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EDITORIAL RIC PARKIN
Many Hands Make Light Work
Some people say the parallel revolution is 
coming. Ric Parkin argues it’s in full swing.
So what do you know about Moore’s Law [Moore]?
Despite being remarkably famous for a technical
‘law’, people tend to misquote it or confuse it with
related corollaries. The underlying idea is interesting
for its simplicity, and the fact it’s held true for so long.

The original formulation is surprisingly technical [Intel] and deals with
the change in the minima of the cost/density curve of packing transistors
on a single wafer. Simply, there is a ‘sweet-spot’ for transistor density cost
– making fewer is more reliable but you get less, but adding more can
reduce yields. This curve has a minimum where you get the best
complexity value. Moore’s observation was that this ratio was doubling
every year and looked to roughly continue at this rate for at least the
immediate future; this was in 1965, so it’s gone on for a while! Further
refinements from data changed this to a doubling every two years, and a
minor refinement by David House, taking into account the improvement
in speed due to smaller transistors, tweaked this to 18 months. This is more
subtle than the usual formulations: the most common one is that the
number of transistors doubles. This isn’t a bad approximation though, if
you consider how much you get at a constant ‘middle’ price-point.

Increase in clock speed
Another formulation that has fallen out of favour was that processing
speed doubled. This was roughly true for a long time, partly due to the
performance increase that House noted, but depended a lot on the increase
in clock speed, which juddered to a halt shortly after 2000, as noted by
Herb Sutter in ‘The Free Lunch is Over’ [Sutter1]. It’s interesting to note
that a major contribution to this was the problem of heat dissipation from
the activity of transistors, a problem noted by Moore himself in his paper!
But the halt of the almost-free performance boosts due to clock speed
didn’t stop the underlying increase in transistor density. You had more to
work with, but things no longer got faster as if by magic. Instead these
extra transistors were used to implement ingenious shortcuts – things like:

Pre-fetching instructions that might be needed in the near future.
Speculative execution where you work out what these instructions
would do, without committing the results until you found they’d
been run. (This is why having lots of branches can hurt performance
– it interferes with this optimisation. Hence tricks such as loop
unrolling.)
Data caching in on-chip memory to get around the comparatively

slow communication between the chip and
the main memory, by keeping the data you’re

working on nearby on fast memory on the
chip itself. 

Memory write reordering, where it’s faster to write to memory in a
single pass so the hardware changes the order to be more efficient.
Parallel execution of independent instructions.

But a we’ve run out of a lot of those clever tricks. Instead those extra
transistors are being used to create extra cores that can truly run multiple
threads of execution simultaneously rather than switching from one thread
to another, as happens when multi-threaded programs get run on single
cores. However, this had some odd effects on some already compiled
programs that used multiple threads: they slowed down! Understanding
why this could happen is instructive. Remember how on-chip caches were
used to avoid the slow round-trip to main memory and back? Well a
similar thing happens between cores: if you share data between two cores
that are running communicating threads, then keeping their data in sync
with each other takes time. Also the locking of that data can cause a core
to stall completely while someone else is modifying it. This is not an
efficient use of the hardware. So one thing to learn is to be very careful
about how many threads you spawn, and how much they need to
communicate or share data. It’s all too easy to assume that you’re the only
thing running, spawn more threads than cores and end up slowing
everything down due to contention. In fact one efficient arrangement for
many standard applications is to have your program single threaded! That
way you play ‘nicely’ with other applications that can be competing for
resources. A slight variant on this would be to have all the user interfaces
running on one core, and the real ‘work’ algorithms running on a second
core, only occasionally interacting with the UI. Indeed, this is how some
operating systems work, in order for their user interfaces to be slick and
responsive. Another hard learnt lesson is to avoid sharing data – it’s often
counter-intuitively faster to make a deep copy to pass to a worker thread
than share data. (Functional languages have a big advantage here as they
have a much better idea that things won’t change and can do an efficient
copy if needed.)

Specialised chips
Another long-established trend is to use extra specialised chips to support
some computing-intensive operations and relieve the more general
purpose CPUs. My first experience of such chips were in early PCs where
you could have a separate floating point unit, such as the Intel 80287
[80287], to boost performance of maths-intensive programs. Otherwise
floating point had to be done by the main CPU using slow emulation
libraries. (I remember stepping though the Borland Pascal libraries and
spotting that the start of their maths library checked for the presence of a
FPU, and then changed all the functions’ code to either use it and return
immediately, or implement the software version. This neatly avoided a

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of 
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail 
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EDITORIALRIC PARKIN
check every time or a level of indirection, but such self-modifying code is
frowned upon nowadays.)

Another major use for separate specialised chips is for boosting graphics
performance. Large displays need a lot of memory, and modern effects and
applications need to modify it quickly in often simple but repetitive ways.
Taking such a burden off the CPU and giving it to a dedicated chip with
a large amount of on-chip memory, and many small cores that can work
on different areas of the screen, can make a huge difference. In the last few
years such chips have become enormously powerful, and tweaked so that
their often idle computing power can be harnessed for more general
purpose processing, helped by specially written libraries. The performance
increase can be remarkable for suitable applications, such as databases
[Alenka], or even parts of an OS [KGPU].

As with many such special purpose chips, increases in transistor density
often means that such facilities get built into the main CPU chip, such as
Intel’s multimedia instruction set, or the Cell processor as used in the
PlayStation 3 [Cell]. However, this can only go so far. While Moore’s law
still holds, the effort needed to make every smaller transistors in the face
of thermal and quantum effects is rising and ultimately there are hard
physical limits – although you can get pretty small [Physorg].

Remote processing
So how do you keep increasing computing power? Well, we’ve already
seen one way – add more transistors. But not necessarily on the same chip
– GPUs and FPUs were originally on separate chips, and we can continue
in this tradition by adding multiple chips on each board, or add more boards
to the computer, or even add more computers. Herb Sutter has again
mapped out this trend in an excellent overview [Sutter2]. Put simply, we
no longer have the old traditional single CPU and single thread at our
disposal – we now have multiple-threads on multi-core chips, in computers
with several chips of various types, connected to a network that can contain
millions of other computers, many of which could be ours to use, or
possibly rented from the cloud on a ongoing or ad hoc basis. Example of
what this can do is shown by Apple’s Siri voice recognition services and
Amazon’s Silk browser – rather than relying on the rather puny computing
resources of a mobile phone, these applications get serves in the cloud to
do the hard work. In Siri’s case it sends the voice stream over the network

where a server will do the recognition and work out what to do. In Silk,
the web request is actually done by their server, and the final page image
is rendered and returned for display.

Looking to the future
So future applications will often be highly complex clusters of algorithms,
split between a relatively low powered display and entry device, and an
amorphous cloud of computing nodes, which can come and go as needed.
Of course there is a problem with reliablity – if the network connection
goes, so does your computing power! 
Does this sound complex? It sure is, as anyone who’s tried designing
algorithms for multithreading. This is even more complex – the problem
is we’ll have a huge amount of unpredictable hardware available and our
software will have to adapt to what it finds. Ultimately this has to mean
that we no longer deal with low level threading, locking etc, and instead
build upon a higher level platform which works out how best to distribute
the computing needs. Some languages and platforms such as Erlang have
already made some progress in this direction. Other languages such as C++
have only just reached the low level thread and
hardware stage – the time is ripe for higher abstractions
and language features to give us the vocabulary to
describe out algorithms correctly for the future. 
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FEATURE IGNATCHENKO
Memory Leaks and Memory Leaks
Correct use of memory is a major occupation of 
software development. Sergey Ignatchenko 
considers what we mean by ‘correct’.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with opinions of the translator or
Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry2004]) might have prevented
from providing an exact translation. In addition, both translator and
Overload expressly disclaim all responsibility from any action or inaction
resulting from reading this article.

emory leaks are one big source of problems which have plagued
both developers and users for generations. Still, the term itself is
not as obvious as it might seem, so we’ll start from the very

beginning: how should a memory leak be defined? 

Definition 1: the user’s perspective
I shall not today attempt further to define the kinds of material
I understand to be embraced . . . But I know it when I see it . . .

Justice Potter Stewart on the definition of obscenity

The first point of view we’d like to mention is the one of the user. It is not
that easy to define, but we’ll try nevertheless. Wearing the user’s hat, I
would start with saying that a ‘memory leak is any memory usage which
I, as a user, am not interested in’. This one is probably a bit too broad (in
particular, it will include caches which are never in use), so I (still wearing
the user’s hat) will settle for a less all-inclusive definition 1:

A memory leak is any memory which cannot possibly be used for
any meaningful purpose.

Definition 2: the developer’s perspective
In developer (and computer science) circles, definitions similar to
definition 2 are quite popular:

A memory leak is any memory which is not reachable.

Here ‘reachable’ is a recursive definition, and ‘reachable memory’ is
memory which has a reachable pointer to it – or stack, and ‘reachable
pointer’ is a pointer which resides within reachable memory. 
This definition is much more formal than our definition 1 (and therefore
it is much easier to write a program to detect it), but is it a strict equivalent
of definition 1? Apparently, it is not: let’s consider the Java program
(Program 1) in Listing 1.
According to definition 2, there is no possible memory leak in Java (the
garbage collector takes care of unreachable objects). Still, according to
definition 1 there is a memory leak. It illustrates that definition 1 and
definition 2 are not strictly equivalent: at the very least, definition 1 has
elements which are not members of definition 2 (see Figure 1).

It should be mentioned that, obviously, Program 1 shows just one trivial
example, and much more sophisticated examples of such behaviour are
possible (for example, code may allocate huge objects in response to some
events, and forget to clean them up until some later event where these
objects will be simply discarded without ever reading them). 

Definition 3: the debugger’s perspective
Going even further into formalism, let’s consider a very popular way of
memory leak detection deployed by many programs (from Visual Studio
to Valgrind). These programs tend to keep track of all allocations and
deallocations (either within the heap itself, or otherwise) and report
whatever has not been deallocated at the program exit as a memory leak.
This leads us to definition 3: 

A memory leak is memory which has not been deallocated at the
program exit.

It is fairly obvious that according to this definition, Program 1 doesn’t
suffer from memory leaks, so definition 3 is not equivalent to definition 1,
and some of situations described as leaks by definition 1, are not leaks by
definition 3. But can we say that all situations described as leaks by
definition 3, are leaks by definition 1? Apparently, we cannot. Let’s
consider another program (Program 2) which allocates a buffer of 4K at
the very beginning, uses it through the life cycle of the program and doesn’t
deallocate it ever, relying on the operating system to clean up after the
program terminates. Is it a memory leak? According to definition 1 (and
assuming that our Program 2 runs under an OS which performs cleanup

M
Listing 1

Vector bufs = new Vector();
while( true )
{
  String in = System.console.readLine( "..." );
  if( in == "*" )
    break;
  byte buf[] = new byte[ 1000000 ];
  bufs.add( buf );
  // do something with buf
}
//bufs is not used after this point

Figure 1

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko 
using the classic dictionary collated by Richard Adams.
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programming and project management. He can be contacted at 
si@bluewhalesoftware.com
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FEATUREIGNATCHENKO

why should I spend my CPU cycles on 
performing unnecessary clean up work?
correctly) it is not; according to definition 3, it is. It leads us to the
relationship between definition 1 and definition 3 shown in Figure 2.

