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EDITORIAL RIC PARKIN
Lies, Damn Lies, and Statistics
Making a good decision is vital.
Ric Parkin looks at what 
information we use.
Our boss has been asking that really horrible question:
‘When will the new release be out?’ This is a non-
trivial thing to answer at the best of times, so I started
to think about what we knew to work out what the
influences were. And it’s really not encouraging.

I’ve worked through many release cycles and, while they all have many
differences, certain things recur often enough to suggest there are some
lessons we can learn and keep an eye out for. 
The first is that most estimates are almost certainly wrong. This is not just
me being cynical – there are many reasons for errors to be made (and
usually in the undesired direction of being unduly optimistic). An obvious
one is that estimates tend to be made at the start of a project, as this
information is needed to decide whether to approve a project, estimate its
likely budget, and plan for coordinated activities such as marketing
efforts. Furthermore,  software development is in many ways a learning
activity – collecting requirements, and finding out how to turn them into
a working system – and so by definition you don’t know what you’ll
actually find out, and so cannot reliably estimate how long it will take!
Taking previous experiences into account can help a lot, but unless your
projects are similar to ones you’ve done before, the uncertainties remain
high. You could ask the ‘experts’, but there can be conflicts of interest (eg
they’re the ones proposing a costly development so will tend to  be overly
optimistic), and senior developers are often promoted into management
roles leading them to have less knowledge of how a system actually works
in practice than a programmer working on it every day. So is there  a better
way of estimating taking into account as much information as possible?
I recently got around to reading the whole of The Wisdom Of Crowds
[Surowiecki], which suggested to me an interesting approach to this sort
of complex estimation. Instead of asking an expert for an opinion, ask
everybody and aggregate the answers. The reasoning behind this is that
no one can know everything, but everyone will know something about the
system. By combining the guesses, say by averaging the project time
estimates, the idea is that you’ll capture what people know, but the errors
will tend to cancel out (this is due to the Central Limit Theorem [CLT],
with the caveats about under which circumstances it holds). Note that this
is by no means an excuse to avoid taking responsibility for the final
estimate! But I think it could be a useful exercise to find out what the group
as a whole expects, and not just the ‘experts’. You have to ask a wide group
of people because, in order for this to work, you need a diverse and
independent group to sample their opinion – just asking one subset fails

to capture other opinions, and people must be asked
privately to avoid the danger of people being

influenced by the others. In particular, it should
include a wide range of people who wouldn’t
normally be involved in estimation exercises,

such as testers, technical writers doing documentation, and the groups
who polish off the product and make it ready for release. This is because
it’s often these people slogging through the bug list and getting reports
from users who really understand how much effort goes into those final
stages, often more than the architects and developers. This is often because
while such developers might design and write the framework and the bulk
of the functionality they will often have moved on to design and write the
next project, leaving others to finish off the release even though such
efforts can take a similar amount of time again. 
I’m reminded of an old project where I was involved in maintaining and
releasing several versions of a product while the next major rework was
being designed and developed. Having had to evolve the previous code
to reflect what was actually required, I had a good gut feel of how much
complexity was actually present and how much effort was needed to take
a functionally complete project to production quality. My estimate of how
long it would take was three times longer than the value which had been
used to okay the project. I take no pleasure to note that I turned out to be
optimistic. This isn’t even an isolated example – it’s happened severely
to projects taking tens of man years at least twice in my personal
experience, and to some extent on most projects. While a large company
can probably take the hit, for small start-ups it can be devastating to their
balance sheets and customer trust.
Another problem is that quite often the cost of the later stages depend on
how well things have gone before, what utilities people have put together,
and how stable some key code is. This can’t be known up front and project
plans and estimates should take this into account by being more vague and
conservative the further in the future things are. This implies that detailed
planning and estimates happen on a rolling basis, and shorter release
cycles are encouraged. In other words big over-detailed plans are
discouraged, and short agile cycles are the norm which allow plans to
respond to circumstances in a much more flexible fashion.
Once the initial estimate has been made and the project starts, it is
important to keep track of progress and update the estimated completion
date. The usual use for this is to spot potential problems causing overruns
as early as possible, but it also gives a sense of progress to the team which
can be a vital tool in keeping morale up and momentum going. An
interesting question is how detailed should you measure the progress. I
often think that people tend to be unrealistically precise, such as
estimating individual tasks and measuring progress in terms of hours,
often encouraged by the project planning tools. I’ve had good results by
only breaking tasks down to the granularity of a day, or even a week, and
only measure in terms of Not Done/In Progress/Done, as that allows for
some flexibility and doesn’t over-burden people with tiresome paperwork
and endless Gantt chart updating. Another good trick was to get three
estimates instead of one – as well as the normal ‘How long will this task

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of 
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail 
of new members behind him. He can be contacted at ric.parkin@gmail.com.
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EDITORIALRIC PARKIN
take’, you also ask for a best and worst case estimate.  By taking a weighted
average (with ratios such as 1:4:1, which roughly follows a normal
distribution) you get the expected time that tends to be a bit longer than
the most likely estimate. This is because if things go well they’ll be a bit
quicker, but if they go badly they take a lot longer. For example, I might
reckon it’ll probably take 10 days, but could be as short as 8, or as long
as 18. My expected time is (8 + 4x10 + 18)/6 which is 11 days. That means
that if you use your original estimate only, every two weeks you will most
likely fall behind by a day. Another thing this exercise gives you is a clue
of how well understood the development is – very large estimates, or a
wide spread are a sign that there is a lot of unknown risk, and that area
should be investigated some more. And returning to the wisdom of
crowds, perhaps you should get several people to estimate and combine.

A picture’s worth a thousand words

After a while you’ve slogged through the feature list and the project is
complete. Not so fast! It still has to be polished off ready for release. This
is the point where I start to look at graphs of bug numbers. Hopefully you’ll
have already been using a bug tracking system to capture found defects
and schedule them to be fixed (yet another source of project slippage –
people say a task is complete and so it is closed. But bugs are sure to be
found, and fixing them now takes place during time that was expected to
be used for some other task, so making that late). During the main
development I try not to worry too much about the total number and its
fluctuations, as they tend to be dominated by one-off factors – for example,
to start with not many people will be actively using a fast changing early
system so only major bugs are reported. When functionality has settled,
more people test it in detail and start reporting smaller UI glitches, and
your bug count will go through the roof. But eventually you’ll run out of
new areas to report on and things will stabilise, and then it’s worth getting
your tools to investigate the trends. Recently I’ve been using the absolute
number, and the number open that are assigned to the current sprint. I’ve
thought about using a weighted total according to how difficult the bugs
are thought to be (or using the Story Points used in agile planning), but I
worry that the overhead of keeping such information correct could make
the results unreliable. I’d be interested to hear if anyone does something
like this though.

Then you have to interpret the graphs. This is going to depend a lot on your
local situation as everyone has different patterns of bug reporting and
speed of fixing issues. But I think there are some common things to look
out for. Ideally your sprint graphs should look nicely triangular with a
fairly steady slope down to zero at the target. If you repeatedly miss then
it could be a sign to adjust how much to put into each sprint. The total is
a bit trickier. I’ve found that to start with it will lurch up as people suddenly

test a new area with lots of bugs, and down when people fix a lot of simple
small tweaks. Apart from this chaotic churn overall numbers tend not to
change very much, as test/fix resources are applied or eased off
accordingly. Then what you want to look for is The Corner, where the
lurching has died down and a solid downward trend appears. What’s
happened is that despite a continued test effort it’s proving hard to find
anything new, and yet the bug fix rate has continued. This is good news.
Once that trend has settled in, you can look at the slope and estimate when
it will reach zero (although remember that the last few bugs will tend to
be the difficult ones, so the slope will level off a bit at the bottom until
they’re fixed or you decide they are not release-stopping bugs).
Congratulations! You can now say with some confidence what the release
date will be. Unfortunately it will be in the near future so your oracular
powers of prediction won’t be as appreciated as highly as you’d like.

Professionalism vs profession
And finally, I found an interesting take on an old problem – what does
being ‘professional’ mean, and should there be a formal body to enforce
standards? In computing there are certain bodies who have been given a
charter to grant such a professional status, but many companies don’t insist
on it, trusting on people to be professional in their dealings rather than
being part of a formal professional body. Well, it turns out that Canadian
engineers have been doing both. There is the usual professional body that
grants Professional Engineer status, but individuals can also go through
The Ritual Of The Calling Of An Engineer [Ritual] (created by Rudyard
Kipling no less), where they are presented with an Iron Ring to wear on
the little finger [Ring] to remind them of the responsibility and humility
of their professional dealings. This ritual is a more recent version of ones
such as the Hippocratic Oath [Hippocrates] which are
intended to impress the serious nature of the calling,
and to establish a basis for ethical standards. I thought
it was a wonderful idea, very much in keeping with
what we as a industry ought to aspire to.

References
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FEATURE RICHARD HARRIS
You're Going To Have To Think!
Numerical computing has many pitfalls. Richard Harris 
starts looking for a silver bullet.
he dragon of numerical error is not often roused from his slumber,
but if incautiously approached he will occasionally inflict
catastrophic damage upon the unwary programmer’s calculations.

So much so that some programmers, having chanced upon him in the
forests of IEEE 754 floating point arithmetic, advise their fellows against
travelling in that fair land.
In this series of articles we shall explore the world of numerical computing,
contrasting floating point arithmetic with some of the techniques that have
been proposed as safer replacements for it. We shall learn that the dragon’s
territory is far reaching indeed and that in general we must tread carefully
if we fear his devastating attention.

On the classification of numbers
As programmers we are probably aware that integers and floating point
numbers have different properties, even if we haven’t spent a great deal
of time thinking about their precise nature.
However, I rather suspect that we are somewhat less aware of how they
fit into the general mathematical classification of number types.
Therefore, before we start looking at the various techniques for
representing numbers with computers I should like to explore what exactly
it is we mean by Number.
The concept of Number has been refined throughout history as generations
of mathematicians have time and again stumbled across inconsistencies in
their understanding.
A hierarchy of number types as we currently understand them is provided
in figure 1.
Traversing this tree from left to right, we more or less recover the sequence
of development in our concept of Number from prehistory to the modern
day.
The story of Number begins with the integers, or more accurately the
natural numbers; those whole numbers greater than zero. Animal studies
have shown that primates, rats and even some birds have a rudimentary
ability to count; presumably using neural circuitry similar to that we use

to distinguish at a glance between three and four objects, but not between
nineteen and twenty. It is not unreasonable, therefore, to suppose that
awareness of the natural numbers predates man.
The negative numbers are, comparatively, an example of striking
modernity having been discovered in India just a few millennia ago.
The integers, as important as they are, are not particularly useful for
measurement; the distance between the ziggurat and the brothel is never
quite a whole number of cubits, for example. For this task we instead
employed the fractions, or rationals; those numbers equal to the ratio of
two integers. Note that the rationals are a superset of the integers; every
integer is trivially the ratio of itself and 1.
For many years it was thought that the rationals comprised the totality of
Number. Legend has it that a member of the school of Pythagoras
discovered that the square root of 2 could not be expressed as a fraction
and that his compatriots were so put out by this fact that they drowned him
(we shall revisit this in a later article).
The algebraic irrationals are those numbers which are roots of polynomial
equations with rational, or equivalently integer, coefficients. By roots we
mean those real values, if any, at which the polynomial equates to zero.
The square root of 2 is a root of the polynomial x2-2, for example.
Technically, the algebraic numbers are a superset of the rationals since the
latter are solutions to linear equations with integer coefficients.
The final breed of numbers, the transcendentals, is the most elusive. These
are the numbers which are not solutions of polynomial equations with
rational coefficients and include such notable numbers as π and e. They
are so difficult to identify that it is still not known whether the sum of π
and e is itself transcendental. Despite this, it is known that the
transcendentals form the vast majority of numbers; if you were to throw a
dart at a line representing the numbers between 0 and 1, you would almost
certainly hit a transcendental.
To understand why, we need to discuss the mathematics of infinite sets.

Transfinite cardinals
In the late 19th century Georg Cantor perfected the theory of infinite sets.
The transfinite cardinals are not, as their name suggests, characters in a
Catholic science fiction blockbuster, but are in fact those infinite numbers
that denote the size of infinite sets.
Cantor identified the smallest of the transfinite cardinals, the size of the
integers, as ℵ0. This is known as the countable infinity since we can
imagine an algorithm that, given infinite time, would step through them
sequentially, counting them off one at a time.
He then asked the question of whether the rationals were larger than the
integers; whether they were uncountable. His proof that they were not is
one of the most elegant in all of mathematics.
When we say a set is countable, we strictly mean that it can be put into a
one to one correspondence with the non-negative integers. For example,
the integers are countable since we can map from the non-negative integers
to them with the rules

T

Algebraic Transcendental

IrrationalRational

Integer

Real

Figure 1

Richard Harris has been a professional programmer since 1996. 
He has a background in Artificial Intelligence and numerical 
computing and is currently employed writing software for financial 
regulation.
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the reals, and consequently the
transcendentals, are uncountably infinite
1. if n is even, n maps to ½n
2. if n is odd, n maps to -½(n+1)

Enumerating this sequence yields
0, -1, 1, -2, 2, -3, 3, …

which clearly counts through the integers, one at a time.
Cantor laid out the rationals such that the numerator (the number on top
of the fraction) was indicated by the column and the denominator (the
number on the bottom of the fraction) was indicated by the row, as shown
in figure 2.
What Cantor realised was that, whilst each row and column stretched on
forever and so couldn’t be counted one after the other, the diagonals
between the first column of a given row and the first row of the
corresponding column were all finite and hence countable. For example,
we could iterate over the first row, counting diagonally backwards through
the table until we hit the first column yielding the sequence

1/1, 2/1, 1/2, 3/1, 2/2, 1/3, 4/1, 3/2, 2/3, 1/4, …
If we skip any number we have seen before, we have the sequence

1, 2, 1/2, 3, 1/3, 4, 3/2, 2/3, 1/4, …
So, rather surprisingly, despite there being an infinite number of fractions
between any two different integers, the sizes of the set of fractions and the
set of integers are in fact equal.
Cantor proceeded to demonstrate that the set of polynomial equations with
integer coefficients is also countable and, since each has a finite number
of roots, so are the algebraic numbers.
He did this by defining a function, we shall call it c, that takes a polynomial
with integer coefficients and returns a positive integer. It operates by
adding together the absolute values of the coefficients and the largest
power to which the variable is raised, the order of the polynomial, minus
one.
For example

Note that we can insist that the term with the highest order is positive, since
multiplying a polynomial by minus one doesn’t affect its roots.
Cantor realised that every possible value of this function is shared by a
finite number of such polynomials. For example, there are just 4 such
polynomials for which this function yields 2.

