by using a custom heap that ignores
all free() calls and simply dumps the memory pool at an established
known point. Users will have to abide by the rules of when/where to
allocate in order to establish that point.
As if all that wasn’t enough, there are even cases where expressiveness can
detract from transparency. Consider the following three chunks of C#
code, using the new ‘100%’ rewrite of the recls [RECLS-100%] recursive
file-system search library (Listing 3).
Thankfully no-one has to write code like that. Even in C# 1.0 you could
let the compiler do some of the hard work for you, via foreach, as in
Listing 4.
Such loops are idiomatic in the programming world, not just to C#, and I
can’t imagine anyone arguing that the increased expressiveness of the
second form incurs a cost to discoverability or transparency over the first.
With C# 3.0, it’s possible to condense things even further by using the
extension methods provided in the latest recls .NET library in combination
with the new language facility of lambda constructs, giving a single
statement:

  FileSearcher.Search(directory, patterns)
    .Filter((entry) => !entry.IsReadOnly)
    .ForEach((entry) => Console.Out.WriteLine(
       entry.SearchRelativePath));

I don’t think this improvement is quite so unequivocal. Certainly the
concision appeals to C# power uses – it does to me – but I don’t think
anyone can argue, even when the use of lambda becomes second nature to

all C# programmers, that such a statement is as transparent as the second
loop.
I believe that expressiveness is a large factor in the preferences that
programmers have for one language over another. It directly impacts
productivity because programmers have to type less to express their intent
and, importantly, read less when they come back to modify it. It also
indirectly affects productivity by reducing defect rates, since many lower
level defects simply don’t occur. It’s not just that housekeeping tasks are
obviated: looking back to the file enumeration example, we see that there
is no opportunity to forget to release the search handle (via closedir())
because readdir_sequence does it for us. It’s also that the amount of
distraction from the main semantic intent of code is reduced: in the C
version, the call to remove() is that much less discriminated from the
boilerplate than in the C++ version, wherein it takes centre stage.
It’s no coincidence, therefore, that many of the major languages appear to
be making substantial moves to improve their ability to support
expressiveness.

Flexibility
Flexibility is ‘how easily a [software entity] lets you do what you need to
do, with the types with which you need to do it’ [FF1].
As you may remember from my recent series of articles on FastFormat
[FF1, FF2, FF3], flexibility is something I prize very highly in software
libraries. To be able to translate your design clearly and correctly into code
it is important to be able to express your program logic in terms of the types
you deem appropriate to your level of abstraction, rather than the types
appropriate to the level of abstraction of the component or sub-system in
terms of which you’re implementing. When you can’t do this, you
experience what I call abstraction dissonance. The following definitions
are borrowed from my still-in-preparation book Breaking Up The
Monolith: Advanced C++ Design Without Compromise, which I’m
hoping to finish this year; the web-site [BUTM] contains a slowly growing
list of concept/pattern/principle definitions, including:

Unit of Currency: the primary physical type with which client
code represents a given conceptual type; the primary physical
type by which a component or API communicates a given
conceptual type to its client code.

Abstraction Dissonance: the condition whereby client code is
written using units of currency that exist at a higher level of
abstraction than those used by the libraries/APIs in terms of
which the client code is written.

My signal case for abstraction dissonance can be composed from two of
the most commonly used and well-understood components from the C++
standard library:

  std::string path = "data-file";
  std::ifstream stm(path); // DOES NOT COMPILE!

That this does not compile, and the user is forced to pollute the client code
with the damnable .c_str(),  is nothing less than ridiculous.

  std::ifstream stm(path.c_str());

There are several things that can be done to avoid, or to obviate, situations
like this, and I plan to cover them in future instalments. (They’re also
discussed at length in Monolith, should it ever get to the presses.)
Flexibility directly impacts expressiveness and transparency, and
indirectly impacts discoverability, efficiency, modularity, and correctness/
robustness. I intend to cover many instances of conflict/compromise
between these characteristics in the coming articles.

Listing 3

IEnumerator en = FileSearcher.Search(directory,
  patterns).GetEnumerator();
while(en.MoveNext())
{
  IEntry entry = (IEntry)en.Current;
  if(!entry.IsReadOnly)
  {
    Console.Out.WriteLine(
       entry.SearchRelativePath);
  }
}

Listing 4

foreach(IEntry entry in FileSearcher.Search(
   directory, patterns))
{
  if(!entry.IsReadOnly)
  {
    Console.Out.WriteLine(
       entry.SearchRelativePath);
  }
}

August 2009 | Overload | 13



FEATURE MATTHEW WILSON
Modularity
Modularity is about dependencies, usually unwanted ones. This tends to
have two forms [FF1]:

What else do I need to do/have in order to work with the library 
What else do I need to do/have in order to use the library to work
with other things 

There’s been a long and inglorious history of poor modularity in the
programming pantheon. Windows programmers will remember (or may
still be using) the vastness of the MFC libraries. Java and .NET
programmers still experience the deployment hassles of their respective
virtual support machinery (though many seem not to realise the problems
they, or their users, face). But those are all easy pickings. Modularity
problems are also to be found in far more subtle, though no less
problematic, situations.

Portability
Portability is about how readily you can use a software entity in your
chosen operating environment. The ‘operating environment’ may differ in
any/all of the following:

Operating system
Processor architecture
Compiler
Libraries
Feature modes (e.g. without exceptions and/or RTTI)

C was intended as a portable assembler, and as such it does a great, albeit
partial, job of abstracting away disparate physical architectures. But even
then, porting compiled C programs to different architectures is impossible,
and porting C programs by source often involves troubling aspects,
including, but not limited to, architecture differences (e.g. in the sizes of
types and byte-ordering) and operating system services. (Anyone who’s
ported between UNIX and Windows will know the pain to which I allude.)
The same goes for C++, with the considerable additional difficulties
resulting from the vastly different interpretations and offerings of the C++
language facilities by the compilers currently available. As I’ve mentioned
in previous writings, I reckon that 90%+ of the time I spend on my open-
source C++ libraries is in making the code play nice with all the compilers.
It’s not cool, and it’s not fun.
But things are hardly perfect in the virtual machine languages. I have had
my fair share of Java’s ‘write once, debug everywhere’ misery, not to
mention the sad irony of C#, a formerly-mediocre/now-good/looking-like-
becoming-great language bound to a basket-case family of operating
systems. I look forward to some smart people separating the language from
Windows and the .NET runtime: that would produce something very
interesting.
Even when one exits the world of compiled languages entirely, portability
is still imperfect, in part due to the leaking up of abstractions of the
underlying operating environments. Two obvious ones are the slash/
backslash shemozzle, and the lack of globbing in some command-line
interpreters. But it can be more profound, such as the relative costs of
starting new processes and new threads.
I could go on and on, but I won’t. Suffice to say that there is no perfect
portability, but there are definitely things that can be done to improve it.

Quantifying quality: relativity and subjectivity
Almost every one of the above characteristics is relative and/or subjective.
That does not stop them being useful, but it does mean that we should try
to qualify observations about a particular characteristic in terms of the
things that we can assess absolutely and objectively.
For example, transparency is highly subjective, but we may attempt to
quantify it by enumerating the points of lore and law that must be known
to understand a given chunk of code. Similarly, we can make some
rudimentary measurement of expressiveness by counting lines of code, and
number of sub-expressions in each line. I have my own ideas on these

things, and there’s plenty of wisdom in the canon, but I’m keen to hear from
readers any of their own opinions on the matter.

Characteristics in concert …
Programmers will always be biased towards one or more intrinsic software
quality characteristics, although the particular characteristic(s) may differ
in different contexts. When I’m doing C++ it’s all about being ‘fast’, i.e.
safe and quick. In Ruby it’s all about expressiveness, and discoverabilty
and transparency. But it’s important to assess maturing components in
terms of all relevant intrinsic software quality characteristics.
In many circumstances, just the act of examining a software component
in terms of one or more intrinsic software quality characteristics can lead
to easy changes that will enhance it in terms of others. It may also,
obviously, highlight important deficiencies. 
For example, I often find that a first version of a component will be written
in terms of some other, useful, component from another library. But if it
turns out that just this one piece of reuse incurs coupling to a large library
that can cause substantial inconvenience (and hinder acceptance) in terms
of modularity and portability, I will be inclined to eschew the third-party
component and implement its functionality explicitly within the developed
code.
But beyond incidental and independent improvements in respect of
particular software quality characteristics, it is often the case that these
software quality characteristics can be in conflict. I believe that these
conflicts must be explicitly identified and considered, and documented for
the benefits of authors (and future maintainers) and for its users. 
For example, the FastFormat library, described in articles in the last three
instalments of this journal, has a bunch of fairly clear design decisions:

1. 100% type-safety, and the highest possible correctness/reliability/
robustness

2. Extremely high efficiency – no duplication of measurements or
wasted allocations

3. High flexibility (including infinite extensibility)
4. Support for I18N/L10N
5. Highest possible level of expressiveness that does not detract from

1–4.
6. Highest possible levels of discoverability & transparency that do not

detract from 1–5.
7. Modular
8. Portable

Users are thus able to make a judgement as to whether they can avail
themselves of FastFormat’s performance, robustness and flexibility
advantages or, if they require the highest possible levels of expressiveness
(for width-formatting of numeric types), choose an alternative.

(Removable) diagnostic measures
The foregoing characteristics are intrinsic. They are of the software, if you
will. As we will shortly discuss, the next group are of the programmer(s).
They are things done to (measure the) software by human beings, either
entirely manually, or with the assistance of computers, or entirely by
automated process but still operating as an agency of the programmer(s).
In all cases, they are external to the software.
In between these two positions lies a group of measures that are in the
software but are of the programmer. They are used for assessing or
ensuring the quality of the software. But they have one important
characteristic in common: in all cases they are removable. With the
terminological assistance of beneficent and sagacious members of the
ACCU general mailing list, I now call these (removable) diagnostic
measures. They include:

Code coverage constructs
Contract enforcements
Diagnostic logging constructs
Static assertions
14 | Overload | August 2009



FEATUREMATTHEW WILSON
The parenthetical inclusion of ‘removable’ in the name serves as an
important reminder of the principle of removability (again, from the
Monolith website [BUTM] in lieu of the book; I have Christopher Diggins
to thank for the nice wording):

The Principle of Removability:

When applied to contract enforcement, the principle of
removability states: A contract enforcement should be
removable from correct software without changing the (well-
functioning) behaviour.

When applied to diagnostic logging, the principle of removability
states: It must be possible to disable any log statement within
correct software without changing the (well-functioning)
behaviour.

The same thing goes for code coverage constructs, and for static assertions.
Obviously, there’s a bit of circularity here insofar as we’ve already
established correctness as only being definable in terms of contract
enforcements or automated testing, and now we’ve saying that contract
enforcements can be removed from correct software. Well, what can I tell
you? Somewhere we’ve got to take a stand.

Applied assurance measures
This group of things are actions that are done by, or on behalf of, software
developers, many of which are to be found as primary constituents of
established development methodologies. More than half of the list is about
testing.

Automated functional testing
Performance profiling and testing
User acceptance testing
Scratch testing
Smoke testing
Code coverage analysis/testing
Review (manual and automated)
Coding standards
Code metrics (automated and manual)
Multi-target compilation
… and more …

Most of these should be well known to all competent and experiences
programmers, and I don’t need to say any more about them at this time.
The one thing I will comment on now is the use of the term measure. Just
like the title of the column, this meaning of the term is helpfully
overloaded: a measure can be a metric/assessment, and also an approach/
policy.

Puzzling phenomena
Thanks to the Global Financial CrisisTM, I’ve recently had to devote
serious effort to the business of attracting clients for the first time in a
comfortably long while. In updating the company website and my own
vitae, I’ve noted some surprising observations, including, in no particular
order, the following:

1. b64 is popular, and recls is not
2. Pantheios is popular, and FastFormat is not so much
3. No software (sub-)system developed by Synesis Software (my

company) has ever had a failure in production. (Caveat: there’s been
one apoptotic episode, but that was a good thing. Something to
examine when we talk about contract programming.)

The third fact is the one with the most commercial bite, but I assure you
that my mentioning it is more than mere grandstanding. (Well, there’s

some grandstanding in there of course, and if any potential clients out there
want some magic no-fail pixie dust sprinkled on their codebase, by all
means get in contact.) But the main point is that even though I have always
prized software quality – even from before I was experienced enough to
properly detect or apply it – it was still something of a pleasant shock to
realise that we’ve never had a production failure. Given that the various
software (sub-)systems have handled billions of dollars of transactions,
that’s a pretty comforting thought. And it’s nice to be able to trumpet that
on the company website. But why should that be of interest to me or you,
gentle readers?
Well, it’s of direct interest to me because it’s quite an improbable
achievement, and realising it gives me confidence to attempt the
undertaking of writing this column. And I hope it’s of interest to you in
that it might give you some confidence that some of what I say might be
worth a read (assuming you can stomach my grandiloquent loquacity).
Anyway, I won’t attempt to offer further convincing on my qualification
for the post. If I bodge it, Ric will give me the flick, and rightly so.

