

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Why Finite Differences Won’t Cure Your
Calculus Blues
Richard Harris considers a possible solution to his
problem.

12 Outsource Your Self-Discipline
Filip van Laenen thinks we should get someone better
than us to do our job.

15 Picking Patterns for Parallel Programs (Part 1)
Anthony Williams presents some patterns to manage
your parallelism’s complexity.

18 Intellectual Property – a Crash Course for
Developers
Sergey Ignatchenko navigates a notorious minefield of
law.

OVERLOAD 105

October 2011

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 106 should be submitted
by 1st November 2011 and for
Overload 107 by 1st January 2012.

EDITORIAL RIC PARKIN
A few news stories recently reminded me of just how war, he continued to develop his ideas and invented the first high-level

A Journey Through History
Despite early pioneers, the computer revolution is
relatively young. Ric Parkin takes a personal tour.
far the world of computing has progressed, often in a
surprisingly short space of time, so I thought I’d look
at a potted, and at times personal, history of
computing.

In a literal sense, the first computers were just mechanical devices that
helped humans make calculations, whether the humble (yet powerful in
the right hands) abacus, the impressive Antikythera mechanism
[Antikythera], via clocks and orrories, up to powerful mechanical devices
such as automated programmable looms [Jacquard]. While not radically
different from these forerunners, the Babbage Difference Engine is still
historically interesting. It was basically a big automated calculator that
could calculate polynomial approximations using finite differences (those
reading Richard Harris’ articles will note their long history). Their
advantages were they were faster than a human and avoided the inevitable
errors caused bythe tedious task of calculating tables of logs and
trigonometry for various uses such as in navigation, ballistics, and
engineering.
But this just set the scene for his Analytical Engine. This was much more
powerful and flexible, using various types of punch cards – as seen in the
programmable looms – not only as input and output, but also as a way of
changing the behaviour of the engine. In terms of its architecture it was
revolutionary and way ahead of its time – with separate arithmetical unit,
a central processing unit that supported conditional branching and
looping, and seperate storage, input and output units. It is recognisably a
modern computer. However, compared to current (or even old!) hardware
it is a lumbering beast – estimates would be of a few KB of memory at
most, with the processor only executing a handful of instructions per
second, which may have been able to multiply two numbers in a couple
of minutes. All in a package the size of a large room! Sadly only small
prototypes were built, although there is a project that is trying to
reconstruct a working model [Analytical]. In many ways its design was
way ahead of anything built for another century, which has led to plenty
of ‘Alternative History’ fiction wondering what the world would have
been like it it had succeeded [Gibson Sterling]. It did bring about another
first though – while translating a paper describing the machine in 1842,
Ada Lovelace added many notes and thoughts, including the instructions
needed to calculate Bernoulli numbers. Subsequent analysis has shown
this would have worked correctly had the engine ever been built, and so
is credited as the world’s first computer program. [Lovelace]
Things went quiet after that, until the pressure leading up to the second
world war led to many of these ideas being reinvented (sadly Babbage’s
work itself was largely forgotten and was never really influential at that
time). Some are relatively obscure nowadays – I found that a German,
Konrad Zuse, had invented a series of increasingly powerful computers

in the late 1930s, culminating in the Z3 [Zuse], one
of the first Turing-Complete. However the

authorities thought it was ‘strategically
unimportant’ and didn’t fund his work. Post-

language ‘Plankalkül’, although it wasn’t actually implemented until
2000.
The more famous pioneers at the time were of course the code breakers
at Bletchley Park, who not only came up with ingenious ways of
automating the tedious work of decrypting masses of intercepted
messages, but improved on Polish Bombes that checked for possible
decryption keys, and Colossus which was semi-programmable and used
to crack the hardest codes. Kept secret for many decades, it’s only
relatively recently that the importance of this period has been recognised,
and efforts made to restore and rebuild both the park and its treasures.
Some news in this area is that Astrid Byro has completed her trek to
Everest Base Camp, raising money for the continuing work at Bletchley,
and generating many stunning photographs [Byro]. And sadly, Tony Sale,
who led the mamoth task of rebuilding Colossus and will be recalled by
those who have attaended the ACCU autumn security conferences, died
recently aged 80 [Sale]. Apart from Colossus, he achieved many amazing
engineering feats including building an early android, and is a true
inspiration.
Post war saw a flurry of new computers which are more well-known, such
as the USA’s Eniac [Eniac], and Manchester’s SSEM [Baby]. These were
now fully programmable, with even more of the many features that we
now take for granted. The revolution had started, with many key
technologies helping boost the power of computers, such as the invention
of the transitor at Bell Labs in 1948 and the integrated circuit at Texas
instruments in 1958. Programming languages were also being improved,
with still extant ones such as FORTRAN in 1954 and LISP in 1958.
The subsequent history I can couch in a more personal way. As the 60s
ended, my father was a computer engineer, maintaining computers for
Sperry, the UNIVAC being one I remember. Work was sometimes
brought home in the form of used punch cards and folded teletype paper,
which held little interest to myself beyond their use as drawing paper. By
the end of the 70s he’d moved on to being a trainer of other engineers for
DEC in Manchester. For various reasons we’d pick him up on the way
back from school, and as it was usually too early to leave I’d be allowed
to keep myself occupied on some of the computers there, mainly PDPs
and VAXes accessed via various devices. Some of these were quite
memorable, such as playing Lunarlander [Lunarlander] on a vector
graphics screen using a light pen, Adventure [Adventure] on a teletype
(which is where the phrase ‘You are in a maze of twisty little passages,
all alike’ comes from), or Star Trek on a VDU. Of course after a while
you get bored, and so I was given a small blue book which told me about
something called BASIC.
This was the time of the home computer revolution, and the chemistry
teacher at school set up a computer club with one of the early ZX80s,
followed by ZX81s and an Apple II. After saving up, I finally (after a
notoriously long wait) got a 48K ZX Spectrum. I learnt an awful lot from
this humble machine, not only programming in BASIC, but trying
assembler, C and Pascal. I even used it in my Control Technology ‘O’

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | October 2011

EDITORIALRIC PARKIN
Level project, where it drove a simple ‘Multiple Choice Quiz Marker’. (Of
course, disaster struck on the morning of it being marked – one of the light
detectors used to find marks on the paper broke. Fortunately I realised that
the sample paper I was using just happened to have some redundancy in
it, and I could use the other three to infer the result of the broken one – my
first experience of error correction!)
The home computer craze had run out of steam, and I’d sold my computer
before going to 6th Form and University. I still occasionally came into
contact with computers though, using Pascal and LaTEX on VAXes during
summer jobs at the Royal Radar And Signals Establishment, and some
university projects on numerical approximation when solving
Schrodinger’s Equation.
By the time of my first job in early 1991, the PC had come to dominate.
So my first work machine was running an Intel 286, running at about
8MHz. I forget how much memory it had, but it was pitiful by today’s
standards, but it, along with a few 386 machines and a rather expensive
486, were used to do some rather remarkable jobs. We were a small
company that did map digitising for the likes of the Ordinance Survey, but
also lots of location based applications such as hydrolographic surveying.
This was quite fun as we’d go out to interesting locations, such as when
we developed the software for a major survey ship [Protea]. At the time
the use of land based transponders and triangulation was the main
technique to determine location, but we did have one of the new GPS
receivers, which was the size of a small suitcase. My last job there was to
write a new version of our graphical survey editing suite for an upstart
operating system called Windows 3.0.
At my next job, I came across a language called C, and even invented some
simple ones myself. We quickly developed an application for a book
database, with various search and results screens. Knowing that the
database format and screen layout was bound to need to be tweaked close
to release, I came up with a simple script format that would describe the
database, define ways of searching it, give the screen layouts and how the
navigation between them fitted together. Without realising it I had
basically (poorly) reinvented SQL and HTML!
After that I moved to a job in the computing hotspot known as ‘Silicon
Fen’, where we were porting from C to the new trendy language C++. We
also had a new tool – something called email that worked across a thing
called ‘the Internet’. This had also got something new called ‘The World
Wide Web’, accessed by a browser such as Lynx or Mosaic. We weren’t
sure what it would be useful for though, although a very popular early use
was to see if there was any coffee, even though it was someone else’s
[Trojan].
By the end of the 90s I’d got a bit cocky, thinking I was a bit of a C++
wizz, so discovering Usenet and in particular comp.lang.c++ moderated
came as a bit of a shock: in reality I knew so little, and I hadn’t even known
it! Apparently this is quite common – if you graph perceived ability against
actual ability you end up with a graph with an early peak followed by a
valley and slow rise, where you overrate yourself to start with, but when
you discover just how much you don’t know it falls back and you tend to
underrate yourself. I think this is similar to the Dunning-Kruger effect
[D-K], but can be seen in a single individual learning over time. But via
the newsgroups, I did find out about ACCU, which helped me realise my
ignorance as well a provide a means of improving!
The 2000s will be more familiar to most people – the internet became
ubiquitous, chip clock speeds stalled, but Moore’s Law continued to hold

with the extra transistors going towards more on-chip caches, multi-cores,
and dedicated graphics and audio functions. Social media facilitated by
computers and mobile communications have put people in touch like never
before (I’ve literally just heard from an old girlfriend who has lived near
Edinburgh for 17 years – in a previous era we’d have never met again).
Politics and technology are still ill-at-ease – in the wake of the urban
disturbances in the UK over the summer there were calls for the
government to be able to shut down the likes of Blackberry and Twitter
on the basis that they could be used to organise trouble. Thankfully people
have realised that they in themselves aren’t the problem, they were also
used to respond positively, and obvious workarounds exist. The existing
laws for incitement dealt with the issue quickly (and easily as such
communications could be tracked, providing evidence).
So what of the future? Cloud computing has been The Next Big Thing for
a while, but may well go mainstream if someone can make it as reliable,
usable, and seamless as local computing. Multicore and parallel processing
are here now and will grow in importance – learning how to design
software that safely takes advantage of it is the big problem for the next
few years.
And the big news for many will be the ratification of the new C++
Standard. Some compilers already implement parts, and the next couple
of years will see better compliance – I hope the major vendors commit to
full implementations and not just pick and choose parts. For commercial
vendors, pressure from their customers (ie you) will help, and for the open
source implementations, input from their developers
(ie you) will as well. But be quick, the next C++
standard is already being considered!