Which definition is better?
Up to this point we haven’t asked ourselves which of the definitions is
better and under which circumstances. We were merely trying to
demonstrate that there are substantial differences between them. Now it is
time to make a choice.
Remembering the teachings from an earlier article [Bunny2011], we argue
that the only correct definition is the one which comes from the User; this
is not to diminish the value of tools like Valgrind, but to help to deal with
situations when there is a disagreement over whether a certain behaviour
is a leak or not. 
Some time ago I was in a rather heated debate about a certain program.
That program did indeed allocate about 4K of memory at the start (for a
good cause, there was no argument about it) and did not bother to
deallocate it at all. Obviously Visual Studio had reported it as a leak, and
obviously there were pious developers who took Visual Studio’s leak
reporting as gospel and argued that it was a bug which must be fixed.
However as a fix would be non-trivial (in a multithreaded environment,
dealing with deallocating globals is not trivial at all) it would likely cause
real problems for end-users, and so I was arguing against the fix. Now, the
answer to this dilemma is indeed rather obvious: in case of any
disagreements between the various definitions of memory leaks it is
definition 1, and not any other definition, which should be used to
determine if program behaviour qualifies as a leak. 
Going a bit further we can ask ourselves – what exactly is the purpose of
all those deallocations at the end of the program? Why not simply call
ExitProcess() or exit() after all necessary disk work has been
completed and all handles closed? Sure, it is sometimes better to simply
call all destructors for the sake of simplicity (and therefore, reliability), but
on the other hand, if I’m a user why should I spend my CPU cycles on
performing unnecessary clean up work? To make things worse, if the
program uses lots of memory then a lot of it is likely to have been
swapped out to virtual memory on the disk. So to perform the
unnecessary deallocations, it will need to be swapped into main memory
causing significant inconveniences to the user (if you have ever wondered
why closing a web browser takes minutes – this is your culprit). To

summarize our feelings on this issue of deallocation at the end of the
program – we do not argue that ExitProcess() or equivalent is the only
way to handle the issue, but we argue that it is one of the possible ways
which at least in some cases has a certain value (especially if full-scale
deallocation is still performed during at least some test runs to detect real
memory leaks). One reasonable solution, from our point of view, would
be to try to have all destructors and deallocations in place, and to run all
the tools in debug mode, while resorting to ExitProcess() or
equivalent in release; while there is a drawback that release mode becomes
not quite equivalent to debug mode, in many cases it can still be tested
properly (especially if QA tests the release version).

Formalism results in approximation
The whole story of multiple definitions of memory leaks is quite
interesting if it’s viewed from a slightly different (and less practical) angle.
We can consider definition 2 as a formal approximation of the much less
formal definition 1; as we’ve seen above this approximation is apparently
not 100% precise.
Further, we can consider definition 3 as a further, even more formal,
approximation of definition 2, and once again this is still an approximation,
and again it is not 100% precise. This leads us to an interesting question:
is it necessary that adding more formalism leads to a loss of original
intention? 
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FEATURE STEVE LOVE
Many Slices of π
Many numberic estimation techniques are easily 
parallelisable. Steve Love employs multi-threading, 
message passing, and more in search of π.
You have to tell a complete story and deliver a complete
message in a very encapsulated form. It disciplines you to cut

away extraneous information.
~ Dick Wolf, on Advertising

he Monte-Carlo simulation is a common occurrence in computing,
used as a way of ‘guess-timating’ some outcome through repeated
sampling. Very often, simulations are processor and memory

intensive, performing millions of calculations. The idea is simple: do the
same (possibly small) calculation lots of times, usually with random inputs
(called sampling), and aggregate all the results in some way.
A larger simulation (more calculations) generally has more accurate
results, and so being able to scale in terms of time and space is of great
importance. As the uses of calculation services become more sophisticated
and demand increasingly precise and timely results, the problem remains
the same: how to provide more accuracy in less time. Which means making
better use of available resources.
To illustrate the concept, this article takes the example of estimating  using
a simulation. Although it’s a simple enough calculation, it demonstrates
some techniques to make a calculation ‘engine’ scale well with available
resources, and examines some of the trade-offs which are inevitable.

Give me π
Estimating π using a simulation is a straightforward enough calculation.
The principle is as follows:

The area of a circle inscribed within a square has a ratio of π/4 to
the area of the square. If a number of items of equal size are dropped
randomly within the square, then the ratio of the number of items
within the circle to the total number of items is (approximately) π/4.

In a computer program, dropping items is a matter of getting a pair of
random numbers to represent x and y coordinates within the square. For
this example, pseudo-random numbers uniformly distributed over a given
range is random enough. Assuming a unit-square, then two random
numbers between 0.0 and 1.0 provide the necessary co-ordinates. This is
the sampling of the data. 
Determining if that co-ordinate is also inside the circle requires reference
to Pythagoras:

The square of the length of the hypotenuse of a right-angled triangle
is equal to the sum of the squares of the lengths of the other two
sides.

Or, perhaps more memorably, x2+y2 = h2. Note that the area of quarter of
a circle with radius 1.0 is the same as the area of a circle with radius 0.5
(see figure 1). It is a simple matter to calculate the length of the hypotenuse
of the triangle formed by the point at the x,y co-ordinates, the projection
of that point on to the x-axis and the origin of the square (the centre of the

circle). See figure 2. If the length of the hypotenuse is greater than 1.0 (the
radius of the circle), then the location is not within the circle.
Using many such random co-ordinates (samples), the ratio of those within
the circle to the total number of samples should be approximately π/4.
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As with most Monte Carlo scenario calculations,
we want to aggregate the results of many

simulations by taking the mean average
Listing 1 shows C# code to sample the co-ordinates. Listing 2 shows the
code to calculate the ratio of hits within the circle and multiply up by a
factor of 4 to estimate. [MonteCarlo]
Running the simulation code with a sufficiently large sample size should
produce a reasonable estimate of π. The larger the sample size, the more
accurate the result is likely to be.
Of course, the Simulate function could assume a simulation size of 1,
and the calling code could just invoke it many times, but this turns out to
be – unsurprisingly – colossally inefficient.
This isn’t really a Monte-Carlo simulation as such; the next stage is to
perform many such simulations and aggregate the results.

Average π
As with most Monte-Carlo scenario calculations, we want to aggregate the
results of many simulations by taking the mean average. Naively, the
method for this is straightforward. If we have n results, then the mean is
calculated by summing all the results and dividing by n.
As noted previously, however, the greatest benefit of performing a Monte-
Carlo simulation is obtained by making n as large as possible, with the
result that taking the mean that way can cause issues with such things as
overflow, not to mention the overhead of having to store all of the results
before the mean can be calculated.
Listing 3 shows how a running average can be taken at each step,
effectively eliminating the problem.

It’s now practical to put these bits of code together and perform a Monte-
Carlo simulation. Listing 4 demonstrates a single-threaded version, along
with the results of four runs.
In this example – and all the following examples – n is quite small, just
100, whilst the sample size is relatively large. The purpose of that will
become apparent later, but for now it is merely enough to note that it’s
sufficient to estimate π fairly well.

Shared π
In order to make better use of any multi-core or multi-processor resources,
a multi-threaded version seems an obvious next step. Listing 5 shows one
way that might be done.
The work to be done is split between 4 threads, each doing one quarter of
the necessary work, with the running average calculated by each thread.
Since the results are written to a shared resource (the variable pi), access
to it must be synchronised safely, resulting in the need to lock.
Additionally, the code must explicitly wait for all of the launched threads
to complete before attempting to read the final value of the pi; not only
would an early read be getting an incomplete value, it also introduces a
race-condition.
Arguably, the simple RunningAverage function might be better
encapsulated as a simple class, but this would add an extra point in the code

Listing 1

public static int Simulate( int count )
{
  var hits = 0;
  var rnd = 
     new Random( ( int )DateTime.Now.Ticks );
  foreach( var i in Enumerable.Range( 0, count ) )
  {
    var xSq = Math.Pow( rnd.NextDouble(), 2 );
    var ySq = Math.Pow( rnd.NextDouble(), 2 );
    if( Math.Sqrt( xSq + ySq ) <= 1.0 )
      ++hits;
  }
  return hits;
}

Listing 2

public static
   double EstimatePi( int hits, int count )
{
  return 4.0 * hits / count;
}

Listing 3

public static double RunningAverage( int count,
   double last, double next )
{
  return last + ( next - last ) / ( count + 1 );
}

Listing 4

var simsize = 999999;
var count = 100;

var pi = 0.0;
foreach( var i in Enumerable.Range( 0, count ) )
{
  var hits = Common.Simulate( simsize );
  pi = Common.RunningAverage( i, pi,
     Common.EstimatePi( hits, simsize ) );
}
Console.WriteLine( pi );

3.1414193014193
3.1415431015431
3.14159102159102
3.1414877014877
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The running average calculation 
depends upon knowing how many 
results have been seen so far
where a lock would be required to protect concurrent access to it since it
would need to maintain some internal state.
Nevertheless, this code is far from ideal, but it has a more subtle problem.
The running average calculation depends upon knowing how many results
have been seen so far. Since each thread is operating on (conceptually) a
quarter of the input range, the average will be skewed. In effect, the mean
gets calculated for only a quarter of the simulations.

The promise of π
The standard solution to that particular problem is to ensure that the results
are aggregated from all the threads when they’re done. One way to achieve
that is to use a Promise.
This is a common mechanism by which a launched thread promises to
provide a result, and calling code that attempts to access that result will
block until the thread has finished. The version in Listing 6 has each thread
calculating the running average for its portion of the input, and then
returning that to the calling code, which then takes the average of each
thread’s result.
The call to t.Result calls in the promise from each task; if a task has
not completed, this call will block until it’s ready. Within the delegate that
represents a task, it is the return expression that ‘fulfils’ the promise for
each task.
Apart from the fact that the final calculation is now correct, this version
has other benefits:

 there is no longer a shared resource, and thus no need to lock.
 waiting for the tasks’ results naturally blocks the caller, removing
the need to explicitly join on each task.

It does, however, introduce a second calculation of average.
A better solution would be to have all the results collated at a single point
in the code, and have each thread somehow present just the results of the
simulation. In this version of the simulator, this could be achieved by each
task ‘returning’ the number of hits, and the final calculation of π using the
running average algorithm as previously shown.
However, there is still a drawback to this approach: the collation of the
results (getting the final average) can’t begin until all the tasks have
finished.
There is, then, room for improvement.

Queue for π
It would be more ideal if the code to calculate the average could run in
parallel to the simulations. The standard solution here is to pass a message
from each thread to the collating code, as in listing 7. The running average
is specifically designed to take a single item result and calculate a new
average for all those seen so far.
In this version, the running average calculations will begin as soon as
results start appearing on the queue. Now the calculation of π happens in
parallel with the simulations themselves.

Listing 5

var pi = 0.0;
var locked = new object();

Action action = delegate
  {
    foreach( var i in Enumerable.Range( 0,
       count / 4 ) )
    {
      var hits = Common.Simulate( simsize );
      lock( locked )
        pi = Common.RunningAverage( i, pi,
           Common.EstimatePi( hits,simsize ) );
    }
  };

var tasks = Enumerable.Range( 0, 4 )
  .Select( id => Task.Factory.StartNew(action) )
  .ToArray();
Task.WaitAll( tasks );

Console.WriteLine( pi );

Listing 6

var nthreads = 4;

Func< double > action = delegate
  {
    var part = 0.0;
    foreach( var i in Enumerable.Range( 0,
             count / nthreads ) )
    {
      var hits = Common.Simulate( simsize );
      part = Common.RunningAverage( i, part,
         Common.EstimatePi(hits, simsize) );
    }
    return part;
  };

var results = Enumerable.Range( 0, nthreads )
  .Select( id => Task< double >
  .Factory.StartNew( action ) )
  .ToArray();

var pi = results.Select(
   t => t.Result ).Average();
Console.WriteLine( pi );
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It doesn’t make much difference whether
the grid is a high-availability cluster, a

tightly coupled internal network, or
distributed over the Internet
The use of a queue also provides a natural synchronisation; the loop which
collates the results will not complete until all the results are available.
Altogether a much better solution.

Embarrassing π
It’s worth noting at this point that the simulations have become almost
embarrassingly parallel; each thread is independent of every other, and in
particular doesn’t depend on the results of any other thread. The only point
of shared contact is the queue into which results are placed. The use of a
concurrent queue means there is no explicit locking of shared resources,
but the locks are there nevertheless.
However the code can still benefit from techniques normally used for
embarrassingly parallel problems.
Listing 8 makes use of the Parallel class available in .Net 4.0. Instead
of explicitly launching threads to handle the simulations, the ForEach
algorithm dispatches enough threads to satisfy the given range. For the first
time, there is nothing in the code to specify how many threads will run.
The Parallel class ensures that the best use of available resources is
made to execute the code.

