

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 One Approach to Using Hardware Registers
in C++
Martin Moene encapsulates low level register access
for testing.

12 The Model Student: A Game of Six Integers
(Part 1)
Richard Harris analyses a popular game show.

19 Simplifying the C++/Angelscript Binding
Process
Stuart Golodetz hooks in a scripting language.

24 Quality Matters: Diagnostic Measures
Matthew Wilson investigates the recls library.

OVERLOAD 95

February 2010

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 96 should be submitted by
1st March 2010 and for Overload 97
by 1st May 2010.

EDITORIAL RIC PARKIN
Back To The Future
The last decade has seen huge changes.
Ric Parkin looks at technology and
its effects.
Welcome to the first Overload of the new decade!
(Note: as defining a decade is purely a matter of
semantics, I’ve decided that the common convention
that the years starting with the same three digits – eg
200x and 201x – are a reasonable way of partitioning
years into decades, so no pedantic letters please!) So

on this completely arbitrary cusp, I thought I’d have a look back at what
has changed technologically over the last decade, and peer into a foggy
crystal ball to hazard a guess at what the next may bring.
This is going to be full of facts and figures, but so many I can’t realistically
give references without going way over the top. Most were found by
search for ‘history of X’, if you’re interested.

Disco 2000
So let’s start with personal computers. In many ways they were quite
similar to now, but as you would expect most of the parts were much less
powerful: the latest chips were things like the Intel Pentium III, with
around 9.5 million transistors, 512KB onboard cache, running at around
750MHz (although this was rising fast from 500MHz shortly before to
1MHz quite soon after). Windows 2000 was just about to be released, so
most people were on Windows 98 or NT4, while Apple had been making
a comeback with the iMac for a couple of years, and had just released OSX
(but only for servers – the desktop version was still over a year away).
Linux (and other free software such as StarOffice, which would shortly
become OpenOffice) was increasingly being seen as a challenge to
Microsoft’s dominance of PC Operating Systems and Office software.
Most PCs came in big towers, the occasional ‘pizza box’, or still-bulky
laptops, although more slimline desktops were making inroads. Monitors
were pretty much exclusively big bulky CRTs with limited resolutions –
the first 36" 1920×1200 monitors only appeared around 2000. Hard disk
size was in the region of a few GB. USB2 was new but taking off, 3.5inch
floppy disk drives were around but being phased out, replaced by CDs,
USB sticks and file transfer via networks.
Handheld computing was still in its infancy in many ways. Small or tablet
computers had been around for ages, notably the Apple Newton in the mid
90s, and Psion and Palm had popular PDAs, but they had never really sold
beyond some business use and and tech hobbyists. Mobile phones, while
they had become a mainstream device during the 90s, were still mainly
simple phones, although a few early smartphones were around such as the

Nokia Communicators. Some could now access
the internet via the newly introduced Wireless
Application Protocol, but the slowness over the
old phone networks, reduced experience

compared to a normal web browser, and the limitation of having to use
special cut-down sites meant it was a patchy success at best.
By 2000 the internet had left the preserve of the more technically minded
and was becoming mainstream. Access was still mainly via dial up
connections, but ISDN and cable modems were becoming more popular.
Microsoft was close to winning the so-called Browser Wars with Internet
Explorer 5. The dot.com bubble was at its peak as people scrabbled for a
foothold in this rapidly growing new medium, but would burst only a few
months later. Few people had much idea of what would actually work on
the internet. Much of the investment capital was thrown at all sorts of
ideas, in the hope that some of the companies would survive and go on to
dominate. Inevitably, many of the companies folded quickly after the
money had run out, for example the notorious Boo.com who spent $188
million in six months. In contrast Amazon, then around 5 years old, was
criticised for only having slow and steady growth instead of spending as
much as possible to get market share. Google was a fairly new search
facility – only 40 employees – but becoming popular as its new page
ranking technology allowed people to find the most relevant information.
The internet had also started to make an impact in mainstream life, for
example the early Blog, the Drudge Report, had broken the Lewinsky
scandal a couple of years earlier. Many news sources were setting up a
web-presence, in the UK notably The Guardian and the BBC. Wikipedia
was still a year off, although the underlying wiki technology had been
around for a while, after being invented in order to aid collaborative
Pattern writing.
Due to the internet, computer security was becoming much more
important with the spread of viruses and trojans made much easier by the
improved interconnectedness, enhanced by worries that due to the
dominance of Microsoft operating systems and application hosts for
scripts, a mono-culture effect could mean a major outbreak could spread
quickly and widely. Governments too were concerned with security, but
mainly so they could intercept and read people’s telephone calls and
emails. Strong encryption algorithms were even classified as munitions
and covered by arms trading legislation.

Right here, right now
That was then, where are we now? Moore’s law has continued to hold,
and the number of transistors on a modern Intel chip now number around
750 million! Significantly though, the clock speed hasn’t maintained the
rapid rise of a decade ago – after peaking at a bit over 3GHz, the speeds
have dropped back to around 2.9MHz as heat dissipation became a major
problem. So instead of relying on clock speed increases to improve
performance, chip manufacturers have had to use increasingly

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | February 2010

EDITORIALRIC PARKIN
complicated techniques, such as instruction lookahead and speculative
execution, hugely expanded on-chip memory caches – we’re now talking
multiple MB – to avoid having to wait for the main memory, and having
multiple cores to allow true multitasking. This is where all those extra
transistors have gone – instead of implementing a much bigger instruction
set, most are actually memory and copies of the main processing cores,
and also the tricky algorithms to improve instruction and memory
throughput. In contrast the instruction sets haven’t expanded as much,
although they have gained some extra multimedia-oriented facilities and
processing large data sets.

As well as the sort of complex chips in PCs, much smaller, simpler and
more focused chips are now much more common, whether it’s an ARM
RISC chip in a mobile phone, a custom ASIC for implementing bluetooth
or GPS. As well as simple chips, it’s easier to combine off-the-shelf
modules on a single piece of silicon to create a so called System On A
Chip. These have allowed a wide range of powerful, yet cheap and small
consumer devices to be released.

The amount of main memory has also expanded so many PCs now come
with 4GB, which is the limit of addressable space for 32bit pointers. Disk
sizes have shot up faster than Moore’s Law, helped by applying exotic
techniques such as spintronics, with 1TB disks being easily available, and
even laptops come with 256GB disks. A major problem with disks and
storage is now the transfer rate.

The actual form factors have changed a lot though. As well a the traditional
tower and big laptop, there are now tiny form factors such as the Shuttle
boxes, Mac Mini and Acer Revo, and all-in-one computer and monitors
have become more widespread. Laptops have become smaller, lighter, and
more powerful, with a new niche of cheap ‘Net-books’. Having multiple
monitors has become much more common, initially via graphics cards
with multiple outputs and then software solutions such as DisplayLink.
USB 2 itself has became ubiquitous and is used to connect a wide range
of consumer electronics as well as PC peripherals. Version 3, theoretically
ten times faster, has been defined and new products are starting to be rolled
out.

In terms of operating systems, Windows 7 is now out to replace Vista,
although XP remains popular on lower powered machines, OSX has gone
through several iterations, and there are others such as Ubuntu’s version
of Linux, the iPhone operating system, and Google’s Android and
upcoming ChromeOS.

In terms of raw numbers, the iPhone is not that big a player in the massively
expanded mobile phone market, but very important in terms of influence.
Smartphones had been around for ages, but the iPhone made the leap to
making them usable and desirable with its large touch sensitive screen,
smooth graphics and UI, and excellent design. Plus with 3G and WiFi
access from it and other phones, mobile internet access is now easy to do,
and with other technologies such as built in camera, GPS and compass,
portable ‘information appliances’ are now a reality. By the time you read

this, Apple will have launched its tablet computer – could this change the
new eReader segment and portable computer market in a similar way?
Google has been one of the biggest successes of the decade. The range of
services it now provides is stunning, although there are increasing worries
about data security in the cloud, and how much personal data it keeps with
important privacy concerns.
Which shows how important the internet now is in people’s everyday
lives. With the advent of common ASDL and cable broadband, plus
upgrades to mobile phone networks, and wired and wirelss networks in
the home and wireless hotspots in public places, virtually all PCs and
mobile devices are now connected to a vastly expanded range of
information and services. Whether it’s a developer looking up some up-
to-date documentation, doing your tax return online, getting medical
advice via NHS direct and booking a doctors appointment, uploading a
video of an anti-government protest, or a Twitter during the Haiti
earthquake, someone checking IMDB to cheat in a pub quiz, or looking
up the nearest restaurant and checking reviews, the internet is now an
essential service. Which does have its dangers – cyber attacks and
information theft are much more common and more severe than ever
before, although these are mitigated to some extent by the advance of the
defences in operating systems, firewalls, and anti-malware. It is a
continuing arms race, though.
If I had to name the one disruptive change over the last decade, it must
surely be the roll out of fast, pervasive networks, leading to permanent
connection to a vast information source, and other people. Virtually all the
other big changes are built upon this.

A look into the future
Predicting disruptive technology and future directions is very hard.
Sometimes it’s because it hasn’t been thought of yet. Sometimes it exists
but needs other things to happen for them to become important. The last
big one was probably the internet, which took 40 odd years. Something
in the medical or biotech arenas might be next – the price of genome
sequencing is dropping fast, opening up lots of possible developments.
Integrating GPS and cameras into powerful phones is opening up some
interesting syntheses – think of William Gibson’s Virtual Light. RFID has
been promising much and gaining footholds in niches. But would it change
everyone’s life significantly? Parallel and distributed computing will be
important, whether it’s multi core, grid or cloud computing. But what will
be the killer application? If I knew that, I’d be rich soon!
But you want a prediction. I think the major technological changes for the
next decade or so will be driven by nanotech. Improvements in things such
as battery efficiencies, LCD screens, chip development, disk densities,
photovoltaic efficiencies, etc, have already been
happening due to its application, but I expect it will
accelerate and affect many things, and result in the
next step change in small, efficient, ubiquitous
computing.
February 2010 | Overload | 3

FEATURE MARTIN MOENE
One Approach to Using
Hardware Registers in C++
Testing increases software reliability. Martin Moene presents
a technique for checking the control of hardware.
oftware that accesses hardware registers is not always written as
clearly as one would like. A cause for this may be the assumption
that using an abstraction for the register degrades performance too

much. Also such code often lacks good support for testing, which is
aggravated by the write-only property of many registers that complicates
verifying if the software operates correctly. This article presents the
approach that we use to addresses these issues in our software for scanning
probe microscopy.

Scanning Probe Microscopy
To form an idea of a scanning probe microscope [SPM], you may recall
the old stereo vinyl-record player with its needle picking up small height
variations of the record groove. Now imagine the needle out the groove,
making a scanning movement in two directions over a part of the record’s
surface, somewhat like the head of an inkjet printer scanning over a sheet
of paper. This resembles the scanning probe that scans a sample and probes
its height variations with a tip. Shrink it to the atomic scale of nanometres
and it’s called a microscope. Figure 1 illustrates the scanning movements.

The seeing actually is more like feeling and one of the sensing methods
uses the tunnel current [TC] that flows between tip and sample for that
purpose. This is called scanning tunneling microscopy (STM). Another
type of scanning probe microscopy is atomic force microscopy (AFM),
where the sensing method relies on interaction forces between tip and
sample if they are close. Before scanning a material’s surface, the tiny tip
is brought towards the area of interest in a delicate process that’s called
approach.
The strength of the measured interaction between tip and surface is plotted
against the scan coordinates in an intensity graph that then represents a
view of the surface’s topography.
Further, the Leiden Interface Physics [IP] group has designed and built
custom electronics to perform scanning probe microscopy measurements
as fast as possible. Material with a very even surface allows the recording
of movies with up to 80 images of 128×128 pixels squared per second,

while still obtaining atomic resolution. With these and several other
techniques in place, changes on the surface of a material can be
‘videoed’while for example different kinds of gas are flowed over the
surface in succession, leading to new discoveries [Frenken05].

In control
The video-rate SPM controller used for these measurements consists of a
rack with several modules or cards. There are two computer buses in the
rack, one called STM-bus and the other ADC-bus. STM-bus is a bit of a
misnomer, as the controller is not limited to STM measurements. The cards
connected to the STM-bus are used to generate the signals to perform the
tip (sample) scanning movement and the timing of the measurements. The
ADC-bus handles the signals measured by several Analog to Digital
Converters (ADCs) on that bus. While scanning, the measured values are
transfered to the computer under DMA1.
Each bus has a bus controller card that is connected via a pair of glass fibers
to a PCI interface card in the computer that controls the measurement
(Figure 2). A spin-off called Leiden Probe Microscopy [LPM] now
produces and markets the SPM controller.
At the same time and as part of the project, C++ software has been
developed to interface with the electronics and to perform and analyse
STM and AFM measurements.

Control fades
As research objectives change, and new insights in research methods arise,
the software has to change. However the software is showing its age and
it is becoming increasingly difficult to adapt: it incurred technical debt
[Fowler09]. In its current form, the software is also not very well suited
to use the SPM controller for measurements outside the field of scanning
probe microscopy. Eventually we decided to redevelop the parts of the
software that interface with the electronics and that provide the basic
scanning probe microscopy functionality.

Regaining weight
As the existing software has no supporting unit tests – [Feathers04] calls
this legacy software – and the gap between it and the desired situation was
quite large, we decided not to refactor [Fowler99] the existing code but
instead completely redevelop it. We also took the chance to move from
Microsoft’s Visual C++ version 6 to version 8, which later can be replaced
more easily with an even newer version. Where it supports our needs well,
we decided to prefer to use [Boost] libraries over other possible libraries.
This guideline helped us to choose Boost.Test over for example [GTest]
for unit testing.
In the remainder of the article we’ll look at our approach to development
and testing of the software that controls the electronics with an emphasis
on accessing hardware registers and testing the bits and bytes that
eventually will flow through them.

S

Figure 1

1.Direct Memory Access, access system memory independent of
the CPU.

Martin Moene has been programming professionally since 1983,
mostly in C++. He has a background in electronics engineering, and
most programming revolves around instrucment control, image
processing, crunching numbers and sometimes administrivia. Martin
can be contacted at m.j.moene@eld.physics.LeidenUniv.nl
4 | Overload | February 2010

FEATUREMARTIN MOENE

A hardware register is a kind of memory
element, although its implementation

may differ from memory used for
temporary storage in a computer
While writing this article I encountered ‘A Technique for Register Access
in C++’, by Pete Goodliffe, which has the following introductory sentence:
‘This article discusses a C++ scheme for accessing hardware registers in
an optimal way’ [Goodliffe05]. It contains a nice introduction to hardware
registers and how they are accessed. Its emphasis on the limitations of
embedded software is not a concern here.

Register diversity
A hardware register is a kind of memory element, although its
implementation may differ from memory used for temporary storage in a
computer [HR]. The key properties of a register in this discussion are its
data and address width and the method used to access it. Common register
access methods are memory-mapped I/O, port-mapped I/O and bus-
separated access. Further it is quite common that information written to a
register cannot be read-back from it, complicating read/modify/write
operations and testing [Roberts]. And for most registers there isn’t an easy
way to electronically check the result of how we configure it.
A rough analysis was done of the functions of the various cards involved
and of their hardware registers’ properties. We counted 34 registers, of
which 13 use simple word-wide access. The remaining 21 registers are
control and status registers and have multiple functions. As much as
possible, we would like to be able to use non-related functions within a
single register separately from each other. On the other hand sometimes
the microscope or domain behaviour requires that what may be disparate
register functions or even disparate functions in separate registers, must
change in concert.

There are memory-mapped registers on the PCI interface card and registers
on the cards in the SPM rack that are accessed via the PCI interface card.
The registers on the PCI card are 32-bit wide and have a 32-bit address,
whereas the registers on the SPM cards have a 16-bit data type and an 8-
bit address. It would be nice if we can use the same register abstraction for
the registers on the PCI interface card and the registers on the cards that
are accessed via that PCI interface card.
In our search for an approach that works, these are the guiding ideas:1

Use: provide a register abstraction with useful (bitwise) operations
such as bittest, bitset and masked variants thereof and use it for all
register types.
Test: make register access testable and actually test it via automated
unit tests.
Access policy: separate the actual register access method from the
register abstraction.
Performance: ensure register access speed that is comparable to
pointer-based register access for memory-mapped registers.

Show, don’t (just) tell
What the test environment should provide is simple. Initially, while we
develop the code, the test environment is allowed to relax [TeX] and to

1.I almost wrote the words ‘flexible’ and ‘reuse’ here, however:
‘The word flexible is like reuse: it should alert you that something
nebulous is probably up. Classes and functions are not designed
to be flexible, they are designed for a purpose: flexibility is not a
purpose, nor is it either a quality or a quantity; it is a bucket term,
a catch all, snake oil.’ See [Henney02].

Figure 2
February 2010 | Overload | 5

FEATURE MARTIN MOENE
just report the register access that it sees. Thus we can compare register
access with the manual description and existing code, reason about it and
easily spot and understand any errors we make. Gaining trust in what we
wrote, we add register read and write expectations that specify the
programmed behaviour and ensure that it is tested (not relaxing anymore).
With development completed, visual feedback on the register operations
is turned off and only a failing test case may draw our attention.
Although the way of working resembles test driven development [TDD],
I merely regard it as visual inspection driven implementation (VIDI) or to
overload the term, probe driven development (PDD). Seeing what actually
happens to the register first helps to implement the required behaviour
correctly.
Listing 1 presents some successfully verified test output that shows the
register interaction for a call to the function read(address) of the PCI
interface card in the computer to obtain a value from a card in the SPM
controller.
At the left of the arrow is the address to read from (-->) or write to (<--),
at its right is the register content in hexadecimal, binary and decimal
notation. At item 5, in 0x82aa0000, 0x82 is the STM-bus read
command, 0xaa the card address to read from and 0x5533 at item 11 is
the value obtained from the card by the simulated read. At the far right,
remarks explain what should be happening. Note the explicative name of
the test: testThatReadUsesRightRegisterAccessSequence
[Henney09].
Listing 2 shows a failing test where the value written to the register
(0x246) is different from the expected one (0x123).

