

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Benefits of Well Known Interfaces in Closed
Source Code
Arun Saha looks at the challenge of designing
good APIs.

8 Why Computer Algebra Won’t Cure Your
Floating Point Blues
Richard Harris tries to get a computer to understand
mathematics.

14 The Agile Spectrum
Allan Kelly considers the range of agility in teams.

18 On CMM, Formalism and Creativity
Sergey Ignatchenko looks at the pitfalls of some
methodologies.

21 Refactoring and Software Complexity
Variability
Alex Yakyma models how software complexity
can be improved.

24 Despair Programming
Teedy Deigh reflects on the damage that coupling
can cause.

OVERLOAD 102

April 2011

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 103 should be submitted
by 1st May 2011 and for
Overload 104 by 1st July 2011.

EDITORIAL RIC PARKIN
This Year’s Model
Design and development requires us to
think about the world. Ric Parkin considers
some ways of coping with the complexity.
How do you predict the future? Lacking a time
machine or a handy crystal ball, we have to resort to
more mundane methods. These usually involve
making a model, perhaps unconciously, that can
answer usefully relevant questions. Sometimes these
models can be of breathtaking simplicity: want to

predict what the weather will be like tomorrow? Look out of the window
– there’s a good chance that it’ll be the same as today! This not actually
that bad a model – in many places the weather tends to change only slowly
over time (and in many tropical climes stays pretty much constant over
the whole year). Also there are often stable weather patterns which persist
for many days, so making prediction easy – a high pressure over
continental Europe can remain there for many days, stretching into weeks.
The weather-obsessed UK is actually one of the hardest to predict – it sits
at the end of the northern jet stream, a high altitude band of fast winds
which start over north Africa and encircle the globe moving slowly
northward, across India, Japan, the US, and finally dissipating above the
UK. But as this ‘river in the sky’ is buffetted around it moves to the north
or south of the UK. As many Atlantic weather systems are guided by the
jet stream, if it’s sending them towards you then you know that the weather
will be very changable with bands of rain followed by clear spells. If it’s
dumping them over Iceland while a European high pressure extends over
the UK, you’ll have very stable weather – hot clear weeks over summer.
There – we’ve just extended our mental model to allow for even better
predictions, by understanding some of the processes that affect the result
we’re interested in. To go further you might start writing proper
mathematical or computer models of atmospheric circulations, to try and
predict finer details of how and when these large scale features change.
So what’s this got to do with software? Well, we use models a lot as well.
Sometimes they’re what we’re programming, but most likely they’re more
subtle than that. One will be a model of people’s intuition: if you’re
designing a user interface it is a good idea to understand how a user thinks
about what they want to do, and how your interface will fit into that
‘narrative’. A poor interface will cause them to come to a shuddering halt
as they work out what they need to do; a good interface by contrast meshes
well with their model and allows them to carry out their work with little
impedement. A good interface should appear ‘transparent’ to the user –
they just use it without conciously thinking.
One example I’ve had of this was when I was working on a program that
had a very strong visual aspect – networks of information were
represented by icons with links between them, and you could just pick up
and move the icons. One problem came at the edges of the screen – we

wanted an ‘auto-scroll’ feature to reveal more of
the virtual sheet of paper. To make thing more
complex you could drag from one window and
drop into another, so the obvious solution of

scrolling when you dragged outside didn’t work. To start with I tried
having a ‘sensitive zone’ just inside the window which would activate the
scrolling. Unfortunately people found they couldn’t control it. It would
start scrolling when they were doing something else, or scroll too fast so
they overshot they target, or scroll too slow so they were sitting there
waiting. I got a lot of bug reports and many change requests for this
suggesting all sorts of ideas, usually contradictory, and sometimes
suggesting a complete rethink, or wanting many options to ‘control’ it
(I’m of the opinion that many options are added that only give the
appearance of control, to hide the problem of things not working properly
– instead it transfers the problem of fixing it onto the user)! In this case I
persevered, and using the many complaints as inputs as to what sort of
things didn’t work finally came up with a simple but effective solution –
a delay before scolling started, long enough that it wouldn’t get triggered
accidentally; a fast outer and a slower inner sensitive zone, where scroll
speed increased the further out you went, increasing gently to start with
but quickly up to the edge. Suddenly people could control the scrolling,
its simplicity was easy to predict, and very quickly it became automatic
and all the change requests dried up – it had become invisible.
Another type of interface is an API used by programmers. These too
should strive to mesh with the mental model of what an interface should
do (and should not), otherwise confusion, frustration and bugs become the
norm. Arun Saha’s article in this issue deals with exactly this problem.
What other models do we use? Task time estimation is a very common
one, but how do we do it? We don’t just guess, we use our experiences to
come up with a reasonable estimate based on various factors. A start would
be a quick guess at how much work is involved, perhaps based on a
comparision with a similar task we’ve done before. We can also make
adjustments based on knowing how difficult it is to change code in the
relevant area – a good example of this is date and time processing, which
ought to be simple and yet we still see problems [BBC]. I have a theory
as to why this particular example is so error prone – it seems superficially
simple so people dive in, and yet when you look at the details needed for
various applications there are many subtle complications, from calender
changes (and countries changing at different times), time zones (including
historical changes), summer time change rules (and exceptions), all the
way down to taking into account leap seconds, the varying spin of the
earth, and the time dilation due to General Relativistic effects!
One factor that isn’t captured by a simple estimate is the spread of possible
outcomes – ‘two months’ sounds definite, but in reality it’ll normally be
‘around two months, a week earlier if all goes well, but could be three
months if we find problems. Four if they’re bad’. It’s hard to plan with
that sort of uncertainty. But models can come to our rescue here – we could
expect that as the worst case is really bad, but the best case is only a bit
better, then on average the most likely time will be a bit worse than the

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | April 2011

EDITORIALRIC PARKIN
simple estimate. If we use the expected time rather than the estimate time,
we’ve taken into account some of the inevitable problems.
However this assumes that the chance of a problem in a task is independent
of the probability of a problem in another task. While this may be true for
relatively seperate tasks, quite often in code the tasks will be related in
some way, perhaps by being in the same area of nasty buggy code. In
which case they are no longer independent, and our model is going to be
wrong, because if Task A is late, then the chances of Task B being late is
more than we suspected, so we have been optimistic.
We do have some hope though – if we suspect a group of tasks are not
independent, then we can use the actual time taken for some to adjust our
estimates for the later ones. eg Task A’s expected time was 1 month, but
took a week longer. So assuming Task B is dependent on the same issues
that caused that delay, we could adjust the estimate from 2 months to 2
weeks longer. This is very similar to Baysian Inference [Bayes] where you
adjust a probability based on new information gained from a non-
independent observation. (This is a strangely counter-intuative subject,
but can be very powerful.)
I would be interested to hear if anyone has tried this sort of adjustment –
I suspect it could work if Task A leaves the code with the same latent
problems, however refactoring to leave it in a better state will reduce the
adjustment needed. Perhaps an iterative adjustment is needed: in the light
of Task A adjust Task B, and in the light of that adjust Task C and so on.
This shows one of the fundamental things to be aware of in models – they
are a simplification of the world in order to make a prediction, but you
should be aware of what you have simplified and assumed, and when those
assumptions break down. In this issue we have an article by Alex Yakyma
on an attempt to build a model of software complexity, and it generated
quite a bit of discussion for many of these reasons – what were the model’s
assumptions and were they reasonable, were the factors really
independent, etc. All good questions – it would be interesting to see what
effects changing one of these assumptions would have? Or a more detailed
look at how task estimates combine under various assumptions, or some
other aspect of software development.

Anniversaries
Being a bi-monthly magazine, there are always a few notable
anniversaries coming and going, but this issue has had a few interesting
ones. There’s been much in the media about the 5th anniversary of Twitter.
That’s not very long, and yet it has become quite pervasive. To take two
recent examples – the recent ‘arab spring’ wave of demonstrations seem
to have been organised on an ad hoc basis by ordinary people using modern
decentralised communications. Even when the mainstream news were
controlled by a government, people were reporting events themselves via
mobile video, twitter updates and Facebook groups. The speed at which
these events unfolded was remarkable, based in no small part on cheap fast
mobile phones and computers.

There was also an uglier side to Twitter in the news as well. You may have
heard of a 13 year old called Rebecca Black. She’d recorded a song and
video [Black] which went viral and has had (at the last count) 66.9 million
views on Youtube (whose 6th anniversary is in April [Youtube]) and over
1.1 million comments, and was a top trend on Twitter. Unfortunately a lot
of the reaction was not just negative, but downright nasty. I won’t
comment on the song, but it seems the speed of modern commenting plus
the ability to be anonymous (or just in a crowd) can bring out the vicious
side of some people. This is not a new phenomenon either – there’s been
flame wars on email and newsgroups since they were invented, and with
‘fast reaction’ communication like Twitter it’s even easier to fire off an
ill-thought through, or even nasty, message. Perhaps a return to ‘slow’
communication would help? There’s been an add in for gmail for some
time now that forces you to answer some simple sums before it’ll send a
message, on the theory that if you’re tired and/or drunk enough to fail,
you’ll probably regret the email [Gmail]
More important to many of us I suspect, we have just passed the 30th
anniversary of the Sinclair ZX81 [ZX81]. This was the time when many
people were getting their first glimpse of home computing, even if most
didn’t know what to do with it! But there were many who didn’t care, and
just loved playing with getting this funny black box to do strange things.
With only 1K of RAM, which was used for data, code, and also for video
memory, applications were limited (you could get a ‘Ram pack’ to extend
memory by a whole 16K, but these were notoriously wobbly. Some swore
by blu-tac, I found a fabric plaster stabilised it enough). But that curse was
also a blessing – it forced people to be extremely clever at finding neat
ways of getting the most out of it, which some have suggested led to the
UK having such a lot of ingenious programmers.
Mobile phones are even older – the first call was made
on 3rd April 1973 by Martin Cooper [Cooper], who
was leading the research team at Motorola to buld one.
Who did he call? His rival at AT&T to tell him he’d
got one working first.

References
[Bayes] http://en.wikipedia.org/wiki/Bayesian_statistics
[BBC] http://www.bbc.co.uk/news/technology-12104890 and

http://www.bbc.co.uk/news/technology-12878517
[Black] http://en.wikipedia.org/wiki/Friday_(Rebecca_Black_song)
[Cooper] http://inventors.about.com/cs/inventorsalphabet/a/

martin_cooper.htm
[Gmail] http://gmailblog.blogspot.com/2008/10/new-in-labs-stop-

sending-mail-you-later.html
[Youtube] First ever video: http://www.youtube.com/

watch?v=jNQXAC9IVRw
[ZX81] http://en.wikipedia.org/wiki/ZX81
April 2011 | Overload | 3

http://en.wikipedia.org/wiki/Bayesian_statistics
http://www.bbc.co.uk/news/technology-12104890
http://www.bbc.co.uk/news/technology-12878517
http://en.wikipedia.org/wiki/Friday_(Rebecca_Black_song)
http://inventors.about.com/cs/inventorsalphabet/a/martin_cooper.htm
http://inventors.about.com/cs/inventorsalphabet/a/martin_cooper.htm
http://gmailblog.blogspot.com/2008/10/new-in-labs-stop-sending-mail-you-later.html
http://gmailblog.blogspot.com/2008/10/new-in-labs-stop-sending-mail-you-later.html
http://www.youtube.com/watch?v=jNQXAC9IVRw
http://www.youtube.com/watch?v=jNQXAC9IVRw
http://en.wikipedia.org/wiki/ZX81

FEATURE ARUN SAHA
Benefits of Well Known
Interfaces in Closed Source Code
Designing a good API is a significant challenge. Arun Saha
suggests taking inspiration from outside.
he availability of a high quality data structure library is a necessary
ingredient for the success and timely completion of any software
project. It allows the programmers to focus on the problem domain

rather than the solution domain. But what are the options if no such library
is available and an in-house one has to be developed? Fortunately, all is
not lost. The in-house library can be designed to use a standardized or well-
known interface, which reduces a lot of the strategic design, tactical design,
testing, learning, adaptation, and maintenance efforts. This article focuses
on two key aspects, interface design and functional testing.

