

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Programming Darwinism
Sergey Ignatchenko investigates software’s élan vital.

6 What’s a Good Date?
Björn Fahller profiles different date representations.

10 Tail Call Optimisation in C++
Andy Balaam implements a type of optimistaion
available in other languages.

14 All About XOR
Michael Lewin finds hidden depths to a common logic
operation.

20 Curiously Recursive Template Problems
with Aspect Oriented Programming
Hugo Arregui, Carlos Castro and Daniel Gutson work
out how to combine two useful techniques.

24 Valgrind Part 2 – Basic memcheck
Paul Floyd shows us how to check for memory
problems.

OVERLOAD 109

June 2012

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 110 should be submitted
by 1st July 2012 and for Overload
111 by 1st September 2012.

EDITORIAL RIC PARKIN
It’s Not What You Know,
It’s Who You Know
Most human endeavours are not solitary pursuits. Ric Parkin
looks at the interconnection of everyone.
Ah the pleasures of a fine late English spring. After a
couple of horribly wet and miserable months, May has
ended with some gloriously hot and sunny days, which
is just as well as I’ve been sitting in a field drinking a
variety of weird and wonderful brews at the 39th
Cambridge Beer Festival [CBF]. This is a significant

event, as it functions as an informal reunion for the region’s IT sector –
it seems that large proportion of software developers like their real ale,
and so I quite often bump into current and past colleagues and can catch
up with what’s happening in the industry. Judging by the range of
company t-shirts on display, you get a feel for how big and varied is the
local tech-cluster known as ‘Silicon Fen’ [Fen].
The origins of this are usually traced to the founding of the UK’s first
Science Park back in the early 1970s. By encouraging small high tech
startups, often spun out of research from the University, this and many
other subsequent business parks in the region have transformed the local
(and national) economy, with a critical mass of companies and jobs in
sectors such as software and biotech. It’s easy to see how such a cluster
effect feeds off itself to breed success. By having so many companies
nearby, people are more willing to take a risk and start (or join) a small
company, because if it goes under (as many do) it’s easy to get a job
elsewhere. There are also lots of small ‘incubators’ such as the St Johns
Innovation Centre [St Johns] where such companies can get started with
lots of advice and help, often from other startups in the next units. Indeed
it’s this networking effect that really seems to be key – it’s comparatively
easy to find important staff in the area who’ve already been through the
experience of turning tiny startups into successful businesses, and the
region’s success encourages people to relocate or stay here after
university, providing a rich pool of talent. Indeed it was my realisation of
this that made me decide to buy a house and settle here – there are so many
companies that I wouldn’t have to move in order to change jobs. And I’ve
been proved right – in 18 years I’ve been in 7 different jobs, usually with
small startups, but am still in the same house.
Such has been the success that people try to recreate the effect – locally
there is an attempt to build a biotech cluster, centred around a research
campus [Genome] (home of the Sanger Institute, one of the pioneers of
DNA sequencing and central to the deciphering of the human genome)
and Addenbrooke’s Hospital to the south of the city. And recently Google
and others have set up an incubator hub in east London, dubbed Silicon
Roundabout [Roundabout].

But there’s more to it than just bringing companies
together. There has to be that networking effect,

which can range from bumping into someone
from the next door company in the shared canteen
of the Incubator building, informal meetups such

as the Beer Festival, formal networking sites such as LinkedIn and The
Cambridge Network [Network], and professional groups such as Software
East [East] and of course ACCU itself. Some of these will be of more value
to you than others depending on what you want to get out of them. Some
are good for contacts, some are good for sharing technical experiences,
and some are sadly getting plagued by recruiters wanting to connect with
you. But I think they all help by expanding your circle of potential
experience. By that I mean that if you have something new that you have
to do, then you could work things out for yourself but it’d take a long time
and you’re likely to make lots of mistakes. But if instead you know
someone who’s done it before, then you can take their advice or get them
to help you, and your chances of success will be vastly improved.
Now we’ve established that pooling experience can increase success, a
question is how much of a network do you need? Too much and the effort
needed to maintain it will interfere with actually getting on and doing
things; too little and you won’t have the contacts for when you need them.
Well, the good news is that there is a branch of research called Network
Theory [Theory] which concerns itself with the properties of networks,
such as social interconnectedness. One famous type of network is called
a Small-World network, informally known as The Six Degrees Of
Separation [Six]. (It has also been turned into a game involving Kevin
Bacon, apparently after he commented that he’d worked with everyone
in Hollywood, or someone who’d worked with them. [Bacon]). These
types of networks have two defining properties – on average each
individual has only a few connections; and yet they can connect with
anyone in the entire network with only a few ‘jumps’. The trick is that you
have a few key people who connect to a lot of others, especially other key
people. Then all you need to do is know a key person, who knows another
key person, who knows your target. (Interestingly, there are hints that we
have an ‘ideal’ social group size [Dunbar]. I wonder if this number is
related to how many connections you need for a good small-world
network, which would be needed for a successful civilisation to arise).
These types of networks appear in many different disciplines, as they are
very efficient at creating robust, well connected networks. Examples
include neural networks, seismic fault systems, gene interactions,
database utility metrics, and the connectedness of the internet (see
Figure 1 for a map of the internet from the wikimedia commons
[Internet]). Its robustness stems from the fact that if you remove an
arbitrary node, the mean path length between any two nodes doesn’t tend
to change. Problems will only occur if you take out enough key nodes at
once).
While a wide social and professional network is useful, in our day-to-day
work we tend to work in a much smaller team. We rarely work in isolation
as it’s not very efficient to do it all yourself – in a similar way to getting
advice from a professional connection, we use division of labour and skills

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | June 2012

EDITORIALRIC PARKIN
to make up a team. For example, instead of me spending ages learning
about databases and struggling to support one to the detriment of my
programming, we just hire someone who’s a professional DBA. By
building such a team we have a group who collectively have all the skills
needed.

But now we need to coordinate them. How much of an overhead will that
be? Unfortunately models and experience show that this can be
disastrously high – by considering a team of N people who all talk to each
other, we see that there are (N-1)! (ie (N-1)x(N-2)x...x2x1) different
possible interactions. This gets very big very quickly, which explains why
an ideal team size is actually quite low. It has to be large enough to get the
benefits of division of labour, but small enough that the overhead of
communication and coordination doesn’t swamp people. Five to ten
people is usually pretty good. But let us reconsider the assumption that
everyone needs to talk to everyone else. If we can arrange things such that
you generally don’t need to, then we can have a bigger team with the same
overhead.

Small world theory also gives us ideas about how we should be organising
them – in small focussed groups with a few key individuals acting as links
between the groups. In the past, the groups were often organised by
discipline, so for example all the programmers were in one team, the testers
in another, sales in another and so on. But this was found to not work very
well as the lifecycle of the product cuts across all these teams, whereas

there was relatively poor communication channels that mirrored it.
Instead, now we tend to make a team with members from all the different
disciplines (although things like sales and marketing still tend to be
separate from the technical teams – I can see why as a lot of their activities
are done after a product is built, but it is a shame that there aren’t at least
representatives within the technical teams to give input from their point of
view, and to understand the product better). You can then see how the
modern technical company structure has arisen, with small multi-
disciplinary teams building focussed products, coordinated by a few key
communicators. Done well, you can grow this model into a large
productive company.

All good things....
I’ve been editing Overload for just over four years now. It been tremendous
fun, but all things must come to an end at some point, and that time has
come. From next issue there will be a new editor – I’ll leave them to
introduce themselves in their own fashion then. I’ll be helping out in the
review team, and may even find time to write some new articles, so you
have been warned! I’d just like to thank all those who’ve helped make all
those issues, from the many authors, the helpful
reviewers, Pete’s fantastic covers, and especially
Alison’s excellent (and patient) production.

References
[Bacon] http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
[CBF] http://www.cambridgebeerfestival.com/
[Dunbar] http://en.wikipedia.org/wiki/Dunbar's_number
[East] http://softwareast.ning.com
[Fen] http://en.wikipedia.org/wiki/Silicon_Fen
[Genome] http://www.sanger.ac.uk/
[Internet] http://en.wikipedia.org/wiki/File:Internet_map_1024.jpg
[Network] http://www.cambridgenetwork.co.uk
[Roundabout] http://www.siliconroundabout.org.uk/
[Six] http://en.wikipedia.org/wiki/Six_degrees_of_separation
[SmallWorld] http://en.wikipedia.org/wiki/Small-world_network
[St Johns] http://www.stjohns.co.uk/
[Theory] http://en.wikipedia.org/wiki/Network_theoryFigure 1
June 2012 | Overload | 3

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
http://www.cambridgebeerfestival.com/
http://en.wikipedia.org/wiki/Dunbar�s_number
http://softwareast.ning.com
http://en.wikipedia.org/wiki/Silicon_Fen
http://www.sanger.ac.uk/
http://en.wikipedia.org/wiki/File:Internet_map_1024.jpg
http://www.cambridgenetwork.co.uk
http://www.siliconroundabout.org.uk/
http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Small-world_network
http://www.stjohns.co.uk/
http://en.wikipedia.org/wiki/Network_theory

FEATURE SERGEY IGNATCHENKO
Programming Darwinism
Have you ever thought your software had
a life of its own? Sergey Ignatchenko
wonders whether you might be right.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with opinions of the translator or
Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry2004]) might have prevented
from providing an exact translation. In addition, both translator and
Overload expressly disclaim all responsibility from any action or inaction
resulting from reading this article.

I think anthropomorphism is worst of all. I have now seen
programs ‘trying to do things’, ‘wanting to do things’,

‘believing things to be true’, ‘knowing things’ etc.
~ Edsger W. Dijkstra

t is common to refer to programs in terms which are usually reserved
for living beings. And yet there are relatively few things we’d refer to
as having a ‘life cycle’; we have the ‘biological life cycle’, ‘enterprise

life cycle’, ‘product life cycle’, ‘project life cycle’, and ‘software
development life cycle’, and that’s about it. There is no such thing as, for
example, a ‘theorem life cycle’ or ‘rain life cycle’. And (even
understanding that what I’m about to say will contradict Dijkstra
[EWD854]) I don’t think it is a bad thing. In my opnion, saying that it’s a
bad thing that people refer to programs in an anthropomorphic way is akin
to saying that rain is a bad thing. As I see it, the fact that programs
(especially complex programs, and remember that programs have become
vastly more complex since 1983 when Dijkstra wrote EWD854, and even
more so since his major works back in 70s) do behave similarly to living
beings is something which we should accept whether we like it or not.
In fact, academic researchers have recently more or less agreed to
acknowledge that complexity of systems and life are closely interrelated
([Chaitin1979], [Gregersen2002], [Kauffman2002]). What scientists (as
usual) are disagreeing on, is the question of whether this complexity has
arisen spontaneously, or is a result of creative design. Fortunately we don’t
need to answer this unsolvable question for the purposes of this article;
what matters is that the behaviour of complex systems does indeed
resemble living beings.