So we can count off these polynomials by counting through the positive
integers and, for each of them in turn, enumerating the members of the
finite set of them for which Cantor’s function returns that value.
We are left with the question of whether or not the transcendental numbers
are of the same size.
If the transcendental numbers are countable then the real numbers, being
the union of both they and the algebraic numbers, must be countable too
since we could simply alternate between the sequences of each of them.
Cantor noted that if the reals were countable we could construct a list of
them as they are generated by the mapping from the integers. Figure 3
illustrates what this list might look like for the numbers between 0 and 1.
Now starting after the decimal point in the first row and moving diagonally
down and to the right we can construct a new number

0. (x00+2)%10  (x11+2)%10  (x22+2)%10  (x33+2)%10  (x44+2)%10  …

This number is clearly between 0 and 1, but must differ from every number
in the list at no less than one digit. Note that we add 2 to each digit rather
than 1 to avoid the irritating corner case of recurring nines, such as
0.099999... being equal to 0.1.
We have thus found a number between 0 and 1 that was not in our list and
hence the list is incomplete. It is not, therefore, possible to construct such
a list and hence the reals, and consequently the transcendentals, are
uncountably infinite. Being more sizable than the other numbers, their
cardinal number is denoted by ℵ1.

Figure 2

1 2 3 4 5 …

1 1/1 2/1 3/1 4/1 5/1 …

2 1/2 2/2 3/2 4/2 5/2 …

3 1/3 2/3 3/3 4/3 5/3 …

4 1/4 2/4 3/4 4/4 5/4 …

5 1/5 2/5 3/5 4/5 5/5 …

… … … … … … …

c 2x2 3x 4+–( ) 2 3 4 2 1–( )+ + + 10= =

2x
x 1+

x 1–

x2

Figure 3

0.x00 x01 x02 x03 x04 x05…
0.x10 x11 x12 x13 x14 x15…
0.x20 x21 x22 x23 x24 x25…
0.x30 x31 x32 x33 x34 x35…
0.x40 x41 x42 x43 x44 x45…
0.x50 x51 x52 x53 x54 x55…
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Double precision floating point numbers 
have precisely the same layout as single 
precision floating point numbers
IEEE 754-1985
So now we know the mathematical classification of numbers we are ready
to start looking at how we might implement numeric types with computers.
The IEEE standard [IEEE] defines floating point numbers to have a format
similar to the scientific notation many of us will recognise from our
calculators and spreadsheets. In the familiar decimal base 10 this means a
number between 1 and 10 multiplied by 10 raised to the power of another
number.
For example, the number of days in a year is approximately 365.
Dividing by this 100 gives us a number between 1 and 10, namely 3.65.
Since 100 is 10 raised to the power of 2, the number of days in the year
can be written as 3.65 × 102, or commonly 3.65E2.
The number that we multiply by the power of 10 is known as the mantissa
and the power of 10 by which we multiply it is known as the exponent.
Since base 10 is rather inconvenient from a computing perspective, IEEE
floating point numbers are defined in the binary base 2. Specifically,
numbers are defined as ±b × 2a with, in the single precision format, the
sign taking one bit, the exponent a taking 8 bits and the mantissa b taking
24. Much as in decimal the mantissa must lie between 1 and 10, so in binary
it must lie between 1 and 2. The leading digit must therefore be 1, and we
can represent b with 23 bits rather than the full 24.
There is, in fact, a special case when we assume the leading digit is 0 rather
than 1. This occurs when the exponent takes on its most negative value,
yielding the very smallest floating point numbers. Since the leading digits
of these numbers, known as subnormal or denormalised numbers, may be
0 there may consequently be fewer bits left to represent the mantissa
resulting in fewer significant digits of accuracy, or equivalently in lower
precision. In contrast recall that normal numbers have an implied leading
digit of 1 and consequently have the full 24 bits with which to represent
the mantissa.
In addition to the normal and subnormal numbers, IEEE 754 defines bit
patterns to represent the positive and negative infinities and a set of error
values for invalid calculations known as the NaNs, for Not a Number.
Many of us are probably aware of the quiet and signalling NaNs identified
by std::numeric_limits, but perhaps not of the fact that there are
actually 224-2 of them in the single precision format, allowing for error
codes to be embedded in invalid results.
Figure 4 enumerates the full set of IEEE 754 single precision floating point
numbers, ±a1a2a3…a8b1b2b3…b23
Note that since the mantissa is finite, floating point numbers are actually
a finite subset of the rational numbers and it is vitally important not to
confuse them with real numbers.

Double precision
Double precision floating point numbers have precisely the same layout
as single precision floating point numbers, differing only in that they have

an 11 bit exponent and a 53 bit mantissa. Recall that one of the bits in the
mantissa is implied, so that these and the sign bit fill 64 bits.
Henceforth, we shall assume that the double precision format is being used.
Now that we have covered the mundane implementation details of floating
point numbers it is time to start looking at the rather more important topic
of their precise behaviour.

Not a number
The NaNs infect any calculation they come into contact with since the
result of any operation upon a NaN yields a NaN.
Furthermore, any comparison involving a NaN is always false, even an
equality comparison between two NaNs.
If you keep this in mind when designing loops and branches, you can
ensure that your algorithms will behave predictably in the face of invalid
arithmetic operations.

Overflow
Floating point numbers overflow in a satisfyingly predictable way, namely
to plus or minus infinity.
Dividing any finite number by an infinity will yield zero and dividing any
non-zero number by zero will yield an infinity of the same sign as that
number. Adding or subtracting any finite number to or from an infinity will
result in that infinity.

Figure 4

Binary Exponent (a1… a8) Decimal Exponent Binary Value

00000000 0 ±0.b1b2b3…b23⋅2-126

00000001 1 ±1.b1b2b3…b23⋅2-126

00000010 2 ±1.b1b2b3…b23⋅2-125

00000011 3 ±1.b1b2b3…b23⋅2-124

… … …

01111111 127 ±1.b1b2b3…b23⋅20

10000000 128 ±1.b1b2b3…b23⋅21

… … …

11111100 252 ±1.b1b2b3…b23⋅2125

11111101 253 ±1.b1b2b3…b23⋅2126

11111110 254 ±1.b1b2b3…b23⋅2127

11111111 255 ±∞ if bi=0
NaN otherwise
6 | Overload | October 2010
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we should prefer to test whether two
floating point numbers are similar to each

other rather than the same
These properties mean that many numerical algorithms can implicitly cope
with numerical overflow since arithmetic operations and comparisons are
internally consistent and, accompanied by some vigorous hand waving,
mathematically sound.
Note that dividing 0 by 0, dividing an infinity by an infinity, multiplying
an infinity by 0 and subtracting an infinity from itself all yield NaNs.

Rounding error
One of the most common surprises facing the programmer using floating
point arithmetic stems from the fact that there are a fixed number of bits
with which to represent the mantissa.
We can illustrate the problem by considering decimal notation. Say we
restrict ourselves to 4 figures after the decimal point. Assuming that we
have chosen the closest number in this representation, x, to a given number
we can only say that its true value lies somewhere within x±5E10-5. For
example, given π to 4 decimal places, 3.1416, we can only state with
certainty that it lies between 3.14155 and 3.14165.
Similarly, for an IEEE double precision floating point number x with an
exponent of a, we can only be sure that the true value is between x±2a-53.
Conveniently, since normalised floating point numbers have a implicit
leading digit of 1, these bounds can be written as x(1±2-53) or,
conventionally, as x(1±½ε).
Of course, this means that operations on denormalised numbers will
introduce proportionally even greater errors but we shall ignore this fact
in our analyses and effectively treat them as if they behave in the same
fashion as zero.
If an algorithm really must treat denormalised numbers with the same
respect as normalised numbers, it will require much more careful analysis.
The mathematical operations of addition, subtraction, multiplication,
division, remainder and square root are required by the IEEE standard to
be accurate to within rounding error. Specifically, they must return the
correctly rounded representation of the result of performing the actual
calculation with real numbers. This means that, if using round to nearest,
they will introduce a proportional error no larger than (1±½ε0).
Note that because of these accumulated rounding errors, equality
comparisons between floating point numbers often behave counter-
intuitively; values of unlike expressions that should mathematically be
equal may have accumulated slightly different rounding errors.
In general, we should prefer to test whether two floating point numbers
are similar to each other rather than the same.

Condition number
It is important to note that the rounding guarantees of the IEEE arithmetic
operations do not take into account any rounding error in their arguments.
We can capture the sensitivity of the result of a function f to rounding errors
in its argument x with the condition number, given by

where f' is the derivative of f and the vertical bars mean the absolute value
of the expression between them.
This value is approximately equal to the absolute value of the ratio between
the relative error of f(x) and the relative error of x, as shown in derivation
1. Note that it assumes that f can be calculated exactly and so the condition
number does not take into account rounding during the calculation or of
the result.
As an example, consider the exponential function ex whose derivative is
equal to ex for all x. Its condition number is therefore |x|, meaning that its
relative error at x before rounding is approximately equal to |½εx|.
When the condition number is large, a calculation is said to be poorly
conditioned and we cannot trust that it is accurate to many digits of
precision.
Noting that the number of digits of precision is approximately equal to the
logarithm of the reciprocal of the absolute relative error, we can use the
condition number to estimate the number of decimal digits of precision of
a calculation.
Specifically, we use

κf x( ) f′ x( )
f x( )
----------- x×=

Derivation 1

Given a real value x and the nearest normal floating point x* we have

The relative error in f is given by

Dividing by the relative error in x, we have

x x∗–
x

-------------- ε≤

f x( ) f x∗( )–
f x( )

----------------------------

f x( ) f x∗( )–
f x( )

---------------------------- x x∗–
x

--------------⁄ f x( ) f x∗( )–
f x( )

------------------------- x x∗–
x

--------------⁄=

f x( ) f x∗( )–
f x( )

---------------------------- x
x x∗–
--------------×=

f x( ) f x∗( )–
x x∗–

---------------------------- x
f x( )
---------×=

f′ x( ) x
f x( )
---------×=

f′ x( )
f x( )
----------- x×=

1
2
---ε⎝ ⎠
⎛ ⎞

10
κf x( )( )10log–log–
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Whilst rounding error might sneak up upon us 
in the end, cancellation error is liable to beat 
us about the head with a length of two by four
where log10 is the base 10 logarithm, as demonstrated in derivation 2. This
is equivalent to subtracting the log of the condition number from the
number of digits of precision of the floating point type.

Cancellation error
Given enough operations or poorly conditioned functions, rounding error
can significantly affect the result of a calculation, but it is by no means the
worst of our troubles.

Far more worrying is cancellation error which can yield catastrophic loss
of precision. When we subtract two almost equal numbers we set the most
significant digits to zero, leaving ourselves with just the insignificant, and
most erroneous, digits.
For example, suppose that we have two values close to π, 3.1415 and
3.1416. These values are both accurate to 5 significant figures, but their
difference is equal to 0.0001, or 1.0E-4, and has just 1 significant figure
of accuracy.
Whilst rounding error might sneak up upon us in the end, cancellation error
is liable to beat us about the head with a length of two by four.
The poster child of cancellation error is the approximation of numerical
differentiation with the forward finite difference. The derivative of a
function f at a point x is defined as the limit, if one exists, of

as δ tends to zero.
The forward finite difference replaces the limit with a very small, but non-
zero, δ and is a reasonably obvious way to approximate the derivative.
It is equally obvious that we should choose δ to be as small as possible,
right?
Wrong!
To demonstrate why not, consider the function ex whose derivative at 1 is
trivially equal to e. Figure 5 plots a graph of minus the base 2 logarithm
of the absolute error in the approximate derivative at 1, roughly equal to
the number of correct bits, against minus the base 2 logarithm of δ, equal
to the number of leading zeros in its binary representation.
Clearly, decreasing δ works up to a point as indicated by an initial linear
relationship between the number of leading zeros and the number of
accurate bits. However, this relationship seems to break down beyond δ
equal to 2-25 and the best accuracy occurs when δ is equal to 2-26.

Derivation 2

Assuming that the floating point epsilon has n decimal leading zeros,
for a given real number and its closest normal floating point number
we have

where b is between 1 and 10.
Now

Defining the absolute relative error in the result of a function f as

we have

and hence

ε 10 n–≤

x b 10a×=

x∗ b 1
2
---ε±⎝ ⎠

⎛ ⎞ 10a×∈

x
x x∗–
--------------⎝ ⎠

⎛ ⎞
10log x( )10 x x∗–( )10log–log=

b( )10 a 1
2
---ε⎝ ⎠
⎛ ⎞

10 a–log–+log≥

1
2
---ε⎝ ⎠
⎛ ⎞

10 b( )10log+log–=

n≈

εf x( ) f x( ) f x∗( )–
f x( )

---------------------------- κf x( ) 1
2
---ε×≈=

1
εf x( )
------------ 1

κf x( ) 1
2
---ε×

-------------------------=

1
εf x( )
------------⎝ ⎠
⎛ ⎞ 1

κf x( ) ε×
---------------------⎝ ⎠
⎛ ⎞

10log=10log

κf x( ) 1
2
---ε×⎝ ⎠

⎛ ⎞
10log–=

1
2
---ε⎝ ⎠
⎛ ⎞

10 κf x( )( )10log–log–=

f x δ+( ) f x( )–
δ

----------------------------------

Figure 5
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This is suspiciously close to half of the number of bits in the mantissa of
a double precision floating point number. In fact it can be proven, under
some simplifying assumptions, that the optimal choice for δ is the square
root of ε, which has roughly that many leading zeros.
The reason for this behaviour is that, as δ gets very small, the results of
the two calls to f get very close together and their difference introduces a
large cancellation error, as shown formally in derivation 3.
Note that since cancellation error results from the dramatic sensitivity of
the subtraction of nearly equal numbers to the rounding errors in those
numbers, it can be captured by the condition number.
For example, the expression x-1 has a condition number of |x/(x-1)|. As x
tends to 1, the condition number tends to infinity, reflecting the growing
effect of cancellation error on the result.

Order of execution
The final surprising aspect of floating point numbers is that the exact order
in which operations are performed can have a material effect on the result.

For example, suppose that we wish to calculate the cube of the square root
of a number, or equivalently the square root of the cube. Starting out with
a value x accurate to within rounding, we have

Next, we take the square root, introducing another rounding error

Finally we multiply it by itself twice to recover the cube, introducing two
more rounding errors

Now let’s try it in the reverse order. This time we perform the two
multiplications first yielding

Secondly we take the square root, introducing one additional rounding
error

Surprisingly, this second version of the calculation has accumulated just
a little more than half the error that the first had.
Whilst this is a relatively simple example, the fundamental lesson is sound;
in order to control errors when using floating point numbers we must plan
our calculations with care.

You're going to have to think!
I recently read a comment on a prominent IT internet forum proposing that
scientists should not be trusted to implement their own computer models
since, presumably unlike the comment’s author, they are not trained in
computer science and are consequently likely to make mistakes. The given
example of such a mistake was the calculation of the average of 20 or so
values in the low 20s1  which was ironic, since a computer scientist should
be able to demonstrate that the result of performing this calculation with
double precision floating point is correct to about 15 decimal digits of
precision!
Such unfair criticism of floating point is not particularly unusual, is often
unduly concerned with rounding error and hardly ever mentions the vastly
more important topic of cancellation error. One can only assume that many
computer science graduates have forgotten their numerical computing
lectures and have generalised the very specific and predictable failure
modes of floating point arithmetic to the rule of thumb that any use of
floating point renders a program broken by design.
These criticisms are generally accompanied by suggestions of alternative
arithmetic types that fix the perceived problems with floating point. We
shall investigate these in coming articles in this series and we shall learn
that if we wish to use computers for arithmetic calculation we shall have
to accept the fact that we are going to have to think. 

