

December 2013 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 On the Other Side of the Barricade: Job
Interviewer Do’s and Don’ts
Sergey Ignatchenko provides advice to
interviewers.

7 How to Program Your Way Out of a Paper
Bag Using Genetic Algorithms
Frances Buontempo programs her way out of a
paper bag using genetic algorithms.

10 Object-Environment Collision Detection
using Onion BSPs
Stuart Golodetz describes onion binary space
partitioning for collision detection.

16 Migrating from Visual SourceSafe to Git
Chris Oldwood records the trials and triumphs of
migrating from VSS to git.

OVERLOAD 118

December 2013

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 119 should be submitted
by 1st January 2014 and those for
Overload 120 by 1st March 2014.

EDITORIAL FRANCES BUONTEMPO
Not So Much a Program,
More a Way of Life
In an attempt to continue and improve on the successful
formula of previous editorial avoidance techniques,
Frances Buontempo considers what a program really is.
After many attempts at answering vital questions
about programming, in lieu of writing an editorial, the
time has finally come to get straight to the point. So
with no further distractions or mucking around, let us
once more focus and turn our attention to a vital
question which requires an answer before we can even

consider what to write about for an editorial: what do we mean by a
program?1 I will attempt to avoid distractions, such as whether it should
be spelled as ‘program’ or ‘programme’. The internet says ‘programme’
is the old way of spelling ‘program’ when it comes to computer programs,
so let us take that as read.2

Are programs dynamic?
Programs come in many guises. They can be dynamic, that is a script that
is interpreted at run time. Alternatively, they can be static, that is requiring
compilation. They can also be a half-way house, compiling to byte code,
such as Java or C#. Please note, that static does not mean they never
change. Has anyone written a program that never changed?3 There is a
slim chance a one line throwaway script might never change. I have heard
rumours of such things, but never seen one. Whether a program is dynamic
or static, if it has been in source control the log may indicate it is in truth
always dynamic, or constantly changing. Code only tends to stagnate, or
become truly static, when it’s dead. Perhaps code is like a shark. ‘I’m like
a shark, I don’t swim backwards’ [Google], though perhaps many of us
have done something along the lines of

 git reset --hard HEAD…

Forwards or backwards is still a change and therefore dynamic. More
importantly, if the code itself is not in version control that is a potentially
life threatening decision, if the person who failed to use version control
is in striking distance. More positively, as Heraclitus [Heraclitus] said,

All entities move and nothing remains still.

sometimes taken as “You can’t stand in the same river twice.” Aside from
Heisenbugs [Heisenbugs], wherein attempts to debug the code change
how it behaves, a program tends to evolve and change over time, either
meandering towards the requirements or trying to play catch-up with the
requirements, or even trying to discover the real requirements. It could be
argued that a program is its current code along with its history, including
all the crime scenes to watch out for [Tornhill13] and the bug tracker
history and perhaps the documentation. Sometimes there is no
documentation, or no version control. This leaves us with just the code as

it is now. If the code is compiled, there is no
gua ran t e e t h i s ma t che s wha t ’ s i n

production. This is a frightening place to
be. Sometimes, we have only the

executable and no code. An environment including tests, useful
documentation, version control and the code itself is a safer happier place
to be. A program is much more than just something that can be run or
executed.

Are programs executable?
Not all code is executable. Certainly some code will run on one machine
and stubbornly refuse to even start on another machine, though some code
is not designed to be run directly. Most of us will have used a variety of
libraries, APIs, interface, protocols and similar at some point. Some of us
may even have written libraries, hopefully managing the difficult task of
making them easy to use correctly and hard to use incorrectly
[97Things].This sage advice tells us we are really writing code for fellow
programmers, not the customer or the machines. The executable is for the
outside world. The code itself is another matter.

Recently on accu general, a controversial quote from Bjarne Stroustrup
[Stroustrup] caused a brief discussion:

I have yet to see a program that can be written better in C than in
C++. I don’t believe such a program could exist.

By better, Bjarne explains he means ‘smaller, more efficient, or more
maintainable’ and goes on to say:

Many then fall in love with their obscure and complex code,
considering it a sign of expert knowledge. It is amazing what people
can fail to learn when they are told that it is difficult and useless.

As stated at the outset, we might need a clear definition of program in order
to evaluate this claim. One immediate response on the email discussion
was “Program, sure. Library, not convinced.”4 Is this difference
significant? In terms of the wiring between a library and what uses the
library, some may suggest that a C interface to a library is easier to work
with from another language than a C++ interface, so a program and a
library do differ. Nonetheless, on paper, if you’ll forgive the misnomer,
both a program and a library are lines of code written in a specific
language. At a high level, the main difference is simply that one can be
run or executed while the other will be used by something that runs. Some

1. The title and strapline are from http://en.wikipedia.org/wiki/Not_So_Much_
a_Programme,_More_a_Way_of_Life

2. US: program is the only spelling normally used. UK: programme is used in
all cases except for computer code, in which case program is generally
used. Older sources may use programme for computer code.
http://en.wiktionary.org/wiki/program#Usage_notes

3. Recently seen on twitter: "never changed *since release* – several of the
games I worked on, no patches, no sequels, code base thrown out, not
repurposed." Thanks @codemonkey_uk

4. Tim Penhey
2 | Overload | December 2013

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

http://en.wikipedia.org/wiki/Not_So_Much_a_Programme,_More_a_Way_of_Life2
http://en.wikipedia.org/wiki/Not_So_Much_a_Programme,_More_a_Way_of_Life2
http://en.wiktionary.org/wiki/program#Usage_notes

EDITORIALFRANCES BUONTEMPO
sap5 then side-lined the discussion, enquiring as to why such sporting
terms as ‘run’ or violent terms such as ‘execute’ get used for programs. It
seems the discussion has happened before, for example see the English
StackExchange [SE]. It seems both words are rooted in the idea of carrying
out instructions. The word ‘program(me)’ itself hails from Greek for a
written public notice [program]. A variant of the meaning can be applied
to people, wherein one is trained or perhaps brainwashed into behaving in
a certain way. It is theoretically possible to train machines to solve some
problems, though a long in depth discussion of genetic programming will
have to wait for another day. The current ‘Testing Times’ series in our
members’ magazine CVu has been skirting around the subject [Polton].

Are programs observable behaviour?
Having touched on Heisenbugs earlier, we realise that the same code
doesn’t always do the same thing. Sometimes for apparently identical
inputs we get non-deterministic outputs. This can be deliberate. For
example, in order to approximate a difficult mathematical problem, a
program may perform monte carlo simulation [Monte Carlo], producing
various different values, driven by a mathematical model of the problem
to be solved. The program itself will not be changed between runs, but a
random number generator will provide different runs in order to cover the
problem space and flush out an answer, by taking an average of the various
outcomes. There are a variety of ways to make unchanged code behave in
different ways. Many programs will use a configuration file which will
point it at different data sources, or invoke different paths through the code
allowing a user to flip switches or wave flags without the programmer
having to change the code. Even without a configuration file, if a program
relies on a data source which can change between runs, the observable
behaviour will change even when the code does not. Furthermore, most
people have war stories of misuse of a program, with users managing
somehow to press an incredible sequence of buttons or provide other
heretofore undreamed of inputs causing a spectacular crash. Even without
malice or imagination, something very simple, such as attempting to run
a program originally targeted at a 32-bit machine on a 64-bit machine can
lead to surprises. A program therefore includes its code, its revision
history, the bug history, any documentation, possible war stories from
those who wrote it and the context in which it is run.

Given that the same code can do different things each time it is run, it is
also possible to make different code behave in the same way. This might
seem like a foolish waste of effort at first sight. Why would anyone rewrite
a program in a different language in order to do the same thing? It’s not
unheard of. Perhaps a team of programmers who were obsessed with C++
template meta-programming have just left (or been sacked) and those who
remain only know python, so needs must. More positively, refactor – an
often overlooked part of the test-driven development cycle – deliberately
changes the code to make it easier to maintain, more beautiful, with less

repetition, and so on while making sure the observable behaviour stays the
same. Is the program the same program after the re-write?

Are programs a way of life?
No matter what language has been chosen, or which sets of libraries code
uses, or how it has changed through time, it seems a program is more than
the sum of its parts. The history of the requirement changes, code
refactorings, bug reports, various tests, options in configuration, choice of
compiler and dependencies all tell a story. The machines a program will
work on, the coding style adopted, the language choices and idioms and
manner in which it is released all form part of a program’s way of life. A
program is far more than just the code you get from source control,
assuming you are lucky enough to be in a place that uses source control.
The context in which a program works, the manner in which it has been
developed and the culture in which it was conceived all influence the code
and in turn may influence those who work with the code. In a business,
choices along the way were either knee-jerk reactions to crises or
considered opinions to avoid crises. For your own personal project that
may never leave the privacy of your own computer, there will still be a
history and progression of changes and choices – which
language, which compiler, is this a learning exercise or
a Sudoku solver to stop those pesky kids troubling you?
The only constant in a program, or indeed life, is
change.

References
[97Things] Scott Meyers in ‘97 Things every programmer should know’

Kevlin Henney, O’Reilly, 2010
http://programmer.97things.oreilly.com/wiki/index.php/
Make_Interfaces_Easy_to_Use_Correctly_and_Hard_to_Use_Incor
rectly

[Google] Take your pick from googling “I’m like a shark I don’t swim
backwards” it could be anyone – apparently sharks don’t die if they
stop swimming.

[Heraclitus] http://en.wikipedia.org/wiki/
Heraclitus#Panta_rhei.2C_.22everything_flows.22

[Heisenbugs] http://en.wikipedia.org/wiki/Heisenbug

[Monte Carlo] http://mathworld.wolfram.com/MonteCarloMethod.html

[Polton] ‘Testing Times’, Richard Polton, CVu 25 v 4 and 5

[program] http://www.etymonline.com/index.php?term=program

[SE] http://english.stackexchange.com/questions/80974/where-does-the-
phrase-run-code-or-run-software-come-from-why-run

[Stroustrup] http://electronicdesign.com/dev-tools/interview-bjarne-
stroustrup-discusses-c

[Tornhill13] Adam Tornhill, ‘Code as a Crime Scene’ in Overload 117,
October 20135. Yours truly
December 2013 | Overload | 3

http://programmer.97things.oreilly.com/wiki/index.php/Make_Interfaces_Easy_to_Use_Correctly_and_Hard_to_Use_Incorrectly
http://electronicdesign.com/dev-tools/interview-bjarne-stroustrup-discusses-c
http://electronicdesign.com/dev-tools/interview-bjarne-stroustrup-discusses-c
http://en.wikipedia.org/wiki/Heraclitus#Panta_rhei.2C_.22everything_flows.22
http://en.wikipedia.org/wiki/Heraclitus#Panta_rhei.2C_.22everything_flows.22
http://en.wikipedia.org/wiki/Heisenbug
http://mathworld.wolfram.com/MonteCarloMethod.html
http://www.etymonline.com/index.php?term=program
http://english.stackexchange.com/questions/80974/where-does-the-phrase-run-code-or-run-software-come-from-why-run
http://english.stackexchange.com/questions/80974/where-does-the-phrase-run-code-or-run-software-come-from-why-run

FEATURE SERGEY IGNATCHENKO
On the Other Side of the Barricade:
Job Interviewer Do’s and Don’ts
Interviewing is an important skill which is
hard to get right. Sergey Ignatchenko gives
advice to get you thinking.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translator
or the Overload editor. Please also keep in mind that translation
difficulties from Lapine (like those described in [Loganberry04]) might
have prevented providing an exact translation. In addition, both the
translators and Overload expressly disclaim all responsibility from any
action or inaction resulting from reading this article.

inally, all the years of hard work has paid off, and you’ve reached a
team lead position (which should have been much easier if you’d
followed all the advice contained in numerous ‘No Bugs’ articles ☺).

