

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Valgrind Part 4: Cachegrind and Callgrind
Paul Floyd shows us how to use callgrind and
cachegrind.

8 Universal References in C++11
Scott Meyers demystifies C++ universal references.

22 A DSEL for Addressing the Problems Posed by
Parallel Architectures
Jason McGuiness and Colin Egan show how a C++
DSEL simplifies parallel programming.

19 Keep It Simple, Singleton!
Sergey Ignatchenko discusses making good
assumptions.

21 Software Developer Business Patters
Allan Kelly shows that patterns can be applied to
business.

OVERLOAD 111

October 2012

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 112 should be submitted
by 1st November 2012 and for
Overload 113 by 1st January 2013.

EDITORIAL FRANCES BUONTEMPO
Too Much Information
Overload usually has an editorial.
Frances Buontempo explains why she
hasn’t had time to write one for this issue.
I apologise that I have not had time to write a proper
editorial this time. I have been far too busy, but I’m
not sure what I’ve spent my time doing, so I took some
time out to research this. Hopefully the results will
suffice, in lieu of an editorial.

How do you spend your time? How much of it is in front of a computer?
How much of it is dealing with emails or being distracted, or even
informed, by social networking sites? My personal answers are

1. Unwisely
2. Too much

I wondered if I spend too much time on emails because I get more than
some people, so asked on accu-general. I got four numerical answers, so
this is clearly not valid to draw general conclusions from. Nonetheless,

Paul F:
For my summer hols, I didn’t read any e-mail for 3 weeks [including
1 day bank holiday], and I had about 1000 mails or about 70 per
working day at work. On this account I had something like 1600,
almost all from mailing lists (accu-general, Qt interest, doxygen,
valgrind) or spam, or about 80 per day, working or not working.

Alan G:
Yesterday I was offline and so got 0. On Wednesday I got 258 (plus
some on accounts that are less easy to count).

Richard Howells:
About 100 that I actually see, plus about 100 the spam filter
catches. I skim the list and occasionally notice the odd false
positive. There may be more false positives that I don’t notice.

Colin Paul Gloster:
After deleting (some) spam I estimate an arithmetic mean of circa
147 emails per day in a sample of 243 recent days.

Previously, my gmail account got about 100 a day, ignoring spam. This
has now dropped to 20 or so, because my email now automatically marks
certain messages as read and sends them to a relevant folder. This allows

me to use my inbox as a to-do list and choose
when to spend time reading things on
discussion groups etc. However, I do still

spend too much time reading them. The

problem of deciding what to read in detail also applies to facebook and
twitter. Certainly twitter messages are short, but sometimes twitter
reaches a speed of one tweet per minute. Several of these also end up on
facebook. Oh for something to just summarise this for me without the
dup l ica t ion , and a l so f i l t e r ou t ‘no i se’ , such as “Aaaaa-
waaaaaaaaaaaaaayyyyyyyyyyyy!”, “phew”, “Nooooooooooooooooo!”,
“Home again, home again. (Still quite pissed)”.1 This data deluge is
certainly a case of far too much information.
The article ‘Am I wasting my time organizing email?’ suggests “foldering
may be a reaction to incoming message volume” [Whittaker11]. Most
people on the accu-general ‘survey’ mentioned the spam filter. This most
basic form of folder is extremely common. Various algorithms are
employed to catch spam. I wonder if similar algorithms could be
employed to catch other emails, that while not spam, the recipient would
have no interest in. As Alan Griffiths mentioned, deciding what to read
can be influenced by mood, so trying to automate this could be difficult.

How do people decide which emails to read?
Paul F mentioned glancing at automatic status updates just to check there
are no problems. I have used filters to send automatic updates to folders,
attempting to leave them as unread if there’s a problem. This reduces the
volume of email to deal with. Why are there so many machines sending
out emails that other machines ‘read’ and then squirrel away? Perhaps
there is no point in emails such as these. Since we are also influenced by
who sent them, possibly the subject line, possibly how much time we have
on our hands, attempting to automate an ‘Is it worth reading’ filter would
be an interesting challenge.

Why do we save emails?
A blog posting on the 37signals website [37signals05] asks the question,
do we save our phone calls. No we don’t. We might take notes if needed,
but most phone call conversations are throw away. We’ll ring back if we
forget something, so why do we keep such a huge volume of emails? Upon
asking Google, ‘why do we save emails’, I was presented with information
on:

1. Why I need to save money
2. Why we need to save the Arctic
3. Why I need to save rooster tail feathers (that one nearly pulled me

in, wasting more time)
4. Why should we save tigers.

1. You know who you are!
2 | Overload | October 2012

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically
in Chemical Engineering, but mainly programming and learning about AI and data mining. She has
been a programmer for over 12 years professionally, and learnt to program by reading the manual for
her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

EDITORIALFRANCES BUONTEMPO
Since Google won’t answer the question this requires some thought. Some
employers enforce email keeping, perhaps for regulatory purposes, but
they will then archive all the emails for us. Having saved all the emails,
how do we approach finding them later on? Einstein reminds us [Einstein]:

Intelligence is not the ability to store information, but to know where
to find it.

The re-finding email survey mentioned previously, [Whittaker11],
concluded people’s behaviour varied and was influenced by their email
client: threaded conversations reduce the amount of scrolling down needed
to scan for a previous communication, so tended to reduce the number of
folders used. Having many folders requires a degree of effort and memory
in order to find where you might have put something, and finally better
searching tools speeds up retrieval. I sometimes wonder if anything really
bad would happen if I deleted all my emails.
Perhaps Knuth’s approach to email is the only sensible one [Knuth]:

I have been a happy man ever since January 1, 1990, when I no
longer had an email address. I’d used email since about 1975, and
it seems to me that 15 years of email is plenty for one lifetime.

Though I have tended to concentrate on emails so far, facebook and twitter
have been mentioned in passing. It sometimes seems that I am drowning
in noise, but there are gems in the stream which I don’t want to miss. Other
things add to the stream of data. Why do I have so many bookmarks in my
browser? In the process of researching something, I will leave myself a
trail of other, sometimes only vaguely related, background to follow up
on one day. Will I ever read them? Do they even exist anymore? Mind you,
why do I have so many books in my house that I haven’t read yet? Partly
because I waste time trying to deal with emails, and maybe because I start
reading books that are too big. Why are so many technical books so big?
The other day, I weighed K&R. It come in at a sensible 375 grammes. How
many technical books do you own that weigh less than this? How many
books would you not put on your kitchen scales since they look far too big?
I recently contacted Amazon and asked them to state the weight of the
books they sell and allow me to order search results by weight. Feel free
to back me up on this.

What have we learnt?
Trying to sift the wheat from the chaff manually is time consuming. Ideally
something that would automatically summarise all interesting emails,
tweets, facebook posts, books and so on and provide it in one short post

would be a
brilliant time-
saver. Whatever
ha pp en ed t o
sum mly?
[Summly] Trying
to automatical ly
define interesting is a
very difficult problem,
and might just be a day-
dream. I have saved myself time by keeping an eye on
the clock and being more aggressive about ignoring or
deleting posts before being distracted by them.

References
[37signals05] ‘Why do we treat email differently than a phone call?’

(2005): http://37signals.com/svn/archives2/
why_do_we_treat_email_differently_than_a_phone_call.php

[Einstein] Einstein – http://www.phnet.fi/public/mamaa1/einstein.htm
[Knuth] Knuth, D. ‘Email (let’s drop the hyphen)’

http://www-cs-faculty.stanford.edu/~uno/email.html
[Summly] http://www.summly.com/
[Whittaker11] Whittaker, S., Matthews, T., Cerruti, J., Badenes, H. and

Tang, J. (2011) ‘Am I wasting my time organizing email? A study of
email refinding’ in Proceedings of the 2011 annual conference on
Human factors in computing systems, also available from
http://people.ucsc.edu/~swhittak/papers/
chi2011_refinding_email_camera_ready.pdf
October 2012 | Overload | 3

http://people.ucsc.edu/~swhittak/papers/chi2011_refinding_email_camera_ready.pdf
http://people.ucsc.edu/~swhittak/papers/chi2011_refinding_email_camera_ready.pdf
http://37signals.com/svn/archives2/why_do_we_treat_email_differently_than_a_phone_call.php
http://37signals.com/svn/archives2/why_do_we_treat_email_differently_than_a_phone_call.php
http://www.phnet.fi/public/mamaa1/einstein.htm
http://www-cs-faculty.stanford.edu/~uno/email.html
http://www.summly.com/

FEATURE PAUL FLOYD
Valgrind Part 4
Cachegrind and Callgrind
When your application is slow, you
need a profiler. Paul Floyd shows us
how callgrind and cachegrind can help.

he good news is that you’ve read my previous two articles on

Valgrind’s memcheck tool, and now your application has no memory
faults or leaks. The bad news is that your application is too slow and

your customers are complaining. What can you do? There are plenty of
options, like get faster hardware, better architecture/design of the
application, parallelization and ‘code optimization’. Before you do
anything like that, you should profile your application. You can use the
cachegrind component of Valgrind to do this.
Let’s take a step back now for a very brief overview of profiling
techniques. Profiling comes in several different flavours. It can be intrusive
(as in you need to modify your code) or unintrusive (no modification
needed). Intrusive profiling is usually the most efficient, if you know
where to profile. The catch is that you usually don't know where to look.
Profiling can use instrumented code, either instrumented at compile or link
time or on the fly (which is the case for cachegrind and callgrind). Lastly,
the profiler can be hardware based, for instance using the performance
counters that are a part of Intel CPUs. as used by Intel Vtune. In addition
to performing time based profiling, you can also perform memory profiling
(for instance, using Valgrind’s massif), I/O profiling and so on.
Profiling should give a clear picture as to whether there are any significant
bottlenecks in your code. If you see that one function is taking up 60% of
the time, then it's a prime candidate for optimization. On the other hand,
if you see that no function uses more than a few percent of the time, then
you're probably going to need to look at higher level approaches than code
optimization (or else you will have to optimize a lot of code to make a big
difference).
In general, profiling tools will tell you the time spent in each function,
inclusive and exclusive of time spent in calls to other functions. They may
also tell you the time spent on each line of code. Callgrind and Cachegrind
generate output that has a lot in common, like ‘time’ spent per function
and line. The main differences are that Callgrind has more information
about the callstack whilst cachegrind gives more information about cache
hit rates. When you’re using these tools, you’re likely to want to use the
GUI that is available to browse the results, KCachegrind. This is not part
of Valgrind; as the name implies, it is part of KDE.

Cachegrind
Let’s start with a small example (see Listing 1). It’s deliberately bad, and
as already noted above, a classic case for using a better algorithm.
Compiling and running this is easy, just use Valgrind with the
--tool=cachegrind option.
$ g++ -g badprime.cpp -o badprime
$ valgrind --tool=cachegrind --log-file=cg.out
 ./badprime

I measured the time it took to run (in VirtualBox on a 2.8GHz Opteron
that’s about 5 years old). Without cachegrind it took 1.3s. Under
cachegrind that rose to 12.6s.
So what do we have. Well, I told Valgrind to send the output to cg.out.
Let’s take a look at that (Figure 1).
Some of this looks a bit familiar. There’s the usual copyright header and
the column of == <pid> == on the left. The part that is specific to
cachegrind is the summary of overall performance, counting instruction
reads (I refs), 1st level instruction cache misses (I1 misses), last level cache
instruction misses (Lli), data reads (D refs), 1st level data cache misses (D1
misses), last level cache data misses (Lld misses) and finally a summary
of the last level cache accesses. The information for the data activity is split
into read and write parts (no writes for instructions, thankfully!). Why ‘last
level’ and not ‘second level’? Valgrind uses a virtual machine, VEX, to
execute the application that is being profiled. This is an abstraction of a
real CPU, and it uses 2 levels of cache. If your physical CPU has 3 levels
of cache, cachegrind will simulate the third level of cache with its second
level.
There’s a further option that you can add to get a bit more information,
--branch-sim=yes. If I add that option, then (in addition to adding
another second to the run time) there are a couple more lines in the output
(Figure 2).

T

Listing 1

#include <iostream>
#include <cmath>

bool isPrime(int x)
{
 int limit = std::sqrt(x);
 for (int i = 2; i <= limit; ++i)
 {
 if (x % i == 0)
 {
 return false;
 }
 }
 return true;
}

int main()
{
 int primeCount = 0;
 for (int i = 0; i < 1000000; ++i)
 {
 if (isPrime(i))
 {
 ++primeCount;
 }
 }
}

Paul Floyd has been writing software, mostly in C++ and C, for over
20 years. He lives near Grenoble, on the edge of the French Alps, and
works for Mentor Graphics developing a mixed signal circuit simulator.
He can be contacted at pjfloyd@wanadoo.fr.
4 | Overload | October 2012

FEATUREPAUL FLOYD

profiling tools will tell you the time spent in
each function, inclusive and exclusive of

time spent in calls to other functions
That’s fairly straightforward, the number of branches, branches
mispredicted (conditional and indirect branches). Examples of C or C++
code that produces indirect branch machine code are calls through pointers
to functions and virtual function calls. Conditional branches are generated
for if statements and the conditional ternary operator.