Survival of the fittest?
Programming is like sex: one mistake and

you’re providing support for a lifetime.
~ Michael Sinz

Going a bit further with the parallels between programs and living beings,
shouldn’t we think about applying evolutionary theory?
But how? It might work as follows: program features (this should be
understood broadly and include other properties such as reliability, speed,

convenience, price, brand, marketing, etc.) are equivalent to biological
traits. If users don’t buy a program it tends to die, so if a program is
desirable it improves the chances of the program surviving. This means
that decision of user to buy/not buy program, is equivalent to a process of
natural selection, favouring programs with certain desirable traits.
One obvious question, which many of us would like to get an answer to,
is ‘Is it really the best (most desirable) program that survives?’ As much
as I would like to see the world where it is true, I should admit that it is
not the case. Poor programs abound.
There are at least two major reasons why it happens. First of all,
evolutionary theory does not provide any guarantee on the absence of
poorly adapted organisms; it just says that sometimes, maybe, if better fit
organisms appear they will have a better chance of surviving.
Another, probably even more important reason for poor programs out
there, is that even if ‘everybody’ (which is often used as a synonym to
‘community of software developers’) agrees that product A is ‘better’ than
product B, it doesn’t necessarily mean that product A has the better chance
of survival. It is important to remember that it is only end-users (the ones
who’re paying the money, directly or indirectly, for example, via watching
ads in adware) who are directly involved in the process of natural selection.
For example, when the software developer community largely agreed that
OS/2 was so much better than Windows 3.1, it didn’t matter for
survivability, as the target market of the operating systems was much
wider. What really did matter was the opinion of the end-users, and it was
clearly in favour of Windows, which indeed was the one that survived.

Survival of the most agile!
There is a famous [mis]quote attributed to Darwin: ‘It is not the strongest
of the species that survives, nor the most intelligent that survives. It is the
one that is the most adaptable to change.’ While most likely Darwin didn’t
say it, the principle behind it still stands. Nowadays this property is known
as ‘evolvability’. For example the article in [TheScience2011] (based on
[Woods2011]) says: ‘The most successful E. coli strains in a long-term
evolution experiment were those that showed the greatest potential for
adaptation’; or, as Lone Gunman put it, ‘Adaptability trumped fitness’
[LoneGunman2011].
Now let’s apply this theory to a history of program evolution. In the
Paleozoic era of programming, programs were intended to be designed
once and then to avoid any changes. These programs are now known as
waterfalloptera. Then, in the programming Mesozoic, it became obvious
that avoiding any changes is not a viable option (see for example
[BBC2012]), and much more lightweight and agile scrumoculates and
extremeprogrammerodonts (as well as many others) appeared, with
‘responding to a change’ being one of their distinguishing features. In
[Boehm2004] the authors note that these agile species tend to thrive in
environments where frequent changes are the norm. Essentially what we
have is that agile species are more adaptable, because they’re fast to react
to change. This means two things: first, that if evolution theory can indeed
be applied to programs, then agile programming species are more likely
to survive, and second, that if it is the case we can rephrase the classical

I

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
4 | Overload | June 2012

[EWD854]

FEATURESERGEY IGNATCHENKO
‘surv iva l
of the fittest’
into ‘survival of the most
agile’, at least when applying it to programs.

What about survival of the fattest?
In the programming world, a nasty disease known as ‘vendor lock-in’ often
grows to epidemic proportions. It often comes from a classic positive
feedback loop, for example where the more people use MS Office, the
more other people need to install it to be able to read the documents, and
so even more people install it to read their documents, and so on until
everyone is locked into owning MS Office. This is all well known, but with
our current analysis there is one big question: how does it correlate with
our theory of evolutionary programming? Such species, known as locked-
in-asaurus, tend to become irresponsive to change but still may
successfully live for ages. So if evolutionary theory holds, how it could
possibly happen? There is no definite answer to this question but we will
be bold enough to propose the following hypothesis: In biological
evolution, there were many cases when less-adaptable species were
dominant for a long while until a big ‘extinction event’ caused drastic
changes to the environment. For example, dinosaurs were the dominant
terrestrial fauna in the Cretaceous period, and there were no problems on
the horizon until the Cretaceous–Paleogene extinction event 65 million
years ago (also known as the K-T extinction event, currently attributed to
an asteroid impact) demonstrated their inability to cope with the rapidly
changed environment and lead to the extinction of dinosaurs and the rise
of mammals.
Applying this approach to programs, we may propose the hypothesis that
locked-in-asauri are just waiting for an ‘extinction event’ which would
eliminate them, and pave the way for more agile programming species.
Unfortunately, it is not possible to test this hypothesis, just as it was not

possible to test the hypothesis about
the better adaptability of mammals
before the K-T extinction event. It is

even less possible to predict what could serve as such
an extinction event for locked-in-asaurus: it might be the

current Eurozone crisis, the rise of smartphones/tablets, or it might
be something years from now. In general, evolutionary theory doesn’t
provide time estimates – it may provide some explanations and
predictions, but how fast things go is usually beyond its limits.

References
[BBC2012] ‘Viewpoint: A rethink in the financing of innovation’,

http://www.bbc.co.uk/news/business-18062164
[Boehm2004] Boehm, B.; R. Turner. Balancing Agility and Discipline: A

Guide for the Perplexed, Addison-Wesley, 2004.
[Chaitin1979] Toward a mathematical definition of ‘life’, Gregory J.

Chaitin, In R. D. Levine and M. Tribus, The Maximum Entropy
Formalism, MIT Press, 1979, pp. 477–498 ,
http://www.cs.auckland.ac.nz/~chaitin/mit.pdf

[EWD854] http://www.cs.utexas.edu/users/EWD/ewd08xx/
EWD854.PDF

[Gregersen2002] From Complexity to Life: On The Emergence of Life and
Meaning, Niels Henrik Gregersen (Editor), Oxford University Press,
2002

[Kauffman2002] Stuart A. Kauffman, Investigations, Oxford University
Press, 2002

[LoganBerry2004] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[LoneGunman2011] http://www.lonegunman.co.uk/2011/05/25/in-
evolution-adaptability-beats-fitness/

[TheScience2011] ‘Evolvability, observed’
http://classic.the-scientist.com/news/display/58057/

[Woods2011] R.J. Woods et al., ‘Second-order selection for evolvability
in a large Escherichia coli population’, Science, 331: 1433-6, 2011.
June 2012 | Overload | 5

http://www.bbc.co.uk/news/business-18062164
http://www.cs.auckland.ac.nz/~chaitin/mit.pdf
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD854.PDF
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD854.PDF
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://www.lonegunman.co.uk/2011/05/25/in-evolution-adaptability-beats-fitness/
http://www.lonegunman.co.uk/2011/05/25/in-evolution-adaptability-beats-fitness/
[TheScience2011]

FEATURE BJÖRN FAHLLER
What’s a Good Date?
Implementing a data type seems simple at
first glance. Björn Fahller investigates why
you might choose a representation.
ne of many things that did not get included in the shiny new C++11
standard is a representation of date. Early this year my attention was
brought to a paper [N3344] by Stefano Pacifico, Alisdair Meredith

and John Lakos, all of Bloomberg L.P., making performance comparisons
of a number of date representations. The paper is interesting and the
research well done, but since I found some of their findings rather baffling,
I decided to make some measurements myself, to see if I could then
understand them.

Types of representation
As a simplification, the proleptic Gregorian Calendar [Proleptic] is used,
where we pretend that the Gregorian calendar has always been in use.
Given that the introduction of the Gregorian calendar happened at different
times in different places, this makes sense for most uses, except perhaps
for historians, and also means that the truly bizarre [Feb30] can safely be
ignored.
The two fundamentally different representations studied are serial
representations and field based representations. The serial representation
is simply an integer, where 0 represents some fixed date, and an increment
of one represents one day. The field based representation uses separate
fields for year, month and day. It is obvious that serial representations have
an advantage when calculating the number of days between two dates, and
likewise obvious that field based representations have a performance
advantage when constructing from, or extracting to, a human readable date
format.
Less obvious is the find in [N3344] that sorting dates is faster with serial
representations than with field based representations, given that you can
store the fields such that a single integer value comparison is possible.

Implementations
None of the implementations check the validity of the input, since [N3344]
gives good insights into the cost of such checks.
Listing 1 shows the serial representation. The Julian Day Number [JDN]
is used as the date. Today, May 6th 2012, is Julian Day Number 2456054.
A 16-bit representation stretches approximately 180 years and thus makes
sense to try, but it requires an epoch to add to the number.
Since conversions between year/month/day and julian day number occur
frequently, they are implemented in a separate class (not shown in this
article) used as a template parameter to the date classes. This also allows
the freedom to change calendar without need to change the representations.

For field based representations there are two alternatives. One uses the C/
C++ bitfield language feature, in union with an unsigned integer for fast
comparisons, the other uses only an unsigned integer type member and
accesses the fields using mask and shift operators. With 5 bits for day of
month, and 4 bits for month in year, there are only 7 bits left for year on
a 16-bit representation – not much, but enough to warrant a try using an
epoch. The two field based representations are similar enough to warrant
one class template, which does all the calculations based on abstracted
fields, and take the concrete representation as a template parameter. It
assumes there are named getters and setters for the fields, and an access
method for the raw unsigned integral type value for use in comparisons.
Listing 2 shows the class template for field based dates.
The bitfield based representation makes use of undefined behaviour, since
the value of a union member is only defined if the memory space was
written to using that member. However, in practice it works. The layout
in Listing 3 makes days occupy the least significant bits and year the most
significant bits with g++ on Intel x86.
The bitmask representation in Listing 4 is similar to the bitfield
representation, but involves some masking and shifting in the setter/getter
functions, and thus avoids any undefined behaviour.

O

Listing 1

template <typename T, typename Calendar,
 unsigned long epoch>
struct serial_date
{
 T data;

public:
 serial_date(unsigned y, unsigned m, unsigned d)
 : data(Calendar::to_jdn(y, m, d) - epoch)
 {
 }

 bool operator<(const serial_date& rh) const
 {
 return data < rh.data;
 }
 // other comparison operators trivially similar

 long operator-(const serial_date &rh) const
 {
 return long(lh.data) – long(rh.data);
 }

 void get(unsigned &y, unsigned &m,
 unsigned &d) const
 {
 Calendar::from_jdn(data + epoch, y, m, d);
 }
};

Björn Fahller is a systems analyst for telecommunications
software with 14 years’ experience as a developer of embedded
software. Apart from prototyping, programming now mostly
competes for time with family, flight instruction and volunteering
with flying for damage assessment and search for rescue. Björn
can be reached on bjorn@fahller.se
6 | Overload | June 2012

FEATUREBJÖRN FAHLLER

One of many things that did not get included
in the shiny new C++11 standard is a

representation of date
Measurements
The three representations are used both as 16-bit versions, with Jan 1st
1970 as the start of the epoch, and with 32-bit versions using 0 as the epoch
(i.e. 4800BC for the JDN based serial representation, and the mythical year
0-AD for the field based versions.)
The measurements are:

emplace: time to emplace 743712 random valid dates in year/
month/day form into a preallocated vector (see Figure 1).
sort: time to sort the vector (see Figure 2).
increment: time to increment every date in the vector by one day
(see Figure 3).
diff: time to calculate the number of days between each consecutive
pair of dates in the vector (see Figure 4).
extract ymd: time to get year, month, day from each date in the
vector (see Figure 5).Listing 2

template <typename T, typename Cal>
class field_date : private T
{
public:
 field_date(unsigned y, unsigned m, unsigned d)
 {
 T::year(y).month(m).day(d);
 }
 bool operator <(const field_date &rh)
 {
 return lh.raw() < rh.raw();
 }
 // other comparison operators trivially similar

 field_date &operator++()
 {
 T::raw_inc();
 if (day() == 0) { day(1); }
 // assume 31 wraps to 0 and inc month.
 if (month() == 13)
 {
 month(1); year(year() + 1);
 }
 else if (day() == 31 &&
 ((month() & 1) == (month() >> 3)))
 {
 day(1);
 month(month() + 1);
 }
 else if (month() == 2 &&
 day() == (29 + Cal::is_leap_year(year())))
 {
 day(1);
 month(3);
 }
 return *this;
 }
 long operator-(const field_date &rh) const
 {
 long ldn = Cal::to_jdn(s_.y_ + epoch,
 s_.m_, s_.d_);
 long rdn – Cal::to_jdn(rh.s_.y_ + epoch,
 rh.s_.m_, rh.s_,d_);
 return ldn – rdn;
 }
 void get(unsigned &y, unsigned &m,
 unsigned &d) const
 {
 y = T::year(); m = T::month(); d = T::day();
 }
};

Listing 3

template <typename T, unsigned epoch_year>
class bitfield_date
{
 struct s {
 T d_:5;
 T m_:4;
 T y_:std::numeric_limits<T>::digits-9;
 };

 union {
 s s_;
 T r_;
 };

public:
 bitfield_date(unsigned y, unsigned m,
 unsigned d)
 {
 s_.y_ = y – epoch_year;
 s_.m_ = m;
 s_.d_ = d;
 }

 bitfield_date& month(unsigned m)
 { s_.m_ = m; return *this; }
 unsigned month() const { return s_.m_; }
 // other access methods trivially similar

 T raw() const { return r_; }
 void raw_inc() { ++r_; }
};
June 2012 | Overload | 7

FEATURE BJÖRN FAHLLER
All measurements are made on an old Samsung NC10 Netbook, running
32-bit Ubuntu 12.04, since it has the smallest cache of all computers I have
readily available. The test programs are compiled with g++ 4.6.3 using
-O3 -std=c++0x. The graphs are the averages of 100 runs of each
measurement.