Open-source library popularity
What of the relevance of the other two facts, pertaining to the relative
‘popularity’ of two pairs of my libraries. On the surface, the two popular
libraries should be in the shadow of the two less-popular ones, and the
consideration of why they’re not has raised a number of issues in my mind
pertaining to software quality. Let’s look at some of the aspects of the
puzzle. 

Generality of purpose
The b64 library provides Base-64 encoding/decoding. The recls library
provides platform-independent recursive file-system search facilities. The
latter is surely more generally useful than the former.
Pantheios is a diagnostic logging API library. FastFormat is a formatting
library. Although I will argue strongly later that it should not be so, I
believe that formatting is to be found far more frequently than logging in
C++ codebases.

Available languages
b64 provides a C and a C++ API. recls provides C, Ch, COM, C++ (and
STL), C#/.NET, D, Java, Python and Ruby APIs.
Pantheios and FastFormat are both C++ libraries, although Pantheios does
provide a C-API for logging C programs.

Promotion
I have not written any articles about b64, and beyond passing a link once
or twice I have done nothing to promote it. Conversely, I wrote an
extensive series of articles about recls for CUJ/DDJ in 2003-5. Unlike the
other three, b64 doesn’t even have its own domain, and just has a
downloads page that hangs off an unremarkable, barely linked part of the
Synesis website. Furthermore, apart from one commercial project, the only
thing I’ve ever used b64 for is to implement the pantheios::b64
inserter class. And b64 is bundled with Pantheios, only adding to the puzzle
of its (relatively) high independent downloads. 
I have not (yet) written any articles about Pantheios, whereas I’ve written
a recent series of three articles about FastFormat [FF1, FF2, FF3], where
I pretty much prove its superiority over the existing alternatives.

Frequency of release
Although not differing by orders of magnitude, the frequency of releases
of recls is greater than that of b64, and FastFormat has been greater than
that of Pantheios over the last few months. This serves to further highlight
the disparity in ongoing level of downloads (and other activity) of the latter
libraries.

Popularity
Over the past couple of years, b64 downloads have been steady at around
2200 per year, whereas the average for recls is around 500 per year. Even
August 2009 | Overload | 15



FEATURE MATTHEW WILSON
though it’s not a huge number per se, I find it remarkable, given that Base-
64 conversion is a niche area of functionality.
Similarly, Pantheios downloads tends to be several hundred per week,
whereas FastFormat is around 50-80. And the SourceForge rankings,
based on downloads, web page hits, forum and tracker activity, are
similarly different: Pantheios tends to be in the top two hundred,
FastFormat around 2000.

What gives?
Despite all these factors pushing in the favour of recls and FastFormat,
there are clearly some important effects that are overriding them. I will
expound on these in later instalments, but it’s worth mentioning some now,
I think:

Satisfiction. There are several, very well-established formatting
libraries available for C++ programmers, so FastFormat has a lot of
mindshare to capture. Users of the existing libraries are satisfied
with what suffices, in an effect I’ve previously called satisfiction
[XSTLv1].
Green pasture. In contrast, Pantheios has no serious competitors as
a logging API library: the existing (and impressively feature-rich)
logging libraries have APIs that are manifestly unfit for purpose.
Language. I believe that, all other things being equal, a library
implemented in C (such as b64) will be far more popular than one
implemented wholly or partly in C++ (such as recls), due to
concerns (well-founded or not) of performance, portability, and
transparency.
Modularity. b64 does not have any dependencies, not even on the
C runtime library. FastFormat, Pantheios and recls all depend on the
STLSoft libraries, which cause users more effort (even though, as
100% header-only, the effort involves nothing more than
downloading and setting an environment variable).

Doubtless there’s more to the situation than I have divined here, but it’s
enough to inform the analyses of these libraries that will start in the next
instalment. I’m keen to hear opinions from readers their thoughts on this
issue.

Column format
I don’t know about you, but I find it very difficult to understand, or
remember, concepts that are presented without examples. Similarly, I find
it hard to write about concepts without using examples. So, the instalments
of this column – except this first one – are going to be rich with example
libraries, programs and code.
For most of these I’ll be using my own code, largely because I am able to
criticise it as much as is necessary without offending anyone else. The
precise material will depend on what is uncovered as the articles progress,
but I am confident we’ll start in some of my open-source C and C++
libraries, and then move to particular algorithms, components and
programs, including those in other languages. For example, I’m currently
working with a colleague in updating the Synesis Software .NET libraries
(and some .NET forms of several open-source libraries) for C# 2 and 3,
and we’re cooking. The contrast of what’s superior and what’s inferior to
C++ is very thought-provoking.
In terms of subject areas, you can expect future columns to have diverse
subjects, including some/all of the following:

Correctness, robustness and reliability
Contract programming: The principles of removability and
irrecoverability
Defining contracts: Identifying and defining software components
Trade-offs in intrinsic software quality characteristics
Attracting real users: It’s the coupling, Stupid!
Efficiency for real
Packaging
The logging conundrum

Component vs unit-testing: A scratch and sniff approach
Automated testing
The evils of the Boolean type(s)
Overloading vs overriding
Defining clean methods
Software quality measures for multithreaded programming
Cracking the abstraction puzzle 
Conformance: Structural, semantic, explicit, intersecting, and all
manner of foul beasts
… and lots of discussions of the differences in software quality
approaches between different application areas, between different
languages, between different layers of abstraction

Naturally, some of the material discussed will be a cheap rip-off from that
already included in my books. The several in-progress book projects will
likely overlap too. But the limited size and broad scope of the column will
mean that there’s plentiful opportunity to have unique content in each
medium.

A quest for quality …
As ably discussed in Code Complete [CC], organisations are only able to
significantly improve their software quality by a combination of measures.
Importantly, the combination has to involve both automated measures and
human measures.
I would like to point out that, in my opinion, more important than all the
individual measures is a requirement for the people who are writing the
software to have the wit and will to seek out quality processes and apply
them, against the twin obstacles of business imperatives and the apathy/
heroism of ‘programmers’ who should be in a different career. One of the
wonderful things about being a programmer is that it is fun, it is creative,
and it can (and should) be beautiful. In this crucial respect, it is a true craft,
and it is my aim with this column to help others improve their
craftsmanship through the (limited) discussion of quality concepts and the
(generous) application of practical quality measures. I invite you to join
me. 

References and asides
[B64_ENCODE] This is one of the API functions from the b64 library, 

described at http://synesis.com.au/software/b64/doc/
b64_8h.html#50a93e4f6a922c5314a9cb50befc2d13

[BUTM] http://breakingupthemonolith.com/
[CC] Code Complete, 2nd Edition, Steve McConnell, Microsoft Press, 

2004
[FF1] An Introduction to FastFormat, part 1: The State of the Art, 

Matthew Wilson, Overload 89, February 2009
[FF2] An Introduction to FastFormat, part 2: Custom Argument and Sink 

Types, Matthew Wilson, Overload 90, April 2009
[FF3] An Introduction to FastFormat, part 3: Solving Real Problems, 

Quickly, Matthew Wilson, Overload 91, June 2009
[FREE-LUNCH] ‘The Free Lunch Is Over: A Fundamental Turn Toward 

Concurrency in Software’, Herb Sutter, Dr Dobb’s Journal, March 
2005

[LEAK] http://en.wikipedia.org/wiki/Leaky_abstraction
[RECLS_SEARCH] This is one of the API functions from the recls 

library, described at http://www.recls.org/help/1.6.1/
group__group__recls.html#a1

[RECLS-100%] I’m in the process of rewriting the recls library as ‘recls 
100%’, whereby each implementation of recls for a given language 
will be implemented 100% in that language, rather than recls 1.0–1.8 
where each language had a thinnish binding to the underlying C-API. 
See http://recls.org for progress.

[OOSC] Object Oriented Software Construction, 2nd Edition, Bertrand 
Meyer, Prentice-Hall, 1997

[XSTLv1] Extended STL, volume 1: Collections and Iterators, Matthew 
Wilson, Addison-Wesley, 2007
16 | Overload | August 2009

http://synesis.com.au/software/b64/doc/b64_8h.html#50a93e4f6a922c5314a9cb50befc2d13
http://synesis.com.au/software/b64/doc/b64_8h.html#50a93e4f6a922c5314a9cb50befc2d13
http://breakingupthemonolith.com/
http://en.wikipedia.org/wiki/Leaky_abstraction
http://www.recls.org/help/1.6.1/group__group__recls.html#a1
http://www.recls.org/help/1.6.1/group__group__recls.html#a1
http://recls.org


FEATURETHOMAS GUEST
Code Rot
Maintaining code is vital to keep it working. Tom Guest 
explores what happens when you neglect it.
Those of us who have to tiptoe around non-standard or ancient compilers 
will know that template template parameters are off limits.

— Hubert Matthews [Matthews03]

Dvbcodec fail
ong ago, way back in 2004, I wrote an article for Overload [Guest04]
describing how to use the Boost Spirit [Spirit] parser framework to
generate C++ code which could convert structured binary data to text.

I went on to republish this article on my website, where I also included a
source distribution. 
Much has changed since then. The C++ language hasn’t, but compiler and
platform support for it has improved considerably. Boost survives —
indeed, many of its libraries will feed into the next version of C++.
Overload thrives, adapting to an age when print programming magazines
are all but extinct. My old website can no longer be found. I’ve changed
hosting company and domain name, I’ve shuffled things around more than
once. But you can still find the article online if you look hard enough, and
recently someone did indeed find it. He, let’s call him Rick, downloaded
the source code archive, dvbcodec-1.0.zip [DVBcodec], extracted it,
scanned the README, typed: 
  $ make

… and discovered the code didn’t even build. 
At this point many of us would assume (correctly) the code had not been
maintained. We’d delete it and write off the few minutes it took to evaluate
it. Rick decided instead to contact me and let me know my code was
broken. He even offered a fix for one problem. 

Code rot
Sad to say, I wasn’t entirely surprised. I no longer use this code. Unused
code stops working. It decays. 
I’m not talking about a compiled executable, which the compiler has tied
to a particular platform, and which therefore progressively degrades as the
platform advances. (I’ve heard stories about device drivers for which the
source code has long gone, and which require ever more elaborate
emulation layers to keep them alive.) I’m talking about source code. And

the decay isn’t usually literal, though I suppose you might have a source
listing on a mouldy printout, or on an unreadable floppy disk. 
No, the code itself is usually a pristine copy of the original. Publishers often
attach checksums to source distributions so readers can verify their
download is correct. I hadn’t taken this precaution with my dvbcodec-
1.0.zip but I’m certain the version Rick downloaded was exactly the same
as the one I created 5 years ago. Yet in that time it had stopped working.
Why? 

Standard C++
As already mentioned, this was C++ code. C++ is backed by an ISO
standard, ratified in 1998, with corrigenda published in 2003. You might
expect C++ code to improve with age, compiling and running more
quickly, less likely to run out of resources. 
Not so. My favourite counter-example comes from a nice paper
‘CheckedInt: A policy-based range-checked integer’ published by Hubert
Matthews towards the end of 2003 [Matthews03], which discusses how to
use C++ templates to implement a range-checked integer. The paper
includes a code listing together with some notes to help readers forced to
‘tiptoe around non-standard or ancient compilers’ (think: MSVC6). Yet
when I experimented with this code in 2005 I found myself tripped up by
a strict and up-to-date compiler (see Figure 1).
I emailed Hubert Matthews using the address included at the top of his
paper. He swiftly and kindly put me straight on how to fix the problem. 
What’s interesting here is that this code is pure C++, just over a page of
it. It has no dependencies on third party libraries. Hubert Matthews is a
C++ expert and he acknowledges the help of two more experts, Andrei
Alexandrescu and Kevlin Henney, in his paper. Yet the code fails to build
using both ancient and modern compilers. In its published form it has a
brief shelf-life. 