So far, nothing to get too excited
about. In the directory where I ran
cachegrind there is now a fi le
cachegrind.out.2345 (where
2345 was the PID when it was
executing, as you can see in the
branch prediction snippet above).
You can control the name of the file
that cachegrind generates by using the
–cachegrind-out-file option.
Here’s a small extract. It’s not meant
for human consumption (Figure 3).
You can make this slightly more
digestible by using cg_annotate.
You just need to enter cg_annotate
cachegrind.out.<pid> and the
output will go to the terminal. Figure
4 is what I got for this example.
Still it isn’t very easy to read. You can
see the same sort of notation as we
saw for the overall summary (I –
instruction, D – data and B – branch).
I ’ve cu t the fu l l pa ths t o the
file:function part. You can filter and
sort the output with the –threshold
and –sort options. You can also
generate annotated source either with
-auto=yes or on a file by file basis
by passing the (fully qualified)
f i l ename a s a n a rgumen t t o

cg_annotate. I won’t show an example here as it is rather long.
Basically it shows the same information as in the cg_annotate output,
but on a line by line basis. Lastly for cg_annotate, if you are using it
for code coverage metrics, then you can combine multiple runs using

cg_merge.
As already mentioned, you can use Kcachegrind. This is a
fairly standard GUI application for browsing the performance
results. It isn’t part of Valgrind, rather it is a component of
KDE so you may need to install it separately. If you want to
be able to see the funky graphics, you’ll need to have
GraphViz installed. Figure 5 is a screen shot showing, on the
left, percent of total time per function in descending order.
The top 3, as expected, are the awful isPrime, sqrt and
main with 99.9% between them. On the top right I’ve
selected the Source Code tab, and we can see three lines with
percent of time next to them. In this small example, the other
tabs aren’t very interesting.
Most of the navigating can be done by clicking the list of
functions in the left pane. You can search for functions and
also filter by the following groups – none, ELF object, source

Figure 1

==1842== Cachegrind, a cache and branch-prediction profiler
==1842== Copyright (C) 2002-2011, and GNU GPL'd, by Nicholas Nethercote et al.
==1842== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==1842== Command: ./badprime
==1842== Parent PID: 1758
==1842==
==1842==
==1842== I refs: 922,466,825
==1842== I1 misses: 1,234
==1842== LLi misses: 1,183
==1842== I1 miss rate: 0.00%
==1842== LLi miss rate: 0.00%
==1842==
==1842== D refs: 359,460,248 (349,345,693 rd + 10,114,555 wr)
==1842== D1 misses: 9,112 (7,557 rd + 1,555 wr)
==1842== LLd misses: 6,316 (5,119 rd + 1,197 wr)
==1842== D1 miss rate: 0.0% (0.0% + 0.0%)
==1842== LLd miss rate: 0.0% (0.0% + 0.0%)
==1842==
==1842== LL refs: 10,346 (8,791 rd + 1,555 wr)
==1842== LL misses: 7,499 (6,302 rd + 1,197 wr)
==1842== LL miss rate: 0.0% (0.0% + 0.0%)

Figure 2

==2345==
==2345== Branches: 139,777,324 (139,773,671 cond + 3,653 ind)
==2345== Mispredicts: 1,072,599 (1,072,250 cond + 349 ind)
==2345== Mispred rate: 0.7% (0.7% + 9.5%)

Figure 3

desc: I1 cache: 65536 B, 64 B, 2-way associative
desc: D1 cache: 65536 B, 64 B, 2-way associative
desc: LL cache: 1048576 B, 64 B, 16-way associative
cmd: ./badprime
events: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw Bc Bcm Bi Bim
fl=/build/buildd/eglibc-2.15/csu/../sysdeps/generic/dl-hash.h
fn=_init
44 1 0 0 0 0 0 0 0 0 0 0 0 0
45 1 0 0 0 0 0 0 0 0 0 0 0 0
46 13 0 0 4 1 0 0 0 0 4 3 0 0
49 16 0 0 0 0 0 0 0 0 0 0 0 0
50 8 0 0 0 0 0 0 0 0 0 0 0 0
63 8 0 0 0 0 0 0 0 0 0 0 0 0
68 1 0 0 0 0 0 0 0 0 0 0 0 0
October 2012 | Overload | 5

FEATURE PAUL FLOYD

Another problem with big real-world
programs is speed ... there is a big overhead
in performing the measurement
file, C++ class and function cycle. The two right panes have similar
displays, roughly for displaying information about callers and callees (that
is, functions called by the current function). Clicking on the % Relative
toggle switches between showing absolute units (e.g., instruction fetches)
and the percentage of the total. The drop down box on the top right allows
you to display cache hit/miss rates, instruction fetches and cycle estimates.

Callgrind
For an example using callgrind, I downloaded and built a debug version
of Icarus Verilog [Icarus] and compiled and simulated a Fibonacci
calculator [Fibonacci] with small modifications to make the simulation last
longer and exit on completion).
The commands that I used were:
 iverilog -o fib fib*.v

for the compilation, and
 valgrind --tool=callgrind
 --log-file=callgrind.log vvp ./fib

to profile the simulation.Figure 5

Figure 4

--
I1 cache: 65536 B, 64 B, 2-way associative
D1 cache: 65536 B, 64 B, 2-way associative
LL cache: 1048576 B, 64 B, 16-way associative
Command: ./badprime
Data file: cachegrind.out.2345
Events recorded: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw Bc Bcm Bi Bim
Events shown: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw Bc Bcm Bi Bim
Event sort order: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw Bc Bcm Bi Bim
Thresholds: 0.1 100 100 100 100 100 100 100 100 100 100 100 100
Include dirs:
User annotated:
Auto-annotation: off

--
 Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw Bc Bcm Bi Bim
--
922,466,826 1,234 1,183 349,345,693 7,557 5,119 10,114,555 1,555 1,197 139,773,671 1,072,250 3,653 349
PROGRAM TOTALS

--
 Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw Bc Bcm Bi Bim
file:function
--
895,017,739 1 0 340,937,515 0 0 5,000,000 0 0 135,559,306 968,532 0 0
badprime.cpp:isPrime(int)
 16,000,000 0 0 5,000,000 0 0 4,000,000 0 0 2,000,000 8 0 0
std::sqrt<int>(int)
 10,078,513 2 1 3,078,503 0 0 1,000,003 0 0 2,000,001 94,081 0 0
badprime.cpp:main
6 | Overload | October 2012

FEATUREPAUL FLOYD
Finally
 kcachegrind callgrind.out.5981

to view the results (see Figure 6).
This time, there isn’t all of the cache hit/miss rate information, but instead
there is far more on the interrelations between functions and time. You can
navigate through the functions by double clicking in the call graph.
In the last snapshot, I show the funky callee map (which I expect will look
better in the PDF version of the magazine in colour than in the black and
white print magazine). The areas of the rectangles is proportional to the
time spent in the function. Very pretty, but when it’s as cluttered as this
example, it’s not much use. Both the map and the list are dynamic, and
you can click in one and the area or list item will be highlighted in the other.
You can also double click to jump to a different function. When you are
navigating like this, you can use the back/forwards buttons on the toolbar
to navigate in a similar fashion to a web browser, or navigate up the call
stack (see Figure 7).
Callgrind has callgrind_annotate that is a text processor for its
output files. This is the callgrind equivalent of cg_annotate, and since
the output is very similar, I won’t show it here.

Practical difficulties
One problem that I’ve experienced with callgrind was with differences
between the floating point results with and without callgrind. In this case,
I encountered numerical instability with callgrind that I didn’t get when
running the application natively. This is worse for 32bit x86, where by
default code gets generated to use the venerable x87 floating point

coprocessor. This uses 10byte (80bit) precision internally. Usually this
means that if you have an expression that involves several operations on
doubles, the operations will be done at 80bit precision and the result
converted back to double precision (8byte, 64bit, required by the C and
C++ standards). Valgrind performs the calculations at 64bit precision, so
some of the intermediate precision is lost. Even with x64, which by default
uses 64bit MMX/SSE for floating point calculations and so shouldn’t have
any internal truncation, I’ve still seen examples where the results are
slightly different.
Another problem with big real-world programs is speed. Like all of the
Valgrind tools, there is a big overhead in performing the measurement.
You can mitigate this by controlling when callgrind performs data
collection. The controlling can be done using command line options, using
callgrind_control --instr=<on|off> or lastly by attaching gdb
and using the monitor commands instrumentation on|off. You can
statically control callgrind using Valgrind macros defined in
callgrind.h (like those for memcheck that I described in my previous
article on ‘Advanced Memcheck’ in Overload 110). You will probably
need to do some profiling of the entire application to get an idea of where
you want to concentrate your efforts.
In part 5 of this series, I’ll be covering Massif, Valgrind’s heap memory
profiler.

References
[Fibonacci] http://www2.engr.arizona.edu/~slysecky/resources/

verilog_tutorial.html
[Icarus] http://iverilog.icarus.com

Figure 6

Figure 7
October 2012 | Overload | 7

http://www2.engr.arizona.edu/~slysecky/resources/verilog_tutorial.html
http://www2.engr.arizona.edu/~slysecky/resources/verilog_tutorial.html
http://iverilog.icarus.com

FEATURE SCOTT MEYERS
Universal References in C++11
C++11 provides a new reference syntax, T&&.
Scott Meyers explains that it doesn’t always
mean ‘rvalue reference’.
Scott Meyers is one of the world’s foremost authorities on C++
software development. Scott wrote the best-selling Effective C++
series and is consulting editor for Addison Wesley’s Effective
Software Development series. He also conceived the boutique
conferences ‘The C++ Seminar’ and ‘C++ and beyond’. His
website is aristeia.com

erhaps the most significant new feature in C++11 is rvalue references;
they’re the foundation on which move semantics and perfect
forwarding are built. (If you’re unfamiliar with the basics of rvalue

references, move semantics, or perfect forwarding, you may wish to read
Thomas Becker’s overview before continuing. A full citation is provided
in the ‘Further information’ section at the end of this article.)
Syntactically, rvalue references are declared like ‘normal’ references (now
known as lvalue references), except you use two ampersands instead of
one. This function takes a parameter of type rvalue-reference-to-Widget:
 void f(Widget&& param);

Given that rvalue references are declared using &&, it seems reasonable to
assume that the presence of && in a type declaration indicates an rvalue
reference. That is not the case:
 Widget&& var1 = someWidget;
 // here, "&&" means rvalue reference

 auto&& var2 = var1;
 // here, "&&" does not mean rvalue reference

 template<typename T>
 void f(std::vector<T>&& param);
 // here, "&&" means rvalue reference

 template<typename T>
 void f(T&& param);
 // here, "&&"does not mean rvalue reference

In this article, I describe the two meanings of && in type declarations,
explain how to tell them apart, and introduce new terminology that makes
it possible to unambiguously communicate which meaning of && is
intended. Distinguishing the different meanings is important, because if
you think ‘rvalue reference’ whenever you see && in a type declaration,
you’ll misread a lot of C++11 code.
The essence of the issue is that && in a type declaration sometimes means
rvalue reference, but sometimes it means either rvalue reference or lvalue
reference. As such, some occurrences of && in source code may actually
have the meaning of &, i.e., have the syntactic appearance of an rvalue
reference (&&), but the meaning of an lvalue reference (&). References
where this is possible are more flexible than either lvalue references or
rvalue references. Rvalue references may bind only to rvalues, for
example, and lvalue references, in addition to being able to bind to lvalues,
may bind to rvalues only under restricted circumstances.1 In contrast,
references declared with && that may be either lvalue references or rvalue

references may bind to anything. Such unusually flexible references
deserve their own name. I call them universal references.
The details of when && indicates a universal reference (i.e., when && in
source code might actually mean &) are tricky, so I’m going to postpone
coverage of the minutiae until later. For now, let’s focus on the following
rule of thumb, because that is what you need to remember during day-to-
day programming:

If a variable or parameter is declared to have type T&& for some deduced
type T, that variable or parameter is a universal reference.

The requirement that type deduction be involved limits the situations
where universal references can be found. In practice, almost all universal
references are parameters to function templates. Because the type
deduction rules for auto-declared variables are essentially the same as for
templates, it’s also possible to have auto-declared universal references.
These are uncommon in production code, but I show some in this article,
because they are less verbose in examples than templates. In the ‘Nitty
gritty details’ section of this article, I explain that it’s also possible for
universal references to arise in conjunction with uses of typedef and
decltype, but until we get down to the nitty gritty details, I’m going to
proceed as if universal references pertained only to function template
parameters and auto-declared variables.
The constraint that the form of a universal reference be T&& is more
significant than it may appear, but I’ll defer examination of that until a bit
later. For now, please simply make a mental note of the requirement.
Like all references, universal references must be initialized, and it is a
universal reference’s initializer that determines whether it represents an
lvalue reference or an rvalue reference:

If the expression initializing a universal reference is an lvalue, the
universal reference becomes an lvalue reference.