Listing 4

template <typename T, unsigned epoch_year>
class bitmask_date
{
 static const T one = 1;
 static const T dayshift = 0;
 static const T daylen = 5UL;
 static const T daymask =
 ((one << daylen) - 1UL) << dayshift;

 static const T monthshift = 5;
 static const T monthlen = 4;
 static const T monthmask =
 ((one << monthlen) - 1U) << monthshift;

 static const T yearshift = 9;
 static const T yearlen =
 std::numeric_limits<T>::digits – 9;
 static const T yearmask =
 ((one << yearlen) - 1U) << yearshift;

 T data;

public:
 bitmask_date& month(unsigned m)
 {
 data = (data & ~monthmask) |
 (m << monthshift);
 return *this;
 }
 unsigned month() const
 {
 return (data & monthmask) >> monthshift;
 }
 // Other setter/getter functions
 // trivially similar

 void raw_inc() { ++data; }
 T raw() const { return data; }
};

Figure 1

Figure 2

Figure 3

Figure 4
8 | Overload | June 2012

FEATUREBJÖRN FAHLLER
Results
Almost all measurements show a performance advantage for the 32-bit
representations, despite a lower number of cache misses (as shown by the
valgrind tool ‘cachegrind’ [cachegrind].) This surprising result is
consistent across a 4 different computers tested, all with different versions
of x86 CPUs and also with a few different versions of g++.

Conclusions
It is not surprising that there probably is no one representation that is best
for every need.
For me, the noticeably better performance of hand written bit field
management using mask/shift operations was a surprise, but it was
understood once the code generated by the compiler was examined. This

does not explain why the bitfield version was faster in some of the tests,
though. Most peculiar is the substantial performance difference when
sorting dates.
It definitely came as a surprise that cutting the size of the data set in half
by using 16-bit representations almost always made a difference for the
worse. Certainly there is a disadvantage for emplace and extract ymd, and
on diff for the field based versions, since the epoch must be subtracted or
added, but for all other measurements there is an obvious reduction in
number of cache misses, and the increase in number of instructions or
number of data accesses are insignificant, and still performance suffers a
lot. Indeed, this find was so surprising that a CPU architecture buff of a
colleague immediately asked for the source code to analyse.

References
[Feb30] See http://en.wikipedia.org/wiki/February_30
[cachegrind] See http://valgrind.org/info/tools.html#cachegrind
[JDN] See http://en.wikipedia.org/wiki/Julian_day
[N3344] See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/

n3344.pdf
[Proleptic] See http://en.wikipedia.org/wiki/

Proleptic_Gregorian_calendar

emplace That the field based representations are much faster than
the serial representation is no surprise. At first I could not
understand why the mask/shift version was faster than
using the bitfield language feature, but it turns out that the
compiler adds unnecessary maskings of the parameter
data before insertion into the word since it cannot know
that the values are within the legal range. My hand written
getter/setter functions do not have that overhead, hence
the improved performance.

sort The difference between the mask/shift field based
representation and the serial representation is well within
the noise margin for 32-bit implementations, so the
performance advantage for sorting of the serial
representation shown in [N3344] is not obvious. Why the
bitfield version is around 15% faster on the average is a
mystery.

increment Here there is a huge expected advantage with the serial
representation, showing approximately five times faster
operation. The reason for mask/shift to perform about 10%
better than bitfield is unclear, but perhaps it is the above
mentioned generated extra masking in the bitfield version
that does it.

diff An even greater advantage of the serial representation,
roughly 13 times, where the difference is calculated by a
mere integer subtraction, while the field based versions
must first compute the JDN of each and subtract those.
Why the mask/shift version performs slightly worse than
the bitfield versions is not clear.

extract ymd As expected, this is where the field based representations
shine. The performance is in the vicinity of 14 times better
for field based representations than serial representations.
It is not easy to see in the graph, but the mask/shift version
is around 20% faster than the bitfield versions for both the
16-bit and 32-bit versions.

Figure 5
June 2012 | Overload | 9

http://en.wikipedia.org/wiki/February_30
http://valgrind.org/info/tools.html#cachegrind
http://en.wikipedia.org/wiki/Julian_day
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3344.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3344.pdf
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

FEATURE ANDY BALAAM
Tail Call Optimisation in C++
Stack based languages can be very powerful,
but often can’t deal with arbitrary recursion.
Andy Balaam finds a way around this limitation.
ome programming languages make recursive programming more
practical by providing the tail call optimisation. For a lightning talk
at the recent ACCU conference I looked at how we might do

something similar in C++. This article attempts a fuller explanation.

Multiplying by two
Here’s a toy problem we will use as our example.
Imagine for a second that you want to write a function that multiplies a
number by two. OK, we can do that:
 long times_two_hardware(long value)
 {
 return value * 2;
 }

Now imagine that you don’t have the * operator.
We’re going have to use +. We can do that too:
 long times_two_loop(long value)
 {
 long ret = 0;
 for (long i = 0; i < value; ++i)
 {
 ret += 2;
 }
 return ret;
 }

(Obviously, this is just a silly example designed to be easy to follow.)
Now imagine that you read somewhere that state was bad, and you could
always replace a loop with recursion. Then you might get something like
this:

 long times_two_naive_recursive(long value)
 {
 if (value == 0)
 {
 return 0;
 }
 else
 {
 return 2 + times_two_naive_recursive
 (value - 1);
 }
 }

This is fine, but what happens when you run it for a large input?
 $ ulimit -S -s 16
 $./times_two naive_recursive 100000
 Segmentation fault

Note that I set my stack size to be very small (16K) to make the point –
actually, this will run successfully for very large arguments, but it will eat
all your memory and take a long time to finish.
Why does this fail? Because every time you call a function, the state of
the current function is saved, and new information is pushed onto the stack
about the new function. When you call a function from within a function
multiple times, the stack grows and grows, remembering the state all the
way down to the place where you started.
So is programming like this useless in practice?

Tail call optimisation
No, because in several programming languages, the compiler or interpreter
performs the ‘tail call optimisation’.
When you call a function from within some other code you normally need
the state of the current code to be preserved. There is a special case where
you don’t need it though, and this is called a tail call. A tail call is just the
situation where you call a function and immediately return its return value
as your return value. In this case we don’t need any of the state of the
current code any more – we are just about to throw it away and return.
The tail call optimisation throws away this unneeded state before calling
the new function, instead of after.
In practice, in compiled code, this involves popping all the local variables
off the stack, pushing the new function parameters on, and jmping to the
new function, instead of calling it. This means that when we hit the ret
at the end of the new function, we return to the original caller, instead of
the location of the tail call.
Many recursive functions can be re-cast as tail-call versions (sometimes
called iterative versions). The one we’re looking at is one of those, and
Listing 1 is the tail-call version.
It consists of an outer function times_two_recursive which just
hands off control to the inner function times_two_recursive_impl.
The inner function uses a counter variable and calls itself recursively,
reducing that counter by one each time, until it reaches zero, when it returns
the total, which is increased by 2 each time.
The key feature of this implementation is that the recursive function
times_two_recursive_impl uses a tail call to do the recursion: the
value of calling itself is immediately returned, without reference to
anything else in the function, even temporary variables.
So, let’s see what happens when we compile and run this:
 $ ulimit -S -s 16
 $./times_two recursive 100000
 Segmentation fault

Did I mention that C++ doesn’t do the tail call optimisation?

S

Andy Balaam is happy as long as he has a programming language
and a problem. He finds over time he has more and more of each.
You can find his many open source projects at artificialworlds.net or
contact him on andybalaam@artificialworlds.net
10 | Overload | June 2012

FEATUREANDY BALAAM

When you call a function from within some
other code you normally need the state of

the current code to be preserved
So how would we write code that is tail call optimised in C++? Possibly
of more interest to me personally: if we were generating C++ as the output
format for some other language, what code might we generate for tail call
optimised functions?

Tail call optimised C++
Let’s imagine for a second we have some classes, which I’ll define later.
FnPlusArgs holds a function pointer and some arguments to be passed
to it. Answer holds on to one of two things: either a FnPlusArgs to call
later, or an actual answer (return value) for our function.
Now we can write our function like Listing 2.
This has the same structure as times_two_recursive, if a little more
v e r bo s e . T h e i m po r t a n t p o i n t t o n o t e t ho ug h , i s t h a t
times_two_tail_call_impl doesn’t call itself recursively. Instead,
it returns an Answer object, which is a delegate saying that we have more
work to do: calling the provided function with the supplied arguments.

The trampoline
All we need now is some infrastructure to call this function, and deal with
its return value, calling functions repeatedly until we have an answer. This
function is called a ‘trampoline’, and you can sort of see why:
 long trampoline(Answer answer)
 {
 while (!answer.finished_)
 {
 answer = answer.tail_call_();
 }
 return answer.value_;
 }

While the answer we get back tells us we have more work to do, we call
functions, and when we’re finished we return the answer.
Now all we need to get this working is the definition of Answer and
FnPlusArgs, which are shown in Listing 3.
The only notable thing about this is that we use operator() on
FnPlusArgs to call the function it holds.

Listing 1

long times_two_recursive_impl(long total,
 long counter)
{
 if (counter == 0)
 {
 return total;
 }
 else
 {
 return times_two_recursive_impl(
 total + 2, counter - 1);
 }
}

long times_two_recursive(long value)
{
 return times_two_recursive_impl(0, value);
}

Listing 2

Answer times_two_tail_call_impl(long acc,
 long i)
{
 if (i == 0)
 {
 // First argument true means we have finished -
 // the answer is acc
 return Answer(true, null_fn_plus_args, acc);
 }
 else
 {
 // First argument false means more work to do -
 // call the supplied function with these args
 return Answer(
 false,
 FnPlusArgs(
 times_two_tail_call_impl,
 acc + 2,
 i - 1
),
 0
);
 }
}
long times_two_tail_call(long n)
{
 return tail_call(Answer(
 false,
 FnPlusArgs(times_two_tail_call_impl,
 0, n),
 0));
}

Tail call optimisation isn’t in the C++ standard. Apparently, some
compilers, including MS Visual Studio and GCC, do provide tail call
optimisation under certain circumstances (when optimisations are
enabled, obviously). It is difficult to implement for all cases, especially in
C++ since destruction of objects can cause code to be executed where
you might not have expected it, and it doesn't appear to be easy to tell
when a compiler will or will not do it without examining the generated
assembly language. Languages which have this feature by design, like
Scheme, can do it more predictably.

