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EDITORIAL FRANCES BUONTEMPO
Decisions, Decisions
Providing precise definitions 
can be difficult. For example, 
what is a program?
Previously we considered how to learn a, possibly
non-existent, programming language. This clearly
pre-supposes we understand what a programming
language is. Upon realising I only had a couple of
weeks to get an editorial together, and as ever, with no
opinions to share or muse on, I decided to spends hours

wondering what a programming language actually is, and furthermore,
what constitutes a computer program.

Opinions seem to vary. Some people do not regard VB, VBA or Excel as
‘proper’ programming, while others get upset by this viewpoint. What
about mathematics or statistics packages, such as MatLab or R? They can
include data structures and ways of controlling the flow of execution.
They allow one to issue instructions to a computer. This seems
‘programish’. Of two colleagues at work, one does not regard R as
programming since it is very high-level compared to his roots,
programming in assembler. Another does regard R as a proper language,
though paused for a while when I asked what the difference between using
a program and writing a program was. It seems there may be a difference
between a tool for getting a job done, and the building blocks for making
such a tool. Ignoring the obvious emotive nature of such discussions, we
can broaden this out from maths and stats packages. Is Markup a
language? It seems strange to regard XML as a programming language,
but XSLT almost certainly is, since it is Turing complete [Kepser]. In
other words, it can ‘compute every Turing computable function’.
[Turing_completeness] That was helpful, wasn’t it? Equivalently, it can
simulate a universal Turing machine. Some may argue that nothing can
simulate a universal Turing machine, since such a machine has infinite
memory and is indestructible, but let us leave aside such practical details.

Returning to our original question, ‘What counts as a programming
language?’, it might ironically be possible to regard an attempt to create
a mathematics package as building the foundations of programming.
Whether this means mathematics packages count as programming
languages is a matter for further discussion, but for now let us consider a
little history. Quite early in his career, David Hilbert published a book
establishing a foundation for geometry, demonstrating that its axioms,
based on Euclid’s, were consistent, in other words it does not contain or
give rise to a contradiction. Why does this matter? If you start with a
contradiction, you can prove anything. ‘Ex falso, quodlibet.’ From falsity,
whatever you like. For example, assume A and !A, for some statement A.
Formally, using & for ‘and’, ! for ‘not’, | for ‘or’ and => for ‘implies’,

A & !A => A       (1)

and similarly 

A & !A => !A       (2)

by definition of &.

From (1), for any B, such as ‘Unicorns exist’ since A holds, A or B holds:

  A | B       (3)

by definition of |.

From (2), !A, (3) => B, by definition of | (if A or B is true and A is false,
B must be true)

From our original assumption, A & !A, we have deduced B, formally

  A & !A => B

that is unicorns exist, or whatever we chose for B.

Hilbert would not be impressed. Later, he gave a major address to the
Second International Congress of Mathematics in August 1900. In his
speech he mentioned 10 unsolved mathematics problems, though the
published version went on to list 23. He said, 

This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call. There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus. [Hilbert]

His second problem called for proof of the consistency of the real
numbers, which he had rather assumed in his earlier geometry book. The
tenth problem called for someone to ‘Devise a process according to which
it can be determined by a finite number of operations whether the
[Diophantine] equation is solvable in rational integers’ [Hilbert]. The full
set of twenty three problems can be readily found, for example see
Wikipedia [Hilbert’s_problem]. A curious point to note is a
mathematician asking for a process or algorithm, rather than an answer.
We here see the beginnings of what is now known as Hilbert’s
Programme; an attempt to formalise mathematics in axiomatic form
together with a proof of its consistency and completeness, including no
superfluous axioms, and with every well-formed formula being
‘decidable’ that is provable or falsifiable. This would allow all of
mathematics to be deduced from the axioms. In 1928, Hilbert generalises
these ideas and questions to the Entscheidungsproblem – the decision
problem. Can you devise an algorithm which concludes whether a
correctly formed statement is deducible from a set of axioms? Over time,
people engaged with the problem, and some dream of devising a
procedure that could be carried out by a machine. The quest to put
mathematics on firm logical foundations had started a quest for the
ultimate mathematics package.

In 1936 Alonzo Church and Alan Turing both published separate papers
showing there can be no general solution to the decision problem. Church
used his λ-calculus [Church] and Turing invented his Turing machine
[Turing]. Turing’s paper is only 36 pages long but ground-breaking. He
introduces the idea of an automatic machine, which can read a symbol at
a time from a tape, alter or erase the symbol, move the tape (or read head)
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EDITORIALFRANCES BUONTEMPO
and write further symbols. In conjunction with a state register, which stores
one of finitely many states, and a table of instructions mapping states to
symbols, we have a Turing machine. Some of the instructions for a given
state and input symbol involve moving the tape which reads almost exactly
like a goto. Taking the automatic machine a step further, Turing moves
on to describe a universal machine, U, which is supplied with a tape
containing the instructions and initial state of an automatic machine, M.
U will then compute the same sequence as M. Furthermore, it can be given
the instructions for any automatic machine M. As noted, this gives it
infinite memory and assumes the machine and tape never break,
nonetheless imagining a machine that can be instructed, or programmed,
rather than building a special purpose machine for each and every problem
is a revolutionary idea.

Turing’s paper ... contains, in essence, the invention of the modern
computer and some of the programming techniques that
accompanied it. [Minksy]

Turing’s paper is quite difficult to read, so on my second attempt I opted
for Petzold’s The Annotated Turing [Petzold] which weighs in at 372
pages, making it just over ten times the length of the original paper and
Petzold’s shortest book. He tells us:

I have sometimes tried to write 300-page books. I would very much
like to write a 300-page book. But I have always failed. [Petzold2]

At least he has made an effort.

Unfortunately, Church and Turing had both scuppered Hilbert’s
programme (there’s that word ‘program’ again). They had both been
influenced by the earlier work of Gödel, from 1931, which burrowed down
into the requirements for consistency and completeness. Many people refer
to Gödel’s incompleteness theorem, but it should be noted there are two.
The first shows that for any consistent axiomatic system capable of
describing the natural numbers, there are true statements which the system
cannot prove. At a high level, this is demonstrated by encoding ‘This
statement is not provable’ within the system. If the system can prove that
statement it means it cannot prove that statement. If it cannot prove that
statement, this proves it can prove the statement. Either way it is
inconsistent. A consistent system cannot therefore be complete. The
second theorem shows that any such consistent system cannot prove its
own consistency. The technical difficulty here comes from describing the
consistency of the system within the system, but when you manage that
the proof follows almost immediately.

What have we learnt about the nature of a computer program? First, you
do not need a computer in order to write a program. Next programming
languages have a syntax. Hilbert desired the decidability of a ‘well-formed
formula’ in his program. How do you decide if a formula is well-formed?
Strict syntax rules pin that down very easily. Gödel’s incompleteness
theorems do not apply here, since the syntax checker is external to the
program itself. Finally, a program does something. Given its current state

and an input, using a list of instructions, it acts: Turing’s machine wrote a
1 or 0, move the tape or erased a symbol on the tape, not thrashing the
program but rather keeping its rough working up to date, leaving the
program in the next state. It is of course, easier to program if you have a
computer, simpler if another program checks the syntax of your program
for you, and very satisfying if the program does what was required.

Where does this leave a programmer today? Firstly, with a computer,
which must makes things easier than they were for Turing. Secondly,
armed with considerably more programming languages than existed half
a century ago, confronted by more than a fistful of idioms and a plethora
of patterns, a programmer can control MRI scanners, create games,
numerically solve hard mathematical problems, but can still never be sure
if the program will halt, run out of memory, or behave correctly. Clearly,
the decision problem suggests we are, in general, unable to decide if any
given program will halt, or contain a bug. Perhaps we must acknowledge
‘ignorabimus’ and uncertainty. I know I certainly
couldn’t decide on a suitable editorial topic, and hope
you accept my apologies and excuses yet again.
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FEATURE ADAM TORNHILL
Code as a Crime Scene
Forensic techniques can predict 
possible future crimes. Adam Tornhill 
shows how they can be applied to code.
s projects grow, social and organizational aspects interact with
technical challenges to inflate the complexity in the solution domain.
To address that multi-dimensional complexity we need to look at the

historic evolution of our systems. Inspired by modern offender profiling
methods from forensic psychology, we’ll develop techniques to utilize
historic information from our version-control systems to identify weak
spots in our code base. Just like we want to hunt down offenders in the
real world, we need to find and correct offending code in our own designs.

The maintenance puzzle
Maintenance is a challenge to every software project. It’s the most
expensive phase in any product’s life cycle, consuming approximately 60
percent of the cost. Maintenance is also different in its very essence when
compared to greenfield development. Of all that maintenance money, a
whole 60 percent is spent on modifications to existing programs [Glass02].

The immediate conclusion is that if we want to optimize any aspect of
software development, maintenance is the most important part to focus on.
We need to make it as cheap and predictable as possible to modify existing
programs. The current trend towards agile project disciplines makes it an
even more urgent matter. In an agile environment we basically enter
maintenance mode immediately after the first iteration and we want to
make sure that the time we spend in the most expensive life cycle phase
is well-invested.

So is it actually maintenance that is the root of all evil? Not really.
Maintenance is a good sign – it means someone’s using your program. And
that someone cares enough to request modifications and new features.
Without that force, we’d all be unemployed. I’d rather view maintenance
as part of a valuable feedback loop that allows us to continuously learn and
improve, both as programmers and as an organization. We just have to be
able to act on the feedback.

The typical answer to that maintenance puzzle is refactoring [Fowler99].
We strive to keep the code simple and refactor as needed. Done by the
book, refactoring is a disciplined and low-risk investment in the code base.
Yet, many modifications require design changes on a higher level.
Fundamental assumptions will change and complex designs will
inevitably have to be rethought. In limited and specific situations
refactoring can take us there in a controlled series of smaller steps. But
that’s not always the case. Even when it is, we still need a sense of overall
direction.

Intuition doesn’t scale
Since the 70s we have tried to identify complexity and quality problems
by using synthetic complexity measurements (e.g. Halstead [Halstead77]

or McCabe [McCabe76] complexity measures). It’s an approach that has
gained limited success. The main reason is that traditional metrics just
cannot capture the complex nature of software.

If complexity metrics don’t work, at least not to their full promise, what’s
left for us? Robert Glass, one of my favorite writers in the software field,
suggests intuition [Glass06].

Human intuition is often praised as a gift with mystical, almost magical
qualities. Intuition sure is powerful. So why not just have our experts
glance at our code and pass an immediate verdict on its qualities and
virtues? As we’re about to discover, intuition has its place. But that place
is more limited than my previous reference to Robert Glass suggests.

Intuition is largely an automatic psychological process. This is both a
strength and a weakness. Automatic processes are unconscious cognitive
processes characterized by their high efficiency and ability to make fast
and complex decisions based on vast amounts of information. But
efficiency comes at a price. Automatic processes are prone to social and
cognitive biases.

Even if we somehow manage to avoid those biases, a task that is virtually
impossible for us, we would still have a problem if we rely on intuition.
Intuition doesn’t scale. No matter how good a programmer you are, there’s
no way your expertise is going to scale across hundreds of thousands or even
million lines of code. Worse, with parallel development activities,
performed by different teams, our code base gets another dimension too.
And that’s a dimension that isn’t visible in the physical structure of the code.

A temporal dimension of code
Over time a code base matures. Different parts stabilize at different rates.
As some parts stabilize others become more fragile and volatile which
necessitates a shift in focus over time. The consequence is that parts of the
code base may well contain excess complexity. But that doesn’t mean we
should go after it immediately. If we aren’t working on that part, and
haven’t been for quite some time, it’s basically a cold spot. Instead other
parts of the code may require our immediate attention.

The idea is to prioritize our technical debt based on the amount of recent
development activity. A key to this prioritization is to consider the
evolution of our system over time. That is, we need to introduce a temporal
axis. Considering the evolution of our code along a temporal axis allows
us to take the temperature on its different parts. The identified hot spots,
the parts with high development activity, will be our priorities.

This strategy provides us with a guide to our code. It’s a guide that shows
where to focus our cognitive cycles by answering questions like:

 What’s the most complex spot in our software that we’re likely to
change next?

 What are the typical consequences of that change?

 Is is likely to be a local change or will other parts have to change
too? Can we predict the impact on related and seemingly unrelated
modules?

 A

Adam Tornhill Combining degrees in engineering and 
psychology, Adam tries to unite these two worlds by making his 
technical solutions fit the human element. While he gets paid to 
code in C++, C#, Java and Python, he’s more likely to hack Lisp 
or Erlang in his spare time. Other interests include modern history, 
music and martial arts.
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The profiling techniques are tools used to
focus scarce manual efforts and expertise

on where they’re needed the most
In their essence, such open problems are similar to the ones forensic
psychologists face. Consider a series of crimes spread out over a vast
geographical area:

 Where can we expect the next crime to occur?

 What area is most likely to serve as home base of the offender?

 Are there any patterns in the series of crimes? Can we predict where
the offender will strike again?

Modern forensic psychologists and crime investigators attack these open,
large-scale problems with methods useful to us software developers too.
Follow along, and we’ll see how. Welcome to the world of forensic
psychology!

Geographical profiling of crimes: a 2 minutes 
introduction
Modern geographical profiling bears little or no resemblance to the
Hollywood cliché of ‘profiling’ as seen in movies. There the personality
traits of an anonymous offender are read like an open book. Needless to
say, there’s little to no research backing that approach. Instead geographical
profiling has a firm scientific basis in statistics and environmental
psychology. It’s a complex subject with its fair share of controversies and
divided opinions (in other words: just like our field of programming). But
the basic principles are simple enough to grasp in a few minutes.

The basic premise is that the geographical location of crimes contain
valuable information. For a crime to occur, there must be an overlap in
space and time between the offender and a victim. The locations of crimes
are never random. Most of the time criminals behave just like ordinary,
law abiding citizens. They go to work, visit restaurants and shops, maintain
social contacts. During these activities, each individual builds a mental
map of the geographical areas he visits and lives in. It’s a mental map that
will come to shape the decision on where to commit a crime.

The characteristic of a crime is a personal trade-off between potential
opportunities and risk of detection. Most offenders commit their offenses
close to home (with some variation depending on the type of offense and
the environment). The reason is that the area close to home is also the area
where the known crime opportunities have been spotted. As the distance
to the home increases, there’s a decline in crimes. This spatial behavior is
known as distance decay. At the same time, the offender wants to avoid
detection. Since he may be well-known in the immediate area around the
home base, there’s typically a small area where no crimes are committed.

Once a crime has been committed, the offender realizes there’s a risk
associated with an immediate return to that area. The typical response is
to select the next potential crime target in the opposite direction. Over time,
the geographical distribution of the crimes become the shape of a circle.
So while the deeds of an offender may be bizarre, the processes behind
them are rationale with a strong logic to them [Canter08]. It’s this
underlying dark logic that forms the patterns and allows us to profile a
crime series. By mapping out the locations on a map and applying these
two principles we’re able to get an informed idea on where the offender
has his home base.

Finally, a small disclaimer. Real-world geographical profiling is more
sophisticated. Since psychologically all distances aren’t equal the crime
locations have to be weighted. One approach is to consider each crime
location a center of gravity and mathematically weight them together. That
weighted result will point us to the geographical area most likely to contain
the home base of the offender, our hot spot. But the underlying basic
principles are the same. Simplicity does scale, even in the real world.

The geography of code
Geographical profiling does not point us to an exact location. The
technique is about significantly narrowing the search area. It’s all about
highlighting hot spots in a larger geographical area. The profiling
techniques are tools used to focus scarce manual efforts and expertise on
where they’re needed the most.

It’s an attractive idea to apply similar techniques to software systems.
Instead of trying to speculate about potential technical debt amongst
thousands or perhaps million lines of code, geographical profiling would
give us to a prioritized lists of modules, the hot spots, our top offenders. That
leaves us with the challenge of identifying both a geography of code and a
spatial movement within our digital creations. Let’s start with the former.

Over the years there have been several interesting attempts to visualize
large-scale software systems. My personal favorite is Code City
[CodeCity] where software systems are visualized as cities. Each package
becomes a city block, each class a building with the number of methods
defining the height and the number of attributes defining the base of the
building. Not only does it match the profiling metaphor; it’s also visually
appealing and makes large, monolithic classes stand out. Figure 1 is a
geography of code as visualized by Code City. Each building represents a
class with the number of methods giving the height and the attributes the
base.

Visualizations may give us a geography, but the picture is no more
complete than the metrics behind it. If you’ve been following along in this
chapter, you’ll see that we need another dimension – it’s the overlap
between code characteristics and the spatial movement of the

Figure 1
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VCS data allows us to trace changes over 
series of commits in order to spot patterns in 
the modifications
programmers within the code that is interesting. That overlap between
complex code and high activity are the combined factors to guide our
refactoring efforts. Complexity is only a problem when we need to deal
with it. In case no one needs to read or modify a particular part of the code,
does it really matter if it’s complex? Sure, it’s a potential time bomb
waiting to go off. We may choose to address it, but prefer to correct more
immediate concerns first. Our profiling techniques allows us to get our
priorities right.