One of the responsibilities which often comes with such a position is
conducting technical interviews with job applicants who have passed
initial resumé screening and are considered as candidates to join your team.
As with many things out there, interviewing is easy to do wrong, and
difficult to do right. In short, it is a skill, and an important one (especially
if you want your team to perform). Of course, you’ve been on the other
side of the interviewing table dozens of times, but on this side it is very
different. So, what can be said about conducting job interviews?

Task definition
First of all, let’s try to describe what we’re trying to achieve. Of course,
the task is ‘to tell if the candidate is fit for the job’, but it would be great
to translate it into something more tangible. Do we really want him to know
the API by heart or is just finding stuff she needs, within 30 seconds on
the Internet enough? Do we want him to understand how the things are
working, or is the ‘black-box’ approach is good enough? Do we want her
to be a quick learner (because our project will take some time to grasp),
or we want him to be able to work right away using technology XYZ?

Answers to many such questions depend a lot on the specifics of the
project, and on the culture within the team. However, there are several
things which interviewer needs to aim for in many cases regardless of
specific project:

 we need to find out if the candidate is a ‘thinking’ developer or
‘following-instructions’ one (there are positions requiring both
types, but placing one type into position which requires another
type, is not a good idea)

 we would like to learn if the candidate has an ability to grasp things
quickly (it is often very important, especially in agile development
environments)

 knowledge of fine details of APIs (systems/protocols/...) by heart is
normally not required, so this is what we shouldn’t concentrate on;
what is usually much more important is ability to find things a
developer needs quickly.

 understanding of APIs (systems/protocols/...) is a very different
beast, however, if you need somebody to start working quickly
(without a learning curve). It does require an understanding of
concepts which are relied on in the API/system/protocol, so this is
one thing we need to work on during the interview.

 To illustrate the difference between ‘knowledge’ and
‘understanding’, let’s assume that you need to hire somebody to
work on a Windows client. To do the job, usually the candidate
doesn’t need to be able to answer questions like “what is
parameter #14 of the CreateFont() function” (it takes 15
seconds or so to find it in MSDN); however, an understanding
of the concept of windows messages, threads where these
messages are processed, and sometimes implicit priorities
associated with some of these messages can be useful in quite a
few projects.

 and last but not least, we’d like to make sure that good candidate
would still want to work in your team after the interview
(remember, any interview works both ways – you’re assessing
the candidate, and she assesses your team based on your actions
during the interview)

While this list is by no means exhaustive, I feel that it is a reasonably good
starting point to prepare your own list of goals.

Now let’s proceed with some do’s and don’ts for the job interview (keeping
in mind our goals stated above).

Do #-1: Do have a resumé in front of you
It should really go without saying, but you do need a resumé in front of
you during the interview. Not only you will need it (you’ll see below why),
but also not having it (as well asking candidate if he has a copy of his
resumé) creates an impression of being unprofessional, which is one thing
to avoid (remember that point about candidate assessing your team based
on the interview?)

Do #0: Do prepare for your first interview
Conducting job interviews is not that easy and not as fun as it might look
when you’re sitting on the other side of the table. For your first interview
to be meaningful, spend some time, read the candidate’s resumé, think
about things you would like to know, and about questions you’re going to
ask. After a few interviews, you’ll be able to conduct job interviews
without (much) preparation, but for the first one – do yourself (and the
interviewee) a favour and come prepared.

Don’t #1: Don’t try to show you’re better than the
candidate

I’m important
I’m really important

Did I say I’m important?
I’m really important

~ ‘No Bugs’ mantra for those suffering from an inferiority complex

F

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He is currently holding the position of Security
Researcher. Sergey can be contacted at sergey@ignatchenko.com
4 | Overload | December 2013

FEATURESERGEY IGNATCHENKO

The main symptom of this ‘boosting
self-esteem via demeaning others’

syndrome is asking questions nobody
of a sane mind can possibly answer
After doing the very basic homework described above, the very first trap
a new team lead can fall into when interviewing is to try asserting that he’s
better than the candidate he’s interviewing. It is a Very Bad Thing for
several reasons, with the main one being “if you’re trying to show you’re
better, you’re not doing your job of interviewing”. However, I’ve
personally seen this kind of behaviour many times, and it is so common
that I simply must caution team leads against it. The main symptom of this
‘boosting self-esteem via demeaning others’ syndrome is asking questions
nobody of a sane mind can possibly answer (unless she accidentally ran
into it within last 2 weeks, as happened to the interviewer), or saying that
the candidate is wrong not because of substance, but because of
terminology (which is always easy when you’re interviewing). If you ever
find yourself asking such impossible questions or arguing about
terminology, you need to sit back and ask yourself, what is the real reason
you are doing it?

Those suffering from an inferiority complex (and trying to boost their self-
esteem by showing they’re better than at least somebody), may console
themselves with the thought that the mere fact that it is you interviewing
automatically makes you better. While this logic is fundamentally flawed,
it is still much better than conducting a job interview with the sole intent
to show that the candidate is not on par with (usually the intent is more
like showing that the candidate is ‘light years behind’) the interviewer.

Don't #2: Don’t ask questions about the 14th
parameter
The second worst thing which can happen during the interview is when
the interviewer starts to ask questions about subtle details which nobody
really cares about and which can be found in man (MSDN, on the web,
etc.) within 30 seconds. One extreme example of such a question is an
aforementioned question about the 14th parameter in the CreateFont()
function. In defense of this approach, I’ve heard arguments like “if he
doesn’t know this, why are we even talking?”, and I’m sure that both these
lines of argument and the questions are deadly wrong. Such questions
(especially if accompanied with ‘doesn’t even know this’ logic) often stem
from the interviewer working for a long while within one very specific
development project, when he needs to remember such things just because
this project forces him to do it 15 times a day. However, when
interviewing, one needs to remember that people come from different
environments, and that those 30 seconds spent searching MSDN will not
affect developer performance in any way. Another (and probably main)
reason to ask such questions is that they’re really really easy to ask (finding
smarter questions requires much more thinking); however, this is one case
when you get what you’ve paid for. While smarter questions are indeed
much more difficult to find, they’re also much more useful for our goals.

Do #1: Do ask questions leading to a dialogue
Remember that we’re trying to find if the candidate is able to think, right?
The interviewer is trying to determine how to distinguish smart candidates

from not-so-smart ones (or, putting the same thing in a politically correct
way, how to distinguish very smart candidates from simply smart ones)?
Asking multiple-choice questions, and questions which should be
answered in a single word, usually does not work well for this purpose;
instead, it is much better to ask questions which start dialogue. For
example, the question “what does a+++b mean?” usually is a pretty lame
question (not to mention that it also falls under the ‘questions about the
14th parameter’ and probably under the ‘showing that you’re better than
candidate’ categories), because it is either the candidate knows the answer,
or he does not. To compare, a question like: “Can you have a static virtual
function?” is much better in this regard, as for any answer (especially for
the correct one) you’ll be able to ask “Could you explain why?” The answer
to this ‘why?’ question will tell a lot more about the candidate than a dozen
‘a+++b’ questions. In practice, this ‘static virtual’ question lies on the
lower end of the spectrum of questions leading to dialogue, and if the
candidate is good, one may proceed to more elaborated ones like, “What
is the guarantee on insertion into std::map<>?” (once again, to be
followed by “Could you explain why?”).

It is important to remember that reasoning in answers to such questions is
much more important than the answer itself. For example, when answering
a question about the possibility of inline virtuals, the answer “There is no
such thing” is technically wrong, but if the candidate gives a good
explanation why he thinks so (such as “because virtual functions should
be resolved via virtual table, which won’t work for inlines”), it is much
better than the simple answer “It is ok” without any evident understanding.

It is also worth noting that potential for the dialogue is heavily context-
dependent. The same question about ‘a+++b’, if asked when interviewing
for a position in compiler development, can easily be a good one, leading
to a healthy dialogue about lexical parsers in general and Lex in particular.

Do #2: Do ask questions about previous projects
If the candidate has substantial previous experience, it is usually a very
good idea to ask her about previous projects. It can be either specific
projects on the resumé which you feel are relevant to what you’re doing
(or projects that simply look interesting for any reason), or can be a very
generic “Could you tell me about the project in your career which you like
the most?” In fact, if the candidate is experienced (and assuming you have
15 minutes to spare, which you should), it is almost always a good idea to
ask the latter question. You’ll see immediately if the candidate is excited
about what she’s done in that favourite project, and you’ll also see if she’s
excited about the right things. In my experience, there was a candidate
rabbit who positioned himself as a senior developer, and who was really
excited about the function he wrote to parse e-mail addresses (and it didn’t
recognize complicated stuff like RFC822 comments and domain literals);
well, in my books it didn’t really count as a “lifetime achievement to be
proud of”.

One thing to remember in this regard: if candidate speaks in detail about
a project but doesn’t mention his role in it, don’t forget to ask him.
December 2013 | Overload | 5

FEATURE SERGEY IGNATCHENKO
Do #3: Do ask questions about things on the resumé
If the candidate has mentioned something on the resumé, they should be
able to talk about it. Treat the resumé as a carte-blanche to ask about
anything the candidate has mentioned. Remember – if he’s lied about one
thing, he might have lied about the others. While not necessarily fatal, you
(both as an interviewer and as a potential team lead) really need to know
about it. So, if you see on the resumé something like “in-depth knowledge
and 5 years of hands-on experience with boost::containers, such as vector,
map, etc.”, don’t hesitate to ask “Could you remind me if insert() can
invalidate vector iterators and why?”If this is not answered, just write it
down and be much more careful with trusting any other claims in that
resumé.

Do #4: Pay attention to candidate communication
skills and style
While it is often not too easy for somebody coming from the development
side, it is still really important to remember that the candidate is not just a
machine to convert coffee into lines of code: she is also a person who you
will need to work with, and communicate with. The key questions here are
similar to the following: “Can I sit beside this person all day?” “Do I want
to go for a drink with them?” However, to be on a safe side, it is better to
double-check with your HR if you’re allowed to take this kind of things
into consideration (as anti-discrimination laws and company policies can
be sometimes really ugly in this regard).