Tail call optimisation and the C++ standard
June 2012 | Overload | 11

FEATURE ANDY BALAAM

The tail call version can process arbitrarily
large input, but how much do you pay for that
in terms of performance?
Results
Now, when we run this code, we get what we wanted:
 $ ulimit -S -s 16
 $./times_two tail_call 100000
 200000

(In other words, it doesn’t crash.)
So, it turns out that the tail call optimisation is just a while loop. Sort of.

Performance
You might well be interested in the performance of this code relative to
normal recursion. The tail call version can process arbitrarily large input,
but how much do you pay for that in terms of performance?
Recall that there are 4 different versions of our function, called
times_two. The first, ‘hardware’, uses the * operator to multiply by 2.
The second, ‘loop’ uses a for loop to add up lots of 2s until we get the
answer. The third, ‘recursive’, uses a recursive function to add up 2s. The
fourth, ‘tail_call’ is a reimplementation of ‘recursive’, with a manual
version of the tail call optimisation.
Let’s look first at memory usage. The stack memory usage over time as
reported by Massif [Massif] of calling the four functions for a relatively
small input value of 100000 is shown in Figure 1.
The recursive function uses way more memory than the others (note the
logarithmic scale), because it keeps all those stack frames, and the tail_call
version takes much longer than the others (possibly because it puts more
strain on Massif?), but keeps its memory usage low. Figure 2 shows how
that affects its performance, for different sizes of input.Listing 3

struct Answer;
typedef Answer (*impl_fn_type)(long, long);

struct FnPlusArgs
{
 impl_fn_type fn_;
 long arg1_;
 long arg2_;
 FnPlusArgs(
 impl_fn_type fn,
 long arg1,
 long arg2
);
 Answer operator()();
};

impl_fn_type null_fn = NULL;
FnPlusArgs null_fn_plus_args(null_fn, 0, 0);

struct Answer
{
 bool finished_;
 FnPlusArgs tail_call_;
 long value_;
 Answer(bool finished,
 FnPlusArgs tail_call, long value);
};

FnPlusArgs::FnPlusArgs(
 impl_fn_type fn,
 long arg1,
 long arg2
)
: fn_(fn)
, arg1_(arg1)
, arg2_(arg2)
{
}

Answer FnPlusArgs::operator()()
{
 return fn_(arg1_, arg2_);
}

Answer::Answer(bool finished, FnPlusArgs
tail_call, long value)
: finished_(finished)
, tail_call_(tail_call)
, value_(value)
{
}

Figure 1
12 | Overload | June 2012

FEATUREANDY BALAAM

those pesky hardware engineers with
their new-fangled * operator managed to

defeat all comers with their
unreasonable execution times
For these much larger input values, the recursive and tail_call functions
take similar amounts of time, until the recursive version starts using all the
physical memory on my computer. At this point, its execution times
become huge, and erratic, whereas the tail_call function plods on, working
fine.
So the overhead of the infrastructure of the tail call doesn’t have much
impact on execution time for large input values, but it's clear from the
barely-visible thin dotted line at the bottom that using a for-loop with a
mutable loop variable instead of function calls is way, way faster, with my
compiler, on my computer, in C++. About 18 times faster, in fact.
And, just in case you were wondering: yes those pesky hardware engineers
with their new-fangled * operator managed to defeat all comers with their
unreasonable execution times of 0 seconds every time (to the nearest
10ms). I suppose that shows you something.

Generalisation
Of course, the code shown above is specific to a recursive function taking
two long arguments and returning a long. However, the idea may be
generalised. If we make our trampoline a function template, taking the
return value as a template parameter, as in Listing 4, which must work with
a pointer to an IAnswer class template like Listing 5, which in turn uses
an IFnPlusArgs class template (Listing 6), we may generalise to
functions taking different numbers of arguments, of different types. It is
worth noting that only the return type is required as a template parameter.
Concrete classes derived from IAnswer and IFnPlusArgs may be
template classes themselves, but because of the use of these interfaces the
types of the arguments need not leak into the trampoline code, meaning
that multiple functions with different argument lists may call each other
recursively. (Of course, they must all agree on the eventual return value

type.) There is an example of how this might be implemented in my blog,
along with the full source code for this article [Code].
Since this generalisation requires dynamic memory use (because the
IAnswer instances are handled by pointer) this solution may be slower
than the stack-only implementation above, but since all the memory is
acquired and released in quick succession it is unlikely to trigger
prohibitively expensive allocation and deallocation algorithms.
The examples [Code] demonstrate the use of template classes to provide
IAnswer and IFnPlusArgs objects for each function type signature,
and that functions with different signatures may call each other to co-
operate to return a value. Generalising the supplied Answer2, Answer3
etc. class templates to a single class template using C++11 variadic
templates or template metaprogramming is left as an exercise for the
reader.

References
[Code] http://www.artificialworlds.net/blog/2012/04/30/tail-call-

optimisation-in-cpp/
[Massif] http://valgrind.org/docs/manual/ms-manual.html

Figure 2

Listing 4

template<typename RetT>
const RetT trampoline_templ
 (std::auto_ptr< IAnswer<RetT> > answer)
{
 while(!answer->finished())
 {
 answer = answer->tail_call()();
 }
 return answer->value();
}

Listing 5

template<typename RetT>
struct IAnswer {
 virtual bool finished() const = 0;
 virtual
 IFnPlusArgs<RetT>& tail_call() const = 0;
 virtual RetT value() const = 0;
};

Listing 6

template<typename RetT>
struct IFnPlusArgs {
 typedef
 std::auto_ptr< IAnswer<RetT> > AnswerPtr;
 virtual AnswerPtr operator()() const = 0;
};
June 2012 | Overload | 13

http://www.artificialworlds.net/blog/2012/04/30/tail-call-optimisation-in-cpp/
http://www.artificialworlds.net/blog/2012/04/30/tail-call-optimisation-in-cpp/
http://valgrind.org/docs/manual/ms-manual.html

FEATURE MICHAEL LEWIN
All About XOR
Boolean operators are the bedrock of computer
logic. Michael Lewin investigates a common one
and shows there’s more to it than meets the eye.
ou probably already know what
XOR is, but let’s take a moment to
formalise it. XOR is one of the

sixteen possible binary operations on
Boolean operands. That means that it
takes 2 inputs (i t ’s binary) and
produces one output (it’s an operation),
and the inputs and outputs may only
take the values of TRUE or FALSE
(it’s Boolean) – see Figure 1. We can
(and will) interchangeably consider
t he s e v a l u e s a s b e i n g 1 o r 0
respectively, and that is why XOR is typically represented by the symbol
⊕: it is equivalent to the addition operation on the integers modulo 2 (i.e.
we wrap around so that 1 + 1 = 0)1 [SurreyUni]. I will use this symbol
throughout, except in code examples where I will use the C operator ^ to
represent XOR.
Certain Boolean operations are analogous to set operations (see Figure 2):
AND is analogous to intersection, OR is analogous to union, and XOR is
analogous to set difference. This is not just a nice coincidence;
mathematically it is known as an isomorphism2 and it provides us with a
very neat way to visualise and reason about such operations.

Important properties of XOR
There are 4 very important properties of XOR that we will be making use
of. These are formal mathematical terms but actually the concepts are very
simple.

1. Commutative: A ⊕ B = B ⊕ A
This is clear from the definition of XOR: it doesn’t matter which
way round you order the two inputs.

2. Associative: A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C
This means that XOR operations can be chained together and the
order doesn’t matter. If you aren’t convinced of the truth of this
statement, try drawing the truth tables.

3. Identity element: A ⊕ 0 = A
This means that any value XOR’d with zero is left unchanged.

4. Self-inverse: A ⊕ A = 0
This means that any value XOR’d with itself gives zero.

These properties hold not only when XOR is applied to a single bit, but
also when it is applied bitwise to a vector of bits (e.g. a byte). For the rest
of this article I will refer to such vectors as bytes, because it is a concept
that all programmers are comfortable with, but don’t let that make you
think that the properties only apply to a vector of size 8.

Interpretations
We can interpret the action of XOR in a number of different ways, and this
helps to shed light on its properties. The most obvious way to interpret it
is as its name suggests, ‘exclusive OR’: A ⊕ B is true if and only if
precisely one of A and B is true. Another way to think of it is as identifying
difference in a pair of bytes: A ⊕ B = ‘the bits where they differ’. This
interpretation makes it obvious that A ⊕ A = 0 (byte A does not differ from
itself in any bit) and A ⊕ 0 = A (byte A differs from 0 precisely in the bit
positions that equal 1) and is also useful when thinking about toggling and
encryption later on.
The last, and most powerful, interpretation of XOR is in terms of parity,
i.e. whether something is odd or even. For any n bits, A1 ⊕ A2 ⊕ … ⊕
An = 1 if and only if the number of 1s is odd. This can be proved quite
easily by induction and use of associativity. It is the crucial observation

XOR Truth Table

Input A Input B Output

0 0 0

0 1 1

1 0 1

1 1 0

Figure 1

Y

14 | Overload | June 2012

Michael Lewin has had spells in the video games and banking
industries, but found his calling with Palantir Government, a platform for
making sense of big data in fields such as law enforcement, intelligence
and public health. He can be contacted at migwellian@gmail.com

1. In this way, complex logical expressions can be reasoned about and
simplified using modulo arithmetic. This is much easier than the
commonly taught method of using Karnaugh maps, although OR
operations do not map neatly in this way.

2. Formally, the actions of XOR and AND on {0,1}N form a ring that is
isomorphic to the actions of set difference and union on sets. For more
details see the appendix.

Figure 2

FEATUREMICHAEL LEWIN

We can interpret the action of XOR in a
number of different ways, and this helps

to shed light on its properties
that leads to many of the properties that follow, including error detection,
data protection and adding.

Toggling
Armed with these ideas, we are ready to explore some applications of
XOR. Consider the following simple code snippet:
 for (int n=x; true; n ^= (x ^ y))
 printf("%d ", n);

This will toggle between two values x and y, alternately printing one and
then the other. How does it work? Essentially the combined value x ^ y
‘remembers’ both states, and one state is the key to getting at the other. To
prove that this is the case we will use all of the properties covered earlier:

 B ⊕ (A ⊕ B) (commutative)
= B ⊕ (B ⊕ A) (associative)
= (B ⊕ B) ⊕ A (self-inverse)
= 0 ⊕ A (identity element)
= A

Toggling in this way is very similar to the concept of a flip-flop in
electronics: a ‘circuit that has two stable states and can be used to store
state information’ [Wikipedia-1].

Save yourself a register
Toggling is all very well, but it’s probably not that useful in practice.
Here’s a function that is more useful. If you haven’t encountered it before,
see if you can guess what it does.
 void s(int& a, int& b)
 {
 a = a ^ b;
 b = a ^ b;
 a = a ^ b;
 }

Did you work it out? It’s certainly not obvious, and the below equivalent
function is even more esoteric:
 void s(int& a, int& b)
 {
 a ^= b ^= a ^= b;
 }

It’s an old trick that inspires equal measures of admiration and vilification.
In fact there is a whole repository of interview questions whose name is
inspired by this wily puzzle: http://xorswap.com/. That’s right, it’s a
function to swap two variables in place without having to use a temporary
variable. Analysing the first version: the first line creates the XOR’d value.
The second line comprises an expression that evaluates to a and stores it
in b, just as the toggling example did. The third line comprises an
expression that evaluates to b and stores it in a. And we’re done! Except
there’s a bug: what happens if we call s(myVal, myVal)? This is an
example of aliasing, where two arguments to a function share the same
location in memory, so altering one will affect the other. The outcome is

that myVal == 0 which is certainly not the semantics we expect from a
swap function!
Perhaps there is some retribution for this much maligned idea, however.
This is more than just a devious trick when we consider it in the context
of assembly language. In fact XOR’ing a register with itself is the fastest
way for the compiler to zero the register.