Distribute the π
To this point, all of the code to perform the simulations has been in-
process, making use of multi-threading capabilities and supporting
features to make the optimum use of a multi-CPU or multi-core
environment.
The problem is that many applications for which Monte-Carlo simulation
is appropriate are not as simple as estimating π, and are likely to be much
more demanding of the available hardware. The π estimation simulation
is, in fact, CPU intensive, but more sophisticated problems may also be
memory-bound.
One solution to running simulations where there is insufficient memory to
perform many calculations (or possibly more likely, insufficient address
space) is to add more memory and address space, by for example upgrading
to a 64 bit machine and operating system. This isn’t scalable, however, and
merely pushes the problem back until yet more memory is required.
A more scalable and general solution is to use more than one machine: a
grid.
It doesn’t make much difference whether the grid is a high-availability
cluster, a tightly coupled internal network, or distributed over the Internet,
the major difficulty is distributing, running and communicating with the
code. To handle this, some kind of middleware is appropriate.
The middleware used here is 0MQ [0MQ], an open-source messaging
library with bindings for many languages, including C#.

Listing 7

var results = new ConcurrentQueue< int >();
var nthreads = 4;
var pi = 0.0;

Action action = delegate
  {
    foreach( var i in Enumerable.Range( 0,
             count / nthreads ) )
    {
      var hits = Common.Simulate( simsize );
      results.Enqueue( hits );
    }
  };

var tasks = Enumerable.Range( 0, nthreads )
  .Select( 
   id => Task.Factory.StartNew( action ) )
  .ToArray();

var n = 0;
while( n < count )
{
  int hits;
  if( results.TryDequeue( out hits ) )
    pi = Common.RunningAverage( n++, pi,
       Common.EstimatePi( hits, simsize )
    );
}
Console.WriteLine( pi );

Listing 8

var results = new ConcurrentQueue< int >();
var pi = 0.0;

Action< int > action = delegate( int i )
  {
    var hits = Common.Simulate( simsize );
    results.Enqueue( hits );
  };
Parallel.ForEach( 
   Enumerable.Range( 0, count ),
   action );
var n = 0;
while( n < count )
{
  int hits;
  if( results.TryDequeue( out hits ) )
    pi = Common.RunningAverage( n++, pi,
       Common.EstimatePi( hits, simsize )
     );
}
Console.WriteLine( pi );
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No π?
Listing 9 shows an application that handles collating the results from a
simulation. It’s notable because the simulation code is nowhere to be seen,
and isn’t even apparently invoked. Instead, messages are consumed from
a message queue, and plugged into the now-familiar running average
calculation, until the requisite number of results has been received.
Listing 10 shows the code for the simulations ‘engine’. Once again, it
makes use of the Parallel.ForEach algorithm to internally launch
several threads, but instead of attempting to service a number of
calculations, it’s limited to a number of threads.
The message service connects to an endpoint defined by the collating
application (If this sounds counter-intuitive, see sidebar), and ‘publishes’
its results to that connection.
As with the in-process queuing solution shown in listing 7, there is a natural
synchronisation in the collating application (listing 9) in that reading from
the queue blocks until there are messages available. Also similar between
the two methods is that the collating can begin as soon as there are results
available, and so operates in parallel with the simulation service.
Key to the benefits here, though, is that the code in listing 9 is a separate
process to listing 10 – each has its own Main(). It might not be obvious,
but the implication of that is that these two separate programs can be run
on different machines – provides that those machines can communicate
over a network using the specified port number.1 Modifying the hostname
to be something other than ‘localhost’ in listing 10 would enable this.2

The benefit of each simulation having a large sample size, and using a
(relatively) small number of simulations (alluded to in ‘Average π’) should
now be evident. When operating in a distributed environment, it’s
important for performance that the cost of the calculation is not swamped
by the cost of 10 the distribution, i.e. the relative expense of running the
simulation is worth the effort to communicate over a network.

Talkin’ π
Just because the code has now been changed to allow it to be executed in
a distributed environment, that doesn’t mean it necessarily must be.
Listing 11 shows an in-process simulation ‘service’ running in parallel to
the main collating code in the same way as listings 9 and 10.
The difference here is that the Simulator is now being run directly as a
thread, and launched in the same way as shown in previous sections
(notably in the section called ‘Queue for π’) which uses a concurrent
queue).
Although it’s not necessary to do so, the addressing method for the 0MQ
sockets has changed; instead of using a ‘tcp’ protocol definition with a port
number (and ‘localhost’ in the case of the connecting code) the binding
and connecting addresses are now symmetric, using the ‘inproc’ protocol
and a symbolic name for the connection.
There are pros and cons to using this approach; a benefit of the 0MQ
connection model that has not been mentioned so far is that a ‘tcp’ socket
can be connected that has not yet been bound (not possible with raw
sockets). The implication of that is important in a distributed environment:
the ‘engines’ can all be running before the collating code (which binds the

1. Any free port number can be used
2. The * used in the binding code of listing 9 indicates that the connection

can use any available network interface. The behaviour of other
settings is dependent on the environment, but follows the local socket
library conventions.

Listing 9

static void Main()
{
  var simsize = 999999;
  var count = 100;

  using( var context = new Context( 1 ) )
  using( var results = 
     context.Socket( SocketType.PULL ) )
  {
    results.Bind( "tcp://*:55566" );
    var n = 0;
    var pi = 0.0;
    while( n < count )
    {
      var recv = results.Recv();
      var hitsString =
         Encoding.UTF8.GetString(recv);
      var hits = int.Parse(hitsString);
      pi = Common.RunningAverage( n++, pi,
         Common.EstimatePi( hits, simsize )
         );
    }
    Console.WriteLine( pi );
  }
}

Listing 10

static void Simulator( Context ctx, int count,
   int simsize )
{
  using( var results =
     ctx.Socket( SocketType.PUSH ) )
  {
    results.Connect( "tcp://localhost:55566" );
    foreach( var i in Enumerable.Range(0, count) )
    {
      var hits = Common.Simulate( simsize );
      results.Send( Encoding.UTF8.GetBytes
         ( hits.ToString() ) );
    }
  }
}

static void Main()
{
  var simsize = 999999;
  var count = 100;
  var nthreads = 4;

  using( var context = new Context( 1 ) )
  {
    Parallel.ForEach(
       Enumerable.Range( 0,nthreads ),
       i => Simulator( context,
          count / nthreads, simsize ) );
  }
}

Just as with raw sockets, it is permitted to connect multiple servers to an
endpoint, but it is not possible to bind the same endpoint multiple times.
For the purposes of 0MQ, an endpoint is a host and a port number.

The client-server relationship is normally defined by servers having
wellknown endpoints, to which many clients can connect. However in the
distributed grid-engine world it is often the case that there is a  single
client communicating with several (or even many!) servers.

Sometimes it is desirable to have multiple clients and multiple servers.
The standard solution to the problems that this poses is to introduce a
broker which acts as a static endpoint (server) to both clients and
services.  0MQ allows brokers to be very easily constructed, but that’s
beyond the scope of this article.

Endpoints 
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endpoint) has been launched. Using ‘inproc’, the endpoint must be bound
before downstream connections can connect, or a runtime error occurs.
It is perfectly valid to use the ‘tcp’ protocol even in-process, and the
performance degradation is minimal. Mileage, as ever, may vary between
convenience and raw speed.

A minor problem
With one exception, the multi-threaded and distributed examples so far
exhibit a common problem that has been consciously ignored. It is most
noticeable in the original multi-threaded queue version in ‘Queue for π’.
Listing 12 shows the offending code from Listing 7. The problem really
is minor, but significant.
If the number of simulations to perform is not an exact multiple of the
number of threads used to service the requests, some further processing is

required to mop up any remainder. This isn’t a difficult problem to solve
but it suffers from two drawbacks:

1. It is very easy to get wrong
2. It duplicates code.

The exception so far has been Listing 8. There was no reference there to
a particular number of threads; the Parallel.ForEach algorithm
handled the mechanics of launching sufficient threads to service each
element of the range it was given.
This concept doesn’t translate well into a distributed grid environment.
Dynamically allocating engines to handle workload is difficult and error-
prone. The out-of-process simulation shown in Listing 10 is internally
multi-threaded. It doesn’t attempt to dynamically manage the number of
threads, but launching multiple instances of that process would affect the
characteristics of what are (in that example) hard-coded values for the
number of simulations to run versus the number of threads within each
process.
Of course, this problem is exacerbated by the fact that the reading client
depends on receiving a pre-determined (and common) number of results.
It’s probably desirable for the engines to have no knowledge of how many
results they must produce.

Slimmer π
The real answer to this problem is to effectively return to single threaded
processing.
Really.
Single threaded code is easier to write and easier to understand, and is easy
to prove correct, so it has lots of built-in benefits. It does, of course, appear
– on the face of it – to be at odds with making the best use of multi-CPU,
multi-core and multi-engine processing.
In a distributed environment, however, even though each process is single
threaded, there can be many processes. The use of a shared message queue
that isolates each process from the code that handles the results, as well as
other processes, does require a slightly different approach to designing the
code.

One π at a time
The code in listing 13 shows a simulation engine that runs a single-
threaded service. The program itself dispatches more than one thread
simply so that the engine can be stopped ‘nicely’ without just killing it.
The beating heart of this code is the one-line while loop near the end of
the Simulator method. It’s the lambda function attached to the
workEvent.PollInHandler that does the work, however.
In truth, it is not so different to other versions of this code shown
previously. Its main distinction is the idea of a message indicating a work
item. In this case, a work item simply tells the engine how large a sample
size to use for a single calculation. The engine does that calculation and
then sends the result on a a different channel. Then, the code waits for the
next work item, and will (hopefully) continue to run indefinitely until
manual intervention stops it.
The vast majority of the remainder of the code is to setup the network
connections, manage object lifetimes and handle graceful termination of
the process.

Listing 11

static void Simulator( Context ctx, int count,
                       int simsize )
{
  using( var results =
     ctx.Socket( SocketType.PUSH ) )
  {
    results.Connect( "inproc://results" );
    foreach( var i in Enumerable.Range(0, count) )
    {
      var hits = Common.Simulate( simsize );
      results.Send( Encoding.UTF8.GetBytes
         ( hits.ToString() ) );
    }
  }
}

static void Main()
{
  var simsize = 999999;
  var count = 100;
  var nthreads = 4;

  using( var context = new Context( 1 ) )
  using( var results = context.Socket
    ( SocketType.PULL ) )
  {
    results.Bind( "inproc://results" );

    var tasks = Enumerable.Range( 0, nthreads )
      .Select
       ( id => Task.Factory.StartNew(
          () => Simulator( context,
                  count / nthreads,
                  simsize ) ) )
      .ToArray();

    var n = 0;
    var pi = 0.0;
    while( n < count )
    {
      var recv = results.Recv();
      var hitsString =
         Encoding.UTF8.GetString(recv);
      var hits = int.Parse(hitsString);
      pi = Common.RunningAverage( n++, pi,
         Common.EstimatePi( hits, simsize )
         );
    }
    Console.WriteLine( pi );
  }
}

Listing 12

Action action = delegate
  {
    foreach( var i in Enumerable.Range( 0,
             count / nthreads ) )
    {
      var hits = Common.Simulate( simsize );
      results.Enqueue( hits );
    }
  };
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As many instances of this process can be launched as necessary – on
different machines if required, by modifying the ‘localhost’ address – to
make the most of the available resources.
Having an engine that listens for work requests requires the existence of
code to provide those requests. Listing 14 shows this in action.
Once again a separate thread is used to send work requests so that collating
the results in Main() can start as soon as results are available.