If the expression initializing the universal reference is an rvalue, the
universal reference becomes an rvalue reference.

This information is useful only if you are able to distinguish lvalues from
rvalues. A precise definition for these terms is difficult to develop (the
C++11 standard generally specifies whether an expression is an lvalue or
an rvalue on a case-by-case basis), but in practice, the following suffices:

If you can take the address of an expression, the expression is an
lvalue.
If the type of an expression is an lvalue reference (e.g., T& or const
T&, etc.), that expression is an lvalue.
Otherwise, the expression is an rvalue. Conceptually (and typically
also in fact), rvalues correspond to temporary objects, such as those

P

1. I discuss rvalues and their counterpart, lvalues, later in this article. The
restriction on lvalue references binding to rvalues is that such binding
is permitted only when the lvalue reference is declared as a reference-
to-const, i.e. a const T&.
8 | Overload | October 2012

FEATURESCOTT MEYERS
returned from functions or created through implicit type
conversions. Most literal values (e.g., 10 and 5.3) are also rvalues.

Consider again the following code from the beginning of this article:
 Widget&& var1 = someWidget
 auto&& var2 = var1;

You can take the address of var1, so var1 is an lvalue. var2’s type
declaration of auto&& makes it a universal reference, and because it’s
being initialized with var1 (an lvalue), var2 becomes an lvalue
reference. A casual reading of the source code could lead you to believe
that var2 was an rvalue reference; the && in its declaration certainly
suggests that conclusion. But because it is a universal reference being
initialized with an lvalue, var2 becomes an lvalue reference. It’s as if
var2 were declared like this:
 Widget& var2 = var1;

As noted above, if an expression has type lvalue reference, it’s an lvalue.
Consider this example:
 std::vector<int> v;
 ...
 auto&& val = v[0];
 // val becomes an lvalue reference (see below)

val is a universal reference, and it’s being initialized with v[0], i.e., with
the result of a call to std::vector<int>::operator[]. That
function returns an lvalue reference to an element of the vector.2 Because
all lvalue references are lvalues, and because this lvalue is used to initialize
val, val becomes an lvalue reference, even though it’s declared with
what looks like an rvalue reference.
I remarked that universal references are most common as parameters in
template functions. Consider again this template from the beginning of this
article:
 template<typename T>
 void f(T&& param);
 // "&&" might mean rvalue reference

Given this call to f,
 f(10); // 10 is an rvalue

param is initialized with the literal 10, which, because you can’t take its
address, is an rvalue. That means that in the call to f, the universal
reference param is initialized with an rvalue, so param becomes an rvalue
reference – in particular, int&&.
On the other hand, if f is called like this,
 int x = 10;
 f(x); // x is an lvalue

param is initialized with the variable x, which, because you can take its
address, is an lvalue. That means that in this call to f, the universal
reference param is initialized with an lvalue, and param therefore
becomes an lvalue reference – int&, to be precise.
The comment next to the declaration of f should now be clear: whether
param’s type is an lvalue reference or an rvalue reference depends on what
is passed when f is called. Sometimes param becomes an lvalue reference,
and sometimes it becomes an rvalue reference. param really is a universal
reference.
Remember that && indicates a universal reference only where type
deduction takes place. Where there’s no type deduction, there’s no
universal reference. In such cases, && in type declarations always means
rvalue reference. Hence Listing 1.
There’s nothing surprising about these examples. In each case, if you see
T&& (where T is a template parameter), there’s type deduction, so you’re
looking at a universal reference. And if you see && after a particular type
name (e.g., Widget&&), you’re looking at an rvalue reference.
I stated that the form of the reference declaration must be T&& in order for
the reference to be universal. That’s an important caveat. Look again at
this declaration from the beginning of this article:

 template<typename T>
 void f(std::vector<T>&& param);
 // "&&" means rvalue reference

Here, we have both type deduction and a &&-declared function parameter,
but the form of the parameter dec larat ion i s not T&& , i t ’s
std::vector<T>&&. As a result, the parameter is a normal rvalue
reference, not a universal reference. Universal references can only occur
in the form T&&! Even the simple addition of a const qualifier is enough
to disable the interpretation of && as a universal reference:
 template<typename T>
 void f(const T&& param);
 // "&&" means rvalue reference

Now, T&& is simply the required form for a universal reference. It doesn’t
mean you have to use the name T for your template parameter:
 template<typename MyTemplateParamType>
 void f(MyTemplateParamType&& param);
 // "&&" means universal reference

Sometimes you can see T&& in a function template declaration where T is
a template parameter, yet there’s still no type deduction. Consider this
push_back function in std::vector, shown in Listing 2.3

Here, T is a template parameter, and push_back takes a T&&, yet the
parameter is not a universal reference! How can that be?
The answer becomes apparent if we look at how push_back would be
declared outside the class. I’m going to pretend that std::vector’s
Allocator parameter doesn’t exist, because it’s irrelevant to the
discussion, and it just clutters up the code. With that in mind, here’s the
declaration for this version of std::vector::push_back:

2. I’m ignoring the possibility of bounds violations. They yield undefined
behavior.

3. std::vector::push_back is overloaded. The version shown is
the only one that interests us in this article.

Listing 1

template<typename T>
void f(T&& param);
 // deduced parameter type ⇒ type deduction;
 // && ≡ universal reference
template<typename T>
class Widget {
 ...
 Widget(Widget&& rhs);
 // fully specified parameter type ⇒ no type
 // deduction; && ≡ rvalue reference
};
template<typename T1>
class Gadget {
 ...
 template <typename T2>
 Gadget(T2&& rhs);
 // deduced parameter type ⇒ type deduction;
 ... // && ≡ universal reference
};
void f(Widget&& param);
 // fully specified parameter type ⇒ no type
 // deduction; && ≡ rvalue reference

Listing 2

template <class T,
 class Allocator = allocator<T> >
class vector {
public:
 ...
 void push_back(T&& x);
 // fully specified parameter type ⇒ no type
 // deduction; && ≡ rvalue reference
};
October 2012 | Overload | 9

FEATURE SCOTT MEYERS
 template <class T>
 void vector<T>::push_back(T&& x);

push_back can’t exist without the class std::vector<T> that
contains it. But if we have a class std::vector<T>, we already know
what T is, so there’s no need to deduce it.
An example will help. If I write
 Widget makeWidget();
 // factory function for Widget
 std::vector<Widget> vw;
 ...
 Widget w;
 vw.push_back(makeWidget());
 // create Widget from factory, add it to vw

my use of push_back will cause the compiler to instantiate that function
for the class std::vector<Widget>. The declaration for that
push_back looks like this:
 void std::vector<Widget>::push_back(Widget&& x);

See? Once we know that the class is std::vector<Widget>, the type
of push_back’s parameter is fully determined: it’s Widget&&. There’s
no role here for type deduction.
Contrast that with std::vector’s emplace_back, which is declared
like Listing 3.
Don’t let the fact that emplace_back takes a variable number of
arguments (as indicated by the ellipses in the declarations for Args and
args) distract you from the fact that a type for each of those arguments
must be deduced. The function template parameter Args is independent
of the class template parameter T, so even if we know that the class is, say,
std::vector<Widget>, that doesn’t tell us the type(s) taken by
emplace_back. The out-of-class declaration for emplace_back for
std::vector<Widget> makes that clear (I’m continuing to ignore the
existence of the Allocator parameter):
 template<class... Args>
 void std::vector<Widget>::emplace_back
 (Args&&... args);

Clearly, knowing that the class is std::vector<Widget> doesn’t
eliminate the need for the compiler to deduce the type(s) passed to
emplace_back. As a result, std::vector::emplace_back’s
parameters are universal references, unlike the parameter to the version of
std::vector::push_back we examined, which is an rvalue
reference.
A final point is worth bearing in mind: the lvalueness or rvalueness of an
expression is independent of its type. Consider the type int. There are
lvalues of type int (e.g., variables declared to be ints), and there are
rvalues of type int (e.g., literals like 10). It’s the same for user-defined
types like Widget. A Widget object can be an lvalue (e.g., a Widget
variable) or an rvalue (e.g., an object returned from a Widget-creating
factory function). The type of an expression does not tell you whether it
is an lvalue or an rvalue.
Because the lvalueness or rvalueness of an expression is independent of
its type, it’s possible to have lvalues whose type is rvalue reference, and
it’s also possible to have rvalues of the type rvalue reference:

 Widget makeWidget();
 // factory function for Widget

 Widget&& var1 = makeWidget()
 // var1 is an lvalue, but
 // its type is rvalue reference (to Widget)

 Widget var2 = static_cast<Widget&&>(var1);
 // the cast expression yields an rvalue, but
 // its type is rvalue reference (to Widget)

The conventional way to turn lvalues (such as var1) into rvalues is to use
std::move on them, so var2 could be defined like this:
 Widget var2 = std::move(var1);
 // equivalent to above

I initially showed the code with static_cast only to make explicit that
the type of the expression was an rvalue reference (Widget&&).
Named variables and parameters of rvalue reference type are lvalues. (You
can take their addresses.) Consider again the Widget and Gadget
templates from earlier, shown in Listing 4.
In Widget’s constructor, rhs is an rvalue reference, so we know it’s bound
to an rvalue (i.e., an rvalue was passed to it), but rhs itself is an lvalue,
so we have to convert it back to an rvalue if we want to take advantage of
the rvalueness of what it’s bound to. Our motivation for this is generally
to use it as the source of a move operation, and that’s why the way to
convert an lvalue to an rvalue is to use std::move. Similarly, rhs in
Gadget’s constructor is a universal reference, so it might be bound to an
lvalue or to an rvalue, but regardless of what it’s bound to, rhs itself is an
lvalue. If it’s bound to an rvalue and we want to take advantage of the
rvalueness of what it’s bound to, we have to convert rhs back into an
rvalue. If it’s bound to an lvalue, of course, we don’t want to treat it like
an rvalue. This ambiguity regarding the lvalueness and rvalueness of what
a universal reference is bound to is the motivation for std::forward:
to take a universal reference lvalue and convert it into an rvalue only if the
expression it’s bound to is an rvalue. The name of the function (forward)
is an acknowledgment that our desire to perform such a conversion is
virtually always to preserve the calling argument’s lvalueness or
rvalueness when passing – forwarding – it to another function.
But std::move and std::forward are not the focus of this article. The
fact that && in type declarations may or may not declare an rvalue reference
is. To avoid diluting that focus, I’ll refer you to the references in the
‘Further information’ section for information on std::move and
std::forward.

Listing 3

template <class T,
 class Allocator = allocator<T> >
class vector {
public:
 ...
 template <class... Args>
 void emplace_back(Args&&... args);
 // deduced parameter types ⇒ type deduction;
 ... // && ≡ universal references
};

Listing 4

template<typename T>
class Widget {
 ...
 Widget(Widget&& rhs);
 // rhs's type is rvalue reference, but rhs
 // itself is an lvalue
 ...
};
template<typename T1>
class Gadget {
 ...
 template <typename T2>
 Gadget(T2&& rhs);
 // rhs is a universal reference whose type will
 // eventually become an rvalue reference or an
 // lvalue reference, but rhs itself is an lvalue
 ...
};
10 | Overload | October 2012

FEATURESCOTT MEYERS
Nitty gritty details
The true core of the issue is that some constructs in C++11 give rise to
references to references, and references to references are not permitted in
C++. If source code explicitly contains a reference to a reference, the code
is invalid:
 Widget w1;
 ...
 Widget& & w2 = w1; // error!
 // No such thing as "reference to reference"

There are cases, however, where references to references arise as a result
of type manipulations that take place during compilation, and in such
cases, rejecting the code would be problematic. We know this from
experience with the initial standard for C++, i.e., C++98/C++03.
During type deduction for a template parameter that is a universal
reference, lvalues and rvalues of the same type are deduced to have slightly
different types. In particular, lvalues of type T are deduced to be of type
T& (i.e., lvalue reference to T), while rvalues of type T are deduced to be
simply of type T. (Note that while lvalues are deduced to be lvalue
references, rvalues are not deduced to be rvalue references!) Consider what
happens when a template function taking a universal reference is invoked
with an rvalue and with an lvalue:
 template<typename T>
 void f(T&& param);
 ...
 int x;
 ...
 f(10); // invoke f on rvalue
 f(x); // invoke f on lvalue

In the call to f with the rvalue 10, T is deduced to be int, and the
instantiated f looks like this:
 void f(int&& param);// f instantiated from rvalue

That’s fine. In the call to f with the lvalue x, however, T is deduced to be
int&, and f’s instantiation contains a reference to a reference:
 void f(int& && param);
 // initial instantiation of f with lvalue

Because of the reference-to-reference, this instantiated code is prima facie
invalid, but the source code – f(x)– is completely reasonable. To avoid
rejecting it, C++11 performs ‘reference collapsing’ when references to
references arise in contexts such as template instantiation.
Because there are two kinds of references (lvalue references and rvalue
references), there are four possible reference-reference combinations:
lvalue reference to lvalue reference, lvalue reference to rvalue reference,
rvalue reference to lvalue reference, and rvalue refer-ence to rvalue
reference. There are only two reference-collapsing rules:

An rvalue reference to an rvalue reference becomes (‘collapses
into’) an rvalue reference.
All other references to references (i.e., all combinations involving
an lvalue reference) collapse into an lvalue reference.