Doubly linked list
A node in a singly linked list contains a value and a pointer to the next node.
A node in a doubly linked list contains the same, plus a pointer to the
previous node. But in fact it’s possible to do away with that extra storage
requirement. Instead of storing either pointer directly, suppose we store the
XOR’d value of the previous and next pointers [Wikipedia-2] – see
Figure 3.
Note that the nodes at either end store the address of their neighbours. This
is consistent because conceptually we have XOR’ed that address with 0.
Then the code to traverse the list looks like Listing 1, which was adapted
from Stackoverflow [Stackoverflow].
This uses the same idea as before, that one state is the key to getting at the
other. If we know the address of any consecutive pair of nodes, we can
derive the address of their neighbours. In particular, by starting from one
end we can traverse the list in its entirety. A nice feature of this function
is that this same code can be used to traverse either forwards or backwards.
One important caveat is that it cannot be used in conjunction with garbage
collection, since by obfuscating the nodes’ addresses in this way the nodes
would get marked as unreachable and so could be garbage collected
prematurely.

Pseudorandom number generator
XOR can also be used to generate pseudorandom numbers in hardware.
A pseudorandom number generator (whether in hardware or software e.g.
std::rand()) is not truly random; rather it generates a deterministic
sequence of numbers that appears random in the sense that there is no
obvious pattern to it. This can be achieved very fast in hardware using a
linear feedback shift register. To generate the next number in the sequence,
XOR the highest 2 bits together and put the result into the lowest bit,
shifting all the other bits up by one. This is a simple algorithm but more

&B &A ^ &C &B ^ &D &C ^ &E &D

A B C D E

Head Tail

Figure 3
June 2012 | Overload | 15

FEATURE MICHAEL LEWIN

If we know the address of any
consecutive pair of nodes, we can
derive the address of their neighbours
complex ones can be constructed using more XOR gates as a function of
more than 2 of the lowest bits [Yikes]. By choosing the architecture
carefully, one can construct it so that it passes through all possible states
before returning to the start of the cycle again (Figure 4).

Encryption
The essence of encryption is to apply some key to an input message in order
to output a new message. The encryption is only useful if it is very hard
to reverse the process. We can achieve this by applying our key over the
message using XOR (see Listing 2).

The choice of key here is crucial to the strength of the encryption. If it is
short, then the code could easily be cracked using the centuries-old
technique of frequency analysis. As an extreme example, if the key is just
1 byte then all we have is a substitution cipher that consistently maps each
letter of the alphabet to another one. However, if the key is longer than the
message, and generated using a ‘truly random’ hardware random number
generator, then the code is unbreakable [Wikipedia-3]. In practice, this
‘truly random’ key could be of fixed length, say 128 bits, and used to define
a linear feedback shift register that creates a pseudorandom sequence of
arbitrary length known as a keystream. This is known as a stream cipher,
and in a real-worl situation this would also be combined with a secure hash
function such as md5 or SHA-1.
Another type of cipher is the block cipher which operates on the message
in blocks of fixed size with an unvarying transformation. An example of
XOR in this type of encryption is the International Data Encryption
Algorithm (IDEA) [Wikipedia-4].
The best-known encryption method is the RSA algorithm. Even when the
above algorithm is made unbreakable, it has one crucial disadvantage: it
is not a public key system like RSA. Using RSA, I can publish the key
others need to send me encrypted messages, but keep secret my private key
used to decrypt them. On the other hand, in XOR encryption the same key
is used to encrypt and decrypt (again we see an example of toggling).
Before you can send me encrypted messages I must find a way to secretly
tell you the key to use. If an adversary intercepts that attempt, my code is
compromised because they will be able to decrypt all the messages you
send me.

Error detection
Now we will see the first application of XOR with respect to parity. There
are many ways to defend against data corruption when sending digital
information. One of the simplest is to use XOR to combine all the bits

Listing 1

// traverse the list given either the head or
// the tail
void traverse(Node *endPoint)
{
 Node* prev = endPoint;
 Node* cur = endPoint;

 while (cur)
 // loop until we reach a null pointer
 {
 printf("value = %d\n", cur->value);
 if (cur == prev)
 // only true on first iteration
 cur = cur->prevXorNext;
 // move to next node in the list
 else
 {
 Node* temp = cur;
 cur = (Node*)((uintptr_t)prev
 ^ (uintptr_t)cur->prevXorNext);
 // move to next node in the list
 prev = temp;
 }
 }
}

XOR

1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1
015

<< shift

Figure 4

Listing 2

string EncryptDecrypt(string inputMsg,string key)
{
 string outputMsg(inputMsg);

 short unsigned int keyLength = key.length();
 short unsigned int strLength =
 inputMsg.length();

 for(int v=0, k=0;v<strLength;++v)
 {
 outputMsg[v] = inputMsg[v]^key[k];
 ++k;
 k = k % keyLength;
 }
 return outputMsg;
}

16 | Overload | June 2012

FEATUREMICHAEL LEWIN

By comparing the received parity bit with the
calculated one, we can reliably determine

when a single bit has been corrupted
together into a single parity bit which gets appended to the end of the
message. By comparing the received parity bit with the calculated one, we
can reliably determine when a single bit has been corrupted (or indeed any
odd number of bits). But if 2 bits have been corrupted (or indeed any even
number of bits) this check will not help us.
Checksums and cyclic redundancy checks (CRC) extend the concept to
longer check values and reducing the likelihood of collisions and are
widely used. It’s important to note that such checks are error-detecting but
not error-correcting: we can tell that an error has occurred, but we don’t
know where it occurred and so can’t recover the original message.
Examples of error-correcting codes that also rely on XOR are BCH and
Reed-Solomon [Wikipedia-5] [IEEEXplore].

RAID data protection
The next application of XOR’s parity property is RAID (Redundant Arrays
of Inexpensive Disks) [Mainz] [DataClinic]. It was invented in the 1980s
as a way to recover from hard drive corruption. If we have n hard drives,
we can create an additional one which contains the XOR value of all the
others:

A* = A1 ⊕ A2 ⊕ … ⊕ An
This introduces redundancy: if a failure occurs on one drive, say A1, we
can restore it from the others since:
 A2 ⊕ … ⊕ An ⊕ A*
= A2 ⊕ … ⊕ An ⊕ (A1 ⊕ A2 ⊕ … ⊕ An) (definition of A*)
= A1 ⊕ (A2 ⊕ A2) ⊕… ⊕ (An ⊕ An) (commutative and associative:

rearrange terms)
= A1 ⊕ 0 ⊕… ⊕ 0 (self-inverse)
= A1 (identity element)
This is the same reasoning used to explain toggling earlier, but applied to
n inputs rather than just 2.
In the (highly unlikely) event that 2 drives fail simultaneously, the above
would not be applicable so there would be no way to recover the data.

Building blocks of XOR
Let’s take a moment to consider the fundamentals of digital computing,
and we will see that XOR holds a special place amongst the binary logical
operations.
Computers are built from logic gates, which are in turn built from
transistors. A transistor is simply a switch that can be turned on or off using
an electrical signal (as opposed to a mechanical switch that requires a
human being to operate it). So for example, the AND gate can be built from
two transistors in series, since both switches must be closed to allow
current to flow, whereas the OR gate can be built from two transistors in
parallel, since closing either switch will allow the current to flow.
Most binary logical operations can be constructed from two or fewer
transistors; of all 16 possible operations, the only exception is XOR (and
its complement, XNOR, which shares its properties). Until recently, the

simplest known way to construct XOR required six transistors [Hindawi]:
the simplest way to see this is in the diagram below, which comprises three
gates, each of which requires two transistors. In 2000, Bui et al came up
with a design using only four transistors [Bui00] – see Figure 5.

Linear separability
Another way in which XOR stands apart from other such operations is to
do with linear separability. This is a concept from Artificial Intelligence
relating to classification tasks. Suppose we have a set of data that fall into
two categories. Our task is to define a single boundary line (or, extending
the notion to higher dimensions, a hyperplane) that neatly partitions the
data into its two categories. This is very useful because it gives us the
predictive power required to correctly classify new unseen examples. For
example, we might want to identify whether or not someone will default
on their mortgage payments using only two clues: their annual income and
the size of their property. Figure 6 is a hypothetical example of how this
might look.
A new mortgage application might be evaluated using this model to
determine whether the applicant is likely to default.
Not all problems are neatly separable in this way. That means we either
need more than one boundary line, or we need to apply some kind of non-
linear transformation into a new space in which it is linearly separable: this

OR

NAND

AND

Figure 5

Property Size (m2)

G
ro

ss
 In

co
m

e

Classification of mortgage defaults

did not default
defaulted

Key:

Figure 6
June 2012 | Overload | 17

FEATURE MICHAEL LEWIN

we are able to chain as many of these
adders together as we wish in order
to add numbers of any size
is how machine learning techniques such as neural networks and support
vector machines work. The transformation process might be
computationally expensive or completely unachievable. For example, the
most commonly used and rigorously understood type of neural network is
the multi-layer perceptron. With a single layer it is only capable of
classifying linearly separable problems. By adding a second layer it can
transform the problem space into a new space in which the data is linearly
separable, but there’s no guarantee on how long it may take to converge
to a solution.
So where does XOR come into all this? Let’s picture our binary Boolean
operations as classification tasks, i.e. we want to classify our four possible
inputs into the class that outputs TRUE and the class that outputs FALSE.
Of all the 16 possible binary Boolean operations, XOR is the only one (with
its complement, XNOR) that is not linearly separable with a single
boundary line: two lines are required, as the diagram in Figure 7
demonstrates.

Inside your ALU
XOR also plays a key role inside your processor’s arithmetic logic unit
(ALU). We’ve already seen that it is analogous to addition modulo 2, and
in fact that is exactly how your processor calculates addition too. Suppose
first of all that you just want to add 2 bits together, so the output is a number

between 0 and 2. We’ll need two bits to represent such a number. The lower
bit can be calculated by XOR’ing the inputs. The upper bit (referred to as
the ‘carry bit’) can be calculated with an AND gate because it only equals
1 when both inputs equal 1. So with just these two logic gates, we have a
module that can add a pair of bits, giving a 2-bit output. This structure is
called a half adder and is depicted in Figure 8.
Now of course we want to do a lot more than just add two bits: just like
you learnt in primary school, we need to carry the ‘carry bit’ along because
it will play a part in the calculation of the higher order bits. For that we
need to augment what we have into a full adder. We’ve added a third input
that enables us to pass in a carry bit from some other adder. We begin with
a half adder to add our two input bits. Then we need another half adder to
add the result to the input carry bit. Finally we use an OR gate to combine
the carry bits output by these two half adders into our overall output carry
bit. (If you’re not convinced of this last step, try drawing the truth table.)
This structure is represented in Figure 9.
Now we are able to chain as many of these adders together as we wish in
order to add numbers of any size. The diagram below shows an 8-bit adder
array, with the carry bits being passed along from one position to the next.
Everything in electronics is modular, so if you want to add 32-bit numbers
you could buy four of these components and connect them together (see
Figure 10).