Introduction
Consistent use of a library keeps uniformity, both syntactic and semantic,
across a project. It is essential for the development and maintenance of any
large or multi-programmer code base. In C++, the standard library
specifies a bunch of data structures (a.k.a. containers) (for example,
array , vector , list , map , set , unordered_map ,
unordered_set, bitset) and algorithms (for example, find,
search, sort, partial_sort) that are usable with any suitable built-
in or user-defined type [C++2011, relevant sections: 20, 23, 24, 25]. The
availability of the standard library provides immense benefits to a project:
the programmers can look beyond the repetitive structural and algorithmic
issues and focus more on the issues of the problem domain. The first
implementation of such a type independent library was published by SGI
and is known as Standard Template Library.
Although these containers and algorithms are specified in the C++
standards (C++1998, C++2003, and upcoming C++0x), they are not part
of the core C++ language; the library extends the language to provide some
general components [Josuttis99].
There are multiple implementations of the C++ standard library available.
Among them, SGI, GNU and STLport are open-source implementations,
and Dinkumware is a commercial one. [Implementations]
However, there exist systems and environments, mostly embedded
systems, where the C++ language is used without the standard library. One
such example is ‘Embedded C++’ [EC++]; it is a subset of C++ which
prohibits templates (among other things) and thereby a major part of
standard library, including the containers and the algorithms, is
unavailable.
If some project wants to use the standard library and if one of the open-
source implementations is technically and legally suitable, then that can
be chosen to be used – end of story.

However, in a commercial software or a proprietary code base, using open-
source software is frequently not an option. There are multiple reasons, and
the following is a non-exhaustive list:

licensing or legal issues (for example, the requirement of publishing
derivative work or modifications to the open-source code)
the code is not actively maintained (for example, as of March 2011,
the latest release of STLport is from December 2008)
the code is not well documented and hence difficult to understand
and maintain
the code does not match the in-house development policies or
coding standards (for example, the use of exceptions or asserts) and
changing them requires significant rework.

Thus, the commercial houses have two major options for using a C++ data
structure library:

Option A : Purchase the library software from a vendor and license
it appropriately
Option B : Develop the necessary library in-house.

Our experience is with Option B (Develop), and in the remainder of this
article we shall share two major lessons learned from that choice. One is
the interface design and the other is comparative testing.

Interface design
The first and foremost item in developing a library is designing the
interface. By interface, we mean all the public methods and attributes that
are visible to the user code. While it is possible to design an interface in
multiple ways, it is hard to produce the ‘right’ one. However, though the
choice of Option B means developing an in-house implementation,
fortunately there is still something that can be ‘borrowed’ from the C++
standard library. The interface!
For the interface of the to-be-developed library, our recommendation is to
choose exactly the one specified in the C++ standard.
There are many reasons why.

It is the standard
API design is hard. A study of the obstacles faced by developers when
learning APIs [Robillard09] notes:

APIs support code reuse, provide high-level abstractions that
facilitate programming tasks, and help unify the programming
experience (for example, by providing a uniform way to interact with
list structures).

The interface of the C++ standard library is widely known; virtually every
C++ programmer is aware of it. For example, to insert an item at the end
of a list or vector, the de facto, the idiomatic, and the most natural way
is to use the method push_back().

T

Arun Saha is a senior member of technical staff at Fujitsu
Network Communications, Sunnyvale. He works on security
and accuracy in wireless localisation and carrier ethernet
switching. He is the author of Secure Protocols for
Location, Adjacency, and Identity Verification. He can be
reached at: saha@cs.ucr.edu The opinions expressed in this article are solely the author’s – not his

employer’s.
4 | Overload | April 2011

FEATUREARUN SAHA

It would be a bigger pity if programmers
have to, on top of that, learn different

APIs for doing the same job
Since it is the standard, some other benefits include:
Known Roadmap: Between the library developers and the library
users, there is a clear understanding about what is offered or may be
offered versus what is not.
Reference point: In case of any confusion or disagreement internal
to the library development team or between library developers and
library users, the standard specification serves as the authoritative
reference point.
Time savings: Following a standard eliminates the design debates
and the time spent on interface design.
Superior Design: The API of the C++ standard library is
standardized by the C++ standardization committee which includes
many of the world's top C++ experts. Over the time, it has also been
reviewed by other experts outside the committee and used by
thousands of projects by millions of users. As a result of such
rigorous analysis, extensive review, and widespread use, the
interface has become so robust that it would be short sighted to
ignore it.
Cultural effect: The users of the library have the feel of using the
C++ standard library, albeit an in-house implementation.

Lower barrier to entry
One of the costs (and often a barrier) of using a library is learning its
interface. The aforementioned study warns that:

APIs have grown very large and diverse, which has prompted some
to question their usability. It would be a pity if the difficulty of using
APIs would nullify the productivity gains they offer.

It would be a bigger pity if programmers have to, on top of that, learn
different APIs – for example the C++ standard library and potentially
different in-house libraries at different organizations – for doing the same
job, such as inserting an element to a list. The number of APIs that we
are talking here is large: dozens of classes, each with scores of methods,
scores of algorithms, and a long list of idioms and good practices. There
exists a significant amount of material – books, articles, tutorials, blogs,
forums, newsgroups, mailing lists – on aspects of the C++ standard library;
it is a substantial learning curve to master them and become an effective
user.
If the in-house library uses the same API as the C++ standard library, then
the cost of training the programmers is completely eliminated (or
drastically reduced) because they can simply continue to apply their pre-
acquired knowledge (or learn from already existing materials). This
applies equally well for the C++-skilled programmers who are hired in
future. On the contrary, if the in-house library is built with a different API,
all the knowledge and mastery suddenly becomes useless.

Long term impact
Any software interface, standardized or otherwise, has long term
implications. The implementation can be easily modified, but once it is
published and the remaining code base starts using it, changing an interface

is extremely hard. Choosing an already stable interface reduces such
impacts.
Also, if for some reason, in future, the organization wants to switch from
Option B (Develop) to Option A (Purchase), then the migration is
extremely easy because all user code is written against the same interface.

Rule of least surprise
The Art of Unix Programming [Raymond03] observes:

The easiest programs to use are those that demand the least new
learning from the user – or, to put it another way, the easiest
programs to use are those that most effectively connect to the user’s
pre-existing knowledge.

So, following an existing standard is the most natural choice to make.

Testability
If the in-house library follows the same interface as the C++ standard
library, then testing the correctness of the library is much easier. This
important aspect is now explained in more detail.

Testing
The choice of interface specification is a good first step, but that itself is
not sufficient. The crucial design invariant – the interface compatibility
with the C++ standard library – has to be actively maintained. That leads
to the following questions:

Syntax conformance Does the in-house library conform to the
interface specified by the C++ standard library?
Semantic conformance Does the in-house library provide
behaviour exactly as specified in the C++ standard library?

The solution that we found most useful is to develop a test suite for the
library with the following strategy:

1. Each unit of the library, for example a container, an iterator, an
algorithm, or an allocator has its own unit test.

2. Separate unit tests are independent and stand-alone C++ programs,
all of which are run in a regression suite.

3. The unit tests verifies the behaviour of a unit against the
specification in the C++ standard.

4. A unit test exercises each interface of the unit in all possible ways.
It is best to explain with examples. In the following, excerpts from the
vector test code are shown.

Comparative testing
All the tests follow a common structure: at the beginning of the test code,
a control is provided to run the test against either a reference standard, or
the in-house code. Listing 1 shows the structure for vector.
First it defines the type of the elements that the vector consists of. For
simplicity in this example, we used the built-in type unsigned long
int, although it could be any user defined type (struct or class).
When the macro STD_REF is defined, we run this unit test on a reference
April 2011 | Overload | 5

FEATURE ARUN SAHA

Overall, it has proven to be a great step
in reducing software complexity in the
organization’s code base
implementation of the standard library. Otherwise, we run this unit test on
the in-house library. Observe that, in both ways of setup, we defined a type
named TypeVector. The remainder of the file vector_test.cpp runs

all tests on TypeVector, without any knowledge of the source of the
library code.
Thus we have a simple way of choosing one among many possible vector
implementations and run the unit test on the chosen one. If the
implementations conform to the C++ standard, then the unit test would
compile with all of them, and execute to produce identical results in all of
them.

Test construction
The next task of the unit testing strategy is creating the test cases. All the
test cases are created as a sequence of two steps:

1. Do some operation(s) on the unit (here, vector).
2. Programmatically verify that the properties and contents of the data

structure matches the expected result(s).

The rest of Listing 1 shows an example of some simple test cases applied
on vector, where programmatic verification is done using asserts.
It tests some methods of vector (empty(), push_back(), size(),
front(), back(), at(), begin(), end(), clear(), operator[])
and the type vector::iterator.
For each unit, the conformance and correctness testing consists of few
simple steps. The steps for compiling and running for vector are as
follows:

1. CC := g++ -W -Wall -Werror -ansi -pedantic
-std=c++0x

2. CC -DSTD_REF -D_GLIBCXX_DEBUG vector_test.cpp -o
ref_vector

3. CC vector_test.cpp -o inhouse_vector
4. ./ref_vector
5. ./inhouse_vector

Things to note for these steps:
Build settings The compiler used is the GNU C++ compiler with all
the warnings turned on and strict conformance to the C++0x
standard.
For use in the target environment, the in-house library is (cross)
compiled and linked with a different C++ compiler, and
(successfully) run on a different OS on a different CPU.
Reference build The unit test code is built to be run with the
reference standard library. Also, the GNU STL debug macro is
defined for strict checks. Successful completion of this step implies
that the unit test code in vector_test.cpp is syntax compliant
with the reference C++ standard library.
Inhouse build The unit test code is built to be run with the in-house
library. Successful completion of this step along with the previous
step implies that the in-house library is also syntax compliant with
the C++ standard.

Listing 1

// vector_test.cpp
typedef unsigned long int Type;
#ifdef STD_REF
 #include <vector> // From standard library
 typedef std::vector< Type > TypeVector;
#else
 #include "vector.hh" // From in-house library
 typedef inhouse::vector< Type > TypeVector;
#endif
typedef TypeVector iterator TypeVectorIter;

#include <cassert>
#define UNIT_TEST assert

static const Type Values[] = {10, 20, 30, 40, 50,
 60, 70};
static const size_t ValuesLength =
 sizeof(Values) / sizeof(Values[0]);
int main() {
 size_t valuesIndex = 0;
 TypeVector vut; // Vector Under Test

 UNIT_TEST(vut.empty());
 for(valuesIndex = 0;
 valuesIndex < ValuesLength;
 ++valuesIndex) {
 vut.push_back(Values[valuesIndex]);
 }

 UNIT_TEST(! vut.empty());
 UNIT_TEST(vut.size() == ValuesLength);
 UNIT_TEST(vut.front() == Values[0]);
 UNIT_TEST(vut.back() ==
 Values[ValuesLength - 1]);
 valuesIndex = 0;
 for(TypeVectorIter it = vut.begin();
 it != vut.end();
 ++it, ++valuesIndex) {
 UNIT_TEST(*it == Values[valuesIndex]);
 UNIT_TEST(*it == vut[valuesIndex]);
 UNIT_TEST(*it == vut.at(valuesIndex));
 }
 UNIT_TEST(valuesIndex == ValuesLength);
 UNIT_TEST(! vut.empty());
 vut.clear();
 UNIT_TEST(vut.empty());
 }
6 | Overload | April 2011

FEATUREARUN SAHA
Reference execution The unit test is executed on the reference
standard library. Successful completion implies that the unit testing
code (vector_test.cpp) is semantically correct.
Inhouse execution The unit test is executed on the in-house library.
Successful completion proves that the in-house library is
semantically compliant to the C++ standard. In other words, the in-
house vector implementation exhibited expected standard
behavior.

