

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Queue with Position Reservation
Eugene Surman shows a data structure for message
queue processing.

8 Why Rationals Won’t Cure Your Floating Point
Blues
Richard Harris investigates whether Rational numbers
might solve his numerical problem.

12 Overused Code Reuse
Sergey Ignatchenko considers the dangers of code
reuse.

15 The Agile 10 Steps Model
Allan Kelly presents a framework for agile project
management.

20 Rise of the Machines
Kevlin Henney struggles against our oppressors.

OVERLOAD 101

February 2011

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 102 should be submitted
by 1st March 2011 and for
Overload 103 by 1st May 2011.

EDITORIAL RIC PARKIN
Ah! The fog is lifting!
Futurology has a dismal track record.
Ric Parkin looks at the history of
technology predictions.
Prediction is very difficult, especially
about the future.

This such a great quote, and yet its providence is
uncertain – possible coiners include Mark Twain,
Yogi Berra, or Niels Bohr. Whoever actually said it, I

do think it it holds a deep truth – we just don’t know what’s going to
happen. It also captures a healthy humility that even if we use our
knowledge and expertise to make as good a prediction as we can, reality
has an almost perverse delight in proving us wrong, just to keep our hubris
in check.
Examples abound in several fields: politics is a fine example – partly
because at its core, people are interviewed at short notice on fast moving
situations they have limited information on, and yet they feel they have
to sound authoritative. A great recipe for putting your foot in it and getting
things completely wrong.
And technology has an equally rich seam of such faux pas. I’d like to
present a few, give their historical background (or lack of), and consider
their deeper truth.

Everything that can be invented has been invented.
– Charles H. Duell,

Commissioner US Patent Office
This is trotted out to mock the idea that people think science and society
have reached a pinnacle, and there’s nothing new to know. Unfortunately
this quote appears to be a complete fabrication. There’s a similar example
from the late 1800s about all of physics being within their grasp, just as
Quantum Mechanics and Relativity burst upon the scene. This too is most
likely an exaggeration, as the problems that led to those breakthroughs
were well known.

The goose that laid the golden eggs, but never cackled
 – Churchill

This one is true, although is more of a description than a prediction. This
is how Churchill described the Bletchley Park codebreakers, and sums up
both of their great achievements – how they achieved the amazing and
broke the codes, and yet despite the industrial scale of the work there, the
secret was kept until the 70s – probably much longer than even Churchill
could have imagined. An example of how useful it was turned up this
week, involving the decrypted cables that showed that the Germans had
fallen for the D-day bluffs [Fooled]. Just knowing the deception was
working allowed the invasion to go ahead with greater confidence and far
less loss of life. Golden eggs indeed.

I think there is a world market for
maybe five computers

 – Thomas John Watson,
 President of IBM

Again there is no evidence that he actually said it, although interestingly,
if he had he’d have been right for around a decade! Recall that until the
70s, computers were huge, expensive machines that relatively few
companies could afford, let alone individuals, generally used for quite
specialised tasks – calculations for nuclear weapons research, some
scientific modelling, and eventually business tasks [LEO] so it was not
actually that ludicrous a prediction, until the cost dropped to the point
where computers could become ubiquitous, and started to be used for
things that couldn’t even be imagined back then – think of the advent of
computer graphics, and wireless networking. This illustrates that our
predictions are shaped by what we know at the time, and that our ideas
about what is possible are going to be limited by that.

640K ought to be enough for anybody
– Bill Gates

Again this doesn’t appear to have been uttered. But I think the reason we’d
like it to be true is because that 640K limit caused so much pain over the
years, and people want somebody to blame (and feeling superior to the
wildly successful Gates is a bonus). While the jump from 64K or so of
memory to 640K in the IBM PC must have seemed like a big leap, an
increase of x10 would not last long in the face of ever more inventive tasks
for computers to do, and even the first PCs shipped with a large fraction
of this limit, so Moore’s Law would allow the limit to be reached within
a year or two. Getting around this limit did support a small industry of
companies inventing various tricks to increase the usable memory though.
One clever ruse I remember was the use of extended memory, where
blocks of memory could be mapped in and out of that usable 640K –
known as conventional memory [Conventional] – via sophisticated
‘pointers’ . One interest ing consequence of this was that a
segment:offset ‘pointer’ might not be valid and cause a hardware
fault if you tried to load it into the appropriate registers. Note that you
didn’t even have to dereference the pointer, just load an invalid segment
value into the segment register. See for example [MIT]. This is one
example of why in C and C++ even looking at an invalid pointer value is
Undefined Behaviour. Many people still think that you have to
dereference it to trigger UB, but this example shows you don’t even need
to go that far. One consequence was that you had to be careful with pointer
arithmetic so that intermediate values were valid, and avoid falling off the
end of an array.
Even when 32-bit flat addressing relieved us from that particular problem,
it wasn’t to last – fairly recently memory has got cheap enough that you
can install more than a 32-bit pointer can address (in practice, operating
system limitations have made the limit even lower, so for example 32-bit
Windows can only use a maximum of 3GB). Are we in for another round
of painful segmented pointer pain? Thankfully not – chips and operating
systems have been developed for years to be able to use 64-bit pointers
which can use much more memory with emulators to run legacy 32-bit

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | February 2011

EDITORIALRIC PARKIN
programs, so the transition should be much smoother. Still, 64bit pointers
are twice as large so there are potential data size and storage issues too.
Even in this day and age, it’s worth being mindful of storage and
communication size – a reason that the complex UTF-8 character
encoding is commonly used even though the UTF-32 format is much
simpler to program with.
One lesson to be learned from these examples is that decisions on the
representation of things can have long term consequences, and can cause
a lot of pain and effort to fix or transition to the next stage. Even good
choices at the time can eventually become a problem. Consider for
example, the Y2K problem – a space saving representation of two digit
years was a good choice back in the 60s and 70s, but the code and data
persisted for longer than anyone really expected, and a lot of time and
effort was expended to fix the problem – rather successfully I might add,
although that did lead to wild accusations that it was never really a
problem. The unix 2038 problem is similar but has been spotted a long
way in advance, so solutions are already in progress to avoid many of the
problems [2038].
A current problem is just hitting now though – the central internet address
system is about to hand out the last blocks of IP numbers to the regional
authorities [APNIC]. They in turn will continue to issue addresses until
they run out, with estimates of when this will happen being as close as
September of this year. See figure 1 for a graph showing the unassigned
addresses and figure 2 for assignment rates (note how the number being
assigned have shot up recently – looking carefully this looks likely to be
due to a combination of the surge in popularity of internet enabled
smartphones in North America and Europe, and growth in demand in the
Asia-Pacific region).

However, this problem has been anticipated and some systems are already
starting to use the next version [IPv6] which will have room for vastly
more addresses (2128 as opposed to IPv4’s 232). There are concerns that
this is not happening fast enough, with many people not even realising they
may need to do something. It’s not totally clear to me what sort of problems
could be expected – there are several proposed strategies that could be used
as the final numbers are allocated, perhaps by reallocating no longer used
blocks – but it might become more difficult to get addresses for new
businesses from providers that are not IPv6 ready. But
I doubt that the internet will break – there are much
easier ways of doing that [ITCrowd].

References
[2038] http://en.wikipedia.org/wiki/

Year_2038_problem
[APNIC] https://www.apnic.net/publications/news/2011/delegation
[Conventional] http://en.wikipedia.org/wiki/Conventional_memory
[Fooled] http://www.bbc.co.uk/news/magazine-12266109
[IPv6] http://en.wikipedia.org/wiki/IPv6
[ITCrowd] http://www.youtube.com/watch?v=wrQUWUfmR_I
[LEO] http://en.wikipedia.org/wiki/LEO_%28computer%29
[MIT] http://pdos.csail.mit.edu/6.828/2006/readings/i386/s06_03.htm

Figure 1

Reproduced under the Creative Commons Licence, originally created
by http://commons.wikimedia.org/wiki/User:Mro

Figure 2

Reproduced under the Creative Commons Licence, originally created
by http://commons.wikimedia.org/wiki/User:Mro
February 2011 | Overload | 3

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem
https://www.apnic.net/publications/news/2011/delegation
http://en.wikipedia.org/wiki/Conventional_memory
http://www.bbc.co.uk/news/magazine-12266109
http://en.wikipedia.org/wiki/IPv6
http://www.youtube.com/watch?v=wrQUWUfmR_I
http://en.wikipedia.org/wiki/LEO_%28computer%29
http://pdos.csail.mit.edu/6.828/2006/readings/i386/s06_03.htm
http://commons.wikimedia.org/wiki/User:Mro
http://commons.wikimedia.org/wiki/User:Mro