Interaction patterns identify hot spots
Just like each crime provides the geographical profiler with valuable
information, so does each code change in our system. Each change we
make, each commit, contain information on how we as developers interact
with the evolving system. The information is available in our version-
control systems (VCS). The statistics from our VCS is an informational
gold mine. Mining and analyzing that information provides us with quite
a different view of the system (see Table 1). 

The VCS data is our equivalent to spatial movement in geographical
profiling since it records the steps of each developer. The subset I chose
to mine is derived from organizational metrics known to serve as good
predictors of defects and quality issues (see for example Nagappan et al.
[Nagappan08]):

1. Number of developers: The more developers working on a module,
the larger the communication challenges. Note that this metric is a
compound. As discussed below, the metric can be split into former
employed developers and current developers to weight in potential
knowledge drain.

2. Number of revisions: Code changes for a reason. Perhaps because
a certain module has too many responsibilities or because the feature
area is poorly understood. This metric is based on the idea that code
that has changed in the past is likely to change again.

In contrast to traditional metrics, organizational metrics carry social
information. Depending on the available information, additional metrics
may be added. For example, it’s rare to see a stable software team work
together for extended periods of time. Each person that leaves drains the
accumulated knowledge. When this type of information is available, it’s
recommended to weight it into our analysis.

Together those metrics let us identify the areas of the system that are
subject to particularly heavy development, the areas with lot of parallel
development activity by multiple developers or the parts with the highest
change frequency. In geographical profiling we combined the principles
of distance decay and the circle hypothesis to predict the home base of an
offender. In the same spirit we can visualize the overlap between
traditional complexity metrics and our new organizational metrics.
Figure 2 shows custom color mark-up in Code City to highlight areas of
intense parallel development by multiple programmers; the more intense
the colors, the more activity.

The outcome of such hot spot analysis in code has often surprised me.
Sometimes, the most complex areas are not necessarily where we spend
our efforts. Instead, I often find several spread-out areas of intense
development activity. With multiple developers crowding in those same
areas of a code base, future quality issues and design problems will arise.

Emergent design driven by software evolution
Our crash-course in geographical profiling of crimes taught us how linking
crimes and considering them as a related network allows us to make
predictions and take possible counter steps. Similarly VCS data allows us
to trace changes over series of commits in order to spot patterns in the
modifications. The resulting analysis will allow us to detect subtle
problems that go beyond what traditional metrics are able to show. It’s an
analysis that suggests directions for our refactorings based on the evolution
of the code itself. The basis is a concept called logical coupling.

Logical coupling refers to modules that tend to change together. The
concept differs from traditional coupling in that there isn’t necessarily any
physical software dependency between the coupled modules. Modules that
are logically coupled have a hidden, implicit dependency between them
such that a change to one of them leads to a predictable change in the
coupled module. Logical coupling shows-up in our VCS data as shared
commits between the coupled modules.Table 1

Example on data mined from a version-control system. The data
serves as the basis to identify hot spots in our code base.

Module Number of developers Number of revisions

Protocol.java 7 134

ClientConnection.java 8 76

Message.java 4 74

DispatchTable.java 12 53

Figure 2
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With multiple developers crowding in those
same areas of a code base, future quality

issues and design problems will arise
Analyzing logical coupling
At the time of writing, there’s limited tool support for calculating logical
coupling. There are capable academic research tools available
[D’Ambros06], but as far as I know nothing in the open-source space. For
the purpose of this article, I’ve started to work on Code Maat, a suite of
open-source Clojure programs, to fill that gap [CodeMaat].

Code Maat calculates the logical coupling of all modules (past and present)
in a code base. Depending on the longevity of the system, that may be a
lot of information to process. Thus, I usually define a pretty high coupling
threshold to start with and focus on sorting out the top offenders first. I
also limit the temporal window to the recent period of interest; over time
many design issues do get fixed and we don’t want old data to interfere
with our current analysis of the code.

The actual thresholds and temporal period depend on product-specific
context. Even when I have full insight into a project, I usually have to tweak
and experiment with different parameters to get a sensible set of data.
Typically, I ignore logical coupling below 30 percent and I strip out all
modules with too few revisions to avoid data skew. With much developer
activity a temporal window of two or three months is a good heuristic.

Once we’ve decided on the initial parameters we can put Code Maat to
work. Table 2 gives an example, limited to a single module, of the data I
derive from a logical coupling analysis.

Visualizing logical coupling
In its simplest form logical coupling can be visualized by frequency
diagrams. But just like the analysis of the organization metrics above, it’s
the overlap between traditional complexity and our more subtle measure
of logical coupling that is the main point of interest. Where the two meet,
there’s likely to be a future refactoring feast. It’s a data point we want to
stand-out in our visualizations. Figure 3 shows a combined visualization
of logical coupling and module complexity using tree maps.

To visualize that multi-dimensional space I use tree maps where each tile
represents a module. The size of each tile is proportional to its module’s
degree of logical coupling. The complexity of the coupled module (e.g.
lines of code or Cyclomatic Complexity) is visualized using color mark-
up; the darker the color, the more complex the module. Figure 4 shows a
hierarchical view of the logical coupling partitioned on a per-layer basis.

Tree maps are an excellent choice in cases where the differing sizes or
sheer amount of individual components would render a pie chart
unreadable. Tree maps are also well-suited to illustrate hierarchical
structure. One possible hierarchical visualization is to aggregate the logical
coupling over packages and present a multi-layered top-down view of the
total coupling in the system as in Figure 4.

Whatever we chose, once the logical coupling data is mined, our next step
is to find out why specific modules keep changing together.

Table 2

Logical coupling analysis of the module NodeConnection.cs

Coupled module
Coupling 

(%)

Shared 
revisions 

(total)

Mean 
revisions 

(avg)

NodeSender.cs 80 12 15

NodeReceiver.cs 67 20 30

node_connection_test.py 60 9 15

UserStatistics.cs 48 11 23

... ... ... ...

Message.cs 7 1 15

Figure 3

I’ve been deliberately vague in my definition of logical coupling. What do
I really mean with “modules that end to change together”? To analyze
our VCS data we need to define a temporal period, a window of coupling.
The precise quantification of that period depends on context.

In its most basic form, I consider modules logically coupled when they
change in the same commit. Often, such a definiton takes us far enough
to find interesting and unexpected relationships in our system. But in
larger software organizations, that definition is probably too narrow.
When multiple teams are responsible for different parts of the system,
the temporal period of interest is probably extended to days or even
weeks.

A temporal period for logical coupling
October 2013 | Overload | 7
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A couple for a reason
Logical coupling arises for a reason. The most common case is copy-paste
code. This one is straightforward to address; extract and encapsulate the
common functionality. But logical coupling often has more subtle roots.
Perhaps the coupled modules reflect different roles, like a producer and
consumer  o f  spec i f i c  in format ion .  In  the  example  above ,
NodeSender.cs and NodeReceiver.cs seem to reflect those
responsibilities. In such case it’s not obvious what to do. Perhaps it’s not
even desirable to change the structure. It’s situations like these that require
our human expertise to pass an informed judgment within the given
context.

The third reason for logical coupling is related to our timeless principles
of encapsulation and cohesion. As the data above illustrates, the
UserStatistics.cs  module  changed together  wi th  our
NodeConnection.cs 48 percent of the time. To me there’s no obvious
reason it should. To find out why they’re coupled we need to take the
analysis a step further. Using our VCS data we can dig deeper and start to
compare changed lines of code between the coupled files over the common
commits. Once we see the pattern of change, it usually suggests there’s
some smaller module looking to get out. Refactoring towards that goal
breaks the logical coupling.

Cases like these teaches us about the design of our system and points-out
the direction for improvements. There’s much to learn from a logical
coupling analysis. Better yet, it’s a language neutral technology.

A holistic view by language neutral analysis
VCS data is language neutral. Since our analysis allows us to cross
language boundaries, we get a holistic picture of the complete system. In
our increasingly polyglot programming world this is a major advantage
over traditional software metrics.

Software shops often relay on multiple implementation technologies. One
example is using a popular language such as Java or C# for the application
development while writing automated tests in a more dynamic language
like Python or Ruby. In Table 2 there’s an example on this case where
node_connection_test.py changes together with the module under

test 60 percent of the time. Such a degree of coupling may be expected for
a unit test. But in case the Python script serves as an end-to-end test it’s
probably exposed to way too much implementation detail. Web
development is yet another example where a language neutral analysis is
beneficial. A VCS-based analysis allows us to spot logical coupling
between the document structure (HTML), the dynamic content
(JavaScript) and the server software delivering the artifacts (Java, Clojure,
Smalltalk, etc).

The road ahead
To understand large-scale software systems we need to look at their
evolution. The history of our system provides us with data we cannot
derive from a single snapshot of the source code. Instead VCS data blends
technical, social and organizational information along a temporal axis that
let us map out our interaction patterns in the code. Analyzing these patterns
gives us early warnings on potential design issues and development
bottlenecks, as well as suggesting new modularities based on actual
interactions with the code. Addressing these issues saves costs, simplifies
maintenance and let us evolve our systems in the direction of how we
actually work with the code.

The road ahead points to a wider application of the techniques. While this
article focused on analyzing the design aspect of software, reading code
is a harder problem to solve. Integrating analysis of VCS data in the daily
workflow of the programmer would allow such a system to provide reading
recommendations. For example, ‘programmers that read the code for the
Communication module also checked-out the UserStatistics module’ is a
likely future recommendation to be seen in your favorite IDE.

Integrating VCS data into our daily workflow would allow future analysis
methods to be more fine-grained. There’s much improvement to be made
if we could consider the time-scale within a single commit. As such, VCS
data serves as both feedback and a helpful guide.

‘Code as a crime scene’ is an adapted chapter from my upcoming book
with the same name. Please check it out for more writings on software
design and its psychological aspects [Tornhill13]. 
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FEATURESEB ROSE
Lies, Damn Lies and Estimates
Predicting how long something will take is 
hard. Seb Rose takes us on a brief tour 
through the swamp that is estimation.
What are estimates for?
stimates seem to be an essential part of the software development
process. People want to know how much things will cost before work
starts, and want regular updates on how we’re performing as the

project progresses. This seems entirely reasonable until you start looking
under the covers at why we’re being asked for estimates and what we’re
saying when we give them.

Estimates can be broadly categorised into two types: forecasting and
tracking. Forecasts are used before a project starts to decide if it is worth
implementing, while tracking estimates are used during project
development to manage resources and act as a project health indicator.

Humans aren’t good at estimating in general [Bowle]. We’re over
optimistic, as described by Pullitzer prize winner Douglas Hofstadter:

It always takes longer than you expect, even when you take into
account Hofstadter’s Law.

Steve McConnell wrote a whole book about trying to ‘demystify the black
art’of software estimation [McConnell], which in the end is far too
theoretical and (to my mind) largely impractical. DeMarco and Lister take
a less formal approach [DeMarco], advising us to emphasise the
imprecision of our estimates. Despite these, and other contributions to the
field, I’ve seen no evidence to suggest that estimates have got any better
over the past 30 years.

Investment decisions
Some years ago, I was working for a retail bank when I was asked to
estimate how long it would take to implement a new feature. It took several
days to analyse the requirements and come up with a ‘ballpark’ estimate
of 3 months. The client reacted with horror, “That’s too long!” but I stuck
by the estimate and the feature was shelved. 

Why was it shelved? In a rational world it might have been shelved because
the value of the feature wasn’t worth the investment. I never saw any
prediction of the feature’s value (I don’t believe they had one), but I don’t
think this was the reason. I think that they had identified a ‘resource’
surplus and were trying to see if a low priority feature would ‘fit’. When
it didn’t, they simply left it.

Five months later they came back with the same feature request and asked
me to estimate it again. My estimate remained the same and the request
was shelved again. They came back again a couple of months later with
the same request. Same outcome.

Why did they keep asking the same question? Partly because they had
forgotten that it had already been estimated and partly because they hoped
that this time the estimate would ‘fit’ their plan. I’ve spent months of my
life being asked to re-estimate features to try and get the numbers smaller.
I’ve also had managers cut my estimates before passing them to clients.
We don’t want to disappoint people (especially our bosses) so we tell them
what they want to hear – recriminations will happen in the future and,
anyway, we might just get lucky on this project.

Waltzing bears
Demarco and Lister said, “If a project has no risk, then don’t do it”
[DeMarco]. This isn’t intended to encourage us to do dangerous things,
it’s simply an observation that when we deliver value we are going to do
something new, which is inherently risky. They talk at length about why
estimates are often interpreted as commitments, and why we should
provide estimates as a range with our level of confidence of being able to
deliver within that range. So, instead of providing a ‘point’ estimate that
a project will take 6 months, restate it as “I am 95% confident that we can
deliver this within a 3 month to 24 month period.” This is a probability
distribution around the original ‘point’ estimate of 6 months. That seems
like a huge range, and it is. However, they observe that a 400% overrun
(based on ‘point’ initial estimates) is not uncommon in our industry.

Steve McConnell has documented the Cone of Uncertainty [McConnell],
which describes how our estimates become more accurate as a project
progresses. I believe this assumes that we address the most risky parts of
the project early, which itself assumes that we ‘know’ what the most risky
parts are. As Donald Rumsfeld observed [Rumsfeld], however, there’s
always the possibility that there are ‘Unknown unknowns’ lurking, that
could come to light at any time to de-rail the project.

The other observation is that The Cone of Uncertainty is symmetric –
implying that projects are just as likely to come in below estimate as over
estimate. Laurent Bossavit has looked into the research that underpins this
[Bossavit] and has found that it does not support this assumption.
Depressingly, it seems that empirical evidence shows that projects rarely
come in quicker than our ‘point’ estimates, so the estimate quoted above
becomes ‘I am 95% confident that we can deliver this within a 6 month to
24 month period.’

Over confident
Even with such a wide estimate, how can we be 90% confident? Maybe
this is based on relevant historical data from your organisation, but every
project is different. Different problems, different teams, different context.
And we are very bad at estimating – including estimating confidence.

The Brier Score [Brier] is a ‘proper score function that measures the
accuracy of probabilistic predictions’. Try this yourself at home (thanks
to Laurent Bossavit):

Instructions: for each of the statements below, please give an
answer between 0% (you are totally certain it is false) and 100%
(you are totally certain it is true) – an answer of 50% means you are
unable to say one way or the other. No cheating by looking things up!

1. The language JavaScript was released to the public after 31/12/
1994. Certainty: ____

E

Seb Rose is an independent software developer, trainer and 
consultant based in the UK. He specialises in working with teams 
adopting and refining their agile practices, with a particular focus on 
delivering software through the use of examples. He can be contacted 
at seb@claysnow.co.uk
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Once the project has kicked off, teams are 
often asked to break the coarse 
functionality down into fine grained tasks 
and estimate these individually
2. As of January 2013, LinkedIn reports more registered users
than Brazil has citizens. Certainty: ____

3. UML (Unified Modeling Language) is a registered trademark of
IBM Rational. Certainty: ____

4. The average salary for an engineer in test (SDET) at Google is
> 85K$ (55K£) yearly. Certainty: ____

5. More than 3000 people registered for the Agile2012 conference
in the US. Certainty: ____

Now turn to page 11 and score yourself.

How small is your Brier score? The good news is that we can train
ourselves to be less over-confident [Web1] [Web2] [Web3]. The bad news
is that it is very hard to become more precise.

The ROI fallacy
The forecasting charade has two sides: estimation and value. From this,
we are told, those who know best can determine the return on investment
(ROI). The magic number that predicts whether our work will deliver value
to the business or not.

In my experience their value predictions are even less robust than our
estimates. They surface in the project proposal documents and, once the
project has kicked off, are never seen again. I have never seen an
organisation track the value delivered and compare this to the value
promised. Partly, this is because success criteria are not rigorously defined
in advance and partly this is because tracking value delivered is itself
highly subjective.

For example, a team I worked beside at a large online retailer was
responsible for the algorithms that delivered targeted advertising on their
checkout page. This team is the jewel in the crown of that development
centre because, based on a few hours of outage several years ago, they have
calculated a massive amount of extra up-sales based on their algorithms.
Whether these sales are truly attributable to the algorithms is unknown, and
the number is so large that no one wants to turn them off for a longer period
to do a more significant investigation.

Anyone for poker?
Once the project has kicked off, teams are often asked to break the coarse
functionality down into fine grained tasks and estimate these individually.
Within some agile methods this is done to decide how much work the team
can commit to completing in the iteration. The de facto method in use today
is Planning Poker [Poker].

Planning Poker has some theoretical basis. By asking the whole team to
make independent estimates we make use of diverse opinions [Berra].
Diverse opinions (aka the wisdom of crowds) harnesses the ‘Diversity
Prediction Theorem’, which basically says that a “diverse crowd always
predicts more accurately than the average of the individuals”. Of course this
depends on the the group being diverse. How diverse is your team?

The team will discuss the task, but are supposed not to talk about task size.
Each member estimates the size ‘in secret’ and then the whole team reveal
their estimation at the same time. This is intended to avoid the phenomenon

of ‘anchoring’, which is when some members of a group are influenced
by the opinions of others – which would negate their independence. In case
of disagreement, however, planning poker then requires further rounds of
discussion and estimation, during which anchoring becomes very evident.