Applying these rules to the instantiation of f on an lvalue yields the
following valid code, which is how the compiler treats the call:
 void f(int& param); // instantiation of f with
 // lvalue after reference collapsing

This demonstrates the precise mechanism by which a universal reference
can, after type deduction and reference collapsing, become an lvalue
reference. The truth is that a universal reference is really just an rvalue
reference in a reference-collapsing context.
Things get subtler when deducing the type for a variable that is itself a
reference. In that case, the reference part of the type is ignored. For
example, given
 int x;
 ...
 int&& r1 = 10; // r1's type is int&&
 int& r2 = x; // r2's type is int&

the type for both r1 and r2 is considered to be int in a call to the template
f. This reference-stripping behavior is independent of the rule that, during
type deduction for universal references, lvalues are deduced to be of type
T& and rvalues of type T, so given these calls,
 f(r1);
 f(r2);

the deduced type for both r1 and r2 is int&. Why? First the reference
parts of r1’s and r2’s types are stripped off (yielding int in both cases),
then, because each is an lvalue, each is treated as int& during type
deduction for the universal reference parameter in the call to f.
Reference collapsing occurs, as I’ve noted, in ‘contexts such as template
instantiation’. A second such context is the definition of auto variables.
Type deduction for auto variables that are universal references is
essentially identical to type deduction for function template parameters
that are universal references, so lvalues of type T are deduced to have type
T&, and rvalues of type T are deduced to have type T. Consider again this
example from the beginning of this article:
 Widget&& var1 = someWidget;
 // var1 is of type Widget&& (no use of auto here)
 auto&& var2 = var1;
 // var2 is of type Widget& (see below)

var1 is of type int&&, but its reference-ness is ignored during type
deduction in the initialization of var2; it’s considered to be of type
Widget. Because it’s an lvalue being used to initialize a universal
reference (var2), its deduced type is Widget&. Substituting Widget& for
auto in the definition for var2 yields the following invalid code:
 Widget& && var2 = var1;
 // note reference-to-reference

which, after reference collapsing, becomes:
 Widget& var2 = var1; // var2 is of type Widget&

A third reference-collapsing context is typedef formation and use. Given
this class template,
 template<typename T>
 class Widget {
 typedef T& LvalueRefType;
 ...
 };

and this use of the template,
 Widget<int&> w;

the instantiated class would contain this (invalid) typedef:
 typedef int& & LvalueRefType;

Reference-collapsing reduces it to this legitimate code:
 typedef int& LvalueRefType;

If we then use this typedef in a context where references are applied to
it, e.g.,
 void f(Widget<int&>::LvalueRefType&& param);

the following invalid code is produced after expansion of the typedef,
 void f(int& && param);

but reference-collapsing kicks in, so f’s ultimate declaration is this:
 void f(int& param);

The final context in which reference-collapsing takes place is the use of
decltype. As is the case with templates and auto, decltype performs
type deduction on expressions that yield types that are either T or T&, and
decltype then applies C++11’s reference-collapsing rules. Alas, the
type-deduction rules employed by decltype are not the same as those
used during template or auto type deduction. The details are too arcane for
coverage here (the ‘Further information’ section provides pointers to, er,
further information), but a noteworthy difference is that decltype, given
a named variable of non-reference type, deduces the type T (i.e., a non-
reference type), while under the same conditions, templates and auto
deduce the type T&. Another important difference is that decltype’s type
October 2012 | Overload | 11

FEATURE SCOTT MEYERS
deduction depends only on the decltype expression; the type of the
initializing expression (if any) is ignored. Ergo Listing 5.

Summary
In a type declaration, && indicates either an rvalue reference or a universal
reference – a reference that may resolve to either an lvalue reference or an
rvalue reference. Universal references always have the form T&& for some
deduced type T.
Reference collapsing is the mechanism that leads to universal references
(which are really just rvalue references in situations where reference-
collapsing takes place) sometimes resolving to lvalue references and
sometimes to rvalue references. It occurs in specified contexts where
references to references may arise during compilation. Those contexts are
template type deduction, auto type deduction, typedef formation and
use, and decltype expressions.

Acknowledgments
Draft versions of this article were reviewed by Cassio Neri, Michal Mocny,
Howard Hinnant, Andrei Alexandrescu, Stephan T. Lavavej, Roger Orr,
Chris Oldwood, Jonathan Wakely, and Anthony Williams. Their
comments contributed to substantial improvements in the content of the
article as well as in its presentation.

Further information
C++11, Wikipedia. http://en.wikipedia.org/wiki/C%2B%2B11
Overview of the New C++ (C++11), Scott Meyers, Artima Press, last

updated January 2012. http://www.artima.com/shop/
overview_of_the_new_cpp

‘C++ Rvalue References Explained’, Thomas Becker, last updated
September 2011. http://thbecker.net/articles/rvalue_references/
section_01.html

decltype, Wikipedia. http://en.wikipedia.org/wiki/Decltype
‘A Note About decltype’, Andrew Koenig, Dr. Dobb’s, 27 July 2011.

http://drdobbs.com/blogs/cpp/231002789

Listing 5

Widget w1, w2;
auto&& v1 = w1;
// v1 is an auto-based universal reference being
// initialized with an lvalue, so v1 becomes an
// lvalue reference referring to w1.
decltype(w1)&& v2 = w2;
// v2 is a decltype-based universal reference, and
// decltype(w1) is Widget, so v2 becomes an rvalue
// reference.
// w2 is an lvalue, and it's not legal to
// initialize an rvalue reference with an lvalue,
// so this code does not compile.
12 | Overload | October 2012

Software
Engineering
(part-time)

MSc in

http://www.artima.com/shop/overview_of_the_new_cpp
http://www.artima.com/shop/overview_of_the_new_cpp
http://en.wikipedia.org/wiki/C%2B%2B11
http://thbecker.net/articles/rvalue_references/section_01.html
http://thbecker.net/articles/rvalue_references/section_01.html
http://en.wikipedia.org/wiki/Decltype

FEATUREJASON MCGUINESS AND COLIN EGAN
A DSEL for Addressing the Problems
Posed by Parallel Architectures
Programming parallel algorithms correctly is hard. Jason McGuiness
and Colin Egan demonstrate how a C++ DESEL can make it simpler.

omputers with multiple pipelines have become increasingly prevalent, Language support: such as Erlang [Virding96], UPC

hence a rise in the available parallelism to the programming
community. For example the dual-core desktop workstations to

multiple core, multiple processors within blade frames which may contain
hundreds of pipelines in data centres, to state-of-the-art mainframes in the
Top500 supercomputer list with thousands of cores and the potential arrival
of next-generation cellular architectures that may have millions of cores.
This surfeit of hardware parallelism has apparently yet to be tamed in the
software architecture arena. Various attempts to meet this challenge have
been made over the decades, taking such approaches as languages,
compilers or libraries to enable programmers to enhance the parallelism
within their various problem domains. Yet the common folklore in computer
science has still been that it is hard to program parallel algorithms correctly.
This paper examines what language features would be required to add to
an existing imperative language that would have little if no native support
for implementing parallelism apart from a simple library that exposes the
OS-level threading primitives. The goal of the authors has been to create
a minimal and orthogonal DSEL that would add the capabilities of
parallelism to that target language. Moreover the DSEL proposed will be
demonstrated to have such useful guarantees as a correct, heuristically
efficient schedule. In terms of correctness the DSEL provides guarantees
that it can provide deadlock-free and race-condition free schedules. In
terms of efficiency, the schedule produced will be shown to add no worse
than a poly-logarithmic order to the algorithmic run-time of the schedule
of the program on a CREW-PRAM (Concurrent-Read, Exclusive-Write,
Parallel Random-Access Machine [Tvrkik99]) or EREW-PRAM
(Exclusive-Read EW-PRAM [Tvrkik99]) computation model.
Furthermore the DSEL described assists the user with regard to debugging
the resultant parallel program. An implementation of the DSEL in C++
exists: further details may be found in [McGuiness09].

Related work
From a hardware perspective, the evolution of computer architectures has
been heavily influenced by the von Neumann model. This has meant that
with the relative increase in processor speed vs. memory speed, the
introduction of memory hierarchies [Burger96] and out-of-order
instruction scheduling has been highly successful. However, these extra
levels increase the penalty associated with a miss in the memory
subsystem, due to memory access times, limiting the ILP (Instruction-
Level Parallelism). Also there may be an increase in design complexity and
power consumption of the overall system. An approach to avoid this
problem may be to fetch sets of instructions from different memory banks,
i.e. introduce threads, which would allow an increase in ILP, in proportion
to the number of executing threads.
From a software perspective, the challenge that has been presented to
programmers by these parallel architectures has been the massive
parallelism they expose. There has been much work done in the field of
parallelizing software:

Auto-parallelizing compilers: such as EARTH-C [Tang99]. Much
of the work developing auto-parallelizing compilers has derived
from the data-flow community [Snelling94].

[El-ghazawi03] or Intel’s [Tian03] and Microsoft’s C++ compilers
based upon OpenMP.
Library support: such as POSIX threads (pthreads) or Win32, MPI,
OpenMP, Boost, Intel’s TBB [Pheatt08], Cilk [Leiserson10] or
various libraries targeting C++ [Giacaman08, Bischof05]. Intel’s
TBB has higher-level threading constructs, but it has not supplied
parallel algorithms, nor has it provided any guarantees regarding its
library. It also suffers from mixing code relating to generating the
parallel schedule and the business logic, which would also make
testing more complex.

These have all had varying levels of success, as discussed in part in
[McGuiness06b], with regards to addressing the issues of programming
effectively for such parallel architectures.

Motivation
The basic issues addressed by all of these approaches have been:
correctness or optimization. So far it has appeared that the compiler and
language based approaches have been the only approaches able to address
both of those issues together. But the language-based approaches require
that programmers would need to re-implement their programs in a
potentially novel language, a change that has been very hard for business
to adopt, severely limiting the use of these approaches.
Amongst the criticisms raised regarding the use of l ibraries
[McGuiness06b, McGuiness06a] such as pthreads, Win32 or OpenMP
have been:

They have been too low-level so using them to write correct multi-
threaded programs has been very hard; it suffers from composition
problems. This problem may be summarized as: atomic access to an
object would be contained within each object (using classic OOD),
thus when composing multiple objects, multiple separate locks,
from the different objects, have to be manipulated to guarantee
correct access. If this were done correctly the usual outcome has
been a serious reduction in scalability.
A related issue has been that that the programmer often intimately
entangles their thread-safety, thread scheduling and the business
logic of their code. This means that each program would be

C

Colin Egan teaches on Advanced Computer Architecture,
Computer Architecture and Principles of Networked Systems
Administration and researches High Performance Processesor
Design with particular reference to Energy Efficient Branch
Prediction at Herfordshire University.

Jason McGuiness has given seminars internationally and to the
BCS, IET and ACCU. He has worked on prototype
supercomputers, which drove his interest in threading. Also Jason
has been involved in the threading area of the C++11
standardization effort, and looks forward to contributing to the next
C++ standard.
October 2012 | Overload | 13

FEATURE JASON MCGUINESS AND COLIN EGAN
effectively a bespoke program, requiring re-testing of each program
for threading issues as well as business logic issues.
Also debugging such code has been found to be very hard.
Debuggers for multi-threaded code have been an open area of
research for some time.

Given that the language has to be immutable, a DSEL defined by a library
that attempts to support the correctness and optimality of the language and
compiler approaches and yet somehow overcomes the limitations of the
usual library-based approaches would seem to be ideal. This DSEL will
now be presented.

The DSEL to assist parallelism
We chose to address these issues by defining a carefully crafted DSEL,
then examining its properties to demonstrate that the DSEL achieved the
goals. The DSEL should have the following properties:

The DSEL shall target what may be termed as general purpose
threading, the authors define this to be scheduling in which the
conditions or loop-bounds may not be computed at compile-time,
nor could they be represented as monads, so could not be
memoized1. In particular the DSEL shall support both data-flow and
data parallel constructs.
By being implemented in an existing language it would avoid the
necessity of re-implementing the programs, a more progressive
approach to adoption could be taken.
It shall be a reasonably small DSEL, but be large enough to provide
sufficient extensions to the host language that express parallel
constructs in a manner that would be natural to a programmer using
that language.
It shall assist in debugging any use of a conforming implementation.
It should provide guarantees regarding those banes of parallel
programming: dead-locks and race-conditions.
Moreover it should provide guarantees regarding the algorithmic
complexity of any parallel schedule it would generate.