Register class declaration
Ah, finally we get to see some bits of code! Listing 3 shows the Register
class declaration.
A Register object is defined by its data type (D), address type (A) and
the concept (CP) that defines how the register is accessed, e.g. as memory
or in another way.
To test registers access, the actual reading from and writing to the hardware
registers must be intercepted. The user-provided access policy class make

this possible [Henney06, Henney08]. Another approach would be to make
the register access an abstract interface. However, the policy approach
potentially provides better performance as the compiler can optimise away
function calls, whereas it may not do that with the virtual function calls of
an abstract interface.
As a register object represents a single hardware register, we prevent
copying by inheriting the register class from boost::noncopyable.

Channel concept
How exactly registers are accessed is governed by the channel concept. It
prescribes that the policy class provides a read() method and a write()
method with proper data and address types (Listing 4).
That’s practically all there is to it, the type of the policy class itself is not
relevant. This kind of polymorphism – compile-time polymorphism in
case of C++ – is called duck typing [DT]: if it walks, quacks and swims like
a duck, it’s probably a duck.

Memory-mapped register access
Some hardware registers are accessed in the same way as memory. These
memory-mapped registers need only a simple access policy, such as the
one shown in Listing 5.
Here, the address type is derived from the data type. With volatile in
the intermediate RegisterType declaration we inform the compiler that

prompt>test --log_level=message --run_test=*/*Stm*/*Read*
Running 1 test case...
Inspect> testThatReadUsesRightRegisterAccessSequence:
Inspect> 1: 0x0044 <-- 0x0001 0b0000000000000001 1 | clear fifo data
Inspect> 2: 0x0044 <-- 0x0000 0b0000000000000000 0 | is available flag
Inspect> 3: 0x0044 --> 0x0002 0b0000000000000010 2 | wait for write
Inspect> 4: 0x0044 --> 0x0000 0b0000000000000000 0 | fifo not full
Inspect> 5: 0x0060 <-- 0x82aa0000 0b10000010101010100000000000000000 2192179200 | write read command
Inspect> 6: 0x0044 --> 0x0002 0b0000000000000010 2 | wait for address
Inspect> 7: 0x0044 --> 0x0002 0b0000000000000010 2 | to become
Inspect> 8: 0x0044 --> 0x0000 0b0000000000000000 0 | accepted
Inspect> 9: 0x0044 --> 0x0000 0b0000000000000000 0 | wait for data to
Inspect> 10: 0x0044 --> 0x0001 0b0000000000000001 1 | become available
Inspect> 11: 0x0060 --> 0x3355 0b0011001101010101 13141 | note host to fiber byte swap
*** No errors detected

Listing 1

prompt>test
Running 3 test cases...

Test-fail.cpp(52): error in "testThatRegisterAssignmentWritesProperValueToRegister": check {
spy.getAllExpectations().begin(), spy.getAllExpectations().end() } == {
spy.getAllOccurrences().begin(), spy.getAllOccurrences().end() } failed.

Mismatch in a position 0: [write,0x17,0x123] != [write,0x17,0x246]

*** 1 failure detected in test suite "Master Test Suite"

Listing 2

/**
 * register type.
*/
template
< typename D // data type
, typename A = D* // address type
, typename CP = MemoryChannel<D,A>// channel policy
>
class Register;

Listing 3
6 | Overload | February 2010

FEATUREMARTIN MOENE
the value in the memory location may change without the compiler being
aware of it. The effect is that the compiler will not optimise away any reads
from the location that it may consider redundant.
As we’ll see shortly, the Register class can use channel policy class
objects that are created either internally or externally. Some policy classes
have no need for object member data and can use static member functions.
The MemoryChannel class is an example of this: there’s no need for an
externally initialized object of it.

Intermezzo: Template type parameter or template template
parameter
Early in development, I made the channel policy a template template
parameter, so that the register class governs the channel’s data and
address types. For memory-mapped registers this seems a natural choice.
However, is it also a good choice for a channel that has its own fixed data
and address types?
Then when I wanted to use a spied-upon fiber interface card class as the
channel policy of a card class, I was in trouble, because we are no longer
feeding the card’s class a template class but a type instead. It was time to
consult the ACCU-general mailing list and ask for reasons and
consequences of choosing between a template type parameter and template
template parameter. James Dennett’s answer exactly mentioned what I was
experiencing: a template type parameter gives extensibility/flexibility, or
put otherwise the choice for a template template parameter results in non-
extensibility and inflexibility [Dennett09]. Thus the channel policy
template parameter became a type.
Now that data and address types for the register and the channel can be
specified separately, this could introduce a conversion. However, for

simplicity it is just checked at compile-time if the types are equivalent
using for example BOOST_STATIC_ASSERT(boost::is_same<D,
typename CP::D>::value);

Register class implementation
Listing 6 presents the implementation of the Register class. There are
a couple of things to note.

there are two constructors: one without channel object, one with
channel object parameter
the destructor contains a call to method checkTypes that statically
asserts that data and address type of register and channel policy
match.
the class normally caches the value written to the hardware register
to compensate for the fact that the registers are write-only; if a
registers can also be read it usually has a different meaning, e.g. it is
a status value instead of the written control value.

And of course, there are the methods to read and write the register as a
whole, or test, set and clear bits, or groups of bits.
Although a register just has a single address, the constructor takes both an
address and an offset. The rationale behind it is to concentrate address
computations at a single point in the register class and not spread it over
the classes that use the register class.

/**
 * the duck in the channel.
 */
struct ChannelConcept
{
 typedef sometype DataType;
 typedef sometype AddressType;
 DataType read (AddressType);
 void write(AddressType, DataType);
};

Listing 4

/**
 * transport for memory mapped registers.
 */
template
< typename D // data type
, typename // A address type unused
>
class MemoryChannel
{
public:
 typedef D DataType;
 typedef volatile DataType RegisterType;
 typedef RegisterType* AddressType;
 static DataType read(AddressType address)
 {
 return *address;
 }
 static void write(AddressType address,
 DataType data)
 {
 *address = data;
 }
};

Listing 5

template
< typename D
, typename A = volatile D*
, typename CP = MemoryChannel<D,A>
>
class Register : public boost::noncopyable
{
public:
 typedef D DataType;
 typedef A AddressType;
 typedef CP ChannelType;
 Register(AddressType address, int offset,
 DataType data = 0)
 : m_channel_smartptr()
 // Note: must be declared before m_channel
 , m_channel(createChannel())
 , m_address(computeAddress(address,
 offset))
 , m_cache(data)
 {
 }
 Register(ChannelType& channel,
 AddressType address, int offset,
 DataType data = 0)
 : m_channel_smartptr()
 , m_channel(channel)
 , m_address(computeAddress(address,
 offset))
 , m_cache (data)
 {
 }
 ~Register() {
 checkTypes();
 }
 static void checkTypes() {
 BOOST_STATIC_ASSERT((boost::is_same<D,
 typename CP::DataType>::value));
 BOOST_STATIC_ASSERT((boost::is_same<A,
 typename CP::AddressType>::value));
 }
 operator DataType() {
 return read();
 }

Listing 6
February 2010 | Overload | 7

FEATURE MARTIN MOENE
All in all, not too exciting a class. It’s the combination of register
operations, registers access and its testing that makes it interesting.

Using class Register
Now where do all these preparations bring us to? Listing 7 presents a small
part of class DualFiberLinkImpl for the computer interface PCI card
that connects the computer to the video-rate SPM controller.
In normal use, the class will be instantiated with the MemoryChannel
policy class to provide access to the memory-mapped PCI registers.

 Register& operator= (DataType data) {
 write(data);
 return *this;
 }
 AddressType address() const {
 return m_address;
 }
 DataType cache() const {
 return m_cache;
 }
 DataType read() {
 return m_channel.read(m_address);
 }
 void write() {
 m_channel.write(m_address, m_cache);
 }
 void write(DataType value) {
 m_channel.write(m_address,
 m_cache = value);
 }
 void write_nc(DataType value) {
 m_channel.write(m_address, value);
 }
 bool bittest(int bit) {
 return 0 != (read() & bitmask(bit));
 }
 void bitclear(int bit) {
 write(m_cache & ~bitmask(bit));
 }
 void bitset(int bit) {
 write(m_cache | bitmask(bit));
 }
 bool masktest(DataType mask) {
 return mask == (read() & mask);
 }
 void maskclear(DataType mask) {
 write(m_cache & ~mask);
 }
 void maskset(DataType mask) {
 write(m_cache | mask);
 }
 void maskset(DataType clearmask,
 DataType setmask) {
 m_cache &= ~clearmask;
 maskset(setmask);
 }
 static DataType bitmask(int bit) {
 return 1 << bit;
 }
 static AddressType computeAddress(
 AddressType base, int offset) {
 return base + offset;
 }

private:
 ChannelType& createChannel() {
 m_channel_smartptr.reset(
 new ChannelType());
 return *m_channel_smartptr;
 }

private:
 // to be replaced by std::unique_ptr:
 std::auto_ptr<ChannelType> m_channel_smartptr;
 ChannelType& m_channel;
 AddressType m_address;
 DataType m_cache;
};

Listing 6 (cont’d)

template < typename CP >
class DualFiberLinkImpl
{
 typedef CP ChannelType;
 typedef Register< pci_data_t, pci_address_t,
 CP > RegisterType;
 class BusStatusRegister : private RegisterType
 {
 private:
 enum EStatusRegister
 {
 eBit_DataIsAvailable = 0,
 eBit_WriteFifoIsFull = 1,
 eBit_ErrorHasOccurred = 2,
 eBit_ClearDataIsAvailable = 0,
 eBit_ClearErrorHasOccurred = 2,
 ...
 };
 public:
 BusStatusRegister(ChannelType& channel,
 pci_address_t address, int offset)
 : RegisterType(channel, address,
 offset) {;}
 bool fiberDataIsAvailable() const {
 return bittest(eBit_DataIsAvailable);
 }
 ...
 void clearFiberDataIsAvailable() {
 bitset (eBit_ClearDataIsAvailable);
 bitclear(eBit_ClearDataIsAvailable);
 }
 };
 ...
 enum ERegisterOffset
 {
 eRegOff_BusStatus = 1,
 };
public:
 DualFiberLinkImpl(ChannelType& channel,
 const pci_address_t address)
 : m_regBusStatus (channel, address,
 eRegOff_BusStatus)
 ...
 {
 }
 bool fiberDataIsAvailable() const
 {
 return m_regBusStatus.fiberDataIsAvailable();
 }
 void clearFiberDataIsAvailable()
 {
 m_regBusStatus.clearFiberDataIsAvailable();
 }
private:
 BusStatusRegister m_regBusStatus;
 ...
};

Listing 7
8 | Overload | February 2010

FEATUREMARTIN MOENE
Configurable register spy
The channel concept not only allows for different ways to access real
registers, it also provides the means to bring the register access into our
test framework. A register spy class is a channel policy and besides that it
can contain and provide the expected register access operations as well as
the actually occurred register access operations [Meszaros07]. The macro
call SPM_CHECK_REGISTER_SPY_EXPECTATIONS(spy) checks if
the programmer-defined expectations are met (Listing 8).

Boost.Test
As already mentioned, we’re using Boost.Test as the test framework. It
nicely supports the described way of working through its message and test
macros and its command line options. While developing, we use option
--log_level=message, later on when used as regression test we use
--log_level=error , which i s the defau l t . Wi th op t ion
--run_test=spec we can select one or more tests to run instead of
running all tests. For example, option --run_test=*/*Stm*/*Read*
selects the tests with Read in their name from the (sub) test suites that have
Stm in their name.
Sometimes the tests specified initially were wrong and failed, whereas the
code to test was correct. I don’t think this is a bad thing, it just makes you
all the more conscious of what the code does. One thing I was able to spot
immediately occurred when we moved from a Windows-API-based lock
to the Boost-based lock. The read operation for the fiber interface PCI card
halted where it previously had no problem. It appeared that I had
inadvertently chosen a non-re-entrant mutex from Boost.Thread, whereas
the CRITICAL_SECTION previously used for the mutex is re-entrant.

A test example
The Boost.Test main program (Test-main.cpp) is joyfully simple. The
actual groups of related tests (test suites) are located in separate source
files, such as Test-simple.cpp in Listing 9. Compile and link the
source files with Test-main.cpp as the first to obtain the test program
with all test suites.

In its most basic usage spy.relax() is called before the register is used
and the register spy just records the access to one or more registers.
However, here the spy is provided with a sequence of expectations of
addresses and values that should be written and read and at the end of the
test these expectations are matched with the actual register accesses to
report any discrepancy (Listing 9).

Space and time efficiency
The design of the Register class assumes that calls to the channel policy
class are optimised away by the compiler. This results in code that’s both
smaller and faster because of the absence of a function call. Processor
cache size limits also reward smaller code with faster execution.

Space efficiency
Each object of the Register class contains a smart pointer used for
internally created channel policy objects, a reference to the channel, the
register’s address and the cache for the value written to the register. Would
another approach, for example one where less information is stored in the
register objects, lead to overall smaller code? I don’t know. I didn’t look
into it because size per se is not a big concern to me. The chosen approach

/**
 * the spy we love.
 */
template < typename D, typename A >
class RegisterSpy;

// main spy operations:
void relax(bool relax = true);
void addReadExpectation (AddressType address,
 DataType data, std::string remark = "");
void addWriteExpectation(AddressType address,
 DataType data, std::string remark = "");

// macros:

// the name of the current test case.
#define SPM_TEST_CASE_NAME ...

// issue test message; streams its argument.
#define SPM_TEST_MESSAGE(arg) \
 BOOST_TEST_MESSAGE("" << arg)

// issue test message:
// "'prefix' testcase_name" << 'postfix'.
#define SPM_TESTCASE_MESSAGE(prefix, postfix) \
 SPM_TEST_MESSAGE(prefix << \
 SPM_TEST_CASE_NAME << postfix)

// match expectations and occurrences.
#define SPM_CHECK_REGISTER_SPY_EXPECTATIONS(
 spy) ...

Listing 8

// File: Test-main.cpp
#define BOOST_TEST_MAIN Master Test Suite
#include <boost/test/unit_test.hpp>
// File: Test-minimal.cpp
#include <iostream> // std::cout
#include "Register.h" // class Register
#include "RegisterSpy.h" // class RegisterSpy
#include "Test-common.h"
 // SPM_TEST_INSPECT_MESSAGE
#include <boost/test/unit_test.hpp> // Boost.Test
typedef int DataType;
typedef int AddressType;
typedef spm::tdd::RegisterSpy< DataType,
 AddressType > RegisterSpyType;
typedef spm::Register < DataType, AddressType,
 RegisterSpyType > RegisterType;
const AddressType base (0x10);
const int offset (0x07);
const DataType initial(0xe5);
const AddressType address(
 RegisterType::computeAddress(base,
 offset));
BOOST_AUTO_TEST_SUITE(Register)
BOOST_AUTO_TEST_SUITE(Minimal)
struct Fixture
{
 Fixture() : spy("Inspect>") , reg(spy, base,
 offset, initial){;}
 ~Fixture() { SPM_TEST_MESSAGE(spy); }
 RegisterSpyType spy;
 RegisterType reg;
};
BOOST_FIXTURE_TEST_CASE(
testThatRegisterAssignmentWritesCorrectValueToReg
ister, Fixture)
{
 SPM_TESTCASE_MESSAGE(
 "Inspect> ", " (Pass):");
 const DataType value(0x123);
 spy.addWriteExpectation(address, value,
 "assign value to register");
 reg = value;
 SPM_CHECK_REGISTER_SPY_EXPECTATIONS(spy);
}
BOOST_AUTO_TEST_SUITE_END() // Minimal
BOOST_AUTO_TEST_SUITE_END() // Register

Listing 9
February 2010 | Overload | 9

FEATURE MARTIN MOENE
leads to quite simple code for register manipulation, as much is abstracted
into functions to build on, so my impression is that it is size-efficient.

Register performance
Register access is at the heart of many operations, so performance may be
an issue. Moving a slider that controls a voltage in the setup to pan (or
zoom, rotate etc) the scanned area should be a smooth operation. Say run-
time performance and the very next word is: measure. I timed the various
operations the register class provides as well as comparable pointer-based
memory access statements. Table 1 lists these measurements. Note that the
tests access conventional memory as opposed to registers on a 66 MHz PCI
bus (15 ns period). However our prime interest is to compare the
performance of the Register approach with the presumed efficient way
it is done in the legacy code.
Note that the timing also depends on other tasks running on the computer
and therefore the test program was run 100 times to spread out the
measurements in time. The register class performs quite well compared to
the pointer-based access.
Table 2 presents the resulting assembly code. It appears that often the code
generated for the Register class is the same or almost the same as for
the equivalent pointer based statements.

Conclusion
Using fairly main-stream C++ constructs we provide a hardware register
abstraction that enables us to write classes that represent hardware with a
clear and regular design. The register abstraction allows for different
methods to access the registers and with this it also provides the means to
test register read and write access. And thanks to compiler optimisation,
for memory-mapped registers access it has a performance akin to pointer-
based access. So if we can speak of any degradation of performance, it is
offset by enhanced testability.

Acknowledgements
Thanks to editor Ric Parkin for the gentle guidance of a first-time Overload
author. Also thanks to Gert Jan van Baarle and Joost Frenken for their

Operation memory access times on computer running Windows-XP
SP3 with a 2.3 GHz AMDAthlon(tm) 64 X2 Dual Core Processor 4400+
and 2 GByte RAM. The program was compiled with MSVisual C++ 8,
with options -O2 -EHs. Times are in [ns].

Median [ns] Operation

1 1.31 *p = x

2 1.31 reg.write_nc(x)

3 1.31 *p = cache = x

4 1.595 reg.write(x)

5 1.6 reg = x

6 1.36 cache = *p

7 1.75 cache = reg.read()

8 1.75 cache = reg

9 1.36 b = 0 != (*p & 0x01)

10 1.57 b = reg.bittest(0)

11 1.75 *p = (cache | 0x02)

12 1.75 reg.write_nc(reg.cache() | 0x02)

13 2.29 *p = cache |= 0x04

14 2.41 reg.bitset(3)

15 2.31 *p = cache |= 0x0f

16 2.41 reg.maskset(0x0f)

17 2.9 *p = cache = ((cache & ~0xf0) | 0x30

18 2.98 reg.maskset(0xf0, 0x30)

Table 1

Assembly code when compiled with VC8, options -O2 -EHa.