Relativity
As has already been stated, humans have been found to be bad at
estimating. However, we are somewhat less bad at comparing equivalent
tasks. Estimating using story points harnesses this by asking the team to
compare the current task to tasks already completed and scoring it
accordingly. In this way we make our estimates relative.

This benefit is clearly hard to realise at the beginning of a project when
there is little historical data to go on. It’s also difficult to make comparisons
when the task being estimated is different to anything the team has done
before. And if the stories being estimated are large, then it is hard to to
make realistic comparisons.

For most teams I have worked with, the biggest single change that can
make their task estimation more accurate is to break every story down into
several, much smaller stories. This is something that most teams find
incredibly hard, not helped by the belief that agile methods require each
story to deliver a complete piece of end-user functionality. The team’s
‘definition of done’ should allow teams to use low-fidelity [Scotland]
stories to incrementally deliver valuable functionality, but is being
generally misapplied to keep stories large.

One of the best examples I’ve heard about is from when Matt Wynne
worked at Songkick [Wynne]. They systematically decomposed their
stories till they reached a size that could usually be fully implemented in
1 day. They were then able to skip the estimation phase entirely and simply
predict how many stories could be delivered in an iteration. How good does
that sound?

No estimates
Over the past year or so there has been a #NoEstimates thread running on
Twitter. Two of the major proponents are Woody Zuill [Woody] and Neil

In an experiment conducted in 1956, a group was asked to compare the
lengths of a reference line with three other lines marked A, B, and C.

Each group member was asked, in turn, to compare A, B and C to the
reference line and decide whether it was longer, shorter or the same
length. In groups that had members, planted by the researcher, answer
first with purposefully wrong answers, it was found that the rest of the group
then went on to give incorrect answers about a third of the time. [Asch56]

Anchoring
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Killick [Killick] who argue that since estimates are little more than guesses
they deliver no value. Work that delivers no value is waste and so should
be avoided.

The debate was interesting and useful, but, as Ron Jeffries pointed out
[Jeffries] this is a reminder of an idea that was discussed earlier this century
by Arlo Belshee and Joshua Kerievsky. Ron also pointed out some issues
that most teams will have getting their organisation to agree to working
without estimates. I’m not going to repeat the whole discussion here – go
read the blog posts :)

Instead, I’ll relate a story about a team I was working with earlier this year.
They were very keen to work in a more responsive and responsible way,
with all team members collaborating during the development process. The
company, like so many, has serious cost constraints which led the
executives to want more certainty around project costs, for which they
needed ever more accurate estimates. 

I tried to persuade the team that this extra estimation work would mean
they had less time to deliver value to the business. I explained the tension
between detailed, up-front estimation of a project and more lightweight
just-in-time, last-responsible-moment techniques. The team accepted all
my arguments, but would respond with “Yes, but in this financial situation
they need to know how much it will cost.” They didn’t feel it was a battle
worth fighting, and I believe that this is a common situation.

What a Bohr
Niels Bohr is credited with having said that “Prediction is very difficult,
especially about the future.” There’s no evidence that Bohr ever said this
[Bohr], so I feel justified in modifying the statement to “prediction is very
difficult, even about the past”.

We don’t know how long a project is going to take until we do it and even
once we’ve done it we a) don’t really know how long it took us and b) won’t
know how long it would take us to do again. And yet we are regularly asked
for estimates and regularly give them. In a bid to reframe the debate, Allan
Kelly wrote a ‘Dear Customer’ letter [Kelly] explaining how estimates are
being used as tools to try and shift the risk one way or the other. Any claim
that they are scientifically derived is questionable at best.

Can you quote me for that?
There is another famous quotation, dubiously attributed to Disraeli which
describes ‘the persuasive power of numbers, particularly the use of statistics
to bolster weak arguments’. [Disraeli] Irrespective of its actual
provenance, I think it is equally applicable to the realm of estimates: ‘There
are lies, damn lies and estimates’.

Estimates produced before a project starts are lies about how much
something will cost, usually tailored depending on whether the source of
the estimate wants the project to go ahead or not. Estimates produced once
a project has started are lies that compensate for the inaccuracies of earlier
estimates. Both contribute towards an illusion of control that is no more
real in software than it is in civil engineering (see the Edinburgh Tram
project, for example [Edinburgh]).

Until customer and development team operate from a basis of trust,
estimates will remain the weapon of choice. They will continue to be
misinterpreted as commitments, and the next death march will always be
just around the corner. But as Ron Jeffries says, the “old fogies know your
estimates will be bogus, they know you won’t get them right, they know you
won’t hit the deadline with full scope” [Jeffries2]. So, stay calm, make your
best guess and have that estimate on my desk on Monday morning. 

References
[Asch56]  Asch, S. E. (1956). ‘Studies of independence and conformity: 

A minority of one against a unanimous majority’ Psychological 
Monographs, 70: 416

[Berra]  http://vserver1.cscs.lsa.umich.edu/~spage/teaching_files/
modeling_lectures/MODEL5/M18predictnotes.pdf

[Bohr]  http://en.wikiquote.org/wiki/Niels_Bohr

[Bossavit]  https://leanpub.com/leprechauns

[Bowle]  http://blog.robbowley.net/2011/09/21/estimation-is-at-the-root-
of-most-software-project-failures/

[Brier]  http://en.wikipedia.org/wiki/Brier_score

[DeMarco]  http://www.amazon.co.uk/Waltzing-Bears-Managing-
Software-Projects/dp/0932633609

[Disraeli]  http://en.wikipedia.org/wiki/
Lies,_damned_lies,_and_statistics

[Edinburgh]  http://en.wikipedia.org/wiki/Edinburgh_Trams

[Jeffries]  http://xprogramming.com/articles/the-noestimates-movement/

[Jeffries2]  http://xprogramming.com/articles/artifacts-are-not-the-
problem/

[Kelly]  http://agile.techwell.com/articles/original/dear-customer-truth-
about-it-projects

[Killick]  http://neilkillick.com

[McConnell]  http://www.amazon.co.uk/Software-Estimation-
Demystifying-Black-Art/dp/0735605351

[Poker]  http://en.wikipedia.org/wiki/Planning_poker

[Rumsfeld]  http://en.wikipedia.org/wiki/There_are_known_knowns

[Scotland]   http://availagility.co.uk/2012/09/14/feature-injection-
fidelity-and-story-mapping/

[Web1]  http://predictionbook.com/

[Web2]  https://www.goodjudgmentproject.com/

[Web3]  http://calibratedprobabilityassessment.org/

[Woody]  http://zuill.us/WoodyZuill/

[Wynne]  Personal conversation

Calculating Your Brier Score
Confidence Quiz Answers

1) True; 2) True; 3) False; 4) True; 5) False
October 2013 | Overload | 11

http://en.wikiquote.org/wiki/Niels_Bohr
https://leanpub.com/leprechauns
http://blog.robbowley.net/2011/09/21/estimation-is-at-the-root-of-most-software-project-failures/
http://blog.robbowley.net/2011/09/21/estimation-is-at-the-root-of-most-software-project-failures/
http://en.wikipedia.org/wiki/Brier_score
http://www.amazon.co.uk/Waltzing-Bears-Managing-Software-Projects/dp/0932633609
http://www.amazon.co.uk/Waltzing-Bears-Managing-Software-Projects/dp/0932633609
http://en.wikipedia.org/wiki/Lies,_damned_lies,_and_statistics
http://en.wikipedia.org/wiki/Lies,_damned_lies,_and_statistics
http://en.wikipedia.org/wiki/Edinburgh_Trams
http://xprogramming.com/articles/the-noestimates-movement/
http://xprogramming.com/articles/artifacts-are-not-the-problem/
http://xprogramming.com/articles/artifacts-are-not-the-problem/
http://agile.techwell.com/articles/original/dear-customer-truth-about-it-projects
http://agile.techwell.com/articles/original/dear-customer-truth-about-it-projects
http://neilkillick.com
http://www.amazon.co.uk/Software-Estimation-Demystifying-Black-Art/dp/0735605351
http://www.amazon.co.uk/Software-Estimation-Demystifying-Black-Art/dp/0735605351
http://en.wikipedia.org/wiki/Planning_poker
http://availagility.co.uk/2012/09/14/feature-injection-fidelity-and-story-mapping/
http://availagility.co.uk/2012/09/14/feature-injection-fidelity-and-story-mapping/
http://predictionbook.com/
https://www.goodjudgmentproject.com/
http://calibratedprobabilityassessment.org/
http://zuill.us/WoodyZuill/
http://en.wikipedia.org/wiki/There_are_known_knowns
http://vserver1.cscs.lsa.umich.edu/~spage/teaching_files/modeling_lectures/MODEL5/M18predictnotes.pdf
http://vserver1.cscs.lsa.umich.edu/~spage/teaching_files/modeling_lectures/MODEL5/M18predictnotes.pdf


FEATURE SERGEY IGNATCHENKO
YAGNI-C as a Practical 
Application of YAGNI
YAGNI can seem vague. Sergey Ignatchenko 
offers a more precise definition.
ALGOL 68 was the first (and possibly one of the last) major
language for which a full formal definition was made before

it was implemented.
~ C.H.A. Koster

... as a tool for the reliable creation of sophisticated programs,
the language [ALGOL 68] was a failure ...

~ C.A.R. Hoare

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translator
or the Overload editor. Please also keep in mind that translation
difficulties from Lapine (like those described in [Loganberry04]) might
have prevented providing an exact translation. In addition, both the
translators and Overload expressly disclaim all responsibility from any
action or inaction resulting from reading this article.

he YAGNI (‘You aren’t gonna need it’) principle is well-known in
the agile world, going back to XP (as in ‘eXtreme Programming’, not
‘Windows XP’) in the end of 1990s. Unfortunately, this concept is

too open to interpretation, which causes lots of confusion and heated
debates both in industry [Fowler04] [Devijver08] [Litzenberger11] and in
academia [Boehm02].

This article describes a practical approach to YAGNI, which has been tried
in practical agile projects (one of which has had releases to millions of
customers every 2–4 weeks). For the purposes of this article, we’ll name
it YAGNI-C (as ‘YAGNI-Clarified’). While not being universal, we hope
that YAGNI-C might be useful in quite a wide range of projects. Oh, and
if somebody is about to say “Hey, we’ve been doing exactly the same
things for years” – of course, YAGNI-C is not something really new; the
problem is that such practices (which we think are best practices) are not
often described, and therefore cannot be widely used.

The very beginning
The story starts when we’re about to start our new agile project to make
our super-duper app. The first question is – are we going to have some
architecture? In general, it depends, but let’s consider projects where
architecture is essential, so the answer is ‘yes’. The second question is –
within the architecture chosen, are we going to have our own set of libraries
(let’s name them ‘infrastructure libraries’) which needs to be common for
a significant part of project? Again, in general, it depends, but let’s assume
that in our project (for example, due to the project size/complexity) we’ve
decided to have such a set of infrastructure libraries (it may be just a glue,
or something more substantial – it doesn’t matter too much, the key thing
is that these libraries are supporting a big part of the whole project). Now,

let’s assume that APIs to these libraries are designed and supported by one
or more people, let’s name them ‘library API maintainers’ (with a hope
that there is at least one of the architects involved in this group). Now let’s
try to define some principles and procedures of how ‘library API
maintainers’ should approach YAGNI within our YAGNI-C model.

Thinking, not implementing
The First Principle in YAGNI-C is that ‘thinking ahead is good,
implementing ahead is bad’. While the second part of the First Principle
is actually YAGNI in its pure form, the first part of the First Principle may
need a bit more of explanation. There are numerous complaints out there
(see, for example, [Fowler04]) that YAGNI is (or at least can be) misused
to the point where any thinking about architecture is prohibited, and the
project becomes a mess of ad hoc tactical decisions. The other side of the
spectrum (library which does everything in sight) is also well-known to
have led to disasters (ALGOL 68, DCE RPC, and especially X.500 are
good examples of the over-designed systems which were so complicated
that nobody was able to implement them properly). The First Principle
above aims to strike the balance between these two undesirable extremes,
and in practice it seems to work reasonably well (while in some cases,
preliminary proof-of-concept prototypes may be needed before First
Principle can be applied, starting from post-prototype development seems
to work pretty well).

One other way to look at the First Principle is to rephrase it as ‘as long as
you can think about design without starting to implement it – you’re fine,
anything beyond that is over-design’. Essentially it restricts the amount of
‘thinking ahead’ to the amount of information which fits into the heads of
the ‘library API maintainers’, which is subject to the cognitive limitations
of the human brain, so it is fairly limited. In fact, the First Principle is much
closer to the ‘very lean’ end of spectrum, while still allowing a certain
amount of thinking ahead.

Specific cases
The Second Principle of YAGNI-C is ‘if nobody in the team can describe
a very specific use case for a problem – the problem doesn’t exist’ (and
whatever doesn’t exist doesn’t need to be solved). This Second Principle
is of extreme importance for the whole process to function. What it allows
is the transfer of discussion from the space of “Hey, why are we not using
XYZ?” and “Why we don’t support paradigm ABC?” (which are subjects
which can easily take months to deliberate on) to the space of very specific
use cases, applicable to the current project, and while decisions might be
not so obvious, at least it can be reasoned about not from the Swiftian big-
and little-endians1 point of view, but from the point of view where at least
some logic can be applied.

Prohibit misuses
The Third Principle of YAGNI-C is ‘If in doubt how it should behave –
prohibit it’. If, as a library implementer, you don’t have specification on
a certain behaviour (for example, answering “what will happen if x.g()

T

1. Not to be confused with Intel/DEC little- and big-endians

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko 
using the classic dictionary collated by Richard Adams.
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Security Researcher. Sergey can be contacted at 
sergey@ignatchenko.com
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if nobody in the team can describe a
very specific use case for a problem –

the problem doesn’t exist
will be called before x.f()” is not specified, and you yourself have doubts
about what will happen in this case) – you should prohibit such behaviour
(for example, inserting an assertion, but other means are also possible).

This Third Principle is essentially a manifestation of agile principle known
as ‘deferring commitment’. In practice, whenever a library is released,
people start using it in all kinds of ways, including those ways which were
never intended. Prohibiting unintended uses (effectively deferring
commitment of library writers regarding these uses) is good for at least two
reasons: first, it makes code more reliable (making sure that caller really
understands what is going on), and second, it allows implementation
details to be hidden as deep as possible, reducing chances that library
modifications which don’t change the specification can break the client
code.

How it works
Within YAGNI-C, the process of infrastructure API design is as follows.

1. First, library API maintainers design a very minimalistic API.
2. Then, people from the rest of the project start to come and say, “Hey,

your library doesn’t support this call, please add it.” According to
the second principle, each such request MUST be accompanied with
a specific use case – “WHY this call is necessary?”

3. This is a point where library API maintainers perform analysis,
deciding if a new call (class/...) should be added to the library API.
As practice shows for good library design, about 30% of requests
from step 2 above are turned down as “You’re solving the wrong
problem, what you really need for your use case is...”, another 50%
are turned down as “This can be done using existing API as
follows:...”, and remaining 20% lead to extending the APIs. And as
‘library API maintainers’ did think about potential requests (see the
First Principle), implementing additional calls is normally not that a
big deal.

4. Rinse and repeat from step 2.

It should be noted that YAGNI-C is substantially iterative, and therefore
can’t possibly work in strictly-waterfall development environments.

Example
Let’s take a look and see on a specific example, how YAGNI-C might work
in practice. Of course, this example is inherently extremely limited and
oversimplified, but it still provides a good illustration of the concepts
involved.

Let’s assume that Alice is a library API maintainer, and one of the classes
she develops, is a class File (Listing 1).

This class, as written, has a problem: it has an implicit copy constructor,
which, combined with the nature of ~File(), will cause all kinds of
problems. Now, Alice faces a question: what to do about it? One thought
quickly crosses her mind: to add something like Listing 2 but she quickly
realizes that as there is no requirement to copy class File, this is a feature
which would violate our First Principle. Now, to comply with both the First
Principle and the Third Principle, she writes Listing 3.

This construct prevents other classes from calling the File copy
constructor/assignment operator. This implementation is consistent with
all the principles stated above.

Some time later, Bob comes to Alice and complains, “Hey, why don’t you
support a copy constructor for File?”. Given such a request, it is
impossible to judge if it has merits or not, as it is not clear exactly what
problem Bob faces; formally, this request violates the Second Principle
and is therefore denied. As a next step, Bob elaborates:

The following piece of code doesn’t compile:
  void f( File ff ) { /* ... */ }

Now request is specific enough, but it immediately becomes obvious (at
least to Alice) that Bob has just forgot to put & in the function declaration,
so his problem can be solved without introducing a copy constructor for
the class File.