Support rot
Code alone is of limited use. What really matters for its ongoing health is
that someone cares about it — someone exercises, maintains and supports
it. Hubert Matthews included an email address in his paper and I was able
to contact him using that address.
How well would my code shape up on this front? Putting myself in Rick’s
position, I unzipped the source distribution I’d archived 5 years ago. I was
pleased to find a README which, at the very top, shows the URL for
updates, http://homepage.ntlworld.com/thomas.guest. I was less pleased
to find this URL gave me a 404 Not Found error. Similarly, when I tried
emailing the project maintainer mentioned in the README, I got a 550

L

Thomas Guest is an enthusiastic and experienced 
programmer, who has worked on everything from embedded 
systems to clustered servers. His website is 
http://wordaligned.org and he can be contacted at 
thomas.guest@gmail.comFigure 1

$ g++ -Wall -c checked_int.cpp
checked_int.cpp: In constructor 
`CheckedInt::CheckedInt(int)':
checked_int.cpp:45: error: there are no arguments 
to `RangeCheck' that depend on a template 
parameter, so a declaration of `RangeCheck' must 
be available
checked_int.cpp:45: error: (if you use 
`-fpermissive', G++ will accept your code, but 
allowing the use of an undeclared name is 
deprecated)
August 2009 | Overload | 17



FEATURE THOMAS GUEST
Inva l id  r ec i p i en t  e r ro r :  t he  a t t e mp t ed  de l i ve ry  t o
thomas.guest@ntlworld.com had failed permanently. 
Cool URIs don’t change [W3C] but my old NTL home was anything but
cool; it came for free with a dial-up connection I’ve happily since
abandoned. Looking back, maybe I should have found the code a more
stable location. If I’d created (e.g.) a Sourceforge project then my
dvbcodec project might still be alive and supported, possibly even by a new
maintainer. 

How did this ever compile?
These wise hindsights wouldn’t fix my code. If I wanted to continue I’d
have to go it alone. Figure 2 is what the README had to say about
platform requirements. 
A ‘good C++ compiler’, eh? As we’ve already seen, GCC 3.3.1 may be
good but my platform has GCC 4.0.1 installed, which is better. If my
records can be believed, this upperCase() function (see Listing 1)
compiled cleanly using GCC 3.3.1 and MSVC 7.1. 
Huh? Std::string is a typedef for std::basic_string<char>
and, as GCC 4.0.1 says, there’s no such thing as a std::basic_string
<char><char>::iterator: 
  stringutils.cpp:58: error: 'std::string' is not a
  template

The simple fix is to write std::string::iterator instead of
std::string<char>::iterator. A better fix, suggested by Rick, is
to use std::transform(). I wonder why I missed this first time round?
(See Listing 2.)

Boost advances
GCC has become stricter about what it accepts even though the formal
specification of what it should do (the C++ standard) has stayed put. The
Boost C++ libraries have more freedom to evolve, and the next round of
build problems I encountered relate to Boost.Spirit’s evolution. Whilst it
would be possible to require dvbcodec users to build against Boost 1.31

(which can still be downloaded from the Boost website) it wouldn’t be
reasonable. So I updated my machine (using Macports) to make sure I had
an up to date version of Boost, 1.38 at the time of writing. 
  $ sudo port upgrade boost

Boost’s various dependencies triggered an upgrade of boost-jam, gperf,
libiconv, ncursesw, ncurses, gettext, zlib, bzip2, and this single command
took over an hour to complete. 
I discovered that Boost.Spirit, the C++ parser framework on which
dvbcodec is based, has gone through an overhaul. According to the
change log the flavour of Spirit used by dvbcodec is now known as Spirit
Classic. A clever use of namespaces and include path forwarding meant
my ‘classic’ client code would at least compile, at the expense of some
deprecation warnings (Figure 3). 
To suppress these warnings I included the preferred header. I also had to
change  namespac e  d i r ec t i ve s  f rom boost::spirit  t o
boost::spirit::classic. I fleetingly considered porting my code to
Spirit V2, but decided against it: even after this first round of changes, I
still had a build problem. 

Changing behaviour
Actually, this was a second level build problem. The dvbcodec build has
multiple phases (Figure 4): 

1. it builds a program to generate code. This generator can parse binary
format syntax descriptions and emit C++ code which will convert
data formatted according to these descriptions 

2. it runs this generator with the available syntax descriptions as inputs 
3. it compiles the emitted C++ code into a final dvbcodec executable 

 
I ran into a problem during the second phase of this process. The
dvbcodec generator no longer parsed all of the supplied syntax
descriptions. Specifically, I was seeing this conditional test raise an
exception when trying to parse section format syntax descriptions. 

Figure 2

REQUIREMENTS and PLATFORMS 
To build the dvbcodec you will need Version 1.31.0 of Boost, or later. 
You will also need a good C++ compiler. The dvbcodec has been 
built and tested on the Windows operating system using: GCC 3.3.1, 
MSVC 7.1 

Listing 1

std::string
upperCase(std::string const & lower)
{
  std::string upper = lower;
  for (std::string<char>::iterator cc =
     upper.begin();
  cc != upper.end(); ++cc)
  {
    * cc = std::toupper(* cc);
  }
  return upper;
}

Listing 2

std::string
upperCase(std::string const & lower)
{
  std::string upper = lower;
  std::transform(upper.begin(), upper.end(),
     upper.begin(), ::toupper);
  return upper;
}

Figure 4

Figure 3

Computing dependencies for decodeout.cpp...
Compiling decodeout.cpp...
In file included from codectypedefs.hpp:11,
                 from decodecontext.hpp:10,
                 from decodeout.cpp:8:
/opt/local/include/boost/spirit/tree/
ast.hpp:18:4: warning: #warning "This header is 
deprecated. Please use: boost/spirit/include/
classic_ast.hpp"
In file included from codectypedefs.hpp:12,
                 from decodecontext.hpp:10,
                 from decodeout.cpp:8:

G enerator 
Source

G enerator 
Executable

D vbcodec 
Source

D vbcodec 
Executable

Syntax 
D escription{
18 | Overload | August 2009



FEATURETHOMAS GUEST
  if (!parse(section_format,
             section_grammar,
             space_p).full)
  {
    throw SectionFormatParseException(
       section_format);
  }

Here, parse is boost::spirit::classic::parse, which parses
something – the section format syntax description, passed as a string in this
case – according to the supplied grammar. The third parameter,
boost::spirit::classic::space_p, is a skip parser which tells
parse to skip whitespace between tokens. Parse returns a parse_info
struct whose full field is a boolean which will be set to true if the input
section format has been fully consumed. 
I soon figured out that the parse call was failing to fully consume binary
syntax descriptions with trailing spaces, such as the the one shown below. 

  " program_association_section() {"
  "    table_id                   8"
  "    section_syntax_indicator   1"
  "    '0'                        1"
  ....
  "    CRC_32                    32"
  " }                              "

If I stripped the trailing whitespace after the closing brace before calling
parse() all would be fine. I wasn’t fine about this fix though. The Spirit
documentation is very good but it had been a while since I’d read it and,
as already mentioned, my code used the ‘classic’ version of Spirit, in
danger of becoming the ‘legacy’ then ‘deprecated’ and eventually the
‘dead’ version. Re-reading the documentation it wasn’t clear to me exactly
what the correct behaviour of parse() should be in this case. Should it
fully consume trailing space? Had my program ever worked? 
I went back in time, downloading and building against Boost 1.31, and
satisfied myself that my code used to work, though maybe it worked due
to a bug in the old version of Spirit. Stripping trailing spaces before parsing
allowed my code to work with Spirit past and present, so I curtailed my
investigation and made the fix. 
(Interestingly, Boost 1.31 found a way to warn me I was using a compiler
it didn’t know about. 
boost_1_31_0/boost/config/compiler/gcc.hpp:92:7: 
warning: 
#warning "Unknown compiler version - please run the 
configure tests and report the results"

I ignored this warning.) 

Code inaction
Apologies for the lengthy explanation in the previous section. The point
is that few software projects stand alone, and that changes in any
dependencies, including bug fixes, can have knock on effects. In this
instance, I consider myself lucky; dvbcodec’s unusual three phase build
enabled me to catch a runtime error. Of course, to actually catch that error,
I needed to at least try building my code. 
Put more simply: if you don’t use your code, it rots. 

Rotten artefacts
It wasn’t just the code which had gone off. My source distribution included
documentation – the plain text version of the article I’d written for
Overload – and the Makefile had a build target to generate an HTML
version of this documentation. This target depended on Quickbook,
another Boost tool. Quickbook generates Docbook XML from plain text

source, and Docbook is a good starting point for HTML, PDF and other
standard output formats. 
This is quite a sophisticated toolchain. It’s also one I no longer use. Most
of what I write goes straight to the web and I don’t need such a fiddly
process just to produce HTML. So I decided to freshen up dead links, leave
the original documentation as a record, and simply cut the documentation
target from the Makefile. 

Stopping the rot
As we’ve seen, software, like other soft organic things, breaks down over
time. How can we stop the rot? 
Freezing software to a particular executable built against a fixed set of
dependencies to run on a single platform is one way – and maybe some of
us still have an aging Windows 95 machine, kept alive purely to run some
such frozen program. 
A better solution is to actively tend the software and ensure it stays in
shape. Exercise it daily on a build server. Record test results. Fix faults as
and when they appear. Review the architecture. Upgrade the platform and
dependencies. Prune unused features, splice in new ones. This is the path
taken by the Boost project, though certainly the growth far outpaces any
pruning (the Boost 1.39 download is 5 times bigger than its 1.31 ancestor).
Boost takes forwards and backwards compatibility seriously, hence the
ongoing support for Spirit classic and the compiler version certification
headers. Maintaining compatibility can be at odds with simplicity. 
There is another way too. Although the dvbcodec project has collapsed
into disrepair the idea behind it certainly hasn’t. I’ve taken this same idea
– of parsing formal syntax descriptions to generate code which handles
binary formatted data – and enhanced it to work more flexibly and with a
wider range of inputs. Whenever I come across a new binary data structure,
I paste its syntax into a text file, regenerate the code, and I can work with
this structure. Unfortunately I can’t show you any code (it’s proprietary)
but I hope I’ve shown you the idea. Effectively, the old C++ code has been
left to rot but the idea within it remains green, recoded in Python. Maybe
I should find a way to humanely destroy the C++ and all links to it, but for
now I’ll let it degrade, an illustration of its time. 

Is it possible that software is not like anything else, that it is meant
to be discarded: that the whole point is to see it as a soap bubble?

Alan J. Perlis

Thanks
I would like to thank to Rick Engelbrecht for reporting and helping to fix
the bugs discussed in this article. My thanks also to the team at Overload
for their expert help. 

References
[DVBcodec] Download of the DVBcodec is available from: http://

wordaligned.org/docs/dvbcodec/dvbcodec-1.0.zip
[Guest04] Thomas Guest, ’A Mini-project to Decode a Mini-language - 

Part One’, Overload #63, October 2004. Available from: http://
accu.org/index.php/journals/241

[Matthews03] Hubert Matthews, ‘CheckedInt: A Policy-Based Range-
Checked Integer’, Overload #58, December 2003. Available from: 
http://accu.org/index.php/journals/324

[Spirit] ‘Spirit User’s Guide’ Available from: http://www.boost.org/doc/
libs/1_39_0/libs/spirit/classic/index.html

[W3C] ‘Cool URIs don’t change’ Available from: http://www.w3.org/
Provider/Style/URI
August 2009 | Overload | 19

http://wordaligned.org/docs/dvbcodec/dvbcodec-1.0.zip
http://wordaligned.org/docs/dvbcodec/dvbcodec-1.0.zip
http://accu.org/index.php/journals/241
http://accu.org/index.php/journals/241
http://accu.org/index.php/journals/324
http://www.boost.org/doc/libs/1_39_0/libs/spirit/classic/index.html
http://www.boost.org/doc/libs/1_39_0/libs/spirit/classic/index.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI


FEATURE RICHARD HARRIS
The Model Student: A Primal 
Skyline (Part 1)
Prime numbers are the ‘building blocks’ of the integers. 
Richard Harris investigates how they’re combined.
he prime numbers, those positive integers wholly divisible by only
themselves or by one, are perhaps the most studied numbers in all of
history. Evidently a breed apart from their more mundane neighbours

on the number line they are, depending upon how much number theory you
have been subjected to, their noble elite, their rugged individualists, or their
psychopathic loners.
Every integer can be represented as the product of a set of primes, known
as the prime factors. For example the number 42 has the prime factors 2,
3, and 7 since .
Numbers with more than one prime factor (i.e. non-primes) are known as
composite numbers and the number 1 is technically known as the identity
and is neither prime nor composite.
Now, in general, the prime factors of a number may contain multiple copies
of each given prime. We can capture this by raising each factor to a power
representing how many times it shows up in the factorisation. For example

Noting that raising a number to the power of 0 results in 1, we can propose
an alternative notation for the integers. Identifying the first, second, third
and so on entries in a list as the powers to which the first, second and third
and so on primes should be raised in the product, and in much the same
way as we truncate trailing zeros in decimal notation, truncating trailing
zeros in our list of prime powers, we have a unique representation for every
integer. For example

since 2, 3, 5 and 7 are the 1st, 2nd, 3rd and 4th primes.
Whilst this happens to be a supremely convenient notation in which to
perform multiplication, it is an atrocious notation for addition, which
perhaps explains why we don’t use it.
Compounding the lack of usefulness of this notation is the fact that it is
actually rather difficult to identify the n’th prime. Generally, the prime
numbers are notoriously difficult to find, which is unfortunate since they
lie at the heart of many of the great unanswered mathematical questions
of the 21st century. Such as, for example, whether the Riemann Hypothesis
is true [duSautoy04], or whether it is possible to efficiently decompose
numbers into their constituent prime factors [Menezes97].