Don't #3: Don’t ask questions which are too simple or
too complicated
It usually happens that after several interviews. You compile a list of your
favourite questions, and are following it when conducting subsequent
interviews. It is perfectly fine, as long as you’re making a sanity check on
your standard list depending on the candidate. If you’re asking a candidate
for a position of architect something like “how much is 0x0A+0x0B?”,
you’re risking that he’ll ask himself a different question “Am I sure that I
want to work with team lead who asks this stupid question?” This “don’t
#3” shouldn’t be interpreted as “if you’re interviewing for the position of
architect, restrict your questions to ‘how to play golf?’”, but questions
which do nothing but waste the time of both interviewer and candidate
should be avoided.

On the other hand, one also should avoid asking questions which the
candidate will not only be unable able to answer,
but also will have problems comprehending.
For example, if the candidate has already
indicated that
he has no idea
what STL is ,
continuing to

questions about guarantees for STL containers is pretty much pointless.

Neither do nor don’t: Tests
Good is better than bad

Happy is better than sad
My advice is just be nice
Good is better than bad

~ Pink Dinosaur from Garfield and Friends

On tests during the interviews, there are two common points of view: the
first is that a test is the only thing that matters, the second one is that all
tests during interviews are evil. As usual, I disagree with both of these ☺.
As I see it, good tests are good, and bad tests are bad, but there is a BIG
problem with how to write a good test.

The best test I’ve seen was a task to create a working program for a certain
algorithm (the algorithm came with test vectors). The test took several
hours, but the developer was allowed to use anything she needed
(compiler, debugger, Internet, whatever; there was even an option “you
can write it in your favourite programming language”). Some didn’t like
it, but it has indeed proved to provide an extremely good insight into the
developer’s style, attention to detail, code structuring, comments, etc.
While it was still just an insight and was not 100% conclusive, it was
extremely valuable in assessing candidates. Still, there was a major
problem even with that test, and it is that the test has eventually leaked into
developer community, and creating another meaningful test is really really
difficult. And one more thing to remember about such long tests – they can
cause substantial problems with candidates reluctant to spend that much
of their time with little chance to get something out of it; in the case I’m
talking about, it was somewhat mitigated by the test being a part of the
second technical interview, with an understanding that company is “almost
ready” to make an offer if the test is successful (and also restricting the
test to the second interview was rather important to mitigate the leaks).

Another bunch of reasonably good tests was given to me by companies
engaged in algorithm development. These usually involved non-trivial
sorting, permutations, etc. It is not clear how useful these tests were for
potential employees (my guess is that they were – to certain extent), but
at least they were fun for me :-).

And the last category of tests was the stuff which shouldn’t have been
asked in the first place: things like “here is a program, find a bug here” -
just to figure out that the task was to find a typo causing syntax error (hint
for test writer: a developer is usually using compiler, so finding typos and
syntax errors is not exactly what he does for living). Such tests (presumably
written merely to do some kind of test and report about it to the
management) are pretty much pointless (the only thing such a test can
achieve, is to successfully scare away an ‘overqualified’ candidate).

The bottom line about tests in an interview: if you have a really good one
– give it, otherwise – look for a good one. Oh, and a word of caution: before
using tests during the interview, ask for confirmation that using tests is ok

(from management, HR, or legal) just to be on a safe side. (In some
countries laws can be really tricky, and company policies are often

even trickier.)

Wrapping it up
Obviously, the present article does not
pretend to be a comprehensive guide
on ‘ h ow to i n t e rv i e w IT job
applicants’, but I hope it may be a

reasonably good starting point to start
developing your own interview methods.

Acknowledgement
C a r t o o n b y S e rg e y
Gordeev from Gordeev
Animation Graphics,
Prague.
6 | Overload | December 2013

FEATUREFRANCES BUONTEMPO
How to Program Your Way Out of a
Paper Bag Using Genetic Algorithms
It is often claimed people cannot program their
way out of a paper bag. Frances Buontempo
bucks the trend using genetic algorithms.
t is frequently suggested that people cannot program their way out of a
paper bag, and a quick Google for the state-of-the-art currently reveals
nothing until FizzBuzz is added to the search terms. This adds weight

to the claim, suggesting people implement FizzBuzz rather than program
their way out of a paper bag. I would therefore like to demonstrate one
approach to programming one’s way out of a paper bag using genetic
algorithms. Genetic algorithms, GA, are a form of evolutionary algorithm,
drawing on ideas from natural evolution to find solutions to problems. John
Holland brought GA to attention with his book, Adaptation in Natural and
Artificial Systems. They can be used to solve a variety of problems, indeed
Holland [Holland92] says

Computer programs that ‘evolve’ in ways that resemble natural
selection can solve complex problems even their creators do not
fully understand

Problem statement
Since the requirements of our current problem are a little vague, this
implementation will assume a rectangular, unmoving paper bag of any
colour. A projectile will be fired from an imaginary cannon at the bottom
centre of the bag at a velocity and angle of elevation to be decided. A
projectile is considered ‘out’ of a paper bag when it has fired over the top
of the bag thereby disallowing bursting through the sides or the bottom. If
it hits the side or bottom of the bag it will stick there. These decisions are
arbitrary and any different assumptions are equally valid and would lead
to different solutions. It is possible to solve the problem without an
imaginary cannon, but we will leave that for another article.

Clearly, the problem has a closed-form range of solutions for possible
angles and required velocities, but this article will show how to discover
the solutions programmatically.

Given a bag with bottom left corner at (k, 0), of width w, and height h,
assuming the projectile is smaller than the bag, the cannon is a point of no
size, and given the acceleration due to gravity, g, after time t the projectile
will be at point (x, y) where

Here x is the horizontal displacement and y the vertical displacement. The
projectile will just escape when y ≥ h and x < k or x > k + w. Clearly as the
projectile moves further left or right the height y can be below the height
of the bag, h, even if the height was greater than h at the edges since the
projectile will start to come down again at some point. g will be taken as
9.81 m/s2. For simplicity, the code will assume k is zero.

Problem solution
A range of solutions can be found using genetic algorithms, along with
other machine learning techniques. Initially, we form a generation of
projectiles of some pre-specified size, say n, with random angles, θ, and
velocities, v, and fire these from the cannon to see where they end up. We
then form a new generation by randomly selecting two of the better parents
from the last generation, performing crossover, wherein a child has a v
‘gene’ from one parent and a θ ‘gene’ from the other. ‘Better’ will need to
be quantified, though at this stage intuitively a projectile that escapes the
paper bag is better than one which does not. If two projectiles fail to escape,
we must provide a criterion for choosing the better, though initially we
decide they are both unacceptable to simplify things. Pairs of parents breed
in this fashion until the next generation also has n items. The genes (angle
and velocity) of some randomly selected children may then be mutated,
wherein the values are changed slightly. This ensure the generations do not
get stuck in the same place and explore more of the solution space. The
generations breed for a pre-specified number of steps.

1. Create n ballistics as pairs of random (v, θ)
2. Fire the n ballistics and note which escape
3. For each epoch

a. Make n new ballistics by:
If no ballistics escape randomly, create a new pair
Else randomly choose two parents that escaped, and

Cross-over: take v from one and θ from the other to create
a new ballistic
Mutate: Possibly randomly change either number by a small
amount

b. Kill off the last generation and repeat with the new gene pool

Implementation in Python
Full details can be found in the code available on github [Github]. The main
function, given in Listing 1, runs the pseudo code just presented. The
display_results function uses MatPlotLib to create the graphs given
in the results section.

The initial generation is simply formed by randomly populating a list of
angle and velocity tuples as shown in listing 2. The launch function then

I

Figure 1

x k w vt

y vt gt

1
2

1
2

2

cos()

sin()

Frances Buontempo has a PhD technically in Chemical Engineering,
but mainly programming and learning about AI and data mining. She
has been a professional programmer for over 12 years, and learnt to
program by reading the manual for her Dad’s BBC model B machine.
She can be contacted at frances.buontempo@gmail.com
December 2013 | Overload | 7

FEATURE FRANCES BUONTEMPO
loops from a time, t, of 0 to a hard-coded value of 20 in steps of 0.2, finding
the values of x and y for each t from the equations modelling the path of
the projectile given earlier. It uses linear interpolation between each time
step to decide if the projectile has hit the side of the bag, and makes it stick
if it does. For brevity, it is not listed here.

The crossover operation chooses two parents from any projectiles in the
previous generation which escaped, as shown in listing 3. If none escaped,
then a new random item is created. This may prove to be a foolish decision.
This is called in a loop until the next generation is complete.

Results
Results presented here use the parameters epochs = 10, items = 5, height
= 5 and width = 10. Initially one projectile escaped, and on the tenth epoch
none escaped (see Figure 2). In this instance, few escape initially, which

doesn’t give enough chance for children forming the next generation to
learn, since we have gone for an all or nothing strategy, just choosing
projectiles that escape as suitable parents and resorting to new random ones
if none escape.

Leaving all parameters the same, but increasing items to 25, better results
are obtained. Initially six projectiles escaped, and on the tenth epoch eight
escaped (see Figure 3). This improvement may come about because more
initial projectiles happened to escape thereby providing more suitable
parents. Initial investigations indicate using at least 12 items for the given
bag size and number of epochs do well enough.

The crossover function will chose parents from projectiles that escaped.
What should be done if no projectiles escaped? In version 1, a new random
generation is created. This is wasteful since even when none escape some
will still do better than others, for a suitable definition of better, so this
approach will lose some of the information the algorithm has discovered.
We require a scoring system, known as a fitness function, to decide which
pairs are better than others.

Step back and think
We can directly find the height, y, when the x position is at the edge of the
bag, rather than the approach taken in phase 1 where interpolation was used
at the point just before and then just after the edge of the bag to decide if
the height was great enough to escape. This will allow us to ascribe a score
for each choice of angle and velocity without looping through each time-

Listing 1

if __name__ == "__main__":
 epochs = 10
 items = 12
 height = 5
 width = 10

 generation = init_random_generation(items)

 generation0 = list(generation)
 results = launch(generation, height, width)
 results0 = list(results)
 for i in range(1, epochs):
 generation = crossover(generation, results,
 height, width)
 mutate(generation)
 results = launch(generation, height, width)

 display_results(generation0, results0,
 generation, results, height, width)

Listing 2

def init_random_generation(items):
 generation = []
 for i in range(items):
 theta = random.uniform(15, 180) * math.pi/180
 v = random.uniform(2, 20)
 generation.append((theta, v))
 return generation

Listing 3

def get_choices(generation, height, width,
 results):
 return [(generation[i][0], generation[i][1]) \
 for i in range(len(generation)) if
 escaped(height, width, results[i])]

def crossover(generation, results, height, width):
 choices = get_choices(generation, height,
 width, results)
 if len(choices) == 0:
 return init_random_generation(items)
 next_generation = []
 for i in range(0, len(generation)):
 mum = generation
 [random.randint(0, len(choices)-1)]
 dad = generation
 [random.randint(0, len(choices)-1)]
 t = (mum[0], dad[1])
 next_generation.append(t)
 return next_generation

Figure 2

Figure 3
8 | Overload | December 2013

FEATUREFRANCES BUONTEMPO
step and allow us to use the parabolic equation, rather than approximating
with linear interpolation. Furthermore Figure 4 shows what can happen
when the ballistic just sneaks over the bag. If we interpolate using a straight
line between two positions at adjacent time points, the ballistic will appear
to hit the edge of the bag, when it in fact would miss.