Listing 1

class File {
  FILE* f;
  public:
  File( const char* filename ) {
    f = fopen( filename, ... ); }
  size_t read( char* buf, size_t bufsize ) {
    /* ... */ }
  void write( const char* buf, size_t bufsize ) {
    /* ... */ }
  ~File() { fclose( f ); }};

Listing 2

File( const File& ff )
{
  f = fdopen( dup( fileno( ff.f ) ) );
}
File& operator =( const File& ff )
{
  fclose(f);
  f = fdopen( dup( fileno( ff.f ) ) );
}

Listing 3

private: //copying/assigning of File
         //objects is prohibited
File( const File& );
File& operator=( const File& );
//in C++11, File( const File& ) = delete;
// and File& operator =( const File& ) = delete;
// can be used instead
October 2013 | Overload | 13



FEATURE SERGEY IGNATCHENKO

YAGNI is (or at least can be) misused to the 
point where any thinking about architecture 
is prohibited, and the project becomes a 
mess of ad hoc tactical decisions
At some point, Charlie comes to Alice and complains:

Why is the assignment operator prohibited for class File? I want
to copy a file and am trying to write:

    File f1( filename1 );
    File f2( filename2 );
    f1 = f2;//compiler error”

Once again, when a specific use case is provided, it is obvious that adding
an assignment operator to File would be quite the wrong thing to do to
solve Charlie’s problem, so Alice explains to Charlie how he can
implement file copying for File (or she may decide to add static
File::copy() for this purpose).

Summary
YAGNI-C is an attempt to clarify YAGNI so it becomes less vague and
easier to follow. While YAGNI-C (though not under this name) has been
successfully used for agile projects, it is certainly not a silver bullet, so
you’ll still think to think if it is beneficial for your project. It should not
be considered as a new approach to development (we
know many teams which follow these or very
similar approaches), but as a new way
to describe existing best practices. 
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FEATUREOMAR BASHIR
Has the Singleton 
Not Suffered Enough
Singletons are much maligned. 
Omar Bashir considers why.
INGLETON is an object creational design pattern that ensures only a
single instance of a class can ever exist in an application and it
provides a global point of access to that instance [GoF94]. The

classical SINGLETON structure is the simplest among design patterns. It
involves a single class with a private or protected constructor and a class
method which returns the same instance of that class whenever it is
invoked. Its simplicity leads to a temptation to use it instead of global
objects and in situations that require single instances of implementing
classes. For these reasons, it is a very widely used pattern.

Hahsler’s quantitative study on adoption of design pattern also indicates
that nearly 50% of Singleton implementations analysed were removed in
subsequent maintenance [Hahsler04]. While Hahsler suggests overuse of
the pattern due to its simplicity, these removals may also be due to the
evolution in applications and their requirements as well as the context in
which they are used resulting in the need for more than one instance of the
previously SINGLETON classes. This may also be due to inadequacies of
the classical structure of this pattern which focuses only on the creation of
the SINGLETON instance but ignores most other aspects such as
concurrency, substitutability, extensibility, lifetime management etc. and
introduces coupling.

It is interesting to consider Ignatchenko’s example of a flight simulator for
a single one-engined aircraft that is constructed using singletons for the
engine and the aircraft [Ignatchenko12]. After its resounding success, the
company is asked to deliver a simulator for a twin engined aircraft. The
developers have to go through a significant refactoring exercise to remove
singletons from their code. It is important to note the underlying
implications of the initial decision to use singletons and then the potential
consequences of their removal.

A major implication of using SINGLETON is instance control. Once the
instantiation of a class is controlled within a context, global accessibility
of that instance within that context is natural. The classical description of
the SINGLETON pattern intends the context to be the executing program.
Therefore, singletons are globally accessible within applications that use
them.

If a limited number of instances of a class are required within a context,
the ability to construct objects without any restriction adds vulnerability
to the application. Developers may mistakenly or unknowingly instantiate
additional objects, which may result in inconsistent operation of the
program at best. Therefore, instance control needs to be enforced for such
classes. SINGLETON is a form of this enforcement. Furthermore, instance
control may be considered separately from accessibility even within a
context. If accessibility of singletons is restricted, they need to be passed
to their dependants via interfaces which makes associations more obvious.

This discussion argues that the intent of the SINGLETON to limit instances
of a class is the actual pattern and not the prescribed structure. Many of
the criticisms of SINGLETON’s classical structure may be addressed with
alternatives, some of which are discussed here. Furthermore, the structure
can be adapted to suit the requirements of the problem, the technology
being used and the desired qualities of the system being implemented.
Finally, dependency instantiation in the context of the dependants will be

discussed. In this text, SINGLETON refers to the design pattern and singleton
refers to only one instance of a class of which multiple instances cannot
be created.

Criticisms
SINGLETON is largely considered similar to a global variable as it
penetrates a scope via mechanisms less obvious than the public interface
of the dependant. Therefore, it adds coupling to its dependants which
reduces their flexibility and extensibility [Radford03]. This coupling is
further exacerbated because a classical singleton usually requires the
dependant to depend on a concrete class rather than an abstract interface.
Therefore, it may be difficult to provide a mock or a stub of a singleton
for unit testing its dependants.

The SINGLETON pattern only focuses on object creation and not its lifetime
management. Even when a singleton is needed for the entire lifetime of
the dependant application, issues may arise in the order in which a
singleton is destroyed at program termination. This is because applications
may run into issues if a singleton is destroyed while its dependants still
hold a reference to it. This, therefore, requires mechanisms to manage the
lifetime of singletons based on the context in which they are being used
[Alexandrescu01], [Levine00]. However, this may not be a concern in
managed environments where objects are only garbage collected when
their references are no longer held.

Critics argue that the decision to create dependencies, the number of their
instances and their lifetime management should rest with the domain and
not the class itself [Radford03]. They prefer PFA (PARAMETERISE FROM

ABOVE) where the application instantiates the required objects and passes
them as dependencies via a public interface. This provides greater
opportunities to decouple dependencies and dependants via abstract
interfaces [Radford03], [Love06]. However, there are arguments that PFA
violates information hiding as the application may require explicit
knowledge of coupling between the dependencies and dependants
[Radford03]. Furthermore, instantiating objects at the top level and
passing them through several layers to the layer where these objects are
required clutters the application layer with objects not required there and
may also result in elaborate interfaces between layers to pass these as
parameters.

Dependencies may be encapsulated into an object to simplify the interfaces
of the dependants as described in the ENCAPSULATE CONTEXT pattern
[Kelly04]. It may be argued that ENCAPSULATE CONTEXT achieves this
through obscurity by collecting (at times unrelated) parameters into a
single object. Balancing openness (by using finer grained context objects)
with interface cluttering and coupling can be challenging. As discussed

 S
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dependants should have explicit 
information regarding the initialisation 
of their singleton dependencies
later, instantiation of all dependencies at the application level may neither
be appropriate nor feasible hence making ENCAPSULATE CONTEXT and its
variants inappropriate solutions for such relationships.

SINGLETON initialisation is also not obvious in the pattern. If a singleton
is initialised at construction then initialisation parameters may need to be
passed via the global access point. This means that dependants should have
explicit information regarding the initialisation of their singleton
dependencies. This may be alleviated via environment variables but at the
cost of further obscurity. Also, the behaviour to be expected if a dependant
passes different configuration parameters than the one passed earlier is
unclear. Should the new configuration parameters be ignored? Should the
existing instance be deleted and a new instance created? Or should the
existing instance be re-initialised? One option is to separate initialisation
from construction and make initialisation an instance operation. Once a
dependant obtains the dependency, it should be able to determine if the
dependency is already initialised. If not, the dependant should be able to
initialise it. If the initialisation parameters change, it may be possible to
reinitialise the dependency. However, issues may arise if the dependency
is shared between a number of dependants.

SINGLETON creation and initialisation become more challenging in multi-
threaded environments. Synchronising the global access point for a
singleton instance is the safest but the least optimal option. Furthermore,
construction or initialisation may be time consuming operations that may
have performance implications for the entire application. For construction,
optimisation is suggested using DCLP (DOUBLE CHECKED LOCKING

PATTERN) [Schmidt97]. However, it has its limitations too when porting
to multiprocessing architectures and using optimising compilers
[Meyers04]. Their remedies can, in turn, add considerable complexity to
the creation and initialisation of a singleton.

Pattern is in the intent
The intent of SINGLETON is to provide a mechanism that allows only a
single instance of a class and global access to that instance. Prescribing
further than that starts making the pattern more implementation and
technology specific. In fact, a strict prescription of any pattern structure
has been criticised as practitioners tend to consider the structure as the
pattern and not the intent and the context in which the pattern is to be
applied [Petersen13]. Hence, even with slight changes in the
implementation, application or the context, the classical SINGLETON

structure may result in issues discussed above. Furthermore, some recent
languages provide SINGLETON as a language feature making the
SINGLETON structure somewhat redundant for these languages. A typical
example is the object construct in Scala. It is, therefore, unfortunate that
the pattern receives significant criticism where many critics are actually
criticising the prescribed structure and its weaknesses.

The key characteristic of the pattern is instance restriction, i.e., limiting
the number of instances of a class to only one within an application. Thus,
the mechanism providing a singleton should only ever return the same
instance whenever an instance is requested. This makes global access to
this instance inherent to the pattern. This is the strongest distinction

between a global and a singleton. Normally global instances have public
constructors allowing any number of global and local instances of their
classes to be created [GoF94]. SINGLETON aims to restrict public
accessibility of the constructor so that it may only be called in a controlled
manner allowing the developer to control the number of instances that can
be created.

There have been arguments that dependency injection (DI) containers have
the ability to provide singletons. However, DI mechanisms largely depend
on public constructors of classes for which they provide instances. As
discussed above, public constructors on a class allow a programmer to
create an instance without using or bypassing DI thereby having multiple
instances of the same class. So, these DI containers may claim to provide
singletons only if these containers are used for instance creation and
management. Some DI containers like Spring may provide support for the
classical SINGLETON structure by allowing invocation of static methods on
classes that return an instance of the respective classes. Furthermore, it can
be argued that DI can also allow penetration of a scope in ways other than
public interfaces, just as SINGLETON does.

Gang of Four (GoF) discuss variation of SINGLETON also referred to as
Multiton or Limiton [Stencel08], which provides multiple controlled
instances of a class. They also discuss subclassing in SINGLETON which
can be useful for substitutability, lack of which in the classical structure
hinders flexibility and testability of systems using singletons. However,
their detailed description on providing these features focuses on adapting
the classical structure which adds significant complexity to just one class
and requires additional support for creating an instance from a type
hierarchy.

Therefore, most technical issues related to SINGLETON can be attributed to
the structure prescribed by GoF rather than the pattern itself. While the
classical structure satisfies the intent of the pattern, it violates key object
oriented design principles like separation of concerns and substitutability,
leading to higher coupling, low cohesion and significant rigidity in its
implementation and use.

Separation of concerns
The classical SINGLETON structure exhibits low cohesion as it requires a
single class to perform instance creation, instance management and
provide the required functionality. This inhibits the extension or variation
of these orthogonal aspects of the SINGLETON structure. Separating these
non-overlapping and unrelated aspects into different classes allows
independence between instance control and functionality of the singleton
which enables each to be varied independently and increases cohesion in
the respective classes.

SingletonHolder is a well documented SINGLETON implementation in
C++ that focuses on the intent of the pattern and uses separate classes to
perform singleton object creation, instance management and thread safety
[Alexandrescu01]. SingletonHolder itself is not a singleton and does
not contain any application or domain functionality. All construction
methods of the application specific class whose instance is to be managed
by SingletonHolder are private to avoid unintended construction. This
16 | Overload | October 2013



FEATUREOMAR BASHIR

the mechanism providing a singleton
should only ever return the same instance

whenever an instance is requested
requires a friendship to be declared between the application specific class
and the class implementing the creation policy. SingletonHolder is an
example of policy-based design. Type parameterisation allows
customisation of instance creation, thread safety and singleton lifetime
management independently of the functionality of the singleton object a
SingletonHolder manages.

Absence of the friend relationship in Java and the difference between Java
Generics and C++ templates will not allow a similar implementation in
Java. Classes whose constructors have restricted access may not be
instantiated except through reflection. Furthermore, it is not possible to
declare a static variable of generic type in Java to hold the reference to the
singleton instance. A minimal Java-based SingletonFactory that only
instantiates a singleton and holds its reference is shown in Listing 1.

The instance created by an instance of SingletonFactory is inserted
into a map (instanceMap) with the key being the class of the instance
created. A SingletonFactory instance creates an instance of a
specified class only if no other instance of that class exists in the
instanceMap. The getInstance() method always returns a class’s
instance from the instanceMap. The following snippet shows the usage
of SingletonFactory where the constructor of Singleton1 class is
private.

  ...
  SingletonFactory factory = 
     new SingletonFactory();
  Singleton1 o1 = 
     factory.getInstance(Singleton1.class);
  ...

While using reflection to access private members of a class may raise
eyebrows, the SingletonFactory implementation removes the
instantiation logic from the application/domain class allowing
SingletonFactory to be implemented only once and adapted
independently of the domain/application logic contained in the singleton
classes.

Extensibility and substitutability
GoF suggest extensibility in the classical SINGLETON through subclassing,
which also allows substitutability. They mention selection of an instance
of a specific subclass as a key challenge in a SINGLETON type hierarchy.
Some of the solutions they suggest include using a registry of instances of
SINGLETON classes in a hierarchy, statically linking a specific SINGLETON

subclass and using a single method in the base class for the entire hierarchy
to determine the actual subclass and return its instance. Some dependency
injection containers like Spring support classical SINGLETON by allowing
invocation of a static method on a specified type to obtain an instance. This
can support SINGLETON type hierarchies in an extensible manner.
Therefore, implementation of a SINGLETON type hierarchy and its usage
remains a technology specific issue.

Furthermore, if a single class variable is used in a classical SINGLETON

implementation to hold the reference of the instance and it is exposed to
subclasses via protected accessibility, then only one instance of that entire
type hierarchy exists in the application. This is again a decision that should
not rest with the implementation rather it should be ascertained from the
domain. If the domain allows each class within a hierarchy of singletons
to have an instance each (and no more), the implementation should support
it. Adaptations to the classical SINGLETON implementation may allow this,
for example, using a private instance variable for each class in the
hierarchy or using an associative container in the base class mapping the
concrete type to the instance. The SingletonHolder implementation
[Alexandrescu01] and the SingletonFactory discussed above provide
this facility by default.

Substitutability is very strongly desired in singletons as coupled with
dependency injection it enhances the testability of the dependant
components. Substitutability has been implicitly discussed in the
SINGLETON pattern via subclassing only. If singletons (classical or
otherwise) implement abstract interfaces and there is support for
dependency injection of these singletons, extensibility and testability of
the dependant application can be enhanced considerably.

Injecting singletons
Dependency injection (DI) attempts to decouple dependants and
dependencies by moving instantiation and initialisation of dependencies
from the dependants to a DI framework component normally referred to
as injector or container. Dependants identify their dependencies using
identifiers which map to the specification of dependencies in the injector’s
configuration. Thus, dependencies can simply be changed by altering the
injector's configuration. Therefore, DI along with interface-based

Listing 1

public class SingletonFactory {
  private static
     Map<Class<?>,Object> instanceMap;
  static{
    instanceMap = new HashMap<Class<?>,Object>();
  }
  
  public <T> T getInstance(Class<T> type) 
                throws InvocationTargetException,
                       IllegalAccessException,
                       InstantiationException,
                       NoSuchMethodException{
    if (!instanceMap.containsKey(type)){
      Constructor<T> constructor =
         type.getDeclaredConstructor();
      constructor.setAccessible(true);
      instanceMap.put(type,
                      constructor.newInstance());
    }
    return (T) instanceMap.get(type);
  }
}
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it is possible to create the same package 
within a different project thereby 
circumventing these access restrictions
development has enhanced the configurability, extensibility and testability
of object oriented software.

Some DI frameworks like Spring allow specification of a static method on
a class, the execution of which returns an instance of that class. Thus Spring
provides direct support for injecting classical SINGLETON objects into their
dependants. If these SINGLETON classes implement an abstract interface,
instantiating them via Spring provides all of the above abilities.
Furthermore, restriction on instantiation within the classes ensures that
even if a Spring injector is not used in some part of the application and a
dependant attempts to obtain instances directly by calling static methods
of these classes, the same instances of respective classes are returned.

Using a decoupled singleton instantiation mechanism like the
SingletonFactory (Listing 1) with dependency injection may require
obtaining an instance of the factory and then using the factory instance in
the dependant to obtain the required singleton instance. As discussed
earlier, this provides opportunities to extend SingletonFactory for
specialised construction of individual singletons independently of their
classes.

Singletons exist in context
In most cases, limiting the number of instances of a class within an
application depends on the requirements of the application or a particular
context in which the instance is required. For example, only one instance
of a particular screen (e.g., an application configuration editor) is allowed
within an application whereas many instances of other screens can be
created. In other cases, infrastructure objects like network and database
connections and logging utilities are singletons or multitons (e.g., the
Logger class in log4j).

Thus, there may always be a requirement for limiting the number of
instances of a class based on the requirements of the application. While
such instances can be created at the application layer and passed to the
corresponding modules or layers using PfA, the public accessibility of
constructors of their classes poses a risk that a developer may instantiate
a new object elsewhere in the system. Undetected, this can result in
inconsistent operation of the system at best.

Thus, the requirement to control instantiation of specific classes is
orthogonal to parameterisation from above. SINGLETON instances may still
be created at the top layer and passed around via interfaces if a greater
visibility of associations between dependants and dependencies is
required. Restrictions on constructor invocation ensures that no
unintended instances exist within the applications.