Euclid’s proof of the infinity of the primes
It was Euclid who took the first timid steps towards subjugating these
aristocrats cum robber barons of the integers by demonstrating, over two
thousand years ago, that there are infinitely many of them.
His proof is elegant and simple, and as such is a rare and precious gem of
number theory. It is an example of proof by contradiction in which we

assume that there are only a finite number of primes and then demonstrate
that this leads to a contradiction.
So, assuming there are only n primes for some undetermined value of n,
we can write the product of all of them as follows:

where pi is the i’th prime and the capital pi means the result of multiplying
together all of the values from p1 to pn. In this sense it is much like the
capital sigma we use to represent the sum of a set of numbers.
Now, this number is trivially composite since it can be divided by every
prime. However, consider the result of adding 1 to it:

Now, dividing this number by any of the primes leaves a remainder of 1,
since the product is divisible by all of them and the 1 by none of them.
It is, by definition, greater than any of the primes in our set and hence
cannot be one of them. Furthermore, since it is not wholly divisible by any
of them it must either be a prime itself or have a prime factor that is not in
our set. Hence our set is incomplete, no matter what value n takes and there
must therefore be an infinite number of primes.
Sweet.
Having concluded that the primes are infinite in number, the next obvious
question to ask is how densely packed they are amongst the integers; how
many primes are there less than or equal to any given integer n?

The prime number theorem
We have an approximate answer to this question, at least for large n, first
guessed at by the mathematical giants Legendre and Gauss in the late 18th
century:

The drunkenly scribed equals sign means approximately equal to, the
lower case pi is the function that returns the number of primes less than or
equal to its argument n and the ln is the natural logarithm; the number to
which we need to raise the mathematical constant e (approximately 2.718)
to recover the argument.
It took about 100 years to raise the status of this formula from conjecture
to theorem, when it was tortuously proven by both Vallée-Poussin and
Hadamard [Daintith89].
Technically, the theorem states that the ratio between the number of primes
and this formula tends to 1 as n grows larger.

T

42 2 3× 7×=

252 2 2 3 3 7 22 32 71××=××××=

252 22 32 50 71××× 2 2 0 1, , ,→=

pi
i 1=

n

∏

1 pi
i 1=

n

∏+

π n( ) n
nln

--------≈

π n( )
n nln⁄
---------------

n ∞→
lim 1=

Richard Harris has been a professional programmer since 
1996. He has a background in Artificial Intelligence and 
numerical computing and is currently employed writing 
software for financial regulation.
20 | Overload | August 2009



FEATURERICHARD HARRIS

it could easily be used to determine the
distribution of the primes amongst the

positive integers
The lim term here indicates that we are describing the limit of the
expression that follows it as n grows larger and larger, or tends to infinity.
Figure 1 plots the function counting the primes as the solid line in the graph
on the left, the approximation as the dotted line and the ratio between them
in the graph on the right.
Clearly, the approximation isn’t particularly accurate in this range. Which
is a shame since it could easily be used to determine the distribution of the
primes amongst the positive integers, which is one of the most fundamental
puzzles in number theory.
Those of you who have been following this, as it turns out rather formulaic,
series of articles will not be in the least bit surprised when I abandon all
attempt to address the question at hand and introduce a simpler one which
I, with my limited mathematical arsenal, may actually be capable of
shedding some light upon.
Ready.
Get set.

The X factors
Rather than attempt to investigate the distribution of the primes, I shall
instead propose that we consider looking for a pattern in the prime
factorisations of the integers. As mentioned at the start of this article, every
positive integer can be represented by the product of a set of primes, with
1 being the special case of multiplying together no primes.
The simplest method of factorising integers, known as trial division, is to
iterate through all of the prime numbers less than a given integer,
increasing the powers of each whilst they leave no remainder upon
dividing it.
Listing 1 illustrates a function that prints out the prime factors of its
argument using this algorithm.

Note that if x is sufficiently large then repeated multiplication of the
factor variable by the n’th prime might exceed the maximum
representable value of an unsigned long.
Fortunately, this is not technically an overflow and hence does not invoke
the dreaded undefined behaviour. This is because the C++ standard defines
arithmetic with n bit unsigned integer types as being modulo 2n, effectively
throwing away any unrepresentable bits in the result of an arithmetic
expression and wrapping round into the range of representable values
[ANSI].

Figure 1

Listing 1

void
print_factors(unsigned long x)
{
  unsigned long n = 0;
  while(nth_prime(n)<=x)
  {
    unsigned long power  = 0;
    unsigned long factor = nth_prime(n);
    while(x%factor==0)
    {
      ++power;
      factor *= nth_prime(n);
    }
    if(power!=0) std::cout << nth_prime(n) <<
       "^" << power << " ";
    ++n;
  }
}

August 2009 | Overload | 21



FEATURE RICHARD HARRIS

we must be careful that we identify any 
single prime factor that may be larger than 
the square root of the number
Unfortunately, this doesn’t really help us all that much. For example, if x
is equal to 2n-1, the result variable will eventually wrap around to 0 and
the next step of the loop will involve a divide by 0 error during the modulus
calculation.
Leaving this problem and the definition of the nth_prime function aside
for now, we shall instead focus on some performance improvements that
we can make to this approach.
The first thing we should note is that the largest repeated factor of a
compound number must be no larger than the square root of that number.
Indeed, if this were not so, then the product of the least possible number
of repeated factors, 2, would exceed our compound number and could
clearly not be equal to it.
In exploiting this fact, we must be careful that we identify any single prime
factor that may be larger than the square root of the number. We can do
this by keeping track of the product of the factors so far identified; if this
is not equal to the original number then there must be one more unrepeated
prime factor equal to the original number divided by the product of the
identified factors.
Listing 2 illustrates the changes we need to make to the print_factors
function to implement this improvement.
Unfortunately, we have introduced another sensitivity to integer wrap
around. If x is sufficiently large then the square of the smallest prime

strictly greater than it could wrap around. This means that we may very
well enter into an infinite loop, never finding a prime whose square,
modulo 2 to the power of the number of bits in an unsigned long, is
greater than x.
Ignoring this potential problem too, we finally note that even if we have
found all of the factors of the number we will still keep looking until we
reach the last prime less than or equal to its square root.
A further improvement is therefore to divide the number by each factor
we discover, allowing us to stop when we reach a prime larger than the
square root of the product of the remaining factors, if any.
If this remaining product is anything other than 1, it must be a single non-
repeated prime factor. To prove this, recall that every compound number
must have at least one factor no greater than its square root and since we
have already removed all such factors it cannot therefore be a compound
number.
This final change to the trial division algorithm is illustrated in listing 3.
The performance improvement from this change is significantly less
dramatic than that of the first, as illustrated in figure 2, which gives the

Listing 3

void
print_factors(unsigned long x)
{
  unsigned long n = 0;

  while(nth_prime(n)*nth_prime(n)<=x)
  {
    unsigned long power = 0;

    while(x%nth_prime(n)==0)
    {
      ++power;
      x /= nth_prime(n);
    }

    if(power!=0)  std::cout << nth_prime(n) 
       << "^" << power << " ";
    ++n;
  }

  if(x>1)  std::cout << x << "^1 ";
}

Figure 2

First Attempt 0.53s

Second Attempt 0.14s

Third Attempt 0.12s

Listing 2

void
print_factors(unsigned long x)
{
  unsigned long n = 0;
  unsigned long factors = 1;

  while(nth_prime(n)*nth_prime(n)<=x)
  {
    unsigned long power  = 0;
    unsigned long factor = nth_prime(n);

    while(x%factor==0)
    {
      ++power;
      factor  *= nth_prime(n);
      factors *= nth_prime(n);
    }

    if(power!=0)  std::cout << nth_prime(n) 
       << "^" << power << " ";
    ++n;
  }

  if(x!=0 && factors!=x) std::cout << x/factors 
     << "^1 ";
}

22 | Overload | August 2009



FEATURERICHARD HARRIS

we can use the prime number theorem to get
an estimate of how large the sequence of

primes might be
time each version of the algorithm takes to factor (but not print) the integers
from 2 to 100 using the machine with which I happen to be writing this
article 10,000 times each.
That said, it does neatly side step the possible wrap around issue whilst
multiplying the factor variable by the n’th prime, although it does not
address that of squaring the n’th prime.

The n’th prime
So, given that we don't have an exact formula for the n’th prime, how are
we to go about implementing the nth_prime function?
To be perfectly honest, we can’t; the function I used to test the various
implementations of the print_factors function used a look up table
of the primes between 0 and 100, which I’m sure you’ll agree isn’t
particularly scalable.
However, if we are interested in the factorisations of all numbers up to a
given upper bound, which I can assure you we shall be, we can build the
table of primes as we go.
Instead of providing a function to calculate the primes, we will provide a
pair of iterators that range from the first prime, 2, to a prime guaranteed
to be no smaller than the square root of the number we seek to factor.
Furthermore we change the function to return a bool to indicate whether

or not the number in question remained unchanged throughout the trial
division and is itself therefore a prime
Listing 4 illustrates the changes we need to make to the print_factors
function.
We can now supplement this with a second function that iterates from 0
(or strictly speaking a non-negative number less than or equal to 2) up to
some upper bound printing the factorisation of each of them.
This second function can use the result of print_factors to add new
primes, up to the square root of the upper bound, to the back of the sequence
that the iterators range over.
Note that we can use the prime number theorem to get an estimate of how
large the sequence of primes might be. By multiplying this estimate by
some constant factor sufficiently greater than 1, we can ensure that it will
exceed the number of primes in almost all cases. This, in turn, ensures that
in almost all cases we can reserve enough space for all of the primes we’ll
need in a std::vector. Of course, this is a ridiculous micro-
optimisation, but we shall eventually be desperate for simple ways to
squeeze out those last few wasted cycles.
Moving on from that rather vague justification for my apparent
performance anxiety, we shall implement this as an overload of the
print_factors function as illustrated in listing 5.

Listing 4

template<class FwdIt>
bool
print_factors(unsigned long x, FwdIt first_prime,
   FwdIt last_prime)
{
  const unsigned long x0 = x;

  while(first_prime!=last_prime &&
     (*first_prime)*(*first_prime)<=x)
  {
    unsigned long power = 0;

    while(x%*first_prime==0)
    {
      ++power;
      x /= *first_prime;
    }

    if(power!=0)  std::cout << *first_prime 
       << "^" << power << " ";
    ++first_prime;
  }

  if(x>1)  std::cout << x << "^1 ";
  return x0>1 && x==x0;
}

Listing 5

void
print_factors(unsigned long upper_bound)
{
  std::vector<unsigned long> primes;

  const double pi_upper_bound =
     sqrt(double(upper_bound)) / 
     log(sqrt(double(upper_bound)));

  const unsigned long n(1.5*pi_upper_bound);
  primes.reserve(n);

  unsigned long x = 1;
  while(x<upper_bound)
  {
    std::cout << x << ": ";
    bool is_prime =
       print_factors(x,primes.begin(),
       primes.end());
    std::cout << std::endl;

    if(is_prime && x*x<=upper_bound)
       primes.push_back(x);
    ++x;
  }
}

August 2009 | Overload | 23



FEATURE RICHARD HARRIS

analysing the complete factorisations 
of ranges of integers is something of a 
tall order
Note that this function too suffers from potential integer wrap around
whilst squaring prime numbers when we’re checking whether to add them
to our list.
The output of this function for the integers from 1 to 20 is given in figure 3.
Note that since 1 is neither prime nor compound, it has no factors.

Omega? Feh!
Now, analysing the complete factorisations of ranges of integers is
something of a tall order, so instead I suggest we simply count how many
prime factors each integer has. A cousin of the prime counting function
Π, the function that returns the number of prime factors (including repeated
factors) of its argument is denoted by Ω.