References and further reading
[IEEE]  IEEE standard for binary floating point arithmetic. ANSI/IEEE 

std 754-1985, 1985.

Derivation 3

From the Taylor series expansion of f we have

From this we can obtain the result of the approximate derivative

Assuming that we can exactly represent both x and x+δ and that f is
accurate to machine precision, the floating point result of this formula
will be

which is equal to

Hence, if δ is too large the O(δ) term will introduce significant errors
into the approximation, whereas if it is too small the O(ε/δ) will do so
instead.
With some vigorous hand waving, we can ignore the constant factors
in these terms, and conclude that since a choice of δ = ε½ results in them
both having the same order of magnitude it is, in some sense, optimal.

f x δ+( ) f x( ) δf′ x( ) O δ2( )+ +=

f x δ+( ) f x( )–
δ

---------------------------------- δf′ x( ) O δ2( )+
δ

------------------------------------=

f′ x( ) O δ( )+=

f x δ+( ) 1 1
2
---ε±⎝ ⎠

⎛ ⎞× f x( )– 1 1
2
---ε±⎝ ⎠

⎛ ⎞×⎝ ⎠
⎛ ⎞ 1 1

2
---ε±⎝ ⎠

⎛ ⎞×

δ
------------------------------------------------------------------------------------------------------------------------- 1 1

2
---ε±⎝ ⎠

⎛ ⎞×

f x δ+( ) 1 1
2
---ε±⎝ ⎠

⎛ ⎞× f x( )– 1 1
2
---ε±⎝ ⎠

⎛ ⎞×

δ
----------------------------------------------------------------------------------------- 1 1

2
---ε±⎝ ⎠

⎛ ⎞ 2
×

f x( ) δf′ x( ) O δ2( )+ +( ) 1 1
2
---ε±⎝ ⎠

⎛ ⎞ f x( ) 1 1
2
---ε±⎝ ⎠

⎛ ⎞×–×

δ
------------------------------------------------------------------------------------------------------------------------------- 1 1

2
---ε±⎝ ⎠

⎛ ⎞ 2
×=

εf x( ) δf′ x( ) 1
2
---εδf′ x( ) O δ2( )+±+±

δ
-------------------------------------------------------------------------------------- 1 1

2
---ε±⎝ ⎠

⎛ ⎞ 2
×=

δf′ x( ) O ε( ) O δε( ) O δ2( )+ + +
δ

---------------------------------------------------------------------------- 1 1
2
---ε±⎝ ⎠

⎛ ⎞ 2
×=

f′ x( ) O δ( ) O ε
δ
--⎝ ⎠
⎛ ⎞ O ε( )+ + +⎝ ⎠

⎛ ⎞ 1 1
2
---ε±⎝ ⎠

⎛ ⎞ 2
×=

f′ x( ) O δ( ) O ε
δ
--⎝ ⎠
⎛ ⎞+ +=

1.Which, given recent events, should be a fairly big hint as to
which scientists were being so criticised.

x 1 1
2
---ε±⎝ ⎠

⎛ ⎞

x 1 1
2
---ε±⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞

1
2
---

1 1
2
---ε±⎝ ⎠

⎛ ⎞ x
1
3
---

1 1
2
---ε±⎝ ⎠

⎛ ⎞
3
2
---

=

x
1
2
---

1 1
2
---ε±⎝ ⎠

⎛ ⎞
3
2
---

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

3

1 1
2
---ε±⎝ ⎠

⎛ ⎞ 2
x

3
2
---

1 1
2
---ε±⎝ ⎠

⎛ ⎞
13
2
------

x
3
2
---

1 31
4
---ε±⎝ ⎠

⎛ ⎞≈=

x3 1 1
2
---ε±⎝ ⎠

⎛ ⎞ 3
1 1

2
---ε±⎝ ⎠

⎛ ⎞ 2
x3 1 1

2
---ε±⎝ ⎠

⎛ ⎞ 5
=

x3 1 1
2
---ε±⎝ ⎠

⎛ ⎞ 5

⎝ ⎠
⎛ ⎞

1
2
---

1 1
2
---ε±⎝ ⎠

⎛ ⎞ x
3
2
---

1 1
2
---ε±⎝ ⎠

⎛ ⎞
7
2
---

x
3
2
---

1 13
4
---ε±⎝ ⎠

⎛ ⎞≈=
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FEATURE HELEN SHARP
What motivates software 
developers: a workshop report
Keeping your team happy should be more than guesswork. 
Helen Sharp went and asked you.
his article reports the results of a workshop held at ACCU 2009
looking at the question: What motivates software developers? It was
the third in a series of workshops [Sharp09, Sharp07] that build on

previous research in the field of motivation in software engineering
[Hall08] that will form the basis of a larger, more in-depth study into
current-day software practice. Software practitioner motivation has been
recognised as a key factor in system quality, yet much of what we know
about practitioner motivation is based on research conducted in the 1980s
and software development has changed considerably since then. Activity
in the area is growing again, but the most significant recent studies are
focused on the open source community. The workshop was a combination
of group discussion and individual reflection; the data collected, and the
results obtained should be considered in light of this design. 

Motivation in software engineering
Software Development has been an expanding market for over 40 years.
It is estimated that the global software market grew by 6.5% in 2008 and
is now valued at $303.8 billion [Datamonitor06]. It is also predicted that
by 2013 the global software market will be valued at $457 billion
[Datamonitor06]. Motivation has been identified as a key factor affecting
many important aspects of software development. Such factors include
productivity, adherence to budgets, increases in staff retention and reduced
absenteeism [Hall08]. The impacts motivation may have on a $300+
billion dollar industry makes the management and identification of key
motivational factors crucial for the future improvement of software
development and personnel satisfaction.
Several theories of motivation have been proposed and accepted in various
contexts, but much work into motivation in software engineering has been
based upon just one of these: the Job Characteristics Model [Hackman76].
Cougar and Zawacki tailored this for the software environment
[Couger80] and although a significant number of reported studies are
based on this modified model, they tend to simply apply the model rather
than assess its applicability. In addition, a predominant perspective in
motivation research is that of the organisation, focusing on issues such as
turnover [Agarwal2000], performance [Darcy05] and absenteeism
[Mak01]. Some more recent work focuses on open source software
developers (e.g. [Hall08a]), where emphasis on organisational concerns
such as turnover and productivity is less important, but this addresses only
one area of software development. Only a small number of previous studies
identify what is specifically motivating about Software Engineering, and
we have found no research focused on understanding the motivation to stay
in Software Engineering as a profession [Beecham08]. Previous studies

have found that people working in the software industry are motivated by
the nature of the job, e.g. change [Burn95, Smits92], technical challenge
[Ramachandram06, Tanner03] and problem-solving
Table 1 summarises the motivational aspects of software engineering
found in previous studies [Capretz03]. 
In this paper we present the results of an investigation with experienced
software professionals which explored why software practitioners stay in
the profession. The next section describes the workshop format, the data
collected and the analysis performed, the third section presents the
findings, and the fourth section discusses results, limitations and future
work.

Data collection and analysis
The data was collected during a workshop at the 2009 ACCU conference.
Each workshop attendee was asked to align with one of three role groups
(developer, consultant and manager) to align with for the workshop; this
design arises from previous research [Beecham08] which indicates that
motivation factors vary between different roles. Each individual was given
a data collection form containing three sections: the first elicited the
individual's background and experience, the second asked questions about
why the individual stays in software development and the last asked for
three main factors that keep the individual in the software profession.
Attendees were asked to complete the first section while waiting for the
workshop to begin. The other questions were completed at stages through
the workshop as described below. The questions on the form covered:
Section 1

1. What role in software development have you aligned with for today?
2. Are you a practitioner or a researcher or an educator?
3. What is your nationality?
4. How many years experience in software engineering do you have?

(if you’ve had different roles, please list all of them and number of
years for each).

T

Table 1

Motivational factors inherent in 
software engineering 

# of studies reporting 
this factor

Change 4

Technical challenge 4

Problem Solving 3

Benefit 3

Team Working 2

Science 2

Experiment 2

Development practices 2

Software process/ lifecycle 1

Helen Sharp is Professor of Software Engineering in the 
Department of Computing at the Open University. She has been 
reseearching the human and social aspects of software practice for 
many years, and specifically looking at motivation for just over 5 
years. She is very active in both the software engineering and 
interaction design communities and has had a long association 
with the practitioner-related conferences. She can be contacted at 
h.c.sharp@open.ac.uk
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The workshop was structured around role
group discussion, plenary discussion and

individual reflection
5. Please describe briefly the software development projects you’ve
been involved with over the last two years. 

Section 2
6. What aspects of your job do you get most satisfaction from?
7. What are the features of a project that make you stay in your job?
8. What factors keep you in software engineering?
9. What makes developing software worthwhile to you?

Section 3
10. Please write down YOUR three most important motivational factors

that keep you involved in developing software
The workshop was structured around role group discussion, plenary
discussion and individual reflection, as follows. After a brief introduction
to the area, role groups were asked to discuss the second section of
questions and to record the group's comments and opinions on flip charts.
Following this, individuals were asked to write down their own answers
on the form. The role groups then exchanged and discussed their responses.
Again within role groups, attendees were asked to consider their most
important motivational factors – any number of these could be proposed
and each one was written on an index card. Then individuals were asked
to write down their own three most important factors on the form. Finally,
we presented the findings of our systematic literature review [Beecham08]
which synthesises previous research work up to 2007.
Responses to questions 6–10 were transcribed into Excel and they were
grouped using a simple categorization scheme that emerged from the data
itself. The full list of categories is given below:

Findings
There were 23 usable questionnaire responses ranging over the three roles:
developers, technical managers, and consultants. Participants had between
3 and 35 years’ experience developing software, with the mean being 15.3
years. The industries within which attendees have worked were quite
varied, from embedded systems, petrochemical, insurance, telecoms,
government and start-up (to name but a few). Thirteen of the participants
declared themselves as British, and the others were a mixture of US,
Hungarian, Indian, Norwegian and Dutch. 
The following bar charts show the number of unique respondents whose
answers fell into each category, i.e. if an attendee had several answers
which fell into the same category then they were counted only once, and
the number of answers across the sample which fell into each category,
i.e. if an attendee had several answers which fell into the same category
then they were all counted.

Developers
Fifteen attendees classified themselves as ‘developers’. Figure 1 (
summarises the responses from these individuals. Example answers from
the top category of People include: ‘working with bright people’; ‘a good
team’; ‘like-minded colleagues’; and ‘talking to others’. Example answers
categorized as problem-solving include: ‘solving problems other people
can't solve’; and ‘solving problems – elegant solutions’.

Technical managers
Figure 2 shows the results for technical managers to continue being a
software engineering professional. Example answers from the top category
of Financial include: ‘the money surely helps’; ‘it pays well’; and ‘money’.
Example answers categorized as Challenging include: ‘intellectual
challenge’; ‘the challenges, risky things’; and ‘the challenges of customer
buy-in’.

Big picture Personal Problem-solving Making something

Technical Variety Appreciation Financial

Not software Habit Programming Autonomy

Interesting Personal Satisfaction Enjoyment

Developing Management Fear Challenging

Learning Creative People

Figure 1

Figure 2
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It has long been established that software 
engineering focuses on solving problems
Consultants
Figure 3 shows that there was only consensus between all three consultants
on one factor, which was People. These responses are included as a bar
chart purely for comparison. The tiny number of respondents would
normally mean that such a bar chart would not be produced.

Combined
If we combine all of the categories, then across the sample of 23
practitioners, the results are shown in Figure 4.

Discussion
The data reported here indicates that software engineer practitioners share
similar beliefs about what motivates them to continue developing in this
sector. The ever-changing nature of software engineering suggests that the

results of any study on this sector is likely to vary over time, and will differ
from previous and future studies.
It has long been established that software engineering focuses on solving
problems [Tanner03] so the discovery of Problem Solving being a
commonly listed factor is expected. According to Hall et al. [Hall08],
Challenge and Problem solving have been recognized as motivators for
software developers for some time. Hall et al also identified Team work
and Benefit (developers create something to benefit others or enhance
well-being) as two commonly listed categories. Finding that People is the
most commonly listed motivational factor is surprising, as it is not listed
in the reviewed literature [Beecham08] although it was identified in the
earlier workshops in this series [Sharp07, Sharp09].
Franca & da Silva [Franca09] also found that the factor with the most
motivational force  was Work with people, followed in 3rd place by
Problems resolution. This shows a changing trend when compared to
previous work; the inclusion of People as an important and powerful
motivational factor is new.
The main implication of this finding for software practitioners is that
motivational programmes need to pay more attention to the social
environment within which software is developed. The main implication for
researchers is to highlight that the social demands of software development
are changing.  
However this article reports the findings of a small self-selecting group of
practitioners (attendees chose to come to this workshop rather than any
other session), and is limited in applicability. Future work would aim to
involve a larger and more representative sample.

Future work
We aim to conduct further in-depth studies in this area in order to explore
what motivates software practitioners in the current software market. We
would be very pleased to hear from any practitioner who would be willing
to help us pursue this research topic further. Please feel free to contact me
at the email address above. 
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FEATURE SERGEY IGNATCHENKO
To DLL or Not To DLL
Shared libraries provide both benefits and problems. 
Sergey Ignatchenko introduces a rabbit’s-eye view.
i all! Let me introduce myself. My name is ‘No Bugs’ Bunny. I’ve
appeared in two previous issues of Overload as a main character in
articles about multithreading [Ignatchenko10], and now I’ve decided

to start a writing career of my own. All opinions in my articles are my own,
and don’t necessarily coincide with opinion of the translator, let alone the
editors of the journal. Most of the time, I will be thinking aloud on more
or less controversial issues, so please always take my words with a good
pinch of salt. I do not aim to tell absolute truths, but rather to raise questions
and invite readers to think about their own answers.
Today I will think aloud about a rather contentious DLL issue. Please keep
in mind that for the purposes of this article (unless it is specified explicitly)
I will use term ‘DLL’ both for Windows DLLs and for .so libraries in
Linux/*nix.