The π message
Anyone familiar with message-passing paradigms such as Actor model or
CSP [Wikipedia] will recognise (broadly speaking) the code in the

previous section. The 0MQ sockets are channels, with two incoming
channels (one for work items, one for a ‘stop’ message) and one outgoing
channel. The Simulator function is a ‘process’ or ‘actor’ that runs
indefinitely.
Crucially the main idea of passing messages in systems using (for
example) CSP is that that is the only way that processes communicate with
each other.
The model here is more like Actor than CSP because the channels are
buffered and asynchronous, whereas CSP channels involve a ‘rendezvous’
between sender and recipient. Also, the process has no identity. However,
in common with CSP, messages are sent to channels with names; in this
example the name is the address used to connect or bind a socket.
Apart from receiving the Context (a thread-safe socket factory) in its
parameter list, the process interacts with the outside world only through
the channels. There is no thread synchronisation and no shared state. The
process runs until it’s told to stop – by receiving a message on a particular
channel.
The difference from other common message-passing schemes in the CSP
or Actor Model style is that messages can be passed on those channels
between different machines.
The downside to this distribution is the loss of type-safety in messages;
the content of each message needs to be agreed between clients and servers
– often by convention. Some middleware tools provide a full Remote

Listing 13

static void Simulator( Context ctx )
{
  using( var work =
     ctx.Socket( SocketType.REP ) )
  using( var results =
     ctx.Socket( SocketType.PUSH ) )
  using( var done =
     ctx.Socket( SocketType.PAIR ) )
  {
    done.Connect( "inproc://done" );
    results.Connect( "tcp://localhost:55557" );
    work.Connect( "tcp://localhost:55556" );

    var finished = false;
    var killEvent =
       done.CreatePollItem( IOMultiPlex.POLLIN );
    killEvent.PollInHandler += ( sock, ev ) => {
       sock.Recv(); finished = true; };

    var workEvent =
       work.CreatePollItem( IOMultiPlex.POLLIN );
    workEvent.PollInHandler += ( sock, ev ) =>
    {
      var simsize =
         int.Parse( sock.Recv( Encoding.UTF8 ) );
      sock.Send( Encoding.UTF8.GetBytes( "OK" ) );
      var hits = Common.Simulate( simsize );
      results.Send( Encoding.UTF8.GetBytes
         ( hits.ToString() ) );
    };

    var items = new []{ killEvent, workEvent };

    while( ! finished )
      ctx.Poll( items );
  }
}

static void Main()
{
  using( var context = new Context( 1 ) )
  using( var done =
         context.Socket( SocketType.PAIR ) )
  {
    done.Bind( "inproc://done" );

    Task.Factory.StartNew(
     () => Simulator( context ) );

    Console.WriteLine( "Press [Enter] to exit" );
    Console.ReadLine();
    done.Send();
    Console.WriteLine( "Done" );
  }
}

Listing 14

static void Work( Context ctx, int count,
                  int simsize )
{
  using( var work = 
     ctx.Socket( SocketType.REQ ) )
  {
    work.Bind( "tcp://*:55556" );
    foreach( var i in Enumerable.Range
       ( 0, count ) )
    {
      work.Send( simsize.ToString(),
                 Encoding.UTF8 );
      work.Recv();
    }
  }
}

static void Main()
{
  var simsize = 999999;
  var count = 100;

  using( var context = new Context( 1 ) )
  using( var results =
         context.Socket( SocketType.PULL ) )
  {
    Task.Factory.StartNew(
      () => Work( context, count, simsize ) );

    results.Bind( "tcp://*:55557" );
    var n = 0;
    var pi = 0.0;
    while( n < count )
    {
      var hits =
         int.Parse( Encoding.UTF8.GetString(
                    results.Recv() ) );
      pi = Common.RunningAverage( n++, pi,
         Common.EstimatePi( hits, simsize ));
    }
    Console.WriteLine( pi );
  }
}
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Procedure Call paradigm [RPC] whereby the type of a message is defined
precisely in a definition language, and additionally there are libraries
available that do not provide a transport, only the marshalling of data in a
type-safe way.

Mixed π
Using a message passing middleware that provides bindings to multiple
languages means that any supported language can be used as either client
or server.
Listing 15 shows a Python version of the ‘client’ code to send work
requests and collate results. This code will communicate happily with the
calculat ion engines shown in List ing 14.  The defini t ion of
runningAverage is left as an exercise for the reader.

The last π
The benefits of grid computing and message passing are not limited to
Monte-Carlo simulations. Any algorithmic problem that can benefit from
using the resources of many machines can enjoy the benefits of being
designed for message passing, but further than that, programs which use
multiple threads can be improved by passing messages instead of sharing
state.
Many of the perceived difficulties of writing and maintaining multi-
threaded code arise from the sharing of state: deadlock, unwanted
serialisation due to locking, context switching. None of these problems
arise when passing messages is the only interaction between threads. All
state is necessarily local to a thread, because it’s not really a thread – it’s
a process.

Many tools are available for lots of languages to provide a message-
passing environment for programs to use in an inter-thread capacity, but
few provide the same facility to enable not just inter-process but inter-
machine message passing with few (if any) changes to the code.
0MQ provides facilities to do exactly that, but at the cost of pure
performance. Ultimately, the only way to determine if performance is
sufficient for a particular application is to measure and, if necessary,
compare results using different technologies. However, it’s always as well
to remember that clean, simple and maintainable code to do a job will pay
dividends in any case.
Especially if the very clarity and simplicity provides generality and
flexibility, too. 
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Listing 15

def work( ctx ):
  work = ctx.socket( zmq.REQ )
  try:
    work.bind( "tcp://*:55556" )
    for i in range( count ):
      work.send( str( simsize ) )
      work.recv()

  finally:
    work.close()

def recv( ctx ):
  results = ctx.socket( zmq.PULL )
  try:
    results.bind( "tcp://*:55557" )
    pi = 0.0
    nresults = 0
    while nresults < count:
      hits = int( results.recv() )
      pi = runningAverage( nresults, pi,
           estimatePi( hits, simsize ) )
      nresults += 1
    print( pi )

  finally:
    results.close()

if __name__ == ’__main__’:
  ctx = zmq.Context( 1 )
  try:
    threading.Thread( target=work,
                      args=( ctx, ) ).start()
    recv( ctx )

  finally:
    ctx.term()
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FEATURE RICHARD HARRIS
Why Computer Algebra Won’t 
Cure Your Calculus Blues
We still haven’t found how to accurately do calculus. 
Richard Harris revisits an algebraic technique.
e began the second half of this series with a brief history of the
differential calculus and a description of perhaps the most
powerful mathematical tool for numerical computing, Taylor’s

theorem, which states that for a function f

where f'(x) denotes the first derivative of f at x, f"(x) denotes the second
and f(n)(x) the nth and where, by convention, the 0th derivative is the
function itself.
We then used Taylor’s theorem to perform a detailed analysis of finite
difference approximations of various orders of derivatives and, in the
previous instalment, sought to use polynomial approximations to automate
the calculation of their formulae.
We concluded with Ridders’ algorithm [Ridders82] which treated the
symmetric finite difference as a function of the change in the argument, δ,
and used a polynomial approximation of it to estimate the value of the
difference with a δ of zero.
You will no doubt recall that this was a significant improvement over every
algorithm we had previously examined with an average error roughly just
one decimal order of magnitude worse than the theoretical minimum.
Given that this series of articles has not yet concluded, the obvious question
is whether or not we can close that gap.
The obvious answer is that we can.
Sort of.
One of the surprising facts about differentiation is that it is almost always
possible to find the expression for the derivative of a function if you have
the expression for the function itself. This might not seem surprising until
you consider the inverse operation; there are countless examples where
having the expression for the derivative doesn’t mean that we can find the
expression for the function.
This is enormously suggestive of a method by which we can further
improve our calculation of derivatives; get the computer to generate the
correct expression for us.

Computer algebra revisited
We first discussed computer algebra as part of our quest to find an infinite
precision numeric type [Harris11]. The idea was to represent an expression

as a tree rather than directly compute its value, as shown in figure 1 (an
expression tree for the golden ratio).
A common implementation of such expression trees uses a pure virtual
base class to represent the nodes. Our original attempt is given in listings
1 (the original expression object base class) and 2 (the original expression
wrapper class).
You may recall that my proposal to compute the digits of the decimal
expansion of the expression one at a time with the exact member function
(with negative indices to the left of the decimal point and positive to the
right) as a means of effectively maintaining infinite precision was
ultimately doomed to failure because of the impossibility of comparing
equal values. There was simply no way, in general, to decide when to give
up.
However, the simplicity and near universal applicability of the rules of
differentiation gives these expression objects something of a reprieve; they
are supremely well suited for automating those rules.

Symbolic differentiation
We shall, of course, need to redesign our expression object classes; they
were after all rather useless in their original form.
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Listing 1

class expression_object
{
public:
  enum{empty=0xE};

  virtual ~expression_object() {};

  virtual double approx() const = 0;
  virtual unsigned char
     exact(const bignum &n) const = 0;
  virtual bignum::sign_type sign() const = 0;
};

Richard Harris has been a professional programmer since 1996. He 
has a background in Artificial Intelligence and numerical computing 
and is currently employed writing software for financial regulation.
14 | Overload | February 2012



FEATURERICHARD HARRIS

we shall take it as read that we have defined
a full suite of expression objects and

implemented their value member functions
We shall therefore do away with the notion of exact evaluation and content
ourselves with just floating point and shall further add a virtual member
function that returns the expression representing the derivative, as shown
in listings 3 (the new expression object base class) and 4 (the new
expression wrapper class).
Note that the value member function replaces the approximate
member function and will have identical implementations in derived
classes, as illustrated in listings 5 (the new substraction expression class)
and 6 (the value member function of subtraction_expression).

Listing 2

class expression
{
public:
  typedef
     shared_ptr<expression_object> object_type;
  enum{empty=expression_object::empty};

  expression();
  expression(const bignum &x);
  explicit expression(const object_type &x);

  double            approx() const;
  unsigned char     exact(const bignum &n) const;
  bignum::sign_type sign() const;

  object_type  object() const;
  int          compare(const expression &x) const;
  expression & negate();

  expression & operator+=(const expression &x);
  expression & operator-=(const expression &x);
  expression & operator*=(const expression &x);
  expression & operator/=(const expression &x);

private:
  object_type object_;
};

Listing 3

class expression_object
{
public:
  virtual ~expression_object() {};

  virtual double value() const = 0;
  virtual expression
     derivative(const expression &x) const = 0;
};

Listing 4

class expression
{
public:
  typedef shared_ptr<expression_object> 
object_type;

  expression();
  expression(double x);
  explicit expression(const object_type &x);

  double value() const;
  expression 
     derivative(const expression &x) const;

  object_type  object() const;
  expression & negate();

  expression & operator+=(const expression &x);
  expression & operator-=(const expression &x);
  expression & operator*=(const expression &x);
  expression & operator/=(const expression &x);

private:
  object_type object_;
};

Listing 5

class subtraction_expression : 
   public expression_object
{
public:
  explicit subtraction_expression(
     const expression &lhs,
     const expression &rhs);
  virtual ~subtraction_expression();

  virtual double value() const;
  virtual expression
    derivative(const expression &x) const;

  const expression lhs;
  const expression rhs;
};

Listing 6

double
subtraction_expression::value() const
{
  return lhs.value() - rhs.value();
}
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we are effectively multiplying one 
function by the reciprocal of another
There’s little to be gained in repeating this simple change for all types of
expression so we shall take it as read that we have defined a full suite of
expression objects and implemented their value member functions so that
we can concentrate on the implementation of the derivative member
functions.
The expression  wrapper class simply forwards the call to
derivative to the underlying expression_object as shown in
listing 7.
The first of the underlying expression objects we shall consider is the
constant_expression, which should trivially return 0 in all cases, as
shown in listing 8.
Next up is the variable_expression which shall serve as the type we
differentiate by. As such it should return 1 if differentiated by itself and 0
otherwise, as illustrated in listing 9.
Addition and subtraction expression object are barely less trivial to
differentiate than constants and variables, as illustrated in listing 10.
Now that we’ve got these trivial cases out of the way we’re ready to
implement some of the more subtle rules of differentiation. We shall start
with the product rule which states that

This identity is reflected in the implementation of the derivative
member function of the multiplication_expression class given in
listing 11.
Division is slightly more complicated since it relies upon the chain rule
which states that

In the case of division we are effectively multiplying one function by the
reciprocal of another, so we must apply both the chain rule and the product
rule.

An implementation is given in listing 12.
The chain rule is absolutely fundamental in working out how to implement
the derivative member function for all of the remaining expression
objects.