Using the factorisations we calculated in figure 3, and noting that 0 is the
result of dividing 1 by infinitely many factors, we can derive the values of
Ω for the integers from 0 to 20, as illustrated in figure 4.
This function has some useful properties, not least of which is that it maps
non-negative integers to integers, assuming we're happy to count negative
infinity as an integer. Furthermore, every number for which this function
evaluates to 1 is, by definition, a prime; it has, after all only 1 prime factor.
It would be extremely tedious to work out the values of Ω from the
factorisations we can currently produce. Fortunately, we can simply adapt
the functions to count the factors instead. Listing 6 illustrates the function
to count the factors of a single integer.
We shall overload this to count the factors of every positive integer up to
some upper bound, in much the same way as we did for print_factors.
The single integer function no longer returns a bool to indicate that the
argument is a prime, but as noted above if a number has precisely 1 factor
it must be prime and we can use this fact as the indication that we should
add the number to the back of our sequence of primes. This second function
is given in listing 7.
The output of this function for the integers from 1 to 20 is given in figure
5, which you can see is in agreement with our hand derived values for Ω.
The graphs of Ω for the integers from 1 to 20 and from 1 to 100 are given
in figure 6. We extend this from the integers to the real numbers by plotting
the value of Ω for the integer part of each real number.
It is tempting to look for patterns in these graphs and there is, in fact, a
particularly striking one. To see it we need to look at an exponential
function of Ω; specifically raising 2 to its power.

Listing 6

template<class FwdIt>
unsigned long
count_factors(unsigned long x, FwdIt first_prime,
   FwdIt last_prime)
{
  unsigned long count = 0;

  while(first_prime!=last_prime &&
     (*first_prime)*(*first_prime)<=x)
  {
    while(x%*first_prime==0)
    {
      ++count;
      x /= *first_prime;
    }

    ++first_prime;
  }

  if(x>1)  ++count;
  return count;
}Figure 3

  1:
  2: 2^1
  3: 3^1
  4: 2^2
  5: 5^1
  6: 2^1 3^1
  7: 7^1
  8: 2^3
  9: 3^2
  10: 2^1 5^1
  11: 11^1
  12: 2^2 3^1
  13: 13^1
  14: 2^1 7^1
  15: 3^1 5^1
  16: 2^4
  17: 17^1
  18: 2^1 3^2
  19: 19^1
  20: 2^2 5^1

Figure 4

n Ω(n) n Ω(n) n Ω(n)

0 -∞ 7 1 14 2

1 0 8 3 15 2

2 1 9 2 16 4

3 1 10 2 17 1

4 2 11 1 18 3

5 1 12 3 19 1

6 2 13 1 20 3
24 | Overload | August 2009



FEATURERICHARD HARRIS
In keeping with the time honoured tradition of naming mathematical
functions with single letters from non-Latin alphabets, I christen this
function n.

     

You may recall from previous articles that the odd square brackets
surrounding the 2nx terms means the largest integer less than or equal to
the value between them and that the expression on the right with the
rounded E means that x must be in the range 0 to 1. Figure 7 illustrates the
graphs of 5 and 7.x( )n

2Ω 2nx( )

2n
----------------------= x 0 1,[ ]∈

Listing 7

void
count_factors(unsigned long upper_bound)
{
  std::vector<unsigned long> primes;

  const double pi_upper_bound =
     sqrt(double(upper_bound)) / 
     log(sqrt(double(upper_bound)));
  const unsigned long n(1.5*pi_upper_bound);
  primes.reserve(n);
  unsigned long x = 1;
  while(x<upper_bound)
  {
    const unsigned long count = count_factors(
       x, primes.begin(),primes.end());
    std::cout << x << ": " << count << std::endl;
    if(count==1 && x*x<=upper_bound)
       primes.push_back(x);
    ++x;
  }
}

Figure 5

1: 0
2: 1
3: 1
4: 2
5: 1
6: 2
7: 1
8: 3
9: 2
10: 2
11: 1
12: 3
13: 1
14: 2
15: 2
16: 4
17: 1
18: 3
19: 1
20: 3

Figure 7

Figure 6

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
August 2009 | Overload | 25



FEATURE RICHARD HARRIS
The properties of n
For any n, n is defined for arguments between 0 and 1. Moreover, at 0 it
returns a value of 0 and at 1 it returns a value of 1.
To demonstrate this, we note firstly that for x equal to 0, Ω receives an
argument of 0 and returns negative infinity. Since any number greater than
1 raised to negative infinity yields 0, n returns 0 for an argument of 0.
Secondly, the integer between 0 and 2n with the most factors is 2n, since
2 is the smallest prime. This has n factors and hence the top and bottom
of the fraction defining n are equal when x equals 1, yielding a result of 1.
In fact, the entire graph must never rise above the line from (0,0) to (1,1)
as proven in derivation 1.
Another statement that we can make about these curves is that for all n
greater than 0, n must coincide with n-1 for half of the values of x;
specifically, those where the integer part of 2nx is even, as demonstrated
in derivation 2.
The curves n and n-1 are further related by the equation

as shown in derivation 3.
If we combine these two properties then we recover the striking pattern
that I alluded to above; specifically that, when the integer part of 2nx is
even, we have

Now this may not strike you as being especially striking, but it is strikingly
similar to a property exhibited by many of a very well known class of
curves; the fractals.

Many fractals are defined in terms of a sequence of curves which serve as
closer and closer approximations to the fractal itself. These curves can
themselves be approximated by zooming in on sub-sections of them, in
much the same way as we can for n. The major difference is that for the
iterative approximations of fractals we can zoom in on many parts of the
curve rather than just one specific region.
We can uncover further hints at the relationship between fractals and n
by considering the limit as n tends to infinity. Waving our hands somewhat
vigorously we can take the result that

and infer that

since n-1 is approximately equal to n for arbitrarily accurate
interpretations of approximately.
Now, instead of recovering an approximation of the curve by zooming in
on a sub-section of it, we can entirely reconstruct it. Specifically, for all
values of x, we have

This is suspiciously similar to the self-similarity property of many fractals;
the ability to reconstruct the entire curve by zooming in on sub-sections
of it.
So is ∞ itself a fractal?
Well, that happens to be a very interesting question and we shall pursue
its answer in the next article.
Until then, dear reader, fare well. 

Acknowledgements
With thanks John Paul Barjaktarevi? and Lee Jackson for proof reading
this article.

References and further reading
[ANSI]  The C++ Standard, American National Standards Institute
[Daintith89]  Daintith, J. & Nelson, R. (ed), The Penguin Dictionary of 

Mathematics, Penguin, 1989
[duSautoy04]  du Sautoy, M., The Music of the Primes, Harper Perennial, 

2004.
[Menezes97]  Menezes, A. et al, Handbook of Applied Cryptography, 

CRC Press, 1997

1
2
---x( )

n
2= 1

2
---x( )

n

x( )n 2= 1
2
---x( )

n

1
2
---x( )

n
1
2
---= x( )n 1–

1
2
---x( )

∞
1
2
---= x( )∞

x( ) 2=∞
1
2
---x( ) 4=

∞
1
4
---x( ) 8=

∞
1
8
---x( ) …=

∞

Derivation 1

First we assume that the graph can rise above the line  and show
that this leads to a contradiction. This assumption means that for some x

implying that

Now, since the left hand side of the inequality is an integer and is
greater than or equal to 0, we have

Of course, this is impossible since 2 is the smallest prime number and
hence  must be less than or equal to i and consequently n(x) must
be less than or equal to x.

y x=

x( )n x>

2Ω 2nx( )

2n
---------------------- x>

2Ω 2nx( ) 2nx>

2Ω i( ) 2n i δ+
2n

----------->

2Ω i( ) i δ+>

δ

2Ω i( ) i>

2Ω i( )

Derivation 2

Noting that  for even , for even  we havea 2 1
2
---a×= a 2nx

x( )n
2Ω 2nx( )

2n
---------------------- 2Ω 2 2n 1– x×( )

2n
---------------------------------- 2Ω 2n 1– x( ) 1+

2n
----------------------------------= = =

2Ω 2n 1– x( ) 2×

2n
------------------------------------ 2Ω 2n 1– x( )

2n 1–
---------------------------= == x( )n 1–

Derivation 3

Note that since we haven’t exploited the properties of Ω, this would
hold if we replaced it with any other function.

1
2
--x( )

n
2

Ω 2n 1
2
--x( )

2n
------------------------ 2Ω 2n 1– x( )

2n
---------------------------= =

1
2
---2Ω 2n 1– x( )

2n 1–
--------------------------- 1

2
---== x( )n 1–

for some integer i and real
number δ 0≥
26 | Overload | August 2009



FEATUREANDY LONGSHAW AND EOIN WOODS
The Generation, Management 
and Handling of Errors (Part 1)
An error handling strategy is important for robustness. Andy 
Longshore and Eoin Woods present a pattern language.
n recent years there has been a wider recognition that there are many
different stakeholders for a software project. Traditionally, most
emphasis has been given to the end user community and their needs and

requirements. Somewhere further down the list is the business sponsor;
and trailing well down the list are the people who are tasked with
deploying, managing, maintaining and evolving the system. This is a
shame, since unsuccessful deployment or an unmaintainable system will
result in ultimate failure just as certainly as if the system did not meet the
functional requirements of the users.
One of the key requirements for any group required to maintain a system
is the ability to detect errors when they occur and to obtain sufficient
information to diagnose and fix the underlying problems from which those
errors spring. If incorrect or inappropriate error information is generated
from a system it becomes difficult to maintain. Too much error information
is just as much of a problem as too little. Although most modern
development environments are well provisioned with mechanisms to
indicate and log the occurrence of errors (such as exceptions and logging
APIs), such tools must be used with consistency and discipline in order to
build a maintainable application. Inconsistent error handling can lead to
many problems in a system such as duplicated code, overly-complex
algorithms, error logs that are too large to be useful, the absence of error
logs and confusion over the meaning of errors. The incorrect handling of
errors can also spill over to reduce the usability of the system as unhandled
errors presented to the end user can cause confusion and will give the
system a reputation for being faulty or unreliable. All of these problems
are manifest in software systems targeted at a single machine. For
distributed systems, these issues are magnified.
This paper sets out a collection (or possibly a language) of patterns that
relate to the use of error generating, handling and logging mechanisms -

particularly in distributed systems. These patterns are not about the
creation of an error handling mechanism such as [Harrison] or a set of
language specific idioms such as [Haase] but rather in the application code
that makes use of such underlying functionality. The intention is that these
patterns combine to provide a landscape in which sensible and consistent
decisions can be made about when to raise errors, what types of error to
raise, how to approach error handling and when and where to log errors.

Overview
The patterns presented in this paper form a pattern collection to guide error
handling in multi-tier distributed information systems. Such systems
present a variety of challenges with respect to error handling, including the
distribution of elements across nodes, the use of different technology
platforms in different tiers, a wide variety of possible error conditions and
an end-user community that must be shielded from the technical details of
errors that are not related to their use of the system. In this context, a
software designer must make some key decisions about how errors are
generated, handled and managed in their system. The patterns in this paper
are intended to help with these system-wide decisions such as whether to
handle domain errors (errors in business logic) and technical errors
(platform or programming errors) in different ways. This type of far-
reaching design decision needs careful thought and the intent of the
patterns is to assist in making such decisions.
As mentioned above, the patterns presented here are not detailed design
solutions for an error handling framework, but rather, are a set of design
principles that a software designer can use to help to ensure that their error
handling approach is coherent and consistent across their system. This
approach to pattern definition means that the principles should be
applicable to a wide variety of information systems, irrespective of their
implementation technology. We are convinced of the applicability of these
patterns in their defined domain. You may also find that they are applicable
to systems in other domains – if so then please let us know.
The patterns in the collection are illustrated in Figure 1.
The boxes in the diagram each represent a pattern in the collection. The
arrows indicate dependencies between the patterns, with the arrow running
from a pattern to another pattern that it is dependent upon. For example,

I

Andy Longshaw works for Barclays Bank delivering IT 
solutions with particular focus on reusability. He has been 
delivering and explaining technology and system architecture 
for most of the last decade. He can be contacted at 
www.blueskyline.com

Eoin Woods is a software architect at Barclays Global 
Investors, heading the application architecture group.He has 
been working in software engineering for nearly 20 years and 
is co-author of the book ‘Software Systems Architecture’. He 
can be contacted at www.eoinwoods.info

Figure 1

Log at Distribution 
Boundary

Big Outer
Try Block

Log Unexpected
Errors

Make Exceptions 
Exceptional

Split Domain and 
Technical Errors

Hide Technical 
Detail from Users

Unique Error
Identifier
August 2009 | Overload | 27



FEATURE ANDY LONGSHAW AND EOIN WOODS

technical errors are, by their very nature, 
difficult to predict
to implement LOG UNEXPECTED ERRORS you must first MAKE
EXCEPTIONS EXCEPTIONAL. In turn, the LOGGING OF UNEXPECTED
ERRORS supports a BIG OUTER TRY BLOCK. You can see that to get the
most benefit from the set of patterns it is best to use the whole set in concert. 
At the end of the paper, a set of proto-patterns is briefly described. These
are considered to be important concepts that may or may not become fully
fledged patterns as the paper evolves. 