The main difference from the first approach is a change to the parent
selection. The height where the projectile crosses the bag is used as the
fitness score of the gene. This means projectiles which get higher are more
likely to be chosen as parents, increasing the chance of an item escaping,
and using information from items which do not escape, allowing the next
generation to learn from the mistakes of its parents. The new approach is
shown in Listing 4.

Further results
The results in this section are for 12 items, keeping the bag width and
height and number of epochs at the values stated in attempt 1. The first
run is a complete success, as shown in Figure 5. With just one initial
escape, all of the final generation have been programmed out of the paper
bag, in stark contrast with the first approach.

The second run, Figure 6, demonstrates that even if no projectiles escape
initially the algorithm still finds successfully genes. It can use parameters

from the better projectiles, i.e. those which got higher up the bag if they
hit the edge of the bag, allowing them to escape in future generations.

Conclusion
Using the idea of programming one’s way out of a paper bag can provide
a variety of ways to learn a language and a new algorithm. This article has
demonstrated how to use genetic algorithms to escape from a paper bag.
The results presented could do with more rigorous analysis, for example
to demonstrate an improvement between the techniques, the results of
several runs should be compared. Ultimately, discovering a range of
solutions for possible angles and required velocities or finding parameters
which allow all the projectiles to escape from the paper bag would fully
solve the problem. We could also consider what happens on other planets,
specifically varying the value of gravity. The purpose of this article has
been to demonstrate one over-engineered approach to programming one’s
way out of a paper bag. There are, of course, many possible simpler
approaches to the problem, but it is hoped this will serve as a gentle
introduction to genetic algorithms and will inspire others to try to
programme their way out of a paper bag.

References
[Github] https://github.com/doctorlove/paperbag/tree/master/ga

[Holland92] Scientific American, Vol. 267 (1992), pp. 66–72

Figure 4

Linear interpolation of a curve may lead to incorrect decisions
about whether a projectile has gone over the top of the paper
bag or broken through the side

Listing 4

def cumulative_probabilities(results):
 cp = []
 total = 0
 for res in results:
 total += res[1]
 cp.append(total)
 return cp

def get_choices(generation, height,
 width, results):
 choices = cumulative_probabilities(results)
 return choices

def choose(choices):
 p = random.uniform(0,choices[-1])
 for i in range(len(choices)):
 if choices[i] >= p:
 return i
 return i

def crossover(generation, results, height, width):
 choices = get_choices(generation, height, width,
 results)
 next_generation = []
 for i in range(0, len(generation)):
 mum = generation[choose(choices)]
 dad = generation[choose(choices)]
 t = (mum[0], dad[1])
 next_generation.append(t)
 return next_generation

Figure 5

Figure 6
December 2013 | Overload | 9

https://github.com/doctorlove/paperbag/tree/master/ga

FEATURE STUART GOLODETZ
Object-Environment Collision
Detection using Onion BSPs
Previously we considered 3D navigation. Stuart
Golodetz demonstrates how to detect collisions
using onion binary space partitioning.
n my last article [Golodetz13], I described how to automatically
generate navigation meshes to support the navigation of agents around
3D environments (e.g. game worlds), as implemented in my homemade

hesperus engine [hesperus]. However, there is far more to such navigation
than simply mesh generation: it remains to be shown how to determine
where (if anywhere) an agent can be found on the mesh and how to make
best use of the mesh when allowing both user-controlled and AI agents to
move around the environment. Agent movement must necessarily interact
with an implementation's physics system, since the navigation mesh only
covers the walkable surfaces of the world and there is a need to ensure that
agents are simulated correctly even when they are not on the mesh. In
particular, any implementation needs to ensure that agents do not collide
with either the world or each other, and that the effects of forces such as
gravity are properly applied to them when not on the mesh. For that reason,
before tackling the agent movement problem itself, it is important to take
a step back and look at how the physics system in hesperus works.

As a first step, I want to focus this article on a way of detecting collisions
between objects (including agents) and their environment, via the
construction of a special binary space partitioning (BSP) representation of
the world that I call an onion BSP (for reasons that will be explained).
Onion BSPs are a simple extension of BSP trees for multiple configuration
spaces, based on the ideas of van Waveren for Quake III Arena in
[VanWaveren01]. The collisions (also known as contacts) that we detect
can be fed to the rest of the physics system for later resolution. Future
articles will focus on how to detect object-object collisions using a
technique called Minkowski Portal Refinement [Snethen08], and how to
combine the techniques into a rudimentary physics system, before we
return to the original problem of agent movement. Readers who are
interested in a more general look at games physics engine development are
advised to take a look at the excellent (and aptly-named) book by
Millington on the topic [Millington07].

The organisation of this article is as follows: (a) I briefly revisit the ideas
behind binary space partitioning; (b) I describe how to construct onion
BSPs; (c) I describe how to perform (swept) collision detection between
objects and onion BSPs using an algorithm for finding the first point at
which a half-ray crosses a wall in the world; and (d) I discuss the limitations
of this approach and briefly compare it to a related approach that achieves
the same effect by moving the planes of a normal BSP at runtime.

Binary space partitioning
Binary space partitioning is a technique for representing n-dimensional
space as a binary tree (known as a BSP tree) by recursively dividing it into

two using hyperplanes (the n-dimensional generalisation of planes). It was
originally introduced by Fuchs et. al. [Fuchs80] in 1980, and saw
widespread use in first-person games of the Quake era (e.g. see
[Abrash97]) as a way of representing 3D polygonal game worlds, most
notably because it provided a way of rendering a world’s polygons in either
back-to-front or front-to-back order [Fuchs80, Gordon91] without the
need for a z-buffer on the graphics card (z-buffers once used to be quite
costly). As graphics cards have matured, commercial games have moved
away from binary space partitioning as a rendering approach because
traversing a BSP tree is relatively slow in comparison to simply throwing
large numbers of triangles at the graphics card and letting the z-buffer
handle the rendering order, but BSP trees remain interesting as a basis for
collision detection and constructive solid geometry techniques [Ericson05,
Lysenko08].

An example BSP tree is shown in Figure 1. Each node of the tree represents
a convex subspace of the world being partitioned; moreover, the leaves of
the tree represent a partition of the entire space, i.e. they are mutually
disjoint and their union is equal to the space. Each branch node has an
associated split plane (a line with facing in 2D) that divides the subspace
represented by the node in two. Each leaf node contains the polygons (line
segments in 2D) that fall within the subspace it represents, and carries a
flag that indicates whether the subspace represented by the leaf is empty
(i.e. navigable by an agent, denoted as) or solid (non-navigable, denoted
as T). The BSP tree as a whole can be used to decide whether or not any
given point in the world lies in empty or solid space in O(h) time, where
h is the height of the tree, by the simple means of classifying the point
against the split planes in the tree, starting from the root, and recursing
down the relevant side of the tree at each stage until hitting a leaf.

Constructing a BSP tree for a polygonal world is also done recursively,
starting from the set of all the polygons in the world. At each recursive step,
one of the current set of polygons whose plane has not been used further
up the tree is chosen as the split polygon, and its plane is used to split the
other polygons into two sets, one of polygons that are in front of the plane
and one of those that are behind it. (If no suitable split polygon can be
found, then we create a leaf of the tree to contain the current set of polygons
and return.) If a polygon straddles the plane, it is split, with its two halves
being placed in the appropriate sets. If a polygon lies on the plane, it is put
into either the front or back set based on the orientation of its normal with
respect to the plane. The two sets of polygons are then processed
recursively to construct the subtrees of the current node. Finally, a branch
node is constructed from the split plane and the two subtrees.

An extremely detailed description of BSP construction, together with
diagrams that clarify precisely how the process works, can be found in
[Golodetz06]; readers may additionally wish to take a look back at a
previous article I wrote for Overload [Golodetz08].

Onion BSPs
As mentioned in the previous section, standard BSP trees can be used to
determine whether individual points are in empty or solid space; moreover,
this extends to line segments – there is a relatively straightforward BSP

I

Stuart Golodetz obtained his DPhil in Computer Science in 2011,
working on 3D image segmentation and feature identification.
Following two years in credit risk management, logic programming
and software analytics, he is working on object detection and
tracking for an assisted vision project. His areas of interest include
image processing, computer games development and the
intricacies of different programming languages, especially C++.
10 | Overload | December 2013

FEATURESTUART GOLODETZ
algorithm that will allow us to find the first transition point at which a line
segment crosses from empty to solid space (e.g. see [Arvo88, Jansen86,
Sung92]). This can form the basis for a simple collision detection scheme
for point-based agents – at each frame, we can test the line segment
representing an agent’s proposed movement for that frame against the tree,
taking the first transition point as the point of collision if the agent tries to
walk into a wall.

Unfortunately, however, most agents in 3D games are not point-based, so
we need a way to handle objects with extent. The way I describe here is
due to van Waveren [VanWaveren01] and uses the notion of configuration
spaces I described in [Golodetz13]. An alternative, similar approach, that
works by modifying a normal BSP at runtime, is mentioned in the
‘Discussion’ section. Both of the approaches described are based on the

same principle – that performing collision detection between an object
with extent and the world is equivalent to performing collision detection
between a point at the centre of the object and a copy of the world that has
been suitably expanded in accordance with the size of the object.

The van Waveren approach is an offline method designed for brush-based
3D environments (that is, environments built up by combining simple,
convex polyhedra). Agents are represented by axis-aligned bounding
boxes (AABBs); each class of agent may have multiple AABBs for
different poses (e.g. standing or crouching). At level compilation time, the
brushes of the environment are expanded for each AABB and the faces of
the expanded brushes are unioned together to form an expanded world for
that AABB. Each of these expanded worlds can be compiled into a BSP
tree, allowing us to perform collision detection for an object represented
by the corresponding AABB. However, maintaining multiple BSP trees is
inconvenient because then objects that are in the same physical location
but have different sizes cannot be resolved to a leaf in any particular tree
– we would much prefer to have a single tree that represents all of the
information available.

We can achieve this by constructing a different type of BSP tree that I call
an onion BSP1. Onion BSPs are a generalisation of standard BSPs in which
we replace the empty/solid flag in each leaf node with a vector of flags
indicating whether the leaf is empty/solid in each configuration space
associated with an AABB. Figure 2 shows two configuration spaces
generated for an example world (the original, unexpanded world is not
shown) and an onion BSP that might be generated for it.