Listing 7

expression
expression::derivative(const expression &x) const
{
  return object_->derivative(x);
}

Listing 8

expression
constant_expression::derivative
   (const expression &x) const
{
  return expression(0.0);
}

Listing 9

expression
variable_expression::derivative
   (const expression &x) const
{
  return expression
     (x.object().get()==this ? 1.0 : 0.0);
}

d
dx

f x g x f x d
dx

g x g x d
dx

f x( )× ( )( ) = ( )× ( ) + ( )× ( )

Listing 10

expression
addition_expression::derivative
   (const expression &x) const
{
  return lhs.derivative(x) + rhs.derivative(x);
}

expression
subtraction_expression::derivative
   (const expression &x) const
{
  return lhs.derivative(x) - rhs.derivative(x);
}

Listing 11

expression
multiplication_expression::derivative
   (const expression &x) const
{
  return lhs * rhs.derivative(x) +
         rhs * lhs.derivative(x);
}

d
dx

f g x d
dg x

f g x d
dx

g x( )( ) =
( ) ( )( )× ( )

d
dx

f x
g x

d
dx
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g x
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we have finally achieved what we set out to do;
implement an algorithm that can calculate the

derivative of a function to machine precision
As a final example, we shall take a look at raising one expression to the
power of another. Now it is not entirely obvious how to do this.
Differentiating a variable raised to a constant power should be familiar
enough

However, differentiating a constant raised to the power of a variable isn’t
quite so straightforward

The trick is to exponentiate the logarithm of cx

after which the result is trivially

Combining this with the chain rule, the product rule and the fact that the
derivative of the exponential is equal to itself yields

Listing 13 illustrates an implementation of the derivative of a power
expression.
I shall leave the implementation of further expression objects to you and
move on to consider the implications of this approach.

Exact differentiation?
On the face of it we have finally achieved what we set out to do; implement
an algorithm that can calculate the derivative of a function to machine
precision.
In using expression objects to symbolically differentiate expressions we
are able to generate an expression that is mathematically identical to the
derivative.
All that remains is to evaluate it.
Unfortunately there are a few problems.

Memory use
The first problem is that the expressions representing derivatives can grow
in complexity at an alarming rate.
For example, consider the function

Differentiating with respect to x yields

Differentiating again yields

Once more

Clearly the trees representing these expressions will grow quite rapidly
unless we algebraically simplify them. For example, the third derivative
can be simplified to

Listing 12

expression
division_expression::derivative
   (const expression &x) const
{
  const expression &dl = lhs.derivative(x);
  const expression &dr = rhs.derivative(x);

  return -dr*lhs/(rhs*rhs) + dl/rhs;
}

d
dx

x c xc c= × −1

d
dx
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d
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e d
dx
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d
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Listing 13

expression
power_expression::derivative
   (const expression &x) const
{
  return (log(lhs)*rhs.derivative(x)
     +rhs*lhs.derivative(x)/lhs) *
     expression(expression::object_type(this));
}

f x ex( ) =
2

d
dx

f x x ex( ) = ×2
2

d
dx

f x e x ex x
2

2
22 4

2 2( ) = + ×

d
dx

f x x e x e x ex x x
3

3
34 8 8

2 2 2( ) = × + × + ×
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There are many mathematical functions 
for which we have no simple formulae and 
must instead rely upon approximations
reducing the number of arithmetic operations from 15 to 7.
Unfortunately implementing a computer algebra system that is capable of
performing such simplifications is no easy task. Much like chess programs
they require large databases of valid transformations of expressions, some
heuristic that accurately captures our sense of simplicity and expensive
brute-force search algorithms to traverse the variety of ways in which those
transformations can be applied.
Unless we are willing to expend a very great deal more effort we shall have
to accept the fact that symbolic differentiation will be something of a
memory hog.

Cancellation error
The next problem also stems from the difficulty in simplifying expressions
but is rather more worrying. Consider redundant expression which though
complex, when fully simplified, yield trivial expressions.
As an example consider

Trivially, this has a derivative of 0 for all x, but when we apply our
expression objects to compute the derivative, they will blindly follow the
rules to yield

Mathematically, this is identically equal to 0 for all x, but since we are using
floating point some errors will inevitably creep in. We shall consequently
be subtracting two nearly equal numbers which is the very incantation we
use to summon the dreaded cancellation error.
Figure 2 illustrates the result of this calculation for x from 0.01 to 1 in steps
of 0.01 and clearly shows the effect of cancellation on the result.
Whilst this is a simple example, it is indicative of a wider problem. Even
if we have taken great care to ensure that the expression representing a
function is not susceptible to cancellation error we do not know whether
the same can be said of the expression representing its derivative.
We can at least use interval arithmetic to monitor numerical error in the
calculation of derivatives. You will recall that interval arithmetic works
by placing bounds on arithmetic operations by computing the worst case
smallest and largest results given the bounds on its arguments and
numerical rounding.
The simple change to the expression object base class is illustrated in
listing 14.

Figure 3 shows the result of evaluating the expression for the derivative
of x/x using interval arithmetic and clearly reveals the presence of
significant cancellation error near 0.
This combination of expression objects and interval arithmetic is as
effective an algorithm for the calculation of derivatives as is possible
without implementing a fully functional computer algebra system.
In practice, the principal drawback is in the expense of maintaining the
expression tree and requiring virtual function calls to evaluate even simple
arithmetic operations, although admittedly the latter can be largely avoided
with the judicious use of templates.

Numerical approximation
There are many mathematical functions for which we have no simple
formulae and must instead rely upon approximations. These

d
dx

f x x x ex
3

3
312 8

2( ) = +( )×

f x x
x

( ) =

d
dx

f x d
dx

x
x x

x
x

( ) = ×⎛
⎝
⎜

⎞
⎠
⎟ = − ×

1 1 1
2

Figure 2

Listing 14

class expression_object
{
public:
  virtual ~expression_object() {}

  virtual interval   value() const = 0;
  virtual expression
     derivative(const expression &x) const = 0;
};
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The derivative of an accurate approximating
expression for a function is not necessarily an

accurate approximating expression for the
derivative of that function
approximations are often iterative in nature, stopping when some
convergence criteria is satisfied.
If we naively implement an iterative approximation using an expression
object as the argument we shall almost certainly run into trouble.
Not only is the resulting expression tree liable to be extremely large, it may
take a different form for different values of the argument. If we generate
an approximating expression using the initial value of the argument, we
may very well introduce significant errors for other values.
To accurately represent iterative functions with expression objects we
shall need to implement expression objects representing loops, conditional
statements and so on and so forth.
Unfortunately working out the symbolic derivatives of such expressions
is, in general, a tricky proposition.
Assuming that we have done so, or that the approximation takes the same
form for all values of the argument, we still aren’t quite out of the woods.
The derivative of an accurate approximating expression for a function is
not necessarily an accurate approximating expression for the derivative of
that function.
For example, consider the function

which serves as an approximation to f(x).

Now, this is trivially everywhere equal to within 1 percent of the value of
f(x), but if we calculate its derivative we find that

which can differ from the actual derivative by as much as 100 percent of
the value of f(x)!
In such cases we may be better served by a polynomial approximation
algorithm since these can effectively smooth out this high frequency noise
by terminating once the derivative starts growing as δ shrinks close to its
wavelength.
This observation hints at how we must proceed if we wish to use expression
objects in conjunction with numerical approximations of functions.
Rather than represent the approximation of the function with an expression
tree, we must create a new type of expression object that implements the
approximation. The derivative member function must then return an
expression object representing the derivative of the function.
In the worst case this may simply be an expression object implementing a
polynomial approximation algorithm. Better still would be an expression
object implementing a specifically designed approximation of the
derivative. Best of all is the case when the derivative is known in closed
form, such as the derivative of a numerical integration for example, in
which case it can be an expression tree.
If necessary we can further implement an entire family of expression
objects representing approximations of higher order derivatives to allow
for higher orders of differentiation.
For these reasons I declare this approach to be a standing army of ducks;
an effective fighting force, but rather expensive to feed and not always
entirely welcome.
Quack two three four! Quack two three four! 
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FEATURE CHRISTOPH KNABE
The Eternal Battle Against 
Redundancies, Part 2
Repeated information leads to poor quality software. 
Christoph Knabe continues to see how removing them 
has influenced language design.
ince the beginning of programming, redundancies in source code
have prevented maintenance and reuse. By redundancy we mean that
the same concept is expressed in several locations in the source code.

Over the last 50 years the efforts to avoid redundancies [DRY] have
inspired a large number of programming constructs. This relationship is
often not obvious to programmers in their daily work. In part I [Part1] we
talked about relative addressing, symbolic addressing, formula translation,
parameterizable subroutines, control structures, middle-testing loops,
symbolic constants, preprocessor features, and array initialization. In this
part we will investigate higher concepts like object-oriented, aspect-
oriented, and functional programming, as well as exception handling and
even program generators and relational databases, and how these concepts
contribute to redundancy avoidance. These concepts are discussed on the
basis of prevalent programming languages. Whosoever understands the
common concept is well equipped for the future.

Information hiding
The principle of information hiding was formulated by Parnas [Parnas]. It
postulates not to allow direct manipulation of a data structure by clients.
Such manipulations are to be done only through operations which are
grouped in an interface. Information hiding was the prevalent design
criterion in modular programming and it still plays an important role in
object-oriented programming.
Enforcing the information hiding principle guarantees that the intended
administration operations cannot be bypassed by a module’s users. This
contributes to redundancy avoidance by the fact that the logic behind the
administrative functions cannot migrate into the user’s code with the risk
of duplication therein. This danger was always present in languages
without support for information hiding.
Secure information hiding was enabled in C (1973) by the declaration of
file-scope static variables. Such variables stayed alive beyond a
function call, but were not accessible from outside the source file. Later
languages which introduced special constructs for module interfaces and
implementations were Modula-2 and Ada.
In C++ (1983) the information hiding principle was extended to user-
defined data types (classes) by giving class members private visibility by
default, which could be explicitly changed to public.

Genericity
COBOL (1960) had composite variables, but only Pascal (1970)
introduced user-defined, composite data types as RECORDs. C (1973)
followed with structs. These constructs increased the robustness of
programs, as confusions of e.g. persons with windows, calendar dates, or

jobs were detected by the compiler. But the new strictness led to problems
in the creation of universal services. Although Pascal had elegant
operations for dynamic data structures, it was impossible to program a
linked list so that it would be usable for an arbitrary element data type. The
link data and the type of the payload data had to be firmly combined in the
type for a list node. E.g.:
  TYPE 
    PersonList = ^PersonNode;
    PersonNode = RECORD
      info: Person;
      nextPtr: ^PersonNode;
    END;

If you wanted to use the same list management module in Pascal for
different payload data types, you had to copy the source text and globally
substitute the payload data type name.
The somehow less strict C could bypass such problems by using an
untyped pointer, the void*. So in C it was possible, although insecure, to
implement list management for arbitrary payload data. This list node could
be formulated as follows:
  struct List {
     void* infoPtr;
     struct List* nextPtr;
  };

Only Ada (1980) achieved a synthesis of user-defined, composite data
types (records) with flexible type safety. This concept was named
genericity and was accepted by all modern, statically typed languages such
as C++ (templates), Java, C#, and Scala. Using genericity you can avoid
redundancies if you have to define same-behaviour services for different
payload data types. The generic collection classes implemented by this
technique are used quite frequently in all contemporary programming
languages.
Dynamically typed languages such as Smalltalk or Ruby circumvent the
problem described here by postponing the type checks to run-time.

Exception handling
In older programming languages (Lisp, Fortran, Algol, Cobol, Pascal, C)
there was no automatic handling of exceptions. After every subroutine call
the caller had to check manually whether the subroutine terminated
successfully or erroneously. To complicate matters further there was no
universal convention for how a subroutine should communicate its failure
to the caller. The Unix services written in C used a special value for the
function result as well as error codes in the global variable errno. The
latter way was more suitable for standardization, as it did not have to cope
with different function result types, but it was not suitable for the
upcoming multi-threading.
How was  the  errno  conven t ion  app l i ed?  Af te r  invok ing
fopen(filename, "r") in order to open a file you had to check
whether errno had a nonzero value. As there were neither destructors nor
garbage collection mechanisms in C, errors found could not be easily
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Inheritance alone enables a minor
avoidance of redundancy by extracting
common state and behavior of several

data types into a base class
collected in working storage, so tended to be immediately reported. But
this limited the universal usability of a subroutine, as then the destination
of error reporting was not easily chosen by the caller.
So the correct handling of a function call in C on Unix, here of the function
fopen, appeared as follows:
  FILE* pFile = fopen(filename, "r");
  if(errno!=0){
      perror(filename); //prints errno and filename
      fprintf(stderr, "at file %s in line %d\n",
         __FILE__, __LINE__);
      errno = FAILURE;
      return NULL; 
  }

You can easily imagine that correct error handling was highly redundant
and made program texts harder to read and understand, and so harder to
maintain. Furthermore, you had to write so much to implement this

handling that programmers rarely practised it. Fortunately C’s
preprocessor macros offered a means to partially eliminate this
redundancy. You could extract the portion of the example from if up to
return NULL;} into a macro, which should get a context and the
function result in case of failure as arguments.
  #define ERRCHECK(context, failResult) ...