DLL hell
Whenever I need to link a DLL to my application, the very first thing that
comes to my mind is ‘DLL Hell’. Dependency problems and crashes
caused by DLLs are extremely common, and the more installations an
application has, the more likely the problems are to appear on some
machine.
I will not elaborate on ‘DLL Hell’ theory, but will provide a few examples
from my personal experience. My very first encounter with DLLs was
many years ago, when I was a cute little bunny and the very term ‘DLL
Hell’ hadn’t even been coined. I had a third-party application which
worked perfectly for me for months, and then I installed another
application  on my system (I think it was electronic dictionary application).
Bang! The first application started to crash every time I tried to perform
some simple operation. Being a curious little bunny with lots of time to
spare, I started to research the problem, and eventually found out that the
electronic dictionary I’d just installed had replaced the file MFC42.DLL
with a ‘customized’ version; obviously it wasn’t 100% compatible and it
was the reason for my first application crashes. It was my very first
practical lesson about DLLs. 
During my career I’ve seen many applications which had millions of
installations, and can tell you that when dealing with DLLs, the famous
Murphy’s law (‘Anything that can go wrong, will go wrong’) is not an
exaggeration but an understatement. Not only have I seen when one very
specific build of IE5.5 crashed an application which used it merely to show
a fancy HTML-based splash-screen (how was QA supposed to test it? By
trying all builds of IE in existence? And the ones that don’t exist yet?),
and situations where a faulty video card driver (obviously, a DLL too)
caused the infamous ‘Blue Screen of Death’ only when also running a very

specific application on a very specific laptop model (the bug has since been
fixed by the laptop manufacturer), and bugs in no less a widely used file
than MSVCRT.DLL. But IMHO the most convincing case was when an
application with a few million installations started to use the function
SetDIBits() to load Windows bitmaps (replacing the hand-written
BMP file parsing + CreateBitmap() calls to simplify code); the result
was that about 2% of installations just stopped working (and 2% meant
20000 frustrated users per million of installations, and resulted in many
hundreds of complaints to the support department). Investigation revealed
that while this function is a system one, some video drivers tried to
optimize it and this ‘optimized’ version simply crashed for a certain BMP
format (which was a perfectly valid, though not the most common, bitmap
variation). This was the last straw for me, and I came to the conclusion:
‘if you want your application to run reliably, avoid DLLs for as long as
they’re possible to avoid’.

It might not be your fault, but it is your problem
To make things even worse, if your application crashes the end-user
doesn’t care if it happened because some ill-behaved 3rd-party application
replaced MFC42.DLL, or if it happened because of a faulty version of
Internet Explorer which is installed on their system: for the end-user it is
your application which crashes, your application s/he will blame, your
support department s/he will call/write to, and it is you who will eventually
need to deal with it. When the problem with the ill-behaved application
installing faulty MFC42.DLL occurs, 99.99% of the users will not go into
lengthy investigations of the reasons, they will just blame the application
that crashes. An application is perceived as a single product, and DLL
dependencies are implementation details which the end-user doesn’t care
about at all. And if the application crashes because I am using a DLL
without a good reason, it is indeed my fault; my job is to deliver a product
which should work in the best possible way for the end-user, and if that
doesn’t happen then I didn’t do my job properly.

Pro-DLL
Now I hope that I’ve described the most compelling disadvantages of
DLLs (there are more – I haven’t mentioned technical issues like more
complicated memory management or messy name mangling), I will try to
describe reasons why one may want to use DLLs despite these
disadvantages. Reasons for implemeting DLLs are traditionally numerous,
but IMHO many of them are not valid on closer inspection. 
Reasons which are usually used to justify using DLLs are the following:

Using system services that are in a DLL. 
A perfectly valid reason, but it begs the question ‘what should we
consider to be a system service’? For example, there is no way that
file access can be done without using kernel32.dll on Windows,
glibc.so on Linux (or similar DLLs/.so’s), but in cases when
more exotic services are used (such as a ‘HTML control’ or the
GetDIBits() function described above), it becomes less obvious.
Usually I’m sticking to the concept ‘if you can do it yourself in
reasonable amount of time – do it’.

H

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko 
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and 
recently has started an uphill battle against common wisdoms in 
programming and project management. He can be contacted at 
si@bluewhalesoftware.com
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Our primary job as developers is to make
things work, and arguments about being
‘cool’ don’t have any standing in my book
Providing an interface for 3rd-party plug-ins
or writing a plug-in.
Another perfectly valid reason. While you
might experience issues with badly behaved
plug-ins which can crash your application
(and user won’t be able to tell difference if it
was your application crashing or the plug-in), DLLs are
still a primary method of providing plug-ins without
the need to recompile the main application. If
stability is of real concern, solutions which run
plug-ins within separate processes are
preferable, but they’re much more
complicated and are not always worth the
trouble.
The Library I need exists only as a DLL.
It indeed happens, but personally in such cases I
prefer to ask myself: ‘do we really need this library
or maybe we can live without it?’ Sometimes it
helps.
It saves memory.
While it was a valid reason back in 1980s, these days PCs have at
least 256M of RAM, and the size of static library code is about
1000x less than that. It means that any noticeable effect of static
linking instead of DLLs to overall system performance is extremely
unlikely, and as a user I would definitely prefer having a statically
linked application which doesn’t crash instead of an application
which uses 200K less RAM but has a 2% chance of crashing. On
non-PC platforms analysis can be very different, but for modern PCs
I feel memory savings are negligible. In addition, as described in
[Anderson00], on Windows effects related to DLL relocation might
reduce memory savings.
Security reasons.
With the whole software development industry plagued by security
problems, having security-related areas separated and
independently updated initially sounds like a good idea. Still, on
closer consideration this aspect is not that obvious, and needs careful
analysis depending on the specific application. First of all, it
depends on your application life cycle: if it is routinely updated
several times a month, the benefit of DLLs being updated
independently is not that great; and in extreme cases of large
security holes you can easily recompile and update your entire
application. Moreover in some specific cases, when you need to
resort to ‘security by obscurity’ (for example, if you’re writing
MMORPG and want to prevent ’bots from playing and giving an
unfair advantage), using well known DLLs like OpenSSL.DLL
provide an additional relatively easy vector of attack on your
communication protocols. On the other hand, if your application is
not going to be updated frequently and has nothing to do with

‘security by obscurity’, using security DLLs can be indeed a rather
good idea. 
Smaller updates
One common pro-DLL argument is that if you need to apply a minor
fix, in the case of DLLs you only need to update a small number of
small files rather than the whole large executable. On the other hand,
if updating a large executable starts causing problems, it is always
possible to use some kind of ‘differential update’ algorithm, which
is able to calculate the differences between  two  versions of an
executable file and then apply such a patch to previous version of the
file; if checksums like SHA-1 are checked before and after applying
such patch, this method is indeed more reliable than relying on DLL
versions (while you can easily produce two different DLLs with the
same version number, you will have really difficult time producing
two different executables with the same SHA-1). In addition, the
effects of larger updates become less relevant with steadily
increasing broadband speeds and reduced traffic pricing.
Static linking is so 1990-ish. 
This argument comes in many forms, including ‘static linking is so
uncool’, ‘everybody does it with DLLs these days’ etc. etc. As I’m
commonly characterized not as a ‘cool’ Bunny, but as a ‘damn hot’
Bunny, I really hate ‘cool’ arguments about technical
implementation details, especially when they’re causing problems
for end-users. Our primary job as developers is to make things work,
and arguments about being ‘cool’ don’t have any standing in my
book.
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what I’m really surprised about is that both 
Windows and Linux/*nix are borrowing the 
very worst features from each other!
Mitigation
With the ‘DLL Hell’ problem being so ubiquitous, numerous ways have
been proposed to deal with it:

Static linking. 
My favourite. If there are no DLLs, they’re not able to cause any
problems. If concerned about updates, one will need to use
‘differential updates’ described above, but it is still, IMHO, a very
minor effort compared to all the headaches originating from DLL
use for large user base.
Windows file protection. 
This one happens automagically and essentially simply prevents ill-
behaved applications from overwriting system DLLs, aiming to
address problems like the one I’ve described above with
MFC42.DLL being overwritten (as well as security attacks). It does
indeed provide some mitigation in certain cases, but is not enough
to address all the problems arising from DLL Hell.
‘private’ DLLs. 
If on Windows you put all the DLLs into the same folder where your
.EXE resides, your DLLs will become ‘private’ to your application,
and the chances of somebody else messing with them will be
minimal. While it indeed helps to deal with some aspects of ‘DLL
Hell’, IMHO this approach doesn’t make much sense and should be
replaced with static linking, unless (a) a library only exists as a DLL,
or (b) this DLL is used very rarely and you load it via
LoadLibrary() or dlopen(). One argument for ‘private DLLs’
[Anderson00] is that they facilitate software updates, but with the
existence of ‘differential update’ algorithms, it doesn’t seem to be a
strong argument.
Allowing different DLL versions to run together. 
In Windows this is known as ‘side-by-side assemblies’. [Microsoft]
It essentially relies on the ability to specify the version of a DLL
needed, which makes your application run reliably provided that
user can obtain the required version of the DLL. On the other hand,
if you specify the DLL version explicitly, you’re putting yourself in
a position which is even worse than with ‘private DLLs’, taking only
the disadvantages with no apparent advantages: if you require a
specific DLL version it is unlikely to be shared, and you’re not able
to benefit from security updates etc.; if you specify a major version
but will accept minor versions to catch security updates, you no
longer have the assurance that your application will run, and are still
contributing to the horrible mess with multiple versions. For further
analysis of ‘side-by-side assemblies’, please refer to an excellent
recent article in Dr.Dobb’s journal [Worthmuller10].

.so/RPM hell
While most of this article was written about DLLs, it would be a big
mistake not to mention that *nix, and especially the Linux world, aren’t

free of similar problems. In particular, on Linux systems, specifying the
exact version of an .so library is traditionally much more common than
on Windows, making the hunt for the right version a particularly annoying
exercise. Even if it is handled automagically by a package manager it still
causes a horrible mess in installation directories and for deployment/
maintenance purposes. In particular, incompatibilities between versions
required by different subcomponents of the same executable abound (as
just one such example, you can see the discussion about including
OpenSSL v1.0 on the Apache mailing list [Apache]).
I don’t want to say that Linux or Windows is better in regard of DLLs/.so’s,
I think that both are a horrible mess, and what I’m really surprised about
is that both Windows and Linux/*nix are borrowing the very worst features
from each other! *nix was the first to do it, borrowing the whole concept
of DLLs as opposed to static linking from Windows – to the best of my
knowledge, full support for .so’s appeared in *nix as late as SVR4 in 1990
while Windows has had DLLs since Windows 1.0 in 1985. On the other
hand, recent Windows ‘side-by-side assemblies’ seem to borrow from
Linux a concept of explicit library version requirement for DLLs/.so’s,
which has been characterized in [Worthmuller10] as ‘We were needing a
solution, but we created a monster’.

Bottom line
I know for sure that hardcore fans of neither Windows nor Linux will be
fascinated by this article, but that wasn’t among my goals (as stated above,
my goal was to invite people to think, and whoever can think critically is
not a ‘hardcore fan’ in my book). What I’ve tried to say is that DLLs (or
.so’s) are full of inherent dangers, and the decision to use them is not to
be taken lightly.
Personally I try to avoid them as long as possible, but the question ‘how
long is “as long as possible”?’ still needs to be solved on case-by-case
basis. 
Good luck to everybody who needs to tackle DLLs, you’ll definitely need
it. 
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FEATUREBJÖRN FAHLLER
Making String ReTRIEval Fast
Sometimes you really do have to optimize your code. 
Björn Fahller looks at a string lookup data structure.
h, summer vacation. Time to toy with ideas that have grown over the
year. This summer’s project was performance tuning a Trie [TRIE].
Tries are fascinating, while special. They can be used as sets, or by

storing values in data nodes, as maps. In a Trie, data is stored in a tree-like
structure, where each node holds a part of the key.
Tries are primarily useful if the key is a string, although variants have been
successfully used for other purposes, such as storing routing information.
While a string is a special case for a key type, it’s a frequently used special
case, so its utility value should not be underestimated.
The original Trie data structure uses one node for each key character,
whereas this variant stores common sub-strings and thus reminds a lot of
a HAT-trie [HAT].

So what is a Trie?
Figure 1 shows a Trie with the strings “category” and “catastrophe”. Here
rectangular nodes denote stored keys and oval nodes are internal ‘stepping
stones’ on the way to key nodes. This means that all leaf nodes are keys,
and non-leaf nodes may be keys or internal. Adding more strings can
change the structure in three ways.   
Adding the string “cat” is trivial – it merely changes the mode of a node
from internal to key, as figure 2 shows. 
When the word “cathedral” is added, another child is added to “cat”, with
‘h’ as a new distinguishing character, which figure 3 shows.
Inserting the word “catatonic” requires more work. The “catastrophe”
node must be split into two nodes, one with an empty internal prefix on
‘a’ as distinguishing character and, as its child, a node with the suffix
“trophe” after ‘s’ as distinguishing character. Then a new node can be
created, using ‘t’ as the distinguishing character, and “onic” as suffix.
Figure 4 shows the result.
This brief introduction already hints at a number of characteristics of the
data structure.

It can be lean on memory if the keys often share common prefixes
(e.g. URLs and fully qualified file names)
It probably does not work very well for short keys with great
variability (e.g. random 32-bit integers)

A
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in the real world, the performance of 
lookups is limited by the height of the 
structure
It has the potential for being fast for long keys, since it only needs to
read the key once per lookup operation (compared to at least twice
for a hash-table).
The performance of all operations are limited by search
performance.
Longest matching prefix searches are very efficient.

The general idea is that string retrieval time is linear with the key length.
This, however, is only true if all accesses have equal cost, but comparing
strings requires less computation than jumping between nodes, and the
latter is also more likely to suffer from cache misses. So, in the real world,
the performance of lookups is limited by the height of the structure, which
is typically a logarithm of the number of strings stored.

Tuning in general
Measuring performance on a modern computer can be frustrating. Several
levels of caches and a multi-core CPU governed by a preemptive operating
system that flushes said caches provide very chaotic timing. It has even
been suggested that it is truly random [random]. Even runs with many
million searches taking more than 10 minutes will differ by several percent
with identical data on a seemingly otherwise idle system.
On Linux for x86/32 and x86/64 there’s an invaluable aid in 'valgrind'
[valgrind] and its tools 'cachegrind' and 'callgrind'. Most Linux developers
know 'valgrind' as a tool for hunting down memory related bugs. The tools
'cachegrind' and 'callgrind' both run your code in a virtual machine which
can model your cache. With 'cachegrind' you can see the exact number of
instructions used, the number of read and write accesses and number of
misses for all cache levels. It often helps to see if your change was an
improvement or not, even for reasonably short runs. There are situations
when it's difficult to judge, though. Such an example is when the number
of instructions increased slightly, but the number of level-1 cache misses
decreased slightly. The tool 'callgrind' can be used to visualize details of
execution. For example it can show, per code line, or even per CPU
instruction, an estimate of cycles consumed, the number of read/write
accesses and number of read/write cache misses per level. Unfortunately
it is not cycle-accurate, so timing information must be taken with a grain
of salt. The result from 'callgrind' is difficult to make sense of when
aggressive optimizations are used by the compiler, since it can be difficult
to map an instruction to a statement in your code. Fortunately, using less
aggressive optimizations rarely change the data access pattern so
'callgrind' can help a lot in pinpointing not only where you have a
performance bottleneck, but also why.