Initially a description of the grammar will be given, followed by a
discussion of some of the properties of the DSEL. Finally some theoretical
results derived from the grammar of the DSEL will be given.

Detailed grammar of the DSEL
The various types, production rules and operations that define the DSEL
will be given in this section. The basic types will be defined first, then the
operations upon those types will be defined. C++ has been chosen as the
target language in which to implement the DSEL. This was due to the rich
ability within C++ to extend the type system at compile-time: primarily
using templates but also overloading various operators. Hence the
presentation of the grammar relies on the grammar of C++, so it would
assist the reader to have familiarity of that grammar, in particular Annex
A of the ISO C++ Standard [ISO12]. Although C++11 has some support
for threading, this had not been widely implemented at the time of writing,
moreover the specification had not addressed the points of the DSEL in
this paper.
Some clarifications:

The subscript opt means that the keyword is optional.
The subscript def means that the keyword is default and specifies the
default value for the optional keyword.

Types
The primary types used within the DSEL are derived from the thread-pool
type.

1. Thread pools can be composed with various subtypes that could be
used to fundamentally affect the implementation and performance
of any client software:
thread-pool-type:
thread_pool work-policy size-policy pool-adaptor

A thread pool would contain a collection of threads that may be
more, less or the same as the number of processors on the target
architecture. This allows for implementations to visualize the
multiple cores available or make use of operating-system
provided thread implementations. An implementation may
choose to enforce a synchronization of all threads within the
pool once an instance of that pool should be destroyed, to ensure
that threads managed by the pool are appropriately destroyed
and work in the process of mutation could be appropriately
terminated.

work-policy: one of
worker_threads_get_work one_thread_distributes

The library should implement the classic work-stealing or
master-slave work sharing algorithms. Clearly the specific
implementation of these could affect the internal queue
containing unprocessed work within the thread_pool. For
example a worker_threads_get_work queue might be
implemented such that the addition of work would be
independent to the removal of work.

size-policy: one of
fixed_size tracks_to_max infinite

The size-policy when used in combination with the threading-
model could be used to make considerable simplifications in the
implementation of the thread-pool-type which could make it
faster on certain architectures.
tracks_to_max would implement some model of the cost of
re-creating and maintaining threads. If thread were cheap to
create & destroy with little overhead, then an infinite size
might be a reasonable approximation, conversely threads with
opposite characteristics might be better maintained in a
fixed_size pool.

pool-adaptor:
joinability api-type threading-model priority-modeopt
comparatoropt GSS(k)-batch-sizeopt
joinability: one of
joinable nonjoinable

The joinability has been provided to allow for certain
optimizations to be implementable. A thread-pool-type that is
nonjoinable could have a number of simplifying details that
would make it not only easier to implement but also faster in
operation.

api-type: one of
no_api MS_Win32 posix_pthreads IBM_cyclops

Both MS_Win32 and posix_pthreads are examples of
heavyweight_threading APIs in which threading at the
OS-level would be made use of to implement the DSEL.
IBM_cyclops would be an implementation of the DSEL using
the lightweight_threading API implemented by IBM BlueGene/
C Cyclops [Almasi03].

threading-model: one of
sequential_mode heavyweight_threading
lightweight_threading

This specifier provides a coarse representation of the various
implementations of threadable construct in the multitude of
architectures available. For example Pthreads would be
considered to be heavyweight_threading whereas
Cyclops would be lightweight_threading. Separation of
the threading model versus the API allows for the possibility
that there may be multiple threading APIs on the same platform,

1. A compile or run-time optimisation technique involving a space-time
tradeoff. Re-computation of pure functions when provided with the
same arguments may be avoided by caching the result; the result will
be the same for each call with the same arguments, if the function has
no side-effects.
14 | Overload | October 2012

FEATUREJASON MCGUINESS AND COLIN EGAN
which may have different properties, for example if there were
to be a GPU available in a multi-core computer, there could be
two different threading models within the same program.
The sequential_mode has been provided to allow
implementations to removal all threading aspects of all of the
implementing library, which would hugely reduce the burden on
the programmer regarding identifying bugs within their code. If
all threading is removed, then all bugs that remain, in principle
should reside in their user-code, which once determined to be
bug-free, could then be trivially parallelized by modifying this
single specifier and re-compiling. Then any further bugs
introduced would be due to bugs within the parallel aspects of
their code, or the library implementing this DSEL. If the user
relies upon the library to provide threading, then there should be
no further bugs in their code. We consider this feature of
paramount importance, as it directly addresses the complex task
of debugging parallel software, by separating the algorithm by
which the parallelism should be implemented from the code
implementing the mutations on the data.

priority-mode: one of
normal_fifodef prioritized_queue

This is an optional parameter. The prioritized_queue
would allow the user to specify whether specific instances of
work to be mutated should be performed ahead of other
instances of work, according to a user-specified comparator.

comparator:
 std::lessdef

A unary function-type that specifies a strict weak-ordering on
the elements within a the prioritized_queue.

GSS(k)-batch-size:
1def

A natural number specifying the batch-size to be used within the
queue specified by the priority-mode. The default is 1, i.e. no
batching would be performed. An implementation would be
likely to use this for enabling GSS(k) scheduling [Kennedy02].

2. Adapted collections to assist in providing thread-safety and also
specify the memory access model of the collection:
safe-colln:
safe_colln collection-type lock-type

This adaptor wraps the collection-type and an instance of lock-
type in one object, and provides a few thread-safe operations
upon that collection, plus access to the underlying collection.
This access might seem surprising, but this has been done
because locking the operations on collections has been shown to
not be composable, and cross-cuts both object-orientated and
functional-decomposition designs. This could could be open to
misuse, but otherwise excessive locking would have to be done
in user code. This has not been an ideal design decision, but a
simple one, with scope for future work. Note that this design
choice within the DSEL does not invalidate the rest of the
grammar, as this would just affect the overloads to the data-
parallel-algorithms, described later.
The adaptor also provides access to both read-lock and write-
lock types, which may be the same, but allow the user to specify
the intent of their operations more clearly.

lock-type: one of
critical_section_lock_type read_write
read_decaying_write

a. A critical_section_lock_type would be a single-
reader, single-writer lock, a simulation of EREW semantics.
The implementation of this type of lock could be more efficient
on certain architectures.

b. A read_write lock is a multi-readers, single-write lock, a
simulation of CREW semantics.

c. A read_decaying_write lock would be a specialization of
a read_write lock that also implements atomic
transformation of a write-lock into a read-lock.

d. The lock should be used to govern the operations on the
collection, and not operations on the items contained within the
collection.
The lock-type parameter may be used to specify if EREW or
CREW operations upon the collection are allowed. For example
if EREW operations are only allowed, then overlapped
dereferences of the execution_context resultant from
parallel-algorithms operating upon the same instance of a
safe-colln should be strictly ordered by an implementation
to ensure EREW semantics are maintained. Alternatively if
CREW semantics were specified then an implementation may
allow read-operations upon the same instance of the safe-colln
to occur in parallel, assuming they were not blocked by a write
operation.

collection-type:
A standard collection such as an STL-style list or vector, etc.

3. The thread-pool-type defines further sub-types for convenience to
the programmer:
create_direct:
This adaptor, parametrized by the type of work to be mutated,
contains certain sub-types. The input data and the mutation
operation combined are termed the work to be mutated, which would
be a type of closure. If the mutation operation does not change the
state of any data external to the closure, then this would be a type of
monad. More specifically, this work to be mutated should also be a
type of functor that either:
a. Provides a type result_type to access the result of the

mutation, and specifies the mutation member-function,
b. or implements the function process(result_type &), and

the library may determine the actual type of result_type.
The sub-types are:

joinable: A method of transferring work to be mutated into
an instance of thread-pool-types. If the work to be mutated
were to be transferred using this modifier, then the return
result of the transfer would be an execution_context,
that may subsequently be used to obtain the result of the
mutation. Note that this implies that the DSEL implements
a form of data-flow operation.

execution_context: This is the type of future that a transfer
returns. It is also a type of proxy to the result_type that
the mutation returns. Access via this proxy implicitly causes
the calling thread to wait until the mutation has been
completed. This is the other component of the DSEL that
implements the data-flow model. Various sub-types of
execution_context exist specific to the
result_types of the various operations that the DSEL
supports. Note that the implementation of
execution_context should specifically prohibit
aliasing instances of these types, copying instances of these
types and assigning instances of these types.

nonjoinable:
Another method of transferring work to be mutated into an instance
of thread-pool-types. If the work to be mutated were to be
transferred using this modifier, then the return result of the transfer
would be nothing. The mutation within the pool would occur at
some indeterminate time, the result of which would, for example, be
detectable by any side effects of the mutation within the
result_type of the work to be mutated.
time_critical:
This modifier ensures that when the work is mutated by a thread
within an instance of thread-pool-type into which it has been
October 2012 | Overload | 15

FEATURE JASON MCGUINESS AND COLIN EGAN
transferred, it will be executed at an implementation-defined higher
kernel priority. Other similar modifiers exist in the DSEL for other
kernel priorities. This example demonstrates that specifying other
modifiers, that would be extensions to the DSEL, would be possible.
cliques(natural_number n):
This modifier is used with data-parallel-algorithms. It causes the
instance of thread-pool-type to allow the data-parallel-algorithm to
operate with the number of threads shown, where p is the number of
threads in the instance:

4. The DSEL specifies a number of other utility types such as
shared_pointer, various exception types and exception-
management adaptors amongst others. The details of these
important, but ancillary types has been omitted for brevity.

Operators on the thread-pool-type
The various operations that are defined in the DSEL will now be given.
These operations tie together the types and express the restrictions upon
the generation of the control-flow graph that the DSEL may create.

1. The transfer work to be mutated into an instance of thread-pool-
type is defined as follows:
transfer-future:
execution-context-resultopt
thread-pool-type transfer-operation
execution-context-result:
execution_context <<

The token sequence << is the transfer operation, and also used
in the definition of the transfer-modifier-operation, amongst
other places.
Note how an execution_context can only be created via a
transfer of work to be mutated into the suitably defined
thread_pool. It is an error to transfer work into a
thread_pool that has been defined using the nonjoinable
subtype. There is no way to create an execution_context
with transferring work to be mutated, so every
execution_context is guaranteed to eventually contain the
result of a mutation.

transfer-operation:
transfer-modifier-operationopt transfer-data-operation
transfer-modifier-operation:
<< transfer-modifier
transfer-modifier: one of
time_critical joinable nonjoinable cliques

transfer-data-operation:
<< transfer-data
transfer-data: one of
work-to-be-mutated parallel-binary-operation
data-parallel-algorithm

The details of the various parallel-binary-operations and data-parallel-
algorithms will be given in the next section.

The data-parallel operations and algorithms
This section will describe the the various parallel algorithms defined
within the DSEL.

1. The parallel-binary-operations are defined as follows:
parallel-binary-operation: one of
binary_fun parallel-logical-operation
parallel-logical-operation: one of
logical_and logical_or

It is likely that an implementation would not implement the
usual short-circuiting of the operands, to allow them to
transferred into the thread pool and executed in parallel.

2. The data-parallel-algorithms are defined as follows:
data-parallel-algorithm: one of
accumulate copy count count_if fill fill_n find
find_if for_each min_element max_element reverse
transform

The style and arguments of the data-parallel-algorithms is
similar to those of the STL in the C++ ISO Standard.
Specifically they all take a safe-colln as the arguments to
specify the ranges and functors as necessary as specified within
the STL. Note that these algorithms all use run-time computed
bounds, otherwise it would be more optimal to use techniques
similar to those used in HPF or described in [Kennedy02] to
parallelize such operations. If the DSEL supports loop-carried
dependencies in the functor argument is undefined.
If algorithms were to be implemented using techniques
described in [Gibbons88] and [Casanova08], then the
algorithms would be optimal with O(log(p)) complexity in
distributing the work to the thread pool. Given that there are no
loop-carried dependencies, each thread may operate
independently upon a sub-range within the safe-colln for an
optimal algorithmic complexity shown below where n is the
number of items to be computed and p is the number of threads,
ignoring the operation time of the mutations.

3. The binary_funs are defined as follows:
binary_fun:
work-to-be-mutated work-to-be-mutated
binary_functor

A binary_functor is just a functor that takes two arguments. The
order of evaluation of the arguments is undefined. If the DSEL
supports dependencies between the arguments is undefined.
This would imply that the arguments should refrain from
modifying any external state.

4. Similarly, the logical_operations are defined as follows:
logical_operation:
work-to-be-mutated work-to-be-mutated
binary_functor

Note that no short-circuiting of the computation of the
arguments occurs. The result of mutating the arguments must be
boolean. If the DSEL supports dependencies between the
arguments is undefined. This would imply that the arguments
should refrain from modifying any external state.

Properties of the DSEL
In this section some results will be presented that derive from the definitions,
the first of which will demonstrate that the CFG (Control Flow Graph)
would be a tree from which the other useful results will directly derive.