1 *p=x

mov ecx, DWORD PTR [esi+12]

mov DWORD PTR [ecx], eax

2 reg.write_nc(x)

mov ecx, DWORD PTR [esi+28]

mov DWORD PTR [ecx], eax

3 *p = cache = x

mov ecx, DWORD PTR [esi+12]

mov DWORD PTR [esi+4], eax

mov DWORD PTR [ecx], eax

4 reg.write(x)

mov ecx, DWORD PTR [esi+28]

mov DWORD PTR [esi+32], eax

mov DWORD PTR [ecx], eax

5 reg = x

mov ecx, DWORD PTR [esi+28]

mov DWORD PTR [esi+32], eax

mov DWORD PTR [ecx], eax

6 cache = *p

mov ecx, DWORD PTR [esi+12]

mov edx, DWORD PTR [ecx]

mov ecx, DWORD PTR [esi+12]

mov DWORD PTR [esi+4], edx

7 cache = reg.read()

mov eax, DWORD PTR [esi+28]

mov eax, DWORD PTR [eax]

mov DWORD PTR [esi+4], eax

8 cache = reg

mov eax, DWORD PTR [esi+28]

mov eax, DWORD PTR [eax]

mov DWORD PTR [esi+4], eax

9 b = 0 != (*p & 0x01)

mov ecx, DWORD PTR [esi+12]

mov edx, DWORD PTR [ecx]

mov ecx, DWORD PTR [esi+12]

and dl, 1

mov BYTE PTR [esi], dl

10 b = reg.bittest(0)

mov eax, DWORD PTR [esi+28]

mov eax, DWORD PTR [eax]

and eax, 1

mov BYTE PTR [esi], al

11 *p = (cache | 0x02)

mov ecx, DWORD PTR [esi+4]

mov edx, DWORD PTR [esi+12]

or ecx, 2

mov DWORD PTR [edx], ecx

Table 2
10 | Overload | February 2010

FEATUREMARTIN MOENE
support in writing this article and their rapid review that made it possible
to publish it one issue earlier than first envisioned.

Source code
The article’s source code is available as a tar.gz file from the following
web page: http://www.eld.physics.LeidenUniv.nl/~moene/accu/overload/
95/register/

References and further reading
[Boost] Boost free peer-reviewed portable C++ source libraries,

http://www.boost.org/.
[Dennett09] James Dennet, accu-general mailing list, December 2009,

http://lists.accu.org/mailman /private/accu-general/2009-December/
018308.html.

[DT] Duck Typing (Wikipedia),
http://en.wikipedia.org/wiki/Duck_typing.

[Feathers04] Michael Feathers, Working Effectively with Legacy Code,
Prentice Hall, 2004.

[Fowler99] Martin Fowler, Refactoring: Improving the Design of Existing
Code, Addison–Wesley Professional, 1st edition, 1999.

[Fowler09] Martin Fowler, TechnicalDebtQuadrant, October 2009,
http://martinfowler.com/bliki /TechnicalDebtQuadrant.html.

[Frenken05] Joost Frenken et al., Pushing the limits of SPM, Materials
Today, May 2005, http://www.physics.leidenuniv.nl/sections/cm/ip/
group/PDF/Materials%20Today/%282005%2920.PDF; For a more
in-depth article, see [Rost09].

[Goodliffe05] Pete Goodliffe. ‘A Technique for Register Access in C++’,
ACCU Overload 68, August 2005, http://accu.org/index.php/
journals/281.

[GTest] ‘Google C++ Testing Framework’, http://code.google.com/p/
googletest/.

[Henney02] Kevlin Henney, ‘minimalism, the imperial clothing crisis’,
http://www.two-sdg.demon.co.uk /curbralan/papers/minimalism/
TheImperialClothingCrisis.html.

[Henney06] Kevlin Henney, ‘Context Encapsulation, Three Stories, a
Language, and Some Sequences’, January 2006,
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/
ContextEncapsulation.pdf.

[Henney08] Kevlin Henney, ‘The PfA papers: Deglobalisation’,
Overload, February 2008, http://accu.org /index.php/journals/1470.

[Henney09] Kevlin Henney, ‘GUT Instinct, Sticky Minds’, May 2009,
http://www.stickyminds.com /pop_print.asp?ObjectId=14973&
ObjectType=ART.

[HR] Hardware register (Wikipedia), http://en.wikipedia.org/wiki/
Hardware_register.

[IP] Interface Physics, Universitet Leiden, Netherlands,
http://www.physics.LeidenUniv.nl/sections /cm/ip/.

[LPM] Leiden Probe Microscopy,
http://www.leidenprobemicroscopy.com/.

[Meszaros07] Gerard Meszaros, xUnit Test Patterns: Refactoring Test
Code, Addison–Wesley Professional, 2007. See ‘Test Spy’,
http://xunitpatterns.com/Test%20Spy.html.

[Roberts] Tim Roberts, ‘If every hardware engineer just understood
that...write-only registers make debugging almost impossible’,
http://www.microsoft.com/whdc/resources /MVP/
xtremeMVP_hw.mspx#ETB.

[Rost09] Marcel Rost et al., ‘Video-rate Scanning Probe Control
Challenges: Setting the Stage for a Microscopy Revolution’, Asian
Journal of Control, March 2009, http://www.physics.leidenuniv.nl/
sections /cm/ip/group/PDF/Asian%20J.%20of%20Control/
11%282009%29110.pdf.

[SPM] scanning probe microscopy (Wikipedia), http://en.wikipedia.org /
wiki/Scanning_probe_microscopy; See also [SPMBBC].

[SPMBBC] scanning probe microscopy (BBC),
http://www.bbc.co.uk/dna/h2g2/A717563.

[TC] Tunnel current is the quantum effect that a small current can flow
between conductors that have no physical contact if they are a few
nm apart, (Wikipedia)
http://en.wikipedia.org /wiki/Scanning_tunneling_spectroscopy.

[TDD] Test Driven Development (Wikipedia), http://en.wikipedia.org/
wiki/Test-driven_development.

[TeX] inspired on the \relax command of Donald Knuth’s TeX typesetting
system (Wikipedia), http://en.wikipedia.org/wiki/TeX.

12 reg.write_nc(reg.cache() | 0x02)

mov eax, DWORD PTR [esi+32]

mov ecx, DWORD PTR [esi+28]

or eax, 2

mov DWORD PTR [ecx], eax

13 *p = cache |= 0x04

mov ebx, 4

or DWORD PTR [esi+4], ebx

mov eax, DWORD PTR [esi+4]

mov edx, DWORD PTR [esi+12]

mov DWORD PTR [edx], eax

14 reg.bitset(3)

mov eax, DWORD PTR [esi+32]

mov ecx, DWORD PTR [esi+28]

or eax, 8

mov DWORD PTR [esi+32], eax

mov DWORD PTR [ecx], eax

15 *p = cache |= 0x0f

mov edi, 15 ; 0000000fH

or DWORD PTR [esi+4], edi

mov eax, DWORD PTR [esi+4]

mov edx, DWORD PTR [esi+12]

mov DWORD PTR [edx], eax

16 reg.maskset(0x0f)

mov eax, DWORD PTR [esi+32]

mov ecx, DWORD PTR [esi+28]

or eax, 15 ; 0000000fH

mov DWORD PTR [esi+32], eax

mov DWORD PTR [ecx], eax

17 *p = cache = ((cache & ~0xf0) | 0x30)

mov eax, DWORD PTR [esi+4]

and eax, -193 ; ffffff3fH

or eax, 48 ; 00000030H

mov DWORD PTR [esi+4], eax

mov edx, DWORD PTR [esi+12]

mov DWORD PTR [edx], eax

18 reg.maskset(0xf0, 0x30)

mov eax, DWORD PTR [esi+32]

mov ecx, DWORD PTR [esi+28]

and eax, -193 ; ffffff3fH

or eax, 48 ; 00000030H

mov DWORD PTR [esi+32], eax

mov DWORD PTR [ecx], eax

Table 2 (cont’d)
February 2010 | Overload | 11

http://www.eld.physics.LeidenUniv.nl/~moene/accu/overload/95/register/
http://www.eld.physics.LeidenUniv.nl/~moene/accu/overload/95/register/
http://www.boost.org/
http://lists.accu.org/mailman /private/accu-general/2009-December/018308.html
http://lists.accu.org/mailman /private/accu-general/2009-December/018308.html
http://en.wikipedia.org/wiki/Duck_typing
http://martinfowler.com/bliki /TechnicalDebtQuadrant.html
http://www.physics.leidenuniv.nl/sections/cm/ip/group/PDF/Materials%20Today/%282005%2920.PDF
http://www.physics.leidenuniv.nl/sections/cm/ip/group/PDF/Materials%20Today/%282005%2920.PDF
http://accu.org/index.php/journals/281
http://accu.org/index.php/journals/281
http://code.google.com/p/googletest/
http://code.google.com/p/googletest/
http://www.two-sdg.demon.co.uk /curbralan/papers/minimalism/TheImperialClothingCrisis.html
http://www.two-sdg.demon.co.uk /curbralan/papers/minimalism/TheImperialClothingCrisis.html
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/ContextEncapsulation.pdf
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/ContextEncapsulation.pdf
http://accu.org /index.php/journals/1470
http://www.stickyminds.com /pop_print.asp?ObjectId=14973&ObjectType=ART
http://www.stickyminds.com /pop_print.asp?ObjectId=14973&ObjectType=ART
http://en.wikipedia.org/wiki/Hardware_register
http://en.wikipedia.org/wiki/Hardware_register
http://www.physics.LeidenUniv.nl/sections /cm/ip/
http://www.leidenprobemicroscopy.com/
http://xunitpatterns.com/Test%20Spy.html
http://www.microsoft.com/whdc/resources /MVP/xtremeMVP_hw.mspx#ETB
http://www.microsoft.com/whdc/resources /MVP/xtremeMVP_hw.mspx#ETB
http://www.physics.leidenuniv.nl/sections /cm/ip/group/PDF/Asian%20J.%20of%20Control/11%282009%29110.pdf
http://www.physics.leidenuniv.nl/sections /cm/ip/group/PDF/Asian%20J.%20of%20Control/11%282009%29110.pdf
http://www.physics.leidenuniv.nl/sections /cm/ip/group/PDF/Asian%20J.%20of%20Control/11%282009%29110.pdf
http://en.wikipedia.org /wiki/Scanning_probe_microscopy
http://en.wikipedia.org /wiki/Scanning_probe_microscopy
http://www.bbc.co.uk/dna/h2g2/A717563
http://en.wikipedia.org /wiki/Scanning_tunneling_spectroscopy
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/TeX

FEATURE RICHARD HARRIS
The Model Student: A Game of
Six Integers (Part 1)
In how many ways can you combine a set of numbers?
Richard Harris gets counting.
um de dum de dum, dum de dum de dum, dum de dum de dum, dum
de dum de dum, baa daa daa, baa daa daa, boo doo, boo doo, boo doo
dee doo, choo.

Ah, Countdown. A nice cup of tea, perhaps a choccy biccy or two, and
we’re ready to cross mental swords with televisual gladiators in half an
hour of orthographical and arithmetical battle.
Er, sorry, it seems I’ve set the hyperbole switch to turbo.
Hang on a sec.
Righty ho.
Beloved of students, retirees and housewi…, er, home-makers throughout
the land, it is one of the longest running game shows in the world and was
the very first program broadcast on Channel 4, way back in 1982
[Countdown].
Hosted for much of its astonishingly long run by Carol Vorderman and the
splendidly be-blazered and much missed Richard Whiteley, we have
entered a new era with the recent departure of the former and the premature
demise of the latter.
For the one or two of you who haven’t experienced the joy of Countdown,
the game consists of two types of rounds; the letters rounds and the
numbers rounds.
In the letters rounds, one of the two contestants chooses 9 letters from a
random source of consonants and a random source of vowels with which
they both seek to construct as long a word as possible.
In the numbers rounds, one of the contestants chooses 6 integers from a
concealed set of large integers and a concealed set of small integers with
which they both seek an arithmetic formula that yields a value as close as
possible to a randomly selected target between 1 and 999.
Guess which one I’m interested in? You got it.

The Countdown numbers game
Before the start of the numbers game the two sets of large and small
numbers, printed on cards, are randomly shuffled and placed face down
upon a table.
Specifically, the set of large numbers, consisting of one of each of 25, 50,
75 and 100, are placed upon the table above the set of small numbers,
consisting of two of each of the integers from 1 to 10, so as to distinguish
between them.
One of the contestants then picks 6 of these, typically 1 large and 5 small,
before a random target between 100 and 999 is generated.
Using addition, subtraction, multiplication and division they both must
then, during a period of just 30 seconds, attempt to discover a formula that
yields the target number using each of these numbers no more than once.

Furthermore, every intermediate value during the calculation, and hence
the result itself, must be a whole number. For example, if the selected
numbers were 75, 8, 6, 5, 3, 3 and the target were 234, we would hit it
exactly with the formula:

75 × 3 + 6 + 3
or, without using the large number, with:

5 × 6 × 8 − 3 − 3
Strictly speaking, a contestant earns points if he or she is the nearest of the
pair to the target, provided at least that their result is within a certain
maximum difference; let’s be honest though, almost is just another word
for fail.
Before we can investigate the properties of the numbers game, we shall
need some code with which we can enumerate every possible formula that
we might construct.
In order to do this, we shall express the formulae in Reverse Polish
notation; a spectacularly convenient notation for algorithmically
evaluating arithmetic formulae.

Reverse Polish notation
In Reverse Polish notation, or RPN, arithmetic operators are placed
immediately to the right of their arguments rather than between them, as
in the more familiar infix notation. For example, the formula 3+4 would
be expressed as 3 4 + in RPN.
Developed in the late 1950s by Charles Hamblin, it was used to simplify
the electronics in early Hewlett-Packard calculators [HP1] and proved so
popular that they still support it on some of their models [HP2].
The principal advantages of RPN are that the operators appear in the input
sequence precisely when they need to be applied, and that the precedence
of the operators is unambiguously determined by their position,
eliminating the need for brackets.
We can see this when we express more complex formulae in RPN and to
do that we must introduce the RPN stack.
Whenever a number appears in the input sequence of an RPN formula, it
is pushed on to the stack. Whenever an operator appears, it pops the
arguments it requires off of the stack and pushes the result of the
calculation back on to the stack.
An error occurs if there are not enough values on the stack for an operator
or if there is more than one value left on the stack at the end of the
expression.
For the simple example 3 4 +, we push 3 then 4 on to the stack and the +
operator pops them and pushes 7 on to the stack. Since we have reached
the end of the expression, this single value on the stack is the result of the
calculation.
Using infix notation, we must consider operator precedence to ensure that
we arrive at the correct result. For example, the formula

2 + 3 × 4

D

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
12 | Overload | February 2010

FEATURERICHARD HARRIS

Generating the set of formula templates
is a relatively straightforward process
should be interpreted as

2 + (3 × 4)
rather than

(2 + 3) × 4
since multiplication has higher precedence than addition. If we wish to
calculate the latter, we must use brackets to ensure that the operators are
applied in the correct order.
In RPN, however, no such complications exist. The first calculation is
described by the formula

3 4 × 2 +
and the second by

2 3 + 4 ×
Running through the steps required to calculate the first of these, we push
first 3 then 4 onto the stack. The multiplication operator pops these values
off of the stack and pushes their product, 12, back on to it. The value 2 is
then pushed onto the stack and the addition operator pops off it and the 12
and pushes back their sum, 14. Since there are no more inputs, this is the
result of the calculation.
Figure 1 illustrates graphically the state of the stack after each term in the
formula is entered.

Enumerating the RPN formulae
Noting that the four arithmetic operators allowed by the Countdown
numbers game, addition, subtraction, multiplication and division, all
require precisely two arguments we need only generate RPN formulae
consisting of binary operators.
Rather than generate the formulae directly, I propose that we work with a
pair of placeholder symbols, o and x, to represent operators and arguments
respectively. We can then subsequently substitute them with every valid
permutation of operators and arguments to generate the full set of
formulae.
Generating the set of formula templates is a relatively straightforward
process. We start with the simplest template, namely a single value x. The
next step is to replace the single x with a binary operation and its
arguments, xxo, the result of which will also be a single value. Continuing
in the same vein, we recursively replace each x in turn in the current

template with xxo, stopping when there are as many x symbols as there are
available arguments.
For example, if we had 3 arguments to work with, we would traverse the
following set of formulae.

x
xxo
xxoxo xxxoo

In general, some formula templates will be generated more than once
during the recursion. For example, if we were working with 4 arguments
the template xxoxxoo could be generated by replacing with xxo both the
last x in xxoxo and the first x in xxxoo from the 3 argument templates. We
will therefore need to keep track of the templates we generate in order not
to repeat ourselves.
As it happens, it is rather convenient to use strings of x and o characters
to represent our formula templates. Listing 1 il lustrates the
all_templates function that returns the full set of templates for a given
number of available arguments.
This simply forwards the work on to another overload, provided in
listing 2.
The key to terminating the recursion when we have exhausted the set of
arguments lies in the fact that each time we replace an x with an xxo we
add a single extra argument to the formula template. By passing the
remaining number of arguments to the function during the recursion, we
can stop when they reach 0.
The main loop iterates over the current template, replacing each x with xxo
in turn and passing each new template recursively to the function for the
same treatments.
The complete set of formula templates for up to 5 arguments is illustrated
in figure 2, in order of increasing length.

The states of the RPN stack

3 4 × 2 +

4 2

3 3 12 12 14

Figure 1

std::set<std::string>
all_templates(size_t arguments)
{
 std::set<std::string> result;
 if(arguments!=0) all_templates("x",
 arguments-1, result);
 return result;
}

Listing 1

x xxo xxoxo xxxoo xxoxoxo xxoxxoo
xxxooxo xxxoxoo xxxxooo xxoxoxoxo xxoxoxxoo xxoxxooxo
xxoxxoxoo xxoxxxooo xxxooxoxo xxxooxxoo xxxoxooxo xxxoxoxoo
xxxoxxooo xxxxoooxo xxxxooxoo xxxxoxooo xxxxxoooo

Figure 2
February 2010 | Overload | 13

FEATURE RICHARD HARRIS

The formula for the number of
equations with up to a given number of
arguments is a little more complex
The number of formula templates
One very simple calculation we can perform at this point is to determine
the total number of unique formula templates for up to any given number
of arguments; we simply call the size member function of the set returned
by the all_templates function.
Note that the difference between the result of this calculation for n
arguments and the result for n-1 arguments gives us the number of unique
formula templates with exactly n arguments.
Table 1 gives the results of both calculations, which we denote by T1,n and
Tn respectively, for 0 to 15 arguments.