SPLIT DOMAIN AND TECHNICAL ERRORS

Problem
Applications have to deal with a variety of errors during execution. Some
of these errors, that we term ‘domain errors’, are due to errors in the
business logic or business processing (e.g. wrong type of customer for
insurance policy). Other errors, that we term ‘technical errors’, are caused

by problems in the underlying platform (e.g. could not connect to database)
or by unexpected faults (e.g. divide by zero). These different types of error
occur in many parts of the system for a variety of reasons. Most technical
errors are, by their very nature, difficult to predict, yet if a technical error
could possibly occur during a method call then the calling code must
handle it in some way.
Handling technical errors in domain code makes this code more obscure
and difficult to maintain.

Context
Domain and technical errors form different ‘areas of concern’. Technical
errors ‘rise up’ from the infrastructure – either the (virtual) platform, e.g.
database connection failed, or your own artifacts, e.g. distribution facades/
proxies. Business errors arise when an attempt is made to perform an
incorrect business action. This pattern could apply to any form of
application but is particularly relevant for complex distributed applications
as there is much more infrastructure to go wrong!

Forces
If domain code handles technical errors as well as domain ones, it
becomes unnecessarily complex and difficult to maintain.
A technical error can cause domain processing to fail and the system
should handle this scenario. However, it can be difficult (or
impossible) to predict what types of technical errors will occur
within any one piece of domain code.
It is common practice to handle technical errors at a technical
boundary (such as a remote boundary). However, such a boundary
should be transparent to domain errors.
For some technical errors, it may be worth taking certain actions
such as retrying (e.g. retry a database connection). However, such an
action may not make sense for a domain error (e.g. no funds) where
the inputs remain the same.
As part of the specification of a system component, all of the
potential domain errors originating from a domain action should be
predictable and testable. However, changes in implementation may
vary the number and type of technical errors that may possibly arise
from any particular action.
Technical and domain errors are of interest to different system
stakeholders and will be resolved by members of different
stakeholder groups.

Solution
Split domain and technical error handling. Create separate exception/error
hierarchies and handle at different points and in different ways as
appropriate.

Implementation
Errors in the application should be categorized into domain errors (aka.
business, application or logical errors) and technical errors. When you

This pattern language classifies errors as ‘domain’ or ‘technical’ and also
as ‘expected’ and ‘unexpected’. To a large degree the relationship
between these classifications is orthogonal. You can have an expected
domain error (no funds in the account), an unexpected domain error
(account not in database), an expected technical error (WAN link down
– retry), and an unexpected technical error (missing link library). Having
said this, the most common combinations are expected domain errors
and unexpected technical errors.

A set of domain error conditions should be defined as part of the logical
application model. These form your expected domain errors. Unexpected
domain errors should generally only occur due to incorrect processing or
mis-configuration of the application.

The sheer number of potential technical errors means that there will be
a sizeable number that are unexpected. However, some technical errors
will be identified as potentially recoverable as the system is developed
and so specific error handling code may be introduced for them. If there
is no recovery strategy for a particular error it may as well join the ranks
of unexpected errors to avoid confusion in the support department (‘why
do they catch this and then re-throw it…’).

The table below illustrates the relationship between these two
dimensions of error classification and the recommended strategy for
handling each combination of the two dimensions, based on the
strategies contained in this collection of patterns.

Expected Unexpected

Domain Handle in the application 
code
Display details to the 
user
Don't log the error

Throw an exception

Display details to the 
user
Log the error

Technical Handle in the application 
code
Don't display details to 
the user
Don't log the error

Throw an exception

Don't display details to 
the user
Log the error

Expected vs. unexpected and domain vs. technical errors
28 | Overload | August 2009



FEATUREANDY LONGSHAW AND EOIN WOODS

business error handling code will be in
a completely different part of the code

to the technical error handling
create your exception/error hierachy for your application, you should
define your domain errors and a single error type to indicate a technical
error, e.g. SystemException (see Figure 2). The definition and use of
a single technical error type simplifies interfaces and prevents calling code
needing to understand all of the things that can possibly go wrong in the
underlying infrastructure. This is especially useful in environments that
use checked exceptions (e.g. Java).
Design and development policies should be defined for domain and
technical error handling. These policies should include:

A technical error should never cause a domain error to be generated
(never the twain should meet). When a technical error must cause
business processing to fail, it should be wrapped as a
SystemError.
Domain errors should always start from a domain problem and be
handled by domain code.
Domain errors should pass ‘seamlessly’ through technical
boundaries. It may be that such errors must be serialized and re-

constituted for this to happen. Proxies and facades should take
responsibility for doing this.
Technical errors should be handled in particular points in the
application, such as boundaries (see LOG AT DISTRIBUTION
BOUNDARY).
The amount of context information passed back with the error will
depend on how useful this will be for subsequent diagnosis and
handling (figuring out an alternative strategy). You need to question
whether the stack trace from a remote machine is wholly useful to
the processing of a domain error (although the code location of the
error and variable values at that time may be useful).

As an example, consider the exception definitions in Listing 1.
A domain method skeleton could then look like Listing 2.

Listing 1

public class DomainException extends Exception
{
  ...
}
Public class InsufficientFundsException
   extends Exception
{
  ...
}
public class SystemException extends Exception
{
  ...
}

Figure 2

InsufficientFundsException

TransactionRefusedException

CustomerNotFoundException

DomainException SystemException

. . .

Listing 2

public float withdrawFunds(float amount)
   throws InsufficientFundsException,
   SystemException
{
  try
  {
    // Domain code that could generate various
    // errors both technical and domain
  }
  catch (DomainException ex)
  {
    throw ex;
  }
  catch (Exception ex)
  {
    throw new SystemException(ex);
  }
}

August 2009 | Overload | 29



FEATURE ANDY LONGSHAW AND EOIN WOODS

technical errors need to be recorded in a log 
that is easily accessible from the same 
place as the infrastructure’s error logs
This method declares two exceptions: a domain error – lack of funds to
withdraw – and a generic system error. However, there are many technical
exceptions that could occur (connectivity, database, etc.). The
implementation of this method passes domain exceptions straight through
to the caller. However, any other error is converted to a generic
SystemException that is used to wrap any other (non-domain) errors
that occur. This means that the caller simply has to deal with the two
checked exceptions rather than many possible technical errors.

Positive consequences
The business error handling code will be in a completely different
part of the code to the technical error handling and will employ
different strategies for coping with errors.
Business code needs only to handle any business errors that occur
during its execution and can ignore technical errors making it easier
to understand and more maintainable.
Business error handling code can be clearer and more deterministic
as it only needs to handle the subset of business errors defined in the
contract of the business methods it calls.
All potential technical errors can be handled in surrounding
infrastructure (server-side skeleton, remote façade or main
application) which can then decide if further business actions are
possible.
Different logging and auditing policies are easily applied due to the
clear distinction of error types.

Negative consequences
Two exception hierarchies need to be maintained and there may be
situations where this is artificial or the right location for an
exception is not immediately obvious.
Domain errors need to be passed through infrastructure code -
possibly by marshaling and unmarshaling them across the
infrastructure boundary (typically a distribution boundary).

Related patterns
Technical and domain errors should be treated differently at
distribution boundaries as defined in LOG AT DISTRIBUTION
BOUNDARY

Unless they are handled elsewhere in the system, both technical and
domain errors should be handled by a BIG OUTER TRY BLOCK

It is common to apply the proto pattern SINGLE TYPE FOR
TECHNICAL ERRORS

A more general form of this pattern is described in EXCEPTION
HIERARCHY [Renzel97]
The use of a domain hierarchy in Java is also discussed in the
EXCEPTION HIERARCHY idiom in [Haase]

The HOMOGENOUS EXCEPTION and EXCEPTION WRAPPING Java
idioms in [Haase] show how you might implement
SystemException in Java.

LOG AT DISTRIBUTION BOUNDARY

Problem
The details of technical errors rarely make sense outside a particular,
specialized, environment where specialists with appropriate knowledge
can address them. Propagating technical errors between system tiers
results in error details ending up in locations (such as end-user PCs) where
they are difficult to access and in a context far removed from that of the
original error.

Context
Multi-tier systems, particularly those that use a number of distinct
technologies in different tiers.

Forces
You could propagate all the error information back to original
calling application where it could be logged by a BIG OUTER TRY
BLOCK but the complete set of error information is bulky and may
include platform-specific information.
Technical error information needs to be made easily accessible to
the technology specialists (such as operating system administrators
and DBAs) who should be able to resolve the underlying problems.
When administrators come to resolve problems that technical errors
reveal, they will need to access the error logs used by other parts of
the system infrastructure as well as using the information in the error
logged by the application. In order to facilitate this, technical errors
need to be recorded in a log that is easily accessible from the same
place as the infrastructure’s error logs.
Each technology platform has its own formats and norms for error
logging. In order to fit neatly into the technology environment, it is
desirable that the new system uses an appropriate logging approach
in each environment.
To correctly diagnose technical errors that occur on a particular
system, extra technical information is often required about the
current runtime environment (such as number of database
connections open) but adding the additional code needed to recover
and record this information to the various layers of application code
would make such code significantly more complex.
The handling of errors should not impact the normal behaviour of
the system unnecessarily. To reduce any impact it is desirable to
avoid passing large quantities of error information around the
system.
30 | Overload | August 2009



FEATUREANDY LONGSHAW AND EOIN WOODS
Solution
When technical errors occur, log them on the system where they occur
passing a simpler generic SystemError back to the caller for reporting
at the end-user interface. The generic error lets calling code know that there
has been a problem so that they can handle it but reduces the amount of
system-specific information that needs to be passed back through the
distribution boundary.

Implementation
Implement a common error-handling library that enforces the system error
handling policy in each tier of the application. The implementation in each
tier should log errors in a form that technology administrators are used to
in that environment (e.g. the OS log versus a text file).
The implementation of the library should include both:

Interfaces to log technical and domain errors separately
A generic SystemError class (or data structure) that can be used
to pass summary information back to the caller.

The library routine that logs technical errors (e.g. technicalError())
should:

log the error with all of its associated detail at the point where it is
encountered;
return a unique but human readable error instance ID (for example,
based on the date such as "20040302.12" for the 12th error on
2nd March 2004); and
capture runtime environment information in the routine that logs a
technical error and add this to the error log (if appropriate).

Whenever a technical error occurs, the application infrastructure code that
catches the error should call the technicalError routine to log the error
on its behalf and then create a SystemError object containing a simple
explanation of the failure and the unique error instance ID returned from
technicalError. This error object should be then returned to the caller
as shown in Listing 3.
If a technical error can be handled within a tier (including it being ‘silently’
ignored – see proto-pattern IGNORE IRRELEVANT ERRORS – except that it
is always logged) then the SystemError need not be propagated back to
the caller and execution can continue.

Positive consequences
Only a required subset of the technical error information is
propagated back to the remote caller – just enough for them to work
out what to do next (e.g. whether to retry).
Technical error information is logged in the environment to which it
pertains (e.g. a Windows 2000 server) and in which it can be
understood and resolved.
The technical error information is logged in a similar way to (and
potentially in the same place as) other system and infrastructure
error information. This may make it easier to identify the underlying
cause (e.g. if there are lots of related security errors alongside the
database access error).
Using local error logging mechanisms makes the logs much easier
for technology administrators to access using their normal tools.
The logging mechanism for technical errors can decorate the error
information with platform-specific information that may assist in
the diagnosis of the error.

Negative consequences
One error can cause multiple log entries on different machines in a
distributed environment (see UNIQUE ERROR IDENTIFIERS pattern).
Using local error logging mechanisms means that the approach used
in each tier of the system may be different.

Related patterns
Implementing SPLIT DOMAIN AND TECHNICAL ERRORS before LOG
AT DISTRIBUTION BOUNDARY makes implementation simpler, as it
allows the two types of error to be clearly differentiated and handled
differently.
UNIQUE ERROR IDENTIFIERS are needed if you want to tie distributed
errors into a SYSTEM OVERVIEW [Dyson04] and to to mitigate the
potential confusion arising from one error causing multiple log
entries. 

UNIQUE ERROR IDENTIFIER

Problem
If an error on one tier in a distributed system causes knock-on errors on
other tiers you get a distorted view of the number of errors in the system
and their origin.