FEATURE EUGENE SURMAN
Queue with Position Reservation
Multiple threads can make processing a
message queue faster. Eugene Surman
needs the right data structure.
or the past five years I have mostly been developing multi-threaded
messaging applications. While they were all quite different, there was
one particular situation that kept recurring: sometimes it was required

to maintain the sequential order of incoming and outgoing messages, even
though they were being handled by multiple threads concurrently, and not
necessarily in the same exact order they were received. I searched for a
solution in many ready-made messaging libraries, but did not find anything
satisfactory. So, I had to resort to developing a solution of my own: the
PRQueue – a Queue with Position Reservation (or ‘seat reservation’).
PRQueue is implemented in C++ using two STL deques and the pthread
library. Two simple classes – Mutex and Lock are used in the example
to demonstrate the logic. A sample message is represented by the
StringMsg class, and the QueueTest class is used as a test-bed
application.
I chose deque as a main building block of the design because it has all
necessary operations (including operator[]) to implement PRQueue.
In particular, it’s important that the push_back() and pop_front()
operations do not invalidate pointers and references to other elements of
the deque.
Here is a simple example of how PRQueue can be utilized. Let’s say we
need to log a stream of large multi-field messages. Converting numeric
fields to text strings is a slow process that is not mission-critical, so we
decided to offload this task to dedicated threads that will generate the log.
Initially, the processing diagram may look like figure 1.
Since the core processing of the messages takes place in multiple threads,
the messages may be ready in an order that is different from the original
input queue order: if, for example, one thread takes a message off the input
queue and goes to sleep, while another thread takes the next message, runs
to completion and places the processed message in the output queue, ahead
of the first thread. As a result, the log entries may appear out of order. We
assume that logging must be done after the messages are processed by the
core routines.
Listing 1 is an example illustrating this point. I use the standard STL
queue and 3 threads. This generates the output shown in Figure 2.
Using PRQueue the above scenario will be avoided. It will make sure the
order of messages in the output queue matches the order that existed in the
input queue, regardless of the order in which the core routines finish
processing the messages.
The basic logic behind PRQueue is simple: when the next message is taken
off the input queue, still inside the lock, the next push-back position, or
‘seat’, for the output queue is acquired. The lock is then released and the

processing continues. After a message is fully processed the previously
acquired position is used to place the message into the output queue.
Figure 3 shows the previous example re-written using PRQueue. The order
of the messages in the log is now perfectly preserved.
PRQueue is constructed using two deques: ‘data’ and ‘filled’.
An element of ‘filled’ deque is an indicator showing that the position is
filled with data and can be popped from PRQueue. A wrapper class
DataQueue is a holder of ‘data’ and ‘filled’ deques. The PRQueue

F

Eugene Surman received a degree in Radio Engineering
from Moscow College of Electro Communication. He has been
programming C/C++ for over 20 years and currently is a senior
software developer for Knight Capital. His personal software
interests are scripting languages. He can be reached at
esurman@inch.com

Figure 1

Listing 1

...
QueueTest quetest(3);
int i1 =0;
for(int i =10000; i; i--) {
 quetest.push("| %d", i1++);
 quetest.push("- %d", i1++);
}
...

Figure 2

Th# Time-stamp Msg#
1: 101108 15:04:49.576167 - 5243
3: 101108 15:04:49.576170 | 5244
1: 101108 15:04:49.576174 - 5245
3: 101108 15:04:49.576177 | 5246
3: 101108 15:04:49.576182 | 5248 // out
2: 101108 15:04:49.571945 | 4338 // of
1: 101108 15:04:49.576179 - 5247 // order
3: 101108 15:04:49.576188 - 5249
2: 101108 15:04:49.576189 | 5250
1: 101108 15:04:49.576191 - 5251
4 | Overload | February 2011

FEATUREEUGENE SURMAN

the messages may be ready in an order that is
different from the original input queue order
methods are for the most part ‘mutexed’ wrappers of DataQueue
methods.
The design allows us to separate/hide thread safety code from the actual
implementation, so the user shouldn’t be concerned with writing any
locking/unlocking logic.
Let’s discuss PRQueue’s functionality in a bit more detail.
The PRQueue pop method does two things: it pops data from the input
queue and reserves a push position in the output queue. The push method
uses the previously reserved position to save data into the output queue.
For testing PRQueue with multiple threads a function process_msg is
executed by every spawned thread. It pops a StringMsg from the input
queue, processes the message by calling the StringMsg::process()
method, and pushes the message out. (See Listing 2.)
The pop method is not only waiting for the next message to arrive in the
input queue, it also checks if the message is ready to be popped by looking
at the element of the ‘filled’ queue. If data is not filled yet, pop will go
back to sleep and wait.
Pop logic (Listing 3):

Lock input queue
If input queue is not empty and top element is filled with data, pop
it (otherwise release lock and go to sleep)
Lock output queue
Reserve bottom position in output queue.
Unlock output queue
Unlock input queue

The push method copies data to the reserved position of the output queue
and sets the ‘filled’ indicator to true. It also releases threads waiting on a
condition variable by sending a notification signal (prqueue.hpp) – see
Listing 4.
Now, the messages are arriving in the output queue in order. If we want
to extend the chain of our processing conveyor further, another PRQueue
can be added to the end. In the test case above we don’t do it: we use a
single output thread simply to read processed messages from the output
queue and print them out. In that final step, a ‘simple pop’ method was
used without its second and third arguments (references to the output queue
and position value). See Listing 5.
Now, let’s take a look at the auxiliary class DataQueue.
As was mentioned before, DataQueue is a holder of two STL deques:
‘data’ and ‘filled’. The DataQueue also defines ‘structure position’ and
methods where the key steps of position reservation and data popping
happen.
The DataQueue is included in PRQueue as a data-member m_que (see
Listing 6).
To compile and run PRQueue test, use the commands in Figure 4.

Figure 3

Th# Time-stamp Msg#
2: 101108 15:04:49.571945 | 4338
...
...
1: 101108 15:04:49.576167 - 5243
3: 101108 15:04:49.576170 | 5244
1: 101108 15:04:49.576174 - 5245
3: 101108 15:04:49.576177 | 5246
1: 101108 15:04:49.576179 - 5247
3: 101108 15:04:49.576182 | 5248
3: 101108 15:04:49.576188 - 5249
2: 101108 15:04:49.576189 | 5250
1: 101108 15:04:49.576191 - 5251

Listing 2

// The function 'process_msg' is executed by every
// spawned input thread. The signature corresponds
// to the pthread_create 'start_routine'
// File prqueue.cpp

void* process_msg(void* arg)
{
 int thidx = ++Thidx;
 QueueTest* quetest =(QueueTest*)arg;
 Msg* msg;
 PRQueue< Msg*>::position pos;

 cout << "Input thread=" << thidx <<
 " started" << endl;

 for(;;)
 {
 // Wait for the next available message in
 // input queue and pop it up, get the next
 // push position reserved in output queue
 quetest->input_que.pop(
 msg, quetest->output_que, pos);

 // Process message
 msg->process(thidx);

 // Push processed message into output queue
 // using reserved position
 quetest->output_que.push(msg, pos);
 }
 return NULL;
}

February 2011 | Overload | 5

FEATURE EUGENE SURMAN

the order of messages in the output
queue exactly matches the order
that existed in the input queue
Conclusion
The queue with Position Reservation (PRQueue) presented here could be
useful in multi-threaded applications when the order of streaming
messages should be preserved. PRQueue will make sure that the order of
messages in the output queue exactly matches the order that existed in the
input queue, because the next push-back position in the output queue is
reserved synchronously with taking the message off the input queue. The
reserved spot is later filled with data when the message is done processing
and ready.

Reference
A zip file containing the code is available at:
http://accu.org/content/journals/ol101/prqueue.zip

Listing 3

// Pop data from input queue and reserve position
// in output queue file prqueue.hpp
void PRQueue::pop(DATA& data, PRQueue& outque,
 PRQueue::position& pos)
{
 Lock lk(m_mux);

 // Waiting for the message in input queue - pop
 // message
 while(true) {
 if(m_que.pop(data))
 break;
 // either message has not arrived or position
 // is not filled
 wait_while_empty();
 }
 // Reserve position in output queue
 outque.reserve_pos(pos);
}

//
void PRQueue::reserve_pos(
 PRQueue::position& pos) {
 Lock lk(m_mux);
 m_que.reserve(pos);
}

Listing 4

// Push data using reserved position into output
// queue (prqueue.hpp)
void PRQueue::push(const DATA& data,
 const PRQueue::position& pos)
{
 Lock lk(m_mux);
 m_que.fill(data, pos);
 notify_not_empty();
}

Listing 5

// The function 'print_msg' executed by final
// single output thread file prqueue.cpp
void* print_msg(void* arg)
{
 QueueTest* quetest =(QueueTest*)arg;
 Msg* msg;

 cout << "Output thread started" << endl;
 for(;;)
 {
 // pop-up message from output queue and print it
 quetest->output_que.pop(msg);
 msg->print();
 delete msg;
 }
 return NULL;
}

Figure 4

 c++ -I. prqueue.cpp -lpthread # PRQueue test
 c++ -I. prqueue.cpp -lpthread -DSIMPLE_QUE # SimpleQueue test