Therefore, if the instantiation of classes needs to be controlled,
accessibility of constructors of these classes needs to be limited.
Furthermore, the mechanism to return instances of such classes depends
on the context in which these classes are being instantiated. The context
should define the number of instances that can be created, the specific
instance to be returned and the concrete type of the instance being returned.
The rigid Singleton structure defined by the GoF does not provide such
flexibility in object instantiation.

Revisiting Ignatchenko’s example flight simulator [Ignatchenko12], not
implementing the aircraft and engine as singletons allows the extension of
this simulator to a multi-engine multi-aircraft application. However, some
form of instance control is still needed in this example so that engines, for
example, are instantiated only in the context of aircraft. This would allow
only one engine for a single engined aircraft and two engines for a twin
engined aircraft.

Contextualising instantiation
The context for a dependency is its dependants. A dependant should be able
to specify or manage the instances of its dependencies. Considering the
example of aircraft and engines mentioned above, if engines are
dependencies of aircraft, the type and number of engines for a particular
aircraft exist in the context of that aircraft. Thus, a single engine jet aircraft
will have one jet engine but a twin piston engine aeroplane will have two
piston engines.

In contrast, both the SINGLETON pattern as well as PFA consider
dependency instantiation outside the context of the dependant. SINGLETON

is especially suited if the context is the entire application rather than its
finer components. PFA may be used to instantiate the required number and
types of dependencies and populate the dependant objects only if the
higher level layers have the contextual knowledge about the dependencies
and the relationships between them and their dependants. This may,
however, violate the principle of information hiding and introduce
unintended coupling. GoF also describe a variant of SINGLETON that can
return multiple instances of a given type in a controlled manner [GoF94].
But that may also require the SINGLETON implementation to know about
the relationships between the dependencies and dependants and may also
make the instantiated dependencies accessible to objects other than the
dependants. Thus it is not possible to ensure dependants to have exclusive
ownership of singleton dependencies

This leads to a fundamental requirement of making the dependency
construction mechanism accessible only to the corresponding dependants.
Accessibility at this level of granularity is currently not available in most
object oriented languages. In C++ this may be achieved via a friend
relationship between dependencies and their dependants as in the
SingletonHolder [Alexandrescu01] implementation. Java does
provide additional levels of access restrictions where protected and
package-private members can only be accessed by classes within a
package. However, it is possible to create the same package within a
different project thereby circumventing these access restrictions and
accessing such members of the same package in a different project. Scala
can scope access restriction on a class to other packages enclosing the
package containing that class. However, it suffers from the same
accessibility loophole as Java. C# allows internal members to be accessible
only by members from the same assembly or an assembly explicitly
specified as the former’s friend. Relying only on these measures for
controlling the access to dependency instantiation would require the
dependants to be defined in specified packages for Java and Scala. In case
of C#, reuse of dependencies may be severely restricted.
18 | Overload | October 2013



FEATUREOMAR BASHIR

The context determines the type and the
number of dependencies it needs and

the factory creates those instances
In managed languages such as Java and C#, private members can also be
accessed via reflection. As using reflection to access private members is
not considered good practice, it should not be used arbitrarily. Instead,
dependency instantiation may be delegated to a factory as in the case of
SingletonFactory above. The dependant (i.e., the context) and the
factory hold references to each other. The context determines the type and
the number of dependencies it needs and the factory creates those instances
and injects them into the context. The context now holds references to its
dependencies. It may make them available to other objects and manage
their lifetimes as required. Finally, there may no longer be a need for static
members to hold references to dependencies.

Figure 1 shows the class structure of a solution to the problem of
instantiating engines for aircraft. The Factory class implements the
Injector interface. The inject method takes an instance of an
implementation of the Context interface as the dependant and the type
of the dependency to be created. The Factory instance creates this
dependency instance and injects it into the dependant by calling the add
method implementation. Listing 2 shows the code for Context and
Injector interfaces and the Factory class.

The Aircraft abstract class implements the Context interface and
specifies methods relevant to aeroplanes in this example. It contains a map
that holds the objects of the Engine class for a specific instance of the
Aircraft class. The getEngines() method returns a list of Engine
objects for the corresponding Aircraft instance. Two classes,
SingleEnginePlane and TwinEnginePlane extend the Aircraft
abstract class and implement the addEngines() method. The
implementation in the SingleEnginePlane allows the instantiation of
one object of the Engine class if none exists. The implementation in the
TwinEnginePlane allows the instantiation of two objects of the
Engine class if they do not exist already. These instantiations are
performed using an instance of an Injector implementation, i.e., the
Factory class in this case. Figures 2 and 3 show these interactions and
the code for these classes is listed in Listing 3.

Figure 1

Listing 2

public interface Context<T> {
  void add(T dependency);
  void setInjector(Injector<T> injector);
}
public interface Injector<T> {
  void inject(Context<T> dependant,Class<T> type)
         throws InvocationTargetException,
                IllegalAccessException,
                InstantiationException,
                NoSuchMethodException;
}
public class Factory<T> implements Injector<T>{
  private T getInstance(Class<T> type) throws
              InvocationTargetException,
              IllegalAccessException,
              InstantiationException,
              NoSuchMethodException{
    Constructor<T> constructor = 
       type.getDeclaredConstructor();
    constructor.setAccessible(true);
    return (T) constructor.newInstance();
  }
  @Override
  public void
     inject(Context<T> dependant,Class<T> type)
        throws InvocationTargetException,
               IllegalAccessException,
               InstantiationException,
               NoSuchMethodException{
    dependant.add(getInstance(type));
  }
}
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implementing instance control or 
restriction is non-trivial at best and 
SINGLETON in this regard is only of limited use
The following code snippet shows the usage of these classes,

  SingleEnginePlane plane1 = 
     new SingleEnginePlane();
  TwinEnginePlane plane2 = new TwinEnginePlane();
  Factory<Engine> factory = new Factory<>();
  try{
    plane1.setInjector(factory);
    plane2.setInjector(factory);
    plane1.addEngines();
    plane2.addEngines();
    ...
  } catch (Exception exp){
    ...
  }

Hence, dependencies are only instantiated in the context implemented in
the dependants. While Factory uses reflection to invoke private
constructors of the specified classes, it only injects them into their
dependants. Therefore, dependencies with restricted constructors cannot
be instantiated using a Factory instance without a context. None of the
participants here have any static variables nor are there any classical
singletons within this structure.

Conclusions
The discussion above suggests that issues with the SINGLETON pattern arise
from its structure which violates most key principles of effective object
oriented design. The intent of this pattern, which is primarily to restrict the
instantiation of a class to have only one instance, is largely unsupported
in most programming languages. Scala offers object as a SINGLETON

implementation. Some of the issues of the pattern can be resolved by
altering its structure so that various orthogonal requirements of instance
creation, lifetime management and concurrency are delegated to additional
classes. If these additional classes support substitutability, requirement for
different operating environments and applications may be supported. This
leaves the class of which a singleton is to be instantiated to focus only on
domain related functionality. Without the need for static variables in that
class, its extensibility and substitutability may be considerably enhanced.

SINGLETON needs to be viewed as a broader issue of controlling
instantiation of specified classes in the contexts in which their objects may
be used. Contexts for such classes exist in their dependants and hence their
dependants must be able to control the instantiation of these dependencies.
Additionally, instance control can only be achieved by controlling the
accessibility of constructors of respective classes. However, such fine
grained accessibility that allows classes to specify other classes that may
access their private members is not commonly available. In C++, this may
be achieved via friend relationship between dependants and dependencies
where as in managed languages like Java and C#, reflection may be
exploited.

A structure in Java is discussed that uses a factory employing reflection to
instantiate objects of classes that have private constructors. Dependants
contain the context in which dependencies are to be instantiated and invoke
a factory accordingly to obtain those instances. The factory instance uses
a reference to the context (i.e., dependant) and injects the dependencies it
instantiates directly into the associated dependant. This structure, while
more complex than the classical Singleton structure, is flexible, extensible,
testable and has better support for concurrency.

This reaffirms that implementing instance control or restriction is non-
trivial at best and SINGLETON in this regard is only of limited use, i.e.,
enforcing a single instance of a class within an application. Instance control
at finer granularities without language support requires structures more
elaborate than the classical SINGLETON structure. 

Figure 2

Figure 3
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Listing 3 (cont’d)

public class TwinEnginePlane extends Aircraft {
  private final String leftEngineId =
     "Left Engine";
  private final String rightEngineId =
     "Right Engine";
  private Injector<Engine> injector;
  @Override
  public void add(Engine dependency) {
    if (!this.engines.containsKey
       (this.leftEngineId)){
      dependency.setId(this.leftEngineId);
      this.engines.put(this.leftEngineId,
                       dependency);
    } else if (!this.engines.containsKey
       (this.rightEngineId)){
      dependency.setId(this.rightEngineId);
      this.engines.put(this.rightEngineId,
                       dependency);
    }
  }
  @Override
  public void 
     setInjector(Injector<Engine> injector) {
    this.injector = injector;
  }
  @Override
  public void addEngines() throws Exception {
    if (!this.engines.containsKey
       (this.leftEngineId)){
      this.injector.inject(this, Engine.class);
    }
    if (!this.engines.containsKey
       (this.rightEngineId)) {
      this.injector.inject(this, Engine.class);
    }
  }
}
public class Engine {
  ...
}

Listing 3

public abstract class Aircraft 
   implements Context<Engine> {
  protected Map<String, Engine> engines;
  
  public Aircraft(){
    this.engines = new TreeMap<>();
  }
  public abstract void addEngines() 
     throws Exception;
  public List<Engine> getEngines(){
    List<Engine> engineList = new LinkedList<>();
    for(Map.Entry<String, Engine> entry :
       this.engines.entrySet()){
    engineList.add(entry.getValue());
  }
  return engineList;
  }
}

public class SingleEnginePlane extends Aircraft {
  private Injector<Engine> injector;
  private final String id = "Main";
  @Override
  public void add(Engine dependency) {
    dependency.setId(id);
    this.engines.put(id, dependency);
  }
  @Override
  public void
     setInjector(Injector<Engine> injector) {
    this.injector = injector;
  }
  @Override
  public void addEngines() throws Exception{
    if (!this.engines.containsKey(this.id)){
      this.injector.inject(this, Engine.class);
    }
  }
}
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Automatic Navigation Mesh 
Generation in Configuration Space
Walkable 3D environments can be automatically 
navigated. Stuart Golodetz demonstrates how 
navigation meshes achieve this.
he representation of the walkable area of a 3D environment in such
a way as to facilitate successful navigation by intelligent agents is an
important problem in the computer games and artificial intelligence

fields, and it has been extensively studied. As surveyed by Tozour
[Tozour04], there are a variety of common ways to represent such an
environment, including:

 Regular Grids. These support random-access lookup but do not
translate easily into a 3D context. They also use a lot of memory and
can yield aesthetically unpleasing paths for navigating agents.

 Waypoint Graphs. These connect large numbers of nodes (often
manually placed) using edges that imply walkability in the game
world. They were previously popular in games but are costly to
build and tend to constrain agents to walking ‘on rails’ between
connected waypoints.

 Navigation Meshes. These represent the walkable surface of a world
explicitly using a polygonal mesh. Polygons within a navigation
mesh are connected using links that imply the ability of the agent to
walk/step/jump/etc. between them (see Figure 1).

Since their introduction by Greg Snook [Snook00], navigation meshes
have proved to be a particularly successful approach due to their ability to
represent the free space available around paths through the world (this is
extremely useful because it provides the pathfinder with the information
it needs to successfully avoid local obstacles). As a result, they have seen

widespread use in both games themselves, and popular games engines such
as Source and Unreal, and many games authors have contributed to their
theoretical development (most notably in the Game Programming Gems
and AI Game Programming Wisdom book series). There has also been
significant interest from researchers in academia (e.g. see [Hale09,
Kallmann10, Pettré05, VanToll11]).

One facet of using navigation meshes is how to build them in the first place,
and numerous methods have been described in the literature. An early
approach due to Tozour [Tozour02] works by first determining the
walkable polygons in a 3D environment by comparing their normals2 with
the up vector, and then iteratively merging together as many polygons as
possible using the Hertel-Mehlhorn algorithm [Hertel83, ORourke94] and
a 3 to 2 merging technique. Hamm [Hamm08] generates a navigation mesh
using an empirical method that involves sampling the environment to
create a grid of points, identifying a subset of points both on the boundary
of and within the environment, and connecting these points to form a mesh.
Ratcliff [Ratcliff08] creates a navigation mesh by tessellating all walkable
surfaces in the world, merging the results together to form suitable nodes
and then computing links between neighbouring nodes. Van Toll et al.
[VanToll11] build a navigation mesh for a multi-layer environment by
constructing a mesh based on the medial axis for each layer and then
connecting the medial axes by ‘opening’ the connections between the
layers. The same authors also demonstrate how such a mesh can be
dynamically modified [VanToll12]. Mononen’s open-source Recast
library [Mononen09] first voxelizes3 the 3D environment before running
a watershed transform [Beucher90, Gonzalez02] on the walkable voxels
and creating a mesh from the resulting partition of the walkable surface.

In this article, I describe the implementation of navigation mesh
construction in my homemade hesperus engine [hesperus], based heavily
on the techniques of van Waveren in [VanWaveren01]. The goal is to
provide a helpful, implementation-focused introduction for those with no
prior experience in the area. At a high-level, the method is as follows:

 Firstly, given a 3D environment made up of brushes (simple convex
polyhedra, each consisting of a set of polygonal faces), and a set of
axis-aligned bounding boxes (AABBs) used to represent the
possible sizes of the agents that will navigate the environment,
expand the brushes by appropriate amounts (see the ‘Configuration
Space’ section) to create a set of expanded brushes for each AABB.

 T

2. A normal to a polygon is a vector that is perpendicular to the plane
containing the polygon. In practice, since polygons are often oriented
(i.e. they are considered to have a front face and a back face), it is
common for implementations to calculate normals that point out of the
front faces of polygons. It is also sometimes convenient for
implementations to normalise the calculated normals (that is, to make
them unit length), in which case normals for polygons are uniquely
defined and we can talk about the normal rather than a normal to a
given polygon.

3. A voxel (or volume element) is the 3D equivalent of a pixel, so
voxelizing a 3D environment means converting from e.g. a polygonal
representation of the environment to a representation consisting of
many small cubes.

Stuart Golodetz obtained his DPhil in Computer Science in 2011, 
working on 3D image segmentation and feature identification. He 
has since spent two interesting years in industry, working in the 
areas of credit risk management, logic programming and software 
analytics. His areas of interest include medical image analysis, 
computer games development and the intricacies of different 
programming languages, especially C++.

An example navigation mesh and its links: cyan = walk link;
magenta = step up link; yellow = step down link. (Note that in
greyscale, the walk links are light grey, the step up links are dark
grey and the step down links are white.)

Figure 1
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The goal is to provide a helpful,
implementation-focused introduction for

those with no prior experience in the area
 Next, using constructive solid geometry (CSG) techniques, union
the expanded brushes for each AABB together to form a polygonal
environment. Filter the polygons of the environment to find those
that are walkable (judged by comparing their face normals with the
up vector). This gives us the polygons of a navigation mesh for each
AABB, but without any links to indicate how agents should navigate
between them. See the ‘Basic Mesh Generation’ section.

 Finally, generate walk and step links between the polygons of each
navigation mesh (see the ‘Walk and Step Links’ section) – these
indicate, respectively, that an agent can walk from one polygon of
the mesh to another, or step up/down from one polygon to another.
These links can be used to generate a graph for the purposes of path
planning.

The following sections look at each of these steps in more detail.

Configuration space
When planning the movement of intelligent agents (e.g. robots), a
configuration space is the space of possible configurations in which an
agent can validly exist. As a first example of what this concept means and
when it can be useful, consider detecting the first point of collision between
a plane and an AABB that is moving by translation only – this might
normally involve determining which vertex of the AABB is nearest to the
plane and finding the point at which a half-ray oriented in the AABB’s
direction of movement and starting at that vertex would intersect the plane
(see Figure 2(a)). The configuration space alternative is to initially expand
the plane in the direction of its normal by a fixed amount so that the centre
of the AABB touches the expanded plane precisely when the nearest vertex
of the AABB touches the non-expanded plane (see Figure 2(b)). The first

point of intersection can then be calculated by finding the point at which
a half-ray starting at the centre of the AABB would touch the expanded
plane (see Figure 2(c)) – there is no longer a need to first determine which
vertex is nearest to the plane. Put another way: by expanding the plane,
we have created the space of possible configurations for the centre of the
AABB, and thereby restricted our testing to making sure that the AABB’s
centre is always in a valid location.

As explained in [VanWaveren01], the concept of configuration space can
be extended to an entire 3D environment, allowing us to test an agent
represented as an AABB against such an environment using only point-
based (rather than AABB-based) intersection tests: this was the approach
taken in the popular Quake III Arena game. Starting with a brush-based
3D environment (i.e. one that is built up by combining instances of simple
convex polyhedra such as cuboids, cylinders and cones – a common
approach in 3D world editors), a configuration space for agents with a
specific AABB can be constructed by expanding each brush by an
appropriate amount (see Figures 3(a) and 3(b)). Note that expanding each
brush correctly can require the introduction of additional bevel planes as
described in [VanWaveren01] (see Figure 3(c)).