This example is rather simplistic, it uses only few member functions
available in vector. In reality, there are lot more methods in the vector
template class. To obtain basic confidence in the conformance and
correctness of the in-house library, the unit test code tests each method in
isolation. Then the methods are tested in different combinations and
sequences.

Other experiences
Without risking any non-conformance to the standard interface, the
implementation of the in-house library can offer some niceties which may
or may not be available in other implementations. Here are two examples.

Have log/trace messages at important points in the code that can be
triggered based on a log level selected by the user code. For
example, generation of log messages whenever memory is allocated
or deallocated.
Maintain class invariants. For example, in the list class template,
we kept the following private attributes:

size_: number of elements in the list (this also helped the
size() method to have O(1) complexity)
news_: number of times an element is added to the list.
deletes_: number of times an element is removed from the
list.

Thus we had the following invariant
 news_ - deletes_ == size_

We asserted on this invariant as a pre-condition and post-condition
of every mutator method in the list class template.

Some other general strategies:
Writing the unit tests (for example vector_test.cpp) before
implementing the unit (for example vector). Since it is known
what exactly to expect, the development of a standards compliant in-
house library is an ideal scenario for applying the principles of Test
Driven Development [TDD], and employing it has been immensely
helpful to us.
Comparison of program size, for example comparing size between
ref_vector and inhouse_vector
Comparison of program speed, for example comparing running time
between ref_vector and inhouse_vector

Conclusion
Consistent interfaces make life easier. The same is true for software
development. This article emphasizes that the interface provided by the
C++ standard library, which sometimes go unappreciated and
overlooked,is very valuable by itself. As the author of the in-house library,
it has been realized numerous times that choosing to follow the standard
interface was the most important design decision that was made. Following
the interface conventions as in the C++ standard library has tremendously
helped (non-library) programmers to easily understand and easily use the
newly written in-house library. It brought the programmers to a common
and consistent style both syntactically and semantically. Overall, it has
proven to be a great step in reducing software complexity in the
organization’s code base.

References
[C++2011] ‘Working Draft, Standard for Programming Language C++’,

02 2011. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2011/n3242.pdf

[EC++] ‘The Embedded C++ specification’, 1999.
http://www.caravan.net/ec2plus/spec.html

[Implementations]‘Dinkumware C++ Standard Library’.
 (http://www.dinkumware.com/), ‘The GNU C++ Library
Documentation’ (http://gcc.gnu.org/onlinedocs/libstdc++/), ‘SGI
Standard Template Library Programmer’s Guide’, 1994 (http://
www.sgi.com/tech/stl/), ‘STLport C++ Standard Library’ (http://
www.stlport.org/)

[Josuttis99] N. M. Josuttis, The C++ Standard Library, A Tutorial and
Reference. Addison-Wesley, 1999.

[Raymond03] E. S. Raymond, The Art of Unix Programming, 2003.
http://catb.org/~esr/writings/taoup/html/
ch01s06.html#id2878339

[Robillard09] M. P. Robillard, ‘What Makes APIs Hard to Learn?
Answers from Developers’, IEEE Software, vol. 26, no. 6, 2009.
http://www.cs.mcgill.ca/~martin/papers/software2009a.pdf

[TDD] ‘Test-driven development’, accessed 2011-March-10.
 http://en.wikipedia.org/wiki/Test-driven_development
April 2011 | Overload | 7

http://www.dinkumware.com/
http://gcc.gnu.org/onlinedocs/libstdc++/
http://www.stlport.org/
http://www.stlport.org/
http://www.cs.mcgill.ca/~martin/papers/software2009a.pdf
http://catb.org/~esr/writings/taoup/html/ch01s06.html#id2878339
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.caravan.net/ec2plus/spec.html
http://en.wikipedia.org/wiki/Test-driven_development

FEATURE RICHARD HARRIS
Why Computer Algebra Won’t
Cure Your Floating Point Blues
Numerical computing is proving quite a challenge.
Richard Harris sees if a computer can do mathematics.
1

5

1 2

n the first article in this series we covered floating point arithmetic, its
relatively benign rounding errors, its devastating cancellation errors and
their slightly surprising order of execution sensitivity.

In the second article we moved on to fixed point arithmetic and found that
it can suffer even more greatly than floating point arithmetic from these
failure modes.
In the third article we covered rational numbers and found that when
dealing with non-linear equations we must make a decision about how
accurately we wish to approximate their results and consequently expose
ourselves to exactly the problems we have with floating point numbers.

Computer algebra
So, again, can we do any better?
Well perhaps we could explicitly manipulate mathematical formulae
rather than approximately evaluate them at each step of a calculation. For
example, when taking the square root of 2 we should return a result that
represents the operation itself rather than its result; something along the
lines of "sqrt(2)". When the calculation is complete we could then evaluate
it to any precision we desire. We will have effectively moved from
arbitrary precision to infinite precision and will thereby have addressed all
of the weaknesses of our other numerical representations.
Manipulating string representations of formulae would be rather unwieldy,
so instead we shall represent them with trees. For example, the formula
for the golden ratio

can be represented by the tree given in Figure 1.
The nodes of the tree should be interpreted as the application of the
operation they contain to the results of the nodes below it, with the leaf
nodes being equated to the numbers they contain.
Such representations are often referred to as expression objects since the
values they contain capture complete expressions rather than their results.

An expression class
We begin with a base class which will represent an abstract expression, as
shown in Listing 1.
Naturally, we shall need a virtual destructor to ensure that derived objects
are properly cleaned up.
The approx function shall compute the result of the expression using
double precision floating point arithmetic whereas the exact method
shall return the nth decimal digit of the result of the expression, with
negative n being to the right of the decimal point and non-negative n to

the left. We shall use the empty constant to indicate that there are no
further digits to the left and, in the event that we can exactly represent a
number, to the right of the decimal point. Note that we shall not allow
leading or trailing zeros for any result other than zero itself, which shall
have a zero digit at the zero’th position and shall have all other digits equal
to empty.
Finally, the sign function shall indicate the sign of the expression.
The first thing we shall need is a derived class to represent the leaf node
constant arbitrary precision integer values. Naturally, we shall use
bignums [Harris10] since we need to be capable of representing any
integer, no matter how large. Listing 2 provides the definition of this class.
Note that since we shall treat this as an object type, and hence interact with
it through pointers, we can afford to make the member data const and
public. We shall deal with assignments by replacing the objects
representing expressions rather than changing their states.
The constructor and destructor are straightforward, as shown in Listing 3.
The approx member function isn’t so very much harder to implement,
provided we don’t care too much about recovering every last digit of

I

1
2
--- 1 5+()

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and numerical
computing and is currently employed writing software for financial
regulation.

Figure 1

Listing 1

class expression_object
{
public:
 enum{empty=0xE};
 virtual ~expression_object() = 0;
 virtual double approx() const = 0;
 virtual unsigned char
 exact(const bignum &n) const = 0;
 virtual bignum::sign_type sign() const = 0;
};

expression_object::~expression_object()
{
}

8 | Overload | April 2011

FEATURERICHARD HARRIS

I'm reasonably happy to trade a relative error
of the double precision epsilon in return for
such a simple and efficient implementation
precision and are a little blasé about overflow. A naïve implementation is
given in Listing 4.
Here we simply iterate backwards over the digits of the bignum
accumulating the sum of their values multiplied by the scale implied by
their position.
Note that since the sum of the less significant digits might result in a carry,
the true approximate result might require adding 1 to the least significant
bit of the mantissa. That said, I'm reasonably happy to trade a relative error
of the double precision epsilon in return for such a simple and efficient
implementation.
If a call to pow overflows we shall have a result of plus or minus infinity,
which isn't so very bad since infinity is a pretty good approximation of a
number too big to fit into a double.
The exact member function is even simpler, albeit rather less efficient,
provided we have an integer equivalent to the pow function for bignums,
as shown alongside the sign member function in Listing 5.
It would be extremely irritating to interact with this numeric type by
directly managing object pointers. To avoid having to do so, we shall use
a wrapper class, as shown in Listing 6.
Note that we shall keep track of our expression objects with a reference
counted shared_ptr such as the one found in the Boost library.

The constructors are, as has consistently been the case, relatively
straightforward as shown in Listing 7.
Note that, for convenience, we treat uninitialized or null initialised
expressions as being equal to 0.

Listing 2

class integer_expression : public
expression_object
{
public:
 explicit
 integer_expression(const bignum &value);
 virtual ~integer_expression();

 virtual double approx() const;
 virtual unsigned char
 exact(const bignum &n) const;
 virtual bignum::sign_type sign() const;
 const bignum value;
};

Listing 3

integer_expression::integer_expression(
 const bignum &value)
: value(value)
{
}

integer_expression::~integer_expression()
{
}

Listing 4

double
integer_expression::approx() const
{
 typedef bignum::data_type::const_iterator
 const_iterator;
 double x = 0.0;
 double y = 1.0;
 size_t i = value.magnitude().size();

 const_iterator first =
 value.magnitude().begin();
 const_iterator last =
 value.magnitude().end();

 while(first!=last && x!=y)
 {
 const double m =
 pow(double(bignum::mask)+1.0,
 double(--i));

 y = x;
 x += m * double(*--last);
 }

 return
 (value.sign()==bignum::positive) ? x : -x;
}

Listing 5

unsigned char
integer_expression::exact(const bignum &n) const
{
 if(n<0L) return empty;
 const bignum m = pow(bignum(10L), n);

 if(m>value) return n==0 ? 0 : empty;
 return (value/m).magnitude().front() % 10;
}

bignum::sign_type
integer_expression::sign() const
{
 return value.sign();
}

April 2011 | Overload | 9

FEATURE RICHARD HARRIS

It would be extremely irritating to interact
with this numeric type by directly managing
object pointers
The approximate and exact evaluation functions and the data access
method are similarly simple and are given in Listing 8.
The compare member function can also be implemented quite simply,
provided we are comfortable with the expense of subtracting two
expressions during its calculation, as shown in Listing 9.
Now, this isn’t going to work until we implement the arithmetic operators,
so we shall get right to it!
Unfortunately, these are a little more complicated to get working properly
for exact evaluation. We shall, therefore, implement just approximate

evaluation for now as an indication of the general approach and we shall
return to exact evaluation later.

Approximate evaluation
We shall use subtraction as an example since we’re already using it; the
remaining operators will be more or less the same.
The class definition for the subtraction expression is provided in Listing
10.
As ever, we have a trivial constructor and destructor, given in Listing 11.