 # Try long message
 c++ -I. prqueue.cpp -lpthread -DLONG_MSG
 c++ -I. prqueue.cpp -lpthread -DLONG_MSG -DSIMPLE_QUE

 a.out [number-of-messages]
6 | Overload | February 2011

http://accu.org/content/journals/ol101/prqueue.zip

FEATUREEUGENE SURMAN
Listing 6

// An auxiliary class DataQueue - holder of 'data'
// and 'filled' deques
template< typename DATA> class DataQueue
{

public:
 typedef typename
 deque< DATA>::pointer data_pointer;
 typedef typename
 deque< bool>::pointer filled_pointer;

 // Structure to hold pointers of reserved
 // position
 struct position {
 position() : data_pnt(0), filled_pnt(0) {}
 data_pointer data_pnt;
 filled_pointer filled_pnt;
 };

 // Check if data deque is not empty and front
 // element is 'filled'.
 // Copy front data out, pop-up front elements
 // of both deques
 bool pop(DATA& out) {
 if(m_data_que.empty() ||
 ! m_filled_que.front())
 return false;
 out = m_data_que.front();
 m_data_que.pop_front();
 m_filled_que.pop_front();
 return true;
 }
 // Add dummy elements to the back of both
 // deques.
 // Save pointers of both elements to the output
 // position
 void reserve(position& pos) {
 m_data_que.push_back(m_dummy);
 m_filled_que.push_back(false);
 pos.data_pnt =
 &m_data_que[m_data_que.size() -1];
 pos.filled_pnt =
 &m_filled_que[m_filled_que.size() -1];
 }
 // Copy data and set 'filled' indicator by
 // position
 void fill(const DATA& data,
 const position& pos) {
 *pos.data_pnt = data;
 *pos.filled_pnt = true;
 }

Listing 6 (cont’d)

 void push(const DATA& data) {
 m_data_que.push_back(data);
 m_filled_que.push_back(true);
 }

private :
 deque<DATA> m_data_que;
 deque<bool> m_filled_que;
 DATA m_dummy;
};//DataQueue
February 2011 | Overload | 7

FEATURE RICHARD HARRIS
Why Rationals Won’t Cure Your
Floating Point Blues
Numerical computing is still proving hard to do accurately.
Richard Harris considers another number representation.
n the first article in this series we described floating point arithmetic and
noted that its oft criticised rounding errors are relatively inconsequential
in comparison to the dramatic loss of precision than results from

subtracting two almost equal numbers. We demonstrated that the order in
which we perform operations, whilst irrelevant for real numbers, can affect
the result of a floating point expression and that consequently we must be
careful how we construct expressions if we wish their results to be as
accurate as possible.
In the second article we discussed the commonly proposed alternative of
fixed point numbers and found that, although it is supremely easy to reason
about addition and subtraction when using them, they can suffer even more
greatly than floating point numbers from truncation error, cancellation
error and order of execution.

Rationals
So, can we do any better?
Perhaps if we were to implement a rational number type, in which we
explicitly maintain both the numerator and the denominator, rather than
declare by fiat that we are working to some fixed number of decimal places
or significant figures.
The rules of rational arithmetic are pretty straightforward. Given two
rationals a0/b0 and a1/b1 we have

One enormous advantage of rational numbers is that, provided we do not
overflow the integers representing the numerator (the top of the fraction)
and the denominator (the bottom) the order of execution of these arithmetic
operations is irrelevant; the answer will always be the same. Given that
we have gone to great lengths to create an integer type that cannot
overflow, this behaviour will prove rather useful.
The only thing we need to watch out for is the fact that there are many ways
of writing down the same number; 1/2, 2/4 and 3/6 all represent the same
number, for example. We shall ensure that our representation is unique by
insisting that the numerator and the denominator are the smallest numbers

that yield the same rational, or equivalently have no common factors, and
that the denominator is positive.
The latter condition is relatively straightforward to maintain. The former
requires an algorithm to determine the highest common factor, or HCF, of
a pair of numbers, the greatest positive integer that wholly divides both.
We can subsequently divide out that factor and return any rational to its
simplest form. Fortunately one such algorithm has been handed down to
us from antiquity, courtesy of the great Euclid and it proceeds as follows.

Euclid’s algorithm
If the two numbers are equal, their value is the HCF.
If the smaller exactly divides the larger, the smaller is the HCF.
Otherwise, divide the larger by the smaller, and make note of the
remainder. The HCF of the original numbers is equal to the HCF of the
smaller number and the remainder.
In mathematical notation this can be expressed as

Recursively applying these rules is guaranteed to terminate and we can
thus determine the HCF.
For example, applying the Euclidean algorithm to 2163 and 1785 yields
the following steps

and hence the HCF of 2163 and 1785 is 21, a fact that is clear if we look
at their prime factorisations.

As it happens, this is simply a special case of the more general result that
for any integers x0, x1, a and b where

then x0 and b must have the same highest common factor as x0 and x1, as
shown in derivation 1.
As a consequence, it should not be surprising that the algorithm converges
faster if we round the result of the division to the nearest integer rather than
round down, consequently admitting negative remainders, and use the
absolute value of the remainder in the following step.

I

a0
b0

a1
b1
-----+

a0b1 a1b0+
b0b1

-----------------------------=

a0
b0

a1
b1
-----–

a0b1 a1b0–
b0b1

----------------------------=

a0
b0

a1
b1
-----×

a0a1
b0b1
-----------=

a0
b0

a1
b1
-----÷

a0b1
b0a1
-----------=

if x1 a x0 b+×=

where a 0 0 b x0< <∧>

then HFC x1 x0,() HFC x0 b,()=

2163 1 1785 378+×=
1785 4 378× 273+=

378 1 273 105+×=
273 2 105 63+×=
105 1 63 42+×=
63 1 42 21+×=
42 2 21×=

2163 3 7 103××=
1785 3 5 7 17×××=

x1 a x0 b+×=

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and numerical
computing and is currently employed writing software for financial
regulation.
8 | Overload | February 2011

FEATURERICHARD HARRIS

one such algorithm has been handed down to us
from antiquity, courtesy of the great Euclid
Applying this optimisation to the same pair of numbers yields the same
result in fewer steps.

A rational class
Now that we have described the various arithmetic operations, and the
scheme that we shall use to ensure that each rational has a unique
representation, we are ready to actually implement it. Listing 1 illustrates
the class definition of our rational number type.
The first thing we shall need is a helper function to compute the HCF of
a pair of positive integers as given in listing 2.
Note that we capture both termination conditions by checking whether the
absolute remainder, now stored in x1, is equal to 0. This will be true both
if the smaller number is equal to or wholly divides the larger.
We implement the more efficient version of the algorithm by checking
whether the remainder is greater than half the divisor. If it is, then the
absolute value of the remainder of the rounded closest, rather than rounded
down, division is simply the divisor minus the remainder.

2163 1 1785 378+×=
1785 5 378 105–×=
378 4 105 42–×=
105 2 42 21+×=
42 2 21×=

Listing 1

Derivation 1

Proof of shared common factors
First, let us assume that x0 and x1 share a common factor of c. We can
therefore rewrite the equation as

for some x0′ and x1′.
Now since the left hand side is wholly divisible by c then so must the right
hand side and furthermore since the first term on the right hand side is
wholly divisible by c then so must be the second term, allowing us to
express the equation as

Second, let us assume that x0 and b share a different common factor of
d. We can now rewrite the equation as

for some x0″ and b″.
But now the right hand side is wholly divisible by d and so therefore must
be the left hand side.

Hence any factor shared by x0 and x1 must be shared by x0 and b, and
any factor shared by x0 and b must be shared by x0 and x1 and that they
must consequently have the exactly the same highest common factor.

cx1′ a cx0′ b+×=

cx1′ a cx0′ cb′+×=

x1 a dx0″ db″+×=

template<class T>
class rational
{
public:
 typedef T term_type;

 rational();
 rational(const term_type &x);
 rational(const term_type &numerator,
 const term_type &denominator);

 const term_type & numerator() const;
 const term_type & denominator() const;
 int compare(const rational &x) const;
 rational & negate();
 rational & operator+=(const rational &x);
 rational & operator-=(const rational &x);
 rational & operator*=(const rational &x);
 rational & operator/=(const rational &x);

private:
 rational & normalise();
 term_type numerator_;
 term_type denominator_;
};

Listing 2

template<class T>
T
hcf(T x0, T x1)
{
 if(x0<=0 || x1<=0)
 throw std::invalid_argument("");

 if(x0<x1)
 std::swap(x0, x1);

 do
 {
 const T div = x0/x1;
 const T rem = x0 - div*x1;

 x0 = x1;
 if(rem+rem<x1) x1 = rem;
 else x1 -= rem;
 }
 while(x1!=0);

 return x0;
}

February 2011 | Overload | 9

FEATURE RICHARD HARRIS

we must multiply the numerators and
denominators during comparison which,
for fixed width integer types, introduces the
possibility of overflow
We can see that this is true by considering the implications on the
remainder of increasing the result by 1. In mathematical notation, the initial
step is

where the odd looking brackets mean the largest integer less than or equal
to their contents.
The new remainder is equal to

which is guaranteed to be negative, meaning that the absolute value of the
new remainder must be x1–r.
We could improve performance a little for bignums by overloading this
function to exploit the fact that their division helper function also
calculates the remainder. However, since our division algorithm is O(n2)
in the number of bits and our multiplication algorithm is only O(n2) in the
number of digits, it would probably not make that much difference in most
cases.