Figure 1

A BSP example for a simple 2D world with two rooms, connected by a
corridor: (a) shows a top-down view of the world, where the arrows
represent the facings of the world polygons and the dashed lines
represent the split planes chosen when constructing the BSP in (b); (b)
shows the BSP tree that is constructed for the world based on the chosen
split planes; (c) shows what a 3D version of the world looks like in
hesperus, with portals (doorways) rendered as translucent polygons to
illustrate the boundaries between the empty leaves (a, e and i) of the
BSP. (Note that the 3D version actually has additional floor and ceiling
polygons, but we ignore that here for the purposes of explanation.)

(a)

(b)

(c)

1. For the interested reader, the name ‘onion BSP’ comes from the idea
that the expanded worlds look rather like the layers of an onion when
superimposed in an image. This analogy is not strictly accurate,
because the various different AABBs will not, in general, nest inside
each other, but the name is nevertheless both convenient and
suggestive.

Figure 2

An example 2D world (a) and one possible onion BSP for it (b). The
solid rectangles denote two separate configuration spaces (an outer
one and an inner one). Their polygons (shown as numbered, oriented
line segments) are compiled into the same onion BSP as shown.
Individual leaves (labelled with letters) can be empty () in one space
and solid (T) in another, e.g. leaf e is empty in the outer space but
solid in the inner one.

(a)

(b)
December 2013 | Overload | 11

FEATURE STUART GOLODETZ
The compilation process
Onion BSP compilation is in principle much the same as BSP compilation
(see the ‘Binary space partitioning’ section), but slightly trickier because
we have to test the solidity of each leaf in each configuration space rather
than getting it for free as part of the compilation process. An explanation
of this testing process is deferred to the next section, but it also has an
impact on the main part of the compilation. In particular, the test involves
checking an arbitrary point in the leaf for solidity in each configuration
space (the solidity of any point in the leaf is guaranteed to be the same as
that of the entire leaf), so we will need (a) a way of determining an arbitrary
point in a leaf, and (b) a way of testing a point for solidity in a configuration
space. As will be seen, determining an arbitrary point in a leaf will involve
knowing the set of split planes on the path from the root of the tree to the
leaf, so these should be maintained during compilation.

The resulting main compilation process is shown in Listings 1 and 2. The
key thing to note is the way in which a set of split planes is maintained in
order to facilitate solidity testing – we add the current split plane to the set
before each recursive call to build_subtree and remove it again
afterwards, so that whenever we reach a leaf it will contain precisely those
split planes on the path from the root of the tree to the leaf. Note that
orientation is important, so the current split plane must be reversed when
recursing into the right-hand subtree.

Determining leaf solidity
A solidity descriptor for a leaf in an onion BSP is a vector of flags
indicating whether the leaf is empty or solid in each configuration space
for which we compiled the BSP. It is common for a leaf to be empty in
one configuration space and solid in another – for example, a leaf might
be empty in the configuration space corresponding to the crouch pose of
an agent, but solid in the configuration space corresponding to the standing
pose, indicating that the agent can traverse the leaf whilst crouching but
not whilst standing (e.g. think of a low tunnel). To determine a leaf’s
solidity descriptor, we find an arbitrary point in the leaf and check its
solidity in each configuration space in turn; the resulting empty/solid
results are combined to form the full solidity descriptor. To test points’
solidity in a configuration space, we build a normal BSP tree (called a map
tree in the code) for the space at the start of the compilation process and
later classify any relevant points with regard to it. The top-level process
to determine leaf solidity is shown in Listing 3.

Finding an arbitrary leaf point
To find an arbitrary point in a leaf, recall that each leaf represents a convex
subspace of the world. Our first intuition might be to create an explicit
representation of the leaf as a convex polyhedron and then compute the
average of the midpoints of the polyhedron’s faces as our point. This does
in fact work perfectly for fully-bounded leaves (see Figure 3(a)), but
unfortunately fails for unbounded ones (see Figure 3(b)). Fortunately, in
practice, there is an easy solution to this problem: we can simply stipulate
that the world we are representing is bounded by an inward-facing box,
thereby ensuring that every leaf is bounded (see Figure 3(c)). This is clearly

a reasonable assumption in the context of representing a 3D world, since
it would not be meaningful for such a world to be infinite. (The interested
reader may wish to take a look at [Seidel91], where a similar approach is
taken to deal with unboundedness in a related linear programming
problem.)

The algorithm itself is shown in Listing 4. It is called with the set of
ancestor planes leading down to the given leaf in the tree (recall that these
are maintained as part of the top-level compilation process). These are

Listing 1

function build_tree
: (polys: Vector<Polygon>) -> OnionBSPTree

var nodes: Vector<Node>;
var ancestors: Vector<Plane>;
var polyIndices: Vector<PolyIndex> := {(i,true) |
0 <= i < |polys|};
build_subtree(ref polys, polyIndices, ref nodes,
ref ancestors);
return make_onion_bsp(nodes);

class PolyIndex
 var index: int;
 var splitCandidate: boolean;

Listing 2

function build_subtree
: (polys: ref Vector<Polygon>;
 polyIndices: Vector<PolyIndex>;
 nodes: ref Vector<Node>;
 ancestors: ref Vector<Plane>) -> Node

var splitter: Plane :=
 choose_splitter(polyIndices);

// If there were no suitable split candidates,
// this is a leaf.
if splitter = null then
 var solidity: DynamicBitset :=
 determine_leaf_solidity(ancestors);
 var indicesOnly: Vector<int> := {i | (i,_) in
 polyIndices};
 nodes.push_back(Leaf(|nodes|, solidity,
 indicesOnly));
 return nodes.back();

var backPolys, frontPolys: Vector<PolyIndex>;
for each pi@(index, splitCandidate) in
 polyIndices
 var poly: Poly := polys[index];
 switch classify_against_plane(poly, splitter)
 case CP_BACK:
 backPolys.push_back(pi);
 break;
 case CP_COPLANAR:
 if splitter.norm().dot(poly.norm()) > 0 then
 frontPolys.push_back((index, false));
 else
 backPolys.push_back((index, false));
 break;
 case CP_FRONT:
 frontPolys.push_back(pi);
 break;
 case CP_STRADDLE:
 (back, front) := split_poly(poly, splitter);
 polys[index] := back;
 polys.push_back(front);
 backPolys.push_back(pi);
 frontPolys.push_back((|polys| - 1,
 splitCandidate));
 break;

ancestors.push_back(splitter);
var left: Node := build_subtree(frontPolys,
 nodes, ancestors);
ancestors.pop_back();

ancestors.push_back(splitter.flipped());
var right: Node := build_subtree(backPolys,
 nodes, ancestors);
ancestors.pop_back();

var subRoot: Node := Branch(|nodes|, splitter,
 left, right);
nodes.push_back(subRoot);
return subRoot;
12 | Overload | December 2013

FEATURESTUART GOLODETZ
augmented with the planes of the inward-facing box that we are assuming
bounds the world. We then construct an extremely large polygon on each
of the planes in turn, and clip it to the other planes (see [hesperus] for the
implementation details). The set of polygons that results forms a convex

polyhedron representing the (bounded) leaf. As previously stated, we
finally compute the midpoint of each face of the polyhedron and average
them to produce an arbitrary point that is guaranteed to be inside the leaf.

Collision detection
Recall that our goal is to detect collisions between moving objects of
various sizes and a stationary world. The desired output of our collision
detection approach is a set of collisions (or contacts), each of which is
specified by a collision point (a first point at which the moving object
touches the world), a collision normal (the normal of the surface that is hit
by the moving object) and a collision time (a number in the range [0,1]
indicating at what point during the movement the collision occurs).

Having constructed an onion BSP for the world, it is now possible to
perform collision detection against it for objects with a specific AABB,
using a variant of the ‘find first transition’ algorithm mentioned in the
‘Onion BSPs’ section (see Listing 5). The key difference from the version
for normal BSPs is that the leaf solidity test at the top of the fft_sub
function is performed for a specific configuration space (e.g. one
corresponding to an agent’s crouching pose); in all other respects the two
are essentially the same.

The algorithm is initially called on the movement ray (which is just a line
segment) of an agent for the current frame and the root node of the onion
BSP, and proceeds recursively, ultimately producing a ‘transition’ to
indicate its result (transitions are either (a) RAY_E, indicating that the
entire movement ray is in empty space, (b) RAY_S, indicating that the
entire movement ray is in solid space, or (c) a triple (RAY_E2S or
RAY_S2E, point, splitter), indicating that the movement ray first
transitions from empty to solid, or solid to empty, space at the specified
point on the specified split plane). At each recursive step, the relevant
segment of the movement ray (initially, all of it) is classified against the
split plane of the current node, and appropriate action is taken based on
the result. If the movement ray segment is entirely on one side of the plane,
we recurse down that side of the tree. If the movement ray segment is on
the plane (the coplanar case), we pass it down both sides of the tree and
subsequently combine the results. If the movement ray segment straddles
the plane, we split it and pass the half of it near the start of the segment
down the corresponding side of the tree. If this yields a non-trivial
transition, we return it; otherwise, we pass the other half down the far side
of the tree, and subsequently derive the result as shown in Listing 5. When
we eventually reach a leaf, we return a transition based on the solidity of
the leaf in the configuration space in which we are interested (this can be
specified as an additional parameter to the algorithm, or provided by some
other means). A few of the recursive cases are illustrated in Figure 4.

As mentioned, the ultimate result of the ‘find first transition’ algorithm is
either a trivial transition (the movement ray is entirely in empty or solid
space) or a non-trivial one; in the latter case, the point and the normal of
the split plane found can be used directly as the collision point and collision
normal for a detected collision. The collision time can be calculated using
simple ratios as follows. Denote the source and destination endpoints of
the movement ray as and respectively, and the collision point as .
Then the collision time is given by:

The case of a trivial transition that lies entirely in solid space needs special
handling to ensure robustness. In practical terms, this can very
occasionally happen due to rounding errors when the source endpoint of
the movement ray is on an empty/solid boundary. A simple way of dealing
with the issue is to repeat the find first transition call with a source endpoint
that is moved back from the boundary by a small amount:

The collisions we generate are fed into the physics system for later
resolution. I will explain how this works in a future article.

Listing 3

function determine_leaf_solidity
: (ancestors: Vector<Plane>) -> DynamicBitset

// Assumed available from elsewhere:
// * mapTrees: Vector<BSPTree>

// Find an arbitrary point within the leaf with the
// specified ancestor planes.
var p: Vec3 := arbitrary_leaf_point(ancestors);

// Classify the point against each map tree to
// determine the solidity descriptor for the leaf.
var solidity: DynamicBitset(|mapTrees|);
for each mti in mapTrees
 var leaf: BSPLeaf := mti.find_leaf(p);
 solidity[i] := leaf.is_solid();

return solidity;

Figure 3

Finding an arbitrary point in a leaf of a simple 2D world with a single room
(drawn as a square). In (a), we can successfully build a convex
polyhedron for the bounded leaf representing the room itself and then
average the midpoints of the polyhedron’s faces (the dots on the square)
to find a suitable point (the dot in the centre). In (b), the same procedure
fails for the unbounded leaf behind the room’s topmost wall. In (c), we
rectify the problem by adding bounding planes around the world as a
whole. This ensures that all of the leaves are bounded, allowing the
method to work.