The invocation of fopen could then be much shorter:
  FILE* pFile = fopen(filename, "r");
  ERRCHECK(filename, NULL)

This approach cannot yet solve the problem of functions failing when they
were combined in expressions, e.g. f(x)*g(x). ERRCHECK could only
be applied between two statements, not inside an expression.
Such error handling, which was implemented here manually, is done by
contemporary languages automatically, when a function throws an
exception. Standardized handling (usually a message with stack trace and
program abortion) is guaranteed, although custom handling is possible.
Automatic exception handling was popularized by Ada 80. C++ adopted
it around 1990, while Java contained it from the beginning (including an
API access to the stack trace of a caught exception).

Object-oriented programming
The technique of object-orientation, introduced by Simula 67 and
popularized by Smalltalk-80, adopts ‘information hiding’ for object
attributes and contains as innovations ‘inheritance’, ‘reference
polymorphism’, and ‘dynamic method dispatch’. Inheritance alone
enables a minor avoidance of redundancy by extracting the common state
and behaviour of several data types into a base class. Compared to
composition this saves only a (relatively) small amount of writing when
accessing an inherited attribute or method. Polymorphism of references
enables a flexibility similar to the untyped pointers of C, but considerably
more secure, as it constrains the referenced elements to subclasses of the
base class. With dynamic dispatch for calls of virtual functions (C++,
1983) came the big, redundancy-avoiding progress, which is nowadays
commonly known as the ‘Template Method Pattern’ [TemplMeth].
Template Method Pattern: As an example let us have a look at the
problem of transaction management. In enterprise applications each
operation of the business logic must be executed as a transaction. If the
logic operation succeeds, the database modifications must be committed,
otherwise errors must be reported and the database modifications must be
rolled back. Instead of redundantly programming this behaviour in each
logic method, you can extract it into an execute on a base class
Transaction, which will call an abstract action method, which has
to be overridden with the concrete logic operation. In Java, the solution
looks like Listing 1.
The template method execute follows a fixed procedure in order to
guarantee the commit or rollback. Only the business logic part of the
action is conferred in the template method upon the abstract method
doAction. The programmer of the subclasses has then to implement this
method. Usage would follow the pattern shown below and would appear

Note: The concepts are all talked about on the basis of prevalent
programming languages. But often they were before tried out in research
languages as Simula-67, CLU, MESA, or LISP dialects.

Name Year Innovations

Freiburgian 
Code

> 1958 Programming of the Zuse 22

Freiburgian 
Code Z23

1961 Relative and symbolic addressing

FORTRAN 1957 Formula translation, FORTRAN II: subroutines, 
linker

ALGOL 1958 Subroutines, block principle, BNF, control 
structures, recursion

LISP 1958 Garbage collection, recursion, functional 
programming (FP)

COBOL 1959 Record variables, long identifiers

Pascal 1970 Record types, pointer types, structured 
programming

Smalltalk 1972 Dissemination of object-oriented programming 
(OOP)

C 1973 Preprocessor, sizeof, operating system API, 
information hiding, break

Modula-2 1978 Separation of interface/implementation, 
if...end

Ada 1980 Genericity, automatic exception handling

C++ 1983 Static typesafe OOP, freezing variable values, 
late declaration

Java 1995 Static typesafe OOP with garbage collection, 
stack trace API

AspectJ 2001 Centralized solution of cross-cutting concerns

Scala 2003 Static typesafe synthesis of OOP and FP

Mentioned Programming Languages 
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Aspect-oriented programming enables 
you to handle concerns that cut across 
a software system
in a real system hundreds of times, which leads to an enormous reduction
of redundancy, although the amount of code is still problematic. 
  new Transaction(){
    public void doAction() throws Exception {
      //Here the actual logic operation is placed.
    }
  }.execute();

An alternative solution in Java would make use of reflection [Refl], as done
by EJB 3.0 application servers internally. Each method of a class annotated
as @Session is executed as a transaction.
Mixin Programming: In contrast to Java inheritance, Scala (2003) allows
the mixing in of several traits (partially implemented interfaces), each of
which can offer such template methods. The ‘diamond problem’ usually
occurring with multiple inheritance is avoided by an explicitly definable
resolution order. By this means you can freely combine different services
in a class. In fact the Scala collections framework stands out due to an
extremely high internal re-use of a few template methods. This is a big
contribution to redundancy avoidance.

Aspect-oriented programming
Aspect-oriented programming enables you to handle concerns that cut
across a software system centrally in an aspect. The above-mentioned
problem of transaction management is exactly such a cross-cutting
concern. Let us consider the case where each method of a logic façade
should be executed as a transaction. Although the above solution,
implementing the method doAction in an anonymous subclass of
Transaction, is technically free of redundancy, it needs a lot of code.
In contrast to this, in the solution with AspectJ (2001) in Listing 2, the
aspect needs to be noted only once for the whole system. The ‘pointcut’
executeAnyFacadeMethod captures each execution of a method of
objects of the type LgFacade. The around advice surrounds the captured
method executions at the location, marked by proceed, thus causing the
unified transaction management. This solution is not only technically, but
also textually, free of redundancies. Usage of AspectJ in Java projects can
deliver enormous redundancy savings straightaway.

Functional programming
Of the many and powerful constructs of Functional Programming I want
to demonstrate only one, which facilitates the extraction of control
structures. We take the every-day example that a list of persons should be
displayed in a special format obtainable by method getName of class
Person. In Java 5 we would need the function in Listing 3 to transform
a list of persons into such a format.
A usage would look like:
  personsToNames(persons)

The corresponding transformation in Scala would be so compact that no
one would write a special function for this purpose:
  persons.map(_.getName)

This is possible since the function map from the Scala collections library
contains the above algorithm in a general solution and calls the argument
function for each element of the List. Using the underscore sign _ we
define a mapping from an anonymous argument to the expression

Listing 1

abstract class Transaction {
  public void execute(){
    final Connection con =
       DatabaseUtil.getConnection();
      try{
        doAction();
        con.commit();
      }catch(Exception ex){
        report(ex);
        con.rollback();
      }
  }
  abstract void doAction() throws Exception;
}

Listing 2

aspect TransactionAspect {
  pointcut executeAnyFacadeMethod
     (LgFacade lgFacade):
     execution(public * *(..)) && this(lgFacade);
        
  Object around(LgFacade lgFacade):
     executeAnyFacadeMethod(lgFacade) {
    final Connection con =
       DatabaseUtil.getConnection();
    try{
      final Object result = proceed(lgFacade);
      con.commit();
      return result;
    }catch(Exception ex){
      report(ex);
      con.rollback();
    }
  }
}

Listing 3

public List<String> personsToNames
   (final List<Person> persons){
  final List<String> names =
     new LinkedList<String>();
  for(final Person p: persons){
    names.add(p.getName());
  }
  return names;
}
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Sometimes an application needs highly redundant
code patterns, but the  programming language

used does not offer a means to extract them
containing the underscore. The type of the argument is inferred from the
element type of persons and thus needs not to be indicated explicitly.
In a similar way, in Scala you could guarantee the above-mentioned
transaction management. What should be executed as transaction would
have to be packed into transaction{...} ,  if  the method
transaction is suitably defined. This solution is technically free of
redundancies, but it needs slightly more code than with AspectJ. In
contrast, Scala needs only a minimum of keywords in comparison to
AspectJ.

Program generators / domain specific languages
Sometimes an application needs highly redundant code patterns, but the
programming language used does not offer a means to extract them. In such
circumstances, as last resort, you could use a brute-force means: code
generation. You define a special language, tailored to the problem, in
which you can express yourself without redundancies. From that language
you generate program code. Classical examples are decision table code
generators like DETAB/65 or parser generators like yacc. As an example
we give a rule of the contemporary parser generator ANTLR for
multiplicative operations. This rule means: A product is a sequence of
factors, which are separated by '*' or '/'.
  product
      :    factor
           ( '*' factor 
           | '/' factor
           )*
      ;

From this ANTLR can generate a parser which recognizes expressions like
a*b/c*d. You can expand this parser to an interpreter or translator by
inserting actions at the end of each line.

Data storage
Redundancies also cause problems in data storage. An example for this is
a table of employees with the columns Id, Name, Date of Birth and
Department.

If the department is indicated as a string for each employee, this constitutes
a data redundancy causing the following problems: If there is a typo in a
department name, the affiliation of the employee to the department can not
be recognized automatically. A renaming of a department necessitates
modification of many employee rows.
The redundancy-free solution comprises the management of an additional
table for departments, whose rows are referred to by a departmentId

from each employee. Exactly this is achieved by normalization according
to the concept of relational databases.

Other concepts of programming languages
This section lists relevant milestones in evolution of programming
languages, which are not useful for redundancy avoidance, but are
nevertheless worthy of mention.

Robustness of programs was boosted by the declaration principle
(Algol 58), by the locality helped by the block principle (Algol 58)
and the late compilation in conjunction with a linker (FORTRAN,
COBOL).
Coding convenience was boosted by dynamically typed languages
(LISP) or by the concedeclaration of variables only at their first
usage (C++, 1983), by the freezing of computed values (C++), by
‘Garbage Collection’ instead of explicit deallocation (LISP, 1958).
Labour division in development was boosted by the technique of
separate pt of static type inference (Scala, 2003).
Understandability was boosted by comments beginning with full
line comments in FORTRAN with C, block comments in Algol with
comment up to ;, end of line comments in Ada with --,
documentation comments in Java with /** up to nested block
comments in Scala. COBOL pioneered long identifiers significantly
helping understandability.

Summary
When you see how painfully the steps of progress in programming were
achieved over the last 50 years, you really learn to appreciate the state of
the art. Even more interesting is recognizing the driving force behind this
progress. High redundancies in source code regularly required new
programming constructs. In the majority of cases the ability was
introduced to give a freely electable name to the redundant code pattern,
and to invoke it with parameters from several locations. This happened to
addresses, constants, subroutines, classes and generic units. Sometimes the
evolution did not go as far and the redundant code patterns only received
new keywords. This happened to formulas, loops, branches, and exception
handling. When a programming language helped to eliminate
redundancies better than a competing language, this was an  advantage in
the battle for dissemination. We can assume that this will still be true in
future. 
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A Practical Introduction to Erlang
The future of massively parallel hardware will 
need good language support. Alexander Demin 
takes a look at an unexpected approach.
ince first hearing about functional programming, I have made many
attempts to ‘get it’. I felt it was something cool and worthwhile to
learn, but I didn’t make any real progress until… 

For some reason my brain, spoiled by a decade of imperative
programming, just didn’t work this way. I was able to write a few snippets
in Common Lisp and Scheme but I felt I couldn’t write anything real.
Racket was much better and I almost ‘got’ it, but this language seems
overly complex to me. Haskell is still beyond me. But at some point I got
a book called Programming Erlang by Joe Armstrong [Armstrong]. And
at last, my journey into the functional world had begun.
To begin with, take a look at a quote from that book:

A few years ago, when I had my research hat on, I was working with
PlanetLab. I had access to the PlanetLab network, so I installed
‘empty’ Erlang servers on all the PlanetLab machines (about 450 of
them). I didn’t really know what I would do with the machines, so I
just set up the server infrastructure to do something later.