Listing 6

class expression
{
public:
 typedef shared_ptr<expression_object>
 object_type;
 enum{empty=expression_object::empty};
 expression();
 expression(const bignum &x);
 explicit expression(const object_type &x);
 double approx() const;
 unsigned char exact(const bignum &n) const;
 bignum::sign_type sign() const;
 object_type object() const;
 int compare(const expression &x) const;
 expression & negate();
 expression & operator+=(const expression &x);
 expression & operator-=(const expression &x);
 expression & operator*=(const expression &x);
 expression & operator/=(const expression &x);

private:
 object_type object_;
};

Listing 7

expression::expression()
 : object_(new integer_expression(0L))
{
}
expression::expression(const bignum &x)
 : object_(new integer_expression(x))
{
}
expression::expression(const object_type &x)
 : object_(x ? x :
 object_type(new integer_expression(0L))
{
}

Listing 8

double
expression::approx() const
{
 assert(object_);
 return object_->approx();
}
unsigned char
expression::exact(const bignum &n) const
{
 assert(object_);
 return object_->exact(n);
}
bignum::sign
expression::sign() const
{
 assert(object_);
 return object_->sign();
}
expression::object_type
expression::object() const
{
 return object_;
}

Listing 9

int
expression::compare(const expression &x) const
{
 const expression d = *this - x;

 if(d.exact(bignum(0L))==0 &&
 d.exact(bignum(1L))==empty &&
 d.exact(bignum(-1L))==empty)
 {
 return 0;
 }
 return d.sign()==bignum::positive ? 1 : -1;
}

10 | Overload | April 2011

FEATURERICHARD HARRIS

it is but a short step to implement an
expression object to represent

algebraic variables
The approx function simply approximately evaluates lhs and rhs and
subtracts the double resulting from the latter from that resulting from the
former, as shown in Listing 12 together with the exact evaluation methods
that shall, for now, throw an exception.
Note that the return statements aren’t strictly necessary, but they keep my
compiler happy.
We use this class in the implementation of the subtraction operation of the
expression class, as given in Listing 13.
Note that we shall effectively use the C++ operator precedence rules to
implicitly build the expression tree, saving us from the tedious task of
building it explicitly.
For example
 x+y*z

will be translated as
 operator+(x, operator*(y, z))

which, assuming we implement the free arithmetic operations in terms of
the in-place arithmetic operations, would result in
 expression(x)+=(expression(y)*=z)

and hence the required expression tree.

Rearranging expressions
An immediate advantage of such an approach is that by examining the run-
time type information of the underlying expression objects we can
transform one expression tree into another, simpler one that has an
identical value.
For example, we could implement a simplify function that could
manipulate the terms in an expression looking for a simpler representation.
Using such a function we might expect
 assert(simplify(x*y/x).object()==y.object());

to pass for expressions x and y.

Expression variables
From here it is but a short step to implement an expression object to
represent algebraic variables and I should like to explore the ramifications
of this before discussing the exact evaluation of expressions. Listing 14
illustrates just such a class.

Listing 10

class subtraction_expression :
 public expression_object
{
public:
 subtraction_expression(const expression &lhs,
 const expression &rhs);
 virtual ~subtraction_expression();
 virtual double approx() const;
 virtual unsigned char
 exact(const bignum &n) const;
 virtual bignum::sign_type sign() const;

 const expression lhs;
 const expression rhs;
};

Listing 11

subtraction_expression::subtraction_expression(
 const expression &lhs, const expression &rhs)
 : lhs(lhs), rhs(rhs)
{
}

subtraction_expression::~subtraction_expression()
{
}

Listing 12

double
subtraction_expression::approx() const
{
 return lhs.approx() - rhs.approx();
}

unsigned char
subtraction_expression::exact(
 const bignum &n) const
{
 throw std::runtime_error("");
 return empty;
}

bignum::sign_type
subtraction_expression::sign() const
{
 throw std::runtime_error("");
 return bignum::positive;
}

Listing 13

expression &
expression::operator-=(const expression &x)
{
 object_ = object_type(
 new subtraction_expression(*this, x));
 return *this;
}

April 2011 | Overload | 11

FEATURE RICHARD HARRIS

computer algebra systems are immune
to the problems that arise from
cancellation error when approximating it
using finite differences
The constructor and destructor are given in Listing 15. Note that we can
give the variable a value by assigning to the expression that it holds a
reference to.
The evaluation member functions simply forward to the value reference,
as shown in Listing 16.

Computer algebra systems
Now that we have an algebraic variable, we can represent algebraic
expression and apply simplify to them too. In this sense expression
objects lie at the heart of computer algebra systems such as Mathematica,
MathCAD and even some top of the range calculators.
Figure 2 illustrates the result of simplifying on my own
calculator [Texas].
We can go further still; if simplify can transform an expression tree than
why not differentiate, or integrate or any other algebraic
manipulation for that matter?
Figure 3 illustrates the calculation of the derivative of ex at 1 and
conclusively demonstrates that computer algebra systems are immune to
the problems that arise from cancellation error when approximating it
using finite differences.

x y x÷×

Listing 14

class variable_expression :
 public expression_object
{
public:
 explicit variable_expression(
 const expression &value);
 virtual ~variable_expression();

 virtual double approx() const;
 virtual unsigned char
 exact(const bignum &n) const;
 virtual bignum::sign_type sign() const;

 const expression &value;
};

Listing 15

variable_expression::variable_expression(
 const expression &value) : value(value)
{
}

variable_expression::~variable_expression()
{
}

Listing 16

double
variable_expression::approx() const
{
 return value.approx();
}

unsigned char
variable_expression::exact(const bignum &n)
const
{
 return value.exact(n);
}

bignum::sign_type
variable_expression::sign() const
{
 return value.sign();
}

Figure 2

Figure 3
12 | Overload | April 2011

FEATURERICHARD HARRIS
Figure 4 illustrates the calculation of the indefinite integral of x ln(x). This
is quite a tricky integral unless you are familiar with the technique of
integration by parts, which my calculator evidently is.
To check that this is the correct answer we need only differentiate it and
confirm that we get the expression being integrated.

Unfortunately, however, closed form results may be impossible to achieve
in general. As an example, consider the expression

My calculator’s evaluation of this reflects the fact that it has no closed form
solution, as shown in Figure 5.
In practice computer algebra systems are extremely good at applying
lengthy sequences of relatively simple manipulations but tend to struggle
when more subtle sequences of transformations are required.

Exact evaluation
Now let’s finally return to the issue of exact evaluation.
I’m afraid that I must admit that I’m not entirely sure how to do it.
Presumably we shall need to implement algorithms that can perform
numerical operations to arbitrary precision and cache any working data so
that we can extend the number of digits without recalculating those that
we have already found.
This might not be too unreasonably difficult for basic arithmetic, but I
suspect that implementing numerical algorithms such as integration and

differentiation might prove a little trickier. By trickier, I naturally mean
demonstrably impossible in general.
Unfortunately there is one major problem that such approaches cannot
address. Recall that in order to make comparisons tractable we mandated
that exactly representable numbers must have no trailing zeros. If they are
not terminated with an empty value we cannot know that we have
exhausted every non-zero digit after the decimal point.
For many expressions it is not a simple task to determine if a digit should
have an empty value. As an example, consider the expression

This is exactly equal to zero for every value of x, but the first two terms
won’t be exactly representable as a decimal fraction for almost all values
of x. The addition of the first two terms shall inevitably be trapped in the
endless production of zeros, hopelessly searching for a non-zero trailing
digit.
The only way we shall escape this fate is to implement a full blown
computer algebra system that can simplify all such difficult expressions
into forms that can be computed in finite time.
No such system currently exists and, I am sorry to report, no such system
ever will.
In 1931 Kurt Gödel proved that there are either infinitely many
mathematical propositions that cannot be proven or disproven, or that it is
possible to prove propositions that are false and that consequently the rules
of mathematics are internally inconsistent [Gödel31].
This caused something of a stir in the mathematical community, who had
hitherto been labouring under the illusion that both everything that was true
could be proven and that everything that could be proven was true.
Modern mathematicians have come to terms with the fact that there are
unprovable truths, or more accurately that there are undecidable
propositions, mainly because the alternative is far too bitter a pill to
swallow; internal consistency is simply too important to sacrifice.
Alan Turing took up the torch when he settled the decision problem and
demonstrated that it wasn’t always possible to determine whether a
proposition was decidable or not [Turing37].
Expression objects are therefore superducks; capable of meeting all of our
numerical requirements in a single bound but, like their counterpart
Superman, are unfortunately wholly fictional in practice.
Quack, quack and away!

References and further reading
[Gödel31] Gödel, K., ‘Über formal unentscheidbare Sätze der Principia

Mathematica und verwandter Systeme’, I. Monatshefte für
Mathematik und Physik, vol. 38, pp. 173-198, 1931.

[Harris10] Harris, R., ‘You’re Going to Have to Think; Why Fixed Point
Won’t Cure Your Floating Point Blues’, Overload 100, ACCU, 2010

[Texas] Texas Instruments Voyage 200
[Turing37] Turing, A., ‘On Computable Numbers, with an Application to

the Entscheidungsproblem’, Proceedings of the London
Mathematical Society, Series 2, Vol. 42, pp. 230-265, 1937.

d
dx
------ x2 xln

2
------------- x2

4
----- c+–⎝ ⎠

⎛ ⎞ d
dx
------ x2 xln

2
-------------⎝ ⎠

⎛ ⎞ d
dx
------ x2

4
-----⎝ ⎠

⎛ ⎞– d
dx
------ c()+=

2x xln
2

-------------- x2

2x
------+⎝ ⎠

⎛ ⎞ 2x
4

------⎝ ⎠
⎛ ⎞– 0()+=

x x x
2
--- x

2
---–+ln=

x xln=

e x2– xd
∞–

c

∫

x2 x2cos 1–+sin

Figure 4

Figure 5
April 2011 | Overload | 13

FEATURE ALLAN KELLY
The Agile Spectrum
Very few teams are truly Agile. Allan Kelly looks
at the range of styles.
gile is a broad church. It includes a lot of tools and techniques, some
applicable to some teams and environments and others elsewhere.
Anyone who thinks hard about how to measure Agility quickly

realises it cannot be measured by adoption of practices, it needs to be
considered on outputs and abilities.
Agile is sometimes simply defined as ‘not waterfall’. This is a poor, if
understandable, definition. Unfortunately, this means that any process that
doesn’t strictly follow the classic waterfall methodology can be considered
Agile. Adding to the confusion ‘Waterfall’ can cover a number of different
approaches, such as stage gate models like DoD 2167 and 2168 and all
encompassing methods like SSADM.
In companies where strong, documentation centric, procedures have been
hoisted on development teams, Agile is sometimes seen as a ‘get out of
jail free’ card. Simply saying ‘this project is Agile’ is seen to exempt work
from company procedures. Unfortunately, this card is also used as a cover
for cowboy development.
In truth there is a spectrum with strict-waterfall at one end and ‘pure Agile’
at the other – see Figure 1. Since waterfall never really worked that well,
very few teams are at the strict waterfall extreme. In his analysis of
software development projects over 20 years, Capers Jones suggests that,
in general, requirements are only 75% complete when design starts, and
design is a little over 50% complete when coding starts [Jones08]. He goes
on to say that, as a rule of thumb, each stage overlaps by 25% with the next
one.
It would seem reasonable that the pure Agile end of the spectrum is equally
sparsely populated. Whether because few teams need to be so extremely
Agile, or whether because experience and tools have yet to allow such a
degree of Agility, some staged elements exist in many projects.
More than one software development team has encountered the situation
when the team want to be more ‘Agile’, the organization and management
might even be asking them to be more ‘Agile’, but there are still many
‘requirements’ in a big document and the expectation is that all these will
be ‘delivered’. Experience and anecdotal evidence suggest this scenario is
faced by many teams.
This mismatch arises when the organization is largely waterfall but the
development team are trying to work Agile. I have consulted with
companies where senior managers believe Agile is only a delivery process
for developers. Business case, requirements, design and even testing is
waterfall, just the bit in the middle is Agile.