On a personal note
I came up with the idea for this historical overview a while ago because
of some stories in the news. But the personal aspect now seems most apt:
while writing it my father, the person who got me started with computers
all those years ago, died suddenly aged 71. I’d like to dedicate this to him.

References
[Adventure] http://en.wikipedia.org/wiki/Colossal_Cave_Adventure
[Analytical] http://www.bbc.co.uk/news/technology-15001514
[Antikythera] http://www.antikythera-mechanism.gr/
[Baby] http://en.wikipedia.org/wiki/Manchester_Small-

Scale_Experimental_Machine
[Byro] http://abc-ebc.blogspot.com/
[D-K] http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
[Eniac] http://en.wikipedia.org/wiki/ENIAC
[Gibson Sterling] http://en.wikipedia.org/wiki/The_Difference_Engine

[Jacquard] http://en.wikipedia.org/wiki/Jacquard_loom
[Lovelace] http://en.wikipedia.org/wiki/Ada_Lovelace
[LunarLander] http://en.wikipedia.org/wiki/

Lunar_Lander_%28video_game%29
[Protea] http://www.navy.mil.za/vtour/protea/index.htm
[Sale] http://www.bbc.co.uk/news/technology-14720180
[Trojan] http://www.cl.cam.ac.uk/coffee/qsf/coffee.html
[Zuse] http://en.wikipedia.org/wiki/Z3_%28computer%29
October 2011 | Overload | 3

http://www.antikythera-mechanism.gr/
http://en.wikipedia.org/wiki/Jacquard_loom
http://www.bbc.co.uk/news/technology-15001514
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Manchester_Small-Scale_Experimental_Machine
http://en.wikipedia.org/wiki/Manchester_Small-Scale_Experimental_Machine
http://en.wikipedia.org/wiki/Colossal_Cave_Adventure
http://abc-ebc.blogspot.com/
http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
http://en.wikipedia.org/wiki/ENIAC
http://en.wikipedia.org/wiki/The_Difference_Engine
http://en.wikipedia.org/wiki/Lunar_Lander_%28video_game%29
http://en.wikipedia.org/wiki/Lunar_Lander_%28video_game%29
http://www.navy.mil.za/vtour/protea/index.htm
http://www.bbc.co.uk/news/technology-14720180
http://www.cl.cam.ac.uk/coffee/qsf/coffee.html
http://en.wikipedia.org/wiki/Z3_%28computer%29

FEATURE RICHARD HARRIS
Why Finite Differences Won’t
Cure Your Calculus Blues
Now we know our problem in depth. Richard Harris analyses
if a common technique will work adequately.
n the previous article we discussed the foundations of the differential
calculus. Initially defined in the 17th century in terms of the rather
vaguely defined infinitesimals, it was not until the 19th century that

Cauchy gave it a rigorous definition with his formalisation of the concept
of a limit. Fortunately for us, the infinitesimals were given a solid footing
in the 20th century with Conway’s surreal numbers and Robinson’s non-
standard numbers, saving us from the annoyingly complex reasoning that
Cauchy’s approach requires.
Finally, we discussed the mathematical power tool of numerical
computing; Taylor’s theorem. This states that for any sufficiently
differentiable function f

If we do not place a limit on the number of terms, we have

Note that here f'(x) stands for the first derivative of f at x, f"(x) for the second
and f(n)(x) for the nth with the convention that the 0th derivative of a
function is the function itself. The capital sigma stands for the sum of the
expression to its right for every unique value of i that satisfies the inequality
beneath it and i! stands for the factorial of i, being the product of every
integer between 1 and i, with convention that the factorial of 0 is 1.

You may recall that we used forward finite differencing as an example of
cancellation error in the first article of this series [Harris10]. This technique
replaces the infinitesimal δ in the definition of the derivative with a finite,
but small, quantity.
We found that the optimal choice of this finite δ was driven by a trade off
between approximation error and cancellation error. With some fairly
vigorous hand waving, we concluded that it was the square root of ε; the
difference between 1 and the smallest floating point number greater than 1.
This time, and I fancy I can hear your collective groans of dismay, we shall
dispense with the hand waving.

Forward finite difference
Given some small finite positive δ, the forward finite difference is given by

Using Taylor’s theorem the difference between this value and the
derivative is equal to

for some y between x and x+δ.
Assuming f introduces a relative rounding error of some non-negative
integer nf multiples of ½ε and that x has already accumulated a relative
rounding error of some non-negative integer nx multiples of ½ε then, if we
wish to approximate the derivative as accurately as possible we should
choose δ to minimise

as shown in derivation 1.
Now this is a function of δ of the form

Such functions, for positive a, b and x, have a minimum value of
at (taking the positive square roots) as shown in derivation 2.
To leading order in ε and δ the worst case absolute error in the forward
finite difference approximation to the derivative is therefore

when δ is equal to

taking the positive square roots in both expressions.
Now these expressions provide a very accurate estimate of the optimal
choice of δ and the potential error in the approximation of the derivative
that results from that choice. There are, however, a few teensy-weensy
little problems.
The first is that these expressions depend on the relative rounding errors
of x and f. We can dismiss these problems out of hand since if we have no
inkling as to how accurate x or f are then we clearly cannot possibly have
any expectation whatsoever that we can accurately approximate the
derivative.
The second, and slightly more worrying, is that the error depends upon the
very value we are trying to approximate; the derivative of f at x.

I

f x f x f x f x

f x Rn
n n

n

n

+() = () + × ′() + × ′′() +
+ × () +

+

δ δ δ

δ

1
2

2

1

1

...

min

!
()

11
1 1

1
1

1 1

()
+ +()

+()
+ +()

× +()() ≤
≤ × +()()

!

!max

δ θδ

δ θδ

n n
n

n
n n

f x R

f x for 0 1≤ ≤θ

f x f x f x f x

f xn
n n

i

+() = () + × ′() + × ′′() +
+ × () +

=

δ δ δ

δ

δ

1
2

2

1

1

...

...!
()

!
ii i

i
f x()

>=
()∑

0

f x f x+() − ()δ
δ

1
2 δ × ′′()f y

n
f x n f x n x f yf

f x

ε

δ
ε ε δ() + +() ′() + +() ′′()1

2
1
2 11

f x a
x

bx c() = + +

2 ab c+
a b

2 11
1
2 1

1
2n f x f y n xf y n f xf x fε ε() ′′() + ′′() + +() ′()()

2
1

n
f x

f yf ε
()
′′()

Richard Harris has been a professional programmer since 1996. He
has a background in Artificial Intelligence and numerical computing
and is currently employed writing software for financial regulation.
4 | Overload | October 2011

October 2011 | Overload | 5

FEATURERICHARD HARRIS

Given the circumstances, the best thing we
can really do is to guess how the second

derivative behaves

Derivation 1

Approximation error of the forward finite difference

From Taylor’s theorem we have

for some y between x and x+δ.

We shall assume that f introduces a proportional rounding error of some non-negative integer nf multiples of ½ε and that x has
a proportional rounding error of some non-negative nx multiples of ½ε.
We shall further assume that we can represent δ exactly and that the sum of it and x introduces no further rounding error.

Under these assumptions the floating point result of the forward finite difference calculation is bounded by

where the error in x is the same in both cases.

This is in turn bounded by

Noting that

the result is hence bounded by

giving a worst-case absolute error of

f x f x f x f y+() = () + ′() + ′′()δ δ δ1
2

2

f x n x n f x n x nx f x f± +()× ±() − ±()× ±()()× ±()
×

1
2

1
2

1
2

1
2

1
21 1 1

1
ε δ ε ε ε ε

δ
±±()1

2 ε

f x n x n f x n x n

f x

x f x f± +()× ±() − ±()× ±()
× ±()

∈

1
2

1
2

1
2

1
2 1

2
21 1

1
ε δ ε ε ε

δ
ε

±± +() − ±() ± × ± +() + ±()()1
2

1
2

1
2

1
2

1
2n x f x n x n f x n x f x n xx x f x xε δ ε ε ε δ ε

δδ
ε× ±()1 1

2
2

n x

x n x f

x

x

)
() + ± +() ′′

ε

ε δ1
2

1
2

2 yy f x n x f x n x f yx x1
1
2

1
2

1
2

2
0() + () + ±() ′() + ±() ′′()ε ε

() + () ′′() + ′′()() + +() ′′()x n x f y f y n x f yx x
1
8

2
1 0

1
2

2
1ε εδ δ

n x

x n x f

x

x

)
() + ± +() ′′

ε

ε δ1
2

1
2

2 yy f x n x f x n x f yx x1
1
2

1
2

1
2

2
0() + () + ±() ′() + ±() ′′()ε ε

() + () ′′() + ′′()() + +() ′′()x n x f y f y n x f yx x
1
8

2
1 0

1
2

2
1ε εδ δ

f x n x f x n x

f x n x f x n x

x x

x x

± +() − ±()
= () + ± +() ′() + ± +

1
2

1
2

1
2

1
2

1
2

ε δ ε

ε δ ε δδ ε ε

δ

() ′′() − () − ±() ′() − ±() ′′()
= ′(

2
1

1
2

1
2

1
2

2
0f y f x n x f x n x f y

f x

x x

)) + () ′′() − ′′()() + ± +() ′′()

±

1
8

2
1 0

1
2

2
1

1
2

n x f y f y n x f y

f x n

x x

x

ε εδ δ

ε xx f x n x

f x n x f x n x f

x

x x

+() + ±()
= () + ± +() ′() + ± +() ′′

δ ε

ε δ ε δ

1
2

1
2

1
2

1
2

2 yy f x n x f x n x f y

f x n x

x x

x

1
1
2

1
2

1
2

2
0

2

() + () + ±() ′() + ±() ′′()

≤ () + +

ε ε

ε δ(() ′() + () ′′() + ′′()() + +() ′′()f x n x f y f y n x f yx x
1
8

2
1 0

1
2

2
1ε εδ δ

′() + () ′′() − ′′()() + ± +() ′′()