Next we shall implement the normalise member function which we
shall use to ensure that our rationals are always represented in a
standard form, as shown in listing 3. In this form, common factors are
removed, the denominator is always positive and shall furthermore be
equal to 1 when the numerator is 0.
We shall first call this function in one of the constructors, as given in listing
4. Specifically, we shall not entrust the correct representation to the user
when construction from numerator and denominator.
The remaining member functions are equally straightforward which
should come as no surprise given the simplicity of rational arithmetic.
The data access member functions, numerator and denominator,
together with the compare and negate member functions are shown in
listing 5.
Note that we must multiply the numerators and denominators during
comparison which, for fixed width integer types, introduces the possibility
of overflow and, for bignums, unfortunately makes it a relatively costly
operation.
The arithmetic operators, given in listing 6, are similarly sensitive to
overflow when using fixed width integers and similarly expensive when
using bignums. Most irritating is that fact that addition and subtraction
are now more sensitive to these factors than multiplication and division.

The problem with rationals
Recall that I mentioned that the square root of 2 is irrational and hence
cannot be equal to any integer divided by another. A demonstration of this
fact is given in derivation 2.
We cannot therefore exactly represent any such number with our
rational type. However, it is also true that for every irrational number

d x0 x1⁄=

r x0 d x1×–=

x0 d 1+() x1× r x1–=–

Listing 3

template<class T>
rational<T> &
rational<T>::normalise()
{
 if(denominator_==0)
 throw std::invalid_argument("");

 if(denominator_<0)
 {
 numerator_ = -numerator_;
 denominator_ = -denominator_;
 }

 if(numerator_==0)
 {
 denominator_ = 1;
 }
 else
 {
 const T c = hcf(abs(numerator_),
 denominator_);

 numerator_ /= c;
 denominator_ /= c;
 }

 return *this;
}

Listing 4

template<class T>
rational<T>::rational()
: numerator_(0), denominator_(1)
{
}

template<class T>
rational<T>::rational(const term_type &x)
: numerator_(x), denominator_(1)
{
}

template<class T>
rational<T>::rational(const term_type &numerator,
 const term_type &denominator)
: numerator_(numerator), denominator_(denominator)
{
 normalise();
}

10 | Overload | February 2011

FEATURERICHARD HARRIS
there are an infinite number of rationals to be found within any given
positive distance, no matter how small.
Perhaps we could represent an irrational with one of its rational
neighbours?

Well, yes we could, but we’d have to decide exactly how distant that
rational should be and, whatever distance we choose, we could match its
accuracy with a floating point representation of sufficient precision.
So, whilst rational number types are supremely accurate for addition,
subtraction, multiplication and division and are consequently not sensitive
to the order of execution of these operations, they require no less care and
attention than floating point number types the instant we start mucking
about with non-linear equations.
I am reluctant to categorise this capable numeric type as a lame duck, but
am compelled to observe that, so far as general purpose arithmetic is
concerned, it does seem to have a pronounced limp.
Quack, quack, quack.

Further reading
[Boost] http://www.boost.org/doc/libs/1_43_0/libs/rational/index.html

Listing 5

template<class T>
const rational<T>::term_type &
rational<T>::numerator() const
{
 return numerator_;
}

template<class T>
const rational<T>::term_type &
rational<T>::denominator() const
{
 return denominator_;
}

template<class T>
int
rational<T>::compare(const rational &x) const
{
 const term_type lhs = numerator_ *
 x.denominator_;
 const term_type rhs = denominator_ *
 x.numerator_;

 if(lhs<rhs) return -1;
 if(lhs>rhs) return 1;
 return 0;
}

template<class T>
rational<T> &
rational<T>::negate()
{
 numerator_ = -numerator_;
 return *this;
}

Listing 6

template<class T>
rational<T> &
rational<T>::operator+=(const rational &x)
{
 numerator_ = numerator_ * x.denominator_ +
 denominator_ * x.numerator_;
 denominator_ *= x.denominator_;
 return normalise();
}

template<class T>
rational<T> &
rational<T>::operator-=(const rational &x)
{
 numerator_ = numerator_ * x.denominator_ -
 denominator_ * x.numerator_;
 denominator_ *= x.denominator_;
 return normalise();
}

template<class T>
rational<T> &
rational<T>::operator*=(const rational &x)
{
 numerator_ *= x.numerator_;
 denominator_ *= x.denominator_;
 return normalise();
}

template<class T>
rational<T> &
rational<T>::operator/=(const rational &x)
{
 numerator_ *= x.denominator_;
 denominator_ *= x.numerator_;
 return normalise();
}

Derivation 2

Proving that the square root of 2 is not rational
Let us assume that there are integers a and b such that

and that we have cancelled all common factors so that their HCF is 1.

Trivially, we have

Now any odd number multiplied by itself results in another odd number,
so a must be even and hence equal to 2a′ for some a′. Hence

But this similarly means that b must be even and that consequently a and
b have a common factor of 2; a contradiction.

The square root of 2 cannot, therefore, be rational.

Keep it to yourself though; you might get drowned.

a
b
--- 2=

a2

b2
----- 2=

a2 2b2=

2a′()2 2b2=

b2 2a′2=
February 2011 | Overload | 11

FEATURE SERGEY IGNATCHENKO
Overused Code Reuse
It’s tempting to use someone else’s code
rather than write it yourself. Sergey
Ignatchenko reports that ‘No Bugs’ Bunny
recommends caution.
isclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide those of the translator
and the Overload editors; please also keep in mind that translation

difficulties from Lapine (like those described in [LoganBerry]) might have
prevented us from providing an exact translation. In addition, both the
translator and Overload expressly disclaim all responsibility from any
action or inaction resulting from reading this article.
First of all, I want to congratulate all fellow rabbits on the Year of the
Rabbit, which started on 3rd February. I wish all rabbits all the best in this
year, but want to remind you that it is not only a year of great opportunity,
but also of great responsibility. Let us try to make the Year of the Rabbit
as bug-free as possible! One of the important steps on this road will be
understanding the pitfalls of code reuse.
Since ancient times, using pre-existing code from somewhere else has been
seen as a Holy Grail by project management. ‘Why develop functionality
ourselves if we can buy it?’ With open source software becoming
ubiquitous, the temptation became even stronger: the argument ‘Why
spend money if we can get it for free?’ is as strong as it can possibly get
for a manager. On the developers’ side the temptation to reuse is also rather
strong: ‘Hey, we can use this neat 3rd-party class and get this very cool
feature!’ (It often happens that nobody has actually asked for this feature,
but that rarely stops this kind of reuse.)
While I certainly don’t want to claim that all code reuse is inherently evil,
it does have significant drawbacks which are often overlooked. In this
month’s column I will try to describe these issues, which might cause lots
of problems down the road, and to provide some reflections on the question
‘when to reuse’.

Toll of code reuse: real-life disasters
For some examples where things went really badly, I will describe two
well-known cases when code reuse has significantly contributed to
disasters which happened because of software bugs.
In 1982, a new radiation therapy machine Therac-25 [Therac-25] was
developed by Atomic Energy of Canada Ltd. Therac-25 was a further
development of two previous models, Therac-6 and Therac-20, and
(naturally) it had been decided to reuse some software from the previous
models [Leveson]. The hardware was a bit different though, and in
particular, while the Therac-20 had hardware interlocks to prevent the
software from activating the beam in the wrong position, the Therac-25
didn’t have such interlocks relying instead solely on the software. The
software that was reused actually had a difficult to find bug, which had

never manifested itself on Therac-20 because of the hardware interlocks.
Reusing it on Therac-25, where hardware wasn’t available to prevent an
overdose, resulted in at least 6 confirmed cases of massive (100x) radiation
overdose, and in 3 to 5 (estimates vary depending on source) deaths due
to this bug. Some may argue that 3 deaths is nothing compared to the
number of deaths in car accidents every day, but would you personally like
to be responsible for them? I hope not.
In 1996, an Ariane 5 rocket self-destructed 37 seconds into its first launch,
with estimated damages at least in the order of several hundred million
euros [Robinson]. An investigation [Ariane Inquiry, Robinson] has shown
that it had been caused by re-using a subsystem of the software of Ariane
4. The bug was within a piece of code which wasn’t necessary for Ariane
5 but which was (naturally) maintained ‘for commonality reasons’ [Ariane
Inquiry]; the bug had never manifested itself in Ariane 4 because of
different flying dynamics.
I cannot tell if it was a mistake to reuse any code in these two cases (though
there are indications it was – for example, [Leveson] says ‘The reuse of
Therac-6 design features or modules may explain some of problematic
aspects of the Therac-25 software design’), but what is clear is that careless
reuse is what essentially caused both of these disasters. Two observations
can be made out of these two cases.
The first one is the following rule of thumb:
If reusing, one needs to carefully consider the new environment where the
code is moved; failure to do so can be catastrophic.
Another is the following (based on the Ariane 5 failure above, but is also
supported by personal experience):
When reusing, it is often difficult to understand how much code you’ve just
added.