First Input

Se
co

nd
 In

pu
t

Classification of AND

TRUE
FALSE

Key:

FA
LS

E

FALSE

TRUE

TR
U

E

Figure 7

First Input

S
ec

on
d

In
pu

t

Classification of XOR

TRUE
FALSE

Key:

FA
LS

E

FALSE

TRUE

TR
U

E

Figure 8

XOR

AND Cout

A

B

S

Figure 9

OR Cout

A
B

SHalf
Adder

Half
Adder

Cin
18 | Overload | June 2012

FEATUREMICHAEL LEWIN

we have defined three isomorphic
rings in the spaces of Boolean algebra,

modulo arithmetic and set theory
If you are interested in learning more about the conceptual building blocks
of a modern computer, Charles Petzold’s book Code comes highly
recommended.

More detail on the Group Theory
For those comfortable with the mathematics, here is a bit more detail of
how XOR fits into group theory.
An algebraic structure is simply a mathematical object (S, ~) comprising
a set S and a binary operation ~ defined on the set.
A group is an algebraic structure such that the following 4 properties hold:

1. ~ is closed over X, i.e. the outcome of performing ~ is always an el-
ement of X

2. ~ is associative
3. An identity element e exists that, when combined with any other

element of X, leaves it unchanged
4. Every element in X has some inverse that, when combined with it,

gives the identity element
We are interested in the operation XOR as applied to the set of Boolean
vectors S = {T, F}N, i.e. the set of vectors of length N whose entries can
only take the values T and F. (I mean vector in the mathematical sense,
i.e. it has fixed length. Do not confuse this with the C++ data structure
std::vector, which has variable length.)We have already seen that
XOR is associative, that the vector (F, … F) is the identity element and
that every element has itself as an inverse. It’s easy to see that it is also
closed over the set. Hence (S, XOR) is a group. In fact it is an Abelian group
because we showed above that XOR is also commutative.
Two groups are said to be isomorphic if there is a one-to-one mapping
between the elements of the sets that preserves the operation. I won’t write
that out formally (it’s easy enough to look up) or prove the isomorphisms
below (let’s call that an exercise for the reader). Instead I will just define
them and state that they are isomorphisms.
The group ({T, F}N, XOR) is isomorphic to the group ({0, 1}N, +) of
addition modulo 2 over the set of vectors whose elements are integers mod
2. The isomorphism simply maps T to 1 and F to 0.
The group ({T, F}N, XOR) is also isomorphic to the group (P(S), Δ) of
symmetric difference Δ over the power set of N elements1: the
isomorphism maps T to ‘included in the set’ and F to ‘excluded from the
set’ for each of the N entries of the Boolean vector.

Let’s take things one step further by considering a new algebraic structure
called a ring. A ring (S,+, ×) comprises a set S and a pair of binary
operations + and × such that S is an Abelian group under + and a
semigroup2 under ×. Also × is distributive over +. The symbols + and ×
are chosen deliberately because these properties mean that the two
operations behave like addition and multiplication.
We’ve already seen that XOR is an Abelian group over the set of Boolean
vectors, so it can perform the role of the + operation in a ring. It turns out
that AND fulfils the role of the * operation. Furthermore we can extend
the isomorphisms above by mapping AND to multiplication modulo 2 and
set intersection respectively. Thus we have defined three isomorphic rings
in the spaces of Boolean algebra, modulo arithmetic and set theory.

References
[Bui00] H. T. Bui, A. K. Al-Sheraidah, and Y. Wang, ‘New 4-transistor

XOR and XNOR designs’, in Proceedings of the 2nd IEEE Asia
Pacific Conference

[DataClinic] http://www.dataclinic.co.uk/raid-parity-xor.htm
[Hindawi] http://www.hindawi.com/journals/vlsi/2009/803974/
[IEEEXplore] http://ieeexplore.ieee.org/xpl/

freeabs_all.jsp?arnumber=1347837
[Mainz] http://www.staff.uni-mainz.de/neuffer/scsi/what_is_raid.html
[Stackoverflow] http://stackoverflow.com/questions/3531972/c-code-

for-xor-linked-list
[SurreyUni] http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/

karnaugh.html
[Wikipedia-1]

http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
[Wikipedia-2] http://en.wikipedia.org/wiki/XOR_linked_list
[Wikipedia-3] http://en.wikipedia.org/wiki/XOR_cipher
[Wikipedia-4] http://en.wikipedia.org/wiki/

International_Data_Encryption_Algorithm
[Wikipedia-5] http://en.wikipedia.org/wiki/Finite_field_arithmetic
[Yikes] http://www.yikes.com/~ptolemy/lfsr_web/index.htm

1. The power set means the set of all possible subsets, i.e. this is the set
of all sets containing up to N elements.

Figure 10
A0Cin

Full
Adder

B0

S0

A1

Full
Adder

B1

S1

A2

Full
Adder

B2

S2

A3

Full
Adder

B3

S3

A4

Full
Adder

B4

S4

A5

Full
Adder

B5

S5

A6

Full
Adder

B6

S6

A7

Full
Adder

B7

S7 Cout

2. A semigroup is a group without the requirement that every element has
an inverse.
June 2012 | Overload | 19

http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html
http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
http://en.wikipedia.org/wiki/XOR_linked_list
http://www.yikes.com/~ptolemy/lfsr_web/index.htm
http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/XOR_cipher
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1347837
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1347837
http://www.staff.uni-mainz.de/neuffer/scsi/what_is_raid.html
http://www.dataclinic.co.uk/raid-parity-xor.htm
http://www.hindawi.com/journals/vlsi/2009/803974/
http://stackoverflow.com/questions/3531972/c-code-for-xor-linked-list
http://stackoverflow.com/questions/3531972/c-code-for-xor-linked-list

FEATURE HUGO ARREGUI, CARLOS CASTRO AND DANIEL GUTSON
Curiously Recursive Template
Problems with Aspect Oriented
Programming
spect Oriented Programming (AOP) is a programming paradigm that
makes possible to clearly express programs separated into ‘aspects’,
including appropriate isolation, composition and reuse of the aspect

code [Kiczales97]. AOP defines weaving as the process of composing the
aspects into a single entity.
Independently, there are situations in which a base class needs to know its
subclass, e.g. for type-safe downcasts. The CURIOUSLY RECURRING
TEMPLATE PATTERN (CRTP) is a C++ idiom in which a class X derives
from a class template instantiation using X itself as template argument
[Abrahams04]. This way, the base class can know the derived type.
Both AOP and the CRTP are widely adopted C++ programming
techniques. In particular, there exists an AOP easy implementation using
templates [Spinczyk05]. However, a C++ grammar incompatibility arises
when combining AOP and CRTP. While there exists a C++ dialect called
AspectC++ [Spinczyk05], we don’t evaluate in this work its ability to
combine AOP and CRTP since it requires its own compiler extensions and
so its not standard C++. Here we look at a simple solution implemented
in standard C++ that addresses the issue without any overhead penalty.

Problems combining AOP + CRTP
There are some situations where combining the benefits of AOP and CRTP
are desirable; however, as we will show below, some problems arise when
applying together the individual standard procedures of each technique.
The code in Listing 1 shows an attempt of adding functionality, through
aspects, to a base class named Number.
We can observe that the return type of ArithmeticAspect’s operator + and
- needs to know the ‘complete type’ (FULLTYPE) when trying to extend
the base class functionality through operator overloading. We will address
this issue in the following sections.

A minimal solution
The basic principle of this solution does not differ in essence from the
traditional solution mentioned before.

Problem
Number takes the place of the last aspect in the aspects list. However,
Number itself needs to know (as a template template argument) the aspects
list, to which it itself belongs, leading to a ‘chicken or egg’ grammatical
dilemma.
For example, if Number knew the complete type, it could use it as a return
type for its operators as shown in Listing 2.
This shows the weaving of a single aspect with CRTP, which works
perfectly:
 LogicalAspect<ArithmeticAspect<Number<??>>>

A

Listing 1

//basic class
class Number
{
 protected:
 UnderlyingType n;
};

//aspects
template <class NextAspect>
struct ArithmeticAspect: public NextAspect
{
 FULLTYPE operator+
 (const FULLTYPE& other) const;
 // What type is FULLTYPE?
 FULLTYPE operator-
 (const FULLTYPE& other) const;
 FULLTYPE& operator+=
 (const FULLTYPE& other);
 FULLTYPE& operator-=
 (const FULLTYPE& other);
};

template <class NextAspect>
struct LogicalAspect : public NextAspect
{
 bool operator! () const;
 bool operator&& (const FULLTYPE& other) const;
 bool operator|| (const FULLTYPE& other) const;
};

//decorating Number with aspectual code
typedef LogicalAspect
 <ArithmeticAspect<Number > > MyIntegralType;

Hugo Arregui has been working as professional developer for
about seven years. The last two years collaborated at FuDePAN,
an NGO/NPO that performs R&D in bioinformatics as a C++
Developer and Regional Coordinator for Buenos Aires province
(Argentina). He can be contacted at hugo.arregui@gmail.com

Carlos Castro is a Software Engineer with 5+ years of industry
experience, passionate about algorithm design and analysis, who
specializes in distributed algorithms and information retrieval.
Carlos volunteers as a C++ Developer and Technical Lead at
FuDePAN. He can be contacted at castro.carlos@hotmail.es

Daniel Gutson is a software developer with more than 15 years
of experience, including 7 years in Motorola, 2 years maintaining
the GNU toolchain, and 2 years working on proprietary extensible
compilers. He submitted some proposals to the C++ standard
committee, attended some of their meetings, and also volunteers
at FuDePAN in bioinformatic-related activities. He can be
contacted at daniel.gutson@gmail.com
20 | Overload | June 2012

FEATUREHUGO ARREGUI, CARLOS CASTRO AND DANIEL GUTSON

However, we will look for a more
generic way to address this issue

avoiding drone code cloning
On the other hand, this exposes the problem when trying to weave one
additional aspect, since it requires a template template argument, which
the aspects lists can’t grammatically fulfill as coded above.
We present two solutions: the first being the simplest using C++11’s
template alias [Reis], and the second using variadic templates (templates
that take a variable number of arguments, recently introduced in C++11
[Gregor]) as the only C++11’s feature, which in turn, can also be easily
implemented in C++98 as well. Both use a common language idiom
introduced next, which aims to be used as a library providing a friendly
syntax and reduced reusable code.

The proposed language idiom
A possible solution would be to apply some handcrafted per-case base
template aliases, as shown below:
 //with template alias:
 template <class T>
 using LogicalArithmeticAspect =
 LogicalAspect<ArithmeticAspect<T>>;

 //without template alias:
 template <class T>
 struct LogicalArithmeticAspect
 {
 typedef
 LogicalAspect<ArithmeticAspect<T>> Type;
 };

and with minor changes in the Number base class’s code, we could write
the following declaration:
 LogicalArithmeticAspect
 <
 Number<LogicalArithmeticAspect>
 >

Although this does the trick it tends to be impractical, and also would
increment linearly the number of related lines of code in terms of the
amount of combinations to be used, which would cause a copy-paste code
bloat.
However, we will look for a more generic way to address this issue,
avoiding drone code cloning, and being able to encapsulate the method into
a library.

Therefore, in order to provide a user-oriented and easy to use library, we'll
use C++11’s new variadic-templates so we can cleanly express our
intention: to ‘decorate’ the base class with a list of aspects. An example
of what we intend to achieve is shown below:
 Decorate<Number>::with<ArithmeticAspect,
 LogicalAspect>

The skeleton of the Decorate class is shown in Listing 3, the details of
which will vary in the solutions below.
In both solutions, the with nested class and the Apply internal helper will
have different implementations.