±

f x
n x

f y f y n x f y

n

x
x

f

1
8

2

1 0
1
2 1

1
2

ε
δ

ε δ

ε ××
()

+ +
⎛

⎝
⎜

⎞

⎠
⎟ ′() + () ′′() + ′′()() +2 1 1

8

2

1 0
1
2

f x n x
f x

n x
f y f yx x

δ
ε
δ

ε
δ

nn x f yxε δ
ε

+() ′′()
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

× ±()
1

1
2

21

1
2 1

1
2

2

2n x f y n
f x

f x f x Ox fε δ ε
δ

ε
ε
δ

+() ′′() + ×
()

+ ′()
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ ′() + ⎛

⎝
⎜⎜

⎞

⎠
⎟ + ()

= () + +() ′() + +() ′′() +

O

n
f x n f x n x f y Of

f x

εδ

ε

δ
ε ε δ

ε
δ

1
2

1
2 1

2

1
⎛⎛

⎝
⎜

⎞

⎠
⎟ + ()O εδ

FEATURE RICHARD HARRIS

If our guess is significantly smaller,
however, we’re in trouble since we shall in
this case underestimate the error
Fortunately, we can recover the error to leading order in ε by replacing it
with the finite difference itself.
The third, and by far the most significant, is that both expressions depend
upon the behaviour of the unknown second derivative of f.
Unfortunately this is ever so slightly more difficult to weasel our way out
of. By which I of course mean that in general it is entirely impossible to
do so.
Given the circumstances, the best thing we can really do is to guess how
the second derivative behaves. For purely pragmatic reasons we might
assume that

since this yields

The advantage of having a δ of this form is that it helps alleviate both
rounding and cancellation errors; it is everywhere larger than (2nfε)½|x|
and hence mitigates against rounding error for large |x| and it is nowhere
smaller than (2nfε)½ and hence mitigates against cancellation error for
small |x|.

Substituting this into our error expression yields

Of course this estimate will be inaccurate if the second derivative differs
significantly from our guess.
This is little more than an irritation if our guess is significantly larger than
the second derivative since the true error will be smaller than our estimate
and we will still have a valid, if pessimistic, bound.
If our guess is significantly smaller, however, we’re in trouble since we
shall in this case underestimate the error. Unfortunately there is little we
can do about it.
One thing worth noting is that if the second derivative is very large at x
then the derivative will be rapidly changing in its vicinity. The limiting
case as the second derivative grows in magnitude is a discontinuity at
which the derivative doesn’t exist.
If we have a very large second derivative, we can argue that the derivative
is in some sense approaching non-existence and that we should need to be
aware of this and plan our calculations accordingly.
We have one final issue to address before implementing our algorithm; we
have assumed that we can exactly represent both δ and x+δ. Given that our
expression for the optimal choice of δ involves a floating point square root
operation this is, in general, unlikely to be the case.
Fortunately we can easily find the closest floating point value to δ for
which our assumptions hold with

′′() = ()
+()

f y
f x

x
1 2

1

δ ε= × +()2 1n xf

2

1 1
11

2 2
1
2

n

x
f x n

xf x

x
n f xf

x f

ε
ε ε

+
() +

()
+()

+ +() ′()

Listing 1

template<class F>
class forward_difference
{
public:
 typedef F function_type;
 typedef typename F::argument_type argument_type;
 typedef typename F::result_type result_type;

 explicit forward_difference(
 const function_type &f);
 forward_difference(const function_type &f,
 unsigned long nf);

 result_type operator()(
 const argument_type &x) const;

private:
 function_type f_;
 result_type ef_;
};

Derivation 2

The minimum of a/x+bx+c

Recall that the turning points of a function f, that is to say the minima,
maxima and inflections, occur where the derivative is zero.

Note that this is only a real number if a and b have the same sign.

We can use the second derivative to find out what kind of turning point
this is; positive implies a minimum, negative a maximum and zero an
inflection.

If both a and b are positive and we choose the positive square root of
their ratio then this value is positive and we have a minimum.

f x a
x

bx c

f x a
x

b

f a b a
a b

b b b

f a b a
a b

b a b

() = + +

′() = − +

′() = − + = − + =

() = + +

2

0

cc ab c= +2

′′() =

′′() = ()×
=

f x a
x

f a b a
a b a b

b
a b

2

2 2

3

6 | Overload | October 2011

FEATURERICHARD HARRIS

To compare our approximation of the
error with the exact error we shall count

the number of leading zeros after the
decimal point of each
Naturally this will have some effect on the error bounds, but since it will
only be O(εδ) it will not impact our approximation of them.
Listing 1 provides the definition of a forward finite difference function
object.
Note that we have two constructors; one with an argument to represent nf
and one without. The latter assumes a rounding error of a single ½ε, as
shown in listing 2, and is intended for built in functions for which such an
assumption is reasonable.

Note also that we are assuming that the result type of the function object
has a numeric_limits specialisation (whose epsilon function is
represented here by the typesetter-friendly abbreviation eps<T>), can be
conversion constructed from an unsigned long and has a global namespace
overload for the sqrt function. To all intents and purposes we are
assuming it is an inbuilt floating point type.
We should rather hope that the argument type of the function object is the
same as its result type, and for that matter that this is a floating point type,
but must provide for a minimum δ just in case the user decides otherwise,
which we do by setting a lower bound for ef_. We must be content in such
cases with the fact that they have made a rod for their own back when it
comes time to perform their error analysis!
Listing 3 gives the implementation of the function call operator based upon
the results of our analysis.
As an example, let us apply our forward difference to the exponential
function with arguments from -10 to 10. We can therefore expect that nf
is equal to one and nx to zero and hence that our approximation of the error
is

Since the derivative of the exponential function is the exponential function
itself, we can accurately calculate the true error by taking the absolute
difference between it and the finite difference approximation.
To compare our approximation of the error with the exact error we shall
count the number of leading zeros after the decimal point of each, which
we can do by negating the base 10 logarithm of the values.
Figure 1 plots the leading zeros in the decimal fraction of our approximate
error as a dashed line and in that of the true error as a solid line, with larger
values on the y axis thus implying smaller values for the errors.

x n x xf+ × +()() −2 1ε

2
1

1 1
2

ε
ε

x
f x f x

+
() + ′()

Figure 1

Listing 2

template<class F>
forward_difference<F>::forward_difference(
 const function_type &f) : f_(f),
 ef_(sqrt(result_type(2UL)*eps<result_type>()))
{
 if(ef_<result_type(eps<argument_type>()))
 {
 ef_ = result_type(eps<argument_type>());
 }
}

template<class F>
forward_difference<F>::forward_difference(
 const function_type &f,
 const unsigned long nf) : f_(f),
 ef_(
 sqrt(result_type(2UL*nf)*eps<result_type>()))
{
 if(ef_<result_type(eps<argument_type>()))
 {
 ef_ = result_type(eps<argument_type>());
 }
}

Listing 3

template<class F>
typename forward_difference<F>::result_type
forward_difference<F>::operator()(
 const argument_type &x) const
{
 const argument_type abs_x =
 (x>argument_type(0UL)) ? x : -x;
 const argument_type d =
 ef_*(abs_x+argument_type(1UL));
 const argument_type u = x+d;

 return (f_(u)-f_(x))/result_type(u-x);
}

October 2011 | Overload | 7

FEATURE RICHARD HARRIS
Our approximation clearly increasingly underestimates the error as the
absolute value of x increases. This shouldn’t come as too much of a surprise
since our assumption about the behaviour of the second derivative grows
increasingly inaccurate as the magnitude of x increases for the exponential
function.
Nevertheless, our approximation displays the correct overall trend and is
nowhere catastrophically inaccurate, at least to my eye.
The question remains as to whether we can do any better.

Symmetric finite difference
Returning to Taylor’s theorem we can see that the term whose coefficient
is a multiple of the second derivative is that of δ2. This has the very useful
property that it takes the same value for both +δ and -δ.
If we approximate the derivative with the finite difference between a small
step above and a small step below x we can arrange for this term to cancel
out. Specifically, the expression

differs from the derivative at x by

for some y between x-δ and x+δ as shown in derivation 3.
Now this is a rather impressive order of magnitude better in δ than the
forward finite difference considering that it involves no additional
evaluations of f.
That said, it is not at all uncommon that both the value of the function and
its derivative are required, in which case the finite forward difference can
get one of its function evaluations for free.
With a similar analysis to that we made for the forward finite difference,
given in derivation 4, we find that the optimal choice of δ must minimise

This time the quantity we wish to minimise is a function in δ of the form

which, as shown in derivation 5, given positive b is minimised by

To leading order in ε and δ the minimum relative error in the symmetric
finite difference approximation to the derivative is therefore

f x f x+() − −()δ δ
δ2

1
6

2δ × ′′′()f y

n
f x n f x n xf x f yf

f x

ε

δ
ε ε δ

2
11

2
1
2

1
6

2() + +() ′() + ′′() + ′′′()

f x a
x

bx c() = + +2

f a
b

a b c
2

27
4

1
3

1
3 2

3
1
3⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ⎛
⎝
⎜

⎞
⎠
⎟ +

9
32

1

1
3 2

3
1
3

1
2

1
2

⎛
⎝
⎜

⎞
⎠
⎟ ()() ′′′()()

+ +() ′() + ′′

n f x f y

n f x n xf

f

f x

ε

ε ε xx()

Derivation 3

The symmetric finite difference

From Taylor’s theorem we have

for some y0 between x-δ and x and y1 between x and x+δ
The symmetric finite difference is therefore

The intermediate value theorem states that for a continuous function,
there must be a point x between points x0 and x1 such that

If the second derivative of our function is continuous this means that

for some y between x-δ and x+δ.

f x f x f x f x f y

f x f x f x

−() = () − ′() + ′′() − ′′()
+() = () + ′(
δ δ δ δ

δ δ

1
2

2 1
6

3
0

)) + ′′() + ′′()1
2

2 1
6

3
1δ δf x f y

f x f x f x f y f y

f x

+() − −()
=

′() + ′′() + ′′()

= ′() +

δ δ
δ

δ δ δ
δ2

2
2

1
6

3
0

1
6

3
1

1
122

2
0 1δ ′′() + ′′()()f y f y

f x
f x f x

() = () + ()0 1

2

f x f x
f x f y

+() − −()
= ′() + ′′()

δ δ
δ

δ
2

1
6

2

Derivation 4

Approximation error of the symmetric finite difference

From Taylor’s theorem we have

for some y between x and x+δ.