Resource bloat
In his presentation [Martin], Robert Martin stated that since the time of the
PDP8, hardware has been improved by 27 orders of magnitude. While I
can’t comment on the exact numbers, it is obvious that improvements in
hardware within last 20 years were HUGE. Does anybody remember the
ZX Spectrum home computer? It had 3.5MHz Z80 CPU (this is not only
without floating point at all, this is without hardware multiplication!), and
48KB RAM (of which 7KB was video RAM); no HDD to swap to, not
even a floppy disk, everything needed to be loaded from tape into RAM.
And still, developers were able to do wonders with this hardware. One
game of the time, Elite, contained an inter-planetary trading system (with
price based on supply and demand), real-time 3D space fights (OK, it was
contour-only 3D, but keep in mind the restrictions), several special
missions, and a galaxy map of a few thousand planets – all within 41KB
of RAM (code and data combined), on a CPU which is 1000+ times slower
than today’s. There were also compilers, word processors and
spreadsheets. One starts to wonder – if it was possible to do these kind of
things in 41KB, how much better should be software which can use 41MB!
Unfortunately, it is not the case. Modern software can do (as a rule of
thumb) absolutely nothing in 41K and just a few minor things in 41MB;

D

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
12 | Overload | February 2011

FEATURESERGEY IGNATCHENKO

Reusing 3rd-party code introduces
dependencies. Such dependencies are often

detrimental for several reasons
for example, the Eclipse IDE requires as much as 512MB RAM by default,
this is 10000 times more than ZX Spectrum had. No doubt that Eclipse has
more capabilities than ZX Spectrum era development tools, but is it four
orders of magnitude more? I don’t think so. One can argue that these days
RAM is cheap, so who cares about all this bloat? The answer is: I do, at
least, because if the guys who wrote Elite were around to develop for the
more constrained modern environments, I’m pretty sure that they would
manage to write apps for a cellphone which wouldn’t feel sluggish on a
mere 1GHz CPU (it is still 300 times faster than the ZX Spectrum had),
or 512MB RAM (which is four orders of magnitude more). Also I’m pretty

sure that they would manage to write software for a
Blu-Ray player which wouldn’t take 10

seconds to ‘load’, and wouldn’t take a
second to react to a remote

control button. The
whole culture of

r e spec t i ng r e sou rc es ha s
evaporated during the late
1980–1990s, and now it
backfires in resource-
cons t r a ined
environments like
cellphones.
Obviously, code
reuse i s
certainly not
t he o n l y
r ea son fo r
this waste of
resources; it
s ee ms t ha t
such reasons are
multiple, but I’m
sure code reuse is a
s i gn i f i c an t
contributing factor
(just one example:
even in Ariane 5,
wh ich i s a
r e s o ur c e -

constrained environment, they decided to keep useless code ‘for
commonality reasons’; even if it wouldn’t crash the whole thing, it would
still be a waste of CPU resources). But usually the reason is simpler than
that: as we have seen above, it is often difficult to understand just how
much code you’ve added. Therefore, it often happens that just one tiny
DLL/.so is used, which in turn calls a dozen other DLLs/.so’s, and so on.
Did you know, for example, that loading MFC42.DLL implicitly loads not
only OLE/COM, but also loads the print spooler, even if you never use any
of it? Or how many DLLs depend on SHDOCVW.DLL?

3rd-party code and dependencies
Reusing 3rd-party code introduces dependencies. Such dependencies are
often detrimental for several reasons:

if there is a bug in the 3rd-party code, it is still your application
which will crash, and your users will blame you (see also
[ToDllOrNotToDll]).

if there are changes to the 3rd-party code, you are at their
mercy to keep the APIs stable. Moreover, it is not only their
understanding of the APIs that should not be affected by

change, it is also your understanding (and they are not
always the same thing).
if a 3rd-party API does not exactly correspond to your

requirements (which is almost always the case), relying on it will
likely lead to lower cohesion and higher coupling, increasing overall
code rigidity. While these effects can be mitigated by creating ‘glue
code’ to isolate 3rd-party code, it is an extra cost and is rarely done
in practice.
careless reuse of 3rd-party code can easily lead to ‘licence hell’,
with a need to handle lots of potentially incompatible licences.

Conclusion
With all those problems with code reuse outlined above, does it mean code
reuse is always wrong? Not at all, there are perfectly legitimate uses for

it. For instance, I don’t mean that if you’re
writing a business application, you
should start by writing your own
operating system or database. The

reason why I listed all those problems is
to illustrate that reusing code from different

projects or (even worse) from 3rd-parties SHOULD
NOT be taken lightly, but only with a full understanding
of all the implications and consequences. Individual
analysis is required in each case, but there are several
rules of thumb I and many of my fellow rabbits use,

which can be a reasonable starting point:
If reusing, one needs to carefully
consider the new environment
where the code is moved; failure to
do so can be catastrophic.
February 2011 | Overload | 13

FEATURE SERGEY IGNATCHENKO

reused code can be free, integration with
your own code is never free
One example of reuse from non-software field would be to reuse
bridge piers when building a new bridge in place of the old one.
While such reuse is possible and sometimes undertaken, it is always
preceded by a very careful analysis; such analysis also often reveals
that reuse will be dangerous, or more expensive than using new
ones, and a new bridge is often built completely separately. Why
should software be any different?
All decisions about reuse of 3rd-party code (this includes code from
within the same company, but perhaps from a different project) must
only be made after careful consideration at project level; both
architectural and legal analyses should be performed before making
a decision about reuse.
If you need to make some major decisions (and as discussed, the
decision to reuse 3rd-party code is a major one), it requires some
formalities; licence issues are a contributing factor too.
When making decisions about reuse, remember integration costs.
This rule of thumb is of special importance for managers. While
reused code can be free, integration with your own code is never
free, and in some cases can exceed the costs of writing code from
scratch.
As a rule of thumb, the lower the level of API, the more chances that
it will be suitable for your needs.
For example, the chances that ‘JPEG library’ will be exactly what
you’re looking for, are much higher than that ‘business flow
handling’ will suit your needs; the longer-term chances of the latter
are further decreased by likely changes to the business flow logic.
To avoid increasing code rigidity, if reusing 3rd-party code, think
about adding ‘glue code’ around it. Note that ‘dumb’ wrappers
(wrapping every function 1-to-1) don’t tend to help with it, and are
essentially useless.
This can be a tough exercise, but unless you’re building something
which has a 100% dependency on 3rd-party code, having ‘glue
code’ is paramount to keep software maintainable in the long run.
Over the time all kinds of things can happen: 3rd-party code can go
out of circulation, a competing product can become better, new
management can strike a deal with another vendor. Proper ‘glue
code’ can save you from rewriting the whole program (or at least to
reduce the amount of work significantly), but the trick here is to find
what kind of ‘glue code’ is appropriate. As a rule of thumb, it is
better to specify ‘glue’ APIs in terms of ‘what we need to do’ (as
opposed to ‘what this code can do for us’). It essentially rules out
‘dumb’ wrappers (where the ‘glue’ API merely mirrors the
functionality of the API being wrapped), which are indeed pretty
much useless.
If you’re not writing something inherently reusable, like an OS or
public API, don’t write for reuse – reuse existing code instead.
It has been mentioned by both [Brooks] and [Kelly], that writing
code aimed for reuse is three times more expensive than writing

single-use code. It is in line with practical observations by fellow
rabbits: among other things, when writing code which is aimed for
code reuse it can be not so easy to adhere to the ‘No Bugs’ Axe’
principle, and deviations from it are likely to lead to ‘creeping
featuritis’ [NoBugsAxe].
Know what exactly you’re including, what resources it takes ,and
what are the implications of the code being reused.
Maybe reused code includes a call which is specific to Win7, and
you’re required to support XP? Or maybe it will not run unless some
specific version of some other library is installed? Or maybe you’re
writing an Internet application, and the reused code issues 100
successive RPC calls which you won’t notice over your LAN but
which will cause delay of several seconds across a transatlantic link?
If you are re-using code, it is your responsibility to make sure it is
suitable for your purposes.

It is important to note that while some of these points do not apply to
‘internal reuse’ (such as placing code in functions and calling them from
many different places), some of these ‘rules of thumb’ are still essential
regardless of reuse being ‘internal’ or ‘external’. In particular, ‘new
environment’, ‘integration costs’, and ‘know what exactly you’re
including’ points stand even for ‘internal reuse’. If reusing internal small
well-defined functions, these points may be trivial to address, but as the
complexity of reused code grows, analysis can become more complicated
and the lack of such analysis may cause significant problems down the
road.