Solution 1: Using C++11’s template alias
In this solution, the Decorate::with implementation is as shown in
Listing 4, and the internal helper Apply structure also uses templates
aliases (see Listing 5).
Despite the implementation between the two solutions differing, the
purpose is the same and the underlying idea is explained next in the second
solution.

Listing 2

template <template <class> class Aspects>
class Number
{
 typedef Aspects<Number<Aspects>> FullType;
...
};
ArithmeticAspect<Number<ArithmeticAspect>>

Listing 3

template
 <template <template <class> class> class Base>
class Decorate
{
 public:
 template<template <class> class ... Aspects>
 struct with
 {
 //...
 };

 //...

 private:
 struct Apply
 { …
 };
};

Listing 4

template<template <class> class ... Aspects>
struct with
{
 template <class T>
 using AspectsCombination =
 typename Apply<Aspects...>::template Type<T>;
 typedef
 AspectsCombination
 <Base<AspectsCombination>> Type;
};
June 2012 | Overload | 21

FEATURE HUGO ARREGUI, CARLOS CASTRO AND DANIEL GUTSON

Binder generates a template template
argument – combining Arithmetic with Logical
aspects – to be used in the base class
Solution 2: Not using C++11’s template alias
In this solution, the Decorate::with implementation is as shown in
Listing 6.

Combining aspects
Now that we have a list of aspects, how could we combine them? The
solution we propose is to create a Binder class, as shown in Listing 7.
Binder encapsulates an aspect (as a template template argument) within
a complete type Binder<Aspect>. Additionally, it enables us to do a
‘bind’ operation to the next aspect or base class, by accessing to the
Binding inner class.
The way in which Binder finally allows us to construct the whole type
is shown below.
 Binder<ArithmeticAspect,
 Binder<LogicalAspect>>::Binding<Number>::Type

Let’s analyze step-by-step this listing (from the innermost to the outermost
definition):

1. Binder<LogicalAspect> uses the second definition, it just
provides a complete type for the aspect with a possibility to bind to
another complete type

2. Binder<ArithmeticAspect, Binder<LogicalAspect>>
uses the first definition.
The binding generates a Binder to the ArithmeticAspect, and
binds it to Binder<LogicalAspect>::Binding<T>
generating a template template argument combining both aspects.

(In short, Binder generates a template template argument –
combining Arithmetic with Logical aspects – to be used in the base
class).

3. Finally, the type is injected into the base Number class.
Since such an implementation is not immediately obvious, we have
provided a simplified version in Listing 8 for illustration.

Listing 5

template<template <class> class A1,
 template <class> class ... Aspects>
struct Apply<A1, Aspects...>
{
 template <class T>
 using Type = A1
 <typename Apply
 <Aspects...>::template Type<T>>;
};

Listing 6

template<template <class> class ... Aspects>
struct with
{
 typedef typename Apply<Aspects...>::Type TypeP;
 typedef typename TypeP::template Binding
 <
 Base<TypeP::template Binding>
 >::Type Type;
};

Listing 7

struct None
{
};
template <template <class> class A,
 class B = None>
struct Binder
{
 template <class T>
 struct Binding
 {
 typedef
 typename Binder<A>::template Binding
 <
 typename B::template
 Binding<T>::Type
 >::Type Type;
 };
};
template<template <class> class T>
struct Binder<T, None>
{
 template <class P>
 struct Binding
 {
 typedef T<P> Type;
 };
};

Listing 8

template <template <class> class A,
 class B = None>
struct Binder
{
 template <class T>
 struct Binding
 {
 typedef
 Binder<A>::Binding
 <
 B::Binding<T>::Type
 >::Type Type;
 };
};
22 | Overload | June 2012

FEATUREHUGO ARREGUI, CARLOS CASTRO AND DANIEL GUTSON
Now we’ve got a Binder that implements the weaving of aspects and
finally inject them into the base class.

Applying the list of Aspects to the Number class
The only remaining detail is to apply our Bind class to the list of aspects.
To do this, we define a helper structure called Apply, that recursively
applies the Binder class to each aspect, as shown in Listing 9.
We use the Apply helper struct to generate a resulting aspect as the
weaving of all the given aspects, and inject it to the base class.
Then ::Type contains the type we needed, and that’s it!

Using the library
The library that implements this idiom provides two tools: the means to
obtain the FullType, and the means to build it.
Listing 10 shows a way of obtaining the FullType with an Aspect.
Let’s see a final example, using two of the aspects mentioned before:
 typedef Decorate<Number>::with<ArithmeticAspect,
 LogicalAspect>::Type
 ArithmeticLogicalNumber;

Please note that both solutions presented before expose the same interface
so this snippet is equally applicable to them.

C++98 alternative and complete code
The same idea can be implemented using typelists in previous C++
standards, such as C++98.
The complete code of the library and examples both for C++11 and C++98
can be accessed in http://cpp-aop.googlecode.com

Final comments
We think that the solution to the problem exposed in this article could
become straightforward by enhancing the language with a reserved
keyword to get the full type. We suggest to consider this problem for the
next revision of the language standard.

References
[Abrahams04] Abrahams, David; Gurtovoy, Aleksey. 2004. C++

Template Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond. Addison-Wesley. ISBN 0-321-22725-5.

[Gregor] Gregor, Douglas; Järvi, Jaako; Powell, Gary. Variadic
Templates (Revision 3). [N2080=06-0150]. Programming Language
C++. Evolution Working Group.

[Kiczales97] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin (1997).
‘Aspect-Oriented Programming’. Proceedings of the European
Conference on Object-Oriented Programming, vol.1241. pp. 220–
242.

[Reis] Dos Reis, Gabriel; Stroustrup, Bjarne. Template Aliases (Revision
3). [N2258=07-0118]. Programming Language C++. Evolution
Working Group.

[Spinczyk05] Spinczyk, Olaf; Lohmann, Daniel; Urban, Matthias.
‘AspectC++: an AOP Extension for C++’. Software Developer’s
Journal, pages 68-76, 05/2005.

Listing 9

template <template <class> class ... Aspects>
struct Apply;
 template <template <class> class T>
 struct Apply<T>
 {
 typedef Binder<T> Type;
 };

 template<template <class> class A1,
 template <class> class ... Aspects>
 struct Apply<A1, Aspects...>
 {
 typedef Binder<A1, typename Apply
 <
 Aspects...
 >::Type> Type;
 };

 template<template <class> class ... Aspects>
 struct with
 {
 typedef
 typename Apply<Aspects...>::Type TypeP;
 typedef
 typename TypeP::template Binding
 <
 Base<TypeP::template Binding>
 >::Type
 Type;
 };

Listing 10

//basic class
template
 <template <class> class Aspects>
 class Number
{
 typedef Aspects<Number<Aspects>> FullType;
 //...
};

// aspect example
template <class NextAspect>
struct ArithmeticAspect: public NextAspect
{
 typedef typename NextAspect::FullType FullType;
 FullType
 operator+ (const FullType& other) const;
 // ...
};
June 2012 | Overload | 23

http://cpp-aop.googlecode.com

FEATURE PAUL FLOYD
Valgrind Part 2 – Basic memcheck
Learning how to use our tools well is
a vital skill. Paul Floyd shows us
how to check for memory problems.
n the first part of this series I explained what Valgrind is. In this article,
I’ll start explaining how to use it. Memcheck is the best known of the
Valgrind tools. It is a runtime memory checker that validates your use

of heap memory and (to a lesser extent) stack memory.
Memcheck detects the following kinds of errors

1. Illegal read/write
2. Use of uninitialized memory
3. Invalid system call parameters
4. Illegal frees
5. Source/destination overlap
6. Memory leaks

Some other memory checking tools have snappier TLA names for the
errors that they detect. Some people would like to be able to prioritize the
types of errors. I’d say that in general all of these errors can cause either
incorrect operation of an application or crashes. Generally the 1st and 4th
items on the list are the most likely causes of crashes, but don’t take that
as advice to neglect the other four types.

General advice
Don’t overdo the options. The default options are good for most situations.
Some of the options will add significantly to the already high overhead. If
you discover a fault and the default output is not enough for you to pin
down the error, then consider adding more options. Personally I use
memcheck in two ways. Firstly in automatic regression tests each
weekend. All of the results get distilled into a single summary. Secondly
‘interactively’ in a shell, and in this mode I tend to turn up the options.
All of the examples that follow use trivial examples. In real world defects,
the locations of the fault, the declaration, the allocation, the initialization
and the free may all be far apart.

Illegal read/write errors
Illegal read/write errors correspond to reads or writes to addresses that do
not belong to any valid address.
The example in Listing 1 shows reading beyond the end of an array.
Compiling this and running it under memcheck will generate the output
shown in Figure 1.
If that had been a long long or a long on a 64 bit platform, then it would
have been an Invalid read of size 8.

Use of uninitialized memory
You’ll get this sort of error if you read memory before assigning any value
to it. For instance, if you malloc an array then read an element from it.

Valgrind also propagates the state of initialization through assignments
and will only trigger an error if the execution outcome could be affected
by the uninitialized state of the memory. This means that harmless errors
do not generate any messages (good news) but also it means that the site
where memcheck says the error occurs could be far from where the
uninitialized memory was allocated.
Listing 2 shows an example of this. I’ve deliberately made the error
propagate through three variables in function f() to illustrate that no error
is generated until the if() condition is reached.
This will result in the output shown in Figure 2.
If the error is in a stack variable rather than in a heap variable, you get a
bit less information (see Listing 3)..
This gives just the output in Figure 3a.
Use --memcheck:track- origins=yes for more info, but this will
increase the Valgrind overhead. Adding this option gives the output in
Figure 3b.
OK, so it narrows the search down to main(), but it doesn’t tell us the
name of the variable or the line (the file and line numbers in the output are
where teh functions start, not where the problem is).

I

Listing 1

// abrw.cpp
#include <iostream>

void f(int *p2)
{
 int i1 = p2[10]; // write beyond the end of p1
 std::cout << "Hello\n";
}

int main()
{
 int *p1 = new int[10];
 f(p1);
 delete [] p1;
}

Figure 1

==85258== Invalid read of size 4
==85258== at 0x400AA4: f(int*) (abrw.cpp:5)
==85258== by 0x400B5E: main (abrw.cpp:12)
==85258== Address 0x1c90068 is 0 bytes after a
block of size 40 alloc'd
==85258== at 0x1006BB7: operator
new[](unsigned long) (in /usr/local/lib/valgrind/
vgpreload_memcheck-amd64-freebsd.so)
==85258== by 0x400B51: main (abrw.cpp:11)

Paul Floyd has been writing software, mostly in C++ and C, for over
20 years. He lives near Grenoble, on the edge of the French Alps, and
works for Mentor Graphics developing a mixed signal circuit simulator.
He can be contacted at pjfloyd@wanadoo.fr.
24 | Overload | June 2012

FEATUREPAUL FLOYD

With an unbuffered stream, you see
the error immediately rather than

when the buffer is flushed
Invalid system call parameters
Listing 4 is a std::fwrite of memory that is not initialized.
This will generate the output shown in Figure 4a.
Look carefully at the log in Figure 4a and you will see that the error occurs
when the file is closed, not when the call to std::fwrite is performed.
This is because the output is cached. And this can be quite pernicious. If
I add a call to std::setvbuf(f, 0, _IONBF, 0); after the
std::fopen, then the log that I get as shown in Figure 4b.
With an unbuffered stream, you see the error immediately rather than when
the buffer is flushed.

Illegal frees
An example of this is freeing stack memory (Listing 5). This one is a bit
of a no-brainer, the compiler complains about the code and I get a nice core
dump if I run the application.