Making the same assumptions as before about rounding errors in both f
and x, the floating point result of the symmetric finite difference
calculation is bounded by

which is in turn bounded by

The error in x is again the same in all cases giving us

and hence a worst case absolute error of

or, by the mean value theorem again

f x f x f x f x f y+() = () + ′() + ′′() + ′′()δ δ δ δ1
2

2 1
6

3

f x n x n

f x n x n

x f

x f

± +()× ±()
− ± −()× ±()
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
× ±

1
2

1
2

1
2

1
2

1

1
1

ε δ ε

ε δ ε
11
2

1
22

1

ε

δ
ε

()
× ±()

f x n x f x n x

n f x n x f x n x
x x

f x x

± +() − ± −()
± × ± +() + ± −

1
2

1
2

1
2

1
2

1
2

ε δ ε δ

ε ε δ ε δδ

δ
ε

()()
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× ±()

2
1 1

2
2

+)x f2δ xx

n x f x

n x

x

x

()

+) ′′()

() +

2

1
24

2 1
12

εδ δ

ε δ nn x

f y

xεδ δ2 1
6

3

0

+)
′′′())

f x n x f x n x

f x n xf x

n x

x x

x

x

± +() − ± −()
= ′() ± ′′()
± ()

1
2

1
2

1
48

3

2

ε δ ε δ

δ εδ

ε ++() ′′′() − ′′′()()
+ () +() ′′′(

1
12

2
1 0

1
24

2 1
6

3
1

n x f y f y

n x f y

x

x

εδ

ε δ δ)) + ′′′()()

± +() + ± −()
≤ () + +() ′

f y

f x n x f x n x

f x n x f
x x

x

0

1
2

1
2

2 2

ε δ ε δ

ε δ xx

n x n x f x

n x n x

x x

x x

()

+ () + +() ′′()

+ () + () +

1
4

2 2

1
48

3 1
24

2 1
12

ε εδ δ

ε ε δ nn x

f y f y

xεδ δ2 1
6

3

1 0

+()
× ′′′() + ′′′()()

1
2

1
12

2
1 0

1
2

2

1

n xf x f y f y
n

f x

n f x

x
f

f

ε δ
ε
δ

ε

′′() + ′′′() + ′′′() + ()

+ +() ′(() + ⎛

⎝
⎜

⎞

⎠
⎟ + ()O Oε

δ
εδ

2

1
2

1
6

2

1
2

2

2

1

n xf x f y
n

f x

n f x O

x
f

f

ε δ
ε
δ

ε
ε
δ

′′() + ′′′() + ()

+ +() ′() + ⎛

⎝
⎜

⎞

⎠⎠
⎟ + ()O εδ
8 | Overload | October 2011

FEATURERICHARD HARRIS
when δ is equal to

Now this error is and we should therefore expect this to be
significantly better than the forward finite difference with its error.
Unfortunately in order to achieve this we have compounded the problem
of unknown quantities in the error and the choice of δ.
The optimal choice of the δ is now dependent on the properties of the third
rather than the second derivative of f so we cannot use our previous
argument that it may in some sense be reasonable to ignore it.
Furthermore, the resulting approximation error is dependant on both the
second and the third derivatives of f.
We can deal with the first problem in the same way as we did before. In
the name of pragmatism we assume that

giving a δ of

It’s a little more difficult to justify a guess about the form of the second
derivative since it plays no part in the choice of δ.
We could arbitrarily decide that it has a similar form to that we chose for
it during our analysis of the forward finite difference. Specifically

This strikes me a vaguely unsatisfying however, since it is not consistent
with our assumed behaviour of the third derivative.
Instead, I should prefer something that satisfies

since this is approximately consistent with our guess.

Derivation 6 shows that we should choose

for positive x,

for x equal to zero and

for negative x, with terms given to 5 decimal places.
Substituting these guessed derivatives back into our error formula yields
an estimated error of

3
2

1
3

n
f x

f yf ε
()
′′′()

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

O()ε 2
3

O()ε 1
2

′′′() = ()
+()

f y
f x

x 1
3

3
2

1
3 1n xf ε() × +()

′′() = ()
+()

f x
f x

x 1
2

d
dx

f x f x
f x

x
′′() = ′′′() = ()

+()1
3

′′() = − ()
+()

−
′()
+

f x
f x

x

f x
x

0.43016 0.32472
1 12

′′() = − () − ′()f x f x f x

′′() = − ()
+()

−
′()
+

f x
f x

x

f x
x

3 .32472.07960
1

2
12

Derivation 5

The minimum of a/x+bx2+c

We find a turning point of f with

We have a second derivative of

so if b is positive we have a minimum.

f x a
x

bx c

f x a
x

bx

f a
b

a b
a

() = + +

′() = − +

′ ⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − ⎛

⎝
⎜

⎞

2

2 2

2
2

1
3

⎠⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ = −() + () =

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

2
3

1
3 2

3
1
3

2
3

1
3

1
3

2
2

2 2 0

2

b a
b

b a b a

f a
b

⎞⎞

⎠
⎟
⎟
= ⎛

⎝
⎜

⎞
⎠
⎟ + ⎛

⎝
⎜

⎞
⎠
⎟ + = ⎛

⎝
⎜

⎞
⎠
⎟ +a b

a
b a

b
c a b c2

2
27
4

1
3

2
3

1
3 2

3
1
3

′′() = +

′′ ⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= + =

f x a
x

b

f a
b

a
a b

b b

2 2

2
2

2
2 6

3

1
3

Derivation 6

A consistent second derivative

Consider first

where a is a constant and sgn(x) is the sign of x. For simplicity’s sake,
we shall declare the derivative of the absolute value of x at 0 to be 0 rather
than undefined.

The second term has the required form so if we can find a way to cancel
out the first we shall have succeeded. Adding a second term whose
derivative includes a term of the same form might just do the trick.

We therefore require

Solving for a and b yields a serendipitously unique result.

′′() = ()
+()

′′() =
′()
+()

− () ()
+()

f x a
f x

x

d
dx

f x a
f x

x
x a

f x

x

1

1
2

1

2

2 sgn 33

′′() = ()
+()

+
′()
+

′′() =
′()
+()

− ()

f x a
f x

x
b

f x
x

d
dx

f x a
f x

x
x

1 1

1
2

2

2 sgn aa
f x

x

b
f x
x

x b
f x

x

a x b
f x

()
+()

+
′′()
+

− ()
′()
+()

= − ()() ′(

1

1 1

3

2sgn

sgn))
+()

− () ()
+()

+
+

()
+()

+
′()
+()

⎛

⎝

⎜

x
x a

f x

x

b
x

a
f x

x
b

f x
x

1
2

1

1 1 1

2 3

2

sgn

⎜⎜

⎞

⎠

⎟
⎟

= − () +() ′()
+()

+ − ()() ()
+()

a x b b
f x

x

ab x a
f x

x

sgn

sgn

2
2

3

1

2
1

a x b b

ab x a

− () + =

− () =

sgn

sgn

2 0

2 1
October 2011 | Overload | 9

FEATURE RICHARD HARRIS
for positive x,

for x equal to zero and

for negative x.
Once again we shall not use δ directly, but shall instead use the difference
between the floating point representations of x+δ and x-δ.
Listing 4 provides the definition of a symmetric finite difference function
object.
We again have two constructors; one for built in functions and one for user
defined function, as shown in listing 5. Listing 6 gives the definition of
the function call operator based upon our analysis.
Figure 2 plots the negation of the base 10 logarithm of our approximation
of the error in this numerical approximation of the derivative of the
exponential function as a dashed line and the true error as a solid line.
Clearly the error in the symmetric finite difference is smaller than that in
the forward finite difference, although it appears that the accuracy of our
approximation of that error isn’t quite so good. That said, the average ratios
between the number of decimal places in the true error and the approximate
error of the two algorithms are not so very different; 1.21 for the forward
finite difference and 1.24 for the symmetric finite difference.
Still, not too shabby if you ask me.
But the question still remains as to whether we can do any better.

Higher order finite differences
As it happens we can, although I doubt that this comes as much of a
surprise. We do so by recognising that the advantage of the symmetric

finite difference stems from the fact that terms dependant upon the second
derivative largely cancel out. If we can arrange for higher derivatives to
cancel out we should be able to improve accuracy still further.
Unfortunately, doing so makes a full error analysis even more tedious than
those we have already suffered through. I therefore propose, and I suspect
that this will be to your very great relief, that we revert to our original hand-
waving analysis.
In doing so our choice of δ shall not be significantly impacted, but we shall
have to content ourselves with a less satisfactory estimate of the error in
the approximation.
We shall start by returning to Taylor’s theorem again.