This article attempts to both understand the different degrees of Agility and
provide teams with a way of resolving the requirements-delivery
mismatch.

Three Agiles
On close inspection Agile has at least three styles: iterative, incremental
and evolutionary, shown in Figure 2. These are largely governed by the
development team’s relationship with the requirements, and whether the
organization wants work defined in advance or prefers goal directed
working.
As we shall see in a moment, these three styles occupy different places on
the spectrum. But, in truth, there is no clear cut divide between iterative
and incremental, incremental and evolutionary, or even iterative and
evolutionary. The three styles all overlap and fade into one another.

A

Allan Kelly has held just about every job in the software
world. Today he provides training and coaching to teams and
companies in the use of Agile and Lean techniques to develop
better software with better processes. He is the author of
Changing Software Development: Learning to become Agile,
numerous journal articles and is currently working on a book of
Business Strategy Patterns.
Contact him at http://www.allankelly.net.

Figure 1

The spectrum from Strict Waterfall to Pure Agile:
almost everyone is somewhere inbetween

Figure 2

Development team work in short iterations
Regular releases
Requirements emerge as team incorporates
feedback and discovers new opportunities
Testing almost entirely automated

Development team work in short iterations
Minor releases frequent
Formal requirements document start
development with change request incorporated
High degree of automated testing

Development team work in short iterations
Major releases infrequent
Formal requirements document (Salami Sliced)
Formal change request process in place
Limited automatic testing
14 | Overload | April 2011

FEATUREALLAN KELLY

Some slices of salami will be thicker than
others but that’s just the nature of the world.
Over time, with more skill at slicing salami it

will improve and slices will be thinner
Iterative development – salami Agile
Working in bite-sized chunks from predetermined requirements with
one big delivery at the end.

Iterative Agile refers to the practice of undertaking projects in small, bite-
sized chunks. Every two-weeks (or so) an iteration completes and the total
amount of work is burnt down on a chart. Customers will probably be
shown the latest version of the software at the end of the iteration, although
this is little more than a demo. Most likely there will be a single software
release at the end of the work – followed by several ‘maintenance’ releases.
At the start of work there is a big requirements document – the work to be
done is, at least in theory, defined in advance. Someone, perhaps a previous
project, perhaps external consultants, has created a list of the features and
functionality the new system must, or should, have. The development team
are expected to deliver all of it, or nothing.
The approach here is to see the big requirements document as an uncut
sausage of Salami (long and dense). Someone on the team – preferably
someone with Business Analysis skills but it could be a developer, project
manager, or someone else – needs to slice the requirements into thin pieces
of salami (story) for development.
There is no point in slicing the whole salami in one go. That would just
turn a big requirements document into a big stack of development stories.
The skill lies in determining which bits of the document are ready (ripe)
for development, which bits are valuable, and which bits can be delivered
independently.
Some slices of salami will be thicker than others but that’s just the nature
of the world. Over time, with more skill at slicing salami, it will improve
and slices will be thinner.
Working in this fashion opens up the ability to accept change requests
relatively easily. But because the work has been set up as a defined project
with ‘known’ requirements these opportunities probably aren’t exploited
to the full. Similarly, opportunities to remove work will also appear – some
slices of salami may be thrown away – but again this will depend on how
rigidly the project seeks to stick to the defined work.
As well as the requirements document there are probably some estimates
somewhere – maybe even a Gantt chart, which has to be updated to
maintain the illusion that it is useful.
However, this is the land where the burn-down chart reigns supreme. There
is a nominal amount of work to be done and with each iteration there is a
little less. Such empirical measurement is likely to provide a good end-date
forecast.
Salami Agile is the basis for incremental development and occurs
somewhere about the middle of the spectrum. To go further towards pure
Agile, work has to be based less on a shopping list of features and more
on the overarching overall objective of the work.

Incremental development
Working in bite-sized chunks from predetermined requirements with
regular deliveries and accepting changes

Salami slicing is still prevalent in incremental development, at least during
the early stages. Work is completed in bite-sized chunks and periodically
delivered to customers to use. These events might, or might not, occur in
tandem. While a team might work in two-week iterations, deliveries might
only occur every two months.
The pieces of salami are delivered to the customer early, and over time
customers start to realize they don’t need some things in the original
requirements document, so some slices can be thrown away and some
salami left unsliced and unused.
This model capitalizes on the flexibility provided by eating salami rather
than steak. Requirements which were not though of can be easily
incorporated, others can be changed, enlarged or shrunk.
The iterative approach still assumes the original requirements are correct,
so not implementing them all, or changing what is done, is a sign of earlier
failure. In incremental development changes are seen positively and
reductions in scope are seen as savings – a sign the model is working.
That real live users are getting access to the software early is valuable to
the business. It also means user insights and requests are inevitable. Still,
there is a major requirements definition somewhere, and while the team
can accept change requests easily, it is still expected that one day the team
will be done.
Burn-down charts might still be used to track progress, but at times they
may appear as burn-up charts as work is discovered.
Tensions arise when the team are instructed to refuse changes, or
themselves insist on continuing to salami slice the original requirements
document, but users and customer are asking for changes based on their
experience. In other words, the users and business have changed their
understanding, but the team do not, or are not allowed to, change theirs.
There is no hard and fast line between iterative and incremental, they are
just points on the spectrum – with incremental to the right of iterative by
virtue of delivering more often. Perhaps the hallmark of incremental is that
the team delivers on a regular schedule. When each delivery is a big deal,
a special occasion, then things are really just iterative with occasional
drops.

Evolutionary Agile – goal directed projects
Working in bite-sized chunks from emerging requirements with
regular deliveries

Evolutionary Agile takes this to the next level and is the natural home of
goal directed projects. Teams start work with only a vague notion of the
requirements. Over time the needs, practices and software evolve. As the
software is released to customers the needs are reassessed, new
requirements discovered, existing ones removed and new opportunities
identified.
The team has a goal, will determine what needs doing (requirements) and
do it (implementation) as part of the same project. The team is staffed with
a full skill set to do the complete work – analysts, developers, testers and
more. The team is judged and measured by progress towards the goal and
April 2011 | Overload | 15

FEATURE ALLAN KELLY

Many organizations, rightly or wrongly,
consider any development process that is
iterative in nature to be ‘Agile’
value delivered, rather than some percentage of originally specified
features completed.
Even goal directed Agile needs to start by establishing a few initial
requirements. Some teams call this period ‘sprint zero’ in which a few seed
stories are captured, from which product development (coding) can start
as soon as possible. From there on, requirements analysis and discovery
proceed in parallel with creation. Those charged with finding the
requirements (Product Owners, Product Manager, Business Analysts or
who-ever) work just a little ahead of the developers.
Burn-down, even burn-up, charts have little meaning for goal directed
work because the amount of work to be done isn’t known in advance. Work
to-do and work done are better tracked with a cumulative flow diagram
showing the progress in both discovering needs and meeting needs.
Governing goal directed work is superficially more difficult because it is
not measured against some nominal total. Instead work needs to be
measured against progress towards the goal.
These projects should be placed under a portfolio management regime that
regularly – at least quarterly – reviews the progress and value delivered so
far against the goal and the costs incurred. These figures should be
produced within the team itself, and the team should feel confident enough
to suggest its own end.

Taken together
Adding these points to the spectrum gives Figure 3. For a team migrating
to Agile the objective is to move from left to right. These three approaches
might reflect three levels of capability but they may also reflect the nature
of Agile in a particular organization. One size does not fit all: some teams
are better off with one style of Agile, and some with another.
Many organizations, rightly or wrongly, consider any development
process that is iterative in nature to be ‘Agile’. Therefore, in common
parlance any method on the right of this spectrum is called Agile, while
anything on the left is called Waterfall.

Waterfall approaches might split work into stages, work packages, or sub-
projects which can make work look a little like iterative development.
Although Waterfall development is associated with Big Bang releases
many such projects are released in several Small Bangs. And after release
‘maintenance’ teams would continue to release updates.
Just as few teams actually embrace 100% evolutionary development, few
teams ever followed a pure Waterfall approach. Indeed, I would argue that
the Waterfall is so fundamentally flawed that a pure Waterfall was always
impossible. (Before writing to take me to task please read the original
Waterfall paper [Royce70].)
In my experience most development projects lie somewhere between these
two extremes, mostly clustered around the centre. Although I don’t have
any data to support my argument I suspect that a standard-distribution bell-
curve could be laid over this diagram, reflecting that most teams following
an interactive process, with a few teams more incremental and a similar
number doing periodic releases on a Waterfall basis.
While there are no hard and fast rules about when a team is doing one style
of development or another, there are some common traits visible by
looking at the practices the teams adopt. These are summarised in Table 1.
While these attributes are a useful way of describing and comparing
different styles and different teams, they are not prescriptive.

Examples
Interestingly, there is one area of software development where the goal-
directed evolutionary approach has long been the norm: maintenance.
Maintenance teams have the goal of keeping systems working, fixing bugs
and, often, small enhancements. Work emerges over time and the highest
priority work gets done and other work is left undone.
I remember working on a financial reporting tool called FIRE in 1997.
There was no roadmap or even a plan for the product. The company had
three, four, then five and even six customers. As each sale was made, new
requirements emerged: port from Solaris to Windows, from Sybase to SQL
Server, to Oracle, to AIX. And of course bugs.
These requests arrived with more or less noise and urgency. I introduced
time-boxed iterations to the team: we released each month, and put a white
board on the wall to show what we were doing. Each iteration had a
collection of work: we delivered, and then reviewed what had arrived in
the last month.
Evolutionary would be the best characterisation of FIRE. Requirements
and processes emerged as the work progressed. The overall goal was never
clearly stated and we only had elementary unit testing – but we had some!
Conversely, one of my clients in Cornwall is currently writing a
completely new version of their flagship product in an iterative way. The
feature list is almost entirely taken from the existing product. The team
work in one-week iterations. At the end of each iteration their proxy-
customer reviews the work and ticks it as done.
The work to do is grouped – physically – into monthly bundles –
November, December, January, February. The original aim was ofFigure 3
16 | Overload | April 2011

FEATUREALLAN KELLY
releasing in March but it now looks like it will be April. Nothing will be
released until it is all done.
Of course once the first release is done working will change. Probably the
team will take more of an incremental approach with monthly updates.
They still have plenty of features – new or held over – to continue
implementing for a few months. I expect that at some stage new requests
and ideas will bring a more evolutionary nature to the work.
This team will need to revisit their overarching goal. As I write the goal
is ‘Get a version released with a subset of the current features’. At some
time in the near future they will need to question that goal lest they drift
into a ‘find work, do work’ mentality.

A change model
It is useful to consider this spectrum as a change model. Assume a starting
point somewhere on the left of the spectrum, a team doing some form of
common waterfall with all the imperfections that suggests. Being Agile,
by any definition means moving to the right.
As a first step the team can adopt an interative approach and use Salami
Agile to manage requirements. In time, as they improve, they advance to
an incremental approach. To go further the team needs to move away from
salami and become goal directed. This requires more of the organization
to embrace the Agile ways of the team. Some teams may stall here for this
reason.
When a team has a proven track record at incremental delivery, the
organization will come to trust the team, then opportunities arise for goal
directed, evolutionary work.