Test data and methodology
In order to measure the performance of the implementation representative
data must be used. I have used three sources of strings. A number of e-
books were downloaded from Project-Gutenberg [gutenberg]. UTF-8 was
preferred when available. The majority of books downloaded are written
in English, but there’s also a fair mix of French, German, Dutch, Italian,
Finnish, Swedish and one example of Greek. From those e-books,

2,408,716 unique sentences and 2,063,856 unique words were extracted
(very naïvely, just using operator>> for std::string). Also a
snapshot of the file system of a server machine gave 1,907,803 unique fully
qualified filenames. 
Only search time is measured, since insertion and deletion will be
dominated by search when the structure becomes large.
When producing graphs, several runs are made. 5 sets of 1,000,000 unique
words, sentences, and file names (obviously with an overlap between the
sets) are used. Each set is used for searches when populating from 2 to
1,000,000 unique keys. Every sequence is run 3 times to reduce the
randomness introduced by the OS flushing caches when scheduling other
processes. The amount of data allocated for the structure is also measured.
For the latter it is interesting to know that the average length of words is
9.5 characters, sentences 135 characters, and filenames 105 characters.
The chosen collection for performance measurements is a set. Extending
to map, multiset and multimap is trivial. In order to save print real-estate,
code samples only include the functions that are necessary to understand
lookup and optimizations.
The host used for all performance measurements is an Intel
Q6600@2.4GHz Quad Core CPU running 64-bit Linux. All test programs
are compiled as 32-bit programs.
The hope is to beat std::unordered_set<std::string>, which is
a hash-table, on both lookup performance and memory usage.

First attempt
The ideas behind this less than obvious implementation (see Listing 1) are:

To save memory, and thus increase locality, nodes are made small.
Leaves must be special, hence the inheritance.
Nodes with children allocate each child node on the heap, and store
the pointer in the vector children, sorted on the distinguishing
character to allow a binary search. The theory is that the number of
children will typically be very small.
A node that has a key stores a leaf_node in children[0], hence
n->children[f–v+1] in get(). When implementing a map,
the leaf_node instance will hold the data.
To avoid having to lookup the children when searching, the
distinguishing character is stored in a separate char_array, and is
excluded from the child’s prefix, as was shown in the introductory
example. This avoids holes in the vector, saving memory, but makes
lookup logic more complex.
char_array stores short strings locally, and uses a pointer causing
indirection only when they are long. This has proven to be a useful
optimization in other experiments, so it is used right away.
num_chars refers to the number of chars in select_set
prefix_len refers to the length of prefix

Figure 5 mercilessly shows that the result was less than impressive. It’s
faster than a hash-table for long strings, providing there aren’t too many
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using less aggressive optimizations rarely
change the data access pattern
Listing 1

struct child_node;
struct node
{
  virtual child_node* get_child() { return 0; }
  virtual ~node() { } 
};
struct child_node : node {
  virtual child_node *get_child()
     { return this; }
  union char_array
  {
    char chars[sizeof(char*)];
    char *charv;
  };
  char_array         select_set;
  unsigned           short num_chars;
  unsigned           short prefix_len;
  char_array         prefix;
  std::vector<node*> children;
  const char *get_prefix() const {
    return prefix_len > sizeof(char_array)
           ? prefix.charv
           : prefix.chars;
  }
  const char *get_select_set() const {
    return num_chars > sizeof(char_array)
           ? select_set.charv
           : select_set.chars;
  }
};

Figure 5

Listing 1 (cont’d)

struct leaf_node : public node
{
};
const node* get(const child_node *n,
   const char *p, size_t len)
{
  for (;;)
    {
      if (len < n->prefix_len)
         return 0;
      const char *t = n->get_prefix();
      if (std::strncmp(p, t, n->prefix_len)) 
         return 0;
      p+= n->prefix_len;
      len -= n->prefix_len;
      if (!len)
         return n->children.size() 
            ? n->children[0] : 0;
      const char *v = n->get_select_set();
      const char *f = std::lower_bound(
         v, v + n->num_chars, *p);
      if (f == v + n->num_chars || *f != *p) 
         return 0;
      ++p;
      --len;
      node *next = n->children[f – v + 1];
      n = next->get_child();
    }
}
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One dynamic dispatch per lookup, instead of 
one per traversed node, should make a 
difference
of them. Short string performance is terrible. Not only was insertion very
difficult to get right when having to keep the select_set and
children vectors in sync, 'callgrind' also pinpointed the binary search
as a major lookup performance killer. It wasn’t even lean on memory, only
barely beating the hash table for large amounts of filenames.

Second attempt
Binary searching was a time waster that must be gotten rid of. This time
the vector will have indices 0–255, casting the characters to unsigned
char to use directly as index. This wastes vector space, since there will
be plenty of holes with 0-pointers, but it should be fast. The inheritance
structure is also changed such that the dynamic dispatch will only be
required when checking if the terminal node reached is indeed a data node
holding a stored key, or if it’s an internal node. One dynamic dispatch per
lookup, instead of one per traversed node, should make a difference. (See
Listing 2.)
Insertion logic was much simplified by this change, since there was no
longer any need to shuffle nodes around. Lookup logic is also simple. The
distinguishing character is not stored, since it is used as the index into
children when looking up the next node, hence saving a byte of prefix
for each node. Also, getting rid of  select_set makes the struct 4 bytes
shorter on a 32-bit system, probably increasing locality a bit.
There is a considerable lookup performance increase, as figure 6 shows.
The improvement is especially noticeable for short strings. For long strings

Listing 2

struct data_node;
struct node
{
  virtual const data_node *get_data_node() const
    { return 0; }
  union char_array
  {
    char chars[sizeof(char*)];
    char *charv;
  };
  unsigned short     prefix_len;
  char_array         prefix;
  std::vector<node*> children;
  const char *get_prefix() const;
};

struct data_node : public node
{
  virtual const data_node *get_data_node() const
    { return this; }
};

const data_node *get(const node *n,
   const char *p, size_t len)
{
  for (;;)
    {
      if (!n) return 0;
      if (len < n->prefix_len) return 0;
      const char *t = n->get_prefix();
      if (std::strncmp(p, t, n->prefix_len))
         return 0;
      p += n->prefix_len;
      len -= n->prefix_len;
      if (len == 0) return n->get_data_node();
      unsigned char idx = *p;
      if (idx => n->children.size()) return 0;
      ++p;
      --len;
      n = n->children[idx];
    }
}

Figure 6
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the reduced memory waste should increase the
likelihood of cache hits and thus boost performance
the improvements are not as huge. Huge, however, is exactly what the
memory requirements are. Time to rethink again.

Third attempt
Something must absolutely be done about the memory consumption. One
obvious way is to use an offset for the vector, so that lookup(i) is
vector[i - offset], provided that i is within the legal range. This
should reduce the memory consumption a lot without requiring expensive
computations. (See Listing 3.)
While the lookup requires extra computation, if ever so little, the reduced
memory waste should increase the likelihood of cache hits and thus boost
performance.
The results are mixed, as figure 7 shows. With respect to performance,
there is actually a slight regression, but memory consumption is way down.
According to 'callgrind', the obvious time waster for lookups is
nodev::operator[]() const, which spends 42% of its time for the
vector indexing, and the rest checking the conditions. Time for thoughts...

Listing 3

struct node;
struct nodev
{
  std::vector<node*> vec;
  unsigned char      offset;
  const node* operator[](unsigned char i) const;
};

struct data_node;
struct node
{
  virtual const data_node *get_data_node() const
    { return 0; }
  union char_array
  {
    char chars[sizeof(char*)];
    char *charv;
  };
  unsigned short prefix_len;
  char_array     prefix;
  nodev          children;
  const char *get_prefix() const;
};

const node * nodev::operator[](
   unsigned char i) const
{
  if (vec.size() == 0) return 0;
  if (i < offset) return 0;
  if (size_t(i - offset) >= vec.size()) return 0;
  return vec[i – offset];
}

const data_node *get(const node *n,
   const char *p, size_t len)
{
  for (;;)
    {
      if (!n) return 0;
      if (len < n->prefix_len) return 0;
      const char *t = n->get_prefix();
      if (std::strncmp(p, t, n->prefix_len)) 
         return 0;
      p+= n->prefix_len;
      len-= n->prefix_len;
      if (len == 0) return n->get_data_node();
      unsigned char *idx = *p++;
      --len;
      n = n->children[idx]; 
    }
}

Figure 7
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The memory consumption is substantially 
lower, and lookup times have been reduced 
by around 15% across the board
Fourth attempt
Using a std::vector<> for the child nodes wastes space. Both the
length and offset for the child vector can be stored as unsigned char,
which reduces the node size a bit. This leaves an empty hole in the memory
layout for the node, which is a waste. Better use it for the inlined prefix
by packing the union. The special case that a node has only one child can
be taken care of by a direct pointer to it, saving an indirection and thus
increasing the chance of a cache hit. The range check for indexing children
can be made more efficient by using wrap-around on unsigned integer
arithmetics. (See Listing 4.)
Finally some real progress. Figure 8 shows the difference compared to the
third attempt. The memory consumption is substantially lower, and lookup
times have been reduced by around 15% across the board. The 'valgrind'
tools aren’t of much help in pinpointing current time consumers, but there
is no doubt that there are a lot of cache misses. Hmmm...

Listing 4

struct data_node;
struct node
{
  virtual const data_node *get_data_node() const
     { return 0; }
  const node* at(unsigned char i) const;

  union __attribute__((packed)) char_array
  {
    char chars[sizeof(char*)+2];
    char *charv;
  };
  char_array prefix;
  unsigned   char offset;
  unsigned   char size;
  unsigned   prefix_len;
  union {
    node*    nodep;
    node**   nodepv;
  };
  const char *get_prefix() const;
};

const node *node::at(unsigned char i) const
{
  unsigned char idx = i – offset;
  if (idx < size)  return size == 1 
     ? nodep : nodepv[idx];
  return 0;
}

data_node *get(const node *n, const char *p,
   size_t len)
{
  size_t pl;
  while (n != 0 && (pl = n->prefix_len) <= len)
    {
      const char *t = n->get_prefix();
      const char *end = t + pl;
      for (const char *it = t; it != end;
         ++it, ++p)
        {
          if (*p != *it) return 0;
        }
      len-= pl;
      if (len == 0) return n->get_data_node();
      --len;
      n = n->at(*p++);
    }
  return 0;
}

Figure 8
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Fifth attempt
Perhaps memory consumption can be reduced by using a simple hash table
for the children, instead of direct indexing. It should be possible to reduce
the number of unused entries a lot. Since using a hash table may cause
several distinguishing characters to reach the same entry, the
distinguishing character needs to be stored in the prefix. Fortunately there
is no longer any need for the offset member, so the inlined prefix
member can grow by one char without growing the node size. To make
lookup simple, the hash implementation chosen is just a remainder-
operation on the size, and only collision free sizes are allowed. This
trivially reaches a maximum size of 256 entries, where it becomes direct
indexing. By getting rid of inheritance, and just steal a bit from the
prefix_len member to tell if the node holds data or not, the struct can
be further reduced in size, which should increase locality. Limiting the
prefix length to 231 characters is unlikely to be a real problem (Listing 5).
Performance regression, bummer. Figure 9 shows that lookup times are
slightly longer again.
Look at the memory consumption, though, especially for file names. The
average file name is 109 bytes long, yet the average amount of memory

consumed per stored file name is only 94.8 bytes for 1,000,000 file names.
The size of the entire searchable data structure is, in other words, smaller
than the size of its contained data. That’s quite impressive.
It appears like the reduction in memory consumption went according to
plan, without buying anything back in terms of fewer cache misses. This
calls for a more detailed study of where the cache misses are.
Surprisingly, Table 1 (a comparison of cache misses in attempts 4 and 5
with 10,000,000 lookups in 100,000 words) shows that the cache miss
pattern has changed, but the sum is almost identical. It appears that
whenever there is a cache miss in n->at(), i.e. in obtaining
nodepv[idx], there is also a cache miss in dereferencing the returned
pointer. The reduction in cache misses for n->at() in attempt 5 is likely
to be due to increased locality, but accessing *nodepv[idx] is seemingly
no more likely to be a cache hit than in attempt 4. The considerable rise in
cache misses for prefix comparison is a mystery, though.
Most probably the difference in performance is mainly because calculating
the remainder of an integer division is a slightly expensive operation. This

Listing 5

struct node
{
  const node *get_data_node() const {
     return data ? this : 0; }
  node* at(unsigned char i) const;
  union __attribute__((packed)) char_array
  {
    unsigned char chars[sizeof(char*)+3];
    unsigned char *charv;
  };
  char_array    prefix;
  unsigned char size;
  unsigned      prefix_len:31;
  unsigned      data:1;
  union {
    node*       nodep;
    node**      nodepv;
  };
  const unsigned char *get_prefix() const;
};
const node *node::at(unsigned char i) const
{
  if (size <= 1) return nodep;
  unsigned char idx = i % (size + 1U);
  return nodepv[idx];
}
const node *get(const node *n, const char *p,
   size_t len)
{
  unsigned pl;
  while (n != 0 && (pl = n->prefix_len) <= len)
    {
      const unsigned char *t = n->get_prefix();
      const unsigned char *end = t + pl;
      for (const unsigned char *it = t;
         it != end; ++it,++p)
        {
          if ((unsigned char)*p != *it) return 0;
        }
      len-= pl;
      if (len == 0) return n->get_data_node();
      n = n->at(*p);
    }
  return 0;
}

Figure 9

Table 1

Attempt 4 Attempt 5

Expression L1 misses L2 misses L1 misses L2 misses

while: n->prefix_len 43,951,604 162 44,112,899 77

*p != *it 1,854,838 11 6,935,480 13

n->get_data_node() 161,291 3 0 0

n->at() 43,870,965 144 39,919,345 49

S 89,838,698 320 90,967,724 139
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is not shown in 'callgrind', though, but remember that its idea of time per
instruction is not cycle-accurate.

Sixth attempt
When nodepv[idx] is a cache miss, a lot of data is read that isn’t needed,
since a pointer is much shorter than a cache line. The cache lines on the
Q6600 CPU are 64 bytes wide. Whenever nodepv[idx] is a cache miss,
64 bytes are read from the level-2 cache (or worse, from physical memory.)
Of those 64 bytes, only 4 are used in 32-bit mode, since a pointer is 4-bytes
long. With luck, another lookup will soon refer to a pointer within those
64-bytes, but chances are the line will be evicted for another read before
that happens.
Using an array of nodes, instead of an array of pointers to nodes, may waste
a lot of memory, but it should save on cache misses. Also, when there is
a cache miss, a large part of what is read into the cache line is more likely
to be the data in the node struct, which will be used very soon indeed.
It is not obvious that an array of nodes wastes space, though. A counter
example is a completely filled array, where the indirection leads to the
whole array itself being wasted space, in addition to requiring an
unnecessary indirection.
With the above in mind, it is worth staying with the same hash function
and see if the expected reduction in cache misses are there and what
performance boost it gives. The mystery with increased cache misses for
prefix comparison is ignored for the moment. (See Listing 6.)
The lookup hash function remains the same as before. The trick with the
char_array union is just to better use the memory when compiling in
64-bit mode. Having further reduced prefix_len to 23 bits is getting to
the territory where it, at least in theory, may become a problem. However,
the problem is not difficult to overcome – just split the prefix into separate
nodes every 8,388,607 characters. I doubt the split will be noticeable in
performance.
Figure 10 says it all. Good. Very good. The curve is flatter. The
performance increase is impressive, especially for large collections, and
surprisingly the memory consumption is actually down a little bit.