9
32 1 1

1
3

2
3

2

1
2

⎛
⎝
⎜

⎞
⎠
⎟
()

+
+

+()

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
× ()

+

n
x

n x

x
f x

n

f x

f

ε ε

ε

0.21508

++
+

+
⎡

⎣
⎢

⎤

⎦
⎥× ′()0.16236

n x
x

f xxε ε
1

9
32 1

1
3

2
3

1
2

1
2

1
2

⎛
⎝
⎜

⎞
⎠
⎟
()

+
+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
× ()

+ + +⎡⎣

n
x

n x f x

n n x

f
x

f x

ε
ε

ε ε ε ⎤⎤⎦× ′()f x

9
32 1 1

1
3

2
3

2

1
2

⎛
⎝
⎜

⎞
⎠
⎟
()

+
+

+()

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
× ()

+

n
x

n x

x
f x

n

f x

f

ε ε

ε

1.53980

++
+

+
⎡

⎣
⎢

⎤

⎦
⎥× ′()1.16236

n x
x

f xxε ε
1

Figure 2

f x f x f x f x

f x f x

+() = () + × ′() + × ′′()
+ × ′′′() + × ()()

δ δ δ

δ δ

1
2

2

1
6

3 1
24

4 4 ++ ()O δ 5

Listing 4

template<class F>
class symmetric_difference
{
public:
 typedef F function_type;
 typedef typename F::argument_type argument_type;
 typedef typename F::result_type result_type;

 explicit symmetric_difference(
 const function_type &f);
 symmetric_difference(const function_type &f,
 unsigned long nf);

 result_type operator()
 (const argument_type &x) const;

private:
 function_type f_;
 result_type ef_;
};

Listing 5

template<class F>
symmetric_difference<F>::symmetric_difference(
 const function_type &f) : f_(f),
 ef_(pow(result_type(3UL)/result_type(2UL) *
 eps<result_type>(),
 result_type(1UL)/result_type(3UL)))
{
 if(ef_<result_type(eps<argument_type>()))
 {
 ef_ = result_type(eps<argument_type>())
 }
}

template<class F>
symmetric_difference<F>::symmetric_difference(
 const function_type &f,
 const unsigned long nf) : f_(f),
 ef_(pow(result_type(3UL*nf)/result_type(2UL) *
 eps<result_type>(),
 result_type(1UL)/result_type(3UL)))
{
 if(ef_<eps<argument_type>())
 {
 ef_ = eps<argument_type>();
 }
}

10 | Overload | October 2011

FEATURERICHARD HARRIS
From this we find that the numerator of the symmetric finite difference is

Performing the same calculation with 2δ yields

With a little algebra it is simple to show that

Assuming that each evaluation of f introduces a single rounding error and
that the arguments are in all cases exact this mean that the optimal choice
of δ is of order as shown in derivation 7.
By the same argument from pragmatism that we have so far used we should
therefore choose

to yield an error in our approximation.
With sufficient patience, we might continue in this manner, creating ever
more accurate approximations at the expense of increased calls to f.
Unfortunately, not only is this extremely tiresome, but we cannot escape
the fact that the error in such approximations shall always depend upon
the behaviour of unknown higher order derivatives.
For these reasons I have no qualms in declaring finite difference algorithms
to be a flock of lame ducks.
tutti: Quack!

Reference
[Harris10] Harris, R., ‘You’re Going to Have to Think; Why [Insert

Technique Here] Won’t Cure Your Floating Point Blues’, Overload
99, ACCU, 2010

f x f x f x f x O+() − −() = × ′() + × ′′′() + ()δ δ δ δ δ2 1
3

3 5

f x f x f x f x O+() − −() = × ′() + × ′′′() + ()2 2 4 8
3

3 5δ δ δ δ δ

′() =

+() − −()()
− +() − −()()
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ()f x

f x f x

f x f x
O

8

2 2

12
4

δ δ

δ δ

δ
δ

ε 1
5

δ ε= +()×x 1 1 5

O()ε 4
5

Derivation 7

The optimal choice of δ
Noting that multiplying by a power of 2 never introduces a rounding error,
the floating point approximation to our latest finite difference is bounded
by

which simplifies to

The order of the error is consequently minimised when

8
1

1
1

2 1

1
2

1
2

1
2

1

f x

f x

f x

+()× ±()
− −()× ±()
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟× ±()

−
+()× ±

δ ε

δ ε
ε

δ 22

1
2

1
2

1
2

2 1
1

1
ε

δ ε
ε

()
− −()× ±()
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟× ±()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

× ±

f x

εε

δ
ε

()

× ±()
12

1 1
2

2

8 2 2
12

4

f x f x f x f x O

f x O O

+() − −()() − +() − −()() + ()

= ′() + () +

δ δ δ δ ε

δ

δ
ε
δ
⎛⎛
⎝
⎜

⎞
⎠
⎟

O O

O O

δ
ε
δ

δ ε

4

1 5

() = ⎛
⎝
⎜

⎞
⎠
⎟

() = ()

Listing 6

template<class F>
typename symmetric_difference<F>::result_type
symmetric_difference<F>::operator()(
 const argument_type &x) const
{
 const argument_type abs_x =
 (x>argument_type(0UL)) ? x : -x;
 const argument_type d =
 ef_*(abs_x+argument_type(1UL));
 const argument_type l = x-d;
 const argument_type u = x+d;

 return (f_(u)-f_(l))/result_type(u-l);
}

October 2011 | Overload | 11

FEATURE FILIP VAN LAENEN
Outsource Your Self-Discipline
It’s all too easy to skip those tedious but vital steps
towards code quality. Filip van Laenen suggests
getting someone else to do them.
uge progress has been made in the past decade in the field of code
quality assurance. Test-Driven Development (TDD) and Pair
Programming are two key practices that have made a big difference

and improved code quality substantially. Many readers will agree
however, that there’s still plenty of room for improvement. One important
factor is that the IT systems that we build today are among the most
complicated systems mankind has ever made. On the other hand, many of
the tasks related to code quality are simple yet very repetitive, and therefore
also extremely boring. As a consequence, doing the simple tasks like good
and consistent code formatting, or proper function and variable naming,
are usually more a question of conscience and self-discipline than
knowledge and training. Is there an alternative to all the things we let slip
due to bad conscience on a daily basis in our industry?

Why would you need assistance?
Even though there are many good arguments for pair programming, one
of them is in my opinion wrong even though it is a very popular one: the
idea that the second person will act to keep you on the straight-and-narrow.
However, using a colleague to watch over your shoulder so that you give
your functions appropriate names, that you comment your code where it’s
necessary, or that you don’t write deeply nested functions, is a waste of
resources we really can’t afford in our industry. If you don’t bother doing
it when you’re on your own then why do you punish your colleague with
this boring task? Besides, you have a friend who’s much better at it. In fact,
he’s much faster, does the job better and in a more consistent and precise
manner than any of your colleagues, and he never gets tired of boring,
repetitive, trivial jobs. That’s right, I’m talking about your computer. Just
think of how many lines of code it can analyse in a millisecond and
compare it to how much time your colleague will need just to check that
a single line of code is formatted correctly.
But even if you’re a disciplined programmer who always formats his code
consistently and practises TDD according to the book, your computer can
be of great help. Remember the principles of TDD? The flowchart in
Figure 1 gives a quick overview: first you write a failing unit test, then you
write only as much source code as needed to make the test pass. Next you
refactor the code if needed, and unless you’re done, go back to the start
and write a new failing unit test. But how do you know whether you should
refactor your code or not, and how do you know when you’ve refactored
it enough? Everybody has an idea about what ‘good code’ looks like but
it’s often a very subjective thing. What looks ‘good enough’ today may
look ‘just below the bar’ on another day. And once you’ve started
refactoring it may be hard to stop when it’s just ‘good enough’ and instead
continue to polish the code that little bit more.

Just to give an example: unless you’re using a programming language in
which calls to subroutines are very expensive, having fifteen levels of
nesting in a single method is definitely a sign of bad code quality. But if
you start refactoring the method how do you know when you should stop?
Reducing the nesting to six or seven levels clearly isn’t ‘good enough’, but
what about three or four levels? And is three levels ‘good enough’ so that
you can move on to the next problem, or should you continue until all
functions have no more than one level of nesting?
What’s even more difficult is getting four, five or even more programmers
to agree on what will be the minimal code quality requirements for a
project. And that’s before you want them to apply those minimal
requirements to every piece of code in the project in a consistent way and
without long (or even endless) discussions, throughout the lifetime of that
project. Wouldn’t it be great to get help from an impartial judge, who can
give his opinion about the quality of a certain piece of code based on a set
of objective criteria? Again, this is where the computer can help you, e.g.
applying some automated rules against your code in order to check that it
meets the minimal code quality requirements you all agreed upon.

How your computer can help
There are many tools available that you can use to check the quality of your
code. Some of them can be plugged into the build process so that all
developers in your project team can follow the exact same coding standard,
and that all code adheres to the same minimum code quality requirements.
You’ll get the best results if you let the build process fail whenever

H

Filip van Laenen is a chief engineer at the Norwegian software
company Computas, which he joined in 1997. As the company’s
competency lead for Software Engineering, it’s his job to inspire his
colleagues and help them improve their software quality skills. He
can be contacted at f.a.vanlaenen@ieee.org.

Figure 1
12 | Overload | October 2011

FEATUREFILIP VAN LAENEN

nobody will read the reports,
let alone act on them
to clean up the code
violations are found, but that’s not always possible, or it may not fit with
your organization or the project you’re working on right now. But in my
experience when you use the tools to only generate reports, nobody will
read the reports, let alone act on them to clean up the code.
So what are the tools that we can use to improve code quality? Automatic
code formatting, static code analysis, test coverage reports and mutation
testing are four examples of tools that can take care of some of our self-
discipline. Let’s have closer look at each of these tools, to see how they
work and what they can do for us.
Automatic code formatting makes sure that all code conforms to the same
coding standard all the time. Sure enough, these tools aren’t able to format
all code exactly the way you wish, but on the other hand they never forget
to format it, they’re never sloppy, and they never change their mind. That
is unless you change the code formatting rules, but if you ever do that the
tool will reformat all the code according to those new rules instantly. Many
people are sceptical about automated code formatting tools, but I still think
it’s better to have 100% of the code formatted in a consistent way all the
time than to have 10% inconsistantly formatted because a tool would not
be able to format the last 0.1% of the lines exactly to your taste.
Most modern IDEs have some sort of code formatting tool included, but
it’s often possible to do better than that. Indeed, one of the problems is that
if you want to use an IDE’s code formatting tool in your project you’re
still relying on your developers manually running the formatting tool
against every code file they’ve modified before they check in.
Furthermore, making sure every developer in your project uses the same
code formatting rules can be a challenge too if it can’t be distributed easily
and used by the IDE automatically.
In my experience you get the best results if you can run the code formatting
tool completely automatically, virtually outside the control of the
developers. Maybe it can be part of the building process, e.g. using the
Jalopy-plugin to Maven in a Java project [Jalopy]. Alternatively you may
be able to fire the code formatting tool from a hook of your version control
system, e.g. upon check-in of code files. But if neither of them is possible
in your project, you may resort to using tools like Checkstyle [Checkstyle]
to check whether the code conforms to all (or at least some) of your code
formatting rules. And if even that’s not possible you can always run grep,
e.g. using a regular expression like \{\s*\} to find empty blocks in curly-
braced languages.
Static code analysis can be used to find undesired patterns in your code.
These patterns range from simple things like empty blocks and writing to
the console over deeply nested functions, confusing or overly complex
code to known ‘anti-patterns’, and potential bugs. Notice that many
compilers have options to enable some static code analysis, usually in the
form of warnings, but dedicated tools have a wider range of rules and
patterns they can check. If you want to apply static code analysis on an
existing project, start with a small rule set and pick from time to time a
new rule that looks useful for you. Remove all violations of the rule from
your project, one at a time. Then, when you’re done, consolidate the rule
by including it in your rule set so that you (or your colleagues) won’t create
new violations of it. When you get the hang of it and you’ve implemented