Summary
Although Waterfall and Agile are often characterised as straight
alternatives, neither is particularly well defined. It is better to view them
as representing different areas on a continual spectrum from a strict phased
approached to a no-phased approach.
On the Agile end of the spectrum there are different ways of approaching
work. Many teams work with pre-determined requirements in a salami
fashion. They deliver software iteratively or incrementally. A few teams
work in a more goal-directed fashion where needs, solutions and processes
are evolving.
Different techniques, tools, practices and processes are used at different
parts of the spectrum, but there are no hard and fast rules as to what is used
when.

Acknowledgements
Thanks to Paul Grenyer and Ed Sykes for reviewing an early draft of this
article; and the Overload editorial team for their usual attention to duty.

References
Jones, C. 2008. Applied Software Measurement, McGraw Hill.
Royce, W. W. 1970. Managing the development of large software systems:
concepts and techniques.

Practices Waterfall Iterative Incremental Evolutionary

Stand-up meetings No Yes Yes Yes

Planning Start of project; revisions as
needed

Regular 2–4 week iterations Regular 2–4 week iterations Regular 2–4 week iterations

Status reporting Regular, against plan Regular Regular Regular, against goal

Retrospectives Sometimes at end of work Occasional – more talked
about than done

Regular Integral

Demo ‘Show and Tell’ Occasional snapshot Occasional Regular Only as information prior to
release

Planning

Budget Allocated at start Allocated at start Mostly upfront Arrives in increments

Budget control Monitored against plan Monitored against plan Value delivered v. cost
incurred monitored

Technical practices

Releases Once: at end Once at the end, or at
irregular intervals

Regular during project Like clockwork

Automated unit testing No Maybe Yes Yes

Automated acceptance tests No No Yes Yes

Test first development (TDD) No Some Lots Everywhere

System integration tests At end of project During project During project Ongoing during project

User acceptance testing Only end of project At end of project During project Ongoing during project

Continuous integration No Yes Yes Yes

Tracking charts Gantt Burn-down Burn-up Cumulative flow

Design Big up front activity Mostly upfront Some up front plus
refactoring

Little upfront; mostly
emergent with refactoring

Goal Requirements are goal Requirements are goal Mix of upfront requirements
and goal directed

Governs project and directs
progress

Requirements Officially specified in advance Specified in advance; salami
sliced to developers

Specified in advance; salami
sliced to developers

Emerge during project

User feedback Minimum Little Plenty but little scope to
change incorporate

Fundamental to project
success

Change control Traditional – changes seen
as problems

Traditional Relaxed traditional None – changes are requests

Table 1
April 2011 | Overload | 17

FEATURE SERGEY IGNATCHENKO
On CMM, Formalism and
Creativity
No Bugs requires us to improve software quality. Sergey
Ignatchenko considers some of the potential problems.
isclaimer: as usual, opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with opinions of translator
and Overload editors; please also keep in mind that translation

difficulties from Lapine (like those described in [LoganBerry]) might have
prevented us from providing an exact translation. In addition, both the
translator and Overload expressly disclaim all responsibility from any
action or inaction resulting from reading this article.

Thlayli lay meth methrah nao
(Bigwig is a poor storyteller)

Creativity and formalism
Today I will try to touch on quite a sensitive issue, related to the subtle
relationship between creativity and formalism, which my fellow rabbits
can often feel but which is usually quite difficult to write down. While a
few years ago it was argued (see, for example, [Konrad05]) that agile
development can co-exist with formal methodologies like CMM, the
question about the co-existence of formalism with creativity has not been
addressed in the rabbit literature yet.
I will certainly not argue that creativity is always a good thing. In many
cases I am personally really afraid of excessive creativity. For example, I
certainly don’t want to fly on a plane which has been serviced by
mechanics who were excessively creative (such as the one described in
[JA8119]), or to be operated on by a surgeon who’s just had a fancy idea
about how to make things so much better and wants to try it on me. On the
other hand, in many cases creativity is highly desirable – the guy who
invented the wheel did need to be creative.
Now to the question of formalism. Let’s consider a team or organization
which does need to be creative. What level of formalism is optimal for such
a team? Should this team be in a state of complete anarchy? Or should it
be a perfectly working machine where everything is done ‘by the book’?
Intuitively, it is quite clear that the latter is not the right way to inspire
creativity, but unfortunately way too often management doesn’t realize
this and measures success, not in terms of a successful end product, but in
terms of ‘how organized the process is’. Let us consider this whole problem
using CMM – Capability Maturity Model – as an example of such a
management approach.

On CMM
CMM originated at the end of 1980s in a book by Watts Humphrey
[Humphrey89]. From the very beginning, CMM was closely related to the
US Department of Defense (and in particular the US Air Force). While the

idea of improving software quality is certainly commendable, especially
within military applications, it seems that the temptation to make
developers march in formation was too strong to overcome, and this
temptation eventually found its place within CMM. Later, around the end
of the 1990s, CMM has been replaced with CMMI – Capability Maturity
Model Integration – which tends to cover much more than the original,
including ‘CMMI for Development’, a direct successor of the original
CMM. Also the formally separate but ideologically similar ‘People CMM’
was released. Ironically, about the same time the very same Watts
Humphrey realized that CMM doesn’t really work in practice and came
up with an alternative model known as ‘Personal Software Process’, which
has evolved into ‘Team Software Process’, a.k.a. PSP/TSP. While the main
promoter and owner of the ‘CMM’ trademark (SEI of Carnegie Mellon
University) considers PSP/TSP as a valid (and recommended) CMM/
CMMI implementation, for the purposes of this article we will consider it
separate and specifically comment on it later.
From the point of view of management, CMM if often considered as a kind
of ‘holy grail’, where it is enough to pre-build organizational processes and
procedures and then the project will march ahead towards the bright dawn
of success; unfortunately, experience shows it is certainly not guaranteed.
In addition, CMM (similar to ISO9001) is often seen as a prerequisite to
obtaining certain government contracts, as well as a way to get some kind
of certification to show clients that the organization is a ‘good one’.
Research conducted by SEI shows improvements in productivity, at least
in some cases. On the other hand, it often faces harsh criticism (again,
similar to ISO9001) from both developers and CIOs, ranging from ‘CIOs
who look to CMM for guarantees won’t find them’ [Koch04] and ‘In fact,
the study found that Level 5 companies on average had higher defect rates
than anyone else.’ [Koch04] to ‘At worst, the CMM is a whitewash that
obscures the true dynamics of software engineering, suppresses alternative
models.’ [Bach94] Opinions of fellow rabbit developers are often even
harsher, which is why I won’t be able to quote them here. In short, it is
quite a controversial subject.

Repeatability and replaceability
The key idea behind CMM is repeatability: as [P-CMM] says, ‘A
fundamental premise of the process maturity framework is that a practice
cannot be improved if it cannot be repeated’. Even this statement is not
really obvious, but let’s see where it leads. For the purposes of this article,
we will ignore many other implications of repeatability, concentrating on
only one of them: for the process to be repeatable, people need to be
replaceable. CMM states it in terms of ‘exceptional individuals’ [P-CMM,
page 12]: ‘...in low-maturity organizations, their results depend largely on
the skills of exceptional individuals...’ (and in CMM speak, ‘low-maturity’
is pretty close to ‘double-plus ungood’).
Now let’s try to put ourselves in the shoes of a manager: I am a manager,
and have an exceptional individual on the team, great! But after reading a
book on CMM, I’m starting to wonder: what happens if she leaves? All
repeatability goes out of the window. Therefore to comply with CMM I
(as a manager) need to eliminate all dependencies on irreplaceable

D

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
18 | Overload | April 2011

FEATURESERGEY IGNATCHENKO

whenever creativity is necessary, a manager
should not carve processes in stone and

then fit people into those processes
developers. If done with caution, it is not a bad thing to eliminate
dependencies, but unfortunately way too often management misreads it
and eliminates exceptional individuals completely, using CMM as an
excuse. Add that it is way too often aligned with the inclinations of a not-
so-good manager who is not competent enough to manage the project, and
we see the classical case of injelititis [Parkinson57]: where ‘...the head of
the organization is second-rate, he will see to it that his immediate staff are
all third-rate; and they will, in turn, see to it that their subordinates are fourth-
rate.’ Regardless of whether it was intention or not of CMM to achieve
such a situation, it certainly helps managers to reach it.

Exceptional vs average
Even if the manager doesn’t suffer from injelititis and doesn’t eliminate
everybody who’s smarter than him, applying CMM is problematic in
certain areas. If processes are strictly adhered to (the thing which CMM
strongly advocates), what will these exceptional individuals do within a
CMM-compliant organization? By the definition of CMM compliance,
such individuals are required to obey the same processes as everybody else,
and if these processes are rigid enough there is no room to apply their
exceptional abilities; as a rule of thumb, exceptional individuals either
leave such organizations, or find a way to bypass the processes (which
essentially ruins CMM). In short: if management tries to fit an exceptional
individual into an existing process (making the exceptional individual just
another ‘cog in the machine’ without regard to her exceptional abilities),
it doesn’t work.
Therefore, by going ahead with the very spirit of CMM towards
repeatability and replaceability, it will inevitably eliminate exceptional
individuals from the team, which leads towards teams consisting only of
about-average individuals who’re fine with the role of ‘cogs in the
machine’. The approach of about-average individuals works great in those
fields where creativity is not an issue (there is no argument that air
mechanics should be easily and directly replaceable), but what about areas
where creativity is necessary? What about a replaceable Einstein or Enrico
Fermi?

Are creativity and CMM are incompatible
While it is obvious at an intuitive level that the approach of average
individuals won’t work where high levels of creativity are necessary, it is
interesting to note that it is possible to provide a more formal
demonstration of it. Let’s take a look at one of the criteria used to measure

innovation, namely the granting of patents. In most jurisdictions, for
patents (which are undoubtedly one way to acknowledge innovation) there
is a so-called ‘average engineer’ test: usually, a patent cannot be granted
if it is obvious to ‘a person of ordinary skill in the art’ (which is essentially
legalese for an ‘average engineer’). It implies that inventions cannot be
made if you have only ‘average engineers’ on board. As we saw above,
replaceability in practice means ‘average engineers’ (ie not using
exceptional abilities of exceptional individuals, which is about the same
thing), and as CMM implies replaceability, it should not possible to
generate any patents within truly CMM-compliant organizations. Q.E.D.
Obviously, this ‘proof’ is not a strict one, and in fact some of organizations
which are formally CMM-level 5 do produce patents; however my fellow
rabbits who went through CMM and ISO9001 audits feel that was only
because CMM compliance (just like ISO9001 compliance) is merely a
formality which has nothing to do with realities of software development
in an organization; therefore, formal compliance has nothing to do with
adhering to the spirit of CMM. Also of interest is that, as with any text
which is vague enough, all kinds of interpretations are possible, so it is
perfectly feasible to create formally correct interpretations of ‘what CMM
means’, with fundamentally different conclusions (which essentially is
what was done when ‘Personal Software Process’/‘Team Software
Process’ were designed). What is important is that the interpretation
described above is certainly by far the most common one when it comes
to real managers.