Context
Multi-tier systems, particularly those that use load balancing at different
tiers to improve availability and scalability. Within such an environment
you have already decided that as part of your error handling strategy you
want to LOG AT DISTRIBUTION BOUNDARY. 

Forces
It is often possible to determine the sequence of knock-on errors
across a distributed system just by correlating raw error information
and timestamps but this takes a lot of skill in system forensics and
usually a lot of time.
The ability to route calls from a host on one tier to one of a set of
load-balanced servers in another tier improves the availability and
scalability characteristics but makes it very difficult to trace the path
of a particular cross-tier call through the system.
You can correlate error messages based on their timestamp but this
relies on all server times being synchronized and does not help when
two errors occur on servers in the same tier within a small time
window (basically the time to make a distributed call between tiers).
Similar timestamps help to associate errors on different tiers but if
many errors occur in a short period it becomes far harder to
definitively associate an original error with its knock-on errors.

Listing 3

...
public class AccountRemoteFacade
   implements AccountRemote
{
  SystemError error = null;
  public SystemError withdrawFunds(float amount)
     throws InsufficientFundsException,
     RemoteException
  {
    try
    {
      // Domain code that could generate various
      // errors both technical and domain
    }
    catch (DomainException ex)
    {
      throw ex;
    }
    catch (Exception ex)
    {
      String errorId = technicalError(ex);
      error = new SystemError(ex.getMessage(),
         errorId);
    }
  }
  return error;
}

August 2009 | Overload | 31



FEATURE ANDY LONGSHAW AND EOIN WOODS
Solution
Generate a UNIQUE ERROR IDENTIFIER when the original error occurs and
propagate this back to the caller. Always include the UNIQUE ERROR
IDENTIFIER with any error log information so that multiple log entries from
the same cause can be associated and the underlying error can be correctly
identified.

Known uses
The authors have observed this pattern in use within a number of successful
enterprise systems. We do not know of any publicly accessible
implementations of it (because most systems available for public
inspection are single tier systems and so this pattern is not relevant to
them).

Implementation
The two key tenets that underlie this pattern are the uniqueness of the error
identifier and the consistency with which it is used in the logs. If either of
these are implemented incorrectly then the desired consequences will not
result.
The unique error identifier must be unique across all the hosts in the
system. This rules out many pseudo-unique identifiers such as those
guaranteed to be unique within a particular virtual platform instance (.NET
Application Domain or Java Virtual Machine). The obvious solution is to
use a platform-generated Universally Unique ID (UUID) or Globally
Unique ID (GUID). As these utilize the unique network card number as
part of the identifier then this guarantees uniqueness in space (across
servers). The only issue is then uniqueness across time (if two errors occur
very close in time) but the narrowness of the window (100ns) and the
random seed used as part of the UUID/GUID should prevent such
problems arising in most scenarios.
It is important to maintain the integrity of the identifier as it is passed
between hosts. Problems may arise when passing a 128-bit value between
systems and ensuring that the byte order is correctly interpreted. If you
suspect that any such problems may arise then you should pass the
identifier as a string to guarantee consistent representation.
The mechanism for passing the error identifier will depend on the transport
between the systems. In an RPC system, you may pass it as a return value
or an [out] parameter whereas in SOAP calls you could pass it back in the
SOAP fault part of the response message.
In terms of ensuring that the unique identifier is included whenever an error
is logged, the responsibility lies with the developers of the software used.
If you do not control all of the software in your system you may need to
provide appropriate error handling through a DECORATOR [Gamma95] or
as part of a BROKER [Buschmann96]. If you control the error framework
you may be able to propagate the error identifier internally in a CONTEXT
OBJECT [Fowler].

Positive consequences
The system administrators can use a unified view of the errors in the
system keyed on the unique error identifier to determine which error
is the underlying error and which other errors are knock-ons from
this one. If the errors in each tier are logged on different hosts it may
be necessary to retrieve and amalgamate multiple logs in a SYSTEM
OVERVIEW [Dyson04] before such correlation can take place.

Correlating errors based on the unique error id rather than the hosts
on which they occur gives a far clearer picture of error cause and
effect across one or more tiers of load-balanced servers.
Skewed system times on different servers can cause problems with
error tracing. If an error occurs when host 1 calls host 2, host 2 will
log the error and host 1 will log the failed call. If the system time on
host 1 is ahead of host 2 by a few milliseconds, it could appear that
the error on host 1 occurred before that on host 2 – hence obscuring
the sequence of cause and effect. However, if they both have the
same unique error identifier, the two errors are inextricably linked
and so the time skew could be identified and allowed for in the
forensic examination.
If lots of errors are generated on the same set of hosts at around the
same time it becomes possible to determine if a consistent pattern or
patterns of error cascade is occurring.

Negative consequences
The derivation of a unique error identifier may be relatively
complex in some environments and this could be a barrier to the
pattern’s adoption in some situations.
The implementation of this pattern implies logging each error a
number of times, once in each tier. This additional logging activity
means that overall, logs will grow more quickly than in systems that
do not implement this approach. This means that the runtime and
administration overhead of this additional logging will need to be
absorbed in the design of the system.

Related patterns
Log at DISTRIBUTION BOUNDARY needs errors to have a unique
error id in order to correlate the distributed errors.
You may or may not employ CENTRALIZED ERROR LOGGING
[Renzel97] to help assimilate errors.

To be continued...
So far, so good. However this is only part of the story as there are still some
fundamental principles to be applied such as determining what is and is
not an error. The remaining patterns in this pattern collection (BIG OUTER
TRY BLOCK, HIDE TECHNICAL ERROR DETAIL FROM USERS, LOG
UNEXPECTED ERRORS and MAKE EXCEPTIONS EXCEPTIONAL) will show
how the error handling jigsaw can be completed. These patterns will be
explored in the next issue. 

References
[Buschmann96] Pattern-Oriented Software Architecture, John Wiley and 

Sons, 1996
[Dyson04] Architecting Enterprise Solutions: Patterns for High-

Capability Internet-based Systems, Paul Dyson and Andy Longshaw, 
John Wiley and Sons, 2004

[Gamma95] Design Patterns, Addison Wesley, 1995.
[Haase] Java Idioms – Exception Handling, linked from http://

hillside.net/patterns/EuroPLoP2002/papers.html.
[Harrison] Patterns for Logging Diagnostic Messages, Neil B. Harrison
[Renzel97] Error Handling for Business Information Systems, Eoin 

Woods, linked from http://hillside.net/patterns/
onlinepatterncatalog.htm
32 | Overload | August 2009

http://hillside.net/patterns/EuroPLoP2002/papers.html
http://hillside.net/patterns/EuroPLoP2002/papers.html
http://hillside.net/patterns/onlinepatterncatalog.htm
http://hillside.net/patterns/onlinepatterncatalog.htm


FEATUREBJARNE STROUSTRUP
No ‘Concepts’ in C++0x
There have been some major decisions made 
about the next C++ Standard. Bjarne Stroustrup 
explains what’s changed and why.
t the July 2009 Frankfurt meeting of the ISO C++ Standards
Committee (WG21) [ISO], the ‘concepts’ mechanism for specifying
requirements for template arguments was ‘decoupled’ (my less-

diplomatic phrase was ‘yanked out’). That is, ‘concepts’ will not be in
C++0x or its standard library. That – in my opinion – is a major setback
for C++, but not a disaster; and some alternatives were even worse.
I have worked on ‘concepts’ for more than seven years and looked at the
problems they aim to solve much longer than that. Many have worked on
‘concepts’ for almost as long. For example, see (listed in chronological
order): 

Bjarne Stroustrup and Gabriel Dos Reis: ‘Concepts – Design
choices for template argument checking’. October 2003. An early
discussion of design criteria for ‘concepts’ for C++. [Stroustrup03a]
Bjarne Stroustrup: ‘Concept checking – A more abstract
complement to type checking’. October 2003. A discussion of
models of ‘concept’ checking. [Stroustrup03b]
Bjarne Stroustrup and Gabriel Dos Reis: ‘A concept design’ (Rev.
1). April 2005. An attempt to synthesize a ‘concept’ design based on
(among other sources) N1510, N1522, and N1536. [Stroustrup05]
Jeremy Siek et al.: Concepts for C++0x. N1758==05-0018. May
2005. [Siek05]
Gabriel Dos Reis and Bjarne Stroustrup: ‘Specifying C++
Concepts’. POPL06. January 2006. [Reis06]
Douglas Gregor and Bjarne Stroustrup: Concepts. N2042==06-
0012. June 2006. The basis for all further ‘concepts’ work for
C++0x. [Gregor06a]
Douglas Gregor et al.: Concepts: Linguistic Support for Generic
Programming in C++. OOPSLA'06, October 2006. An academic
paper on the C++0x design and its experimental compiler
ConceptGCC. [Gregor06b]
Pre-Frankfurt working paper (with ‘concepts’ in the language and
standard library): ‘Working Draft, Standard for Programming
Language C++’. N2914=09-0104. June 2009. [Frankfurt09]
B. Stroustrup: Simplifying the use of concepts. N2906=09-0096.
June 2009. [Stroustrup09]

It need not be emphasized that I and others are quite disappointed. The fact
that some alternatives are worse is cold comfort and I can offer no quick
and easy remedies.
Please note that the C++0x improvements to the C++ features that most
programmers see and directly use are unaffected. C++0x will still be a
more expressive language than C++98, with support for concurrent
programming, a better standard library, and many improvements that make
it significantly easier to write good (i.e., efficient and maintainable) code.
In particular, every example I have ever given of C++0x code (e.g., in
‘Evolving a language in and for the real world: C++ 1991–2006’
[Stroustrup07] at ACM HOPL-III [HOPL]) that does not use the keywords

‘concept’ or ‘requires’ is unaffected. See also my C++0x FAQ [FAQ].
Some people even rejoice that C++0x will now be a simpler language than
they had expected. 
‘Concepts’ were to have been the central new feature in C++0x for putting
the use of templates on a better theoretical basis, for firming-up the
specification of the standard library, and a central part of the drive to make
generic programming more accessible for mainstream use. For now,
people will have to use ‘concepts’ without direct language support as a
design technique. My best scenario for the future is that we get something
better than the current ‘concept’ design into C++ in about five years.
Getting that will take some serious focused work by several people (but
not ‘design by committee’). 

What happened?
‘Concepts’, as developed over the last many years and accepted into the
C++0x working paper in 2008, involved some technical compromises
(which is natural and necessary). The experimental implementation was
sufficient to test the ‘conceptualized’ standard library, but was not
production quality. The latter worried some people, but I personally
considered it sufficient as a proof of concept. 
My concern was with the design of ‘concepts’ and in particular with the
usability of ‘concepts’ in the hands of ‘average programmers’. That
concern was shared by several members. The stated aim of ‘concepts’ was
to make generic programming more accessible to most programmers
[Stroustrup03a], but that aim seemed to me to have been seriously
compromised: Rather than making generic programming more accessible,
‘concepts’ were becoming yet another tool in the hands of experts (only).
Over the last half year or so, I had been examining C++0x from a user’s
point of view, and I worried that even use of libraries implemented using
‘concepts’ would put new burdens on programmers. I felt that the design
of ‘concepts’ and its use in the standard library did not adequately reflect
our experience with ‘concepts’ over the last few years.
Then, a few months ago, Alisdair Meredith (an insightful committee
member from the UK) and Howard Hinnant (the head of the standard
library working group) asked some good questions relating to who should
directly use which parts of the ‘concepts’ facilities and how. That led to a
discussion of usability involving many people with a variety of concerns
and points of view; and I eventually – after much confused discussion –
published my conclusions [Stroustrup09].
To summarize and somewhat oversimplify, I stated that: 

‘Concepts’ as currently defined are too hard to use and will lead to
disuse of ‘concepts’, possibly disuse of templates, and possibly to
lack of adoption of C++0x.

A

Bjarne Stroustrup designed and implemented the C++ 
programming language. He can be contacted at 
www.research.att.com/~bs
August 2009 | Overload | 33



FEATURE BJARNE STROUSTRUP

Unless members are convinced that the 
risks for doing harm to production code 
are very low, they must oppose
A small set of simplifications [Stroustrup09] can render ‘concepts’
good-enough-to-ship on the current schedule for C++0x or with
only a minor slip.