most of the rules that looked useful to you, maybe you should consider
creating your own rules to get rid of some of those particular bad habits
you or your colleagues have. And if you’re using an open source tool,
maybe you even want to donate them back to the project so that others can
benefit from them too.
There’s a large variety of tools that can be used to analyse your code
statically. In fact, compilers often have some options you can switch on to
do some very basic static code analysis. The already mentioned Checkstyle
focuses mostly on coding style but it also does some static code analysis.
FindBugs [FindBugs] and PMD [PMD] are two other tools for the Java
language, the former being a bit more oriented towards finding bugs per
se whereas the latter casts its net more broadly. If you’re a .Net programmer
you should probably check out FxCop [FxCop]. Lint is the original static
code analysis tool for C, and Cppcheck [Cppcheck] is probably the de facto
standard static code analysis tool for C/C++. If you program in another
language, or you want to check out even more static code analysis tools,
be sure to check out Wikipedia’s overview [Wikipedia].
It should be noted that static code analysis on dynamically typed languages
is a difficult task. In fact, one could almost say that’s so by definition if
you notice the ‘static’ on the one side and the ‘dynamic’ on the other.
Nevertheless, even for a language like Ruby there are some tools available,
e.g. Roodi [Roodi]. It’s even possible to create your own static code
analysis tools using, amongst others, regular expressions and string
functions. A few years ago, I was on a project where we had a simple tool
making sure all SQL scripts followed some basic rules.
Test coverage tools will reveal which parts of your code aren’t tested by
your automatic tests, or maybe even not in use at all. Sometimes low test
coverage isn’t an issue, e.g. when it’s difficult to set up automatic tests
against a simple and stable interface that’s easy to test manually. But the
core of your system, the part where most of your business logic resides,
should have a test coverage rate as close as possible to 100%. Aim for the
high numbers in those parts of your system, not just 60% or 70%. If you
can’t reach your goal, try again before you lower your goal or make a local
exception. And don’t forget to consider deleting some code – you’ll be
surprised how often that’s the right decision.
In this category too there are many tools available to help you in your
project. I have used both EMMA [EMMA] and Cobertura [Cobertura] in
Java projects with great success, and Rcov [Rcov] in some Ruby projects.
If you’re a .Net programmer, NCover [NCover] is probably the tool for
you, but there are many others. Just as for static code analysis tools,
Wikipedia has a page [Wikipedia2] with a good overview of tools available
in a number of programming languages.
Mutation testing is a very powerful tool, but sometimes can be a bit
annoying and irritating. It can be described as a sort of automated code
critique, and in the beginning it can be hard to accept the results it produces.
What it does is that it makes simple changes (‘mutations’) to the source
code that are guaranteed to change the behaviour of the system. Switching
a condition or removing a line of code are good examples of changes that
should be noticed somewhere. When it has made a mutation, the tool
checks that at least one unit test starts to fail. If no test fails clearly
October 2011 | Overload | 13

FEATURE FILIP VAN LAENEN

old problems and bad habits that have
plagued your project over a long time, will
disappear, and never come back
something is wrong. Maybe the tool found a condition that isn’t covered
by a unit test, and you should add one? Or maybe it found a branch that
can’t be reached and you can delete some code? I have to confess that, even
though I have used it for years, there are still occasions where I have to
manually apply the mutation to the code and run the unit tests again, just
to accept that what it says is correct. On the other hand I’ve learned a lot
from it, even though it can sometimes be very irritating that it so
meticulously points out the mistakes I make in unexpected places.
Personally, I haven’t had much success yet running mutation testing in any
language other than Ruby. There may be something particular about Ruby
that makes it well suited to mutation testing, or it could be that the
programmers behind Heckle [Heckle] found a clever way to make the set-
up of the mutation testing easy. I would like to mention Jester [Jester],
Jumble [Jumble] and PIT [PIT] as three mutation testing tools for the Java
language that look promising, but so far don’t seem to be quite mature yet.
I hope to see some evolution here, because mutation testing is one of the
things I really miss when programming in Java.
Figure 2 explains how the code quality tools discussed fit in with TDD.
Automatic code formatting doesn’t appear in the figure because it happens
behind the scenes and is therefore totally transparent to whichever
development method you use otherwise. Static code analysis, code
coverage and mutation testing are part of the decision box in the middle
and help to find an answer to the question of whether the code quality is
good enough. Note that code coverage reports and mutation testing often
will give you the inspiration, even if they don’t actively force you, to write
new unit tests, and therefore in a sense can send you straight back to the
‘Write or modify a test’ box.

Getting started
If you want to use any of these tools, introduce them slowly in your project.
It’s always a good idea to start with the generation of some reports just to
see how you’re doing. Then try to fix the simple things, and start
automating your code quality requirements. As you continue to use the
tools and add more and more requirements, you’ll learn how the tools
work, and you can start to create your own rules or extensions. But don’t
add requirements you don’t understand, and maybe even more important,
how violations should be fixed, because that will bring you problems. Over
time, you’ll see that old problems and bad habits that have plagued your
project over a long time, will disappear, and never come back.
It’s important, however, to understand that these tools won’t solve all your
code quality issues. You and your colleagues will still have to use your
brains while you’re programming, because not all software quality
requirements can be expressed in rules that can be automated. But these
tools can automate some of the most boring tasks, so that you can
concentrate more on the creative, fun part of programming. And isn’t that
why we all started programming in the first place?

References
This article was based on a lightning talk I held at the ROOTS 2011
conference in Bergen, Norway earlier this year.
[Checkstyle] http://checkstyle.sourceforge.net/
[Cobertura] http://cobertura.sourceforge.net/
[Cppcheck] http://cppcheck.sourceforge.net/
[EMMA] http://emma.sourceforge.net/
[FindBugs] http://findbugs.sourceforge.net/
[FxCop] http://msdn2.microsoft.com/en-us/library/bb429476.aspx
[Heckle] http://docs.seattlerb.org/heckle/Heckle.html
[Jalopy] http://jalopy.sourceforge.net/
[Jester] http://jester.sourceforge.net/
[Jumble] http://jumble.sourceforge.net/
[NCover] http://ncover.sourceforge.net/
[PIT] http://pitest.org/
[PMD] http://pmd.sourceforge.net/
[Rcov] https://github.com/relevance/rcov/
[Roodi] http://roodi.rubyforge.org/
[Wikipedia] http://en.wikipedia.org/wiki/

List_of_tools_for_static_code_analysis
[Wikipedia2] http://en.wikipedia.org/wiki/Code_coverage

Figure 2
14 | Overload | October 2011

http://checkstyle.sourceforge.net/
http://cobertura.sourceforge.net/
http://cppcheck.sourceforge.net/
http://emma.sourceforge.net/
http://findbugs.sourceforge.net/
http://msdn2.microsoft.com/en-us/library/bb429476.aspx
http://docs.seattlerb.org/heckle/Heckle.html
http://jalopy.sourceforge.net/
http://jester.sourceforge.net/
http://jumble.sourceforge.net/
http://ncover.sourceforge.net/
http://pitest.org/
http://pmd.sourceforge.net/
https://github.com/relevance/rcov/
http://roodi.rubyforge.org/
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/Code_coverage

FEATUREANTHONY WILLIAMS
Picking Patterns for Parallel
Programs (Part 1)
Designing programs for multi-core systems can be
extremely complex. Anthony Williams suggests
some patterns to keep things under control.
here are many ways of structuring parallel programs, and you’d be
forgiven for finding it difficult to identify the best solution for a given
problem. In this series of articles I’m going to describe some common

patterns for structuring parallel code, and for communicating between the
different parts of your program that are running in parallel. I’m also going
to provide some basic guidelines for choosing which patterns to use in a
given scenario.
This article will describe some simple structural patterns; further structural
patterns and communication patterns will be covered in later articles.

Structural patterns
Structural Patterns are about the general ‘shape’ of a solution: how the data
and tasks are divided between threads, how many threads are used, and so
forth. Each structural pattern has a different set of trade-offs with regards
to performance, scalability, and so forth. Which pattern to choose depends
strongly on the characteristics of the particular problem being solved.
We’ll start by looking at LOOP PARALELLISM.

Loop parallelism
The most basic of structural patterns is LOOP PARALLELISM. The basic
premise is that you have something like a for loop that applies the same
operation to many independent data items.
This is your classic embarrasingly parallel scenario, and scales nicely
across as many processors as you've got, up to the number of data items –
if you’ve only got 5 data items to process you cannot make use of more
than 5 processors with a single layer of loop parallelism.
This is such a common and simple scenario that frameworks for
concurrency and parallelism frequently provide a parallel_for_each
operation or equivalent. e.g.

 std::vector<some_data> data;
 parallel_for_each(data.begin,
 data.end(),
 process_data);

or, for a compiler that supports OpenMP:

 #pragma omp parallel for
 for(unsigned i=0;i<data.size();++i) {
 process_data(data[i]);
 }

The key thing to remember about Loop Parallelism is that the operation in
the loop must depend solely on the loop counter value, and the execution
for one loop iteration must not interact with the data used by any other loop
iteration. This is absolutely crucial since the order of execution of iterations
cannot be guaranteed, and may vary from run to run or from machine to
machine. Consequently you cannot guarantee that iterations would be run
in the correct order for any loop-carried dependencies and concurrent

access to the same variables can lead to a data race and undefined
behaviour.
Though some frameworks provide mechanisms for handling such loop-
carried dependencies, the presence of such dependencies typically means
that your problem is not ideally suited to loop parallelism, and an
alternative pattern may be more appropriate.