References
[Adams] http://en.wikipedia.org/wiki/Lapine_language
[Ariane Inquiry] Ariane 501 Inquiry Board Report,

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
[Brooks] The Mythical Man Month and Other Essays on Software

Engineering, Frederick P. Brooks Jr.
[Kelly] ‘Reuse Myth – can you afford reusable code?’, Allan Kelly, 2010,

http://allankelly.blogspot.com/2010/10/reuse-myth-can-you-afford-
reusable-code.html

[Leveson] Medical Devices: The Therac-25, Nancy Leveson,
http://sunnyday.mit.edu/papers/therac.pdf

[Loganberry] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, ‘Unit 14: Feelings and Emotions; Parts of the
Body (2)’, http://www.loganberry.furtopia.org/bnb/lapine/
unit14.html

[Martin] ‘The Language Stew’, Robert Martin, ACCU 2010 Conference
[NoBugsAxe] ‘From Occam’s Razor to No Bugs’ Axe’, ‘No Bugs’

Bunny, Overload #100
[Robinson] Ariane 5 Flight 501 Failure – A Case Study of Errors, Ken

Robinson, 1996, http://www.cse.unsw.edu.au/~se4921/PDF/
ariane5-article.pdf

[Therac-25] http://en.wikipedia.org/wiki/Therac-25
[ToDllOrNotToDll] ‘To DLL or Not to DLL’, ‘No Bugs’ Bunny,

Overload #99, Oct 2010
14 | Overload | February 2011

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://allankelly.blogspot.com/2010/10/reuse-myth-can-you-afford-reusable-code.html
http://sunnyday.mit.edu/papers/therac.pdf
http://www.loganberry.furtopia.org/bnb/lapine/unit14.html
http://www.loganberry.furtopia.org/bnb/lapine/unit14.html
http://www.cse.unsw.edu.au/~se4921/PDF/ariane5-article.pdf
http://www.cse.unsw.edu.au/~se4921/PDF/ariane5-article.pdf
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Lapine_language

FEATUREALLAN KELLY
The Agile 10 Steps Model
Technical processes have tended to
dominate agile thinking. Allan Kelly
looks at the wider picture.
n the beginning, when Agile first hit the headlines, it was mainly a story
about developers doing technical practices. Weird things like pair-
programming, writing tests first and other ‘extreme’ stuff. In time Agile

has become a story about processes – iterations, stand-up meetings and
such. Extreme went way and it became respectable to ‘Scrum’.
Agile has a message for developers and project managers but less so for
Business Analysts and Produce Managers. Agile as we know it currently
rests on two pillars: technical practices and iterative processes.
Requirements Management form the missing third pillar of Agile. Yet this
element hasn’t received the same attention as the first two. Teams can
achieve some element of Agile with only one or two pillars but for
maximum effect and greatest stability all three are required.
These three pillars provide the operations base on which organizations can
push to portfolio and strategic Agile. (See Figure 1 and [Kelly10b] for
more about Agile at the portfolio and strategy level.)
So far the requirements pillar has one big idea and a whole host of small
ideas. The big idea is User Stories. The hinterland includes things like roles
and Mike Cohn’s INVEST mnemonic (Independent, Negotiable,
Valuable, Estimate-able, Small and Testable) but not a lot more.
Then there are the small ideas – small because unlike iterations, TDD or
even User Stories, they are not so widely adopted or even well known.
Many of these exist in isolation; they don’t link up to each other or User
Stories.

The more I thought about this problem the clearer it seemed to me: these
bits weren’t joined up. In 2009 I had sketched out a model I call the ‘Agile
10 Step’, a model I’d like to present here. Explaining the model in depth
is beyond the scope of this article – here I will confine myself to a brief
overview.
In future articles I hope to elaborate on this model to better link the
requirements process up with the rest of the Agile world. Indeed, some of
the points raised by the model are already addressed in pieces I have
already published.
The model can’t position every single requirements technique or tool ever
created – that would be asking too much – but it can highlight some of the
key ones.

Principles for requirements in an Agile world
The good news is Agile doesn’t invalidate whole swathes of requirements
engineering the way it can project management. There are many good
books on requirements: how to find requirements, understand
requirements, capture requirements and so on. The analysis side of this
stands up: read a good requirements or business analysis book and most
of it is still valid, e.g. [Cadle10], [Alexander09].
In order to discuss requirements more fully it helps to set down some
overarching principles:

Business value focused: requirements are a means to an end. The
overall objective is to deliver business value. Creating requirements

I The PRINCE2 project management guide provides one narrow definition
of a project: ‘A temporary organisation that is needed to produce a unique
and predefined outcome or result at a pre-specified time using
predetermined resources.’[Commerce05].

Strictly speaking then a ‘project’ is a well defined piece of work. Still, it
has become commonplace to refer to almost any piece of software
development work as a ‘project’. For the purposes of this document this
wider definition is used liberally in keeping with the industry norms.

That said, I am contributing to an industry problem. Again and again in
software development teams I see a ‘project’ can be anything from a
single bug fix lasting a few days up to major change initiatives with a
timeline measured in months if not years.

Use of the word ‘project’

Allan Kelly has held just about every job in the software
world. Today he provides training and coaching to teams and
companies in the use of Agile and Lean techniques to develop
better software with better processes. He is the author of
Changing Software Development: Learning to become Agile,
numerous journal articles and is currently working on a book of
Business Strategy Patterns.
Contact him at http://www.allankelly.net.Figure 1
February 2011 | Overload | 15

FEATURE ALLAN KELLY

With a goal, clear requirements can be
discovered by working backwards
is an analysis activity that helps identify and understand business
value creation so it can be communicated to development teams.
Goal directed projects: because requirements are emerging, being
completed and disappearing, and because the environment is
changing, projects cannot be measured on ‘scope complete’ criteria.
Another measure is needed. Instead projects need to measure the
progress towards some overarching goal, not fraction complete.
(More on goal directed projects in [Kelly10d]).
With a goal, clear requirements can be discovered by working
backwards. Requirements are the things that will move the
organization from where it is today towards its goal. Thus it makes
sense to start with the desired outcome and work back.
Of course it is much easier to say ‘goal directed’ than to realise it.
Many projects start with vaguely defined goals. In these cases
discovering the goal is a little like panning for gold. In amongst all
the ideas circulating some goal needs to be found. Naturally, this
makes working backwards to find the requirements even harder.
Customer/end user involvement: those who will actually use the
end product need to have a voice in how it is built, and need to have
early sight of what is being created. There are two good reasons for
this: as the people who perform the work they are best placed to
know how things should work and describe the real-life
environment to the development team. Second, as the people who
will need to use the software their willingness to use the end product
is critical. Involving them early and often is the simplest way to do
this.
Iterative: in common with the rest of Agile requirements require an
iterative approach. One look will not find all the requirements,
multiple passes are required and things will change (Previous
writing [Kelly08], [Kelly04] contains a discussion of why
requirements change.) Thus all aspects of requirements analysis are
on going and in parallel with construction.
Identification, capture and communication starts before the first line
of code is cut and continues at least as long as development
continues. Modern market economies do not stop while software is
created so requirements continue to change and evolve. Priorities
and values change.
Consequently the collection, organization, prioritization needs to be
cheap and individual requirements statements disposable. If
individual requirements are expensive to create they will take on a
life of their own. If they are cheap then there will be less agonising
about disposing of them when things change.
Just in time: there is little point in creating and storing masses of
requirements in anticipation of the day they will be built.
Requirements sitting on the shelf go off – the market and business
environment changes. Since requirements are an ongoing process
there is simply no need to create a store so we adopt a just-in-time
principle instead.

Dialogue over document: communication of requirements is
primarily a dialogue rather than an exhaustive document.
Documentation can play several useful roles in the requirements
process but it should not attempt to be the definitive word on what
needs doing.
Analysis not synthesis: the process of deciding what needs doing is
primarily one of analysis. The process of building something is
primarily synthesis. No amount of analysis will create synthesis, the
individuals who are best suited to analysts are usually different to
those who are best at synthesis.
Requirements should not specify what is to be built, or how it is to
be built, i.e. solutions, only what is needed to move towards the goal.
Of course some requirements specify constraints on the construction
rather than functionality. Similarly the individuals who know most
about the needs may work with the development team to design a
review a proposed solution.