That’s pretty strong stuff. Please remember that standards committee
discussions are typically quite polite, and since we are aiming for
consensus, we tend to avoid direct confrontation. Unfortunately, the
resulting further (internal) discussion was massive (hundreds of more and
less detailed messages) and confused. No agreement emerged on what
problems (if any) needed to be addressed or how. This led me to order the
alternatives for a presentation in Frankfurt: 

‘fix and ship’
Remaining work: remove explicit ‘concepts’, add explicit
refinement, add ‘concept’/type matching, handle ‘concept’ map
scope problems 
Risks: no implementation, complexity of description 
Schedule: no change or one meeting
‘Yank and ship’
Remaining work: yank (core and standard library) 
Risks: old template problems remain, disappointment in
‘progressive’ community (‘seven year’s work down the drain’) 
Schedule: five years to ‘concepts’ (complete redesign needed) or
never 
‘Status quo’
Remaining work: details 
Risks: unacceptable programming model, complexity of description
(alternative view: none) 
Schedule: no change 

I and others preferred the first alternative (‘fix and ship’) and considered
it feasible. However, a large majority of the committee disagreed and chose
the second alternative (‘yank and ship’, renaming it ‘decoupling’). In my
opinion, both are better than the third alternative (‘status quo’). My
interpretation of that vote is that given the disagreement among proponents
of ‘concepts’, the whole idea seemed controversial to some, some were
already worried about the ambitious schedule for C++0x (and, unfairly
IMO, blamed ‘concepts’), and some were never enthusiastic about
‘concepts’. Given that, ‘fixing concepts’ ceased to be a realistic option.
Essentially, all expressed support for ‘concepts’, just ‘later’ and
‘eventually’. I warned that a long delay was inevitable if we removed
‘concepts’ now because in the absence of schedule pressures, essentially
all design decisions will be re-evaluated. 
Surprisingly (maybe), there were no technical presentations and
discussions about ‘concepts’ in Frankfurt. The discussion focused on
timing and my impression is that the vote was decided primarily on timing
concerns. 
Please don’t condemn the committee for being cautious. This was not a
‘Bjarne vs. the committee fight’, but a discussion trying to balance a

multitude of serious concerns. I and others are disappointed that we didn’t
take the opportunity of ‘fix and ship’, but C++ is not an experimental
academic language. Unless members are convinced that the risks for doing
harm to production code are very low, they must oppose. Collectively, the
committee is responsible for billions of lines of code. For example, lack
of adoption of C++0x or long-term continued use of unconstrained
templates in the presence of ‘concepts’ would lead to a split of the C++
community into separate sub-communities. Thus, a poor ‘concept’ design
could be worse than no ‘concepts’. Given the choice between the two, I
too voted for removal. I prefer a setback to a likely disaster. 

Technical issues
The unresolved issue about ‘concepts’ focused on the distinction between
explicit and implicit ‘concept’ maps (see [Stroustrup09]): 

1. Should a type that meets the requirements of a ‘concept’
automatically be accepted where the ‘concept’ is required (e.g.
should a type X that provides +, -, *, and / with suitable parameters
automatically match a ‘concept’ C that requires the usual arithmetic
operations with suitable parameters) or should an additional explicit
statement (a ‘concept’ map from X to C) that a match is intentional
be required? (My answer: Use automatic match in almost all cases). 

2. Should there be a choice between automatic and explicit ‘concepts’
and should a designer of a ‘concept’ be able to force every user to
follow his choice? (My answer: All ‘concepts’ should be automatic). 

3. Should a type X that provides a member operation X::begin() be
considered a match for a ‘concept’ C<T> that requires a function
begin(T) or should a user supply a ‘concept’ map from T to C? An
example is std::vector and std::Range. (My answer: It
should match). 

The answers ‘status quo before Frankfurt’ all differ from my suggestions.
Obviously, I have had to simplify my explanation here and omit most
details and most rationale. 
I cannot reenact the whole technical discussion here, but this is my
conclusion: In the ‘status quo’ design, ‘concept’ maps are used for two
things: 

1. To map types to ‘concepts’ by adding/mapping attributes
2. To assert that a type matches a ‘concept’. 

Somehow, the latter came to be seen an essential function by some people,
rather than an unfortunate rare necessity. When two ‘concepts’ differ
semantically, what is needed is not an assertion that a type meets one and
not the other ‘concept’ (this is, at best, a workaround – an indirect and
elaborate attack on the fundamental problem), but an assertion that a type
has the semantics of the one and not the other ‘concept’ (fulfills the
axiom(s) of the one and not the other ‘concept’). 
For example, the STL input iterator and forward iterator have a key
semantic difference: you can traverse a sequence defined by forward
iterators twice, but not a sequence defined by input iterators; e.g.,
34 | Overload | August 2009



FEATUREBJARNE STROUSTRUP

When it comes to validating an idea,
we hit the traditional dilemma
applying a multi-pass algorithm on an input stream is not a good idea. The
solution in ‘status quo’ is to force every user to say what types match a
forward iterator and what types match an input iterator. My suggested
solution adds up to: If (and only if) you want to use semantics that are not
common to two ‘concepts’ and the compiler cannot deduce which
‘concept’ is a better match for your type, you have to say which semantics
your type supplies; e.g., ‘my type supports multi-pass semantics’. One
might say, ‘When all you have is a ‘concept’ map, everything looks like
needing a type/‘concept’ assertion.’ 
At the Frankfurt meeting, I summarized: 

Why do we want ‘concepts’? 
To make requirement on types used as template arguments explicit 
Precise documentation 
Better error messages 
Overloading 

Different people have different views and priorities. However, at this high
level, there can be confusion – but little or no controversy. Every half-way
reasonable ‘concept’ design offers that. 

What concerns do people have? 
Programmability 
Complexity of formal specification 
Compile time 
Run time 

My personal concerns focus on ‘programmability’ (ease of use, generality,
teachability, scalability) and the complexity of the formal specification (40
pages of standards text) is secondary. Others worry about compile time and
run time. However, I think the experimental implementation
(ConceptGCC [Gregor06b]) shows that run time for constrained templates
(using ‘concepts’) can be made as good as or better than current
unconstrained templates. ConceptGCC is indeed very slow, but I don’t
consider that fundamental.
When it comes to validating an idea, we hit the traditional dilemma. With
only minor oversimplification, the horns of the dilemma are: 

‘Don’t standardize without commercial implementation’
‘Major implementers do not implement without a standard’

Somehow, a detailed design and an experimental implementation have to
become the basis for a compromise.

My principles for ‘concepts’ are: 
Duck typing 
The key to the success of templates for GP (compared to OO with
interfaces and more).
Substitutability 
Never call a function with a stronger precondition than is
‘guaranteed’.

‘Accidental match’ is a minor problem 
Not in the top 100 problems.

My ‘minimal fixes’ to ‘concepts’ as present in the pre-Frankfurt working
paper were: 

‘Concepts’ are implicit/auto 
To make duck typing the rule.
Explicit refinement
To handle substitutability problems.
General scoping of ‘concept’ maps
To minimize ‘implementation leakage’.
Simple type/‘concept’ matching 
To make vector a range without redundant ‘concept’ map 

For details, see [Stroustrup09]. 

No C++0x, long live C++1x
Even after cutting ‘concepts’, the next C++ standard may be delayed.
Sadly, there will be no C++0x (unless you count the minor corrections in
C++03). We must wait for C++1x, and hope that ‘x’ will be a low digit.
There is hope because C++1x is now feature complete (excepting the
possibility of some national standards bodies effectively insisting on some
feature present in the formal proposal for the standard). ‘All’ that is left is
the massive work of resolving outstanding technical issues and comments. 
A list of features and some discussion can be found on my C++0x FAQ
[FAQ]. Here is a subset: 

atomic operations 
auto (type deduction from initializer) 
C99 features 
enum class (scoped and strongly typed enums) 
constant expressions (generalized and guaranteed; constexpr) 
defaulted and deleted functions (control of defaults) 
delegating constructors 
in-class member initializers 
inherited constructors 
initializer lists (uniform and general initialization) 
lambdas 
memory model 
move semantics; see rvalue references 
null pointer (nullptr) 
range for statement 
raw string literals 
template alias 
August 2009 | Overload | 35



FEATURE BJARNE STROUSTRUP

C++1x will be a massive 
improvement on C++98
thread-local storage (thread_local) 
unicode characters 
uniform initialization syntax and semantics 
user-defined literals 
variadic templates 
and libraries: 
improvements to algorithms 
containers 
duration and time_point 
function and bind 
forward_list a singly-liked list 
future and promise 
garbage collection ABI 
hash_tables; see unordered_map 
metaprogramming and type traits 
random number generators 
regex a regular expression library 
scoped allocators 
smart pointers; see shared_ptr, weak_ptr, and unique_ptr 
threads 
atomic operations 
tuple 

Even without ‘concepts’, C++1x will be a massive improvement on
C++98, especially when you consider that these features (and more) are
designed to interoperate for maximum expressiveness and flexibility. I
hope we will see ‘concepts’ in a revision of C++ in maybe five years.
Maybe we could call that C++1y or even ‘C++y!’ 

References
[FAQ]  Bjarne Stroustrup, ‘C++0x - the next ISO C++ standard’ (FAQ), 

available from: http://www.research.att.com/%7Ebs/
C++0xFAQ.html

[Frankfurt09]  ‘Working Draft, Standard for Programming Language 
C++’, a pre-Frankfurt working paper, June 2009, available from: 
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/
n2914.pdf

[Gregor06a]  Douglas Gregor and Bjarne Stroustrup, June 2006, 
‘Concepts’, availabe from: http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2006/n2042.pdf

[Gregor06b]  Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne 
Stroustrup, Gabriel Dos Reis and Andrew Lumsdaine, October 2006, 
‘Concepts: Linguistic support fro generic programming in C++’, 
available from: http://www.research.att.com/~bs/oopsla06.pdf

[HOPL]  Proceedings of the History of Programming Languages 
conference 2007, available from: http://portal.acm.org/
toc.cfm?id=1238844

[ISO]  The C++ Standards Committee – http://www.open-std.org/jtc1/
sc22/wg21/

[Reis06]  Gabriel Dos Reis and Bjarne Stroustrup, January 2006, 
‘Specifying C++ concepts’, available from: http://
www.research.att.com/~bs/popl06.pdf

[Siek05]  Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah 
Willcock, Jaakko Jarvi and Andrew Lumsdaine, May 2005, 
‘Concepts for C++0x’, available from: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2005/n1758.pdf

[Stroustrup03a]  Bjarne Stroustrup and Gabriel Dos Reis, October 2003, 
‘Concepts – Design choices for template argument checking’, 
available from: http://www.research.att.com/~bs/N1522-concept-
criteria.pdf

[Stroustrup03b]  Bjarne Stroustrup, October 2003, ‘Concept checking – A 
more abstract complement to type checking’, available from: http://
www.research.att.com/~bs/n1510-concept-checking.pdf

[Stroustrup05]  Bjarne Stroustrup and Gabriel Dos Reis, April 2005, ‘A 
concept design (Rev. 1)’ available from:
http://www.research.att.com/~bs/n1782-concepts-1.pdf

[Stroustrup07]  Bjarne Stroustrup, May 2007, ‘Evolving a language in and 
for the real world: C++ 1991–2006’, available from: http://
www.research.att.com/~bs/hopl-almost-final.pdf

[Stroustrup09]  Bjarne Stroutstrup ‘Simplifying the use of concepts’. 
Available from: http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2009/n2906.pdf

This article first published in Doctor Dobb’s Journal, July 2009 
(http://www.ddj.com/cpp/218600111).
Reprinted here by kind permission.
36 | Overload | August 2009

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2906.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2906.pdf
http://www.research.att.com/~bs/n1782-concepts-1.pdf
http://www.research.att.com/~bs/n1510-concept-checking.pdf
http://www.research.att.com/~bs/n1510-concept-checking.pdf
http://www.research.att.com/~bs/N1522-concept-criteria.pdf
http://www.research.att.com/~bs/N1522-concept-criteria.pdf
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1758.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1758.pdf
http://www.research.att.com/~bs/popl06.pdf
http://www.research.att.com/~bs/popl06.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2006/n2042.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2006/n2042.pdf
http://www.research.att.com/~bs/oopsla06.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2914.pdf
http://portal.acm.org/toc.cfm?id=1238844
http://portal.acm.org/toc.cfm?id=1238844
http://www.research.att.com/~bs/hopl-almost-final.pdf
http://www.research.att.com/~bs/hopl-almost-final.pdf
http://www.research.att.com/%7Ebs/C++0xFAQ.html
http://www.research.att.com/%7Ebs/C++0xFAQ.html
http://www.ddj.com/cpp/218600111

	Moments in History
	I Think I’ll Parse
	Quality Matters: Introductions, and Nomenclature
	Code Rot
	The Model Student: A Primal Skyline (Part 1)
	The Generation, Management and Handling of Errors (Part 1)
	No ‘Concepts’ in C++0x