It now comes out favorably both on lookup performance and memory
consumpt i on  fo r  m os t  s i t ua t i ons  whe n  compared  w i th
std::unordered_set<std::string> , as figure 11 shows.
Table 2 (a comparison of cache misses in attempts 5 and 6 with 10,000,000
lookups in 100,000 words) shows a comparison of the cache-miss pattern
between attempts 5 and 6. As can be seen, the theory of wasted reads seems
to have been correct, since the total number of cache misses are down by
40%, since the misses in the at() function nearly vanished.
Now 'callgrind' pinpoints the calculation of i % (size + 1U) in at()
as the single most expensive operation in the lookup path. Just out of
curiosity, a bit-mask operation must be tried instead. The only code change
visible in the lookup path is changing the at() function to calculate idx
= i & size, where size is always 2x-1. Obviously memory
consumption will increase severely, but a bit mask operation is much faster
than a remainder operation, so lookup times may be considerably reduced.
Woohoo! Illustration 12 gives the proof. Now this is fast, but undoubtedly
the memory requirement is rather on the obese side.

Listing 6

struct node
{
  const node *get_data_node() const {
     return data ? this : 0; }
  const node* at(unsigned char i) const;
  const unsigned char *get_prefix() const;
  union __attribute__((packed)) char_array
  {
    unsigned char chars[2*sizeof(char*)-
       sizeof(uint32_t)];
    unsigned char *charv;
  };
  char_array  prefix;
  uint32_t    prefix_len:23;
  uint32_t    data:1;
  uint32_t    size:8;
  node       *nodep;
};
const node *node::at(unsigned char i) const
{
  unsigned char idx = i % (size + 1U);
  return nodep + idx;
}
const node *get(const node *n, const char *p,
   size_t len)
{
  // same as in fifth attempt
}

Table 2

Attempt 5 Attempt 6

Expression L1 misses L2 misses L1 misses L2 misses

while: n->prefix_len 44,112,899 77 42,991,925 58

n->get_prefix() 0 0 322,580 1

*p != *it 6,935,480 13 7,274,191 11

n->at() 39,919,345 49 4,701,610 1

S 90,967,724 139 55,290,306 71

Figure 10
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Inconclusion
I would have liked to end this with a final conclusion about how to squeeze
the last cycle out of the Trie, but alas summer vacation ended, and with it
the available tinkering time.
Some observations, though, with thoughts for further studies:

Can a different struct layout improve cache hits further?
The remainder hash function causes an allocation of roughly 3 times
as many nodes as needed. The mask hash function results in nearly
6 times as many nodes as needed. Is it possible to find a hash
function that has the speed of the mask operation while providing
better memory efficiency than the remainder operation?
Can a hash-table implementation that allows collisions improve
lookup performance? The collisions will cost, but if they are rare
enough the improved locality of reference may generate a total
performance gain.
Can a global hash table for all nodes, instead of a local hash table for
the children of each node, be more memory efficient without
sacrificing lookup performance?
The stored prefix strings are always perfectly aligned for the CPU.
Can it be beneficial to compare the prefix and the searched for
strings using the largest integer data type possible for the alignment,
instead of always using char by char? Good built-in memcmp()
implementations do this, but they cannot assume anything about the
alignment for any of the strings, whereas an implementation that
knows one of the strings is always perfectly aligned could be made
a slight bit faster. For very short prefixes it would probably be a
waste, but for long prefixes (e.g. filenames and URLs) it might

speed up the processing. (Actually calling memcmp in attempt 6 with
bit mask, causes a 16% slowdown for filenames, and 22%
slowdown for words.)
Can a custom allocator reduce heap fragmentation/overhead and
thus improve the chances of cache hits and/or lessen the memory
footprint?
An attempt was made to store all long prefixes in a reference
counted structure, to both save memory and increase the chance of
cache-hits. It was a resounding failure except for very large
collections of file names, where memory usage improved a bit while
performance remained unchanged.
Compiling the same program in 64-bit mode increases its memory
consumption, since the larger pointers makes the node struct larger.
The lookup performance is generally slightly worse than in 32-bit
mode, probably because cache lines are evicted earlier.

One conclusion can be made, however – a Trie has indeed proven to be a
very attractive data structure for string keys. It has been shown to beat hash
tables in both lookup performance and memory consumption for a number
of very real use cases. 
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FEATURE MATTHEW WILSON
Quality Matters #6: Exceptions for 
Practically-Unrecoverable 
Conditions
Being robust is harder than you think. Matthew Wilson 
analyses a classic program.
his is the second in a series of instalments on exceptions. In the last
instalment [QM-5] I considered a taxonomic perspective of program
states and actions, and suggested a new vocabulary for the four

defined states: normative, recoverable, practically-unrecoverable, and
faulted. In this instalment I’m going to focus on the simplest proper use
of exceptions, for reporting practically-unrecoverable conditions.
It is currently envisaged that there will be two more instalments in this
mini-series. The next will deal with the much more challenging situation
of using exceptions for recoverable conditions, including the non-trivial
issue of deciding whether a given exception should be treated as
recoverable or practically-unrecoverable.
The fourth and (hopefully) final part will suggest good practices in
exception definition and use, look at how exceptions and threads work
together, and consider the effects of the use (or non-use) of exceptions on
the software quality characteristics of software libraries and programs.
The major part of this instalment comprises a surprisingly involved look
at the classic "Hello, World" program, illustrating how its implicit
exception-handling is a bad example for any non-trivial programs. I’ll then
proffer a practical example from my own work as a production-quality
main() that adequately catches and processes exceptions representing
practically-unrecoverable conditions. Finally, I’ll look at how
implementing C-APIs in C++ brings a blessed discipline to the catching
of exceptions, albeit at a significant cost in effort and/or diagnostic
flexibility.

Hello, World
In The C Programming Language [K&R], the eponymous hello-world is
given as:
  // hello-world.0.c
  #include <stdio.h>
  int main()
  {
    printf("hello, world\n");
  }

It’s expressive, transparent, portable, efficient, and it’s almost correct. As
a basis for all C programs of any sophistication it is reasonable, too.
Execution passes to the program via entry to main() and, unless exit()
(or equivalent) is called by the functions that are called from within
main(), execution completes as main() returns.
However, as for completeness, specifically for correctness/robustness/
reliability, there’s a problem: what happens if printf() fails? (This

could be the case if the program’s output was redirected to a file that could
not receive the 13 or 14 bytes of the message.)
Let’s consider the issue by expanding the example. First, let’s deal with
the implicit return. In case you’re not familiar with this form (which I
happen to hate with a passion), although main() must have a return type
of int, it is allowed to have no explicit return statement. The C standard
states, in clause 5.1.2.2.3, that ‘reaching the } that terminates the main
function returns a value of 0’. So, the above code is equivalent to:
  // hello-world.1.c
  #include <stdio.h>
  int main()
  {
    printf("hello, world\n");
    return 0;
  }

For the more pedantic, such as your humble author, this should be written
with more explicit meaning, as:
  // hello-world.2.c
  #include <stdio.h>
  #include <stdlib.h>
  int main()
  {
    printf("hello, world\n");
    return EXIT_SUCCESS;
  }

The C standard defines (in clause 7.20.4.3;5) the macro EXIT_SUCCESS
(in stdlib.h) to be equivalent to the value 0, and that both represent
‘successful termination’ of the process. (In every case where I’ve checked,
EXIT_SUCCESS is defined as being 0, so you can safely ignore the
possibly of two distinct successful termination values.) It also defines the
macro EXIT_FAILURE (also in stdlib.h), whose value is also
implementation-defined, to represent ‘unsuccessful termination’. In every
case where I’ve checked EXIT_FAILURE is defined as being 1, but that
still does not make it appropriate to return 1 in your code. The standard
requires an implementation to return an unsuccessful status to the
program’s calling environment only if EXIT_FAILURE is returned (or
passed to exit(), which is equivalent).
Now we’re getting somewhere. When main() returns the value
EXIT_SUCCESS (or 0), that’s an explicit statement to the calling
environment – to the ‘world’ we’re hailing, in fact – that everything
succeeded. Unfortunately, the unconditional stipulation of success is
unjustified, since there’s no guarantee of success here.
We can assume correctness/robustness of the runtime and the
implementation of standard library functions. (In fact, we must do so,
otherwise we have an infinitely insoluble problem of recursive self-
guessing; this is another aspect of irrecoverability [QM-2, QM-5] that will
be dealt with when we get to contract programming. Probably around
QM#9 at the going rate …) Contrarily, we must not assume normative
behaviour [QM-5] where that is not guaranteed, which includes cases, like

T
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our only contingent action has been to
indicate to the caller, via the return code,

that the program has failed
this one, involving interaction with external entities such as the file-
system.
So, strictly, the definitive hello-world program is wrong. Ouch! Now, it’s
entirely appropriate for its authors to claim that the requirements of hello-
world allow for tacit failure when redirected, or when the kernel’s running
out of puff, or whatever. However, it is not appropriate to say that failing
to account for non-normative action is justified for the purposes of
pedagogy, or that failure is so unlikely in 99.9999% of use-cases that we
don’t need to bother. Unless that 1-in-a-million user who encounters a
blank result can see in the program specification that such an eventuality
is possible in certain circumstances (even when that circumstance is not
precisely specified), then the program is wrong, and its authors have failed
in their task.
Note that it is possible to have correct implementations of main(), and
therefore to stipulate unconditional successful output, as long as we restrict
ourselves to only using code that can be asserted as correct, such as:
  // hello-world.3.c
  #include <string.h>
  int main()
  {
    return (int)strlen("");
  }

or:
  // hello-world.4.c
  int lnot(int v)
  {
    return !v;
  }
  int main()
  {
    return lnot(1);
  }

But interacting with the file-system involves the possibility of non-
normative behaviour, requiring contingent action. Here's an attempt at a
simplest robust version involving printf():
  // hello-world.5.c
  #include <stdio.h>
  #include <stdlib.h>
  int main()
  {
    int n = printf("hello, world\n");
    return (13 == n) ? EXIT_SUCCESS : EXIT_FAILURE;
  }

Ugly, isn’t it? A slightly nicer one is possible, using the standard global
pseudo-variable errno:
  // hello-world.6.c
  #include <errno.h>
  #include <stdio.h>
  #include <stdlib.h>
  int main()

  {
    errno = 0;
    printf("hello, world\n");
    return (0 == errno) 
       ? EXIT_SUCCESS : EXIT_FAILURE;
  }

The simplest one I can come up with is:
  // hello-world.7.c
  #include <stdio.h>
  #include <stdlib.h>
  int main()
  {
    return (EOF != puts("hello, world"))
           ? EXIT_SUCCESS : EXIT_FAILURE;
  }

Unfortunately, this is still not enough. As I’m sure you’re aware, gentle
readers, the standard output stream is buffered. Since the C standard
(7.20.4.3;4) requires that ‘all open streams with unwritten buffered data are
flushed’, it is entirely possible, indeed likely in all these example cases,
that the salutation will not be written prior to leaving main(). As a
consequence, checking the functioning of (f)printf()/(f)puts()
does not suffice. The smallest clear and robust implementation of hello-
world in C looks like the following:
  // hello-world.8.c
  #include <stdlib.h>
  int main()
  {
    if( EOF == puts("hello, world") ||
        0 != fflush(stdout))
    {
      return EXIT_FAILURE;
    }
    else
    {
      return EXIT_SUCCESS;
    }
  }

Perhaps it’s no wonder that programming books don’t trouble readers with
correct/robust example programs!

Reporting
So far our only contingent action has been to indicate to the caller, via the
return code, that the program has failed. We can (and should) also report
what has failed, to the degree we are able, via a very simple form of
contingent reporting, using the standard error stream, via perror() (see
sidebar ‘Printing Errors in C’):
  // hello-world.9.c
  #include <errno.h>
  #include <stdio.h>
  #include <stdlib.h>
  int main()
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all interesting events should be subject to 
diagnostic logging
  {
    if( EOF == puts("hello, world") ||
        0 != fflush(stdout))
    {
      perror("failed to say hello");
      return EXIT_FAILURE;
    }
    else
    {
      return EXIT_SUCCESS;
    }
  }

Reporting can come in two flavours: contingent reports, and diagnostic log
statements.

Definition: A contingent report is a block of information output
from a program to inform its controlling entity (human user, or
spawning process) that it was unable to perform its normative
behaviour. Contingent reports are a part of the program logic
proper, and are not optional.

Typical contingent reports include writing to the standard error stream, or
opening a modal window containing a warning. They are almost always

used for issuing important information about recoverable or practically-
unrecoverable conditions.

Definition: A diagnostic logging statement is a block of
information output from a program to an optional observing entity
(human user/adminstrator, or monitor process) that records what
it is doing. Diagnostic logging statements are optional, subject to
the principle of removability [QM-1], which states: ‘It must be
possible to disable any log statement within correct software without
changing the (well-functioning) behaviour’

Similarly, diagnostic logging statements are often predominantly used for
recording contingent events, but this not need be so. In principle, all
interesting events should be subject to diagnostic logging, to facilitate
detailed historical tracing of the program flow. A good diagnostic logging
library should allow for statements of different severities to be selectively
enabled with minimal intrusion on performance when disabled.
Even though it’s occasionally useful to piggy-back one form of reporting
on the mechanism of the other, it’s crucial not to confuse or transgress the
requirements that the former is part of the program logic and may not be
removed and the latter is optional and may be disabled at compile/link/run-
time at will.

Hello, world++
What has all this got to do with exceptions, you may wonder? Well, the
C++ hello-world (this one extracted from The C++ Programming
Language [TC++PL]) is functionally similar:
  // hello-world.0.cpp
  #include <iostream>
  int main()
  {
    std::cout << "Hello, new world!\n";
  }

Unsurprisingly, it has the same defect as the C version: it does not account
for failure. Since the IOStreams, like C’s Streams library, uses buffered
output, the first thing we need to do is to ensure that the standard output
stream is flushed, in order that the program is in a position to detect whether
the write was successful. That can be done by using the flush inserter,
as in:
  // hello-world.1.cpp
  #include <iostream>
  int main()
  {
    std::cout << "Hello, new world!\n" 
       << std::flush;
  }

A more common way of doing this is to express the newline sequence and
the flush operation in one, via the std::endl inserter:
  // hello-world.2.cpp
  #include <iostream>

The C standard library provides two functions for mapping ‘error’ codes,
maintained in the global pseudo-variable errno, into human-readable
values. The first, strerror(), returns a non-NULL C-style string
mapping any integer value, including all of those defined (both in the
standard, and all implementation-defined ones) in errno.h, into a
human-readable message. For example:

strerror(ERANGE); → "Result too large"
strerror(EDOM);   → "Numerical argument out of
                      domain"
strerror(EMFILE); → "Too many open files"
strerror(0);      → "No error detected"
strerror(123456); → "Unknown Error (123456)"

It’s common to pass the current value of errno, to get a string explaining
what most recently behaved in a non-normative manner within (the
currently executing thread of) your program. There are issues with re-
entrancy in the use of strerror(); see [STRERROR] for more
information.