Basic mesh generation

Brush unioning
Having expanded the brushes of a brush-based environment to construct
a configuration space for an AABB in the manner described, the next step
is to union the expanded brushes together to generate a set of polygons that
represent the expanded environment as a whole. These polygons can then
be processed further to construct a navigation mesh.

Figure 2

(a) Finding the intersection of a
half-ray through the nearest vertex
of the AABB with the plane

(b) Expanding the plane to form a
configuration space

(c) Finding the intersection of a half-
ray through the centre of the AABB
with the expanded plane

Detecting the first collision point between a translating AABB and a plane.
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In conceptual terms, the process of brush unioning is relatively simple:
given an input set of brushes, each of which consists of a set of (outward-
facing) polygonal faces, it suffices to clip each brush face to all the other
brushes within range of its own brush in the environment. From an
implementation perspective, a convenient way to do this is to build a binary
space partitioning (BSP) tree for each brush and clip each face to the trees
of the other brushes. The high-level implementation of this process can be
found in Listing 1 and full source code is available online [hesperus]. The
end result is a set of polygons that represent the expanded environment.

Finding walkable polygons
Given the set of polygons generated in the previous section, finding those
polygons that are walkable is straightforward: it suffices to compare the
angle between each polygon’s normal, , and the up vector ( )
to some predefined threshold. The angle can be computed using the dot
product:

We then keep precisely those polygons whose angle is less than or equal
to the threshold. In the hesperus engine, a suitable threshold for human
characters was found to be π/4 (i.e. 45 degrees to the horizontal).

Walk and step links
To generate simple links between walkable polygons in a navigation mesh,
the general strategy is as follows:

 We first create an edge plane table that maps each vertical plane
through one or more walkable polygon edges to two sets of edges
that lie in the plane (edges in one set are oriented in the same
direction as a ‘canonical’ plane; edges in the other have the opposite
orientation).

 For each plane in the table and for each ordered pair of opposing
edges for that plane, we check to see whether any links need to be
created. This is done by transforming the opposing edges into a 2D
coordinate system in the plane and calculating the intervals (if any)
in which the various types of link need to be created.

Edge plane table construction
The edge plane table is a map of type Plane to ({Edge},{Edge}). To
construct it, we proceed as shown in Listing 2. For each edge of a walkable

Figure 3

(a) A brush-based environment (b) Configuration space (c) A bevel plane

A configuration space can be generated for the entirety of a brush-based environment by expanding all of the brushes by an appropriate
amount: (a) shows a brush-based environment, together with the range of movement of a simple agent; (b) shows the configuration space
that would be generated for the centre of that agent; (c) shows that expanding non-axis-aligned brushes may require bevel planes (shown
in green) in order to correctly determine the range of movement.

Listing 1

function union_all
: (brushes: Vector<Brush>) -> List<Polygon>

var result: List<Polygon>;

// Build a tree for each brush.
var trees: Vector<BSPTree> := map(build_tree,
                                  brushes);

// Determine which brushes can interact.
var brushesInteract: Vector<Vector<bool>>;
for each bi, bj in brushes
  if j = i then
    brushesInteract(i, j) := false;
  else
    brushesInteract(i, j) := in_range(bi, bj);

// Clip each polygon to the tree of each brush
// within range of its own brush.
for each bi in brushes
  for each f in faces(bi)
    var fs: List<Polygon> := [f];
    for each bj in brushes
      if brushesInteract(i, j) then
        fs := clip_polygons(fs, trees(j), i < j);
    result.splice(result.end(), fs);

return result;

n u  ( , , )0 0 1 T

  cos ( )1 n u 

Listing 2

function build_edge_plane_table
:(walkablePolygons: List<Polygon>) ->
  Map<Plane,EdgeRefsPair,PlaneOrdering>

var ept: Map<Plane,EdgeRefsPair,PlaneOrdering>;

for each poly in walkablePolygons
  for each p1 in vertices(poly)
    var p2: Vec3 := next_vertex(poly,p1);
    var plane: Plane :=
      make_vertical_plane(p1,p2);
    var canon: Plane := plane.make_canonical();
    var sameFacing: bool :=
      plane.normal().dot(canon.normal()) > 0;
    if sameFacing then
      ept(canon).sameFacing.add(EdgeRef(poly,p1));
    else
      ept(canon).oppFacing.add(EdgeRef(poly,p1));

return ept;
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polygon, we first build the vertical plane passing through it and then add
it to the table based on its facing with regard to the ‘canonical’ vertical
plane through the edge. This has the effect of separating the edges of
walkable polygons into two sets on each vertical plane. These can then be
checked against each other in a pairwise manner to create navigation links
– see Figure 4 for an example. A few details are needed to make this work:

 Vertical Plane Construction. Each edge is necessarily non-vertical
(because it belongs to a walkable polygon), so the normal vector of
a vertical plane through it can be calculated straightforwardly using
the cross-product. If the endpoints of the edge are p1 and p2, and û
is once again the up vector, then the desired normal can be
calculated as:

Normalising this to give , the equation of the desired plane
is then:

 Canonical Plane Determination. Given a plane with equation
, we define the ‘canonical’ form of this plane

to be the one where the first of a, b or c to be non-zero is positive.
Thus, the canonical form of both  and

 would be . Note that a
plane is either already in canonical form, or can be canonicalised
straightforwardly by negating all of its coefficients.

 Plane Ordering. In order to use planes as the key for the edge plane
table, we need to define a suitable way of ordering them. This can
be done using a variant of the approach described in [Salesin92]. In
practice, the ordering was found to be easier to debug (although
somewhat less efficient) if implemented as shown in Listing 3.

Link creation
To generate walk and step links, we transform each ordered pair4 of
opposing edges that lie in the same (canonical) plane into a 2D
(orthonormal) coordinate system in the plane, and then determine the
intervals (if any) in which links need to be created.

A suitable 2D coordinate system for a plane  can be generated
as follows. To determine a suitable origin  for our coordinate system, we
find the point on the plane that lies nearest to the world origin 0: this is
simply . Given that the plane is vertical, suitable axis vectors for our
coordinate system can be defined as:

4. Note that because the pairs are ordered, we consider each unordered
pair of edges twice when creating links, once in each direction.

Figure 4

(a) The navigation mesh for Ramp (b) A top-down view, with some edges highlighted

(c) The part of the edge plane table corresponding to the highlighted edges

Plane Same-Facing Edges Opposite-Facing Edges

1 {e1, e2} {e3}

2 {e4} {e5}

An illustration of (part of) the edge plane table for the hesperus test level called Ramp: the ordered pairs of opposing edges are (e1,e3), (e2,e3),
(e3,e1), (e3,e2), (e4,e5) and (e5,e4). The first four pairs will cause walk links to be created; the last two pairs will cause step links to be created.
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Listing 3

function less: (lhs: Plane; rhs: Plane) -> bool

var nL, nR: Vec3 := lhs.normal(), rhs.normal();
var dL, dR: double := lhs.dist(), rhs.dist();

// If these planes are nearly the same (in terms
// of normal direction and distance value), then
// neither plane is "less" than the other.
var dotProd: double := nL.dot(nR);

// acos(x) is only defined for x <= 1, so clamp
// dotProd to avoid floating-point problems.
if dotProd > 1.0 then dotProd := 1.0;

var angle: double := acos(dotProd);
var dist: double := dL - dR;
if |angle| < εangle and |dist| < εdist then
  return false;

var aL, bL, cL: double := nL.x, nL.y, nL.z;
var aR, bR, cR: double := nR.x, nR.y, nR.z;

// Otherwise, compare the two planes
// "lexicographically".
return (aL<aR) or
       (aL=aR and bL<bR) or
       (aL=aR and bL=bR and cL<cR) or
       (aL=aR and bL=bR and cL=cR and dL<dR);
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o
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This gives us a coordinate system in which  is horizontal (in terms of the
surrounding world) and  is vertical. To transform an edge e on the plane
into this new coordinate system, we transform each of its endpoints e1 and
e2 as follows:

Having transformed a pair of opposing edges e and f into the plane’s
coordinate system, we next calculate the horizontal interval in which each
edge lies; e.g. for e this would be:

If the horizontal intervals for the opposing edges do not overlap, then there
can be no links between them. Otherwise, we compute the gradients m and
cut points c of the lines y = mx+c through the two edges (still in the plane’s
coordinate system) using basic mathematics; e.g. for e these would be:

Based on a comparison of the gradients, we then create the link segments
in the plane as shown in Listing 4 and Figure 5. The endpoints l1 and l2 of
each link segment can be straightforwardly transformed back into world
space to create the actual links as follows:

Potential extensions
At present, only walk and step links are implemented in hesperus, but there
are various additional links that it would be helpful to add.

Crouch links
One obvious extension is to add crouch links – these are links that tell
agents when they need to crouch in order to traverse low areas (e.g. a low
archway or a pipe). As the example in Figure 6 illustrates, these are inter-
mesh links; they should be created so as to link the standing and crouching
meshes for an agent at the boundary of areas that can be traversed on the

crouching mesh but not on the standing one. Assuming that the AABBs
for the two meshes differ only in their heights (as is the case in the
example), one way of automatically detecting crouch links would be to
match edges on the standing mesh that do not cause any walk or step links
to be created with edges in the same plane on the crouching mesh that do.
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Figure 5

Creating links between edges: in (a), the gradients differ and a step down
link is created from e to f in the region labelled sdI, and a step up link is
created in the region labelled suI; in (b), the gradients are the same and
a step up link is created from e to f in the region labelled xOverlap; in (c),
a step down link is created from e to f in the region labelled xOverlap.
The remaining case, of parallel edges leading to a walk link, is not shown.

(a)

(c)

(b)

l l lnx nyn o i j        

Listing 4

function calculate_link_segments
:  (e'1: Vec2; e'2: Vec2; f'1: Vec2; f'2: Vec2;
    xOverlap: Interval) -> LinkSegments

xO = xOverlap;
var result: LinkSegments;
var me: double := (e’2y - e’1y) / (e’2x - e'1x);
var mf: double := (f’2y - f’1y) / (f’2x - f'1x);
var ce: double := e’1y - me * e’1x;
var cf: double := f’1y - mf * f’1x;
var Δm, Δc: double := mf - me, cf - ce;
if |Δm| > ε then
  // If the gradients of the source and
  // destination edges are different, then we get
  // a combination of step up/step down links.
  // We want to find:
  // (a) The point walkX where yf = ye
  // (b) The point stepUpX where yf - ye = STEPTOL
  // (c) The point stepDownX where
  //     ye - yf = STEPTOL
  var walkX: double := -Δc / Δm;
  var stepUpX: double := (STEPTOL - Δc) / Δm;
  var stepDownX: double := (-STEPTOL - Δc) / Δm;

 // Construct the step down and step up intervals
 // and clip them to the known x overlap interval.
  var sdI, suI: Interval :=
    [min{walkX,stepDownX}, max{walkX,stepDownX}],
    [min{walkX,stepUpX}, max{walkX,stepUpX}];
  sdI := intersect(sdI, xO);
  suI := intersect(suI, xO);

  // Construct the link segments.
  if not sdI.empty then
    result.downToF :=
      [(sdI.low, me * sdI.low + ce),
       (sdI.high, me * sdI.high + ce)];
    result.upToE :=
      [(sdI.low, mf * sdI.low + cf),
       (sdI.high, mf * sdI.high + cf)];
  if not suI.empty then <analogously>
else if |Δc| < STEPTOL then
  // If the gradients of the source and destination
  // edges are the same (i.e. parallel edges), then
  // we either get a step up/step down combination,
  // or a walk link in either direction.
  var s1: Vec2 := (xO.low, me * xO.low + ce);
  var s2: Vec2 := (xO.high, me * xO.high + ce);
  var d1: Vec2 := (xO.low, mf * xO.low + cf);
  var d2: Vec2 := (xO.high, mf * xO.high + cf);

  if Δc > ε then
    // The destination is higher than the source.
    result.upToF := [s1,s2];
    result.downToE := [d1,d2];
  else if Δc < -ε then
    // The destination is lower than the source.
    result.downToF := [s1,s2];
    result.upToE := [d1,d2];
  else
    // The destination and source are level.
    result.walk := [s1,s2];
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Ladder links
The addition of ladder links (indicating that an agent can travel from one
floor to another using a ladder) is not conceptually very difficult, but it
requires tool support. In hesperus, the map editor would need to be
augmented to handle ladders and other static entities; when placing a
ladder, it would then be a simple matter to create a link at either end of the
ladder to represent travel in each direction. It should be noted that
traversing ladder links is significantly more complicated than traversing
walk or step links, because it takes time to climb or descend a ladder and
someone may be coming the other way, but traversal is beyond the scope
of this article.

Jump links
A third type of extremely useful link would be jump links – these are used
to indicate places at which an agent can jump to reach another part of the
navigation mesh. Calculating jump links can be somewhat costly because
it involves simulating the agent making jumps to determine whether or not
they are possible. In our case, the situation is made slightly easier because
we are working in configuration space and can avoid worrying about
clearance, but general-purpose jump links are still non-trivial to generate
automatically. One easy type of jump link that could be generated
immediately would be vertical jumps – these can be generated in the same
way as step up links, but using a larger height threshold.

Conclusions
In this article, I have illustrated how to generate navigation meshes at an
implementation level using an approach based on the work of van Waveren
[VanWaveren01]. Whilst there are many alternative techniques for
navigation mesh construction, as surveyed in the introduction, this
configuration space approach is useful because it allows us to avoid the
difficulties regarding clearance height that have to be dealt with by other
approaches; it also means that each agent occupies a single point on the
mesh, completely avoiding the problems caused by an agent straddling
multiple mesh polygons.

Navigation mesh generation, however, is only part of the picture – in a
future article, I hope to write more about using navigation meshes for
localisation, movement and path planning. 

Acknowledgements
As always, I would like to thank the Overload team for reviewing this
article and suggesting ways in which to improve it.

References
[Beucher90] Segmentation d’Images et Morphologie Mathématique 

(Image Segmentation and Mathematical Morphology). Serge 
Beucher. PhD thesis, E.N.S. des Mines de Paris, 1990.

[Gonzalez02] Digital Image Processing. Rafael C Gonzalez and Richard 
E Woods. Pearson Education, 2nd edition, 2002.

[Hale09] Full 3D ‘Spatial Decomposition for the Generation of 
Navigation Meshes’ D Hunter Hale and G Michael Youngblood. In 
Proceedings of the Fifth Artificial Intelligence for Interactive Digital 
Entertainment Conference, pages 142–147, 2009.

[Hamm08] ‘Navigation Mesh Generation: An Empirical Approach’ 
David Hamm. In Steve Rabin, editor, AI Game Programming 
Wisdom 4, pages 113–123. Charles River Media, 2008.

[Hertel83] ‘Fast triangulation of simple polygons’ S Hertel and K 
Mehlhorn. In Proceedings of the 4th International Conference on the 
Foundations of Computation Theory, volume 158 of Lecture Notes 
in Computer Science, pages 207–218. Springer Verlag Berlin, 1983.

[hesperus] The hesperus 3D game engine. Stuart Golodetz. Source code 
available online at: https://github.com/sgolodetz/hesperus2.

[Kallmann10] ‘Navigation Queries from Triangular Meshes’ Marcelo 
Kallmann. In Proceedings of the Third International Conference on 
Motion in Games (MIG), pages 230–241. Springer-Verlag Berlin, 
2010.

[Mononen09] Navigation Mesh Generation via Voxelization and 
Watershed Partitioning. Mikko Mononen. AiGameDev.com, March 
2009. Slides available online (as of 30th July 2013) at 
https://sites.google.com/site/recastnavigation/
MikkoMononen_RecastSlides.pdf.

[ORourke94] Computational Geometry in C, pages 60–61. Joseph 
O'Rourke. Cambridge University Press, 2nd edition, 1994.

[Pettré05] ‘A navigation graph for real-time crowd animation on 
multilayered and uneven terrain’ Julien Pettré, Jean-Paul Laumond 
and Daniel Thalmann. In Proceedings of the 1st International 
Workshop on Crowd Simulation, Lausanne, Switzerland, 2005.

[Ratcliff08] ‘Automatic Path Node Generation for Arbitrary 3D 
Environments’ John W Ratcliff. In Steve Rabin, editor, AI Game 
Programming Wisdom 4, pages 159–172. Charles River Media, 
2008.

[Salesin92] Grouping Nearly Coplanar Polygons into Coplanar Sets. 
David Salesin and Filippo Tampieri. In David Kirk, editor, Graphics 
Gems III, pages 225–230. Morgan Kaufmann, 1992.

[Snook00] ‘Simplified 3D Movement and Pathfinding Using Navigation 
Meshes’ Greg Snook. In Mark DeLoura, editor, Game Programming 
Gems, pages 288–304. Charles River Media, 2000.

[Tozour02] ‘Building a Near-Optimal Navigation Mesh’ Paul Tozour. In 
Steve Rabin, editor, AI Game Programming Wisdom, pages 171–
185. Charles River Media, 2002.