Process-centered vs people-centered
At this point a much more important question arises: does all this mean
that projects which require creativity should be completely non-structured,
informal, and in a state of anarchy? Not really. It just means that teams
which need creativity should be managed not in a process-centered way
(like CMM advocates), but in a people-centered way. In other words,
whenever creativity is necessary, a manager should not carve processes in
stone and then fit people into those processes (essentially making people
‘cogs in the machine’), but the whole paradigm of management should be
completely opposite: one will need to build a team of individuals, then
build processes around this team, and adjust the processes when the needs
of the team (or the team itself) change. We can compare these two
approaches in software project management (‘process-centered’ and
‘people-centered’) to two fundamentally different approaches in software
development itself: a ‘process-centered’ approach, with processes
essentially carved in stone, is similar to the (in)famous ‘waterfall’
methodology, while a ‘people-centered’ one implies dynamic processes
with multiple iterations, similar to ‘agile’ development methods.
Such ‘people-centered’ approaches are in fact nothing new: despite being
admittedly more difficult for the manager, they have been used many times
with tremendous success. [VirtuosoTeams] (BTW, I strongly
recommended it for fellow rabbits who’re interested in team leading or
management) describes in detail several such teams, including the team
behind the ‘Manhattan project’. With a dozen Nobel laureates on board,
and a task of epic creativity proportions, it certainly wasn’t anywhere close

It is important to note that even if there are many exceptional individuals
on team, replaceability is still problematic if processes are rigid.
Exceptional individuals are exceptional in different ways, so even when
replacing one exceptional individual with another one is possible, it is not
a direct replacement: as experience of fellow rabbits shows, in the vast
majority of cases replacing an exceptional software developer (with
another exceptional developer) inevitably leads to substantial changes
in the project processes, or project architecture, or both.

Exceptional individuals
April 2011 | Overload | 19

FEATURE SERGEY IGNATCHENKO

it is perfectly feasible to create different and
formally correct interpretations of ‘what
exactly CMM means’
to CMM past level 2. Still, Colonel Leslie Groves, while certainly
struggling with the management of such a ‘virtuoso team’, had managed
to find a way to make things work, and (despite his military background)
his approach was certainly ‘people-centric’, and not ‘process-centric’ as
prescribed by CMM. While the moral grounds of the ‘Manhattan project’
are debatable, from a technical and management point of view it certainly
was a tremendous success.

References
[Adams] http://en.wikipedia.org/wiki/Lapine_language
[Bach94] ‘The Immaturity of CMM’, James Bach, American

Programmer, 1994, http://www.satisfice.com/articles/cmm.shtml
[Humphrey89] Watts S. Humphrey Managing the Software Process,

Addison-Wesley, 1989
[JA8119] http://en.wikipedia.org/wiki/Japan_Airlines_Flight_123
[Konrad05] ‘Agile CMMI: No Oxymoron’, Mike Konrad, James W.

Over, 2005, http://www.drdobbs.com/184415287
[Koch04] ‘Software Quality: Bursting the CMM Hype’, Christopher

Koch, http://www.cio.com/article/32138/
Software_Quality_Bursting_the_CMM_Hype?page=1&taxonomyI
d=3000

[Loganberry] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://www.loganberry.furtopia.org/bnb/lapine/
unit14.html

[P-CMM] People Capability Maturity Model Version 2.0, Second Edition
[Parkinson57] Parkinson’s law, and other studies in administration,

Houghton Mifflin, 1957. Chapter 8, Injelititis, or Palsied Paralysis
[VirtuosoTeams] Virtuoso Teams: Lessons from teams that changed their

worlds, Andy Boynton, Bill Fischer, FT Press, 2005

If your company really needs to get CMM certification, certainly the best
bet would be to go with ‘Personal Software Process’/‘Team Software
Process’ (a.k.a. PSP/TSP). While they’re not exactly ‘people-centered’,
they’re not exactly ‘process-centered’ either, so it is possible to keep a
certain level of creativity within PSP/TSP. In addition, PSP/TSP (unlike
agile methodologies similar to Scrum/XP) are recognized by CMM
appraisers, so it might work as a reasonable compromise which allows
both to reach required certification and to keep creative individuals.

We DO need CMM certification, and we DO need
Creativity, are we in Real Trouble?
20 | Overload | April 2011

http://www.satisfice.com/articles/cmm.shtml
http://en.wikipedia.org/wiki/Japan_Airlines_Flight_123
http://www.drdobbs.com/184415287
http://www.cio.com/article/32138/Software_Quality_Bursting_the_CMM_Hype?page=1&taxonomyId=3000
http://www.cio.com/article/32138/Software_Quality_Bursting_the_CMM_Hype?page=1&taxonomyId=3000
http://www.loganberry.furtopia.org/bnb/lapine/unit14.html
http://www.loganberry.furtopia.org/bnb/lapine/unit14.html
http://en.wikipedia.org/wiki/Lapine_language

FEATUREALEX YAKYMA
Refactoring and Software
Complexity Variability
Most code bases could have their complexity improved.
Alex Yakyma presents a model that suggests how to do this.
he inherent complexity of software design is one of the key
bottlenecks affecting speed of development. The time required to
implement a new feature, fix defects, or improve system qualities

like performance or scalability dramatically depends on how complex the
system design is. In this paper we will build a probabilistic model for
design complexity and analyze its fundamental properties. In particular we
will show the asymmetry of design complexity which implies its high
variability. We will explain why this variability is important, and why it
can, and must, be efficiently exploited by refactoring techniques to
considerably reduce design complexity.

Introduction
There are different views on refactoring in the software industry. Because
refactoring is relatively neutral in respect to the choice of software
development methodology, teams that practise Scrum or even Waterfall
may apply refactoring techniques to their code. There are opinions on
refactoring as a form of necessary waste (some authors elaborate on the
concept of pure waste vs. necessary waste [Elsammadisy] attributing
refactoring to necessary waste). This analogy often becomes ironic since
many executives and software managers think that refactoring is in fact a
pure waste and thus should not be undertaken by teams. At the same time
there is the very valid standpoint regarding refactoring as a method of
reducing the technical debt [Cunningham]. Some consider refactoring as
a way of entropy reduction [Hohmann08]. The importance of this team
skill on the corporate scale is explained in [Leffingwell10].
In all cases it is obvious that refactoring has to deal with something we call
software design complexity – an overall measure of how difficult it is to
comprehend and work with a given software system (add new
functionality, maintain, fix defects etc.).
Let us start by analyzing complexity more deeply in order to understand
how to cope with it.

The hypothesis of multiplicativity
We base our model of software design complexity on its multiplicative
nature. Let’s consider a list of factors that influence the complexity. It is
not at all a full list and not necessarily in order of importance (applicable
to OOP-based technology stack):

Obviously, some of the factors above are combinations of more specific
independent factors. For example, factor #1 is a combination of naming
clarity of methods, fields, classes, interfaces, packages, local variables.

Factor #2 is also a list of specific factors: whether complicated conditional
statements are reasonably decomposed, whether duplicate conditional
fragments are reasonably consolidated, whether unnecessary control flags
removed etc. It is easy to see that there is fairly large amount of such
specific independent factors that determine the complexity.
Let’s see what happens if we have a combination of any two factors. E. g.
if we do not follow the single responsibility principle [WikiSRP] the code
is harder to understand, debug, or maintain because objects of the same
class can play considerably divergent roles in different contexts. At the
same time not giving meaningful names to classes and their members
makes code very hard to comprehend. A combination of these two has a
multiplicative effect. To articulate this better let’s use an example.
Assume we have class A with a vague class name and member names. Then
the person that debugs the code and encounters objects of this class will
have to cope with some complexity C of the class caused by naming
problem of this class and its members (for simplicity sake think of C as
the effort required to understand what A means in the context of our
debugging episode). Let’s now also assume that A fulfills 3 different
responsibilities depending on the context. Then in order to understand the
behaviour of A in this specific context of debugging you need to analyze
what each of the names (class, field or method) would mean in each of the
three possible contexts spawned by roles for class A. In other words, the
complexity is C×3.
So we may consider overall complexity C as a product of a large number
of individual factors:1

The important characteristic of the factors above is that they are all
independent. Taking into consideration the random nature2 of these factors
and assuming their fairly typical properties (more details below) we
conclude that:

1. Meaningful, clear names of classes, methods, local variables
etc.

2. Clarity of flow
3. Usage of ‘typed’ collections
4. Usage of interfaces
5. Use of framework capabilities vs own implementations
6. Following single responsibility principle
7. ...

(1)

T

C f1 f2• … fi
i

∏=•= 2()

Alex Yakyma provides Agile training and coaching to teams in
North America, Europe and Asia, helping them to establish
efficient development process and engineering practices.
Contact him at www.yakyma.com

1. It is important to note that our model describes random behaviour of
complexity at any arbitrary (but fixed) moment in time. In other words
our model answers the following type of questions: what could be the
design complexity of a product after the team works on it for, say, 2
months.

2. When we say that the complexity (or one of its components) is random,
we mean that if we work on project X within a certain timeframe, the
resulting codebase (as an ‘evolving system’) may end up in any one of
a number of different possible states, each with a different level of
design complexity.
April 2011 | Overload | 21

FEATURE ALEX YAKYMA
Assertion 1: Software design complexity is approximately3

a lognormaly distributed random variable.

The sidebar contains the proof and is optional for a reader who wants to
skip to the conclusions of this assertion.
The analytical expression for the probability density function (PDF)4 of a
lognormally distributed random variable can be found in [Lognorm] and
is not of our current interest. Instead we will be more interested in its
generic behaviour.
Finally, the only reason why we needed as set of independent factors in
our factorization was to apply the Central Limit Theorem and thus prove
that the complexity is a lognormal random variable. In their daily life teams
deal with factors which influence each other. That way a team may have
a good chance of controlling complexity with a reasonably small effort.
The next section includes some examples.

Analyzing the model
For a given moment of time t1 the graph of design complexity PDF looks
like Figure 1.5

The mode is the most common observation, in other words it will be the
most common outcome of a single given development project. The mean
would be ‘average’ value if you repeat the ‘experiment’ multiple times
(e.g. N teams work on N independent but identical projects). As follows
from Figure 1, a lognormal distribution is ‘skewed’. Unlike a normal
distribution where mean = mode and the PDF would be symmetrical about
the mean value (the well-known bell curve), in case of a lognormal random
variable, ‘smaller’ complexities are ‘compressed’ on the left of the mode
value while ‘higher’ complexities are scattered wide to the right. Actually
we have a ‘long tail’ on the right side of the plot. These considerations
imply that the result of a single observation will most likely be misleading.
In other words:

Asymmetry of design complexity You are more likely to
have a design complexity that is higher than the mode, and
less likely to have one that is less than the mode.
Occasionally design complexity will have extremely high
values.

This fact sounds like a pretty sinister beginning of our journey, but the
following two points mitigate the impact:

1. High variability of design complexity basically affects those teams
that do not purposefully reduce complexity, and…

2. There is a reliable method of reducing complexity.
The method used is refactoring. It is easy to see that using our factorization
above or similar, it is obvious what needs to be refactored to counter the
effect of multiplicativity of design complexity and thus keeping
complexity under control.
Note that in the factorization (1) we required that factors were independent.
Although it was absolutely necessary for analysis purposes and proving
that the complexity follows lognormal distribution, it is not at all required
for your own strategy of refactoring. We may securely use ‘overlapping’
refactoring approaches if the team finds that convenient. The example of
such dependent factors (and respectively the refactoring techniques) can
be: 1) Complex flag-based conditions in loops – the factor, ‘Remove
Control Flag’ – the refactoring method (see [Fowler99], p.245) and 2)
Unnecessary nested conditional blocks – the factor, ‘Replace Nested
Conditional with Guard Clauses’ as a refactoring approach (ib., p.250).

Let’s make two assumptions:

1) Random variables {ln(f1),ln(f2),…} have finite means and variances.
This assumption makes sense from a practical standpoint (e. g.
usage of typed vs untyped collections in the source code may vary
but have an average ratio (of say 40%) with finite standard deviation
(let’s say, 20%); another example: method bodies would have an
average length with deviation from the average approximately limited
by its standard deviation etc.). Due to the fact that these factors have
finite and relatively small range of values, we may conclude that their
logarithms also have finite means and deviations.