The number of formulae
From this point it is a relatively simple task to calculate the total number
of formulae expressible with a given number of arguments. We shall treat
every argument as if it were distinct from all the others since this both
dramatically simplifies the calculation and will ultimately yield the correct
statistical properties of the Countdown numbers game. Furthermore, we’ll
restrict ourselves to the 4 binary operators allowed in the numbers game.
Note that we consider formulae distinct even if they could be rearranged
to be identical.
To recover the number of formulae with a specific number of arguments,
which we shall denote by Fn, we must multiply the number of templates
by the number of ways we can replace the o symbols and by the number
of ways we can replace the x symbols.
Noting that the templates always contain one less operator than the number
of arguments, the first multiplier is given by 4n-1.
The second multiplier is simply the number of orderings of the n
arguments, n factorial or n!, calculated by multiplying together every
number from 1 up to and including n. This hold true since when ordering
the n arguments we first pick 1 of the n, then 1 of the remaining n-1, then
one of the remaining n-2 and so on.
Hence the number of formulae is given by

The formula for the number of equations with up to a given number of
arguments is a little more complex, since in this case we must sum the
number of ways we can construct formulae with subsets of the arguments.
The number of ways we can select r from n items when the order of
selection is important is known as a permutation and is denoted by nPr.

This follows in a similar way to the derivation of the number of orderings
of n arguments being equal to n!. We first select 1 from the n arguments,
then 1 from the remaining n-1 and so on, but this time we stop after we
have chosen r of them.
Note that 0! equals 1 and so when r equals n, nPr is simply n!.
The number of formulae with up to n arguments, which we shall denote
by F1,n is therefore given by

Recall that the large capital sigma means the sum of the expression to its
right with i taking values from 1 up to and including n.
Table 2 gives the results of these calculations for 0 to 15 arguments.
We can now calculate the total number of formulae that might be expressed
during the Countdown numbers game by multiplying F1,6 by the number
of ways we might select the 6 numbers from the 24 on offer. In this case,

void
all_templates(const std::string ¤t,
 size_t arguments,
 std::set<std::string> &result)
{
 result.insert(current);
 if(arguments!=0)
 {
 std::string::size_type pos = current.find('x');
 while(pos!=std::string::npos)
 {
 std::string next = current;
 next.replace(pos, 1, "xxo");
 if(result.insert(next).second)
 {
 all_templates(next, arguments-1, result);
 }
 pos = current.find('x', pos+1);
 }
 }
}

Listing 2

n T1,n Tn n T1,n Tn

0 0 0 8 626 429

1 1 1 9 2,056 1,430

2 2 1 10 6,918 4,862

3 4 2 11 23,714 16,796

4 9 5 12 82,500 58,786

5 23 14 13 290,512 208,012

6 65 42 14 1,033,412 742,900

7 197 132 15 3,707,852 2,674,440

Table 1

Fn Tn 4n 1–× n!×=

Pn
r

n!
n r–()!

------------------=

F1 n, Ti 4i 1–× Pn
i×

i 1=

n

∑=
14 | Overload | February 2010

FEATURERICHARD HARRIS

the order in which we pick the locations
doesn’t matter, just the locations themselves
the order of the number is unimportant and the number is known as a
combination, denoted by nCr.

This result follows from the fact that the number of combinations is equal
to the number of permutations divided by the number of orderings of the
r arguments we have chosen.
The total number of possible formulae is therefore

So, rather a lot then.

Is there an explicit formula?
Personally, I’d much rather have an explicit, or closed form, formula for
Tn than rely upon calling the, as it happens rather computationally
expensive, all_templates function over and over again. To this end, I
spent some time mucking about with a spreadsheet and came up with, for
n greater than or equal to 1

This works for every example we’ve seen so far and, given that the problem
is clearly a combinatorial one of some sort or another and that a formula
with n arguments has n-1 operators and hence has precisely 2n-1 terms, it
doesn’t seem entirely unreasonable.
But, of course, 15 working examples and suspiciously familiar terms are
a far cry from an actual proof. Damn you mathematics, you harsh mistress
you! Would that you were more like Physics, or better yet Philosophy, so
I could get away with any old tosh.
One thing that stands out is that the numerator of the fraction is equal to
the number of ways in which one can construct a sequence of n x symbols
and n-1 o symbols, since it is the number of ways in which we can pick
the n locations we wish to place x symbols. It is a combination, rather than
a permutation, since the order in which we pick the locations doesn’t
matter, just the locations themselves.
This leads to the interpretation that the probability of such a sequence is a
valid formula template is equal to

To demonstrate that this is indeed the case we first note that such a
sequence is a valid formula template if and only if there have been more
x symbols than o symbols up to and including each and every term.
If this were not so, we would run out of values on the stack at some point,
and hence would not have a valid formula template.
Noting that each operator reduces the number of values on the stack by 1,
we must therefore have at the end of the calculation a single value on the
stack, representing the result of the formula.
Since it implies that we cannot run out of arguments and that we end the
calculation with a single value on the stack, this rule ensures that the
formula template is valid.
Thankfully, we don’t actually need to prove that this rule is obeyed with
the presumed probability, since someone has already done it for us.

The Ballot Theorem
The Ballot Theorem [Feller68] was proven in 1878 by W. A. Whitworth
and can be stated as

Suppose that, in a ballot, candidate P scores p votes and candidate
Q scores q votes, where p>0 and p≥q. The probability that
throughout the counting there are always more votes for P than for
Q equals (p-q)/(p+q).

Our problem is a special case where P represents the x symbols and
receives n votes and Q represents the o symbols and receives n-1 votes.
According to the Ballot Theorem, the probability that the number of x
symbols exceeds the number of o symbols up to and including each and
every term is therefore

as suspected.

n F1,n Fn

0 0 0

1 1 1

2 10 8

3 219 192

4 8,500 7,680

5 470,485 430,080

6 33,665,406 30,965,760

7 2,951,054,575 2,724,986,880

8 3.06090E+11 2.83399E+11

9 3.66592E+13 3.40078E+13

10 4.97823E+15 4.62507E+15

11 7.55804E+17 7.03010E+17

12 1.26855E+20 1.18106E+20

13 2.33230E+22 2.17314E+22

14 4.66154E+24 4.34629E+24

15 1.00633E+27 9.38798E+26

Table 2

Cn
r

n!
r! n r–()!×
----------------------------=

C24
6 F1 6,× 134 596, 33 665 406, ,×=

4 531 228 985 976, , , ,=

Tn
C2n 1–

n
2n 1–

------------------=

1
2n 1–

n n 1–()–
n n 1–()+
-------------------------- 1

2n 1–
---------------=
February 2010 | Overload | 15

FEATURE RICHARD HARRIS
There are several ways to prove this theorem [Renault07], but to my mind
the most elegant by far uses proof by induction, as shown in derivation 1.

What exactly does this have to do with the Countdown
numbers game?
Well, er, not very much to be perfectly honest.
That said, the fact that the total number of formulae that can be expressed
with up to n distinct variables and the 4 binary operators of addition,
subtraction, multiplication and division is equal to

is a pretty damn interesting result and, in my opinion at least, was worth
a short detour.
Still, I suppose we should probably crack on.

Implementing RPN operators
The first tool we shall need to assist us in exploring the statistical properties
of the Countdown numbers game is a way to transform formula templates
into formulae.
We shall begin with an abstract base class to represent an arbitrary RPN
operator, called rpn_operator, as illustrated in listing 3.
Note that we have defined this as a template class. In general, an RPN
calculator would operate upon doubles, but for the Countdown numbers
game we shall need to restrict ourselves to integers. We use the standard
stack class for the RPN stack since it does everything we need of it, albeit
favouring the processing efficiency of std::vector to the memory
efficiency of std::deque.
The return value of the apply member function serves to indicate whether
the operation yields a valid result for the given arguments. For the integer
only numbers game, we should expect at least half of all division
operations to yield a fraction and hence be invalid, since if one argument
wholly divides, but is not equal to, the other then the latter cannot wholly
divide the former. This is a little too common an outcome to be considered
truly exceptional, and so we shall be well advised to avoid the relatively
expensive C++ exception mechanism.
The declarations and definitions for our RPN operators are given in
listing 4. Note that whilst the base class can represent any RPN operator,
we are restricting ourselves to the four binary operators used in the
numbers game; namely addition, subtraction, multiplication and division.
The definitions of the apply member functions are given in listing 5.

Derivation 1

We first consider the boundary conditions of p equal to q and of p greater
than q and q equal to 0.

In the first case the number of votes must be equal when we finish
counting, so the probability that P always has more votes then Q is 0. The
formula correctly predicts this, since

In the second case, the number of votes for P must always exceed the
number of votes for Q, since Q hasn’t got any, and hence the probability
is 1. Again, the formula is in agreement, yielding

The remaining states that we might observe are those where p is greater
than q and q is greater than 0. In these cases, we consider the very last
vote cast.

If the last vote is for Q, we can treat the penultimate vote as the end of a
ballot in which P receives p votes and Q receives q-1 votes, for which we
assume that the proposition is true. If, however, it is for P, we treat the
penultimate vote as the end of a ballot in which P receives p-1 votes and
Q receives q votes, for which we also assume that the proposition is true.

Now, the probability that the last vote cast is for Q is equal to

and the probability that it is for P is equal to

Since these two scenarios are independent of each other, the probability
that P stays ahead of Q throughout the vote counting is given by

Rearranging this, we have

We can treat the shorter ballots in exactly the same fashion and must
therefore eventually end up with an expression involving a set of ballots
in which either the number of votes for P is equal to the number of votes
for Q or the number of votes for Q is equal to 0.

Hence the proposition must be true whenever p>0 and p≥q, as claimed.

p q–
p q+
------------ p p–

p p+
------------ 0

2p
------ 0= = =

p q–
p q+
------------ p 0–

p 0+
------------ p

p
--- 1= = =

q
p q+

p
p q+

q
p q+
------------ p q 1–()–

p q 1–()+
--------------------------× p

p q+
------------+

p 1–() q–
p 1–() q+

--------------------------×

q p q 1–()–()× p p 1–() q–()×+
p q+() p q 1–+()×

-- p q+() p q–() q p–+×
p q+() p q 1–+()×

--=

p q 1–+() p q–()×
p q+() p q 1–+()×

---=

p q–()
p q+()

-----------------=

F1 n,
C2i 1–

i
2i 1–
---------------- 4i 1–× Pi×

i 1=

n

∑=

template<class T>
class rpn_operator
{
public:
 typedef std::stack<std::vector<T> > stack_type;
 virtual ~rpn_operator();
 virtual bool apply(stack_type &stack) const = 0;
};
template<class T>
rpn_operator<T>::~rpn_operator()
{
}

Listing 3

template<class T>
class rpn_add : public rpn_operator<T>
{
public:
 virtual bool apply(stack_type &stack) const;
};
template<class T>
class rpn_subtract : public rpn_operator<T>
{
public:
 virtual bool apply(stack_type &stack) const;
};
template<class T>
class rpn_multiply : public rpn_operator<T>
{
public:
 virtual bool apply(stack_type &stack) const;
};
template<class T>
class rpn_divide : public rpn_operator<T>
{
public:
 virtual bool apply(stack_type &stack) const;
};

Listing 4
16 | Overload | February 2010

FEATURERICHARD HARRIS
The definitions are pretty straightforward; each operator first checks that
there are enough arguments on the stack, then pops them and pushes the
result back on to the stack. The only complexity is the call to the as yet
undefined rpn_valid_divide function from rpn_divide::apply,
which serves to check that the division operation has a valid result.
Illustrated in listing 6, the two overloads distinguish between floating point
and integer division. Both return false upon division by zero, with latter
additionally checking that the second argument wholly divides the first,
since this would be an invalid step in the integer-only numbers game.

Of course, we could do a more thorough job with some template wizardry,
but these two overloads will suffice for now.
To be perfectly honest, we should probably perform similar tests for
numerical overflow and the like during the application of the operators,
perhaps returning an error code instead of a boolean so that we might be
able to identify exactly what caused a calculation to fail. That said, these
sorts of errors are artefacts of the mechanics of computer arithmetic rather
than fundamental limitations of arithmetic and as such are of lesser interest.

Evaluating formula templates
All that remains to do before we can evaluate our formula templates is to
implement a function that does exactly that. This function needs to parse
the formula templates, pushing arguments on to the stack or applying
operators as required.
The first thing we need is a return type that can indicate both the validity
of the result and its value, as given in listing 7.
If we have a value with which to construct the result it is, by definition,
valid and if not it is, by definition, invalid.
Listing 8 provides the definition of the rpn_evaluate function with
which we shall evaluate our formula template. This function takes a
formula template, represented by a string containing x and o characters,
a vector of pointers to rpn_operator objects and a vector of
argument values and returns an rpn_result.
This function simply iterates over the formula template, pushing the
current argument on to the stack of the current term is an x, and applying
the current operator if it is an o.
Note that we return an invalid rpn_result in the event that any of the
intermediate values in the calculation of the formula are invalid.

template<class T>
inline bool
rpn_add<T>::apply(stack_type &stack) const
{
 if(stack.size()<2)
 throw std::invalid_argument("");
 const T x0 = stack.top(); stack.pop();
 const T x1 = stack.top(); stack.pop();
 stack.push(x0+x1);
 return true;
};
template<class T>
inline bool
rpn_subtract<T>::apply(stack_type &stack) const
{
 if(stack.size()<2)
 throw std::invalid_argument("");
 const T x0 = stack.top(); stack.pop();
 const T x1 = stack.top(); stack.pop();
 stack.push(x0-x1);
 return true;
};
template<class T>
inline bool
rpn_multiply<T>::apply(stack_type &stack) const
{
 if(stack.size()<2)
 throw std::invalid_argument("");
 const T x0 = stack.top(); stack.pop();
 const T x1 = stack.top(); stack.pop();
 stack.push(x0*x1);
 return true;
};
template<class T>
inline bool
rpn_divide<T>::apply(stack_type &stack) const
{
 if(stack.size()<2)
 throw std::invalid_argument("");
 const T x0 = stack.top(); stack.pop();
 const T x1 = stack.top(); stack.pop();
 if(!rpn_valid_divide(x0, x1)) return false;
 stack.push(x0/x1);
 return true;
};

Listing 5

bool
rpn_valid_divide(double x0, double x1)
{
 return x1!=0.0;
}
bool
rpn_valid_divide(long x0, long x1)
{
 return x1!=0 && (x0%x1)==0;
}

Listing 6
February 2010 | Overload | 17

FEATURE RICHARD HARRIS
If there aren’t enough arguments or operators, or if there is not exactly 1
value on the stack at the end of the calculation, the function throws an
exception. Recall that the operators themselves throw exceptions if the
stack doesn’t contain enough arguments when they are applied.
Listing 9 illustrates how we might use rpn_evaluate to calculate the
formula 4 2 + 5 ×
If we execute this code, we shall see that the output is 30, as it should be.
Because of the separation of the formula template, the operators and the
arguments, the rpn_evaluate function isn’t particularly amenable for
use as a general purpose calculator. It is, however, very well suited to
iterating through the set of all possible formulae so that we can examine
the statistical properties of their results.

Analysing the Countdown numbers game
We are now very nearly ready to investigate the statistical properties of
the numbers game. All that is left for us to do is to work out how to iterate
through every possible set of operators and arguments that might be
substituted into the formula templates generated by our all_templates
function.
We have a clue as to how to go about this in the formula we derived for
calculating the total number of possible formulae. Firstly, we shall need a
mechanism for enumerating the 24C6 combinations of 6 numbers from the
24 available. For each of these combinations we shall then need to iterate
over the formula templates, setting n to the number of arguments that each
in turn requires and enumerating for them the 4n-1 sets of operators and
the 6Pn permutations of arguments.
We shall take as our inspiration the standard next_permutation function
with which we can iterate through the set of full permutations of the
elements in a given iterator range.
We shall, however, have to wait until next time to transform inspiration
into computation, since I have regrettably run out of space in this
instalment. So until then, dear reader, do take my advice and, if at all
possible, try to catch an episode or two of that most regal of the tea-time
quiz fraternity; my beloved Countdown.

Acknowledgements
With thank to Keith Garbutt for proof reading this article.