[Tozour04] ‘Search Space Representations’ Paul Tozour. In Steve Rabin, 
editor, AI Game Programming Wisdom 2, pages 85–102. Charles 
River Media, 2004.

[VanToll11] ‘Navigation Meshes for Realistic Multi-Layered 
Environments’ Wouter G van Toll, Atlas F Cook IV and Roland 
Geraerts. In Proceedings of the IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS), pages 3526–3532, San 
Francisco, California, USA, 2011.

[VanToll12] ‘A navigation mesh for dynamic environments’ Wouter G 
van Toll, Atlas F Cook IV and Roland Geraerts. Computer Animation 
and Virtual Worlds, 23:535–546, 2012.

[VanWaveren01] The Quake III Arena Bot. Jean Paul van Waveren. 
Master’s thesis, Delft University of Technology, 2001.Figure 6

Creating crouch links between navigation meshes can allow tall
characters to pass through low areas. Here, crouch links should be
created between the standing (green) and crouching (red) meshes to
allow agents to traverse this low archway.
October 2013 | Overload | 27

https://github.com/sgolodetz/hesperus2
https://sites.google.com/site/recastnavigation/MikkoMononen_RecastSlides.pdf
https://sites.google.com/site/recastnavigation/MikkoMononen_RecastSlides.pdf


FEATURE STEVE LOVE
C++ Range and Elevation
C++ provides many features for higher-level 
programming, but lacks some common ones 
present in other languages.
ack in 2009, Andrei Alexandrescu gave a presentation at the ACCU
Conference about Ranges. The short version is that although you can
represent a range in C++98 using a pair of iterators, the usage is

cumbersome for most simple tasks. Even for a simple loop, using iterators
can be a trial.

  for( vector< int >::iterator pos = data.begin();
    pos != data.end(); ++pos )
  {
    .... do interesting things with ints
  }

The C++ Standard Library provides a simple enough algorithm which
improves on this a bit, but you need to provide the action to be performed
as a functor argument, thus losing the locality of reference for that action.

  for_each( data.begin(), data.end(), action );

And all that’s just using the iterators the C++ Standard Library gives you;
defining your own iterator is notoriously complex. So, Andrei introduced
a much simpler – and more powerful – abstraction: the Range
[Alexandrescu09].

There have been a few attempts to implement Andrei’s ideas in C++ (he
implemented them for D, and they form the basis of the D Standard
Library) but for one reason or another, it just hasn’t caught on. Part of the
reason for that is that in order to take advantage of this new abstraction as
Andrei envisioned it, you need a rewrite of the Standard Library that uses
Ranges instead of Iterators. For some reason, there seems to be little
appetite for this. Some implementations have arisen that are interoperable
with C++ Standard Library algorithms [Boost], [Github1], but even they
appear to not have had as much traction in the C++ community at large as
might have been hoped. Similarly, there have been proposals to the C++
Standards effort [Standards], but still, not much apparent interest in
something that is little more than a thin wrapper around the existing C++
container types which are, after all, really just iterator factories.

Part of the reason Andrei himself implemented his idea of Ranges in D,
rather than C++, was that C++ at the time didn’t provide good enough
language support to make it straightforward. In particular, there was a C++
proposal at the time for auto variable declarations, which would have
been crucial, but had experimental support in only one widely used
compiler. Now, C++ officially has auto, and it’s very widely supported.
But not a widely-used – let alone standard – range type.

All of this is highly relevant, of course, but misses an important point: what
do these range types actually achieve? What problem are they attempting
to solve?

Time for a quick segue into a different world....

The cross-pollination conundrum
It’s common knowledge among experienced programmers that an intimate
understanding of a few different languages (and a possibly less intimate
knowledge of many) is a good thing. Techniques from one language can
inform and inspire neat solutions to problems in other languages. It’s also
common knowledge among experienced programmers that idiomatic
features of one language are not necessarily transferable to other
languages, and that doing so can result in code that is truly
incomprehensible to its readers. With both of those things in mind, I want
to explore a little modern C# idiom: IEnumerable, the C# Iterator.

This interface is what permits the foreach loop in C#:

  foreach( var item in container )
  {
      .... do interesting things with items
  }

C# has had IEnumerable from the very beginning, although it’s
undergone a few revisions over the years.

IEnumerable forms the basis of a much higher-level abstraction than
merely accessing the contents of containers, however. It underpins all the
functionality of LINQ1, introduced in Visual Studio 2005 with .Net 3.5,
and builds on one key feature of .Net 2.0 – the yield keyword, which
creates an IEnumerable  on demand  (actually, it creates an
implementation of IEnumerator<T>, which is the real iterator type).
This facility means that iterating over an IEnumerable is lazy – access
to an element isn’t performed until it’s asked for. In C#, this is referred to
as Deferred Execution.

 var results =
   container.Where( item => item.Id == expected )
   .Select( filtered => filtered.Count.ToString() )
   .Take( 2 );

The reason lazy access is important is that no matter how many elements
container has, the clauses for Where and Select will be called a
maximum of 2 times. Obviously, this is significant if container has 20
million items in it.

So what has all this to do with C++? In the first case, the reason that
IEnumerable works as an interface in C# is that it is implemented by
all the standard containers, and is in fact very simple to implement for your
own container types. C++ has no such interface, and in fact, there is no
actual relationship – inheritance or otherwise – between the standard
containers, or their iterator types. In the second case, does this entirely
idiomatic C# translate at all into C++? Or does it make for an
incomprehensible mess? That is the nature of the cross-pollination
conundrum.

The missing lin[qk]?
It should be clear that IEnumerable in C# has much more in common
with Andrei Alexandrescu’s vision of a Range than it does with C++

 B

1. Specifically, LINQ for Objects, which operate on containers rather than
DataSources.

Steve Love is an independent developer constantly searching for new 
ways to be more productive without endangering his inherent laziness. 
He can be contacted at steve@arventech.com
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IEnumerable in C# has much more in
common with Andrei Alexandrescu’s vision

of a Range than it does with C++ iterators
iterators – or even iterator pairs. C++11 introduces many language features
which allow a neat syntax for it, such as lambda and type deduction
facilities. Suppose there were a range type in C++; would it on its own
enable the implementation of something like Select or Where from C#?
What might that look like?

  auto result =
     container.where( [&]( const thing & t )
     { return t.name == expected; } )
     .select( []( const thing & t )
     { return to_string( t.count ); } )
           .take( 2 );

It’s not inconceivable.

But.

What type is container? We could implement a single type that has where,
select, take and all the other things needed as member functions. What
really makes C#’s IEnumerable work is the existence of extension
methods. The power of that mechanism really shines through when you
need to write your own function that fits in with other LINQ facilities, and
C++ has no analogue for that.

A much neater idea would be closer to the Alexandrescu range concept
whereby select returns a specific kind of range, and where returns a
different kind of range. The chaining of those operations together as shown
above would still require some common base interface, and would still be
hard to extend.

Lastly there is also the question of lazy evaluation (or Deferred Execution)
and efficiency. It’s hard to see how to make lazy evaluation safe in the
above scenario, without resorting to passing functions around under the
hood and capturing state. As for efficiency, this idea of a single base class
is raising the spectre of allocating stuff on the heap (gasp!), and too many
C++ programmers have got used to the flexibility and efficiency of
templates and type deduction of iterators to give it up that easily.

So, there are questions.

Perhaps we should wind back our expectations a little, start with something
very, very simple, and see if it can be implemented. Then we can look to
see if we can build on small beginnings to do something more elaborate.

So. Where do we start?

Write a test
For the purposes of testing examples, assumptions and results, I’m using
Catch [Github2] because it’s easy to read, clear to write and not too
verbose.

It should be obvious by now that the first step is to define a very simple
and lightweight range type, upon which we can somehow ‘hang’ all of the
operations we need. This range should be trivially initialisable from some
standard container. I’m going to make a conceptual leap here, because it’s
clear the range type needs a way to access the ‘current’ element, and to
move forwards one position. With these operations, it’s possible to make
a simple check that the ‘contents’ of the range match the original data.

Andrei Alexandrescu asserted that the pointer-like interface for iterators
is a Bad ThingTM, but I think it makes for a neat syntax, so I will stick with
it. (See Listing 1.)

What is required to make this test compile? The most obvious thing is
make_range – is that a function or a class? In order to make it as general
as possible, it should (obviously) be a template, and to take full advantage
of type-deduction it should be a function returning....what? Some type
which exhibits the right interface. With just the information in the test, we
can sketch it out. Note that, with the use of auto, the actual type is never
named. This isn’t a crucial observation, but does give us a lot of leeway
on the choice of name. I have been unimaginitive, however. (See
Listing 2.)

There is nothing particularly startling about this. The iterable_range
class just squirrels away a pair of iterators (the observant will already have
noticed that end isn’t used, but its purpose should be obvious!), and the
make_range function is really just a convenience for creating an instance
of the class. The iterable_range is a kind of ‘proto-range’; it’s not
terribly useful on its own, but it does form the basis for other things.

True to type
It’s already time to do something a bit harder. Listing 3 is another test.

I already mentioned the idea of having different range types, e.g. select
provides a ‘selecting range’, and where provides a ‘filtering range’. The
line auto result = select( ... now needs some function select,
and something to return – a transforming range type. It’s going to need the
same basic operations as the iterable_range, and it needs to operate
on an underlying range. The operations on the new range defer to that
underlying range type – which in this case is an iterable_range.

template< typename range_type, 
  typename transformation >class transforming_range
{
  public:
    transforming_range( range_type r,
      transformation fn ) : r{ r }, fn{ fn } { }
  private:
    range_type r;
    transformation fn;
};

Listing 1

TEST_CASE( "Range is constructable from standard
  collection and is iterable",
  "[range][init][iterable][stl]" )
{
  std::vector< int > data { 1, 2, 3 };
  auto range = make_range( data );
  REQUIRE( *range++ == data[ 0 ] );
  REQUIRE( *range++ == data[ 1 ] );
  REQUIRE( *range++ == data[ 2 ] );
}
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C++11 provides an army of tools for 
determining the types of things at 
compile time
The incrementing operator should be straightforward enough – it needs to
increment the underlying range object and return a copy of its previous self.

  auto operator++( int ) -> transforming_range
  {
    transforming_range tmp{ *this };
    r++;
    return tmp;
  }

What about the dereference operator? It needs to call the transformation
function fn with the current element, and return its result.

  auto operator*() const -> ???
  {
    return fn( *r );
  }

C++11 provides an army of tools for determining the types of things at
compile time for situations like this. The one with the most visibility,
decltype, provides the declared type of an expression – including the
result of calling a function.

  auto fn( int ) -> bool { return true; }
  auto fn( double ) -> int { return 10; }
  auto type = decltype( fn( 10 ) );
  // type is bool - type returned if fn were
  // called with an int

This makes determining the result of operator*() very simple. The
only restriction on this use is that both fn and r need to have already been
‘seen’, which leads to the need to declare them before they are used in the
decltype expression.

  private:
    range_type r;
    transformation fn;

  public:
    auto operator*() const -> decltype( fn( *r ) )
    {
      return fn( *r );
    }

I normally much prefer to declare classes with the public section at the
top, where it’s most obvious and visible. However, it seems a fair trade in
this case to allow the use of decltype in such a simple fashion. The
alternative is much worse!1

With this addition, the transforming_range class should pass all the
tests, after we add the now-trivial select function. (See Listing 4.)

Listing 2

template< typename iterator_type >
class iterable_range
{
  public:
    iterable_range( iterator_type begin,
                    iterator_type end )
      : pos{ begin }, end_pos{ end } { }
    auto operator*() const -> 
      typename iterator_type::value_type
    {
      return *pos;
    }
    auto operator++( int ) -> iterable_range
    {
      iterable_range tmp{ *this };
      ++pos;
      return tmp;
    }
  private:
    iterator_type pos, end_pos;
};
template< typename container_type >
auto make_range( const container_type & ctr ) ->
   iterable_range
   < typename container_type::const_iterator >
{
  return iterable_range
    < typename container_type::const_iterator >
  { begin( ctr ), end( ctr ) };
}

Listing 3

TEST_CASE( "Transformation of elements results in
   new range leaving originals intact",
   "[range][transform]" )
{
  std::vector< int > data { 1, 2, 3 };
  auto range = make_range( data );
  auto result = select( range, []( int i ) {
    return std::to_string( i ); } );
  std::string expected[] = { "1", "2", "3" };
  REQUIRE( *result++ == expected[ 0 ] );
  REQUIRE( *result++ == expected[ 1 ] );
  REQUIRE( *result++ == expected[ 2 ] );
  REQUIRE( *range++ == data[ 0 ] );
  REQUIRE( *range++ == data[ 1 ] );
  REQUIRE( *range++ == data[ 2 ] );
}

1. Alright, you’d need something like auto operator*() const -> 
typename std::result_of< transformation( 
decltype( *std::declval< range_type >() ) ) 
>::type I hope you agree that declaring private at the top is a 
small price to pay! 
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We need some sort of check that the
range object is valid – that it hasn’t run

out of elements
Just the good ones
Time for another test (Listing 5).

Wi th  a l l  t he  funky  s t u f f  l e a rned  imp le men t i ng  t he
transforming_range, implementing a filtering_range to be
returned by a where function should be pretty straightforward (Listing 6).

The cleverness is all in operator++(), which keeps incrementing until
the predicate is false. The where function is simplicity itself – almost
identical to select, just returning a different range type.

  template< typename range_type, typename filter >
  auto where( range_type r, filter fn ) ->
    filtering_range< range_type, filter >
  {
    return filtering_range< range_type, filter >{
      r, fn };
  }

Run the tests....and they all pass. Time for the next one....

Wait a moment!
Once again, the observant among you will have already spotted the
completely fatal flaws in that code. Just to labour the point, Listing 7 is a
test that exposes one of them.

The problem here is that the filtering range is fine if the first element in
the range matches the predicate. In any other case, it fails the test.

Hopefully, this starts a chain of thought leading to questions like ‘what if
no elements match?’ and then ‘what if the initial range is empty?’. Now
we know why the iterable_range has an end iterator! We need some
sort of check that the range object is valid – that it hasn’t run out of
elements. Fortunately, it is trivial to implement a safe conversion to bool
on all three of our range types. For iterable_range, it returns false
if pos==end_pos and true otherwise. For transforming_range
and filtering_range, it simply returns the value for the underlying
range. C++11 provides an explicit conversion operator – which means
the new function won’t take part in any arithmetic or otherwise unsafe
operations.

Listing 4

template< typename range_type,
          typename transformation >
auto select( range_type r, transformation fn ) -> 
transforming_range< range_type, transformation >
{
  return transforming_range< range_type,
         transformation >{ r, fn };
}

Listing 5

TEST_CASE( "Filtering elements contains just the 
matches", "[range][filter]" )
{
  std::vector< int > data { 1, 2, 3 };
  auto range = make_range( data );

  auto result = where( range, []( int i ) {
    return i % 2 != 0; } );

  REQUIRE( *result++ == data[ 0 ] );
  REQUIRE( *result++ == data[ 2 ] );
}

Listing 6

template< typename range_type, 
          typename unary_predicate >
class filtering_range
{
  private:
    range_type r;
    unary_predicate fn;
  public:
    filtering_range( range_type r,
       unary_predicate fn ) : r{ r },
       fn{ fn } { }
    auto operator*() const -> decltype( *r )
    {
      return *r;
    }
    auto operator++( int ) -> filtering_range
    {
      filtering_range tmp{ *this };
      r++;
      while( !fn( *r ) ) r++;
      return tmp;
    }
};

Listing 7

TEST_CASE( "Filtering range returns correct 
matches when first element is a mismatch", 
"[range][filter][empty]" )
  {
    std::vector< int > data { 2, 3, 4 };
    auto range = make_range( data );

    auto result = where( range, []( int i ) { 
return i % 2 != 0; } );

    REQUIRE( *result++ == data[ 1 ] );
  }
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we could add a common base class 
declaring all the high-level functionality 
like select, where and so on...the trouble 
with this approach is that it’s inflexible
  explicit iterable_range::operator bool() const 
    { return pos != end_pos; }
  explicit transforming_range::operator bool()
    const { return !!r; }

The slightly odd !!r says what it does: ‘not not’, invoking the underlying
range’s bool conversion. Because the conversion is explicit, just
return r; won’t work, of course!1

With the addition of this rather important facility, we can add a helper
function to filtering_range called find_next_match.

  void find_next_match()
  {
    while( r && !fn( *r ) )
      ++r;
  }

This  func t ion  i s  invoked  by  operator*()  ( thus  making
filtering_range lazy-evaluated), so finds the first matching element.
The increment operator also needs to invoke it to ensure a range with no
further matches becomes invalidated.

This implies that client code must first check that the range is valid before
invoking operator*()2, and so operator bool() must also invoke
it in order to detect a range with no matching elements.

Time for some more tests! (Listing 8)

Whilst we’re at it, we’ll add a prefix operator++() to all the range types,
too (did I manage to slip that one past you in the implementation of
find_next_match?), since efficiency is one of our design principles.

For filtering_range, that operator is used by the postfix version, and
looks like the following:

  auto operator++() -> filtering_range &
  {
    ++r;
    find_next_match();
    return *this;
  }

Now we’re really cooking. It must be time to turn the world upside down
yet again.