(a)

(b)

(c)

s

d

c

t

c s

d s

2

2

 s s d s ()
December 2013 | Overload | 13

FEATURE STUART GOLODETZ
Discussion
The approach that I have described thus far is a (comparatively) simple and
effective way of detecting collisions between moving objects and a
stationary world, but unsurprisingly it does have some limitations. One

Listing 4

function arbitrary_leaf_point
: (ancestors: Vector<Plane>) -> Vec3

// Step 1: Make an inward-facing convex polyhedron
// around the leaf.

// Make an array of possible bounding planes: these
// are the ancestor planes themselves, plus the
// planes that bound the 3D world. The planes are
// specified as ax + by + cz - d = 0.
const HALFWORLDBOUND: double := 100000;
var planes: Vector<Plane> := ancestors;
planes.push_back(Plane((1,0,0),
 -HALFWORLDBOUND));
planes.push_back(Plane((-1,0,0),
 -HALFWORLDBOUND));
planes.push_back(Plane((0,1,0),
 -HALFWORLDBOUND));
planes.push_back(Plane((0,-1,0),
 -HALFWORLDBOUND));
planes.push_back(Plane((0,0,1),
 -HALFWORLDBOUND));
planes.push_back(Plane((0,0,-1),
 -HALFWORLDBOUND));

var faces: Vector<Poly>;
for each pi: Plane in planes
 // Build a large initial face on each plane.
 var face: Poly := make_large_poly(pi);

 // Clip it to the other planes.
 var discard: bool := false;
 for each pj: Plane in planes
 if j = i then continue;
 switch classify_against_plane(face, pj)
 case CP_BACK:
 // Face entirely out of leaf.
 discard = true;
 break;
 case CP_COPLANAR:
 // Shouldn't happen: ancestors are unique.
 throw "Unexpected duplicate plane";
 case CP_FRONT:
 // Face entirely in leaf.
 continue;
 case CP_STRADDLE:
 // Part of face in leaf, part not.
 (_,front) := split_poly(face, pj);
 face := front;
 break;

 if discard then break; // early out

 // Add surviving faces to the array.
 if not discard then faces.push_back(face);

// Step 2: Compute the average of the polyhedron
// face midpoints.
var denom: int := 0;
var p: Vec3(0,0,0);
for each face: Poly in faces
 for each v in face.vertices()
 p := p + v;
 denom := denom + 1;

assert denom != 0;
p := p / denom;
return p;

Listing 5

function fft_sub: (src: Vec3; dest: Vec3; node:
Node) -> Transition

// Assumed available throughout:
// * cSpace: int [the configuration space index]

var leaf: Leaf := node.as_leaf();
if leaf != null then
 return leaf.is_solid(cSpace) ? RAY_S : RAY_E;
var br: Branch := node.as_branch();
var left, right: Node := br.left(), br.right();
var splitter: Plane := br.splitter();
var cpSrc, cpDest: PlaneClassifier;
switch classify_against_plane
(src, dest, splitter, ref cpSrc, ref cpDest)
 case CP_BACK:
 return fft_sub(src, dest, right);
 case CP_COPLANAR:
 var trLeft: Transition := fft_sub(src, dest,
 left);
 var trRight: Transition := fft_sub(src, dest,
 right);
 if trLeft.class = trRight.class then
 switch trLeft.class
 case RAY_E|RAY_S:
 return trLeft;
 default:
 var dLeft: double :=
 |src - trLeft.loc|2;
 var dRight: double :=
 |src - trRight.loc|2;
 return dLeft < dRight ? trLeft
 : trRight;
 else if trLeft.class = RAY_E2S|RAY_S2E then
 return trLeft;
 else if trRight.class = RAY_E2S|RAY_S2E then
 return trRight;
 else return RAY_E;
 case CP_FRONT:
 return fft_sub(src, dest, left);
 default: // case CP_STRADDLE
 var mid: Vec3 := intersect(src, dest,
 splitter);
 (near,far) := cpSrc = CP_FRONT ? (left,right)
 : (right,left);
 var trNear: Transition := fft_sub(src, mid,
 near);
 if trNear.loc != null then return trNear;
 var trFar: Transition := fft_sub(mid, dest,
 far);
 switch trFar.class
 case RAY_E:
 return trNear.class = RAY_E ? RAY_E :
 Transition(RAY_S2E, mid, splitter);
 case RAY_S:
 return trNear.class = RAY_S ? RAY_S :
 Transition(RAY_E2S, mid, splitter);
 case RAY_E2S:
 return trNear.class = RAY_E ? trFar :
 Transition(RAY_S2E, mid, splitter);
 default: // case RAY_S2E
 return trNear.class = RAY_S ? trFar :
 Transition(RAY_E2S, mid, splitter);
14 | Overload | December 2013

FEATURESTUART GOLODETZ
potential drawback is that it is designed to work for a small number of
object sizes that are known at level compilation time: this was not a
problem for games such as Quake III, but it makes the technique less
suitable for games that want to contain a wide variety of differently-shaped
characters, since compiling large numbers of different configuration
spaces into an onion BSP would severely bloat the tree and lead to slow
level compilation times and poor performance. Another drawback is that
it only works for objects that do not rotate: games that want to support more
realistic physical simulation have to use more complicated approaches
(e.g. see [Ericson05, Millington07]).

A related approach that eliminates the first of these limitations, whilst still
providing acceptable performance, was presented by Melax in [Melax00].
The details can be found in that article, but the essence of the approach is
to replace the ‘find first transition’ algorithm with a variant that
dynamically moves the planes of a normal BSP for the world during ray
testing so as to simulate the configuration spaces for different types of
object. This avoids the need to know the sizes of the objects up-front, at
the cost of making ray testing somewhat more costly. The approach was
used successfully in the BioWare game MDK2.

Conclusions
In this article, I have described a simple and effective technique (due to
van Waveren) for detecting collisions between moving objects and their
surrounding 3D environment. While there are important limitations to this
technique in the context of realistic physical simulation (most notably the
fact that it only works for non-rotating objects), it has proved useful in a

games context because it can detect collisions for translating objects
quickly and accurately. The alternative approach (due to Melax)
mentioned in the ‘Discussion’ section builds upon this technique by
allowing large numbers of differently-shaped characters to be handled
without bloating the tree.

It remains to be shown how to detect inter-object collisions and how to
build a working physics system, which I hope to address in future articles.
We can then return to our original problem of agent movement, using the
physics system and the environment's navigation mesh in tandem.

Acknowledgements
I would particularly like to thank the editorial team for the effort that has
gone into typesetting this article for publication. Many thanks also to the
rest of the Overload team for reviewing this article and suggesting ways
in which to improve it.

References
[Abrash97] Michael Abrash’s Graphics Programming Black Book.

Michael Abrash. Coriolis Group Books, special edition, 1997.

[Arvo88] Linear-Time Voxel Walking for Octrees. Jim Arvo. Ray
Tracing News, 1(12), March 1988.

[Ericson05] Real-Time Collision Detection. Christer Ericson. Morgan
Kaufmann, 2005.

[Fuchs80] On Visible Surface Generation by A Priori Tree Structures.
Henry Fuchs, Zvi M Kedem and Bruce F Naylor. Computer
Graphics, 14(3):124-133, 1980.

[Golodetz06] A 3D Map Editor. Stuart Golodetz. Undergraduate thesis,
Oxford University Computing Laboratory, May 2006.

[Golodetz08] Divide and Conquer: Partition Trees and Their Uses. Stuart
Golodetz. Overload, 86:24-28, August 2008.

[Golodetz13] Automatic Navigation Mesh Generation in Configuration
Space. Stuart Golodetz. Overload, 117:22–27, October 2013.

[Gordon91] Front-to-Back Display of BSP Trees. Dan Gordon and
Shuhong Chen. IEEE Computer Graphics and Applications,
11(5):79-85, 1991.

[hesperus] The hesperus 3D game engine. Stuart Golodetz. Source code
available online at: https://github.com/sgolodetz/hesperus2.

[Jansen86] Data structures for ray tracing. Frederik W Jansen. In Laurens
R A Kessener, Frans J Peters and Marloes L P van Lierop, editors,
Data Structures for Raster Graphics, pages 57–73. Springer-Verlag
Berlin Heidelberg, 1986.

[Lysenko08] Improved Binary Space Partition Merging. Mikola
Lysenko, Roshan D’Souza and Ching-Kuan Shene. Computer-Aided
Design, 40(12):1113-1120, 2008.

[Melax00] Dynamic Plane Shifting BSP Traversal. Stan Melax. Graphics
Interface, 2000:213-220, 2000.

[Millington07] Game Physics Engine Development. Ian Millington.
Morgan Kaufmann, 2007.

[Seidel91] Small-Dimensional Linear Programming and Convex Hulls
Made Easy. Raimund Seidel. Discrete & Computational Geometry,
6(1):423-434, 1991.

[Snethen08] XenoCollide: Complex Collision Made Simple. Gary
Snethen. In Scott Jacobs, editor, Game Programming Gems 7, pages
165–178. Charles River Media, 2008.

[Sung92] Ray Tracing with the BSP Tree. Kelvin Sung and Peter Shirley.
In David Kirk, editor, Graphics Gems III, pages 271–274. Morgan
Kaufmann, 1992.

[VanWaveren01] The Quake III Arena Bot. Jean Paul van Waveren.
Master’s thesis, Delft University of Technology, 2001.

Figure 4

A few of the recursive cases for the 'find first transition' algorithm,
illustrated on a movement ray from an agent's current position in empty
space (shown in green/light grey) to its attempted position in solid space
(shown in red/dark grey).

(a)

(b)

(c)

The movement ray is entirely on one side of the plane (the long
horizontal line): recurse down that side.

The movement ray lies in the plane itself: recurse down both sides
and combine the results. In this case, both sides have a transition,
so we take the nearer one.

The movement ray straddles the plane: split it and recurse down
the near side first. In this case, the near half is entirely in empty
space, so we then recurse down the far side to find the transition
point.
December 2013 | Overload | 15

FEATURE CHRIS OLDWOOD
Migrating from Visual
SourceSafe to Git
Migrating from one version control system to
another is a big change. Chris Oldwood records
the trials and triumphs of migrating from VSS to git.
ack in the late 1990s I found myself starting to acquire a considerable
volume of code from various personal projects that I had been
working on in my spare time. Having been brought up to use a

Version Control System (VCS) to manage my source code assets at work
it seemed eminently sensible to do the same thing at home. Unsure about
exactly which product to choose I naturally fell into using the one that came
bundled with the compiler – Visual SourceSafe (VSS). Given that it was
also the VCS product I had been using at my client back then I got training
and experience as a nice by-product of work.

Fast forward 15 years and I still find myself using the same VSS repo I set
up all those years ago! Despite a considerable number of excellent free and
open source alternatives springing up in the intervening years that were
far superior, I found myself clinging on. This wasn’t because of any killer
feature, but mostly because I didn’t want to lose easy access to my ever
growing archive of version history when switching to another product.
Mainstream support ended for SourceSafe last year so I don’t even have
that to prop me up any longer either.