References & Further Reading
[Countdown] http://www.channel4.com/programmes/countdown
[Feller68] Feller, W., An Introduction to Probability Theory and its

Applications, vol. 1, 3rd ed., Wiley, 1968.
[HP1] http://www.calculator.org
[HP2] http://www.hp.com/calculators
[Renault07] Renault, M., ’Four Proofs of the Ballot Theorem’,

Mathematics Magazine, vol. 80, pp. 345-352, 2007.

template<class T>
struct rpn_result
{
 rpn_result();
 explicit rpn_result(const T &t);
 bool valid;
 T value;
};
template<class T>
rpn_result<T>::rpn_result() : valid(false)
{
}
template<class T>
rpn_result<T>::rpn_result(const T &t) :
 valid(true), value(t)
{
}

Listing 7

template<class T>
rpn_result<T>
rpn_evaluate(const std::string &formula,
 const std::vector<rpn_operator<T>
 const *> &operators,
 const std::vector<T> &arguments)
{
 typedef rpn_result<T> result_type;
 typedef typename rpn_operator<T>::
 stack_type stack_type;
 typedef std::vector<rpn_operator<T>
 const *> operators_type;
 typedef std::vector<T> arguments_type;
 std::string::const_iterator
 first_term = formula.begin();
 std::string::const_iterator
 last_term = formula.end();
 operators_type::const_iterator first_op
 = operators.begin();
 operators_type::const_iterator last_op
 = operators.end();
 arguments_type::const_iterator first_arg
 = arguments.begin();
 arguments_type::const_iterator last_arg
 = arguments.end();
 stack_type stack;
 while(first_term!=last_term)
 {
 switch(*first_term++)
 {
 case 'x':
 if(first_arg==last_arg)
 throw std::invalid_argument("");
 stack.push(*first_arg++);
 break;
 case 'o':
 if(first_op==last_op)
 throw std::invalid_argument("");
 if(!(*first_op++)->apply(stack))
 return result_type();
 break;
 default:
 throw std::invalid_argument("");
 }
 }
 if(stack.size()!=1 || first_op!=last_op
 || first_arg!=last_arg)
 {
 throw std::invalid_argument("");
 }
 return result_type(stack.top());
}

Listing 8

rpn_add<long> add;
rpn_multiply<long> multiply;
std::vector<rpn_operator<long> const *> ops;
ops.push_back(&add);
ops.push_back(&multiply);
std::vector<long> args;
args.push_back(4);
args.push_back(2);
args.push_back(5);
std::cout
 << rpn_evaluate("xxoxo", ops, args).value
 << std::endl;
std::cout << std::endl;

Listing 9
18 | Overload | February 2010

http://www.channel4.com/programmes/countdown
http://www.calculator.org
http://www.hp.com/calculators

FEATURESTUART GOLODETZ
Simplifying the C++/Angelscript
Binding Process
Many systems provide a scripting language.
Stuart Golodetz shows how to make it easier.
lthough it may seem like there’s more work involved, there are
sometimes significant advantages to be gained by writing your
program in more than one language. The specific example I want to

highlight is in the field of game development, where, if not ubiquitous, it
is certainly commonplace for games to have their artificial intelligence
code written in a scripting language rather than in a compiled language like
C++. Why is this? The two most significant reasons are that (a) artificial
intelligence coding in particular involves a lot of tweaking and tuning –
tasks for which compiled languages are not ideally suited – and (b)
artificial intelligence code ties in to the game design in a particularly
fundamental way, so it is often written by the game designers, who may
or may not be experienced programmers. If a game designer wants to
implement a simple new feature, and that involves asking an already busy
programmer to put it in for them, and a two-day turn-around, then the game
as a whole will suffer. A further reason for some games is that the
developers want their game to be ‘modable’, i.e. they want to make it easy
for people to modify their game once it’s released – whilst many mod
writers are experienced programmers, it’s a lot easier for people if they just
have to modify a script rather than trying to build the entire system.
Incorporating a scripting language into a game is relatively
straightforward, but the binding process (i.e. the means by which scripts
are allowed to call C++ code, and vice-versa) is often a bit fiddly. This
article is about a way I came up with to make the process of adding bindings
between C++ and the scripting language I chose to use for my game –
AngelScript – a bit less painful. I don’t plan to talk about the overall use
of AngelScript too much, but the library documentation [AngelScript] is
pretty good, and there are tutorials available on the web if you’re
interested.
Before we start, I’d like to add the disclaimer that comparisons in this
article between the original way of doing things in AngelScript and the way
I’d prefer are not especially intended as a criticism of the former –
AngelScript is more sophisticated as an underlying library than the simple
wrapper I’m going to build here really allows for, so in some cases the
complexity when using it is a necessary evil. The wrapper I’ll describe was
originally designed for the specific purpose of making the bits of
AngelScript which I found most relevant easier to use – a general solution
would take far more work.

Registering C++ functions with AngelScript
One of the first things you usually want to do when you’re getting a
scripting language up and running in your game is to let your scripts call
an in-game function. (For instance, your scripts might need to be able to
test line-of-sight between two points in the game world.) To register a
function such as int f(int) in AngelScript, you have a pointer to a
script engine (of type asIScriptEngine *), and make a call which
looks like:
 engine->RegisterGlobalFunction("int f(int)",
 asFUNCTION(f), asCALL_CDECL);

This seems fairly simple, except for the fact that you have to explicitly
specify the AngelScript type of the function as a string, "int f(int)",

which is messy (it gets particularly annoying when the function name is
longer or the type is more complicated). Ideally, it would be nicer to
transform this into something like:
 myengine->register_global_function(f, "f");

The trick to doing this lies in C++’s mechanisms for automatic type
deduction. In this instance, it is possible to write, for example, the code in
Listing 1:
Here we get the compiler to deduce the type of the function we’re trying
to bind for us, then construct the appropriate AngelScript type string using
templa te specia l iza t ion . Al l the rea l work happens in the
ASXTypeString template. The base template looks like Listing 2.
This is then specialized for (a) simple built-in types like bool, double,
int, etc.; (b) const types; (c) pointer and reference types; (d) function
types; and (e) function pointer types (see Listing 3).
Note the need to refer to prefix and suffix from ASXTypeString<T> as
this->prefix and this->suffix in the above code. This is because
ASXTypeString<T> is a dependent base class, and non-dependent
names are not looked up in dependent base classes in standard C++
[Vandevoorde]. Using this-> makes the names dependent and causes
their lookup to be delayed until the time the template is actually
instantiated.
Until C++0x becomes widely implemented, it will be necessary to write
specializations like this out long-hand, i.e. a specialization for functions
with no arguments, 1 argument, 2 arguments, etc. This works, but is

A template <typename F>
void ASXEngine::register_global_function(F f,
 const std::string& name)
{
 register_global_function<F>(f, name,
 ASXTypeString<F>(name)());
}
template <typename F>
void ASXEngine::register_global_function(F f,
 const std::string& name,
 const std::string& decl)
{
 int result = m_engine->RegisterGlobalFunction(
 decl.c_str(), asFUNCTION(f), asCALL_CDECL);
 if(result < 0) throw ASXException(
 "Global function " + name + " could not be
 registered");
}

Listing 1

Stuart Golodetz has been programming for 13 years and is
studying for a computing doctorate at Oxford University. His
current work is on the automatic segmentation of abdominal CT
scans. He can be contacted at stuart.golodetz@comlab.ox.ac.uk
February 2010 | Overload | 19

FEATURE STUART GOLODETZ

Incorporating a scripting language into a
game is relatively straightforward, but the
binding process is often a bit fiddly.
struct ASXSimpleTypeString
{
 std::string name, prefix, suffix;
 explicit ASXSimpleTypeString(
 const std::string& name_) : name(name_) {}

 std::string operator()() const
 {
 std::ostringstream os;
 if(prefix != "") os << prefix << ' ';
 os << type();
 if(suffix != "") os << ' ' << suffix;
 if(name != "") os << ' ' << name;
 return os.str();
 }
 virtual std::string type() const = 0;
 ASXSimpleTypeString& as_param()
 {
 return *this;
 }
};

template <typename T> struct ASXTypeString :
ASXSimpleTypeString
{
 explicit ASXTypeString(
 const std::string& name_ = "")
 : ASXSimpleTypeString(name_) {}
 std::string type() const {
 return T::type_string(); }
};

Listing 2

// (a)
// e.g. int
template <>
struct ASXTypeString<int> : ASXSimpleTypeString
{
 explicit ASXTypeString(
 const std::string& name_ = "")
 : ASXSimpleTypeString(name_)
 {}
 std::string type() const { return "int"; }
};

// (b)
template <typename T>
struct ASXTypeString<const T> : ASXTypeString<T>

Listing 3

{
 explicit ASXTypeString(
 const std::string& name_ = "")
 : ASXTypeString<T>(name_)
 {
 this->prefix = "const ";
 }
 ASXTypeString& as_param() { return *this; }
};

// (c)
template <typename T>
struct ASXTypeString<T*> : ASXTypeString<T>
{
 explicit ASXTypeString(
 const std::string& name_ = "")
 : ASXTypeString<T>(name_)
 {
 this->suffix = "@";
 }
};

template <typename T>
struct ASXTypeString<T&> : ASXTypeString<T>
{
 explicit ASXTypeString(
 const std::string& name_ = "")
 : ASXTypeString<T>(name_)
 {
 this->suffix = "&";
 }
 ASXTypeString& as_param()
 {
 this->suffix = "& out";
 return *this;
 }
};

template <typename T>
struct ASXTypeString<const T&> : ASXTypeString<T>
{
 explicit ASXTypeString(
 const std::string& name_ = "")
 : ASXTypeString<T>(name_)
 {
 this->prefix = "const";
 this->suffix = "&";
 }
 ASXTypeString& as_param()
 {
 this->suffix = "& in";

Listing 3 (cont’d)
20 | Overload | February 2010

FEATURESTUART GOLODETZ

So far, this sort of technique is mildly
interesting at best. It saves us a bit of

typing, but nothing more.
extremely tedious – variadic templates will ultimately make this a lot
easier.
The type string for a function like int f(int) is built up in pieces. At
the top level, the operator() for an ASXTypeString<int int)> is
invoked. This invokes the operator() of an ASXTypeString<int>
to get the string "int" for the return type of the function. It also invokes
the operator() of an ASXTypeString<int> to get the type string for
the argument in this instance, but calls as_param() on it first, because
things like references translate into different AngelScript types depending
on whether they appear as parameters or return types of functions. For
example, a T reference appearing as a return type should be translated as
"T&", whereas one appearing as a parameter should be translated as "T&

out". This comes down to the specifics of AngelScript syntax, which are
only mildly interesting for the purposes of this article – the key thing is
that it’s possible (and in this case necessary) to vary the translation
depending on where the type actually appears.

Calling script functions from C++
So far, this sort of technique is mildly interesting at best. It saves us a bit
of typing, but nothing more. It becomes more interesting at the point where
we want to call script functions from C++. The normal AngelScript way
of doing this for our function int f(int) is something like Listing 4.
This works, but it’s a lot of hassle just to call a script function. Ideally we’d
prefer something like this, where we don’t have to specify the full
declaration of the AngelScript function, or manually set arguments and
retrieve return values:
 ASXFunction<int(int)> f
 = mymodule->get_global_function("f", f);
 int arg = 23;
 int result = f(arg);

The get_global_function() method used above is fairly easy to
write. It is also possible to provide an extended version which allows us
to still pass in the full declaration of the function. This is useful because
there is actually more than one possible way to translate some C++
function types into AngelScript, and we may sometimes wish to explicitly
override the default generated by ASXTypeString (see Listing 5).
The trick here is to use a dummy parameter to the function, allowing the
variable in which the return value is to be stored to be passed in as an
argument and its type to be automatically deduced. We’ve already seen the
definition of the ASXTypeString template – the rest of the work is done
by the ASXContext class and ASXFunction template. The former is
essentially a simple wrapper around asIScriptContext (Listing 6).
The ASXFunction template and its specializations are more interesting
(Listing 7).
The idea here is to wrap the context preparation, argument setting, context
execution and value returning together so that we can call script functions
without having to worry about the intricate details each time. This is
complicated by the fact that the method of setting an argument/retrieving

 return *this;
 }
};

// (d)
// e.g. 1 argument
template <typename R, typename Arg0>
struct ASXTypeString<R (Arg0)>
{
 std::string name;
 explicit ASXTypeString(
 const std::string& name_)
 : name(name_)
 {}
 std::string operator()() const
 {
 std::ostringstream os;
 os << ASXTypeString<R>()() << ' ' <<
 name << '(';
 os << ASXTypeString<Arg0>().as_param()();
 os << ')';
 return os.str();
 }
};

// (e)
// e.g. 2 arguments
template <typename R, typename Arg0,
 typename Arg1>
struct ASXTypeString<R (*)(Arg0,Arg1)>
 : ASXTypeString<R (Arg0,Arg1)>
{
 explicit ASXTypeString(
 const std::string& name_)
 : ASXTypeString<R (Arg0,Arg1)>(name_)
 {}
};

Listing 3 (cont’d)

int funcID
 = module->GetFunctionIdByDecl("int f(int)");
asIScriptContext *context
 = engine->CreateContext();
context->Prepare(funcID);
int arg = 23;
context->SetArgDWord(0, arg);
context->Execute();
int result = context->GetReturnDWord();
context->Release();

Listing 4
February 2010 | Overload | 21

FEATURE STUART GOLODETZ

the method of setting an argument/retrieving a
return value when using AngelScript depends
fundamentally on the type of the argument
a return value when using AngelScript depends fundamentally on the type
of the argument. For this reason, both are implemented as templates in the
above (argument setting is handled by ASXSetArgValue, and return
value retrieval by ASXGetReturnValue). These templates are
implemented by writing specializations for the different types we might
want to pass in/return (see Listing 8).
With these templates in place, we can then easily acquire a handle to script
functions and call them in the usual C++ fashion.

Conclusion
Investing the time to write wrappers like these up-front makes using a
scripting language in your program really easy. Of course, there’s plenty
more we could do – in particular, AngelScript allows you to register C++
types to be used in scripts, and there’s a fair amount of work associated
with wrapping those sensibly (anyone who is interested is very welcome
to email me for the code). The basic idea is much the same, however (and

template <typename F>
ASXFunction<F> ASXModule::get_global_function(
 const std::string& name,
 const ASXFunction<F>&) const
{
 std::string decl = ASXTypeString<F>(name)();
 int funcID
 = m_module->GetFunctionIdByDecl(
 decl.c_str());
 if(funcID < 0) throw ASXException(
 "Could not find function with declaration "
 + decl);
 asIScriptContext *context
 = m_module->GetEngine()->CreateContext();
 return ASXFunction<F>(ASXContext(context,
 funcID));
}

template <typename F>
ASXFunction<F> ASXModule::get_global_function_ex(
 const std::string& decl,
 const ASXFunction<F>&) const
{
 int funcID
 = m_module->GetFunctionIdByDecl(
 decl.c_str());
 if(funcID < 0) throw ASXException("Could not
 find function with declaration " + decl);
 asIScriptContext *context
 = m_module->GetEngine()->CreateContext();
 return ASXFunction<F>(ASXContext(context,
 funcID));
}

Listing 5

struct ASXContextReleaser
{
 void operator()(asIScriptContext *context)
 {
 context->Release();
 }
};

ASXContext::ASXContext(asIScriptContext *context,
 int funcID)
: m_context(context, ASXContextReleaser()),
 m_funcID(funcID)
{

Listing 6

 m_context->SetExceptionCallback(
 asMETHOD(ASXContext, exception_callback),
 this, asCALL_THISCALL);
}

asIScriptContext *ASXContext::operator->() const
{
 return m_context.get();
}

int ASXContext::execute()
{
 return m_context->Execute();
}

int ASXContext::prepare()
{
 return m_context->Prepare(m_funcID);
}

void ASXContext::exception_callback(
 asIScriptContext *context)
{
 int col;
 int row
 = context->GetExceptionLineNumber(&col);

 std::cout << "A script exception occurred: "
 << context->GetExceptionString() << " at
 position (" << row << ',' << col << ')'
 << std::endl;
}

Listing 6 (cont’d)
22 | Overload | February 2010

FEATURESTUART GOLODETZ
indeed similar ideas can be applied when you’re wrapping other scripting
languages).
The take-home lessons from this article as a whole are two-fold: firstly,
there can be good reasons for developing your program in more than one
language, particularly if you need to make it easy for team members who
are potentially less experienced to customise functionality without going
through you to do it; secondly, it doesn’t have to be a particularly painful
process. If you think your current project could benefit from scripting, but
you’re put off because it seems hard to integrate into your existing code,
I’d encourage you to take another look.

References
[AngelScript] http://www.angelcode.com/angelscript/sdk/docs/manual/

index.html
[Vandevoorde] David Vandevoorde and Nicolai M Josuttis, C++

Templates: The Complete Guide, pp.136-9.

template <typename F> class ASXFunction;

// e.g. 2 arguments
template <typename R, typename Arg0,
 typename Arg1>
class ASXFunction<R (Arg0,Arg1)>
{
private:
 ASXContext m_context;

public:
 explicit ASXFunction(const ASXContext& context)
 : m_context(context)
 {}

 R operator()(Arg0 value0, Arg1 value1)
 {
 int err = m_context.prepare();
 if(err < 0) throw ASXException(
 "Error preparing script function
 context");

 ASXSetArgValue<Arg0>()(m_context, 0, value0);
 ASXSetArgValue<Arg1>()(m_context, 1, value1);

 err = m_context.execute();
 if(err < 0) throw ASXException(
 "Error executing script function");

 return ASXGetReturnValue<R>()(m_context);
 }
};

Listing 7

template <typename T> struct ASXSetArgValue
{
 void operator()(const ASXContext& context,
 int arg, T& value) const
 {
 context->SetArgObject(arg, &value);
 }
};

template <typename T> struct ASXSetArgValue<T*>
{
 void operator()(const ASXContext& context,
 int arg, T *value) const
 {
 context->SetArgObject(arg, value);
 }
};

template <> struct ASXSetArgValue<double>
{
 void operator()(const ASXContext& context,
 int arg, double value) const
 {
 context->SetArgDouble(arg, value);
 }
};
template <> struct ASXSetArgValue<int>
{
 void operator()(const ASXContext& context,
 int arg, int value) const
 {

Listing 8

 context->SetArgDWord(arg, value);
 }
};

template <typename T> struct ASXGetReturnValue
{
 T operator()(const ASXContext& context) const
 {
 return *static_cast<T*>(
 context->GetReturnObject());
 }
};

template <typename T> struct
 ASXGetReturnValue<T*>
{
 T *operator()(const ASXContext& context) const
 {
 return static_cast<T*>(
 context->GetReturnObject());
 }
};

template <> struct ASXGetReturnValue<double>
{
 double operator()(
 const ASXContext& context) const
 {
 return context->GetReturnDouble();
 }
};

template <> struct ASXGetReturnValue<int>
{
 int operator()(const ASXContext& context) const
 {
 return context->GetReturnDWord();
 }
};

template <> struct ASXGetReturnValue<void>
{
 void operator()(const ASXContext&) const
 {}
};

Listing 8 (cont’d)
February 2010 | Overload | 23

http://www.angelcode.com/angelscript/sdk/docs/manual/index.html
http://www.angelcode.com/angelscript/sdk/docs/manual/index.html

FEATURE MATTHEW WILSON
Quality Matters: Diagnostic
Measures
How do we catch problems early? Matthew Wilson
investigates the recls library.
his instalment, like the last, involves getting my hands dirty
examining another (open-source) library; this time it’s recls
[RECLS], which provides recursive file-system searching via a

(largely) platform-independent API. recls, which stands for recursive ls,
was my first venture into open-source libraries that involved compilation
of source (as opposed to pure header-only libraries), and it still bears the
scars of the early mistakes I made, so there’re rich pickings to be had. (I
should also mention that recls was the exemplar project for a series of
instalments of my former CUJ column, ‘Positive Integration’, between
2003 and 2005; all these instalments are available online from Dr Dobb’s
J o u r na l ; a l i s t o f t h em a l l i s g i ve n i n
http://synesis.com.au/publications.html#columns. I’ll attempt as little
duplication with them as possible.)
I’ll begin with an introduction to recursive search, illustrating why it is
such an onerous task using operating system APIs (OS APIs), and give
some examples of how it’s made easier with recls. This will be followed
by an introduction to the recls architecture: core API, core implementation,
and language mappings. The various design decisions will be covered, to
give you an understanding of some of the pros and cons to be discussed
later.
Then we’ll get all ‘Software Quality’ on it, examining the API, the
implementation and the C++ mapping(s). Each examination will cover the
extant version (1.8), the new version (1.9) that should be released by the
time you read this, and further improvements required in future versions.
Naturally, the discussion will be framed by our aspects of software quality
[QM#1]: as well as the usual discussions of intrinsic characteristics, the
problem area – interaction with the file-system and the complexity of the
library – dictates the use of (removable) diagnostic measures and applied
assurance measures. It is in the application of the latter two that the meat
of this month’s learning resides (for me in particular).