Fork/Join
Also called ‘divide and conquer’, the essential idea of the FORK/JOIN
pattern is that a task is divided into two or more parts, tasks are run in
parallel (forked off) to process these parts, and then the driver code waits
for these parallel tasks to finish (joins with them).
The Fork/Join pattern is often used recursively with each task being
subdivided into its own set of parallel tasks, until the task cannot usefully
be divided any further. Listing 1 shows how such a recursive technique
could be used to implement a parallel Fast Fourier Transform algorithm
for a power-of-2 FFT.

T

Anthony Williams is the author of C++ Concurrency in Action,
published by Manning. He lives at the far end of Cornwall, where he
can gaze longingly at the sea from his office window when trying to
solve knotty problems.

Listing 1

template<typename Iter>
void do_fft_step(Iter first,Iter last) {
 unsigned long const
 length=std::distance(first,last);
 if(length<minimum_fft_length) {
 do_serial_fft_step(first,last);
 } else {
 Iter const mid_point=first+length/2;
 auto top=std::async([=]{
 do_fft_step(first,mid_point);});
 do_fft_step(mid_point,last);
 top.wait();
 merge_fft_halves(first,mid_point,last);
 }
}

template<typename Iter>
void parallel_fft(Iter first,Iter last) {
 prepare_fft(first,last);
 do_fft_step(first,last);
 finalize_fft(first,last);
}

October 2011 | Overload | 15

FEATURE ANTHONY WILLIAMS

it is important to ensure that the pipeline
stages are all of similar duration
������

�	
��� �	
��� �	
��

������

������

������

������

������

�����

�����

�����

���� ����

����

������

������

������

����

��������

In this case the merging steps mean that you can’t readily process each
section independently with loop parallelism, but the recursive division
allows for parallel execution of the smaller steps.
This uses std::async with the default launch policy, so the C++ runtime
can decide how many threads to spawn for the std::async tasks, and
switch to using synchronous tasks which run in the waiting thread rather
than asynchronous tasks when there are too many threads running. Also,
rather than submitting a second async task for the ‘bottom half’ we
execute this directly. This avoids the overhead of creating the
std::async data structures, and potentially creating a new thread for the
task when the current thread is just going to wait anyway. Put together,
this therefore allows the task to scale with the number of processors.
FORK/JOIN works best at the top level of the application, where you are in
control of how many tasks are running in parallel – if it is used deep within
the implementation of an already-parallel algorithm then you may well
find that all the available hardware parallelism is already being used by
other parts of the application, so there is no benefit. You also need to be
able to see how many existing tasks are running in parallel, so that you can
avoid excessive oversubscription of the processors.
By its very nature, the Fork/Join pattern produces ‘bursty’ concurrency –
initially there is no concurrency, then there is a ‘burst’ of parallel tasks,
then they are joined and there is again no concurrency. If your application
is done after one such cycle then this is fine, but if your application requires
a number of Fork/Join cycles then there is spare processing power that
could potentially be used during each join/re-fork period.
Finally, you need to watch for uneven workloads between the tasks – if
one task finishes much later than the others then you are wasting any
hardware parallelism that could potentially be used whilst the master task
is waiting for the long-running task to finish. e.g. if you are searching for
prime numbers then you don’t want to divide your number-line into
equally-sized ranges – it is much quicker to check the lower numbers for
primality than the higher ones, so if each task deals with 1 million numbers,
the task starting at 1 will finish much quicker than the task starting at 100
trillion.

Pipelines
The PIPELINE pattern handles the scenario where you have a set of tasks
that must be applied in sequence, the output of one being the input to the
next, and where this sequence of tasks must be applied to every item in a
large data set.
As you would expect for a pipeline, the order of the data that goes through
the pipeline is preserved – the data that comes out the end first is the result
of applying the operations in the pipeline to the data that was put in to the
pipeline first, and so forth.
Another characteristic of pipelines is that there is a startup period, during
which the pipeline is being filled, and thus the parallelism is reduced.
Initially there is only one data item in the pipeline, being processed by the
first task; once that is done then a new item can be processed by the first
task, whilst the first item is processed by the second task. Once the first

item has made it all the way through the pipeline, the pipeline will remain
at maximum parallelism until the last item is being processed. There will
then be a draining of the pipeline, as the last item makes its way through
each task, the parallelism reducing with each step. (See Figure 1.)
As should be obvious, the maximum parallelism that can come from the
pipeline itself is the number of tasks in the pipeline. If you have more
hardware parallelism available then this will not be utilised without further
thought. One possibility is to use parallelism within each pipeline stage
(which may well lead to ‘bursty’ parallelism as we saw with fork/join), and
another is to run multiple pipelines in parallel (in which case you need to
be careful that the order is preserved if it is important).
Either way, it is important to ensure that the pipeline stages are all of
similar duration – if one stage takes much longer than the others then it
will limit the rate at which data can be processed, and thus processors
running other stages will potentially be running idle as they wait for the
long running stage to complete.
One potential downside of pipelines is the way they interact with caches.
If each task is fixed to a single processor, then as stage N finishes
processing a data item, the output of stage N has to be transferred from the
cache of the processor running stage N to the cache of the processor
running stage N+1. Depending on the complexity of the task and the size
of the data, this may take a significant amount of time.
The alternative is to have the whole pipeline run on each processor, with
some additional logic to ensure that any required ordering between data
items is preserved. This has the benefit that the data no longer has to be
transferred between caches, as it is right there waiting for the next task in

Figure 1
16 | Overload | October 2011

FEATUREANTHONY WILLIAMS

actors are not good for short-lived tasks,
as the overhead of setting up an actor

and managing the message queue can
outweigh the benefits
the pipeline. However, in this case it is the code for the task that must be
loaded into the instruction cache – by running the whole pipeline on each
processor we increase the chance that the code for each stage has been
dropped from the cache, and will thus have to be reloaded. Again, this can
take a noticable amount of time.
As with everything, if performance is important, then time various options
and choose the best for your particular application.

Actor
The ACTOR model is basically message passing Object Orientation with
concurrency. Message sending is asynchronous, so the code that sends a
message does not wait for the receiving object to handle it, and each object
(actor) responds to incoming message asynchronously on its own thread.
This is the model used by Erlang, where each Erlang process is an Actor.
It is also similar to the model used by MPI, and essentially synonymous
with Hoare’s Communicating Sequential Processes. (See Figure 2.)
In its purest form, there is no shared state in the Actor model, and all
communication is done via the message queues. Some languages (such as
Erlang) enforce this; in C++ it is your responsibility to follow the rules.
The prime benefit is that each actor can be analysed independently of the
others – incoming messages are queued until the actor is ready to receive
a message so it is only the order of messages that matters. You can
therefore test that each actor sends out the appropriate sequence of
messages given a particular input sequence. If you stick to the rule that the
only communication between actors is via the message queues (no shared
mutable state) then such basic testing is sufficient, and it is certainly much
easier than testing multiple interacting threads.
The lack of shared mutable state has another benefit – data races are
impossible. You can still potentially get race conditions, where two or
more actors send a message to the same recipient, and the order the
messages arrive affects the outcome, but this is easier to handle as you can
just test with all possible order combinations and verify that the recipient
does something sensible in each case.

Another benefit is that the independence makes actors easy to reason about,
as each can be considered on its own. You can, for example, make each
actor a state machine with well-defined transitions and behaviours.
One downside is that actors are not good for short-lived tasks, as the
overhead of setting up an actor and managing the message queue can
outweigh the benefits. Also, message passing isn’t always the ideal
communication mechanism; sometimes it’s just more efficient to carefully
synchronize access to shared state.
Finally, the scalability is limited to the number of actors – if you’ve only
got 3 actors then the actor model won’t scale to more than 3 processing
cores unless you can make use of additional concurrency within each actor.
Of course, many problems can be divided into very fine-grained tasks and
thus be constructed out of lots of actors, but this then relates back to the
task size – there is no point generating an actor just to add two integers,
as even the message passing overhead will far exceed the actual cost of
the operation.
Listing 2 shows a simple use of actors in C++, with each actor sending a
message to the other, and then waiting for the next message in return.

Next time
In part 2 of this article I’ll cover more structural patterns, starting with
SPECULATIVE EXECUTION.

Listing 2

int main() {
 struct pingpong { jss::actor_ref sender; };
 jss::actor pp1([] {
 for(;;) {
 jss::actor::receive().match<pingpong>(
 [](pingpong p) {
 std::cout<<"ping\n";
 p.sender.send(
 pingpong{jss::actor::self()});
 });
 } });
 jss::actor pp2([] {
 for(;;) {
 jss::actor::receive().match<pingpong>(
 [](pingpong p) {
 std::cout<<"pong\n";
 p.sender.send(
 pingpong{jss::actor::self()});
 });
 } });

 pp1.send(pingpong{pp2});
}

Figure 2
October 2011 | Overload | 17

FEATURE IGNATCHENKO
Intellectual Property – a Crash
Course for Developers
Interpreting law is a tricky business. Sergey Ignatchenko
introduces someone who can help you avoid expensive mistakes.
Being on vacation, I wasn’t able to write my usual article for Overload myself,
so I have asked my friend Samuel ‘Lawyer’ Bunny, Professor of Law at Efrafa
University, to write a brief description of intellectual property law aimed at
software developers. If some of you consider it as lacking in controversy,
don’t worry – I will be back from my vacation in time to write the next one.

‘No Bugs’ Bunny
Disclaimer: opinions within this article are those of Samuel Bunny, and
do not necessarily coincide with the opinions of the translator and
Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry2004]) might have prevented
an exact translation. In addition, both the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from
reading this article.
In addition, as always with legal matters, it should be mentioned that
neither the author nor translator are practising lawyers and that nothing in
this article should be interpreted as legal advice. If you are in need of legal
advice, you should ask your attorney.