That was cool I thought. If I had a cluster of 450 machines to play with,
just imagine what could I do with this! Bare bones C or C++ don’t give
me much. Messing around with POSIX threads and TCP/IP directly will
take ages to implement anything plausible from scratch. Even boostified
C++ is lacking in this scenario. But this guy has an infrastructure out of
the box!
So, what is Erlang? The language was developed at Ericsson to program
telecoms devices. I expected it would be a system language like C, or at
least Go if it had been created at that time. But fasten your seat belts –
Erlang works in a managed environment (simply, a virtual machine
executing a byte code), and secondly: it is a functional language. I was
shocked – how can you deal with bits and bytes, packing and unpacking
low-level network messages, process them efficiently under massive load
and similar stuff, in a functional language?
Guys from Ericsson research were given the task of developing a language
to build sophisticated but robust and scalable systems, and they had ended
up with functional Erlang. This just got me.
After some time messing around with Erlang, I explored a few parallels
with my everyday development in C++. I remember a John Carmack tweet
with his sad story about a day spent finding a bug caused by a variable that
had been accidentally changed somewhere. To avoid this waste of time,
the variable should be simply declared as const. At some point I began
to be obsessed by using const in C++. Increasing demand to write
complex code safely led to my understanding that immutability is what I
really want. In C and C++ that can be just putting const everywhere the
logic of the code permits.
But Erlang takes immutability to another level. All variables in this
language are immutable. Period. In fact, a variable can be assigned only
once, when it gets created. Right after that it turns into a constant. Imagine

in C or C++ that you must put const in front of any variable. Any mutation
can be achieved only by copying and creating another variable. This is an
extreme for C or C++, but this is the world of Erlang.
At first glance this looks like an obviously silly overhead. But let’s slow
down and give it a second thought. Yes, there is an overhead in copying,
but at the same time the code has fewer side effects, and as a consequence
fewer bugs caused by hidden data mutation in the complicated branching.
Moreover, data is mutated only via copying, so the compiler and runtime
(remember, Erlang is a managed environment) have many more clues on
how to optimize and eliminate unnecessary copying. The runtime provides
a set of native functions to mutate the data efficiently. For example, in
Erlang, adding a new head to a list is quick but appending a tail is slow
because it causes a deep copy. When you understand such peculiarities you
can organize the mutations of data to be very efficient, yet free of side
effects.
Finally, code without an internal state (and the immutability is a good
guarantor of it) is much easier to parallelize in a multi-core or multi-
machine environment, and Erlang has great support for multi-threading.
Well, I hope I’ve sown a seed of interest in Erlang, and it is time to code
something real.
When I discover a new language, and after playing with trivial snippets, I
often code a task called TCP/IP proxy. Simply, this application listens on
a given TCP/IP port and for every incoming connection it connects to
another remote host and passes the traffic back and forth between the caller
and the remote host. Also the proxy logs all transmitted packets in the form
of hexadecimal dumps. The application has to process multiple
connections simultaneously.
This application can be very useful when you need, for example, to reverse
engineer or debug an application protocol. From the implementation
perspective it also very indicative – it involves string processing, multi-
threading, sockets and file I/O. 
In the past I’ve implemented it in C, C++, Python, PHP, Ruby and Go, and
every time it was fun.
The code is below. Of course I cannot explain every single line if you’re
a newbie in Erlang, so you could check out the book Programming Erlang
I mentioned above (at least the few first chapters to get basic concepts of
Erlang).
I will go through the code and try to stress important elements. I
recommend following and try to get a taste of Erlang.
Here we go. A file called tcp_proxy.erl (see Listing 1).
In lines 1 and 2 we define our unit of code, a module, and export one
function main having one parameter – a list of command line arguments.
The definition of the function main (Listing 2) is similar in many other
languages – if three command line arguments are supplied then this version
is invoked.

S

Listing 1

 1 -module(tcp_proxy).
 2 -export([main/1]).

Alexander Demin Alexander is a software engineer holding a Ph.D. 
in Computer Science. He is constantly exploring new technologies 
and is always ready to drill down into the code with a disassembler to 
prove that the bug is there. He can be contacted at 
alexander@demin.ws
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In Erlang the term ‘process’ means a
different thing. It is a lightweight thread

scheduled for execution not by the OS
scheduler, but by the Erlang runtime
There’s a second definition of the function main (Listing 3) which
matches any other use that doesn’t match the first. It simply prints usage
information.
Now the fun begins in the function start (Listing 4). We create a TCP/
IP listener (line 16) and then launch an acceptor thread (lines 19–21). A
parallel thread (known as a process) is created by the Erlang spawn
function.
At this point it is worth explaining the concept of processes in Erlang.
Normally by ‘a process’ we mean an OS container having threads running
within it. In turn ‘a thread’ usually means a single execution flow within
a process planned for execution by the OS scheduler.
In Erlang the term ‘process’ means a different thing. It is a lightweight
thread scheduled for execution not by the OS scheduler, but by the Erlang

runtime. It is possible to launch a few thousand processes in Erlang and
the runtime will multiplex them onto native OS threads. Processes in
Erlang are very fast to create and have a small memory footprint.
The concept of lightweight processes is quite similar to goroutines in Go
(maybe goroutines were even inspired by Erlang). [Go] Moreover, the
runtime can launch processes on remote Erlang nodes in exactly the same
way as locally. Remember the quote from Joe’s book at the beginning
about 450 servers? This is where the magic begins.
From here I will use the term ‘process’ to refer to these lightweight parallel
execution flows and not OS processes or threads.
In line 22 the main process starts receiving messages (we’ll take a look at
messaging a bit later). In fact nobody will be sending messages to the main
process, so it will be blocked indefinitely unless you stop the application
from outside.
Now the main process sleeps, but the acceptor process is ready to serve
incoming connections.
In lines 26–37  (Listing 5) there are few string formatting routines. Nothing
fancy.
Now the acceptor (Listing 6). In line 39 we accept an incoming connection,
then in lines 41–43 launch another acceptor, and finally within the current
process we connect to the remote host (line 44) and start forwarding data
between the local and remote sockets by calling process_connection
function (line 46).
I’d like you to pause and think. There is a pattern in many languages like
C and C++ of how to implement a TCP/IP server: we have a main listener
process; when an incoming connection comes up the listener creates a

Listing 2

 3 main([ListenPort, RemoteHost, RemotePort]) ->
 4   ListenPortN = list_to_integer(ListenPort),
 5   RemotePortN = list_to_integer(RemotePort),
 6   start(ListenPortN, RemoteHost, RemotePortN);

Listing 3

 7 main(_) -> usage().
 8 usage() ->
 9   io:format("~n~s local_port remote_port
        remote_host~n~n", [?FILE]),
10   io:format("Example:~n~n"),
11   io:format("tcp_proxy.erl 50000 google.com
     80~n~n").

Listing 4

12 start(ListenPort, CalleeHost, CalleePort) ->
13   io:format("Start listening on port ~p and
        forwarding data to ~s:~p~n",
14     [ListenPort, CalleeHost, CalleePort]),
15   ListenOptions = [binary, {packet, 0},
        {reuseaddr, true}, {active, true}],
16   case gen_tcp:listen(ListenPort,
        ListenOptions) of
17     {ok, ListenSocket} ->
18       io:format("Listener started ~s~n",
            [socket_info(ListenSocket)]),
19       spawn(fun() -> 
20         acceptor(ListenSocket, CalleeHost,
              CalleePort, 0) 
21       end),
22       receive _ -> void end;
23     {error, Reason} ->
24       io:format("Unable to start listener,
            error '~p'~n", [Reason])
25 end.

Listing 5

26 format_socket_info(Info) ->
27   {ok, {{A, B, C, D}, Port}} = Info,
28   lists:flatten(
        io_lib:format("~p.~p.~p.~p-~p",
        [A, B, C, D, Port])).

29 peer_info(Socket) ->
   format_socket_info(inet:peername(Socket)).
30 socket_info(Socket) -> 
   format_socket_info(inet:sockname(Socket)).

31 format_date_time({{Y, M, D}, {H, MM, S}}) ->
32   lists:flatten(
33     io_lib:format("~4.10.0B.~2.10.0B.~2.10.
       0B-~2.10.0B.~2.10.0B.~2.10.0B", 
34                   [Y, M, D, H, MM, S])).

35 format_duration({Days, {H, M, S}}) ->
36   lists:flatten(
37     io_lib:format(
          "~2.10.0B-~2.10.0B.~2.10.0B.~2.10.0B",
          [Days, H, M, S])).
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worker process, passes the accepted socket to the worker for processing
and continues to listen.
But our logic here is different: our listener processes the connection data
within its own process because it also plays a worker role, but prior to the
processing it clones itself to continue listening.
The former listener is now a worker. It processes the connection and then
terminates.
This approach is natural for Erlang. It can be partially explained because
in Erlang a process accepting a connection becomes its owner, and all
messages from that connection will be delivered to the owner. This rule
can be abused, but the point here is that processes are cheap and easy to
create, and you’re free to create as many as you want.
An Erlang developer usually fires up processes not per task, which tend
to perform multiple activities, but per logically concurrent activity. And
the activities don’t need to multiplex anything.
Now we begin  to  process  the  connect ion  (Lis t ing  7) .  The
process_connection function takes the number of the current
connection and a pair of sockets. In line 57 it launches its own logger. Then
via sending messages (line 59, 62 and 64) it communicates to it. By having
the logger in a separate process we split the data transferring activity and
the logger.
In lines 59 and 62 we send asynchronous messages but in the line 64 we
send a synchronous one. At line 64, the processing of the connection is
finished and we need to stop the logger by sending a stop command. But
we must get an ack response back when the logger terminates (line 65).
Now the data transmitter (Listing 8). The pass_through function
transmits data between two sockets and backs up the traffic to the logger.

In line 67 we receive a next portion of the data from the sockets. Then in
lines 68, 73, 78 and 80, using the pattern matching syntax of Erlang, we
decide what kind of data has arrived and from where. The two branches
starting at lines 69 and 74 mirror each other. Let’s take a look at the first
one. At line 69 it sends the received binary packet to the logger. Then it
transmits the packet to the peer socket (line 70) and at line 71 it sends a
notification message to the logger saying that the packet was delivered.
Take a look at line 72. This is a very important one. In Erlang there are no
reserved words or operators for loops. You can simulate loops using
lambdas and list comprehensions, but usually looping is implemented in
Erlang by tail recursion. In line 72 the function pass_through calls
itself. This doesn’t mean that for every nested call it creates a new frame
of the stack. Instead, the call to itself is the last one in the function execution
flow, and the compiler optimizes such calls into tail recursion instead of
normal recursion.
In short, tail recursion is a jump to the start of the calling function, but
without using a proper context saving and restoring approach.
Finally in line 78 and 80 when we have the situation of a disconnected
socket, the function doesn’t call itself anymore and just exits.
The function start_connection_logger (Listing 9) begins a logging
activity. It forms a name for the log and fires up a connection_logger
function in a separate process. The function spawn_link differs from
spawn by making the main process and a newly created one linked. If one
dies or exits, its counterpart will be notified.
In Listing 10 (lines 92–95) we see four functions having the same name.
To choose which function to call, Erlang applies the concept of pattern
matching on the data, but not argument types like in C++ for instance. The
key here is the first argument. In Erlang, identifiers starting with a
lowercase letter are atoms. Atoms are implicit constants, enums if you like.
When calling the peer_name function (lines 104, 112 and 124) if the first

Listing 6

38 acceptor(ListenSocket, RemoteHost,
      RemotePort, ConnN) ->
39   case gen_tcp:accept(ListenSocket) of
40     {ok, LocalSocket} -> 
41       spawn(fun() -> 
42         acceptor(ListenSocket, RemoteHost,
              RemotePort, ConnN + 1) 
43       end),
44       case gen_tcp:connect(RemoteHost,
            RemotePort, [binary, {packet, 0}]) of
45         {ok, RemoteSocket} ->
46           process_connection(ConnN,
             LocalSocket, RemoteSocket);
47         {error, Reason} ->
48           io:format("Unable to connect to ~s:~s
             (error: '~p')", 
49             [RemoteHost, RemotePort, Reason])
50        end;
51    {error, Reason} ->
52      io:format("Socket accept error '~w'~n",
           [Reason])
53   end.