The corresponding output is in Figure 5.
Let’s try a somewhat more likely error, using the wrong delete (see
Listing 6).
The corresponding output is in Figure 6. Here, memcheck correctly
identified that there was an incorrect delete, but it doesn’t go as far as
saying that the memory was allocated with array new but deleted with
scalar delete.

Listing 2

// uninit.cpp
#include <iostream>

void f(long *p2)
{
 long l1 = p2[10]; // read beyond end of p1
 long l2 = l1; // propagates
 long l3 = l2; // propagate again
 if (l3) // uninitialized read
 {
 std::cout << "Hello\n";
 }
}

int main()
{
 long *p1 = new long[10];
 f(p1);
 delete [] p1;
}

Figure 2

==93289== Invalid read of size 8
==93289== at 0x400AA4: f(long*) (uninit.cpp:5)
==93289== by 0x400B7E: main (uninit.cpp:17)
==93289== Address 0x1c90090 is 0 bytes after a
block of size 80 alloc'd
==93289== at 0x1006BB7: operator
new[](unsigned long) (in /usr/local/lib/valgrind/
vgpreload_memcheck-amd64-freebsd.so)
==93289== by 0x400B71: main (uninit.cpp:16)

Listing 3

// uninit2.cpp
#include <iostream>

void f(long l)
{
 long lb = l;
 long lc = lb;
 long ld = lc;
 if (lc)
 {
 std::cout << "Hello\n";
 }
}

int main()
{
 long la; // uninitialized local scalar
 f(la);
}

Figure 3a

==4164== Conditional jump or move depends on
uninitialised value(s)
==4164== at 0x4009E9: f(long) (uninit2.cpp:8)
==4164== by 0x400A10: main (uninit2.cpp:17)
by 0x400B71: main (uninit.cpp:16)

Figure 3b

==4455== Conditional jump or move depends on
uninitialised value(s)
==4455== at 0x4009E9: f(long) (uninit2.cpp:8)
==4455== by 0x400A10: main (uninit2.cpp:17)
==4455== Uninitialised value was created by a
stack allocation
==4455== at 0x400A00: main (uninit2.cpp:14)
June 2012 | Overload | 25

FEATURE PAUL FLOYD

Obviously having two sets of code
is not ideal, and this will be a
maintenance overhead
Listing 4

// syscall.cpp
#include <cstdio>

const std::size_t intArraySize = 3;

int main()
{
 std::FILE *f = std::fopen("output.dat", "w");
 if (f)
 {
 int *intArray = new int[intArraySize];
 std::size_t bytesWritten = 0U;
 intArray[0] = 1;
 // intArray[1] not initialized
 intArray[2] = 3;
 bytesWritten = std::fwrite(intArray,
 sizeof(int), intArraySize, f);
 // omit check
 std::fclose(f);
 delete [] intArray;
 }
}

Figure 4a

==468== Syscall param write(buf) points to
uninitialised byte(s)
==468== at 0x148C82: write$NOCANCEL (in /usr/
lib/libSystem.B.dylib)
==468== by 0x148BFC: _swrite (in /usr/lib/
libSystem.B.dylib)
==468== by 0x148B41: __sflush (in /usr/lib/
libSystem.B.dylib)
==468== by 0x14859A: fclose (in /usr/lib/
libSystem.B.dylib)
==468== by 0x100000EB6: main (syscall.cpp:16)
==468== Address 0x100004134 is 4 bytes inside a
block of size 4,096 alloc'd
==468== at 0xD6D9: malloc
(vg_replace_malloc.c:266)
==468== by 0x1489ED: __smakebuf (in /usr/lib/
libSystem.B.dylib)
==468== by 0x148959: __swsetup (in /usr/lib/
libSystem.B.dylib)
==468== by 0x10ABC8: __sfvwrite (in /usr/lib/
libSystem.B.dylib)
==468== by 0x15C3C4: fwrite (in /usr/lib/
libSystem.B.dylib)
==468== by 0x100000EA9: main (syscall.cpp:14)

Figure 4b

==534== Syscall param write(buf) points to
uninitialised byte(s)
==534== at 0x148C82: write$NOCANCEL (in /usr/
lib/libSystem.B.dylib)
==534== by 0x148BFC: _swrite (in /usr/lib/
libSystem.B.dylib)
==534== by 0x10AC16: __sfvwrite (in /usr/lib/
libSystem.B.dylib)
==534== by 0x15C3C4: fwrite (in /usr/lib/
libSystem.B.dylib)
==534== by 0x100000E97: main (syscall.cpp:15)
==534== Address 0x1000040e4 is 4 bytes inside a
block of size 12 alloc'd
==534== at 0xD6D9: malloc
(vg_replace_malloc.c:266)
==534== by 0x64F04: operator new(unsigned long)
(in /usr/lib/libstdc++.6.0.9.dylib)
==534== by 0x64F96: operator new[](unsigned
long) (in /usr/lib/libstdc++.6.0.9.dylib)
==534== by 0x100000E5E: main (syscall.cpp:11)

Listing 5

// ifree.cpp
void func()
{
 int stackArray[10];
 delete stackArray; // not even array delete
}

int main()
{
 func();
}

Figure 5

==72595== Invalid free() / delete / delete[]
==72595== at 0x1004DDC: operator delete(void*)
(in /usr/local/lib/valgrind/vgpreload_memcheck-
amd64-freebsd.so)
==72595== by 0x400680: func() (ifree.cpp:4)
==72595== by 0x400698: main (ifree.cpp:9)
==72595== Address 0x7ff000240 is on thread 1's
stack
26 | Overload | June 2012

FEATUREPAUL FLOYD

As a rule, you’re better off fixing your errors
than hiding them in a suppression file
Source/destination overlap
The usual example of this is a std::strcpy where the source and
destination point within the same char array (Listing 7).
Valgrind’s output is shown in Figure 7.
The standard solution to this sort of problem is to use std::memmove
instead of std::strcpy or std::memcpy.

Memory leaks
This is the largest of the memcheck error types. Memcheck can detect 3
different types of ‘leak’. The definite leak, where the pointer has gone out
of scope and the memory is leaked. Next there are possible leaks. This is
where there are no longer pointers to the start of the allocated memory, but
there are still pointers within the allocated memory. Finally there is still-
in-use memory, where both the memory and the pointer to it still exist.
If you use a memory manager (e.g., a pool allocator), then this can
complicate leak detection. For instance, if your application has a pool
allocator that news blocks of 100MBytes, uses an overloaded operator new
that uses this pool, optionally does some overloaded deletes, and then when

it terminates deletes all of the pool blocks, memcheck won’t be able to
detect any leaks, even though your application may be leaking your pool
memory in the sense that it wasn’t deleted and made available for reuse
before the pool was deleted. Furthermore, if you are using an allocator that
allocates blocks that are handled as {length:memory[:guard]}, so
that the pointer obtained by new is adjusted after setting the length, then
you’re likely to get possible leaks detected rather than definite leaks.
There are two things that you can do in this case. One is to have a special
build, where you compile with a macro like -DDEFAULT_NEW which
disables the memory allocator and uses the standard allocators. Obviously
having two sets of code is not ideal, and this will be a maintenance
overhead. The alternative is to include the valgrind.h header and use
the Valgrind MEMPOOL macros. More on that in a later article.
A very short example of this in Listing 8. Valgrind’s output for this is in
Figure 8.

Suppressing errors
Memcheck will use a default suppression file that was generated on the
machine where Valgrind was built. This will suppress ‘well known’ (and
hopefully harmless) errors in libc and X11. You can also use user-defined
suppression files with the option:
 -- memcheck:suppressions=<suppression file>
This can be used more than once. I would advise that you do this only for
harmless errors or errors in third party libraries that you can’t fix. As a rule,
you’re better off fixing your errors than hiding them in a suppression file.

Listing 6

// ifree2.cpp
void func()
{
 int *heapArray = new int[10];
 delete heapArray; // not even array delete
}

int main()
{
 func();
}

Figure 6

==72950== Mismatched free() / delete / delete []
==72950== at 0x1004DDC: operator delete(void*)
(in /usr/local/lib/valgrind/vgpreload_memcheck-
amd64-freebsd.so)
==72950== by 0x4006DE: func() (ifree2.cpp:4)
==72950== by 0x4006F8: main (ifree2.cpp:9)
==72950== Address 0x1c8f040 is 0 bytes inside a
block of size 40 alloc'd
==72950== at 0x1005BB7: operator
new[](unsigned long) (in /usr/local/lib/valgrind/
vgpreload_memcheck-amd64-freebsd.so)
==72950== by 0x4006D1: func() (ifree2.cpp:3)
==72950== by 0x4006F8: main (ifree2.cpp:9)

Listing 7

// overlap.cpp
#include <cstring>
#include <iostream>

int main()
{
 char *str = new char[100];
 std::sprintf(str, "Hello, world!");
 std::strcpy(str, str+2);
 std::cout << "str " << str << "\n";
 delete [] str;
}

Figure 7

==74324== Source and destination overlap in
strcpy(0x1c90040, 0x1c90042)
==74324== at 0x1009A61: strcpy (in /usr/local/
lib/valgrind/vgpreload_memcheck-amd64-freebsd.so)
==74324== by 0x400BE9: main (overlap.cpp:8)
June 2012 | Overload | 27

FEATURE PAUL FLOYD

I would recommend that you change this
and try to make it something unique
You can use --memcheck:gen- suppressions=all to generate
suppression stacks in output log file, which look like this
{
 <insert_a_suppression_name_here>
 Memcheck:Leak
 fun:_Znwm
 fun:main
}

The opening and closing braces delimit the error callstack. The first line
is intended for use as a comment. I would recommend that you change this
and try to make it something unique. If you use valgrind -v, then in
the summary, Valgrind will list all of the suppressions that it used with their
comments. This can be used to see which of your suppressions are being
used, which allows you to clean out your suppressions files from time to
time.

The second line gives the type of error.
The third to last lines are the callstack. Each line has one of the following
forms

fun: function name for unstripped functions.
obj: name of library for stripped functions.
…: wildcard for any depth. This can be useful for recursive functions
that would otherwise need N different suppressions for N possible
depths of recursion.

You can use * wildcard to make suppressions more generic. For instance,
if you want to use the same suppression files on both 32bit and 64bit Linux,
then instead of having two separate suppressions for each platform, one
with /opt/mypkg/lib and the other with /opt/mypkg/lib64, you
could have just one suppression with /opt/mypkg/lib*.
You may want to reduce the amount of callstack that appears in the
suppression. This can reduce the number of suppressions that you need
(which is OK if they are all the same issue). Don’t overdo it though, you
don’t want to suppress genuine errors.

Errors that memcheck does not detect
Lastly but not least, there are a few types of memory errors that memcheck
does not detect.
Reading or writing beyond arrays that are global or on the stack, for
instance
 int x[10]; // local, global or static
 x[10] = 1;

Try using exp-sgcheck for this sort of error.
Now that we’ve covered the basics of memcheck, in the next article we’ll
look at more advanced techniques.

Listing 8

// leak.cpp
int main()
{
 int *leak = new int(42);
}

Figure 8

==76314== 4 bytes in 1 blocks are definitely lost
in loss record 1 of 1
==76314== at 0x1005F79: operator new(unsigned
long) (in /usr/local/lib/valgrind/
vgpreload_memcheck-amd64-freebsd.so)
==76314== by 0x400681: main (leak.cpp:3)

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
28 | Overload | June 2012

	Overload_109.pdf
	It’s Not What You Know, It’s Who You Know
	Programming Darwinism
	What’s a Good Date?
	Tail Call Optimisation in C++
	All About XOR
	Curiously Recursive Template Problems with Aspect Oriented Programming
	Valgrind Part 2 - Basic memcheck