There is nothing more powerful than an idea whose time has come.
Victor Hugo (one of the authors behind

 the ‘Berne Convention’ on copyright)

Yet Another Disclaimer: in this article I will not address questions about
the usefulness or morality of the existing laws (I’ll leave that to ‘No Bugs’
when he’s back). My goal here is to explain the basic concepts as they stand
now, and not to discuss whether they should or should not be changed. Also
it should be noted that intellectual property laws differ from one
jurisdiction to another, and while an effort has been made to write only
about issues which are widely acceptable, there is no guarantee that any
statement will be valid where you are.

asically, all Intellectual Property rights can be divided into three
distinct categories: copyright, patents and trademarks (there are also
other related rights, like industrial design rights, which we won’t

discuss here). These three categories of rights, as a rule of thumb, provide
separate and independent protection. It means, in particular, that the very
same software program can be protected by copyright, by patent(s), and
by trademark(s).

Copyright
Out of the three protection mechanisms I’ll look at, copyright seems to be
the simplest concept. If you have written a poem you are entitled to a
certain set of rights concerning your work, including the right to prevent
others from using it, the right to prevent others from modifying it, and so

on. In most places you are not required to register your copyright, and are
not even required to put copyright notice (like ‘Copyright 2011 Samuel
Bunny’) for your rights to be enforceable.
So far so simple. The complications begin when we start to consider
situations when the copyrighted work is allowed to be used without the
permission of the copyright holder. This concept is known as ‘fair dealing’
in the UK, and ‘fair use’ in the US. It allows some limited use of
copyrighted works. For example, you can usually use some quotes from
the original book, even when you’re writing a negative review about it and
don't have permission from the author. It is an effective defence in many
practical scenarios, for example, Wikipedia claims ‘fair use’ for certain
types of images in limited circumstances.
It should be noted that there is a rather common misconception that
copying for non-commercial purposes automatically provides a ‘fair use’
defence. This is dead wrong: while non-commercial can be one of the
factors when ‘fair use’ is considered, courts in various jurisdictions have
held that copying for non-commercial purposes can constitute copyright
infringement, including criminal copyright infringement. You need to
keep in mind that non-commercial purposes does not guarantee ‘fair use’
to be a valid defence. In general, the determination of ‘fair use’ tends to
be very complicated, and the safest thing is not to rely on it until you’ve
got advice from your attorney who specializes in IP law (unfortunately I’m
already retired, so I won’t be able to help you – sorry).

Impact of copyright on software developers
For software developers, the basics of copyright can be summarized in a
very simple way: don’t copy-and-paste third-party code into your own
code. While this is not an exact definition (for example, replacing copy-
and-paste with re-typing the source code won’t help to avoid liability), it
is a good starting point.
Furthermore, we need to mention that even if you’re using third-party code
in a modified form, you can still be found liable for copyright infringement.
The safest thing (and the most detrimental for solicitor salaries) is to avoid
any kind of copying of source code which is not yours.
One other thing to remember (to be discussed in more detail below) is that
even copying open-source code can be dangerous and detrimental for your
company, so check with your legal department (or with the project steering
committee) what you are allowed to use in your project, and what you are
not. And while we are on the subject: the absence of a copyright notice
does not mean that the material is not copyrighted – most text, including
source code, is copyrighted by default without any notice – so it is better
not to copy anything before clarifying it.

Patents
As we have seen, normally copyright arises at the very moment that an
author has written something, and no registration is necessary. In contrast,
a patent arises only when the inventor goes to a competent patent office
and says ‘I have a new invention to patent’ and submits a patent application
which describes the invention in detail. From this point on inventors are
allowed to use the words ‘patent pending’ when they describe their

B

Samuel ‘Lawyer’ Bunny Translated from Lapine by Sergey
Ignatchenko using the classic dictionary collated by Richard Adams
[Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
18 | Overload | October 2011

FEATUREIGNATCHENKO
product. Still, this is merely the
start of a lengthy process known
as ‘patent prosecution’, when the
task of the inventors – usually via
patent attorneys representing the
inventor – is to persuade the patent
office that their invention is patentable.
In general, there are three main criteria
for being patentable: the invention should be
novel (so no ‘prior art’ can be found which
describes the same invention), useful
(known as ‘utility’ in US and ‘industrial
applicability’ in EU), and non-obvious.

Software patents
Software patents are an extremely controversial
subject and legislation on them is still in a state of flux.
As of 2011, in the US software patents are generally not
prohibited. In the EU the situation is much more
complicated: while the ‘Proposal for a
Directive of the European Parliament
and of the Council on the patentability
of computer-implemented inventions’
(which caused much debate at the time)
was rejected in 2005, this doesn’t mean
that software inventions are not
patentable in the EU. Currently, the way
the European Patent Office interprets
existing law is that (very roughly) software
inventions are only patentable as long they
have a ‘technical character’ (see, for
example, [EPO2007]). It considers ‘pure’
software algorithms to be similar to
mathematical formulae, and the patenting of
mathematical formulae is prohibited in most
countries, and in practice means that software
patents are possible in the EU though they are
subject to substantially more scrutiny than in
the US.

Impact of patents on software
developers
For software developers doing everyday
development, the impact of patents is usually
not large. Generally, you are not under any
obligation to make a patent search to check that
your code is not infringing a third-party patent,
though if you do know about a patent, wilfully
i n f r in g i ng i t m ig h t h a v e u n f o r t un a t e
implications. On the other hand, if you yourself

have made something which you’re sure
that nobody else has done before it might be
a good idea to approach your management
asking if they’re interested in patenting
your invention (as a rule of thumb, any
invention made during working hours
belongs to the company). Assuming that

your invention is viable, going ahead with
a patent will certainly improve your status in the

company, might result in a bonus, plus the line ‘co-
authored such and such patent’ will look very nice
on your resume. Some companies (most notably
IBM) even have special programmes to encourage
employees to submit inventions to a dedicated IP

legal department (and this programme is one of
the reasons why IBM has been a world leader

in new patents for many years).

Trademarks
The first de-facto trademarks
appeared when a blacksmith in a
small town decided to put a special
sign on his swords, to make sure
tha t wh eneve r somebody i s
impressed with the sword quality,

he can identify the smith and come to
him to buy another sword. The very
s am e id ea i s no w k no w n a s
‘trademark’.

Trademarks can be either ‘registered’
or ‘unregistered’. For registered
trademarks, usually the symbol ® is
used, for unregistered trademarks the
symbo l ™ . The re a r e fu r t he r
differences between the two, but
they’re of no interest to software

developers, so we’ll leave them aside.

Impact of trademarks on software
developers
For software developers, the only thing
to remember about trademarks is not to
use third-party trademarks without

consulting management and/or the legal
department. While it might seem a good
idea to add a huge Apple logo onto your

home page to promote your Mac programs,
it’s much safer to ask before doing it to avoid

nasty potential problems.
October 2011 | Overload | 19

FEATURE IGNATCHENKO

Clearance from management should be
obtained. Otherwise, it can lead to nasty
legal problems
Licences
We have discussed the three main forms of intellectual property, but many
software developers will ask: how do licences fit into this picture?
Technically, licences do not belong to intellectual property law – instead
they’re usually considered as a part of contract law. For example, when
you’re buying a software product you’re buying not only the physical CD
containing the binary executable, you’re also entering into a contract
which allows you to use the product (within certain limitations specified
in the licence).
With open-source licences the situation is usually the following: when you
get the source code you are not automatically allowed to use it (because it
is copyrighted). The only reason that you are able to use it is because you
have also entered into a contract with the copyright holder; this contract
will allow you to use copyrighted code in exchange for agreeing to observe
some limitations stipulated in the licence. In case of common open-source
licences, acceptance of licence terms is implicit when you start to use the
code (this means that if you’re using the code you must agree to licence
terms).

Impact of licences on software developers
For software developers, the impact of licences is very similar to the impact
of copyright, as described above: basically, you should not copy-and-paste
third-party code into your own code unless you’ve got clearance from the
management (legal department, project steering committee, etc.). In
addition, don’t use third-party libraries without such clearance.
It should be noted that even if the library is open-source, clearance from
management should still be obtained. Otherwise, it can lead to nasty legal
problems.
An example: you’re working for a big company. One day you find a good
library which you’re craving to use in your project. You’ve checked that
it is an open-source licence so you’ve decided to go ahead without letting
anybody know. Two years down the road, an auditor has found this code
which appears to be licensed under the GNU General Public License

[GPL]. Now you’re in serious trouble because of the ‘viral’ nature of the
GPL: it requires that all the code compiled together with a single piece of
GPL code must itself be licensed under the GPL. Your company now faces
a dilemma: either to licence the whole application under the GPL, which
is an unlikely choice for the company, or to scrap your code (and probably
yourself). If the third-party code is not GPL, but the GNU Lesser General
Public License [LGPL] it might be more acceptable for your company
though clearance is still required. In particular because figuring out who
really owns the code might be tricky, and because certain paperwork might
be necessary to ensure compliance with the LGPL.
A similar situation can easily arise even within open-source projects: for
example, using GPL’d code in Apache products is prohibited [Apache],
so if you use GPL’d code within an Apache project it will be a waste of
time not only for you putting it there but also for somebody else to remove
it later. And BTW, despite it seeming counter-intuitive – while LGPL has
a chance of being allowed for commercial projects, it is still prohibited for
an Apache project.
As you can see all this licensing business is extremely convoluted, so I will
summarize the bottom line: don’t rely on your own judgement: don’t use
anything from third-parties unless you have very clear permission from
management (legal department, project steering committee, etc.). Asking
in advance can save you and your company/project lots and lots of time.

References
[Adams] http://en.wikipedia.org/wiki/Lapine_language
[Apache] http://www.apache.org/legal/resolved.html
[EPO2007] EPO Board of Appeal Case Law Special edition 6 l Official

Journal 2007
[GPL] www.gnu.org/copyleft/gpl.html
[LGPL] www.gnu.org/licenses/lgpl.html
[Loganberry2004] David ‘Loganberry’, Frithaes! - an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html
20 | Overload | October 2011

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
www.gnu.org/copyleft/gpl.html
http://www.apache.org/legal/resolved.html
www.gnu.org/licenses/lgpl.html

	Overload105.pdf
	A Journey Through History
	Why Finite Differences Won’t Cure Your Calculus Blues
	Outsource Your Self-Discipline
	Picking Patterns for Parallel Programs (Part 1)
	Intellectual Property - a Crash Course for Developers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