Introduction
recls had a proprietary precursor in the dim and distant past, which I
originally wrote to obviate the two main issues with recursive file-system
search:

Handling directories: remembering where you are
Differences in the way file information is obtained between UNIX
and Windows

Let’s look at a couple of examples to illustrate. Listings 1 and 2 print all
files under a given search directory, in UNIX and Windows respectively.
Both examples suffer the first issue, since the search APIs yield only the
name of the entry (file/directory) retrieved, requiring you to remember the

full directory where you have just searched, in order to append each
directory name and recurse again.
The second problem can be seen in the extra processing on UNIX. The
UNIX search API – opendir()/readdir() – provides only the file
name. To find out whether the entry you’ve just retrieved is a file or a
directory you must issue another system call, stat(); you also have to
call this to find out file size, timestamps, and so forth. Conversely, the
Windows search API – FindFirstFile()/FindNextFile() -
includes all such information in the WIN32_FIND_DATA structure that the
search functions fill out each time an entry is found.
As I hope both examples clearly illustrate, with either operating system
you’ve got to put in a lot of work just to do a basic search. The mundane
preparation of the search directory (appended with the search-all pattern
. in Windows) and the elision of the dots directories – . and .. –
dominate the code. And neither of these are terribly good exemplars: I’ve
assumed everything not a regular file is a directory on UNIX, which does
not always hold, and I’ve horribly overloaded the return value of the
worker function list_all_files_r() to indicate an error condition.
More robust versions would do it better, but would include even more
code. The intrinsic software evaluations are not all that impressive:

Correctness: Impossible to establish. As defined in the second
instalment [QM#2], correctness cannot be established for any
library that provides an abstraction over the file-system on a
multitasking operating system, so we won’t discuss that
characteristic further.
Robustness: The size of the code and the fiddly effort work against it.
Efficiency: A moot point with file-system searching, as the disk
latency and seek times far outweigh any but the largest
inefficiencies in code; interestingly, programs and languages can
still have an effect [DDJ-BLOG-RECLS].
Portability: Obviously they’re not portable (outside their operating
system families); though you can obtain software that emulates the
APIs, such as UNIXem [UNIXem] and WINE [WINE].
Expressiveness: Not by any stretch of the term.
Flexibility: The units of currency are C-style strings, struct
dirent, and WIN32_FIND_DATA: no flexibility.
Modularity: No modularity issues.
Discoverability: Pretty good for C APIs, with only two and one data
type(s), and four and three system functions, needed for UNIX and
Windows, respectively.
Transparency: The transparency of the client code is pretty
ordinary.

So let’s look at the alternative. Listings 3 and 4 show the same functionality
obta ined v ia rec l s ’ core API , in a s tep-wise manner (v ia
Recls_Search()) and a c a l l ba ck manne r (v i a
Recls_SearchProcess()) respectively. Listing 5 shows the same
functionality obtained via recls C++ mapping (the new unified form
available in version 1.9).

T

Matthew Wilson is a software development consultant and
trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au
24 | Overload | February 2010

FEATUREMATTHEW WILSON

recls has some unpleasant
characteristics, and they’re not all

addressed yet, even with the latest release
Clearly, each example has benefited from the use of a dedicated library,
compared to the first two. Each is more expressive, for three reasons. First,
the abstraction level of recursive file-system search has been raised.
Second, the evident increased level of portability: indeed none of the
examples exhibit any platform-dependencies. Finally, the flexibility of the
recls’ types: note that we can pass entry instances, or their path fields,
directly to FastFormat [FF-1, FF-2, FF-3]. These factors also contribute
to a likely increase in robustness, most particularly in the removal of the
fiddly code for handling search directory, dots directories and file
information. I’d also argue strongly that the transparency of the code is
improved.
On the negative side, modularity has been reduced, since we now depend
on recls and (albeit indirectly for Listings 3 and 4) on STLSoft
[STLSOFT].
So, pretty good so far. However, the picture is not perfect. recls has some
unpleasant characteristics, and they’re not all addressed yet, even with the
latest release. The purpose of this instalment is to use the flaws in recls to
illustrate software quality issues involved in writing non-trivial software
libraries with unpredictable operating-system interactions. Let’s dig in.

The recls library
The recls architecture is comprised of three major parts:

The core library API (C)
The core library implementation (C and C++)
Various language mappings (including C++/STL, C#, COM D,
Java, Python, Ruby)

As I’ve mentioned numerous times previously [QM#3, !(C ^ C++)], I
prefer a C-API wherever possible, because it:

Avoids C++ ABI issues; see Part 2 of Imperfect C++ [IC++] for
more on this
Tends to be more discoverable, even though it doesn’t, in and of
itself, tend to engender expressiveness, flexibility or robustness in
client code; that’s what C++ wrappers are for!
Allows for interoperability with a wide range of languages.

In the case of recls, the interoperability was the clincher, although I’m
starting to withdraw from this position somewhat, as I’ll discuss later.

The recls core API
The two main entities in recls are the search and the entry. A search
comprises a root directory, a search specification, and a set of flags that
moderate the search behaviour and the type of information retrieved. An
entry is a file-system entry that is found as a result of executing the search
at a given time. It provides read-only access to the full path, the drive (on
Windows), the directory, the file (name and/or extension), the size (for

files), the file-system-specific attributes, the timestamps, as well as other
useful pseudo-properties such as search-relative path.

The "search" type
The search type is not visible to client code, and is manipulated as an
opaque handle, hrecls_t, via API functions. The search type has a state,
which is a non-reversible/non-resettable position referring to an item
within the directory tree under the given search directory. (Note that the
state reflects a localised snapshot: it remembers which file it’s on, but what
is the next file can change depending on external operating-system action.
On a long enumeration it is possible to omit an item that was removed after
it commenced and include an item that was not present at the time of
commencement, just as is the case with manual enumeration.)
The API functions of concern include:

Recls_Search() – as used in Listing 3.
Recls_SearchFeedback() – same as Recls_Search(), plus
callback function to notify each directory searched.
Recls_SearchClose() – as used in Listing 3.
Recls_GetNext() – advances the search position without
retrieving the details for the entry at the new position.
Recls_GetDetails() – retrieves the details for the entry at the
current search position.
Recls_GetNextDetails() – advances the search position and
retrieves the details for the entry at the new position.
Recls_SearchFtp() – like Recls_Search() but searches
FTP servers; Windows-only.

The "entry" type
In contrast, the entry type is only semi-opaque. The API functions that
retrieve the entry details from a search handle are defined in terms of the
handle type recls_entry_t (aka recls::entry_t in C++
compilation units), as in:
 RECLS_API Recls_GetDetails(
 hrecls_t hSrch
 , recls_entry_t* phEntry
);

In the same vein, the API functions that elicit individual characteristics
about an entry do so in terms of the handle type, as in:
 RECLS_FNDECL(size_t) Recls_GetPathProperty(
 recls_entry_t hEntry
 , recls_char_t* buffer
 , size_t cchBuffer
);

Thus, it is possible to write application code in an operating system-
independent manner. However, because different operating systems
provide different file-system entry information, and application
February 2010 | Overload | 25

FEATURE MATTHEW WILSON

Unfortunately, the cheery picture I’ve
painted thus far starts to peel and crack
when we look at the implementation
programmers may want access to that information, the underlying type for
recls_entry_t, struct recls_entryinfo_t, is defined in the
API (see Listing 6).
You may have noted, from Listing 3, another reason to use the
recls_entryinfo_t struct: it leads to more succinct code. That’s
because string access shims [XSTL, FF-2, IC++] are defined for the
recls_strptrs_t type, as in:
 # if defined(RECLS_CHAR_TYPE_IS_WCHAR)
 inline wchar_t const* c_str_data_w(
 # else /* ? RECLS_CHAR_TYPE_IS_WCHAR */
 inline char const* c_str_data_a(
 # endif /* RECLS_CHAR_TYPE_IS_WCHAR */
 recls_strptrs_t const& ptrs
)
 {
 return ptrs.begin;
 }
 # if defined(RECLS_CHAR_TYPE_IS_WCHAR)
 inline size_t c_str_len_w(
 # else /* ? RECLS_CHAR_TYPE_IS_WCHAR */
 inline size_t c_str_len_a(
 # endif /* RECLS_CHAR_TYPE_IS_WCHAR */
 recls_strptrs_t const& ptrs
)
 {
 return static_cast<size_t>(
 ptrs.end - ptrs.begin);
 }

So when we write
 ff::fmtln(std::cout, " {0}", entry->path);

the FastFormat application layer [FF-1, FF-2, FF-3] knows to invoke
stlsoft::c_str_data_a() and stlsoft::c_str_len_a() (or
the widestring equivalents, in a widestring build) to elicit the string slice
representing the path.

Time and size
You may have looked at Listing 6 and wondered about the definitions of
recls_time_t and recls_filesize_t. Here’s where the platform-
independence falls down. With 1.8 (and earlier), the time and size types
were defined as follows:
 #if defined(RECLS_PLATFORM_IS_UNIX)
 typedef time_t recls_time_t;
 typedef off_t recls_filesize_t;
 #elif defined(RECLS_PLATFORM_IS_WINDOWS)
 typedef FILETIME recls_time_t;
 typedef ULARGE_INTEGER recls_filesize_t;
 . . .

The decision to do this was pretty much a fallback, as I didn’t think of better
alternatives at the time. (If memory serves, the size type results from a time

when I was still interested in maintaining compatibility with C++
compilers that did not have 64-bit integer types.) No-one’s actually ever
complained about this, so either no-one’s using time/size information for
multi-platform programming or they’ve learned to live with it. I’ve learned
to live with the size thing by using conversion shims [IC++, XSTL] to
abstract away the difference between the UNIX and Windows types, as in:
 ff::fmtln("size of {0} is {1}", entry->path,
 stlsoft::to_uint64(entry->size));

But it’s still a pain, and a reduction in the transparency of client code. Time
is more of a pain, and is considerably less easy to work around.
Both of these detract significantly from the discoverability of the library,
and require change. With 1.9 I’ve redefined recls_filesize_t to be
a 64-bit unsigned integer, and invoke the conversion shim internally. Alas,
I’ve run out of time with the time attribute, and the inconsistent, platform-
dependent time types abide. This will be addressed with 1.10, hopefully
sometime later this year.

Intrinsic quality
Let’s do a quick check-list of the intrinsic software quality of the core API,
and client code that uses it.

Robustness: Robustness is improved due to increased
expressiveness and portability.
Portability: Much improved over the OS APIs; time type is still not
portable
Expressiveness: Good.
Efficiency: Moot.
Flexibility: Good: entry type and string types all insertable into
FastFormat (and similar libraries).
Modularity: Dependency on recls headers and binaries; C++
mapping also depends on STLSoft.
Discoverability: Pretty simple and straightforward API.
Transparency: The transparency of the client code is much
improved.

So, from a purely API perspective, clear wins for using recls are
expressiveness and portability, with some flexibility thrown in the mix.

The recls core implementation
Unfortunately, the cheery picture I’ve painted thus far starts to peel and
crack when we look at the implementation, which is hideously opaque
(!transparent).

Implementation language: C or C++?
The first thing to note is that the implementation language is C++. There
are two reasons. First, and most significantly, this was so I could use a large
number of components from STLSoft to assist in the implementation. The
main ones are:
26 | Overload | February 2010

FEATUREMATTHEW WILSON

there were good reasons for each of these
individual steps, but the end result is a big mess
winstl::basic_findfile_sequence: for finding directories
to navigate the directory tree; for finding files that match a pattern
within a given search directory.
inetstl::basic_findfile_sequence: for finding files that
match a pattern within a given FTP search directory.
unixstl::readdir_sequence: for finding directories to
navigate the directory tree.
unixstl::glob_sequence: for finding files that match a
pattern within a given search directory.
platformstl::filesystem_traits: for writing path
manipulation code in a platform-independent manner.

The other reason was that there is some runtime polymorphism going on
inside, allowing for file search and FTP search (Windows-only) to share
much of the same surrounding code. Thus, a search begun with
Recls_SearchFtp() can be manipulated in exactly the same way as
one begun with Recls_Search() by client code (and mapping layers).
I’ve long outgrown the perverse pleasure one gets from writing
polymorphic code in C, so it had to be C++.
While the first reason did prove itself, in that I was able to implement a
large amount of functionality in a relatively short amount of time, I’m not
sure that I would do the same again. Some of the code in there is insanely
baroque. For example, the constructor of the internal class
ReclsFileSearchDirectoryNode (Listing 7).
This is really, really horrible. As Aussies l ike to say, ‘How
embarrassment?’
The class clearly has a large number of member variables; there are
member initialiser-list ordering dependencies; even conditionally-
compiled different constructors of the member variables! The constructor
body contains static assertions to ensure that the member ordering issues
do not bite, but that hardly makes up for all the rest of it. Like many
codebases, there were good reasons for each of these individual steps, but
the end result is a big mess. I can tell you that adding new features to this
codebase is a problem.
There are also some per-class memory allocation routines. In particular,
the file entry instance type recls_entryinfo_t (see Listing 6) is of
variable length, so that the path, search directory and (for Windows) the
short file strings, along with the array of string slices that constitute the
directory parts, are all allocated in a single block. This adds further
complexity. Unlike the monstrous constructor shown above, however, I
would defend this tactic for the entry info. Because it is immutable, and
reference-counted (via a hidden prefixed field), it means that all of the
complexity involved in dealing with the instances is encapsulated in one
place, after which it can be copied easily (via adding a reference) and
eventually released via a single call to free(). I’ve used this technique
many times in the past, and I think it fine. (I may be deluding myself
through habit, of course.)

Intrinsic quality
Let’s do a quick check-list of the intrinsic software quality of the core
implementation.

Robustness: Robustness is kind of anyone’s guess, and for the most
part has been ironed out due to defects manifesting much higher up
in application code; that’s not the way to find it!
Portability: Obviously there are platform-specifics contained
within the implementation, but it is nonetheless portable across a
wide range of UNIX and Windows platforms, so we’d have to
concede that it’s portability is good. It is not, however, portable to
any other kinds of operating systems, and would require work to
achieve that.
Efficiency: Moot. I must admit that if you look through the
implementation, you can see instances where I’ve spent effort to
achieve performances in the small which are, in all likelihood,
irrelevant compared to those of the system calls. Worse, these have
compounded the lack of transparency of the code.
Expressiveness: Despite using some pretty expressive components
with which to write this, the overall effect in some cases is still
overpoweringly complex.
Flexibility: n/a
Modularity: Dependent on STLSoft [STLSOFT] (100% header-
only). This shouldn’t be a problem to C++ programmers.
Discoverability: n/a
Transparency: Pretty poor. My paying job involves a lot of
reviewing of other people’s code, so it’s fair to say this doesn’t even
come close to the worst I’ve seen. On the other hand, it doesn’t meet
the standards for transparency that I advise my clients to adopt, and
I would not accept my writing code like this these days.

For anyone who can be bothered to download 1.8 and 1.9, you’ll see a lot
more files in the src/ directory for 1.9, as a consequence of my having
started to pare away the components from each other. In 1.8, there were
sixteen .cpp files, and I think I can say that six were good, eight were
moderate, and two were bad. The refactoring has helped a lot, such that
out of the 21 .cpp files in the source directory, eleven are good, eight are
moderate, and only two are bad. The numbers back up what I’m trying to
do, which is to separate out all parts that are clear and good, or semi-clear
and semi-good, in order to reduce the overall cost if/when a full refactoring
happens. Of course, as shown above, the bad is still really bad. But now
the badness is not impinging on the good.
As well as the refactoring reason – letting me see the wood for the trees –
there’s another reason for splitting up the files, which we’ll get to in a
minute or two.

The recls C++ mapping(s)
In versions prior to 1.9 recls has shipped with two separate mappings for
C++ client code:
February 2010 | Overload | 27

FEATURE MATTHEW WILSON

I’ve found myself using the C++ mapping
for enumeration in commercial projects
precisely zero times
The "C++" mapping, which provides an Iterator [GOF] pattern
enumeration interface.
The STL mapping, which provides STL collections [XSTL], to be
consumed in idiomatic STL manner, as shown in Listing 5.