Joined up
It should be fairly clear how to implement take using the techniques
already discussed here. What’s missing is the ability to chain expressions
together. In fact, our existing API allows a limited form of composing
expressions.

  auto result = select( where( []( int i ) {
    return i % 2 != 0; } ), 
  []( int i ) { return i * 2; } );

This is somewhat unwieldy, however, especially when composing more
than a small number of expressions.

As already noted, we could add a common base class declaring all the high-
level functionality like select, where and so on. The trouble with this
approach is that it’s inflexible; it would be difficult to extend with new
operations.

It’s not possible to overload operator.() in C++, so directly mimicking
the syntax of extension methods is out, but there are other operators we
could use. There is something appealing about hijacking the ‘pipe’
operation common in filesystem operations. Time for another test.
(Listing 9.)

The main thing to note here is that the signatures of the range functions
select and where have changed – they no longer take a range object –
almost as if the range is being passed in through some ‘standard input’.
This suggests some global operator, perhaps like this:

  template< typename left_range_type, 
            typename right_range_type >
  auto operator|( left_range_type left,
                  right_range_type right ) -> ???
  {
    ???
  }1. More verbose but perhaps more descriptive might be

return static_cast< bool >( r );
2. The ‘functional’ approach to this problem is any, which returns false

if a range contains no elements.

Listing 8

TEST_CASE( "Filtering range is immediately
  invalid when no elements match",
  "[range][filter][nomatch]" )
{
  std::vector< int > data { 2, 3, 4 };
  auto range = make_range( data );
  auto result = where( range, []( int ) 
  { return false; } );

  REQUIRE( ! result );
}

TEST_CASE( "Filtering range returns correct
   matches when first element is a mismatch",
   "[range][filter][empty]" )
{
  std::vector< int > data { 2, 3, 4 };
  auto range = make_range( data );
  auto result = where( range, []( int i ) 
  { return i % 2 != 0; } );

  REQUIRE( !!result );
  REQUIRE( *result++ == data[ 1 ] );
}
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One of the motivations for the ease of
chaining operations was to make the

API easy to extend
The question is – what should it return? Perhaps it would be simpler to see
the solution to this using actual named funtions instead of overloaded
operators.

  auto result = 
  range.apply( where( []( int i ) 
             { return i % 2 != 0; } ) )
       .apply( select( []( int i ) 
             { return i * 10; } ) );

This is similar enough to actual chaining, there appears to be some merit
to following it to see where it leads.

The first obstacle is this redefinition of select and where. To take
where  a s  an  example ,  i t  cannot  cons t ruc t  an  ins tance  o f
filtering_range, because that type requires an underlying range
object on which to operate. The range object isn’t supplied until apply is
called – whatever that is. It looks from here very much like a member
function common to all range types. Given that where can’t return a
filtering_range, but must capture the filtering predicate somehow,
another intermediate type is indicated. This intermediate is what gets
passed to apply, and is a factory for the real range type. The apply
function then invokes that factory to create a real range type.

One approach to this might be to have a separate intermediate factory for
every range type; this would certainly make the implementation simple:
the filtering_range would have a filtering_range_factory,
and the implementation of that would know how to construct a
filtering_range given an underlying range object to construct it with.

However, for the cases in this example at least, there is a more general
solution. Once again we look to Andrei Alexandrescu, and make use of a
simple policy template. The where function ‘knows’ it requires a
filtering_range, but has insufficient data or template parameters to
actually create one. If the filtering_range_factory makes use of

a template-template parameter, it can create a filtering_range when
all the parameters required are available.

This can be generalised out to a factory that can create any range type that
takes two template parameters. (See Listing 10.)

Now, the where function instantiates the factory with the required range
type (filtering_range), and the predicate function to be captured.

  template< typename unary_predicate >
  auto where( unary_predicate fn ) 
    -> range_factory< filtering_range,
       unary_predicate >
  {
    return range_factory< filtering_range,
           unary_predicate >{ fn };
  }

The select  function can do the analogous operation using
transforming_range.

With this information, we can now implement the apply function. Our
original vision was to replace apply with an overload of operator|().
Whilst apply needed to be a member function to allow chaining calls
together, the overloaded operator does not need to be a member. We can
sidestep apply altogether, and jump straight to the operator|()
implementation, to make our original test for this pass. All that’s needed
is to call the function-call operator on the provided factory with the
provided underlying range object. (Listing 11.)

Extensions
One of the motivations for the ease of chaining operations was to make
the API easy to extend. Let’s see how well we’ve achieved that, and write
take. The idea is that take produces a range of up to a given number of
elements.

Listing 9

TEST_CASE( "Range results can be composed using
   simple syntax", "[range][composition]" )
{
  std::vector< int > data { 1, 2, 3 };
  auto range = make_range( data );

  auto result = range 
  | where( []( int i ) 
    { return i % 2 != 0; } )
  | select( []( int i ) 
    { return i * 10; } );

  REQUIRE( *result++ == data[ 0 ] * 10 );
  REQUIRE( *result++ == data[ 2 ] * 10 );
  REQUIRE( ! result );
}

Listing 10

template< template< typename, typename > 
  class range_type, typename expression_type >
  class range_factory
{
  public:
    range_factory( expression_type action ) :
      action{ action } { }
    template< typename range_of >
    auto operator()( range_of r ) const 
      -> range_type< range_of, expression_type >
    {
      return range_type< range_of,
        expression_type >{ r, action };
    }
  private:
    expression_type action;
};
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If the original range has fewer than the requested number, then all are
returned. (See Listing 12.)

Implementing the range used – let’s call it limited_range – looks
straightforward; operator bool() just needs to return false after a
certain number of iterations of the underlying range. The problem with this
one is the implementation of the helper function: take itself. Up to this
point, the range_factory has had a simple task of creating any one of
a number of different range types that all had in common their template
parameters and construction; each one with two template parameters, and
a constructor that took a range-type and functor-type.

Let’s take a quick look at the basic construction of a limited_range:

  template< typename range_type >
  class limited_range
  {
    public:
      limited_range( range_type r, int count )

Only one template parameter, and the count, which can’t be made into a
template parameter because i t  might not be a constant.  The
range_factory now needs to do something different, i.e. be able to
create objects having either one or two template parameters.

The existing range_factory exists because the type of the underlying
range isn’t known until the range operation (e.g. select) is invoked via
the operator|() mechanism. Introducing a new range type with only
one template parameter means the original ‘action expression’, which for
take is just a number, still needs to be captured before the range object
is created, but the range type is still not known.

This means the basic mechanism is the same, but the implementation of
operator()() needs to vary according to the number of template
arguments for the target range type. The ideal solution to this would be to
create a partial specialization of range_factory using variadic
templates to represent the differences. Something like Listing 13.

This would rely on factory types with two or more template parameters
matching the specialisation, and those with only one template parameter
matching the primary. However, the rules of partial specialization don’t
allow this; the primary template’s implicit types (range_type and
expression_type) aren’t distinguishable from the specialization, so
the second struct is ambiguous.

It doesn’t prevent a new factory type which understands how to create
types having only one template parameter, and having the take function
use it directly.

  template< template< typename > class range_type,
     typename expression_type >
  class range_factory_1
  {

It is otherwise idential to range_factory, except for operator()()

  template< typename range_of >
  auto operator()( range_of r ) const 
     -> range_type< range_of >
  {
    return range_type< range_of >{ r, action };
  }

The only difference here is the number of template arguments provided to
the range_type in the factory function.

This solution works, but it does require any other extensions to know which
...factory class to invoke. It’s not a catastrophe, but it could be made
easier. Instead of variadic templates and specialization, we turn to ordinary
function overloading to come to the rescue. Instead of creating the correct
factory type directly, take can use a call to a function which is overloaded
based on the same template-template upon which we wished we could
specialize range_factory. (Listing 14.)

Listing 11

template< typename range_type,
   typename range_factory_type >
  auto operator|( range_type range,
    range_factory_type factory ) -> 
    decltype( factory( range ) )
{
  return factory( range );
}

TEST_CASE( "Range results can be composed using
   simple syntax", "[range][composition]" )
{
  std::vector< int > data { 1, 2, 3 };
  auto range = make_range( data );

  auto result = range | where( []( int i ) 
    { return i % 2 != 0; } )
    | select( []( int i ) { return i * 10; } );

  REQUIRE( *result++ == data[ 0 ] * 10 );
  REQUIRE( *result++ == data[ 2 ] * 10 );
  REQUIRE( ! result );
}

Listing 12

TEST_CASE( "Range can be limited to a number of
   elements with take", "[range][take]" )
{
  std::vector< int > data { 1, 2, 3, 4, 5 };
  auto range = make_range( data );

  auto result = range | take( 2 );

  REQUIRE( *result++ == data[ 0 ] );
  REQUIRE( *result++ == data[ 1 ] );
  REQUIRE( !result );
}

Listing 13

template< template< typename, typename... > 
   class range_type, typename expression_type >
  struct range_factory { };

  template< template< typename, typename,
     typename... > class range_type,
     typename expression_type >
  struct range_factory< range_factory
    < range_type, expression_type > > { };

Listing 14

template< template< typename, typename > 
  class range_type, typename expression_type >
auto make_range_factory( expression_type expr ) 
  -> range_factory< range_type, expression_type >
{
  return range_factory< range_type,
               expression_type >{ expr };
}

template< template< typename > class range_type,
   typename expression_type >
  auto make_range_factory( expression_type expr )
     -> range_factory_1< range_type,
                         expression_type >
{
  return range_factory_1< range_type,
                        expression_type >{ expr };
}
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This pair of function overloads selects the correct factory class to construct
based on the number of template parameters required by the range_type
template-template. Any function that now needs a range_factory or
range_factory_1 can just use the overloaded function and provide the
correct type for that factory to create, and overloading will do the rest
(Listing 15).

Here is the take function implemented to use the new factory factory
function (!), and using the same function return type deduction as used
previously, with decltype. I’ve also re-implemented where to show the
usage is identical; these two functions make use of different range factory
types, but that is merely ‘implementation detail’.

It’s not unreasonable to imagine range implementation classes needing
more template arguments.  In such cases,  the corresponding
range_factory_N and make_range_factory overload pair would
be needed, but in practice, one and two template parameter range types
cover most of the most useful things.

All done
This article set out with the stated aim of implementing something not
dissimilar to the simple C# LINQ expression which does simple filtering,
transformation and range-limiting. With the implementation so far, it’s
very similar (but not exactly the same, for some good reasons). See
Listing 16.

There was a mention in passing, however, of being able to interoperate
with the existing C++ Standard Library implementations, without losing
efficiency. The high-level API achieved here is certainly not just a thin
wrapper around C++ iterators; it provides a very rich and type-safe
platform which is extended fairly easily (at least, no more difficult than
extending C#’s IEnumerable facilities). How hard is it to go the extra
step, and allow this new range type to play nicely with C++ algorithms?

With some restrictions, it’s very simple. Those restrictions again are
inspired by C#’s LINQ: IEnumerable is an immutable interface. You
cannot modify elements of it, nor modify the range represented by it,
without going via some concrete container type, which in C# means calling
ToList() or ToArray() on the range.

I believe immutability isn’t an unreasonable restriction on this kind of
programming. With increased focus on concurrency and multi-processing
to achieve better performance, and with both of those techniques
benefiting greatly from the use of immutable data, making the ranges that
this API operates on immutable isn’t a restriction, it’s a design principle.
Turning an immutable range into mutable data which works with mutating
algorithms requires the C++ equivalent of ToList().

Let’s see if we can express what is required for that in another test
(Listing 17).

This highlights the fact that in C++, containers and algorithms work with
pairs of iterators – the [begin, end) ‘range’, whereas the range types
described in this article encapsulate the pair of iterators into a single item.

Implementing begin for the range type looks straightforward – perhaps
the necessary operations (only an InputIterator’s operations are
required) could be added to the range types, so equivalence operators !=
and ==.

The possible difficulty might be in implementing end.

There is also precedence for writing end when an end position isn’t
known: std::ostream_iterator uses a sentry type (effectively an
invalid position created by the default constructor), so a similar technique
could be employed here. The only way to find the end of a Range is to
consume it, which is obviously undesirable.

There’s more to a C++ Iterator than ++, *, != and == however, in practice.
There are some embedded typedefs to consider as well, which is usually
captured by inheriting from std::iterator. So, instead of making
changes to all of the range types, or some common base class, it seems to
be a better separation of concerns to implement the necessary iterator type
separately. As already noted, only the operations and types associated with
InputIterators are needed if range types are immutable. Most of the
required operations are easy enough to write (see Listing 18).

The sticking point is to decide how to implement operator==(). How
to compare two ranges to see if their current positions are the same, in the
same range of iterators? Time to step back and consider: how would the
std::vector constructor taking two iterators be implemented?
Something very like:

  vector( iterator b, iterator e )
  {
    while( b != e )
      push_back( *b++ );
  }

The point here is that the most important consideration is the comparison
to the ‘end’ position, which our ranges already do to determine operator
bool(), needed for other things internally. If we make the assumption that

Listing 15

auto take( size_t count ) -> 
  decltype( make_range_factory< limited_range >
  ( count ) )
{
  return make_range_factory< limited_range >
    ( count );
}

template< typename unary_predicate >
auto where( unary_predicate fn ) -> 
  decltype( make_range_factory
    < filtering_range >( fn ) )
{
  return make_range_factory< filtering_range >
  { fn };
}

Listing 16

var result = container.Where
   ( item => item.Id == expected )
 .Select( filtered => filtered.Count.ToString() )
 .Take( 2 );

auto result = range 
  | where ( [&]( const thing & t )
    { return t.name == expected; } )
  | select( []( const thing & t )
    { return to_string( t.count ); } )
  | take( 2 );

Listing 17

TEST_CASE( "Range can be used to populate a
   standard lib container",
   "[range][export][stl]" )
{
  std::vector< int > data { 1, 2, 3 };
  auto range = make_range( data ) |
               select( []( int x )
  { return std::to_string( x ); } );

  std::vector< std::string > result 
  { begin( range ), end( range ) };

  REQUIRE( result.size() == data.size() );
  REQUIRE( std::to_string( data[ 0 ] ) ==
     result[ 0 ] );
  REQUIRE( std::to_string( data[ 1 ] ) ==
     result[ 1 ] );
  REQUIRE( std::to_string( data[ 2 ] ) ==
     result[ 2 ] );
}
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such comparisons are only ever between a valid range and the end of the
same range, then operator==() can use operator bool() – two
ranges always compare equal if the first is valid.

A side effect of this is that the right-hand-side of an expression range_l
== range_r is never used, so it doesn’t matter what end returns – it
doesn’t even need to be a default-constructed sentry value (which would
be difficult, given the lack of default constructors of the range types).

  auto operator==
    ( const range_output_iterator & ) const -> bool
  {
    return !r;
  }

The implementations of begin and end therefore become as shown in
Listing 19

That’s not a printing error: they are identical in implementation. end
merely has to return something of the correct type – it is never used, not
even to compare with anything.

A side effect of this is that interoperability with non-mutating C++
algorithms is achieved for free, for example

  {std::copy( begin( r ), end( r ),
              std::back_inserter( my_list ) ); }.

To conclude
There have been a few range libraries developed for C++ over recent years,
but none seem to have had the same take-up as ranges have in D, for
example. I think it’s partly because C++ iterator pairs have become such
a central part of writing C++ programs that use the Standard Library, partly

because such range libraries that there are are either clunky to use, or have
disappointing behaviour regarding the C++ Standard Library, and partly
because there are actually no really compelling use cases for them that
can’t be achieved using other techniques.

In this article, I set out to demonstrate some uses for a very lightweight
range type that’s very easy to use, and provides facilities that are very
widely used in a different language – C# – which in turn took the ideas of
functional languages and coupled them with what some people describe
as the ultimate declarative language, SQL.

C++ has many functional facilities, and many of the standard algorithms
mirror functional constructs. std::transform is essentially a list
comprehension, but lacks the brevity and simplicity of transformations in
truly functional languages, at least in part because it uses two iterator-pairs
to represent separate ranges.

The C# Select expression to transform one IEnumerable into another
captures the simple case that is most common – turn every element into a
new range of some new type – and C++’s transform doesn’t really even
compete. A simple range type for C++ overcomes the problems with
having that simplicity, whilst still allowing simple and efficient
interoperability with existing C++ Standard Library facilities.

All the code in this article compiles with GCC 4.6.3 (with -std=c++0x) on
Ubuntu, and GCC 4.8.1 (with -std=c++11) and Microsoft Visual Studio
2013 CP on Windows. It’s available from https://github.com/essennell/
narl. 
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Listing 18

template< typename range_type,
  typename value_type >
  class range_output_iterator : public
     std::iterator< std::input_iterator_tag,
                    value_type >
{
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    range_output_iterator( const range_type & r )
      : r{ r }
    {
    }
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      ???
    }
    auto operator!=
       ( const range_output_iterator & r )
       const -> bool
    {
      return !operator==( r );
    }
    auto operator++() -> range_output_iterator &
    {
      ++r;
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      }
  private:
    range_type r;
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Listing 19

template< typename range_type >
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{
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