The second standard library function, perror(), is used to print a
message that also includes the message associated with the current
value of errno, separated by ": ", as in:

errno = ERANGE;
perror("oops");  → "oops: Result too large

Printing Errors in C
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The programmer doesn’t have to lift a
finger (to provide any contingent

action) and it all just magically works
  int main()
  {
    std::cout << "Hello, new world! " << std::endl;
  }

Now we have the stream flushed. Unfortunately, that’s the least of our
problems. 
The IOStreams is such a horrible undiscoverable library that just getting
to make my simple point involves a heap of messing around; see the sidebar
‘IOStreams Hello-Worlds’ for the hurdle jumping diatribe. Instead, I will
use FastFormat [FF-1, FF-2, FF-3], which illustrates the point succinctly.
  // hello-world.5.cpp
  #include <fastformat/ff.hpp>
  #include <fastformat/sinks/ostream.hpp>
  #include <iostream>
  int main()

  {
    ff::flush(ff::writeln(std::cout,
       "Hello, new world!"));
    return EXIT_SUCCESS;
  }

This program is robust. The normative behaviour is to output the greeting.
The non-normative behaviour, should the output fail to be written, causes
an exception to be thrown (by FastFormat’s std::ostream sink), and
the program terminates with a non-zero exit code.

Bad reporting
The C++ hello-world world sounds great, doesn’t it? (At least it does once
we get it to the point where exceptions are thrown on failure.) Robustness
is achieved by the runtime library performing contingent action in response
to the uncaught exception emanating from the ff::writeln()
statement. The programmer doesn’t have to lift a finger (to provide any
contingent action) and it all just magically works.
This may get us over the line as far as robustness is concerned, but in terms
of usability it stinks! The main problem is that the carefully prepared
diagnostic information put into the thrown exception is not used. When an
uncaught exception makes its way to escape main(), the language
runtime invokes std::terminate() [TC++PL].
  // in namespace std
  void terminate(void);

Note that it takes no parameters – the gratuitous void is for emphasis. The
standard requires it to call abort(), which causes the process to exit with
a non-0 exi t  code.  You can set  your own,  i f  you wish,  via
std::set_terminate(). But your own version must also return void
and have no arguments.
You might (reasonably) wonder why std::terminate() doesn’t take
an argument of type std::exception const&. Well, that’s doubtless
because in C++ it is permissible to throw instances of types not derived
from std::exception; it’s even possible to throw fundamental type
instances: void*, int, char const*, double, etc. This allows for
backwards compatibility with pre-standard exception mechanisms and
hierarchies, but it’s a pity nonetheless; see the sidebar ‘Why Catch-All
Clauses are Bad News’ for my favourite (of many) reasons why this is a
bad idea. Thankfully, newer languages have learned from C++’s
experience, and mandate that thrown objects derive from a single, specific,
class type.
Thus, we’re not going to get the detailed diagnostics we want. Instead you
might see a message such as the following, from hello-world.5.cpp
compiled with GCC 3.4:

This application has requested the Runtime to 
terminate it in an unusual way.
Please contact the application's support team for 
more information.

It’s no secret that I’m not a fan of IOStreams, and I’ve written about its
many undesirable features before [FF-1]. The one that pertains to our
current concern is arguably one of the worst: by default, non-normative
behaviour is not reported via exceptions. Instead, you have to use the call-
then-test anti-idiom: we must explicitly call the basic_ios::fail()
method, as in:

  // hello-world.3.cpp
  #include <iostream>
  int main()
  {
    std::cout << "Hello, new world!" << std::endl;
    return std::cout.fail()
           ? EXIT_FAILURE : EXIT_SUCCESS;
 }
Of course, it’s easy to understand how this was the pragmatic choice
when moving from a world predominantly without exceptions to a
standard-prescribed one with them. But the result is the mess we see
before us. (And disrupting programmers during compilation is a lot
cheaper than after product deployment …)

Alternatively, you can instruct the stream to throw exceptions in the case
where it encounters a non-normative condition:

  // hello-world.4.cpp
  #include <iostream>
  int main()
  {
    std::cout.exceptions(
    std::ios_base::badbit |
    std::ios_base::eofbit |
    std::ios_base::failbit);
    std::cout << "Hello, new world!" << std::endl;
  }
While this looks a lot worse, it’s actually a lot better, as it applies for the
lifetime of the stream, so, as long as you remember to set it early in its
lifetime, at least you won’t experience any silent failures.

IOStreams Hello-Worlds
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it’s possible to catch access violations, divide-
by-zero, and a whole host of critical, and 
desirably fatal, conditions, and quench them
Whoa, now Neddy! Have a sugar-lump and calm down. That’s a pretty
intimidating message. Programmers and non-programmers alike would be
concerned to see their program having done that.
And it gets worse still. Some compilers take the minimal approach to
fulfilling the standard’s requirement for std::terminate(), and call
abort() without issuing any output: CodeWarrior (version 8, on
Windows) is one. So the program simply stops, and unless the user is
testing the process exit status he/she gets no indication whatsoever that
anything has failed.
If you think about it, the minimal approach, while leaving the user non the
wiser, is arguably the more correct. Since the exception is, literally,
unexpected, the runtime cannot assume the program is in any kind of fit
state, not even to issue diagnostic logging output or a contingent report.

Either way, the fact that abort() is called, and explanation is scant/
missing, means that failing to catch exceptions in main() is not intended.
Any quality program will, therefore, contain at least one outer try-catch
clause. So why don’t we see it in C++ textbooks!?

Other languages
The foregoing exposition has fixed firmly on C and C++, for two reasons:
they’re the languages I know most about; they’re the closest to the metal
in all this stuff, so represent a very good place to start.
But having raised the spectre of wrongness in pretty much every C/C++
programmer’s first introduction to the language, it behoves me not a little
to see what’s going on in other languages. Simply put, I want to see what
happens when all the C#/Java/Python/Ruby hello-worlds are unable to
write to stdout. Each will be judged by whether it:

1. Appears to have any awareness that output has failed.
2. Throws an exception to stop the process.
3. Returns a non-zero exit code to the calling environment.

C#
The program used is as follows:
  class Program
  {
    static void Main(string[] args)
    {
      System.Console.Out.WriteLine(
         "Hello, brave new world!");
      System.Console.Out.Flush();
    }
  }

How does it behave? The good news is that the .NET runtime does register
that the write has failed, and throws an exception. Unfortunately, this is
hardly handled in what you’d call a graceful way. On a machine where one
or more debuggers are resident (including all those I have to hand while
writing this article), it causes a ‘Select Debugger’ (Figure 1) dialog to
appear.
If you select No, then you get the text shown in Figure 2 on the command-
line:
If you’re a programmer this is ok. Well, no. Let me rephrase: if you’re the
programmer of this program, this is useful. If you’re a user, it’s
unnecessarily horrible and scary.
Worse, much worse, is the fact that after all that, the process informs its
calling environment that everything has gone swimmingly. Yes, hard as it
is to believe, an uncaught exception in a .NET program – specifically, in
a .NET 3.5 program, target runtime v2.0.50727 – results in a program exit
code of 0, i.e. success! What a load of crap!

Java
You might think, ah well, .NET is really just Windows for people with
large PCs and plenty of time to wait for programs to start up, do their thing,

In C++, it’s possible to catch all possible exceptions via the catch-all
clause, as in:

  try
  {
    . . .
  }
  catch(...)
  {
    fputs("unknown exception\n", stderr);
    throw;
  }
In principle, this is a great thing. In many cases it’s desirable to temporarily
intercept a thrown exception in order to issue diagnostic logging/
contingent reporting, before rethrowing the exception to be caught by
something that knows what to do with it.

Unfortunately, some compilers allow you to do more. On Windows,
several compilers piggy-back the C++ exception mechanism on top of the
Structured Exception Handling [Richter] mechanism, and, for reasons
that must have seemed sensible to someone, somewhere, at some time,
allow the user to catch operating system exceptions by C++ catch-all
clauses. Microsoft’s Visual C++ does this, along with a number of others.

This is a terrible idea, for two reasons. First, and most important, this
means it’s possible to catch access violations, divide-by-zero, and a
whole host of critical, and desirably fatal, conditions, and quench them.
Obviously, it’s then impossible to trust the program. So, use of a catch-
all (that doesn’t rethrow, or terminate the process) means that robustness
cannot be adjudged.

Second, but also pretty important, this behaviour is not standard, and
therefore code that uses the catch-all clause is not portable, either
between compilers on a given operating system, or between operating
systems. 

My advice regarding catch-all clauses is: use them as little as possible,
preferably never. If you do use one, it should (almost) always rethrow/
terminate, after performing the smallest amount of work possible (i.e. a
small impact diagnostic logging/contingent reporting statement). We’ll
see later in this instalment about the ramifications of this.

Why Catch-All Clauses are Bad News
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The Java program failed in the simplest way,
but either doesn’t know, or doesn’t tell
and then shut down again. Never intended for operating systems with
sophisticated command-line processing anyway, so it’s no loss. Now,
Java, that’ll show ’em how it’s done.
Yeah? Well, prepare for some crow pie. Consider the following program.
  class HelloWorld
  {
    public static void main(String[] args)
    {
      System.out.println("Hello, JWorld!");
      System.out.flush();
    }
  }

With Java 1.6.0_05, this fails on all counts. It does not throw an exception
when the flush() fails to write all 15 or 16 bytes to the standard output
stream. Nor does it cause the java.exe process to return an non-zero exit
code. It’s impossible to know whether the Java runtime even detects the
write/flush failure, or just that it doesn’t think it worth mentioning. The
Java program failed in the simplest way, but either doesn’t know, or
doesn’t tell. Either way, it’s a pathetic effort!
Mark both VM languages down as not intended for command-line
programming (which, to be fair, we pretty much knew anyway, given the
long load times for even the simplest programs).

Python
Thankfully, once we come
back  t o  t he  r ea lm  o f
languages that are intended
for command-line programs,
t h i ng s  g e t  b e t t e r .  The
following Python program
  import sys
  print "hello,
     untyped world!"
  sys.stdout.flush()

gives the output in Figure 3
and the exit code 2.

Ruby
Similarly, the following Ruby program
  puts "hello, bejewelled
     world!"
  $stdout.flush

gives the output in Figure 4 and the exit code 1.
Although neither of the script programs by
default give the totally nice and neat output I
was seeking – something like ‘<script-name>:
No space left on device’ – they both get pretty
close. All  the compiled languages fail
miserably.

Figure 1

Figure 2

Unhandled Exception: System.IO.IOException: There is not enough space on the disk.
   at System.IO.__Error.WinIOError(Int32 errorCode, String maybeFullPath)
   at System.IO.__ConsoleStream.Write(Byte[] buffer, Int32 offset, Int32 count)
   at System.IO.StreamWriter.Flush(Boolean flushStream, Boolean flushEncoder)
   at System.IO.StreamWriter.Write(Char[] buffer, Int32 index, Int32 count)
   at System.IO.TextWriter.WriteLine(String value)
   at System.IO.TextWriter.SyncTextWriter.WriteLine(String value)
   at hello_world.Program.Main(String[] args) in 
H:\Publishing\Articles\accu\columns\QualityMatters\6-exceptions\code\hello-
world\c#\hello-world\Program.cs:line 10

Figure 3

Traceback (most recent call last):
  File "H:\Publishing\Articles\accu\columns\QualityMatters\6-
exceptions\code\hello-world\python\hello-world.py", line 4, in <module>
   sys.stdout.flush()
IOError: [Errno 28] No space left on device

Figure 4

H:/Publishing/Articles/accu/columns/QualityMatters/6-exceptions/code/
hello-world/ruby/hello-world.rb:2:in `flush': No space left on device 
(Errno::ENOSPC)
      from H:/Publishing/Articles/accu/columns/QualityMatters/6-
exceptions/code/hello-world/ruby/hello-world.rb:2
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Diagnostic logging and contingent 
reporting is done in least complex 
manner possible
A production-quality main()
Clearly, the idea of not explicitly handling unrecoverable conditions at
main()-level in any major language is not going to cut the mustard. Even
though it’s virtually never covered in text books – which describe only
chocolate worlds with marshmallow skies and champagne rain – we must
now put aside childish things, and look at doing things properly.
Ok, ok, I’m laying on the opprobrium a bit thick. I understand the need to
have succinct examples in textbooks, and I know how hard had it is to pack
information into a small space and have it still readable, but this whole
situation is just not good enough.
In an attempt to redress the balance, and to put my money where my mouth
is, I’m volunteering the main() I’m using with all the command-line tools
I’m creating/enhancing in my main stream of work this year. It’s not
perfect – it highlights several issues I’ll cover later in this instalment, and
it also touches on software quality issues yet to be explored in Quality
Matters – but it does address the major concern of diagnosis. Take a deep
breath, then look at Listing 1.