2) Lindeberg’s condition [L-Cond], which looks scary but actually
means the fairly simple fact that the ‘outliers’ (that sit outside the
‘circle’ with radius composed of all variables’ standard deviations)
represent a minor set.

With this all said, we may apply Central Limit Theorem (in its version by
Lindeberg and Feller [CLT-L-F]) to the sequence of random variables
ln(f1),ln(f2),… .

This gives us:

meaning that the expression on the left of (3) converges to a normally
distributed random variable (rv) in distribution (see [CNVRG] for more
detail).

Here , and –
mean and variance respectively.

But this means that the expression on the left in (3) is extremely close to
normal distribution for big n. Let’s fix some large integer n. Then
remember ing tha t for any pos i t i ve rea l numbers a and b
ln(a)+ln(b)=ln(ab) we have:

where α and β are constants (their meaning can be easily derived from
(3)) and thus on the right side of (4) we have also a normally distributed
variable (≈d means that distribution functions of rv’s are approximately
equal, not the rv’s themselves). This by definition means that C is
approximately lognormal for big n.

fi() μi()ln
i 1=
n

∑–ln
i 1=
n

∑
σi()2ln

i 1=
n

∑
--- N 0 1,()→ 3()

d

μi() E fi()ln[]=ln σi() E=2 fi()ln μi()ln–()2[]ln

fii 1=
n

∏()ln αN 0 1,() β+d≈ 4()

Proof of Assertion 1

Figure 1

5. To better understand how the PDF changes with time: if t1<t2 then
obviously the complexity at the moment t2 is also lognormal but its
graph is more ‘stretched’ lengthwise along the horizontal axis so that
in particular its ‘peak’ is further to the right. This is more exact
statement that the complexity tends to grow over time as development
progresses. Though note that the dynamic analysis of design
complexity is beyond the scope of this paper.

3. ‘Approximately’ means that if for a second we assume that there is not
just ‘large’ but an infinite number of factors in (1) then expression (2)
can be ‘reduced’ to Cn – a product of the first n factors. Our assertion
basically states that the distribution of Cn tends towards lognormal as

.
4. PDF – Probability Density Function of a continuous random variable is

a function that describes the relative likelihood for this random variable
to occur at a given point.

n ∞→
22 | Overload | April 2011

FEATUREALEX YAKYMA
Obviously when you reasonably replace nested conditionals with ‘guards’,
it will also affect some flag-based loops replacing their complex conditions
with return statements where it is appropriate. So 1) and 2) affect each other
to a certain extent but it is ok to use both as part of your strategy.
Another example shows that a team may choose additional factor that is
not even on the list but which may influence other factors. This, for
example, could be ‘keeping methods reasonably compact’. In order to
achieve this, the team will optimize flow control structures, data structures,
reasonably use inheritance, single responsibility principle, use of
framework/lib capabilities instead of own implementations and so on.
In fact refactoring is no less important than the creation of code in the first
place. As Martin Fowler points out [Fowler99, p. 56-57]: ‘Programming
is in many ways a conversation with a computer… When I’m studying code
I find refactoring leads me to higher levels of understanding that I would
otherwise miss.’
Note that while we are aiming at reducing the complexity we still accept
the fact that there is no way to avoid the variability of ‘higher values’ for
it is an objective statistical law for this type of rv. In other words there is
no way the team could turn a lognormal distribution into a symmetrical
one, even though they are the best of developers.
Another important consequence of the design asymmetry for the economy
of software engineering is that (because mean ≠ mode) in the long run
there is considerable hidden extra effort in maintaining the product.
Indeed the most probable outcome for complexity after one episode of
development is by definition equal to the mode. But after being repeated
multiple times it gravitates to the mean and we remember mean > mode
in the case of lognormal rv. Thus N such episodes yield the additional (and
much worse – hidden) maintenance cost proportional to N×(mean - mode).
This hidden extra effort can never be totally eliminated but can be reduced.
A team that purposefully refactors, either partially or totally, reduces the
impact of certain individual complexity factors. The high variability means
that you refactoring can dramatically succeed in reducing design
complexity.
Refactoring means changes in design. These changes (sometimes
dramatically) modify the information flows within the system, re-
organizing and re-distributing information in different ways which leads
to uncertainty and introduces variability to the outcome. Reinertsen
[Reinertsen09] points out the exceptional importance of variability in the
economics of product development. In our case the outcome of refactoring
is also quantifiable – it is a team’s velocity in delivering user value. While
refactoring utilizes the variability, unit testing keeps refactoring within the
limits. Unit tests bring considerable certainty to the scene: when you
change few lines of code and then make sure your tests still run – this means
that system functionality is not or almost not broken at all and changes in
design did not lead to a wrong design.

Unit testing and refactoring used in conjunction sustain the
balance of variability and help utilize this variability for
implementing effective design.

Even though unit testing is an engineering practice that represents huge
independent value, it has many important nuances in context of system
refactoring applied to reducing the complexity:

Unit testing should be a continuous effort and go hand-in-hand with
refactoring. Changes in code often infer change of method interfaces

and logic. So when tests don’t run it may mean two things: 1) that
the logic/interface is wrong or 2) code has changed and requires
modification to the unit tests as well.
Unit testing does not constrain all areas of system refactoring. It is
impossible to unit-test such things as clarity of naming or whether
or not open/close principle is being followed. But even when
renaming a method or local variable, tests guard us from breaking
the logic.
Unit testing allows for refactoring at any point in time. We can
return to a specific fragment of code after a while and safely refactor
it.
Unit testing and refactoring mutually enable each other. It is very
hard to unit-test a jsp page that performs direct calls to a database,
handles business logic and prepares results for output. Instead,
separation of concerns allows for better testability.

It is important to know that because of the high variability of complexity
and the ability of refactoring to dramatically reduce one, refactoring
becomes an extremely important competitive advantage of software teams.

Summary
Software design is usually more complex than we may think and factors
like long methods or ambiguous names are just a few examples of a long
list of forces that dramatically increase the complexity. Although the
asymmetry of design complexity means that high complexity is more
probable, it also gives teams a clue of how to exploit this asymmetry to
reduce it. Continuous purposeful refactoring reduces the complexity at the
same dramatic 'rate' and is necessary to sustain software maintainability
in the long haul.

References
[CLT-L-F] Central Limit Theorem. http://mathworld.wolfram.com/

CentralLimitTheorem.html
[CNVRG] Convergence of random variables. http://en.wikipedia.org/

wiki/Convergence_of_random_variables
[Cunningham] Ward Cunningham. Ward Explains Debt Metaphor.

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
[Elsammadisy] Amr Elsammadisy. Opinion: Refactoring is a Necessary

Waste. http://www.infoq.com/news/2007/12/refactoring-is-waste
[Fowler99] Fowler, Martin. Refactoring: Improving the Design of

Existing Code, Addison-Wesley 1999
[Hohmann08] Luke Hohmann. Beyond software architecture: creating

and sustaining winning solutions, p. 14, Addison-Wesley 2008.
[L-Cond] Lindeberg’s condition. http://en.wikipedia.org/wiki/

Lindeberg%27s_condition
[Leffingwell10] Dean Leffingwell. Agile Software Requirements: Lean

Requirements Practices for Teams, Programs, and the Enterprise,
ch. 20 Addison-Wesley 2010.

[Lognorm] Lognormal distribution http://en.wikipedia.org/wiki/Log-
normal_distribution

[Reinertsen09] Reinertsen, Donald. The Principles of Product
Development Flow: Second Generation Lean Product Development,
Celeritas Publishing 2009

[WikiSRP] Single responsibility principle. http://en.wikipedia.org/wiki/
Single_responsibility_principle
April 2011 | Overload | 23

http://mathworld.wolfram.com/CentralLimitTheorem.html
http://mathworld.wolfram.com/CentralLimitTheorem.html
http://en.wikipedia.org/wiki/Convergence_of_random_variables
http://en.wikipedia.org/wiki/Convergence_of_random_variables
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
http://www.infoq.com/news/2007/12/refactoring-is-waste
http://en.wikipedia.org/wiki/Lindeberg%27s_condition
http://en.wikipedia.org/wiki/Lindeberg%27s_condition
http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle

FEATURE TEEDY DEIGH
Despair Programming
Managing relationships is vital to a successful
project. Teedy Deigh looks back on a
lifetime’s experience.
gile development has created a culture of newly weds, programmers
coupled in pairs oblivious to the fate that awaits them. As with all
forms of coupling, the short-term benefits are outweighed by the

long-term consequences. The optimism of a new relationship spelled out
in code never lives up to the story, no matter how it is prioritised.
There has been much talk and many studies about how effective pair
programming is, but clearly all those involved are looking for some kind
of meaningful justification that makes sense of their predicament.
Apparently pairing improves code quality and is enjoyable, but I doubt
that: how can you really have fun and program well when you keep having
to remove your headphones to listen to someone else questioning your
mastery of code?
Good pairing is supposed to involve alternately navigating and driving.
From what I can tell, this means navigating the quirks of another’s style
and conventions while driving home your own beliefs about how to
organise things properly. It is a contest in which there will be a winner and
a loser. So much for team spirit!
I suspect that financial debt – which is like technical debt but with money
– is a contributory factor. PCs, however, are not that expensive. Surely
companies can spare enough money to supply each programmer with their
own PC or, at the very least, a keyboard they can call their own? The point
of a PC is that it’s personal – the clue is in the name. Sharing a computer
is like sharing a toothbrush, only more salacious.
For example, the practice of promiscuous pairing is often promoted.
You swing from one partner to the next willingly, openly and frequently.
Such loose coupling demonstrates a lack of commitment and sends out the
wrong moral message. If you’re going to have to pair, you should do it
properly, all the way from ‘I do’ to ‘Done’. It is likely that there will be

an eventual be a separation of concerns, but that at least avoids the risk of
communicating state-transition diagrams and infecting your C++ code
with explicit use of the standard library namespace.
One thing that might be said in favour of pairing is picking up new skills.
For example, I have learnt to use a Dvorak keyboard and a succession of
editors with obscure key bindings and shortcuts. Being able to present new
and existing partners with an unfamiliar and hostile environment puts them
off their guard and sends out a clear signal about the roles in the
relationship. I also find pairing can be effective with newbies. They can
either sit and watch for a few hours or they can drive while you correct
them from the back seat.
These benefits, however, are few and far between. The day-to-day reality
is more cynical: the constant nagging, the compromises you make, the
excuses you have to make up, the methods you use, the arguments, the
rows, the columns... and you sometimes have to put up with your partner
snoring after you’ve offered an extended and enlightening explanation of
some minor coding nuance they seemed apparently unaware of!
So, don’t impair to code, decouple.

A

Teedy Dee is resolutely a singleton and pro-singleton. Chris
Oldwood once suggested they pair to help her address her
singleton issues. Chris assumed her icy stare and menacing
silence were some kind of consent, but soon learnt to regret
his suggestion and interpretation, coining the term despair
programming in the process. Teedy works in a team of one.
Chris now works as far away from Teedy as possible.
24 | Overload | April 2011

	This Year’s Model
	Benefits of Well Known Interfaces in Closed Source Code
	Why Computer Algebra Won’t Cure Your Floating Point Blues
	The Agile Spectrum
	On CMM, Formalism and Creativity
	Refactoring and Software Complexity Variability
	Despair Programming