This article then is my journey on how I finally shook off the shackles of
SourceSafe whilst maintaining as much history as possible. It also goes
into some of the questions I asked myself about source code structure of
shared components in the face of online repositories like GitHub.
Eventually I’ll get to the mechanics of how to migrate source code and
some of the problems I encountered along the way.

Why Git?
My lengthy procrastination has had the pleasant side-effect of letting the
VCS ecosystem settle down quite a lot. I really didn’t fancy going through
all this again every time The Next Big Thing came along. The two clear
choices for me were Subversion and Git, with the former being what I had
been working with for the last few years, while the latter was just too big
to ignore. I was also aware of the Git/Subversion integration so felt that
there was a clear migration path in sight either way after finally putting
VSS to rest.

If you’re wondering whether I looked at any paid-for products, then, no.
Remember that this was my own personal codebase and so I’m happy to
live with whatever support I can get off the Internet these days. I might
have shelled out for a migration tool if the freely available options didn’t
come up to scratch – they didn’t with VSS2SVN, but fortunately they did
with VSS2Git.

My workflow
Despite the Distributed Version Control System (DVCS) being a relatively
modern invention compared to their Centralised (CVCS) counterparts,

I’ve been (ab)using SourceSafe over the last decade in such a way that I’ve
got a clunky similar model anyway.

Essentially I have a trusty old Network Attached Storage (NAS) box that
contains the ‘master’ copy of my VSS repo and then on my desktop and
laptop(s) I hold a copy. This gives me the full access to the history, which
I want when developing, along with a repo to store my ‘work in progress’.
The downside of course is that I have to do a ‘formal’ check-in to the master
some time later and re-sync the repo (think ROBOCOPY) to bring in
changes made via other routes. Like I said, it’s clunky.

Aside from the day-to-day development chores I also publish the source
code along with the binaries on my web site to allow anyone foolish enough
to tinker themselves. This has the nice added bonus of being an off-site
backup. OK, so the .zip files don’t have the full history but it was better
than nothing until the arrival of cheap, cloud based backup services.

This neatly brings me to the final piece of my migration puzzle – the
introduction of an online source code repository. Given that I’d already
discovered Git was the best choice for migrating my history, another brief
investigation also led me to GitHub as a suitable online provider. Once
again the fact that all my source code is published (even the dross) means
the public-only nature of the free repos happily suits my needs.

That said I still feel uneasy about relying solely on a service like GitHub
as the canonical source for my code and so I still have bare Git repos on
my NAS box to act as the central point for collaboration across my own
devices. Bare repos only store revisions so you cannot use them for
merging or development, which is essentially what GitHub provides
anyway.

This leads to a workflow where the laptop(s) and desktop are the clones
where I do my main development. I then pull and push to the repos on my
NAS to synchronise (should the need arise) with a final push from the NAS
to GitHub to publish (backup) my work in progress. When I want to
formally release a new version I can build, package and publish to my web
site as before. I’ll also include the source code as a snapshot like always
just to make it easier for someone else to pick it up.

As you’ve probably guessed there isn’t exactly a lot of ‘collaboration’
going on, which is a major selling point for tools like Git and GitHub, but
that’s not the point really; for me it’s as much about creating and dealing
with a legacy codebase as a learning tool.

The monolithic repo
The biggest decision I had to make when deciding to move from VSS to
another product was whether to keep using a single monolithic repo. My
codebase contains around 50,000 SLOC of C, C++, SQL and PowerShell
code distributed across 50 or so separate ‘components’; these consist of
scripts, libraries and applications. This way of working (one repo) has
always suited me, but with a desire to publish via a more collaborative
service too, I felt it might be a good time to see if it would be better to split
it up into smaller components; perhaps with a separate repo for each one.
Another eventual driver was the difference in the way VSS, Git and

B

Chris Oldwood is a freelance developer who started out as a
bedroom coder in the 80s, writing assembler on 8-bit micros. These
days it’s C++ and C# on Windows in big plush corporate offices. He
is the commentator for the Godmanchester Gala Day Duck Race
and can be contacted via gort@cix.co.uk or @chrisoldwood
16 | Overload | December 2013

FEATURECHRIS OLDWOOD

The worst case seemed to be
migrating the whole thing once and

then trimming it down manually to
just the tree of interest
Subversion handle labels – in short, they don’t; at least not in the same way
that VSS does (on a per-file basis).

For projects with no dependencies the decision was easy as everything
would be self-contained. For my C++ codebase however, where I have a
number of different static libraries (Lib-1, Lib-2, etc. below) that are reused
across many different applications (App-1, App-2, etc. below) the choice
was harder. If I created one repo per application (option 1) I’d have to share
copies of the libraries and then find a way to synchronise changes across
them all. Doing this without just manually copy-and-pasting the changes
is probably doable in Git but would likely require the kind of Git fu that
is well beyond my current n00b skillz.

 ├───App-1 (repo)
 │ ├───Lib-1
 │ │ └───Lib-1 Tests
 │ ├───Lib-2
 │ │ └───Lib-2 Tests
 │ └───App-1 Tests
 └──App-2 (repo)
 ├───Lib-1
 │ └───Lib-1 Tests
 ├───Lib-2
 │ └───Lib-2 Tests
 └───App-2 Tests

The opposite choice (option 2) was to have one repo per shared component
(i.e. static library) and then another separate repo for each of the
application-level components (i.e. executable, COM server, etc.). My
existing folder structure naturally lent itself to this approach because each
component was already self-contained:

 ├───App-1 (repo)
 │ └───App-1 Tests
 ├───App-2 (repo)
 │ └───App-2 Tests
 └───Lib
 ├───Lib-1 (repo)
 │ └───Lib-1 Tests
 └───Lib-2 (repo)
 └───Lib-2 Tests

Then there was the half-way house (option 3) which would see separate
repos for each application-level component, but just a single repo for all
the shared static libraries.

 ├───App-1 (repo)
 │ └───App-1 Tests
 ├───App-2 (repo)
 │ └───App-2 Tests
 └───Lib (repo)
 ├───Lib-1
 │ └───Lib-1 Tests
 └───Lib-2
 └───Lib-2 Tests

The one exception to all this was my build scripts because they lived in
the root of the tree. They aren’t essential for building any single application

as they’re more for command-line batch-building of the entire estate. I
decided they could live with the libraries or go in another separate repo.

So many choices! In the end I opted to split out the applications and all
the shared libraries into separate components and repos (i.e. option 2
above). My rationale was that a 3rd party should only need to clone the
bare minimum to get the application to build – the waters should not be
muddied by any of my really old nasty legacy library code that is of no
importance to the application in question. I also elected to create a separate
repo for my build scripts as they are optional too.

From a Git migration perspective I was somewhat concerned about how
much work this was going to be. The worst case seemed to be migrating
the whole thing once and then trimming it down manually to just the tree
of interest, along with moving all the files up into the root of the repo. Some
VCS repos are immutable by default and Git is no exception, but it did
appear that some advanced Git magic [Github-a] might make it possible
to physically remove the unwanted sub-trees afterwards to conceal the
initial mess.

Once again lady luck shined on me and whilst I was investigating how
other developers have solved the problem of shared components in project-
focused repos I stumbled upon a recent addition to the Git toolset – git
subtree split [Pardus12]. As we shall see later this command can rebase
(in the file-system sense) a sub-folder right back up to the root of a repo.

The investigation also lead me to the concept of ‘submodules’ [Git] in Git,
which are akin to ‘svn:externals’ in Subversion, and it raised an important
difference in the way that I, as owner and fundamentally the main
developer of this entire codebase, work differently to how another
collaborator would. Essentially I am interested in developing the libraries
with one eye on the changes that affect all dependents, whereas a
collaborator is likely to be only concerned in the effects on the application
that directly interests them. Naturally I decided to optimise for the common
case (me as the sole developer) and keep the libraries parallel to the
applications rather than move them ‘under’ and then treat them as sub-
modules. I can of course change my mind later as the hard work has already
been done.

Project migration
Finally, after all that philosophical waffle we come to the mechanics of
creating one or more Git repositories from a SourceSafe one.

Git Configuration
The first step is to read up on how Git handles line-endings as this will
likely affect your code. GitHub have a splendid document that covers the
practical aspects of this issue [Github-b]. If you think it’s all rather
convoluted you can read up on how the different settings evolved over time
to cater for the different scenarios as they cropped up [Adaptive12]. Suffice
to say that after opening a shell with the Git toolkit on your PATH you’ll
want to run this:

 C:\> git config --global core.autocrlf true
December 2013 | Overload | 17

FEATURE CHRIS OLDWOOD

The only real check-in data VSS2Git
can go on are the commit timestamps
and the check-in comments, if present.
Next up create a folder under which you’re going to create your migrated
Git repository(s):

 C:\> mkdir D:\Git\vss2git

VSS2Git
The tool I chose to use for the migration was VSS2Git [Google]. This is
a GUI-based application that relies on another Git installation being
installed, and being accessible via the PATH. The GitHub for Windows
package [Github-c] contains both a UI and an easy way to launch a shell
(CMD.EXE or PowerShell) pre-configured so that you don’t have to have
Git permanently on your PATH. With the planets suitably aligned you can
run VSS2Git like so:

 C:\> "c:\Program Files\Vss2Git\Vss2Git.exe"

Before starting I sync’ed my local VSS repo to match the one on my NAS
box to ensure I was working with the latest stuff; this also gave me a
separate copy which I could mess around with and see what happens when
I migrate sub-folders instead of the root, e.g. my build scripts (see
Figure 1).

As an example when I migrated my Core C++ library, which lives under
$/Win32/Lib/Core, I used the following (non-default) settings:

 VSS Directory: D:\VSS\Git
 VSS Project: $/Win32/Lib/Core

 Git Directory: D:\Git\vss2git\Win32\Lib\Core
 Email domain: chrisoldwood.com

These should be fairly obvious. What might be less obvious are the two
settings at the bottom (Changeset Building) that control how to turn a
bunch of non-atomic commits into the more modern atomic ones. The only
real check-in data VSS2Git can go on are the commit timestamps and the
check-in comments, if present.

Personally I’m pretty fastidious about providing check-in comments and
so I dialled down the setting that works off empty comments to a mere 15
seconds as I know any commit without a check-in comment is rare and
almost certainly unimportant. In contrast I upped the other setting that
matches comments to 600 seconds as I always tried to reuse the same
check-in comment where possible; the only reason for a delay would have
been getting temporarily distracted.

With everything configured it’s time to hit ‘Go!’ and wait for VSS2Git to
weave its magic. Depending on the repo size this could take some time as it
has to build and replay the commits into the Git repo. This means that you
can’t point it to a bare Git repo because as explained earlier they have no
working copy, but it will create a non-bare one for you at the path you specify.