Listing 1

char const TOOL_NAME[];
clasp::alias_t const aliases[] =
{
 . . .
};
int tool_main(clasp::arguments_t const* args);
int main(int argc, char** argv)
{
 struct clasp_log
 {
  static void CLASP_CALLCONV fn(
    void*       /* context */
  , int         severity
  , char const* fmt
  , va_list     args
  )
  {
   pan::pantheios_logvprintf(severity,
      fmt, args);
  }
 };
 try
 {
  clasp::diagnostic_context_t ctxt(NULL,
     &clasp_log::fn, NULL);
  clasp::arguments_t const* args;
  int flags = 0;
  int argsres = clasp::parseArguments(flags,
     argc, argv, aliases, &ctxt, &args);

Listing 1 (cont’d)

  if(0 != argsres)
  {
   pan::log_ALERT("failed to process the command-
line arguments: ", stlsoft::error_desc(argsres));
  }
  else
  {
   stlsoft::scoped_handle<clasp::arguments_t
      const*> scoper(args,
      &clasp::releaseArguments);
   pan::log_DEBUG("entering main(
      ", pan::args(argc, argv), ")");
   return tool_main(args);
  }
 }
 // 1. Always catch bad_alloc first
 catch(std::bad_alloc&)
 {
  pan::logputs(pan::alert, "out of memory");
  ::fputs("out of memory\n", stderr);
 }
 // 2. CLASP
 catch(clasp::unused_argument_exception& x)
 {
  pan::log_INFORMATIONAL("unrecognised command-
line argument: ", x.optionName);
  ff::fmtln(std::cerr, "{0}: invalid argument:
     {1}; use --help for usage", TOOL_NAME,
     x.optionName);
 }
 catch(clasp::clasp_exception &x)
 {
  pan::log_INFORMATIONAL(
     "invalid command-line: ", x);
  ff::fmtln(std::cerr, "{0}: invalid command-
line: {1}; use --help for usage", TOOL_NAME, x);
 }
 // 3. recls
 catch(recls::recls_exception& x)
 {
  pan::log_CRITICAL("exception: ", x);
  ff::fmtln(std::cerr, "{0}: {1}, item={2};
     use --help for usage", TOOL_NAME, x,
     x.get_item());
 }
 // 4. Other standard exceptions
 catch(std::exception& x)
 {
  pan::log_CRITICAL("exception: ", x);
  ff::writeln(std::cerr, TOOL_NAME, ": ", x);
 }
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our only contingent action has been to
indicate to the caller, via the return code,

that the program has failed
Obviously, there’s quite a lot going on here, and some of the points
encroach on issues that will be covered in later instalments, particularly
the minutiae of diagnostic logging content, format and severity. So I’ll
focus solely on aspects that pertain to exceptions. Before I enumerate the
points, I need to cover what is pretty obvious from the code, that it uses
the as-yet-unreleased CLASP library (Command Line Argument Sorting
and Parsing), which I’ve mentioned a couple of times here (and in recent
CVu articles). Without getting too much into it, the modus operandi of
CLASP use is to parse the arguments into a (read-only) arguments
structure, which is then passed to a ‘real’ entry point, which I tend to call
tool_main(). All the code within the try-clause is pretty self-
explanatory; the only thing worth mentioning is my favourite local-struct-
static-method trick for defining (context-free) local functions, in this case
allowing Pantheios’ logging facilities to be used by CLASP.
Anyway, the important (and relevant) features are all in the catch handlers.
In brief:

Always catch most-derived first, except for special cases.
All catch-clauses fall out to the single return EXIT_FAILURE at the
end of main().
One special-case always present is to catch std::bad_alloc
before anything else. Diagnostic logging and contingent reporting is
done in least complex manner possible, since the program just
experienced out-of-memory condition: note the use of C’s Streams
to avoid the C++ free store [TC++PL].
In this case, since I’m using CLASP for the tools, catch for CLASP
exceptions to deal with badly specified command-lines, including,
specifically, unrecognised arguments. This relies on using a specific
member of the CLASP exception class, one that is not part of the
ancestor class(es), hence the need for specific catch clauses, in a
specific order.
In this case, since I’m using recls for file-search, catch for recls
exceptions to deal with unrecoverable file-system issues, including
the specification by the user of invalid directories/patterns.
Catch std::exception last. In principle – on the assumption that
every exception type thrown by the program or any of its constituent

libraries derives from it std::exception – any other exception
that is thrown anywhere in the program will be caught here, and a
minimum amount of information output.
The catch-all clause is only included if CATCH_UNHANDLED is
#defined, which it is not by default; see sidebar ‘Why Catch-All
Clauses are Bad News’. Like the catch for std::bad_alloc, very
little is attempted, since it must be assumed that the program is
faulted, and that nothing can be relied upon.
Diagnostic logging and contingent report statements are always
provided, and their format and content may differ depending on the
likely needs of their respective audiences.
Diagnostic logging always appears before contingent reporting,
since it’s possible that the contingent report statements may
themselves fail. (Of course, it’s also possible that the diagnostic
logging statements themselves fail, but with any good diagnostic
logging library that is (i) far less likely, and (ii) non-faulted failures
are not reported, and therefore do not prevent continuing program
execution.)

There’s an awful lot more here than in any hello-world you’re ever likely
to see in a C++ textbook. More than one reviewer complained that this
example was too much, perhaps even that I am grandstanding. Well, I’m
a programmer, so there’s bound to be a little of that. But I am making a
serious point here: real programs require a substantial amount of
contingent logic, invariably involving general and domain-specific cases.
Showing you the (only minimally simplified) implementation of a real
program keeps it real.
There’s actually a better way to do this, involving separation of the general
from the domain-specific handling. But it’s not as simple as might be
imagined, and requires knowledge of issues not yet covered, so I’ll leave
that for the concluding fourth instalment. For now, Listing 1, while being
elaborate, is a solid example of how to have your program handle
practically-unrecoverable exceptions.

Implementing C-APIs in C++
Readers of part 2 of Imperfect C++ [IC++] may recall my assertion that
C++ is a fine language for application code and for l ibrary
implementations, but is often a poor choice for module interfaces,
particularly so where programs may be composed of modules compiled
by different compilers. This is the C++ ABI issue.
Distilled down to this subject, it’s not valid to throw exceptions through
C-APIs. A common example of this circumstance is the implementation
of COM servers, such as Windows shell extensions. There’s no good
outcome of letting an exception leak out of any COM interface method:
about the best you can hope for is to crash Windows Explorer when it’s
not doing anything useful.
Therefore, when writing COM in C++, the considerable challenge is to
make sure that every possible exception is caught and translated into an
appropriate HRESULT (the COM result type). Also important is to capture
the non-normative action context information, whether for the purposes of

Listing 1 (cont’d)

// 5. ...
#ifdef CATCH_UNHANDLED
 catch(...)
 {
  pan::logputs(pan::emergency,
     "unexpected unknown condition");
  ::fputs("unexpected unknown condition\n",
     stderr);
 }
#endif /* CATCH_UNHANDLED */
 return EXIT_FAILURE;
}
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After earlier arguing strongly against 
quenching exceptions in catch-all 
clauses, you might wonder why I give 
users the option
diagnostic logging or contingent reporting. If you imagine a component
involving several interfaces and many methods, applying try-catch-…-
catch everywhere is a recipe for boredom, mistakes, defects, faults,
crashes, career-impacts.
Because COM has a well-defined set of result codes, it is possible to
prescribe the appropriate set of responses for a small number of high-level
exceptions, covering all common possibilities. The Pantheios library
provides a suite of function templates that combine these exception-
>catch->return-code translations along with diagnostic logging
statements, enabling the authoring of logged, exception-safe COM servers
without being swamped with boilerplate. I'll illustrate with a short
example, from recls.COM, the  COM mapping for recls; Listing 2. (This
version is part of a back-burner rewrite, and not yet available. One day …)

This is all straightforward COM/C++, with the exception of the use of
pantheios::extras::com::invoke_nothrow_method(), in
FileSearch::CombinePaths(). This function template (Listing 3)
is one of several overloads that cope with different numbers of parameters,
providing a similar set of catch-clauses as that shown earlier for the
‘production-quality’ main(). Although it looks like a complex affair, it’s
actually pretty simple. Call the given member function within a try-catch
block (if the compiler’s exception-handling support is not disabled), and
deal with any exceptions that are thrown. Three conditions are
discriminated, via the catch clauses:

Out of memory. If the exception is std::bad_alloc, or the COM
component itself returns the E_OUTOFMEMORY status code, then a
basic log statement is issued and E_OUTOFMEMORY is returned to
the caller. When compiling in the presence of MFC, it also catches
CMemoryException* and treats it in the same manner.
A general exception, caught as std::exception, and, in the
presence of MFC, CException*. The exception details (implicitly
obtained from the exception instances via string access shims [IC++,
XSTLv1, FF-2] by the Pantheios application layer) are included in
the diagnostic log statement.
Everything else, via the catch-all clause. A suitably troubling
diagnostic log statement is issued. As discussed previously, catching
‘everything’ is fraught with danger, so conditional compilation
requires intentional buy-in from the programmer to convert into a
return code, and even to rethrow; by default, the process is
terminated with a call to  ExitProcess(). Severe, but the only
sensible default.

There’s also the facility for allowing user-defined catch clauses, via the
tersely named PANTHEIOS_EXTRAS_COM_EXCEPTION_HELPERS_
CUSTOM_CLAUSE_0/1 macros.
After earlier arguing strongly against quenching exceptions in catch-all
clauses, you might wonder why I give users the option of what behaviour
to take. Well, it’s just pragmatism, I suppose: it’s not possible to know the
nature of every use case. For example, it’s possible that a COM
component’s methods cannot emit any operating-system exceptions
because they’re already using structured exception handlers [Richter], in
which case a programmer may wish to capture other (C++) exception types
via the catch-all clause.
Other than the restriction that the implementing method must have the
exact same signature as the interface method, and that overloads can be a
bit of a hassle, this is a pretty big gain for almost no pain.
Furthermore, the destination of the diagnostics here is, in common with
any Pantheios client code, independent of the server code; output decisions
can be made, for each link-unit, at compile, link, or even run-time. You
can log to a file (via the back-end be.file) and/or the Windows system
debugger (be.WindowsDebugger) and/or the Windows Event Log
(be.WindowsEventLog), and so on. What’s especially useful when
writing COM servers is to also use be.COMErrorObject, which writes
the details of the diagnostic log statement to the COM Error Object, a per-Listing 2

// recls.COM.idl
interface IFileSearch3
    : IFileSearch2
{
  . . .
  HRESULT CombinePaths(
    [in, string] BSTR path1
  , [in, string] BSTR path2
  , [out, retval] BSTR *result);
  . . .
// FileSearch.h
class FileSearch
  : IFileSearch3
{
  . . .
  STDMETHOD(CombinePaths)(BSTR path1, BSTR path2,
     BSTR *result);
  . . .
private:
  HRESULT CombinePaths_(BSTR path1, BSTR path2,
     BSTR *result);
// FileSearch.cpp
STDMETHODIMP FileSearch::CombinePaths(BSTR path1,
   BSTR path2, BSTR *result)
{
  return pantheios::extras::com::
     invoke_nothrow_method(this,
     &FileSearch::CombinePaths_, path1, path2,
     result, "CombinePaths");
}
HRESULT FileSearch::CombinePaths_(BSTR path1,
   BSTR path2, BSTR *result)
{
  . . . do "normal" C++, incl. exceptions
}
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we’ve considered the ubiquitous ‘hello-
world’ program in a variety of languages,

and seen a number of inadequacies
thread global ‘error’ context that can be queried by any part of the program.
This is a standard mechanism for COM Automation servers to pass so-
called ‘rich error information’ to clients. Clients of any COM servers
written using Pantheios can receive such detailed context information
about non-normative conditions, with virtually no additional effort from
programmer even when it’s contained within a thrown exception.

Summary
In this instalment we have begun the exploration of the use of exceptions
in software programs and plug-in components. We’ve examined in detail
the effect of uncaught exceptions reporting unrecoverable conditions, and
shown that all quality programs must use explicit try-catch code at the
application’s top-level. Specifically, we’ve considered the ubiquitous
hello-world program in a variety of languages, and seen a number of
inadequacies in regards to whether failure to write to standard output is
detected and, if so, whether it’s reported and reflected in program exit code. 
In C, it’s necessary to explicitly test and report. In other languages that use
exceptions, a reliance on the implicit handling of a thrown exception from
the chosen output library is incomplete, to different degrees. In C++,
execution is terminated and the program exit code reflects the failure, but
no (precise) report is provided. Also, if you’re using IOStreams you must
do an explicit check, or remember to enable exceptions on the stream. C#
and Java both record an epic fail. Only Python and Ruby could claim to
satisfy the basic requirements of software quality, although even then one
would prefer to explicitly handle the exception for the sake of neatness.

Listing 3

template<
  typename R
, typename C
, typename A0
, typename A1
, typename A2
>
inline R invoke_nothrow_method(
  C *pThis
, R (C::*pfn)(A0, A1, A2)
, A0 a0
, A1 a1
, A2 a2
, char const* functionName
)
{
#ifdef STLSOFT_CF_EXCEPTION_SUPPORT
  try
  {
  #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
    HRESULT hr = (pThis->*pfn)(a0, a1, a2);
    if(E_OUTOFMEMORY == hr)
    {
      goto out_of_memory;
    }
    return hr;
  #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
  }
  catch(std::bad_alloc&)
  {
    goto out_of_memory;
  }

PANTHEIOS_EXTRAS_COM_EXCEPTION_HELPERS_CUSTOM_CLA
USE_0
  catch(std::exception& x)
  {
    log(alert, functionName, ": exception: ", x);
    return E_FAIL;
  }
  # ifdef __AFX_H__
  catch(CMemoryException* px)
  {
    px->Delete();
    goto out_of_memory;
  }
  catch(CException* px)
  {
    log(alert, functionName, ": exception: ",
       *px);
    px->Delete();

Listing 3 (cont’d)

    return E_FAIL;
  }
# endif /* __AFX_H__*/
  
PANTHEIOS_EXTRAS_COM_EXCEPTION_HELPERS_CUSTOM_CLA
USE_1
  catch(...)
  {
    log(critical, functionName,
       ": unexpected exception!");
# if defined(
  PANTHEIOS_EXTRAS_COM_ABSORB_UNKNOWN_EXCEPTIONS)
    return E_UNEXPECTED;
# elif defined(
 PANTHEIOS_EXTRAS_COM_RETHROW_UNKNOWN_EXCEPTIONS)
    throw;
# else
    ::ExitProcess(EXIT_FAILURE);
# endif
  }
#endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
out_of_memory:
  log(alert, functionName, ": out of memory");
  return E_OUTOFMEMORY;
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it’s clear that a program that does not have 
an explicit top-level try-catch is inadequate
In all cases, it’s clear that a program that does not have an explicit top-
level try-catch is inadequate. A production-quality main() is non-trivial,
involving generic and domain-specific aspects. Its order of catch clauses
is important. It should provide adequate and appropriately-targeted
reporting of the non-normative conditions that have resulted in the caught-
exceptions.
We’ve looked at two different types of reporting – contingent reports and
diagnostic log statements – and seen how derived exception classes can
(and should) carry additional information to assist with detailed reporting,
both for contingent reporting and for diagnostic logging. We’ll follow up
on this point further in the coming instalments.
We’ve seen that when implementing C-APIs, exceptions must be caught
and translated into return codes, with appropriate contingent reporting and
diagnostic logging. This must be done even in the case where an exception
represents an unrecoverable condition (e.g. out-of-memory), and the
implementer of such an API must trust that its clients faithfully examine
and respond to its return codes.
We’ve considered the use of catch-all blocks in C++, intended to be able
to catch any unhandled exception of whatever type, and seen that,
‘enhanced’ to be able to catch operating-system exceptions on a compiler-
specific basis,  throwing/catching any type not derived from
std::exception is a problem.
In the next instalment we’ll consider the use of exceptions for recoverable
conditions, using some real world examples from my recent work. With
one C++ program, we’ll see the complexities involved in working with
cache memory allocation failures, and the difficulties this brings in
deciding what is recoverable and what is practically-unrecoverable. With
another, I’ll demonstrate that .NET programming for networking software
is not the least bit easy as 1-2-3, and have a big swipe at the shipwreck that
is .NET’s exception hierarchy and the unjustifiable difficulties it imposes
on programmers attempting to write robust and cleanly abstracted
software.

Parting twist
There’s one little perverse aspect to note about the abysmal performance
of all the different languages to adequately recognise and/or report a failure
of hello-world. At least with C, nothing (save from the flushing/closing of

files and release of resources back to the operating system) is implicit, so
no implicit help is expected. By contrast, the fact that much is implicit with
more expressive languages such as C++, C#, and Java has, I believe, lead
us to a false expectation, albeit not an unreasonable one in the case of hello-
world. I conjecture that experienced C programmers may be less caught
out by this than experienced programmers in other languages, precisely
because their expectations are so much lower. I’d be interested to hear
opinions on this, perhaps on the ACCU general mailing list after this is
published. 
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