Who manages requirements?
The subject of just who is responsible for managing the requirements is
worth an article in itself. One of the main reasons for IT project failure has
been lack of user involvement. I’m sure many readers have seen it: a
customer asks for a system, some requirements are written and the IT
department disappear for six months. When they resurface with the
finished system it might bear little resemblance to what was actually
wanted – assuming of course that what was actually wanted hasn’t changed
in the meantime.
Agile’s answer to this was to involve the customer, make them central to
the development process.
In Extreme Programming the role of the person who specified what was
wanted was actually called ‘the customer’. Yet while many XP advocates
seek to fill this role with an actual customer this is not always possible.
Indeed, the original XP case study, the Chrysler C3 project, staffed this
role with a Business Analyst.
Scrum calls for the person who really wants the system to get involved and
play the Product Owner role. But there are, at least, two problems with this
model. Firstly the person who plays the Product Owner may not have the
skills and experience necessary to play the role – just because they want
the software doesn’t mean they know how to work with a development
team.
Second, and a common complaint of Scrum teams, is a lack of time from
the person playing the Product Owner. If the person in question is
important enough to want the software they probably have other things to
do. Spending their days working with unwashed developers may not be
high on their priority list.
Indeed, the lack of time and consequent stress and pressure was highlighted
in a study as long ago as 2004 [Martin04]. Equally worryingly is the focus
on a single ‘customer’ can result in other stakeholder needs being
overlooked – a point made by Tom Gilb. Even if customers are put above
16 | Overload | February 2011

FEATUREALLAN KELLY

the focus on a single ‘customer’ can result in
other stakeholder needs being overlooked
and beyond stakeholders there is still a need to consider multiple
customers.
For example, Microsoft Word has several million customers. While these
customers may be segmented in various groups (Home, Business,
Education, etc.) something needs to be done to understand competing
needs, and priorities still need to be decided.
In short, the ‘end user’ as requirements gatherer and decider model –
whether the XP or Scrum version – has problems. What is needed is a
requirements professional who can take on these issues and be a proxy for
the final customer/users.
Keeping with the Scrum model this article will use the generic Product
Manager title to refer to the person(s) who decide what the software needs
to do. It is common to find a Business Analyst or Product Manager
performing the role, at least on a day to day basis. For more on these roles
see my earlier Overload articles [Kelly10a], [Kelly09b], [Kelly09a]. Other
titles like Requirements Engineer or Analyst are also used for those filling
these roles too but the basic skills set remains the same.
One role which is frequently asked to work on requirements but probably
should not is that of Project Manager. While some Project Managers move
between Business Analysis or Product Manager roles others confine their
role to delivery of projects. Sometimes these individuals are asked to take
part in the requirements gathering process. The problem is that
requirements elicitation is not part of most Project Manager training.
Take for example the UK PRINCE2 standard project manager
qualification. PRINCE 2 assume that what is wanted is known, the method
and techniques focus on breaking the work down, risk management,
scheduling and the like. It does not cover requirements analysis or capture
in any depth.

10-Step model overview
The 10 Step Model shown in Figure 2 outlines a framework for aligning
the work of requirements engineers – usually a Business Analysts or
Product Managers, often called a Product Owner – with Agile
development. The model may be considered a process, a checklist or just
an aide-memoire. The model attempts to relate various aspects of Agile
requirements analysis advocated by different authors.
The model assumes the classic Agile/Scrum/XP iteration, or sprint, time
boxed development episodes together with the product backlog / sprint
backlog mechanism defined in Scrum [Schwaber02] and XP [Beck00],
[Beck04]. These mechanisms can be seen in the lower right of the diagram.
Since much has been written about this cycle already this description will
focus on the wider requirements process.

1. Objective: the objective is given from outside the model – usually
from higher up the management chain. It is the reason the team is
brought into being, the reason the project is started, the goal the
work is aimed towards. (See [Kelly10d] for a longer discussion of
this.)

2. Stakeholders: stakeholders are those people, and groups of people,
who have some interest in the work being undertaken. Stakeholders

have their own objectives for the work which might, or might not,
align with the objective. Some stakeholders have more stake than
others, and some are more significant than others.
This step is not confined to stakeholder identification, it also
includes analysis of stakeholder ‘stake’: what stakeholders want
from the system, the constraints they impose, how it will create
value for them, and more.
The stakeholders group includes more than just customers. To start
with stakeholders can be split into two large groups: internal
stakeholders and external stakeholders. Within corporate IT
departments the former will be the larger group while in software
companies the latter.

Figure 2
February 2011 | Overload | 17

FEATURE ALLAN KELLY

once a need is identified, understood and
acceptance criteria specified, it is time to
actually do the work and develop the software
Within the external stakeholders group will be the ultimate customer
of the organization. More often than not this group will also benefit
from segmentation into specific sub-groups.

3. Vision: while the objective is owned by the powers that created the
team, the vision is created and owned by the team itself. The vision
both expands on the objective and answers the objective. If the
objective specifies a problem that needs solving the vision gives an
answer.

4. Roles: roles narrow the stakeholder base to consider those who will
actually interact with the system as envisaged by the vision. It is role
holders who interact with the system and thus their needs that need
to be considered when determining functionality.

5. Personas: personas expand and elaborate certain roles, adding
texture so requirements analysts, user design specialists and
software developers can better understand and empathise towards
those who will use the system. Not all roles will be developed into
full personas, and different personas will come to the fore at
different times.

As analysis proceeds from stakeholders through roles to personas
there is a natural narrowing shown in Figure 3

6. Create and manage stories: when objectives and users are well
understood it is time to start specifying what they system will do.
Whatever the format used to describe the specifications something
needs to be created. Once more than a few requirements have been
captured there becomes a need to manage what has been created.
This is the step into which much of the existing Agile literature fits:
writing User Stories, Managing the Product Backlog and so on. If
the 10-step model is being used as a process these process occur in
tandem.

7. Acceptance tests: once the essence of a story is captured some
description of what constitutes ‘done’ for the story needs be given.
How will developers know to stop writing code? Testers know when
to pass, or fail, functionality? And requirements specialists know
something has actually been done? The answer to all these questions
is a set of criteria that determines when a story is complete.

8. Development: once a need is identified, understood and acceptance
criteria specified, it is time to actually do the work and develop the
software. (Little needs to be said about this particular step because
much has already been written about how development happens in
Agile teams.)

9. Delivery: once a need is met the product needs to be delivered to the
customer. For some systems this is a trivial step, for others it is
complicated and involved. Delivering a system in multiple discrete

The basic unit of requirements specification and thus development work,
is termed a Story. The format and style of the story can vary widely. Many
teams like to use the User Story format: ‘As a [Role] I can [Action] So
that [Reason]’. This format is commonly associated with Mike Cohn,
although Cohn himself credits Rachel Davies [Cohn04], who in turn
credits the Connextra development team collectively.

I like to widen this format to allow for Personas and Stakeholders: ‘As a
[Role|Stakeholder|Persona] I can [Action] So that [Reason]’. Without
Stakeholders some User Stories become tortuous as the writer attempts
to give a reason to a role. Personas help bring focus to story and add
more background texture.

Although widely taken to be part of Scrum this format is absent from the
original Scrum texts [Beedle98], [Schwaber03], [Schwaber02]. Nor are
User Stories present in Beck’s Extreme Programming [Beck00],
[Beck04]. Beck discusses the idea of a ‘development story’ without
specifying how it is written.

While User Stories are perhaps the most widely used format some teams
still prefer to use Use Cases [Cockburn01] or make no attempt to follow
a particular format or style. Still other teams use Planguage [Gilb05].
While particularly useful for non-functional requirements Planguage is
not widely known and requires a particular skill to use effectively.

For the purposes of this discussion the term story will be used generically
to cover all possible formats. Story is taken simply to mean: a small piece
of development work to be undertaken.

What’s the Story?

Figure 3

Stakeholders

Roles

Personas

The work can
deliver value to

many stakeholders

Only some of
the stakeholders

have roles which will
use the product directly

Personas give greater
understanding of key roles
18 | Overload | February 2011

FEATUREALLAN KELLY
steps is very different from delivering a big-bang all or nothing.
Delivering a system as a shrink-wrapped installable software on a
CD is different to a software-as-a-service model.

10. Value Management: last but by no means least is the need to close
the loop and check that value is actually delivered. The key here is
linking the finished product back to stakeholders’ needs and
objectives. Few organizations can place a dollar amount on a single
piece of functionality, for some it may be impossible; but since all
requirements start with some stakeholder it should be possible to
link return to the stakeholder and check whether the thing that is
delivered creates value.

From stakeholders to value management
At first site it may seem odd for value management to appear at the end
but this step is about closing the loop, ensuring value was delivered not
just promised. There is a symmetry between the stakeholder and value
management steps. Stakeholders are ultimately the root of all
requirements, no matter how technical. At the end of the day someone,
somewhere, must want something from the system. For this person, the
stakeholder, there is value (perhaps not financial) to having this thing done.
Value can only be assessed if the stakeholders are known. If nobody wants
anything doing to a system then nothing should be done. If value cannot
be assigned to work then there is no reason to incur the cost.
The stakeholder might not know what work they want doing, and they are
often oblivious to the technical aspects, but then, there is no reason why
they should. The route between stakeholder and change may be complex
and non-obvious but it must exist.
Stakeholder analysis and value management are perhaps the two most
important steps and the two which certainly deserve more attention in
future.