Enumerating with the original C++ mapping would look something like
that shown in Listing 8.
The provision of both reflected recls’ secondary role as a research and
writing vehicle for my CUJ column, and also because, at the time (2003),
STL was still somewhat novel and unfamiliar to some C++ programmers.
In the 6+ years since, I’ve found myself using the C++ mapping for
enumeration in commercial projects precisely zero times, and I’ve not had
much feedback from users making much use of it, either.
So, given that I was already making significant breaking changes, and
(temporarily) dropping other mappings, I decided to take the opportunity
and merge the best features from the two mappings. Simplistically, the
utility functions come from the former "C++" mapping, and the collections
come from the former STL mapping.
Consequently, version 1.9 supports only a single C++ mapping, which is
comprised of six types:

recls::directory_parts – a collection of strings representing
the directory parts of a path, e.g. ["/", "home/", "matthew/"]
for the path "/home/matthew/.bashrc"
recls::entry – a type representing all the information about a
file-system entry, including path, drive (Windows), directory, file
(name and/or extension), size, timestamps, file attributes, search-
relative path, and so on.
recls::ftp_search_sequence – equivalent to recls::
search_sequence for searching FTP servers (Windows only).
recls::search_sequence – a collection of entries matching a
search specification and search flags under a given search root.
recls::root_sequence – a collection of all the roots on the
file-system: always ["/"] for UNIX; all drives on Windows, e.g.
["B:\", "C:\", "H:\", "I:\", "J:\", "K:\", "L:\",
"M:\", "O:\", "P:\", "S:\", "V:\", "W:\", "Z:\"]
on my current system.
recls::recls_exception

and (a growing list; 1.9 is still being polished as I write this) of utility
functions:

recls::calculate_directory_size() – calculates the total
size of all files in the given directory and all its subdirectories.
recls::create_directory() – attempts to create a directory,
and reports on the number of path parts existing before and after the
operation.
recls::combine_paths() – combines two path fragments.
recls::derive_relative_path() – derives the relative path
between two paths.

recls::is_directory_empty() – determines whether a
directory and all its subdirectories are empty of files.
recls::remove_directory() – attempts to remove a directory,
and reports on the number of path parts existing before and after the
operation.
recls::squeeze_path() – squeezes a path into a fixed width
for display.
recls::stat() – retrieves the entry matching a given path.
recls::wildcardsAll() – retrieves the ‘search all’ pattern for
the current operating environment.

Headers
The other change is that now you just include <recls/recls.hpp>,
which serves two purposes:

It includes all the headers from all components
It introduces all the necessary names from the recls::cpp
namespace into the recls namespace

The result is just a whole lot less to type, or to think about. More
discoverable, if you will.

Properties
One other thing to note. In the last chapter (35) of Imperfect C++ [IC++],
I described a set of (largely) portable techniques I’d devised for defining
highly efficient properties (as we know them from C# and Ruby) for C++.
So, for all compilers that support them (which is pretty much everything
better than VC++ 6, which is pretty much everything of import these days),
you have the option to elicit entry information via getters, as in

std::string srp = entry.get_search_relative_path();
uint64_t sz = entry.get_size();
???? ct = entry.get_creation_time();
// Still platform-dependent ;-/
bool ro = entry.is_readonly();

or via properties, as in:

std::string srp = entry.SearchPelativePath;
uint64_t sz = entry.Size;
???? ct = entry.CreationTime;
// Still platform-dependent ;-/
bool ro = entry.IsReadOnly;

if you like that kind of thing. (Which I do.)

Quality?
Let’s do a quick check-list of the intrinsic software quality of the new C++
mapping.
28 | Overload | February 2010

FEATUREMATTHEW WILSON

when we cannot prove correctness we must
rely on gathering evidence for robustness
Robustness: Very high: all resources are managed via RAII.
Anything that fails does so according to the Principle Of Most
Surprise [XSTL], via a thrown exception.
Portability: Apart from platform-dependent time type (to be
changed in 1.10), it is otherwise portable.
Efficiency: Moot.
Expressiveness: Good.
Flexibility: Excellent. Anything that has a meaningful string form is
interpreted via string access shims [XSTL, FF-2, IC++]
Modularity: Dependent on STLSoft [STLSOFT] (100% header-
only). This shouldn’t be a problem to C++ programmers.
Discoverability: Better than either previous mapping ("C++" or
STL). Much better than core API. Much, much better than OS APIs.
Transparency: Actually very good. Assuming you understand the
principles of STL extension – you’ve got Extended STL [XSTL],
right? – and C++ properties – you’ve got Imperfect C++ [IC++],
right? – then it’s very clear, tight, straightforward (see Listing 9). To
be honest, looking over it again as I write this I’m amazed how
something so neat (nay, might one even say beautiful) could be
layered over such an opaque scary mess. I guess that’s the magic of
abstraction.

Other mappings
I mentioned earlier that interoperability was a major motivator in choosing
to provide a C API. In many cases, that’s worked really well. For example,
I’ve been able to rewrite the C++ interface for 1.9 with very little concern
for changes in the core API between 1.8 and 1.9. The COM mapping was
similarly implemented with very little difficulty against the core API; the
fact that, in hindsight, I think the COM mapping implementation stinks is
immaterial. I’m also pretty happy with the Python and Ruby mappings,
although both will definitely benefit from a brush up when I update them
to 1.9.
There have been problems with the model however. First, the rather
mundane issue that being all in one distribution, every time I update, say
the Ruby mapping, I have to release the entire suite of core library and all
mappings. This is just painful, and also muddies the waters for users of a
subset of the facilities.
Second, and more significantly, with some languages the advantage of not
having to reproduce the non-trivial search logic is outweighed by the
hassles attendant in writing and maintaining the mapping code, and in
distributing the resulting software. The clearest example of this is the .NET
mapping. As well as the tiresome P/Invoke issues, a C# mapping requires
an underlying C library to be packaged in a separate DLL. On top of the
obvious issues to .NET security, the underlying DLL has to managed
manually, and one finds oneself still in ‘DLL Hell’. (That’s the classical
version of DLL Hell, not the newer and often more vexing .NET-specific
DLL Hell; but that’s another story.) As a consequence of these factors, I
spent some time last year rewriting recls for .NET from scratch, entirely

in C#, in part necessitated by some commercial activities. The result, called
recls 100% .NET [RECLS-100%-NET] was documented in an article I
wrote for DDJ late last year [DDJ-RECLS]. I may do other rewrites in the
future, depending on how well version 1.9 plays with the other language
mappings.

Quality assurance
If you remember back to [QM#2], when we cannot prove correctness we
must rely on gathering evidence for robustness. A library like recls, with
admittedly questionable robustness in the core implementation, positively
cries out for us to do so.
To hand, we have (removable) diagnostic measures and/or applied
assurance measures ([QM#1]). To save you scrabbling through back
issues, I’ll reiterate the lists now. (Removable) diagnostic measures can
include:

Code coverage constructs
Contract enforcements
Diagnostic logging constructs
Static assertions

Applied assurance measures can include:
Automated functional testing
Performance profiling and testing
User acceptance testing (UAT)
Scratch testing
Smoke testing
Code coverage analysis/testing
Review (manual and automated)
Coding standards
Code metrics (manual and automated)
Multi-target compilation

Most/all of these can help us with a library like recls to reach a point of
confidence at which we can ‘adjudge [it] to behave according to the
expectations of its stakeholders’ [QM#2].
First, I’ll discuss the items to which the library has been subjected in the
past:

Contract enforcements. Though not yet going beyond debug-build
assertions, recls has been using contract enforcements since its
inception.
Diagnostic logging. Until version 1.9, recls has had a debug-build-
only tracing, to syslog() (UNIX) / OutputDebugString()
(Windows).
Static assertions. recls has used static assertions [IC++] since
inception.
February 2010 | Overload | 29

FEATURE MATTHEW WILSON

Trying keeping a programmer from
debugging is like trying to keep a
small child from mining its nose
Automated functional testing. Some parts of the library, such as
recls::combine_paths(), recls::derive_relative_
path() and recls::squeeze_path(), have behaviour that is
(wholly or in part) predictable and independent of the system on
which they’re executed. In version 1.8 (and 1.9), unit tests are
included to exercise them. (Note: in version 1.8, some of the
squeeze-path tests fail on some edge cases: I’ve not fixed them
because they’re not super relevant, they’re fixed in 1.9, and I didn’t
have time to spare!)
Performance profiling. I have done this from time to time, and still
do, and it’s rare that the (C++) recls library performs with any
measurable difference from manually written search functions (such
as Listings 1 & 2). Surprisingly, the same can’t be said for other
languages, but that’s another story … [DDJ-RECLS-BLOG]
Scratch/smoke testing. Pretty much all the time. Trying keeping a
programmer from debugging is like trying to keep a small child from
mining its nose.
Review. In my opinion, there’s no better microscope of review than
writing articles or books about one’s own software, and recls has
had its fair share of that, which has had good effect on the API and
on the (1.9) C++ mapping. Bucking the trend, however, is the core
implementation, and I assume that’s because it’s just such a mess.
Coding standards. I have a rigidly consistent, albeit slowly
evolving, coding standard, so I think it’s reasonable to claim that
recls has been subject to this effect as much as any commercial
code. As the cult of celebrity proves, however, there’re plenty of
ways to be ugly that aren’t immediately apparent.
Code metrics. Until I started compiling this list, it’d never occurred
to me to subject the recls codebase to my own code analysis tools.
As I’m only hours away from giving the Overload editor another
bout of dilatory apoplexy, I guess that’ll have to wait for another
time. I’ll try and incorporate it into a wider study of several libraries
in a future instalment.
Multi-target compilation. This one’s been ticked off from day one,
even if much of my UNIX development is done on Windows, using
the UNIXem [UNIXem] UNIX emulation library.

On reflection, this is not a bad list, and I guess it helps to explain why recls
has become the pretty reliable thing it’s been for the last 6+ years. As Steve
McConnell says ‘Successful quality assurance programs use several
different techniques to detect different kinds of errors’ [CC].
Nonetheless, the coverage is incomplete, occasional defects still occur, and
I remain unsure about the behaviour of significant parts of the software
under a range of conditions. More needs to be done.
Several measures either have not been used before, or have been used in
a limited fashion. The two I believe are now most important are:

Code coverage
Diagnostic logging

Diagnostic logging
I hope you’ve noticed that many of my libraries work together without
actually being coupled to each other. b64, FastFormat, Pantheios [PAN],
recls, and others work together without having any knowledge of each
other. A major reason for this is that they all represent strings as an abstract
concept, namely string access shims [XSTL, FF-2, IC++]. But that’s only
a part of it. I think modularity is a huge part of the negative-decision
making process of programmers – coupling brings hassle – so much so that
I’ll be devoting a whole instalment to the subject later this year.
The problem with working with any orthogonal layer of software service
such as diagnostic logging, or indeed with any other software component,
is that it is a design-time decision that imposes code time, build time and,
in many cases, deployment time consequences. Adding diagnostic logging
to recls would be extremely easy to do by implementing in terms of
Pantheios, which is a robust, efficient and flexible logging API library,
as in:
 RECLS_API Recls_Stat(
 recls_char_t const* path
 , recls_uint32_t flags
 , recls_entry_t* phEntry
)
 {
 pan::log_DEBUG("Recls_Stat(path=", path
 , ", flags="
 , pan::integer(flag, pan::fmt::fullHex)
 , ", ...)");

The costs of converting flags to a (hexadecimal) string, combining all
the string fragments into a single statement, and emitting to the output
stream would be paid only if the DEBUG level is enabled; otherwise
there’s effectively zero cost, on the order of a handful of processor cycles.
Sounds great. The only problem with that is that building and using recls
would involve one of two things:

Pantheios is bundled with recls, and the recls build command
builds them both. This would increase the download size of recls by
a factor of four, and increase the build time by about a factor of ten.
Users would be obliged to separately download and build
Pantheios, including configuring the recls-expected environment
variable, before building recls. My experience with such situations
with other peoples’ open source libraries is not encouraging, and I
can’t imagine most potential users wanting to take that on.

There’s the further issue that users may already have their own logging
libraries, and prefer to use them to Pantheios. (<vainglory>Ok, I’m
playing devil’s advocate here, since who could imagine such a
situation!</vainglory> But the general point stands.)
I think the answer is rather to allow a user to opt-in to a diagnostic logging
library if they chose. In C, the only ways to do this are:

Compile in a dependency on an declared function that is externally
defined. This requires the user to define a function such as
recls_logging_callback(). While this is a viable technique
30 | Overload | February 2010

FEATUREMATTHEW WILSON

I hope you get the clear point that the two techniques – code
coverage analysis and automated functional testing – are a

great partnership in applied quality assurance
when no others suffice, it does leave as many users as not wondering
what they’ve done wrong when they get linker errors the first time
they attempt to use your library.
Provide an API function with which a user can specify a callback at
runtime.

I’ve opted for the second approach. Version 1.9 introduces the new API
function Recls_SetApiLogFunction():
 typedef void (
 RECLS_CALLCONV_DEFAULT *recls_log_pfn_t)(
 int severity
 , recls_char_t const* fmt
 , va_list args
);

 struct recls_log_severities_t
 {
 /** An array of severities, ranked as follows:
 * - [0] - Fatal condition
 * - [1] - Error condition
 * - [2] - Warning condition
 * - [3] - Informational condition
 * - [4] - Debug0 condition
 * - [5] - Debug1 condition
 * - [6] - Debug2 condition
 * Specifying an element with a value <0
 disables logging for that severity.
 */
 int severities[7];
 #ifdef __cplusplus
 . . . // ctors
 #endif
 };

 RECLS_FNDECL(void) Recls_SetApiLogFunction(
 recls_log_pfn_t pfn
 , int flags
 , recls_log_severities_t const* severities
);

With this, the user can specify a log function, and a optional list of severity
translations. By default, the severity translations are those compatible
with Pantheios. And recls_log_pfn_t just so happens to have the
same signature as pantheios_logvprintf(), the Pantheios (C) API
function . But nothing within recls depends on, or knows anything about,
Pantheios, so there’s no coupling. You can just as easily define your own
API logging function.

Code coverage
Well, I hope you’ve made it this far, because this is the meat of this
instalment. We’re going to see some code coverage in action. I’ll be using
the xCover library [XCOVER], which I discussed in a CVu article in

March 2009 [XCOVER-CVu]. As CVu online is available only to
members, non-ACCU members should seriously think about joining this
great organisation.
xCover works, for those compilers that support it (VC++ 7+, GCC 4.3+),
by borrowing the non-standard __COUNTER__ pre-processor symbol in
marking execution points, and using it to record the passage of the thread
of execution through the different branches of the code. At a given
sequence point, usually before program exit, the xCover library can be
asked to report on which execution points have not been executed. In
combination with an automated functional test, this can be used to indicate
code which may be unused.
Consider the test program in Listing 10, which exercises the functional
aspects of the Recls_CombinePaths() API function. It’s written in C,
but the same principle applies to a C++ test program. (If you’re interested,
the functional testing is done with the xTests library [XTESTS], a simple
C/C++ unit/component test library that I bundle with all my other open-
source libraries).
XCOVER_REPORT_GROUP_COVERAGE() is the salient statement. This
requests that xCover report on all the uncovered marked execution points
pertaining to the group "recls.core.extended.combine_paths". This
grouping is applied to those parts of the codebase associated with
combining paths by using xCover constructs. In this way, you divide your
codebase logically, in order to support code coverage testing in association
with automated functional testing. (You can also request for an overall
coverage report, or reports by source file, from within smoke tests, or your
running application, as you see fit. It’s just that I prefer to associate it with
automated functional testing.)
At the moment – and this is why 1.9 is not yet released – I haven’t yet got
the implementation file refactoring done in such a fashion that the various
functionality is properly separated. So, running the test program from
Listing 10 with Visual C++ 9 as I write this, I get output along the lines of
Figure 1.
All of these are false positives from other core functions defined in the
same implementation file: the Recls_CombinePaths() function is
fully covered by test.unit.api.combine_paths.c.
Obviously I’ve some work to go, and that’ll probably also entail adding
further refinements to the xCover library, to make this work easier. When
it’s all nicely boxed off, I’ll do a proper tutorial instalment about
combining code coverage and automated functional testing. Despite the in-
progress nature of the technology, I hope you get the clear point that the
two techniques – code coverage analysis and automated functional testing
– are a great partnership in applied quality assurance. The functional
analysis makes sure that whatever you test behaves correctly, and the code
coverage analysis makes sure that everything of relevance is tested.
Such things are, as we all know, trivially simple to achieve in other
languages (e.g. C#, Java). But despite being harder in C++, they are
possible, and we should work towards using them whenever it’s worth the
effort, as it (almost always) is with a general-purpose open-source library.
February 2010 | Overload | 31

FEATURE MATTHEW WILSON
Summary
I’ve examined a well-established open-source library, recls, and criticised
it in terms of intrinsic quality characteristics, for the core API, core
implementation, and the C++ mapping. Where it has come up short I have
made adjustments in the forthcoming version 1.9 release, or have identified
improvements to be made in subsequent versions.
I have examined the suite of (removable) diagnostic measures and applied
assurance measures and have reported on the ongoing work to refine code
coverage analysis, in combination with automated functional testing, in the
recls library, this work to be revisited at a future time in this forum when
it is mature.

‘Quality Matters’ online
As mentioned last time, there’s a (glacially) slowly developing website for
the column – at http://www.quality-matters-to.us/. It now contains some
useful links and several definitions from the first three instalments. By the
time you read this I hope to have the blog set up. But that’s pretty much
my web capacity exhausted, so once again I’d ask for any willing ACCU
member to offer what I hope would be a small amount of pertinent skills
to tart it up, add a discussion board, and what not. Your rewards will be
eternal gratitude, endless plaudits, and free copies of my next book. (Or,
if you prefer, a promise not to give you free copies of my next book.)

Acknowledgements
As always, my friend Garth Lancaster, has kindly given of his time to read
this at the end of a long working week just before my deadline, without
complaint (to my manners) and with salient criticisms (of my writing). He
does want me to point out that ‘How embarrassment?’ is a playful part of
the Australian vernacular, originating from a comedy show, and is not
representative of an endemic poor standard of grammar.
I must also thank, and apologise to, not only Ric Parkin, as editor, but also
all his band of reviewers, as I’ve really pushed them to the wire with my
shocking lateness this time. Perhaps Ric will henceforth borrow some
wisdom from my wife, and start artificially bringing due dates and times
forward in order to effect a magical eleventh hour delivery with time to
spare.