Theorem 1
Using the DSEL described above, the parallel control-flow graph of any
program that may use a conforming implementation of the DSEL must be
an acyclic directed graph, and comprised of at least one singly-rooted tree,
but may contain multiple singly-rooted, independent, trees.
Proof: From the definitions of the DSEL, the transfer of work to be
mutated into the thread_pool may be done only once according to the
definition of transfer-future the result of which returns a single
execution_context according to the definition of execution-context-
r e su l t wh i ch has been t he on ly de f i ned wa y t o c r ea t e
execution_contexts. This implies that from a node in the CFG, each
transfer to the thread-pool-type represents a single forward-edge

p
n

⎡
⎢⎢

⎤
⎥⎥

O n
p

p− +
⎛

⎝
⎜

⎞

⎠
⎟1 log()
16 | Overload | October 2012

FEATUREJASON MCGUINESS AND COLIN EGAN
connecting the execution_context with the child-node that contains
the mutation. The back-edge from the mutation to the parent-node is the
edge connecting the result of the mutation with the dereference of the
execution_context . The execution_context and the
dereference occur in the same node, because execution_contexts
cannot be passed between nodes, by definition. In summary: the parent-
node has an edge from the execution_context it contains to the
mutation and a back-edge to the dereference in that parent-node. Each node
may perform none, one or more transfers resulting in none, one or more
child-nodes. A node with no children is a leaf-node, containing only a
mutation. Now back-edges to multiple parent nodes cannot be created,
according to the definition of execution_context, because
execution_contexts cannot be aliased nor copied between nodes. So
the only edges in this sub-graph are the forward and back edges from parent
to children. Therefore the sub-graph is not only acyclic, but a tree. Due to
the definitions of transfer-future and execution-context-result, the only
way to generate mutations is via the above technique. Therefore each child-
node either returns via the back edge immediately or generates a further
sub-tree attaching to the larger tree that contains it’s parent. Now if the
entry-point of the program is the single thread that runs main(), i.e. the
single root, this can only generate a tree, and each node in the tree can only
return or generate a tree, the whole CFG must be a tree. If there were more
entry-points, each one can only generate a tree per entry-point, as the
execution_contexts cannot be aliased nor copied between nodes, by
definition.
According to the above theorem, one may appreciate that a conforming
implementation of the DSEL would implement data-flow in software.

Theorem 2
If the user refrains from using any other threading-related items or atomic
objects other than those defined in the DSEL above then they can be
guaranteed to have a schedule free of race-conditions.
Proof: A race-condition is when two threads attempt to access the same data
at the same time. A race-condition in the CFG would be represented by a
child node with two parent nodes, with forward-edges connecting the
parents to the child. Note that the CFG must an acyclic tree according to
theorem 1, then this sub-graph cannot be represented in a tree, so the
schedule must be race-condition free.

Theorem 3
If the user refrains from using any other threading-related items or atomic
objects other than those defined in the DSEL above and that the work they
wish to mutate may not be aliased by any other object, then the user can
be guaranteed to have a schedule free of deadlocks.
Proof: A deadlock may be defined as: when threads A and B wait on atomic-
objects C and D, such that A locks C, waits upon D to unlock C and B locks
D, waits upon C to unlock D. In terms of the DSEL, this implies that
execution_contexts C and D are shared between two threads. i.e. that
an execution_context has been passed from a node A to a sibling
node B, and vice-versa occurs to execution_context B. But aliasing
execution_contexts has been explicitly forbidden in the DSEL by
definition 3.
Corollary 1: If the user refrains from using any other threading-related items
or atomic objects other than those defined in the DSEL above and that the
work they wish to mutate may not be aliased by any other object, then the
user can be guaranteed to have a schedule free of race-conditions and
deadlocks.
Proof: It must be proven that the two theorems 2 and 3 are not mutually
exclusive. Let us suppose that a CFG exists that satisfies 2 but not 3.
Therefore there must be either an edge formed by aliasing an
execution_context or a back-edge from the result of a mutation back
to a dereference of an execution_context. The former has been
e x p l i c i t l y f o r b i d den i n t h e D S E L b y d e f i n i t i on o f t h e
execution_context, 3, the latter forbidden by the definition of
transfer-future, 1. Both are a contradiction, therefore such a CFG cannot
exist. Therefore any conforming CFG must satisfy both theorems 2 and 3.

Theorem 4
If the user refrains from using any other threading-related items or atomic
objects other than those defined in the DSEL above then the schedule of work
to be mutated by a conforming implementation of the DSEL would be
executed in time taking at least an algorithmic complexity of O(log(p)) and
at most O(n) in units of time to mutate the work where n is the number of work
items to be mutated on p processors. The algorithmic order of the minimal
time would be poly-logarithmic, so within NC, therefore at least optimal.
Proof: Given that the schedule must be a tree according to theorem 1 with
at most n leaf-nodes, and that each node takes at most the number of
computations shown below according to the definition of the parallel-
algorithms.

Also it has been proven in [Gibbons88] that to distribute n items of work
onto p processors may be performed with an algorithmic complexity of
O(log(n)). The fastest computation time would be if the schedule were a
balanced tree, where the computation time would be the depth of the tree,
i.e. O(log(n)) in the same units. If the n items of work were to be greater
than the p processors, then O(log(p)) ≤ O(log(n)), so the computation time
would be slower than O(log(p)). The slowest computation time would be
if the tree were a chain, i.e. O(n) time. In those cases this implies that a
conforming implementation should add at most a constant order to the
execution time of the schedule.

Some example usage
These are two toy examples, based upon an implementation in
[McGuiness09], of how the above DSEL might appear. Listing 1 is a data-
flow example showing how the DSEL could be used to mutate some work
on a thread within the thread pool, effectively demonstrating how the
future would be waited upon. Note how the execution_context has
been created via the transfer of work into the thread_pool.
The typedefs in this example implementation of the grammar are
complex, but the typedef for the thread-pool-type would only be needed
once and, reasonably, could be held in a configuration trait in header file.
Listing 2 shows how a data-parallel version of the C++ accumulate
algorithm might appear.
All of the parameters have been specified in the thread-pool-type to
demonstrate the appearance of the typedef. Note that the example
illustrates a map-reduce operation, an implementation might:

1. take sub-ranges within the safe-colln,

O n
p

p− +
⎛

⎝
⎜

⎞

⎠
⎟1 log()

Listing 1

struct res_t {
 int i;
};
struct work_type {
 void process(res_t &) {}
};
typedef ppd::thread_pool<
 pool_traits::worker_threads_get_work,
 pool_traits::fixed_size,
 pool_adaptor<
 generic_traits::joinable,platform_api,
 heavyweight_threading
 >
> pool_type;
typedef pool_type::create_direct creator_t;
typedef creator_t::execution_context
execution_context;
typedef creator_t::joinable joinable;
pool_type pool(2);
execution_context context
 (pool<<joinable()<<work_type());
context ->i;
October 2012 | Overload | 17

FEATURE JASON MCGUINESS AND COLIN EGAN
2. which would be distributed across the threads within the
thread_pool,

3. the mutations upon each element within each sub-range would be
performed sequentially, their results combined via the accumulator
functor, without locking any other thread’s operation,

4. These sub-results would be combined with the final accumulation,
in this the implementation providing suitable locking to avoid any
race-condition,

5. The total result would be made available via the
execution_context.

Moreover the size of the input collection should be sufficiently large or
the time taken to execute the operation of the accumulator so long, so that
the cost of the above operations would be reasonably amortized.

Conclusions
The goals of the paper has been achieved: a DSEL has been formulated:

that may be used to expresses general-purpose parallelism within a
language,
ensures that there are no deadlocks and race conditions within the
program if the programmer restricts themselves to using the
constructs of the DSEL,
and does not preclude implementing optimal schedules on a CREW-
PRAM or EREW-PRAM computation model.

Intuition suggests that this result should have come as no surprise
considering the work done relating to auto-parallelizing compilers, which
work within the AST and CFGs of the parsed program [Tang99].
It is interesting to note that the results presented here would be applicable
to all programming languages, compiled or interpreted, and that one need
not be forced to re-implement a compiler. Moreover the DSEL has been
designed to directly address the issue of debugging any such parallel
program, directly addressing this problematic issue. Further advantages of
this DSEL are that programmers would not need to learn an entirely new
programming language, nor would they have to change to a novel compiler
implementing the target language, which may not be available, or if it were
might be impossible to use for more prosaic business reasons.

Future work
There are a number of avenues that arise which could be investigated, for
example a conforming implementation of the DSEL could be presented,
for example [McGuiness09]. The properties of such an implementation
could then be investigated by reimplementing a benchmark suite, such as
SPEC2006 [Reilly06], and comparing and contrasting the performance of
that implementation versus the literature. The definition of safe-colln has
not been an optimal design decision a better approach would have been to
define ranges that support locking upon the underlying collection.
Extending the DSEL may be required to admit memoization could be
investigated, such that a conforming implementation might implement not
only inter but intra-procedural analysis.

References
[Almasi03] George Almasi, Calin Cascaval, Jose G. Castanos, Monty

Denneau, Derek Lieber, Jose E. Moreira, Jr. Henry S. Warren:
‘Dissecting Cyclops: a detailed analysis of a multithreaded
architecture’, SIGARCH Comput. Archit. News, pp. 26–38, 2003.

[Bischof05] Holger Bischof, Sergei Gorlatch, Roman Leshchinskiy, Jens
Müller: ‘Data Parallelism in C++ Template Programs: a Barnes-hut
Case Study’, Parallel Processing Letters, pp. 257–272, 2005.

[Burger96] Doug Burger, James R. Goodman, Alain Kagi: ‘Memory
Bandwidth Limitations of Future Microprocessors’. In ICSA (1996)
pp. 78–89, http://citeseer.ist.psu.edu/burger96memory.html

[Casanova08] H. Casanova, A. Legrand, Y. Robert: Parallel Algorithms.
Chapman & Hall/CRC Press, 2008.

[El-ghazawi03] Tarek A. El-ghazawi, William W. Carlson, Jesse M.
Draper: ‘UPC language specifications v1.1.1’, 2003.

[Giacaman08] Nasser Giacaman, Oliver Sinnen: ‘Parallel iterator for
parallelising object oriented applications’. In SEPADS’08:

Proceedings of the 7th WSEAS International Conference on Software
Engineering, Parallel and Distributed Systems, pp. 44–49, 2008.

[Gibbons88] Alan Gibbons, Wojciech Rytter: Efficient parallel
algorithms. Cambridge University Press, 1988.

[ISO12] ISO: ISO/IEC 14882:2011 Information technology –
Programming languages – C++. International Organization for
Standardization, 2012. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=50372

[Kennedy02] Ken Kennedy, John R. Allen: Optimizing compilers for
modern architectures: a dependence-based approach. Morgan
Kaufmann Publishers Inc., 2002.

[Leiserson10] Charles E. Leiserson: ‘The Cilk++ concurrency platform’,
J. Supercomput., pp. 244–257, 2010. http://dx.doi.org/10.1007/
s11227-010-0405-3.

[McGuiness06a] Jason M. McGuiness, Colin Egan, Bruce Christianson,
Guang Gao: ‘The Challenges of Efficient Code-Generation for
Massively Parallel Architectures’. In Asia-Pacific Computer Systems
Architecture Conference (2006), pp. 416–422.

[McGuiness06b] Jason M. McGuiness: ‘Automatic Code-Generation
Techniques for Micro-Threaded RISC Architectures’, Masters’
thesis, University of Herfordshire. 2006.

[McGuiness09] Jason M. McGuiness: ‘libjmmcg – implementing PPD’.
2009. http://libjmmcg.sourceforge.net

[Pheatt08] Chuck Pheatt: ‘Intel® threading building blocks’, J. Comput.
Small Coll. 23, 4 pp. 298–298, 2008.

[Reilly06] Jeff Reilly: ‘Evolve or Die: Making SPEC’s CPU Suite
Relevant Today and Tomorrow’. In IISWC, pp. 119, 2006.

[Snelling94] David F. Snelling, Gregory K. Egan: ‘A Comparative Study
of Data-Flow Architectures’, 1994. http://citeseer.ist.psu.edu/
snelling94comparative.html

[Tang99] X. Tang: Compiling for Multithreaded Architectures. PhD
thesis, 1999. http://citeseer.ist.psu.edu/tang99compiling.html.

[Tian03] Xinmin Tian, Yen-Kuang Chen, Milind Girkar, Steven Ge,
Rainer Lienhart, Sanjiv Shah: ‘Exploring the Use of Hyper-
Threading Technology for Multimedia Applications with Intel®
OpenMP* Compiler’. In IPDPS, p. 36, 2003.

[Tvrkik99] Pavel Tvrdik: ‘Topics in parallel computing – PRAM
models’. 1999. http://pages.cs.wisc.edu/~tvrdik/2/html/
Section2.html

[Virding96] Robert Virding, Claes Wikström, Mike Williams:
Concurrent programming in ERLANG (2nd ed.) (Armstrong, Joe,
ed.). Prentice Hall International (UK) Ltd., 1996.