Listing 7

54 process_connection(ConnN, LocalSocket,
      RemoteSocket) ->
55   LocalInfo = peer_info(LocalSocket),
56   RemoteInfo = peer_info(RemoteSocket),
57   Logger = start_connection_logger(ConnN,
        LocalInfo, RemoteInfo),
58   StartTime = calendar:local_time(),
59   Logger ! {connected, StartTime},
60   pass_through(LocalSocket, RemoteSocket,
        Logger, 0),
61   EndTime = calendar:local_time(),
62   Logger ! {finished, StartTime, EndTime},
63   % Stop the logger.
64   Logger ! {stop, self(), ack},
65   receive ack -> void end.

Listing 8

66 pass_through(LocalSocket, RemoteSocket,
      Logger, PacketN) ->
67   receive
68     {tcp, LocalSocket, Packet} ->
69       Logger ! {received, from_local, Packet,
            PacketN},
70       gen_tcp:send(RemoteSocket, Packet),
71       Logger ! {sent, to_remote, PacketN},
72       pass_through(LocalSocket, RemoteSocket,
            Logger, PacketN + 1);
73     {tcp, RemoteSocket, Packet} ->
74       Logger ! {received, from_remote, Packet,
            PacketN},
75       gen_tcp:send(LocalSocket, Packet),
76       Logger ! {sent, to_local, PacketN},
77       pass_through(LocalSocket, RemoteSocket,
            Logger, PacketN + 1);
78     {tcp_closed, RemoteSocket} -> 
79       Logger ! {disconnected, from_remote};
80     {tcp_closed, LocalSocket} -> 
81       Logger ! {disconnected, from_local}
82   end.

Listing 9

83 start_connection_logger(ConnN, From, To) ->
84   {{Y, M, D}, {H, MM, S}} =
        calendar:local_time(),
85   LogName = lists:flatten(
86     % YYYY.MM.DD-hh.hh.ss-ConnN-From-To.log
87     io_lib:format(
         "log-~4.10.0B.~2.10.0B.~2.10.0B-"
88       "~2.10.0B.~2.10.0B.~2.10.0B-~4.10.0B-"
89       "~s-~s.log", 
90       [Y, M, D, H, MM, S, ConnN, From, To])),
91   spawn_link(fun() -> connection_logger(ConnN,
        From, To, LogName) end).
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argument is the from_local atom, for example, it calls the first version
of the function.
Of course pattern matching is a much wider technique in Erlang, also used
for branching. For example, given an expression you can provide a list of
possible values expected in it and Erlang will try to match them all against
the expression and pick a matching option. We’ll see an example of this
in a moment.
Again in lines 96  and 101 (Listings 11 and 12), we see two functions with
the same name. The first one is called from start_connection_logger.
Take a closer look at the lines 97–99 (Listing 11). We create a lambda
function called Putter. This lambda binds the two arguments function
append_message_to_file to one argument lambda gluing the
LogName variable as the second parameter.
The function connection_logger waits for an incoming message (line
102, Listing 12) and then does different type of logging activities
depending on the received message, decided by pattern matching on the
received data.
You may spot on that in lines 105, 113, 119, 125 and 132 we also create
a lambda named Message and pass it to the write_message function.
I will explain in a minute why we create and pass around a function rather
than a string, for example.
The function write_message at the line 140 (Listing 13) calls the
function passed by value in the LogWriter variable (remember the
Putter at lines 97-99) and feeds it a variable called Message which also
holds a function (remember the Message lambdas above). It then calls
connection_logger again to get the next packet of data.
And this is a final bit – append_message_to_file function (line 143,
Listing 14). This function again creates a lambda assigned to a Printer
variable (line 145) and calls a function passed as a value in the Putter
variable by passing the Printer as a parameter.
The whole idea of this multi-level cascade of lambdas is to split the putter
activity formatting the data, and the printer activity writing the data into a
log file and the console. The data formatting putter activity can be an
expensive operation and should be done only once. That is why the
Putter calls the Printer for every chunk of already formatted data, and
the Printer in its turn outputs the data to the log file and the console (lines
146 and 147).
In lines 153 to 174 (Listing 15) we produce a nicely formatted hexadecimal
dump. As we saw previously these conversion routines print out the
formatted lines by calling a function passed in the Printer variable.
This is the end of the code.
Now it is time to try the application in action. You need to download and
install the latest version of Erlang from http://www.erlang.org for your
system. For Windows they ship pre-built bundles. I use a Mac and had to
build Erlang from the source. It is a very straightforward procedure and
worked for me without any problems.
To run our code you can try this:
  escript tcp_proxy.erl 50000 pop.yandex.ru 110

escript is one of the Erlang tools and should be in your path. It combines
the compilation and execution phases together. 
Once it gets started you type in a different window: telnet localhost
50000 then when it gets connected type QUIT and press ENTER.
In the first window you should see something like Figure 1.

Listing 10

92   peer_name(from_local, LocalInfo,
        _RemoteInfo) -> LocalInfo;
93   peer_name(from_remote, _LocalInfo,
        RemoteInfo) -> RemoteInfo;
94   peer_name(to_local, LocalInfo, _RemoteInfo)
        -> LocalInfo;
95   peer_name(to_remote, _LocalInfo, RemoteInfo)
        -> RemoteInfo.

Listing 11

 96   connection_logger(ConnN, From, To, LogName)
         when is_list(LogName) ->
 97     Putter = fun(Message) ->
 98       append_message_to_file(Message, LogName)
 99     end,
100     connection_logger(ConnN, From,
           To, Putter);

Listing 12

101 connection_logger(ConnN, FromInfo, ToInfo,
       LogWriter) ->
102   receive
103     {received, From, Packet, PacketN} ->
104       PeerName = peer_name(From, FromInfo,
             ToInfo),
105       Message = fun(Printer) -> 
106         Printer("Received (#~p) ~p byte(s)
               from ~s~n", 
107           [PacketN, byte_size(Packet),
              PeerName]),
108         binary_to_hex(Packet, Printer)
109       end,
110       write_message(ConnN, FromInfo, ToInfo,
             LogWriter, Message);
111     {sent, To, PacketN} ->
112       PeerName = peer_name(To, FromInfo,
             ToInfo),
113       Message = fun(Printer) ->
114         Printer("Sent (#~p) to ~s~n",
               [PacketN, PeerName])
115       end,
116       write_message(ConnN, FromInfo, ToInfo,
             LogWriter, Message);
117     {connected, Time} ->
118       When = format_date_time(Time),
119       Message = fun(Printer) ->
120         Printer("Connected to ~s at ~s~n",
               [ToInfo, When])
121       end,
122       write_message(ConnN, FromInfo, ToInfo,
             LogWriter, Message);
123     {disconnected, From} ->
124       PeerName = peer_name(From, FromInfo,
             ToInfo),
125       Message = fun(Printer) ->
126         Printer("Disconnected from ~s~n",
             [PeerName])
127       end,
128       write_message(ConnN, FromInfo, ToInfo,
             LogWriter, Message);
129     {finished, StartTime, EndTime} ->
130       Duration = calendar:time_difference
             (StartTime, EndTime),
131       When = format_date_time(EndTime),
132       Message = fun(Printer) ->
133         Printer("Finished at ~s,
              duration ~s~n",
134           [When, format_duration(Duration)])
135       end,
136       write_message(ConnN, FromInfo, ToInfo,
             LogWriter, Message);
137     {stop, CallerPid, Ack} ->
138       CallerPid ! Ack 
139  end.

Listing 13

140 write_message(ConnN, FromInfo, ToInfo,
       LogWriter, Message) ->
141   LogWriter(Message),
142   connection_logger(ConnN, FromInfo, ToInfo,
         LogWriter).
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That’s it! It works.
Analyzing the code, if I implement such an application in C++ for instance,
I always think twice before putting anything into a separate thread and so
eventually end up with only a few threads – a listener, workers and one
logger multiplexing logging from all the workers. Also I would think about
a thread pool to limit the number of running native threads. Otherwise,
accepting a thousand connections will spawn a thousand native threads
which is not a clever approach even on a 32-core machine.
But in Erlang the multithreading is managed by the runtime. You can focus
on the business logic of threading rather than on the OS resource
management.
To conclude I’d like to underscore that I didn’t want to explain every single
character in the code. I touched very briefly on the fundamentals of Erlang
such as pattern matching, messaging and list comprehensions. For better
understanding I would recommend two books: Programming Erlang:
Software for a Concurrent World [Armstrong] and Erlang Programming
[Cesarini]. They perfectly complement each other.
I hope I have inspired someone to take a closer look at this wonderful
language. There is a lot of stuff in there: passing function by values over
the wire, hot swapping of code on live servers without restarting them,
developing generic servers which can be turned to do anything (remember
again that quote at the beginning), extending Erlang with your native code
written in other languages and much more.
Have fun. 

Source code
I’ve put the source from the article at [Github]. The version there is more
advanced. As well as the text logger, it logs data in a binary form as well.
It is not that exciting to study but is useful in real applications.
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Listing 14

143 append_message_to_file(Putter, LogName) ->
144    {_, File} = file:open(LogName, [write,
          append]),
145    Printer = fun(Format, Args) ->
146      io:format(Format, Args),
147      io:format(File, Format, Args)
148    end,
149    Putter(Printer),
150    file:close(File).
151
152% --------------------------------------------

Listing 15

153 -define(WIDTH, 16).
154 binary_to_hex(Bin, Printer) ->
155   binary_to_hex(Bin, Printer, 0).
156 binary_to_hex(<<Bin:?WIDTH/binary,
       Rest/binary>>, Printer, Offset) ->
157   binary_to_dump_line(Bin, Printer, Offset),
158   binary_to_hex(Rest, Printer,
         Offset + ?WIDTH);
159 binary_to_hex(Bin, Printer, Offset) ->
160   Pad = fun() -> Printer("~*c",
         [(?WIDTH - byte_size(Bin)) * 3, 32]) end,
161   binary_to_dump_line(Bin, Printer,
         Pad, Offset).
162 binary_to_dump_line(Bin, Printer, Offset) ->
163   binary_to_dump_line(Bin, Printer, fun() ->
         ok end, Offset).
164 binary_to_dump_line(Bin, Printer,
       Pad, Offset) ->
165   Printer("~4.16.0B: ", [Offset]),
166   Printer("~s", [binary_to_hex_line(Bin)]),
167   Pad(),
168   Printer("| ~s~n",
         [binary_to_char_line(Bin)]).
169 binary_to_hex_line(Bin) ->
       [[(byte_to_hex(<<B>>) ++ " ") ||
       << B >> <= Bin]].
170 byte_to_hex(<< N1:4, N2:4 >>) ->
171   [integer_to_list(N1, 16),
         integer_to_list(N2, 16)].
172 binary_to_char_line(Bin) ->
       [[mask_invisiable_chars(B) ||
       << B >> <= Bin]].
173 mask_invisiable_chars(X) when
       (X >= 32 andalso X < 128) -> X;
174 mask_invisiable_chars(_) -> $..
28 | Overload | February 2012

Start listening on port 50000 and forwarding data to pop.yandex.ru:110
Listener started 0.0.0.0-50000
Connected to 93.158.134.37-110 at 2011.12.15-00.59.22
Received (#0) 38 byte(s) from 93.158.134.37-110
0000: 2B 4F 4B 20 50 4F 50 20 59 61 21 20 76 31 2E 30 | +OK POP Ya! v1.0
0010: 2E 30 6E 61 40 31 34 20 4D 78 55 55 33 74 66 48 | .0na@14 MxUU3tfH
0020: 52 57 32 31 0D 0A                               | RW21..
Sent (#0) to 127.0.0.1-51042
Received (#1) 6 byte(s) from 127.0.0.1-51042
0000: 51 55 49 54 0D 0A                               | QUIT..
Sent (#1) to 93.158.134.37-110
Received (#2) 20 byte(s) from 93.158.134.37-110
0000: 2B 4F 4B 20 73 68 75 74 74 69 6E 67 20 64 6F 77 | +OK shutting dow
0010: 6E 2E 0D 0A                                     | n...
Sent (#2) to 127.0.0.1-51042
Disconnected from 93.158.134.37-110
Finished at 2011.12.15-00.59.29, duration 00-00.00.07

Figure 1

http://golang.org/doc/effective_go.html#goroutines
https://github.com/begoon/tcp_proxy/tree/logger_threads
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