References
[!(C ^ C++)] !(C ^ C++), Matthew Wilson, CVu, November 2008
[CC] Code Complete, 2nd Edition, Steve McConnell, Microsoft Press,

2004
[DDJ-RECLS-BLOG]

http://dobbscodetalk.com/index.php?option=com_myblog&show=
Recursive-search-examples-pt2-C.html&Itemid=29

[FF-1] ‘An Introduction to FastFormat, part 1: The State of the Art’,
Matthew Wilson, Overload 89, February 2009

[FF-2] ‘An Introduction to FastFormat, part 2: Custom Argument and
Sink Types’, Matthew Wilson, Overload 90, April 2009

[FF-3] ‘An Introduction to FastFormat, part 3: Solving Real Problems,
Quickly’, Matthew Wilson, Overload 91, June 2009

[IC++] Imperfect C++: Practical Solutions for Real-Life Programming,
Matthew Wilson, Addison-Wesley, 2004

[PAN] http://pantheios.org/

[QM#1] ‘Quality Matters, Part 1: Introductions, and Nomenclature’,
Matthew Wilson, Overload 92, August 2009

[QM#2] ‘Quality Matters, Part 2: Correctness, Robustness and
Reliability’, Matthew Wilson, Overload 93, October 2009

[QM#3] ‘Quality Matters, Part 3: A Case Study in Quality’, Matthew
Wilson, Overload 94, December 2009

[RECLS] http://recls.org/
[STLSOFT] The STLSoft libraries are a collection of (mostly well

written, mostly badly documented) C and C++, 100% header-only,
thin façades and STL extensions that are used in much of my
commercial and open-source programming; available from
http://stlsoft.org/

[UNIXem] A simple UNIX emulation library for Windows; available
from http://www.synesis.com.au/software/unixem.html

[WINE] http://www.winehq.org/
[XCOVER] http://xcover.org/
[XCOVER-CVu] ‘xCover: Code Coverage for C/C++’, Matthew

Wilson, CVu, March 2009; http://accu.org/index.php/journals/c250/
[XSTL] Extended STL, volume 1: Collections and Iterators, Matthew

Wilson, Addison-Wesley, 2007
[XTESTS] http://xtests.org/

Listings
All numbered listings are at the end of the article:

1. Recursive file search using UNIX’s opendir()/readdir() API
2. Recursive file search using Windows’ FindFirstFile()/

FindNextFile()API
3. Stepwise recursive file search using recls’ core API
4. Callback recursive file search using recls’ core API
5. Recursive file search using recls’ C++ mapping
6. Definition of recls_entryinfo_t and associated types
7. Extract of the implementation of

ReclsFileSearchDirectoryNode

8. Example application code using pre-1.9 "C++" mapping
9. Samples of the implementation of the C++ mapping.
10. Unit-test program using xCover for code coverage analysis

Figure 1

 ..\..\bin\recls.1.test.unit.api.combine_paths.vc9.mt.exe --verbosity=2
[Start of group recls.core.extended.combine_paths]:
Uncovered code at index 6 in file ../../src/api.extended.cpp, between lines 88 and 483
Uncovered code at index 7 in file ../../src/api.extended.cpp, between lines 88 and 483
. . .
Uncovered code at index 35 in file ../../src/api.extended.cpp, between lines 88 and 483
Uncovered code at index 38 in file ../../src/api.extended.cpp, between lines 502 and 783
. . .
Uncovered code at index 67 in file ../../src/api.extended.cpp, between lines 502 and 783
[End of group recls.core.extended.combine_paths]:

unsigned list_all_files_r(char const* path)
{
 STLSOFT_ASSERT(NULL != path);
 STLSOFT_ASSERT('\0' != 0[path]);
 std::string directory(path);
 if(directory[directory.size() - 1u] != '/')
 {
 directory += '/';
 }
 DIR* dir = ::opendir(path);

Listing 1
32 | Overload | February 2010

http://dobbscodetalk.com/index.php?option=com_myblog&show=Recursive-search-examples-pt2-C.html&Itemid=29
http://pantheios.org/
http://recls.org/
http://stlsoft.org/
http://www.synesis.com.au/software/unixem.html
http://www.winehq.org/
http://xcover.org/
http://accu.org/index.php/journals/c250/
http://xtests.org/

February 2010 | Overload | 33

FEATUREMATTHEW WILSON

 if(NULL == dir)
 {
 ff::fmtln(std::cerr,
 "failed to search '{0}': {1} ({2})", path,
 stlsoft::error_desc(errno), errno);
 return ~0u;
 }
 else
 {
 stlsoft::scoped_handle<DIR*> scoper(dir,
 ::closedir);
 unsigned n = 0u;
 { for(struct dirent* de; NULL != (
 de = ::readdir(dir));)
 {
 if(de->d_name[0] == '.' &&
 de->d_name[1] == '\0')
 {
 // '.'
 }
 else if(de->d_name[0] == '.' &&
 de->d_name[1] == '.' &&
 de->d_name[2] == '\0')
 {
 // '..'
 }
 else
 {
 std::string entryPath
 = directory + de->d_name;
 struct stat st;
 int r = ::stat(entryPath.c_str(), &st);
 if(0 != r)
 {
 ff::fmtln(std::cerr,
 "failed to stat '{0}': {1} ({2})",
 entryPath,
 stlsoft::error_desc(errno), errno);
 }
 else
 {
 if(st.st_mode & S_IFREG)
 {
 ff::fmtln(std::cout, " {0}",
 entryPath);
 ++n;
 }
 else
 {
 n += list_all_files_r(
 entryPath.c_str());
 }
 }
 }
 }}
 return n;
 }
}
void list_all_files(char const* path)
{
 ff::fmtln(std::cout, "Searching '{0}'", path);
 unsigned n = list_all_files_r(path);
 if(~0u != n)
 {
 ff::fmtln(std::cout, " {0} file(s) found",
 n);
 }
}

Listing 1 (cont’d)

unsigned list_all_files_r(char const* path)
{
 STLSOFT_ASSERT(NULL != path);
 STLSOFT_ASSERT('\0' != 0[path]);
 std::string directory(path);
 if(directory[directory.size() - 1u] != '\\')
 {
 directory += '\\';
 }
 std::string searchSpec = directory + "*.*";
 WIN32_FIND_DATA data;
 HANDLE h = ::FindFirstFile(searchSpec.c_str(),
 &data);
 if(INVALID_HANDLE_VALUE == h)
 {
 DWORD err = ::GetLastError();
 ff::fmtln(std::cerr, "failed to search '{0}'
 : {1} ({2})", path,
 winstl::error_desc(err), err);
 return ~0u;
 }
 else
 {
 stlsoft::scoped_handle<HANDLE> scoper(h,
 ::FindClose, INVALID_HANDLE_VALUE);
 unsigned n = 0u;
 do
 {
 if(data.dwFileAttributes
 & FILE_ATTRIBUTE_DIRECTORY)
 {
 if(data.cFileName[0] == '.' &&
 data.cFileName[1] == '\0')
 {
 // '.'
 }
 else if(data.cFileName[0] == '.' &&
 data.cFileName[1] == '.' &&
 data.cFileName[2] == '\0')
 {
 // '..'
 }
 else
 {
 n += list_all_files_r((directory
 + data.cFileName).c_str());
 }
 }
 else
 {
 ff::fmtln(std::cout, " {0}{1}",
 directory, data.cFileName);
 ++n;
 }
 } while(::FindNextFile(h, &data));
 return n;
 }
}
void list_all_files(char const* path)
{
 ff::fmtln(std::cout, "Searching '{0}'", path);
 unsigned n = list_all_files_r(path);
 if(~0u != n)
 {
 ff::fmtln(std::cout,
 " {0} file(s) found", n);
 }
}

Listing 2

34 | Overload | February 2010

FEATURE MATTHEW WILSON

// Assumes introduction of recls namespace symbols
void list_all_files(char const* path)
{
 ff::fmtln(std::cout, "Searching '{0}'", path);
 hrecls_t hSrch;
 recls_rc_t rc = Recls_Search(path, NULL,
 recls::FILES | recls::RECURSIVE, &hSrch);
 if(RECLS_FAILED(rc))
 {
 ff::fmtln(std::cerr,
 "failed to search '{0}': {1} ({2})",
 path, rc, int(rc));
 }
 else
 {
 stlsoft::scoped_handle<hrecls_t> scoper(
 hSrch, Recls_SearchClose);
 unsigned n = 0u;
 entry_t entry;
 { for(RECLS_GetDetails(hSrch, &entry);
 RECLS_SUCCEEDED(rc);
 rc = Recls_GetNextDetails(hSrch, &entry),
 ++n)
 {
 stlsoft::scoped_handle<entry_t> scoper2(
 entry, Recls_CloseDetails);
 ff::fmtln(std::cout, " {0}",
 entry->path);
 }}
 ff::fmtln(std::cout,
 " {0} file(s) found", n);
 }
}

Listing 3

// Assumes introduction of recls namespace symbols
int RECLS_CALLCONV_DEFAULT onFile(
 recls_entry_t entry
, recls_process_fn_param_t param
)
{
 ff::fmtln(std::cout, " {0}", entry->path);
 ++*static_cast<unsigned*>(param);
 return +1; // continue
}
void list_all_files(char const* path)
{
 ff::fmtln(std::cout, "Searching '{0}'", path);
 unsigned n = 0u;
 recls_rc_t rc = Recls_SearchProcess(path,
 NULL, recls::FILES | recls::RECURSIVE,
 onFile, &n);
 if(RECLS_SUCCEEDED(rc))
 {
 ff::fmtln(std::cout,
 " {0} file(s) found", n);
 }
 else
 {
 ff::fmtln(std::cerr,
 "failed to search '{0}': {1} ({2})", path,
 rc, int(rc));
 }
}

Listing 4

typedef struct recls_entryinfo_t const*
recls_entry_t;

struct recls_strptrs_t
{
 recls_char_t const* begin;
 recls_char_t const* end;
};
struct recls_strptrsptrs_t
{
 struct recls_strptrs_t const* begin;
 struct recls_strptrs_t const* end;
};

#if !defined(RECLS_PURE_API)
struct recls_entryinfo_t
{
 recls_uint32_t attributes;
 struct recls_strptrs_t path;
if defined(RECLS_PLATFORM_IS_WINDOWS)
 struct recls_strptrs_t shortFile;
 recls_char_t drive;
endif /* RECLS_PLATFORM_IS_WINDOWS */
 struct recls_strptrs_t directory;
 struct recls_strptrs_t fileName;
 struct recls_strptrs_t fileExt;
 struct recls_strptrsptrs_t directoryParts;
if defined(RECLS_PLATFORM_IS_WINDOWS)
 recls_time_t creationTime;
endif /* RECLS_PLATFORM_IS_WINDOWS */
 recls_time_t modificationTime;
 recls_time_t lastAccessTime;
if defined(RECLS_PLATFORM_IS_UNIX)
 recls_time_t lastStatusChangeTime;
endif /* RECLS_PLATFORM_IS_UNIX */
 recls_filesize_t size;
 struct recls_strptrs_t searchDirectory;
 struct recls_strptrs_t searchRelativePath;

Listing 6

void list_all_files(char const* path)
{
 ff::fmtln(std::cout, "Searching '{0}'", path);
 try
 {
 recls::search_sequence files(path,
 recls::wildcardsAll(), recls::FILES |
 recls::RECURSIVE);
 unsigned n = 0;
 { for(recls::search_sequence
 ::const_iterator i = files.begin();
 i != files.end(); ++i, ++n)
 {
 ff::fmtln(std::cout, " {0}", *i);
 }}
 ff::fmtln(std::cout,
 " {0} file(s) found", n);
 }
 catch(recls::recls_exception& x)
 {
 ff::fmtln(std::cerr,
 "failed to search '{0}': {1} ({2})",
 path, x, int(x.get_rc()));
 }
}

Listing 5

February 2010 | Overload | 35

FEATUREMATTHEW WILSON

void list_all_files(char const* path)
{
 ff::fmtln(std::cout, "Searching '{0}'", path);

 try
 {
 recls::cpp::FileSearch search(path,
 recls::Recls_GetWildcardsAll(),
 recls::FILES | recls::RECURSIVE);

 unsigned n = 0;
 for(; search.HasMoreElements();
 search.GetNext(), ++n)
 {
 recls::cpp::FileEntry entry
 = search.GetCurrentEntry();
 ff::fmtln(std::cout, " {0}", entry);
 }
 ff::fmtln(std::cout,
 " {0} file(s) found", n);
 }

 catch(recls::cpp::ReclsException& x)
 {
 ff::fmtln(std::cerr,
 "failed to search '{0}': {1} ({2})",
 path, x, int(x.rc()));
 }
}

Listing 8

ReclsFileSearchDirectoryNode::
 ReclsFileSearchDirectoryNode(
 recls_uint32_t flags
, recls_char_t const* searchDir
, size_t rootDirLen
, recls_char_t const* pattern
, size_t patternLen
, hrecls_progress_fn_t pfn
, recls_process_fn_param_t param
)
 : m_current(NULL)
 , m_dnode(NULL)
 , m_flags(flags)
 , m_rootDirLen(rootDirLen)
 , m_searchDir()
 , m_searchDirLen(prepare_searchDir_(
 m_searchDir, searchDir))
 , m_pattern(pattern)
 , m_patternLen(patternLen)
 , m_directories(
 searchDir
#if defined(RECLS_PLATFORM_IS_WINDOWS)
 , types::traits_type::pattern_all()
#endif /* platform */
 , dssFlags_from_reclsFlags_(flags))
 , m_directoriesBegin(
 select_iter_if_(
 flags & RECLS_F_RECURSIVE
 , m_directories.begin()
 , m_directories.end()))
 , m_entries(
 searchDir
 , pattern
#ifdef RECLS_SUPPORTS_MULTIPATTERN_
 , types::traits_type::path_separator()
#endif /* RECLS_SUPPORTS_MULTIPATTERN_ */
 , essFlags_from_reclsFlags_(flags))
 , m_entriesBegin(m_entries.begin())
 , m_pfn(pfn)
 , m_param(param)
{
 . . .
}

Listing 7

 /* Remaining member are undocumented and subject
 to change */
 recls_uint64_t checkSum;
 recls_uint32_t extendedFlags[2];
 recls_byte_t data[1];
};
#endif /* !RECLS_PURE_API */

Listing 6 (cont’d)

search_sequence::const_iterator
search_sequence::begin() const
{
 hrecls_t hSrch;
 recls_rc_t rc = Recls_Search(m_directory,
 m_pattern, m_flags, &hSrch);

 if(RECLS_FAILED(rc) &&
 RECLS_RC_NO_MORE_DATA != rc)
 {
 throw recls_exception(rc);
 }
 return const_iterator(hSrch);
}

ftp_search_sequence::const_iterator
ftp_search_sequence::begin() const
{
 hrecls_t hSrch;
 recls_rc_t
 rc = Recls_SearchFtp(m_host.c_str(),
 m_username.c_str(), m_password.c_str(),
 m_directory, m_pattern, m_flags, &hSrch);
 if(RECLS_FAILED(rc) &&
 RECLS_RC_NO_MORE_DATA != rc)
 {
 throw recls_exception(rc);
 }

 return const_iterator(hSrch);
}

Listing 9

36 | Overload | February 2010

FEATURE MATTHEW WILSON

/* test.unit.api.combine_paths.c */
static void test_1(void);
static void test_2(void);
static void test_3(void);
static void test_4(void);
int main(int argc, char **argv)
{
 int retCode = EXIT_SUCCESS;
 int verbosity = 2;
 XTESTS_COMMANDLINE_PARSEVERBOSITY(argc,
 argv, &verbosity);
 if(XTESTS_START_RUNNER(
 "test.unit.api.combine_paths", verbosity))
 {
 XTESTS_RUN_CASE(test_1);
 XTESTS_RUN_CASE(test_2);
 XTESTS_RUN_CASE(test_3);
 XTESTS_RUN_CASE(test_4);
#ifdef XCOVER_VER
 XCOVER_REPORT_GROUP_COVERAGE(
 "recls.core.extended.combine_paths", NULL);
#endif /* XCOVER_VER */
 XTESTS_PRINT_RESULTS();
 XTESTS_END_RUNNER_UPDATE_EXITCODE(
 &retCode);
 }
 return retCode;
}
. . .
static void test_4()
{
 char result[101];
 size_t cch = Recls_CombinePaths("abc", "def",
 &result[0], STLSOFT_NUM_ELEMENTS(result));
 result[cch] = '\0';
 XTESTS_TEST_INTEGER_EQUAL(7u, cch);
#if defined(RECLS_PLATFORM_IS_UNIX)
 XTESTS_TEST_MULTIBYTE_STRING_EQUAL("abc/def",
 result);
#elif defined(RECLS_PLATFORM_IS_WINDOWS)
 XTESTS_TEST_MULTIBYTE_STRING_EQUAL("abc\\def",
 result);
#endif
}

Listing 10

template <typename C, typename T, typename V>
basic_search_sequence_const_iterator<C, T, V>&
basic_search_sequence_const_iterator<C, T,
V>::operator ++()
{
 RECLS_MESSAGE_ASSERT(
 "Attempting to increment invalid iterator",
 NULL != m_handle);
 if(RECLS_FAILED(Recls_GetNext(
 m_handle->hSrch)))
 {
 m_handle->Release();
 m_handle = NULL;
 }
 return *this;
}
class entry
{
 . . .
public: /// Attribute Methods
 char_type const* c_str() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return m_entry->path.begin;
 }
 . . .
 recls_time_t get_creation_time() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return Recls_GetCreationTime(m_entry);
 }
 . . .
 string_type get_path() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return string_type(m_entry->path.begin,
 m_entry->path.end);
 }
 string_type get_drive() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return string_type(m_entry->path.begin,
 m_entry->directory.begin);
 }
 string_type get_directory_path() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return string_type(m_entry->path.begin,
 m_entry->directory.end);
 }
 string_type get_directory() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return string_type(m_entry->directory.begin,
 m_entry->directory.end);
 }
 string_type get_file() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return string_type(m_entry->fileName.begin,
 m_entry->fileExt.end);
 }
 string_type get_file_name() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 return string_type(m_entry->fileName.begin,
 m_entry->fileName.end);
 }

Listing 9 (cont’d)

 string_type get_file_extension() const
 {
 STLSOFT_ASSERT(NULL != m_entry);
 if(m_entry->fileExt.begin
 == m_entry->fileExt.end)
 {
 return string_type();
 }
 else
 {
 return string_type(
 m_entry->fileExt.begin - 1,
 m_entry->fileExt.end);
 }
 }
 . . .
private: /// Member Variables
 recls_entry_t m_entry;
};

Listing 9 (cont’d)

	Back To The Future
	One Approach to Using Hardware Registers in C++
	The Model Student: A Game of Six Integers (Part 1)
	Simplifying the C++/Angelscript Binding Process
	Quality Matters: Diagnostic Measures