Listing 2

typedef ppd::thread_pool<
 pool_traits::worker_threads_get_work,
 pool_traits::fixed_size,
 pool_adaptor<
 generic_traits::joinable,platform_api,
 heavyweight_threading,
 pool_traits::normal_fifo,std::less,1
 >
> pool_type;
typedef ppd::safe_colln<
 vector,<int >,
 lock_traits::critical_section_lock_type
> vtr_colln_t;
typedef pool_type::accumulate_t<
 vtr_colln_t
>::execution_context execution_context;
vtr_colln_t v;
v.push_back(1); v.push_back(2);
execution_context context(
 pool<<joinable()
 <<pool.accumulate(
 v,1,std::plus<vtr_coln_t::value_type>()
)
);
assert(*context==4);
18 | Overload | October 2012

http://pages.cs.wisc.edu/~tvrdik/2/html/Section2.html
http://pages.cs.wisc.edu/~tvrdik/2/html/Section2.html
http://citeseer.ist.psu.edu/tang99compiling.html
http://citeseer.ist.psu.edu/snelling94comparative.html
http://citeseer.ist.psu.edu/snelling94comparative.html
http://libjmmcg.sourceforge.net
http://dx.doi.org/10.1007/s11227-010-0405-3
http://dx.doi.org/10.1007/s11227-010-0405-3
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://citeseer.ist.psu.edu/burger96memory.html

FEATURESERGEY IGNATCHENKO
Keep It Simple, Singleton!
Naïve assumptions sound like a bad idea. Sergey
Ignatchenko discusses how to spot good assumptions
in the face of changing requirements.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with the opinions of the
translator or the Overload editor. Please also keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry2004]) might have prevented providing an exact translation.
In addition, both the translator and Overload expressly disclaim all
responsibility from any action or inaction resulting from reading this
article.

here is a common wisdom in the programming world which says that
the word ‘naïve’, when applied to anything programming-related, is
essentially an insult (often aimed at the code, but usually also towards

the author who has written such naïve code); as one of the authors has put
it: ‘I cannot remember a time when a working insightful function has been
worse then the naïve equivalent’ [Meyer2012]. However, as is usual with
common wisdom, it is not as universal as it seems to be. There is at least
one ‘naïve’ thing in the programming world which not only shouldn’t be
avoided, but which should be adhered to, especially in the agile
programming world.

Naïve vs NotSoNaïve
Where there’s a will, there’s a way

~ proverb

Let us consider a simple example. Let us consider a hypothetical
programming team which needs to write a plane simulator; it is stated in
the specification that the plane to be simulated is a Cessna 162. So our
team has started the design process, and the original version of the design
(let’s name it Naïve Design) has placed the Engine as a member of the
class Plane:
 // naive.h
 class Plane
 {
 Engine engine;
 };

But then one of the younger team members Y (having noticed that a Cessna
162 is a single-engine aircraft, and being in the middle of reading the book
Design Patterns [GoF1994]), said: ‘Hey, why are we not using the
singleton pattern here?’ As he referred to the GoF book, which is
considered a very reputable authority, the team has agreed to make both
Engine and Plane singletons (see Listing 1).
The team (obviously, starting with team member Y) has been very excited
about this change, saying that it not only looks much more professional
and uses ‘cool’ newer technologies (as opposed to the naive.h approach,
which was described as ‘so eighties’), but also arguing that this approach
reduces coupling. Although this is a good thing per se (while we won’t
comment here whether it really reduces coupling or not, this argument can
easily be made and accepted in such context; if there is a will to use a certain
pattern – there is a way).

Incoming!
Welcome changing requirements, even late in development.

~ Agile Manifesto

Working hard, our hypothetical team has managed to write the Cessna 162
simulation software, and the simulation project turned out to be
commercially successful. One momentous day, the manager addressed the
team in very excited tone, saying, ‘We have just secured a contract from
the Big Company to extend our simulator to cover the whole line of Cessna
aircraft’. It was certainly a good thing from a business perspective, with
only one caveat: the whole line of Cessna aircraft includes the Reims-
Cessna F406 Caravan II, which is a twin-engine aircraft, and support for
twin-engine planes was a strict requirement by Big Company.
Obviously, the singleton Engine didn’t allow for twin-engine planes, and
unfortunately, dependencies on it being singleton were extensive and
spread all over the code. It was at this point that the flight simulator
program had to be redesigned almost from scratch, which delayed the
software release by more than half a year, which in turn caused this second

T

Listing 1

// notsonaive.h
class Plane
{
 public:
 static Plane* Instance();

 private:
 Plane();
 static Plane* m_pInstance;
 //...
};

class Engine
{
 public:
 static Engine* Instance();

 private:
 Engine();
 static Engine* m_pInstance;
 //...
};

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
October 2012 | Overload | 19

FEATURE SERGEY IGNATCHENKO
product to be late to market, and the project was closed pretty soon after
the launch.

Moral of the story
The perfecting of one’s self is the fundamental base of all

progress and all moral development.
~ Confucius

The moral of this story was never intended as ‘never use singletons’
(though in our experience, singletons tend to be overused more than any
other pattern), and certainly was not to imply that ‘design patterns in
general are bad’. This story was intended to illustrate two main points:

1. that to survive in the agile world, where changes of business task are
frequent by definition, changes need to be anticipated (this has been
explicitly said in the Agile Manifesto [AgileManifesto], so there is
nothing new about it)

and
2. that ‘naïve’ mapping of the business task into software (such as

classes and functions) tends to survive changes to business tasks
significantly better than any artificial mappings.

Assumption is the mother of...
As soon as you have made a thought, laugh at it.

~ Lao Tzu

Let us analyze the situation in a bit more detail. What we’re discussing here
is essentially a mapping between two domains: the first one is a domain
of business tasks, and the second one is a domain of programming
solutions. If we take a look at NotSoNaïve mapping compared to Naïve
mapping, it is easy to notice that a NotSoNaïve design essentially
introduces two major assumptions into the picture: the first assumption is
that there can be only one plane within the simulator, and the second one
is that there can be only one engine within the simulator. It is the second
assumption which was proven to be fatal in the case described above,
however, even the first assumption could become bad enough (for
example, if Big Company wants a simulator with more than one aircraft).
As usual, it was an invalid assumption which brought the design down.
However, designing without assumptions is not usually feasible, so there
is a question – how do we distinguish good assumptions from bad ones?
Our hypothetical case study has suggested the answer to this question is
as follows: only assumptions which are ‘natural’ from the point of view
of the business task in hand, are ‘good’ ones. Obviously, this is not a strict
definition, and answers may be different depending on who you ask, but

still it is better than nothing.

One example of a ‘reasonably good’ assumption for our example of a flight
simulator: while assuming that there is only one engine, one plane, and
even one airport might be too restrictive, assuming that there is only one
object Earth, is probably a reasonably good one (and therefore singleton
object Earth is probably not a bad idea). It should be re-iterated, however,
that even this ‘reasonably good’ assumption can fail, if, for example, there
is a company which may want to use such a simulator in a sci-fi game
covering multiple planets. Where exactly to draw the line (assuming that
there is only one engine, or only one plane, or only one airport, or only
one planet – or there are no ‘only one’ objects at all) – is a judgment call
of the design team. What is important though, is that parameters to consider
for this judgment call SHOULD include things like convenience and speed
of development, and SHOULD NOT include things like ‘using a cool
technology’ or (arguably even worse) ‘where could we use this pattern?’
logic.

Naïve mappings and SQL
The key, the whole key, and nothing but the key,

so help me Codd
~ unknown

In the relational database world, data design usually starts with direct one-
to-one mapping between business domain and programming domain, and
‘non-naïve mappings’ tend to be less of a problem. Still, even in the SQL
world, it is possible to make some crazy decisions based on ‘cool’
technologies. One such scenario might happen if at the point of system
design our team member Y is in the middle of reading a book on data
warehousing; if he is persistent enough and there is nobody in the team
who is bold enough to point out how inapplicable this model is to data
processing, it may easily result in using ‘cool’ star architecture with fact
tables and dimension tables for an operational database. Analysis of the
consequences of such a brilliant decision is left as an exercise for the
reader.

Summary
To summarize the above in the more formal way:
If we define ‘naïve’ mapping of business tasks into programs, as ‘mapping
without unnatural assumptions’, and we define all other mappings as
‘artificial mappings’, and we define ‘unnatural assumption’ as
‘assumption without sufficient justification from the nature of business
task itself’, we’re claiming that:

Naïve mappings of business tasks into software design tend to
accommodate likely business task changes significantly better than
any artificial mappings.

References
[AgileManifesto] http://agilemanifesto.org/
[GoF1994] Erich Gamma, Richard Helm, Ralph

Johnson and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software,
1994

[LoganBerry2004] David ‘Loganberry’, Frithaes! – an
Introduction to Colloquial Lapine!, http://
bitsnbobstones.watershipdown.org/lapine/
overview.html

[Meyer2012] Shaun Meyer, Naive Programming,
http://wordpress.morningside.edu/meyersh/2012/
03/23/naive-programming/

Acknowledgement
Sergey Gordeev from Gordeev Animation Graphics,
Prague, has provided the wonderful pictures that have
illustrated this series of articles.
20 | Overload | October 2012

http://agilemanifesto.org/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://wordpress.morningside.edu/meyersh/2012/03/23/naive-programming/

FEATUREALLAN KELLY
Software Developer
Business Patterns
Patterns can be applied to
business as well as software.
Allan Kelly shows us how.

Paul Grenyer says: “I’ve read plenty of Allan Kelly’s writings and they
always make me think about things from a different point of view and I
always learn something. I don’t know if he sees everything differently
to most people or just to me. I suspect it comes from Allan’s experience
across every stage of the product lifecycle.”

“I read and enjoyed Allan’s first book, Changing Software Development
and looked forward to Business Patterns for Software Developers. It
came out at a time shortly after I had left a startup company. It helped
me understand a lot of what had happened and why. As with all good
patterns books it helped me recognise and name patterns. Again, I
learnt a lot and the patterns are proving useful as I am now shaping my
own startup.”

ere we go again, Apps. Even the word application is too big for the
small pieces of software we download and install on our phones,
tablets or other gadget. Apps are a wonderful reminder of the power

of software. Indeed, software apps sit within a much bigger information,
technology and communications ecology which is itself powered by
software!
iOS Apps, Android Apps, Facebook Apps and now Apps for televisions.
We’ve been here before, last time it was the web, and before that Windows,
before that MSDOS and before that Apple IIs and TSR-80s.
Every seven years or so our industry comes up with a new paradigm which
allows small pieces of software, sometimes written by one person, to
advance the ecology itself. A few make millions while many have walk-
on parts.
That is the way the software industry is: high growth, high failure,
dynamic, loved of politicians and venture capitalists. The barriers to entry
are shockingly low: as long as you can code, have an idea and can live on
credit cards for a few months you can play too.
Yet the barriers to success are extremely high. Just because you can play
doesn’t mean you will succeed. Infant mortality is shocking. And we repeat
the same mistakes over and over again.
Perhaps the biggest mistake is to believe that if we build it they will come.
Those days are over, if they ever existed in the first place.
Successful software companies know about marketing, product strategy,
roadmaps, customers and many other things. In fact, successful software
companies have a lot in common. There are, just as in code, patterns of
success, patterns of business.
Over the last eight years I have collected many of these patterns. Often
identifying and writing one pattern leads to the discovery of several more.
All patterns are available for download from my website and 36 were
published as a book in early 2012. In the rest of this piece I’d like to discuss
a few of the patterns and how they fit together.

Same customers, different product
Once your business has a relationship with your customers they will trust
you, satisfied customers have a positive impression of your company and
your people. Sales staff already have a relationship with the customers and

the company is in a good position both to understand their needs and to
supply them.
Modern consumers are faced with a bewildering number of brands and
product variations. Choosing a trusted brand is one way to navigate the
jungle.
Nor is it just individual consumers who return to existing suppliers and
brand. Business customers find it easier to buy from suppliers they have
worked with before; and the promise of a compatible product is a big plus.
So rather than continually seek out new customers for the product you have
consider the customers – rather than your products – as the asset. Expand
your product offering so you have more products to sell to your existing
customers. Do this by focusing on the customer.
This approach has the additional benefit that by deepening your
relationship with the customer not only will you sell more, the customer
will get a better solution and the relationship will be strengthened further.
Some sales will build directly on the products you have already sold –
sometimes called ‘plus one’ sales: more licences for the same software,
upgrades to enhanced versions new versions of existing software, and add-
on modules are all possible. The next sale could be a service: support
contracts, training and installation are highly applicable to existing
products.
In fact, when you think about it there are actually four possibilities for
sales, as shown in Figure 1.
Different Customer, Same Product is probably the default position of most
companies – ‘We have a product, we need to find more customers!’ Yet
making sales can be very expensive in itself, customers might already be
using a competitor product or new sales channels might be needed to reach
new customer groups.

Same Customer, Same Product is normally found with consumable

H
Figure 1

Same customer Consumables, e.g.
repeated razor blades
or printer ink.
Sell to other groups
within the same
corporate.