Normalising paths
If you’re migrating your entire VSS repo to a single Git repo then you’re
almost there, but if like me you want to split it up you have more work to do.

The VSS2Git tool converts files and folders exactly as they are in the
source repo. This means that the file $/Win32/Lib/Core/ReadMe.txt will
appe a r i n t he G i t r epo unde r t he s a me r e l a t i ve pa th
(\Win32\Lib\Core\ReadMe.txt) even if you only intend to migrate the $/
Win32/Lib/Core project. What I wanted was for all the paths to be shifted
up so that \Win32\Lib\Core is now the root of the Git repo, e.g. ReadMe.txt
moves from \Win32\Lib\Core\ReadMe.txt to just \ReadMe.txt, and for all
the superfluous parent folders to disappear.

As mentioned earlier Git has a separate command for this – subtree split
– although it appears to be a very recent addition at the time of writing.
When I was originally investigating, some Git builds supported it
(msysgit) and others didn’t (GitHub for Windows). Both of these now do,
but it’s another thing to catch out the unwary.

The way I used this command was to create a new branch in the VSS2Git
generated repo based on master (a.k.a trunk), but with the paths munged
to strip off the leading $/Folder/Folder parents:

 D:\Repo> git subtree split
 --prefix=Win32/Lib/Core -b split

Creating a master repo
When describing my current workflow earlier I suggested my point of
collaboration was still going to be a central repo on my NAS box. Whilst
the point of a DVCS like Git is that I can use it in a peer-2-peer like manner,
it also gave me an opportunity to create a bare repo and see what the
differences were in practice. The folder structure on my NAS box reflected
the way I was going to clone them for use during development.

For the Core library I created the bare repo like so:

Figure 1
18 | Overload | December 2013

FEATURECHRIS OLDWOOD

When cloning a Git repo the
source is normally referred to

by the name ‘origin’
 C:\> git init //ziggy/Git/Win32/Lib/Core --bare

…and then pushed the cleaned-up branch from the VSS2Git generated
repo to it:

 C:\> git push //ziggy/Git/Win32/Lib/Core
 split:master -tags

This has the added effect of moving the changes from the ‘split’ branch
back onto the ‘master’ branch where they belong going forward.

Linking the master to GitHub
Once again this extra step is somewhat contrived because I’m using
GitHub more as a backup than a point of collaboration. After creating a
new repo on my GitHub account, called ‘Core’, I can then link it to the
bare repo on my NAS box and push the migrated source like this:

 C:\> pushd \\Ziggy\Git\Win32\Lib\Core
 Z:\> git remote add github https://github.com/
 chrisoldwood/Core.git
 Z:\> git push -u github master --tags

When cloning a Git repo the source is normally referred to by the name
‘origin’. I chose to name it ‘github’ instead to signify its status as just
another clone rather than being the canonical source.

Line endings, again!
If you read the article(s) listed at the beginning about line endings you’ll
have noticed there is now a per-repo setting for handling the line endings
issue in a way that allows developers to configure their machine how they
like it whilst letting the repo decide what its own policy should be.

Of course there is a chicken-and-egg problem here because you need a repo
to add the .gitattributes file to, but trying to do this earlier means
you can run into other problems because you’ve tainted the repo you want
to push your migrated revisions to. This is not a major problem when
you’re used to Git, but it’s a head-scratcher when you’re new to it.
Consequently I left this step to be the first new commit following the
migration.

At a minimum you want to add a .gitattributes file in the root of the
repo that has this at the top:

 # Set default behaviour, in case users don't have
 core.autocrlf set.
 * text=auto

If you read up on what goes into this file you’ll probably come across the
.gitignore file too and so I ended up committing them as a pair. If
you’re using the GitHub for Windows UI you’ll find this is a key part of
the Git repo configuration. Here is a tiny example of the kinds of files you
normally avoid checking into any VCS repository and therefore get
included in your .gitignore file:

 # Build artefacts

 *.dll

 *.exe

 *.lib

 *.obj

Stripping VSS bindings
If your projects are based around Visual Studio then you’ll probably have
enabled the VSS integration. The GUI friendly way to untie your solutions
from VSS is to use the ‘File | Source Control | Change Source Control…’
option and unbind the projects. You’ll still be left with some detritus in
your repo and in a couple of cases I had to prise the bindings manually
from Visual Studio to stop it complaining every time I opened the solution.
There is a blog post from Brian Carroll [Carroll04] that describes how to
manually strip the bindings, but it basically boils down to the following
steps:

 Delete any *.vspscc and *.vssscc files

 Remove the GlobalSection(SourceCodeControl) =
preSolution fragment from the .sln file

 Remove any Scc* = SAK lines from the .vcproj file preamble

Automation
If, like me, you’re going to split out many libraries and projects this all
becomes very tedious if done manually and so a little dash of automation
goes a long way. By sticking to one simple convention – the local Git repo
folder names and GitHub repo name match – you can apply the Swiss-
Army knife of DOS programming (the FOR loop) and run the same
commands across every repo.

In my case I had a whole bunch of repos generated by VSS2Git at the same
level in the file-system, except for the Lib folder, which itself contained
another bunch of repos:

 ├───App-1
 ├───App-2
 ├───Lib
 └───App-N

The following one-liner (ahem) will navigate into a repo folder, do the path
normalisation, create the bare master repo, push the migrated changes,
attach it to GitHub and push the changes to that too. And do it for every
folder that appears to be a Git repo (i.e. has a hidden .git subfolder at its
root) – see Listing 1.

The most laborious part of the process now just becomes driving VSS2Git.
There is a request open to suggest automating it via the command line
[VSS2Git-a] but I don’t know if there has been any progress on it at the
time of writing.

Impedance mismatches
Whilst Git is superior to SourceSafe in most of the ways that truly matter
there are a couple of features of SourceSafe I had used that do not translate
well to Git. The problems I’ve run into largely stem from the use of a single
repo to store multiple projects.
December 2013 | Overload | 19

FEATURE CHRIS OLDWOOD

In VSS you can attach a label to any file
at any version, whereas in Git labels
are called tags and they are attached
to commits
Labels
In VSS you can attach a label to any file at any version, whereas in Git
labels are called tags and they are attached to commits. Because my VSS
repo contains multiple independent applications I have multiple ‘v1.0’
labels on different projects that are unrelated to one another. In contrast,
Git tags are global and therefore you don’t appear to be able to mirror the
concept. This became another driver for me to split my monolithic repo
up as I often use the labels to see what’s changed between releases.

If I had chosen to maintain a monolithic repo under Git I could always have
adopted a new convention whereby I prefix the version number with the
application name, e.g. ‘ProductX v1.0’ and ‘ProductY v1.0’. Of course the
shared libraries ended up adopting this scheme anyway, even under VSS,
as you can’t label two versions of the same file with the same physical
label!

The second problem with the way Git handles tags is more tooling related,
but is a result of the indirect way that tags are associated with commits –
you can’t easily see what tags are attached to what versions of a file. Hence
if you have a bug in one version of a file it’s not easy to see what other
releases might also be affected. Hopefully the tooling will eventually catch
up in this area.

Shared files
Git is efficient in the way that it stores content because it only ever stores
one physical copy for any file with the same content. However, that’s an
implementation detail and two files cannot be linked in different places in
the repo so that a change to one automatically affects the other. SourceSafe
on the other hand does support this feature; in fact this is exactly how
moving files in SourceSafe is implemented – share and then delete.

Whilst in some scenarios this feature can prove dangerous it also has its
uses, such as sharing scripts and common non-code assets across
applications.

Dropped history
When migrating projects from SourceSafe that had later been moved to
another folder (e.g. a ‘deprecated’ folder), VSS2Git only imported any file
revisions that existed at the point the project had been moved, or after. I’m
not sure if this is a limitation of VSS2Git or a side-effect of the way files
and folders are moved in SourceSafe. I have raised an issue on VSS2Git
[VSS2Git-b] to see if the problem could be investigated further.

Summary
This article was about making the transition from the propriety world of
Microsoft’s Visual SourceSafe version control product to the modern,
open-source world of Git. Along the way I discussed some of the more
fundamental questions about how I wanted to re-organise my repository
of projects, both to maintain as much history as possible, such as the labels,
but also to allow easier collaboration in the future using an online
repository like GitHub.

With the rationale explained I then showed how I migrated and split up
my monolithic VSS repo with the help of VSS2Git and some command-
line driving of the Git toolset. Finally I described the major features in VSS
that couldn’t be directly mapped onto Git and the effects they had on the
migration.

Acknowledgments
Once again the ever watchful eyes of Frances Buontempo and Roger Orr
have saved my blushes and added that much needed extra polish to the
article. Thanks.

References
[Adaptive12] http://adaptivepatchwork.com/2012/03/01/mind-the-end-

of-your-line/

[Carroll04] http://weblogs.asp.net/bkcarroll/archive/2004/03/08/
86059.aspx

[Git] http://git-scm.com/book/en/Git-Tools-Submodules

[Github-a] https://help.github.com/articles/remove-sensitive-data

[Github-b] https://help.github.com/articles/dealing-with-line-endings

[Github-c] http://windows.github.com/

[Google] https://code.google.com/p/vss2git/

[Pardus12] http://log.pardus.de/2012/08/modular-git-with-git-
subtree.html

[VSS2Git-a] https://code.google.com/p/vss2git/issues/detail?id=2

[VSS2Git-b] https://code.google.com/p/vss2git/issues/detail?id=8
Listing 1

for /d %d in (*) do @(
 if exist "%d\.git" (
 pushd %d
 git subtree split --prefix=Win32/%d -b split
 git init //ziggy/Git/Win32/%d --bare
 git push //ziggy/Git/Win32/%d split:master
 --tags
 pushd \\ziggy\Git\Win32\%d
 git remote add github
 https://github.com/chrisoldwood/%d.git
 git push -u github master --tags
 popd
 popd
)
)

20 | Overload | December 2013

https://help.github.com/articles/remove-sensitive-data
https://help.github.com/articles/dealing-with-line-endings
http://windows.github.com/
https://code.google.com/p/vss2git/issues/detail?id=2
https://code.google.com/p/vss2git/issues/detail?id=8
https://code.google.com/p/vss2git/
http://git-scm.com/book/en/Git-Tools-Submodules
http://log.pardus.de/2012/08/modular-git-with-git-subtree.html
http://log.pardus.de/2012/08/modular-git-with-git-subtree.html
http://weblogs.asp.net/bkcarroll/archive/2004/03/08/86059.aspx
http://weblogs.asp.net/bkcarroll/archive/2004/03/08/86059.aspx
http://adaptivepatchwork.com/2012/03/01/mind-the-end-of-your-line/
http://adaptivepatchwork.com/2012/03/01/mind-the-end-of-your-line/

	Overload118.pdf
	Not So Much a Program, More a Way of Life
	On the Other Side of the Barricade: Job Interviewer Do’s and Don’ts
	How to Program Your Way Out of a Paper Bag Using Genetic Algorithms
	Object-Environment Collision Detection using Onion BSPs
	Migrating from Visual SourceSafe to Git