More tools and techniques
There is certainly no shortage of tools and techniques available to the
contemporary business analyst or product manager for analysing needs.
Whether it is stakeholder analysts, win-loss reports, business analysts
modelling, UML diagrams or CATWOE the tools are available. This
model does not try to show where each and every tool may be used: not
only would it take too long but there are sometimes no clear answers.
What the model does do is, firstly, place outputs and expectations at the
start of the process: objective and stakeholders should provide a way in
here. Secondly it shows where these tools can be used: the stakeholders
and roles steps are about understanding customers and needs and it is in
these stages that most analysis tools come into play.
While some tools will work within single steps in this model other tools
will span multiple steps. The truth is, requirements discovery is not a neat
and tidy exercise that occurs in clear cut chunks. Like code development
it involves intuition, insight and inspiration which cannot be scheduled.
As a result those charged with discovering, understanding and
communicating activities are likely to have several different activity
streams occurring at once, overlapping and informing one another.
For example, in tandem with this model forward looking plans and
scenarios need to be maintained. Release plans and product roadmaps
[Kelly10c] are both informed by the information gathered in the model and
feed into the model.

Useful?
This is a deliberately brief explanation of the 10 Step model, I hope readers
find the model useful and I would appreciate any feedback on the ideas.

For me the model has already filled its original intention of helping explain
different aspects of Agile requirements.
I certainly find it helps explain and pull together some of the ideas floating
around the discussion on Agile Requirements. Although it is simplest to
explain as a process I shy away from calling it that. Rather I prefer to think
of it as a check-list and a guide
Perhaps it is better still to view this model as a starting point for your own
model. Which steps would you remove? Which would you add? Would
you reorder any?

References
[Alexander09] Alexander, I. & Beus-Dukic, L. 2009. Discovering

Requirements, Chichester, John Wiley & Sons.
[Beck00] Beck, K. 2000. Extreme Programming Explained, Addison-

Wesley.
[Beck04] Beck, K. & Andres, C. 2004. Extreme Programming Explained:

Embrace Change, Addison-Wesley.
[Beedle98] Beedle, M., Devos, M., Sharon, Y., Schwaber, K. &

Sutherland, J. 1998. Scrum: A Pattern Language for
Hyperproductive Software Development. Pattern Languages of
Program Design ‘PLoP’ Allerton Park Monticello, Illinois.

[Cadle10] Cadle, J., Paul, D. & Turner, P. 2010. Business Analysis
Techniques: 72 Essential Tools for Success, Swansea, BISL (BCS
books).

[Cockburn01] Cockburn, A. 2001. Writing Effective Use Cases, Addison-
Wesley.

[Cohn04] Cohn, M. 2004. User Stories Applied, Addison-Wesley.
[Commerce05] Commerce, O. O. G. 2005. Managing Successful Projects

with PRINCE2, London, TSO (The Stationary Office).
[Gilb05] Gilb, T. 2005. Competitive Engineering, Butterworth-

Heinemann.
[Kelly04] Kelly, A. 2004. ‘Why do requirements change?’ ACCU

Overload.
[Kelly08] Kelly, A. 2008. Changing Software Development: Learning to

Become Agile, John Wiley & Sons.
[Kelly09a] Kelly, A. 2009. ‘On Management #5 – The Product Manager.’

ACCU Overload.
[Kelly09b] Kelly, A. 2009. ‘On Management #6 – The BA role’. ACCU

Overload.
[Kelly10a] Kelly, A. 2010. ‘“I’m a BA get me out of here” – the role of

the Business Analyst on an Agile team’. ACCU Overload.
[Kelly10b] Kelly, A. 2010. ‘Objective Agility’ [Online]. Modern Analyst.

Available: http://www.modernanalyst.com/Resources/Articles/
tabid/115/articleType/ArticleView/articleId/1502/Objective-
Agility-what-does-it-take-to-be-an-Agile-company.aspx [Accessed
December 2010].

[Kelly10c] Kelly, A. 2010. ‘Three Plans for Agile’ [Online]. Toronto:
RWNG. Available: http://www.requirementsnetwork.com/node/
2663 [Accessed December 2010].

[Kelly10d] Kelly, A. 2010. ‘Time for Goal Driven Projects’ [Online].
Toronto: RQNG. Available: http://www.requirementsnetwork.com/
node/2597 [Accessed 23 December 2010].

[Martin04] Martin, A., Biddle, R. & Noble, J. Year. ‘The XP Customer
Role in Practice: Three Studies’. In: Agile Development Conference,
2004 2004 Salt Lake City, Utah.

[Schwaber02] Schwaber, K. & Beedle, M. 2002. Agile Software
Development with Scrum, Addison-Wesley.

[Schwaber03] Schwaber, K. 2003. Agile Project Management with
Scrum, Microsoft Press.
February 2011 | Overload | 19

http://www.modernanalyst.com/Resources/Articles/tabid/115/articleType/ArticleView/articleId/1502/Objective-Agility-what-does-it-take-to-be-an-Agile-company.aspx
http://www.modernanalyst.com/Resources/Articles/tabid/115/articleType/ArticleView/articleId/1502/Objective-Agility-what-does-it-take-to-be-an-Agile-company.aspx
http://www.modernanalyst.com/Resources/Articles/tabid/115/articleType/ArticleView/articleId/1502/Objective-Agility-what-does-it-take-to-be-an-Agile-company.aspx
http://www.requirementsnetwork.com/node/2663
http://www.requirementsnetwork.com/node/2663
http://www.requirementsnetwork.com/node/2597
http://www.requirementsnetwork.com/node/2597

FEATURE KEVLIN HENNEY
Rise of the Machines
Sometimes the world really is out to get you.
Kevlin Henney identifies some culprits.
n the space of a few syllables, the word resistentialism is packed with
humour, rhythm, profound insight, philosophy, multilingual wordplay
and astute commentary on much irksome code. Formed from res (the

Latin for thing), resistance and existentialism, what exactly does it mean?
And what does it have to do with code?

‘Resistentialism is a jocular theory in which inanimate objects display
hostile desires towards human beings.’ [Wikipedia]
‘The theory that inanimate objects demonstrate hostile behavior
toward us.’ [AWordADay]
‘The belief that inanimate objects have a natural antipathy toward
human beings, and therefore it is not people who control things, but
things which increasingly control people.’ [WordSpy]

In a nutshell, it’s about objects. Especially the ones that seem to thwart our
efforts and intentions:

The stateful and pervasive singleton object that increases the stealth
coupling of a system.
Complicated unit tests, reduced thread safety and tsunami rebuilds
are just a few of the symptoms. Although undoubtedly introduced
with the best of intentions – along with the multitude of other
singletons in your application clamouring for your attention,
initialisation and coordination – most singletons are short cuts and
band-aids (and band-aids for short cuts, and band-aids for band-aids
for...) that nurture a sense of resistentialism.
Uncohesive objects suffering from scope creep and overeducation.
They seem to know too much and do too much, greedily pulling in
as many responsibilities and dependencies as they can. For example,
value objects that also have service-like behaviour accessing an
external such as the file system, a database or the network. Or
classes that amass statics as well as instance-specific members, so
there is an implied and missing object responsibility, such as an
aggregating concept that collects or manages instances of the class.
Sleepwalking into a state of resistentialism, one feature at a time.
Anaemic objects, strangely free of any useful behaviour:
constructors that result in meaningless and yet-not-usable objects;
methods that fail to encapsulate common usage or reflect the actions
and queries of the domain; a type vocabulary that barely drags its
knuckles above strings, integers and collections. What you get
instead is a public method interface that is little more than a pass-
through for the private fields – for every field a get, for every get
a set. You cannot understand the system by looking at these objects
– they offer little more than object-oriented assembler. Although

trivial (even pointless) to test, they are incomplete and free of
meaning. Their behaviour is displaced and scattered around the
codebase, often holed up in large procedural or controller classes,
too difficult to test or to change with any confidence or comfort.
Resistentialism is the proclaimed and upheld belief system of the
code and those who work on it.

Perhaps the best thing about resistentialism is that you now have a blame-
free philosophical framework whose name you can call on in times of code
distress. And in those times of need you also have a word you can use in
polite company. Of course, in a well-crafted system, resistentialism is
futile.

References
[AWordADay] A Word a Day

http://wordsmith.org/words/resistentialism.html
[Wikipedia] http://en.wikipedia.org/wiki/Resistentialism
[WordSpy] Word Spy

http://www.wordspy.com/words/resistentialism.asp

I

Kevlin Henney is an independent consultant and trainer
based in Bristol. His development interestests are in patterns,
programming, practice and process. He is co-author of A
Pattern Language for Distributed Computing and On Patterns
and Pattern Languages.
20 | Overload | February 2011

http://wordsmith.org/words/resistentialism.html
http://en.wikipedia.org/wiki/Resistentialism
http://www.wordspy.com/words/resistentialism.asp

	Ah! The fog is lifting!
	Queue with Position Reservation
	Why Rationals Won’t Cure Your Floating Point Blues
	Overused Code Reuse
	The Agile 10 Steps Model
	Rise of the Machines
	Overload101_CoverONLY.pdf
	Ah! The fog is lifting!
	Queue with Position Reservation
	Why Rationals Won’t Cure Your Floating Point Blues
	Overused Code Reuse
	The Agile 10 Steps Model
	Rise of the Machines