Customer is the asset,
find or develop new
products to sell to the
customer.

Different customer Product is the asset
view.

Diversification: a new
product in a new
market.

Same product Different product

Allan Kelly has held just about every job in the software world.
Today he provides training and coaching to teams and companies
in the use of Agile and Lean technologies to develop better
software with better processes. He is the author of Changing
Software Development: Learning to become Agile, numerous
journal articles and is currently working on a book of Business
Strategy Patterns. Contact him at http://www.allankelly.net
October 2012 | Overload | 21

FEATURE ALLAN KELLY

As you decide which customer groups to
serve, you will define your market
position relative to your competitors
products – Gillette razor blades or HP ink jet cartridges but it could be
software upgrades, I must have bought five or six copies of Microsoft
Office in my life.
When products last like software ways need to be found to entice the same
customer to buy more of the same product. If the customer is a large
organization then it might be possible to move from one group within the
company to another selling licences as you go. While the paying customer
might be the same the end user will be different.
For home users it might be an upgrade cycle – new OS, new PC, new Office
version. Although even this might be considered a Same Customer,
Different Product model depending on how you view upgrades.
Diversification – Different Customer, Different Product – is inherently
risky because it is, in effect, establishing a new business. Sometimes
companies pull this off, like the way Caterpillar extended its brand into
clothing. Perhaps more often this is one jump too many, look at the way
many tobacco companies have tried to move into food only to retreat later.
Same Customers, Different Product view customers, not the product, as
the asset. Rather than sell an existing product to new customers you sell
existing customer a new product. When done well this can be highly
effective at low risk. Think of Oracle building on the database customer
base to sell enterprise software and middleware, or the IBM Rational
developer toolset.
Nor does the different product need to be your own product. You could
use the patterns Value Added Reseller or White Label to offer products to
your existing customer base under your own name. Offering another
product as a complement to your own can reduce costs and eliminate
competitive tension – something described in the pattern Complementor
Not Competitor.
Of course it is sometimes difficult from the outside to tell what a
company’s strategy actually is. Consider Dell’s recent acquisition of Quest
Software. This might be a diversification move – Different Customer,
Different Product – or attempt to sell software to existing hardware
customers, or possibly vice versa.

Homogenous and segmented customers
In the beginning many companies assume – by conscious decision or
through naivety – that all customers are homogenous. Indeed, this
approach has some advantages: it reduces time to market entry and
therefore costs. By entering the market it puts the company in the best
possible position to understand what customers want and what is possible.
A homogenous customers approach has worked well for the likes of
Microsoft – with MSDOS – and even Google’s early search product. If you
consider all customers to be the same then one product is all you need to
enter the market – thus keeping costs down and time short.
In the beginning companies may simply lack an understanding of potential
customers. Sometimes the best way to gain knowledge about customers is
simply to get into the market. However, sooner or later companies start
segmenting their customer base so to serve customers better, and to extract
more money.

Segmenting makes sense: customers are not homogenous. Different
customers want different things, some value speed or ease of use, others
value low price. Many a software development team has been lead astray
by focusing on the needs of one customer too closely and producing a
product which has little, or no, use to others.
The trick is to use Customer Understanding (another pattern) to segment
customers into different groups and address the needs of each group
separately. Segment groups are typically defined on discernable attributes
and characteristics that allow differentiation of one group from another;
another approach is to segment on the tasks to be performed. Either way,
working with definable groups avoids generalisations that do not
accurately describe any one group.
You may choose not to meet the needs of some groups if doing so would
compromise the needs of another. When resources are limited is it better
to target resources than spread them thin? Segmenting your customers will
allow you to segment your market. As you decide which customer groups
to serve, you will define your market position relative to your competitors.
You are also deciding who you will not serve. In some cases you may need
to extricate yourself from some existing group to pursue your new targets.
Segmentation can help avoid situations where more attention is paid to the
customer who shouts loudest. Strategy is as much, or even more, about
what you will not do, who you will not serve, as it is what you will do and
who you will serve.
Those you decide to serve will benefit because they will get a product that
more specifically fits their needs. A deliberate choice not to serve some
groups allows you to serve others better. Sub-dividing your customer base
will also help you spot opportunities to serve customers better.
But customer segmentation can go too far. While for customers the sheer
choice of products on offer under the same brand can be overwhelming.
Last year I needed to buy a new car GPS system, confronted with what
seemed like several thousand products on Amazon I stuck with the brand
I knew, Tom-Tom, and bought the cheapest product rather than spend time
considering the merits of each product. (True, I momentarily considered
a Garmin but was again overwhelmed by product choices.)
More dramatically contrast the approach of Nokia and Apple to the phone
market. Nokia markets an amazing range of different phones. Conceivably
there is a Nokia for every customer segment – indeed there might well be
more than one. There comes a point were the costs of such a diversified
product range become self-defeating.
Now consider Apple’s approach to the same market: there is one. There
was one iPhone to start with and although Apple continues to offer older
versions, and some Simple Product Variations (another pattern) there is
essentially still one iPhone.
Apple too have segmented the market but having done so they decided to
only address the premium smart phone market. Even here segmentation is
limited. A quick look at Nokia’s website one day in June 2012 shows four
different Lumia Smartphones, six other smart phones and at least a dozen
simpler phones.
22 | Overload | October 2012

FEATUREALLAN KELLY

addressing a segmented customer base
with a range of products targeted at each

segment should be a more effective
approach than homogenous customers
On the face of it addressing a segmented customer base with a range of
products targeted at each segment should be a more effective approach
than homogenous customers. But as the Apple v. Nokia story shows things
aren’t always that simple.

Sequences and competitive advantage
Patterns don’t exist in isolation. If one company faces a problem and solves
it using the same pattern as another it is quite likely to find the next problem
is also quite similar and the corresponding solution is also similar.
Figure 2 shows one such pattern sequence. The start of this sequence is
the desire to reach more customers. After segmenting the customer base
the company engages Simple Product Variations – maybe a range of
colours products al la the iMac or iPad covers – and Core Product Only.
(While Core Product Only works in some domains it doesn’t have great
history in the IT world. Consider Microsoft Works, it has most of the Office
functionality most users need but has never sold well. Even Linux seldom
appears on its own, it is usually the core of a distribution or baked into a
product like Android.).
Consequently the company has a Product Portfolio. In order to reach the
different customer segments – and limit competition with itself – the
company then engages a variety of distribution channels.
While one pattern may address one set of problems right here and now in
resolving the question new issues arise. Thus patterns tend to lead to other
patterns – a pattern of patterns usually know as a pattern sequence.
That different companies follow the same patterns and same sequences
isn’t a bad thing, in fact it validates the whole approach. For many
companies the product, not the process or organization, is the competitive
advantage. Why reinvent the process wheel when plenty of others have
already shown how to play the game?
That said for some reinventing the wheel is the competitive advantage. The
way the product or service is delivered, or the way the company works,
could well be the things that make the company a winner. The actual
product may be very similar to the competition but delivery very different.
For these companies business patterns serve not as a template for what to
do but rather a description of what not to do.

Finally
The software industry, indeed the wider technology industry, doesn’t stand
still. As the patterns were re-edited for the book it became clear that some
updates were needed.
For example, Nokia was sited as an example in several patterns. In some
cases the pattern and example still held. In others, the recent events at
Nokia lead to new insights into the business of technology.
I believe the patterns themselves will stand the test of time but I expect
some of the details and examples will change. I also expect that using this
common languages for much of what our industry does will allow software
developers and entrepreneurs to come up with new variations, new

combinations and completely new approaches.

COMPLEMENTOR, NOT COMPETITOR
Strawberries do not compete with cream.

Three years, a lot of activity,
and a few billion dollars later,
we still weren’t [application
software] leaders...

However, one thing we were
doing exceptionally well was
irritating the heck out of the
leading application providers
– compan ies l i ke SAP,
PeopleSoft and JD Edwards.
These companies were in a
great position to generate a lot
of business for us...

What we said to them was ‘We
are going to leave this market
to you; we are going to be your
partners rather than your
competitor’. (Gerstner, 2003)

Figure 2
October 2012 | Overload | 23

FEATURE ALLAN KELLY
Context
Within your product portfolio you sell two or more products that are
complementary and usually sold together; it might not even make sense
to buy them individually. Your competitors offer one or other of the
products, and customers often mix-and-match. One of your products can
hold its own against the competition, but the other cannot.

Problem
How do you arrange your product and services portfolio so that you
maximise your profits and don’t lose money on products?

Forces
You have two complementary products: let’s call them ‘Strawberries’ and
‘Cream’. Strawberries sells well and makes money, but Cream sells less
well; it loses money, and even some of your Strawberry customers prefer
to buy their Cream from another vendor.
You have traditionally sold customers a total solution of both Strawberries
and Cream. But, while your Strawberries are very good, there is better
Cream on offer elsewhere. Customers who buy Strawberries elsewhere are
unlikely to buy your Cream too.
Developing both Strawberries and Cream has allowed for innovation in the
past, but now it is competitors who sell only Strawberries or only Cream
who are generating the innovations. Having both does not offer a lot more
opportunities for innovation.
Traditionally your own Strawberries and Cream, and the innovation
possible, has given you a strategic advantage. But the market, business
strategy and core competencies have changed over time, and you no longer
get the advantage you once did.
Selling both products together makes for a bigger sale with more revenue,
but when costs are broken down, most of the profit comes from the
Strawberries.
Both Strawberries and Cream are expensive to develop; while
Strawberries makes money, Cream is losing money.

Solution
Concentrate your activities on the most profitable part of the solution;
discontinue the less profitable parts and replace the missing parts with ones
from other vendors. Rather than competing with everyone, seek to
complement those who can help you sell more of your most profitable
products.
Customers will want to buy Strawberries and Cream; now that you no
longer compete with the Cream manufacturers, they can be a source of
customers. You will need to form partnerships to align your goals and
methods. Your staff will need to know partners’ products and ensure
partners’ Cream works well with your Strawberries.
You need to prove to your new partners that you are committed to this
strategy. Move fast and decisively to show that you are now a friend and
not an enemy. Cream makers could still recommend one of the other
Strawberry suppliers, so work together to produce the best Strawberries
for their Cream.

Consequences
You no longer supply a total solution with your own products; instead, you
sell your most profitable product and complement it with third-party
products to offer a total solution.

Opportunities for innovation between Strawberries and Cream are more
difficult to find and exploit; however, you can be more focused on
innovation for Strawberries.
Discontinuing a loss-making product should immediately help your
balance sheet. By partnering with others you can increase sales revenue
for your profitable products – a classic win-win situation.
Sales of Strawberries alone may be smaller, but they will be more
profitable; in addition, you are hoping to sell more Strawberries by
working together with the Cream makers. You may be able to make
revenue from consultancy services too.
You have saved the cost of developing an expensive product. Product
development costs are lower; the cash released may be used elsewhere, say
in new products or services.
However, you will need to ensure that your Strawberries are compatible
with the Cream from various vendors. Ensuring compatibility can in itself
be a timely and costly endeavour.
Customers are no longer locked into your products; they now choose your
products because you have the best solution to their needs, not because they
have no choice.
New partners may seek to lock you into their product; if you become
dependent on one Cream maker, you will be in a weak position if they ask
for special consideration and price cuts. So work with several Cream
makers to give you the choice to walk away from a deal if a partner asks
too much.

Variations
Products may be service products. You might stop offering your physical
product while offering your services in support of your traditional
competitors’ products. Conversely, you may discontinue your own
services offerings and encourage third-party suppliers to offer services to
support your products.

Examples
Games console manufactures usually lose money on each console sold
while making large profits on the games for the consoles. After selling over
6 million Dreamcast consoles and losing $500 million, Sega left the market
in 2001 and chose to focus on producing software for Sony, Microsoft and
Nintendo consoles.

Related patterns
Contrast with LIFETIME SERVICES FOR PRODUCTs, where the sale of one
product – possibly at a loss – allows you to make money from a second.
IN BED WITH THE ENEMY (Weiss, 2007) also describes how companies
can work with former and even current competitors.
A WHOLE PRODUCT strategy can lead companies to produce supporting
products that in time end up losing money in their own right. As long as
customers see a total solution to their problems, it is not important whether
all components come from one supplier or many.

References
[Gerstner03]Gerstner, L. V. 2003. Who says Elephants Can’t Dance?,

London, HarperCollins
[Weiss07] ‘In Bed with the Enemy’ in Hvatum, L. & Schuemmer, T., eds.

EuroPLoP – Proceedings of the 8th European Conference on
Patterns Languages of Programs, 2007 Irsee, Germany. UVK
Universitätsverlag Konstanz GmbH
24 | Overload | October 2012

	Overload_111_Final_3.pdf
	Too Much Information
	Valgrind Part 4 Cachegrind and Callgrind
	Universal References in C++11
	A DSEL for Addressing the Problems Posed by Parallel Architectures
	Keep It Simple, Singleton!
	Software Developer Business Patterns

