

April 2014 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Size Matters
Sergey Ignatchenko and Dmytro Ivanchykhin
compare 32-bit and 64-bit programs.

6 Enforcing the Rule of Zero
Juan Alday considers how the new standards have
affected a common rule.

9 Quality Matters #8: Exceptions for
Recoverable Conditions
Matthew Wilson fights the problem of poor
exception handling.

18 Static – A Force for Good and Evil
Chris Oldwood finds the good in a maligned
language feature.

23Search with CppCheck
Martin Moene tries a more powerful code
search tool.

26Windows 64-bit Calling Conventions
Roger Orr sees how the stack organisation has
changed.

32Teenage Hex
Teedy Deigh searches for the ideal programming
language for teaching.

OVERLOAD 120

April 2014

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 121 should be submitted
by 1st May 2014 and those for
Overload 122 by 1st July 2014.

EDITORIAL RIC PARKIN
Your Life in Their Hands
We leave an increasingly detailed
digital footprint. Ric Parkin worries
who can see it.
What have you been doing in the last week? Month?
Year? Obviously you’ll have some vague idea, but not
all that detailed.

Let’s try just today. Waking up from the phone alarm,
you stream the morning news via iPlayer, before

checking your email and any missed calls. A commute to work might
involve using your Oyster card, or perhaps a trip on a motorway through
roadworks with average speed cameras. Work is pretty hectic but you need
to look up some things on Stackoverflow and look at a RSA algorithm on
github, and manage to make time at lunch to transfer some money between
accounts, book a doctor’s appointment via the practice website. At least
your amazon delivery arrived today, although you had to sign for it. After
work, you text a few friends and meet up in a local pub you found after
searching on tripadvisor (after phoning your partner to check it’s okay of
course!), which you pay for with a credit card. Once you get home, you
check Facebook and your twitter account, both of which you’ve updated
during the day, and upload some photos of the sunset you saw this evening,
tagging them with the time and location automatically. A quick read of
some news and politics websites, and it’s time for bed.

This is a pretty normal scenario for our lives, day in day out. And most of
it will go via an electronic network at some point.

Now imagine that someone could see every single one of those
transactions. Not necessarily the detail, but just the basic fact that
something happened between you and the other end. I think you could get
a pretty good idea of the shape of someone’s life, what they did, where
they go, who their friends are, what their opinions were.

This could be seen as a touch paranoid, but I have some good reasons to
think this is feasible – one of my early jobs involved working on a system
to build and visualise networks of information for law enforcement
purposes, and a major tool was to import phone call logs to make
connections between people. There was also another part that
implemented the legal datatrail to record the justification for asking for
such data and get it from the telecoms companies. This was a long time
ago though, and since then internet connections, mobile phone data
(including mast and wifi connections), unsecured web searches (and even
secured ones are often logged by the engine), email data, and webcam
traffic can all be looked at. See Figure 1 for examples of various
visualisation techniques that are used to make sense of these sorts of
networks.

And it has been looked at. Not just with a warrant like in my naive youth,
but wholesale collection. As we’ve found out via

the Snowden leaks, mass collection of data is now
routine [NSA, GCHQ]. Sure, most of the
‘uninteresting’ stuff will get thrown away pretty

soon as it costs too much to look at, and most people aren’t of much
interest, but it’s still there and is seen as a normal thing to do. Although,
who knows what’s of interest, and what will that be in the future? Even
old fashioned intelligence gathering can be remarkably intrusive
[Cambridge].

But what of the oft repeated argument that you have nothing to fear if
you’ve nothing to hide? Well, that depends doesn’t it? Think of
investigative journalists, online legal spats such as Simon Singh and the
British Chiropractic Association, climate scientists getting hacked for
political purposes, people stalked by new lovers or abused by old, and
adopted children tracked down by their unstable relatives, and phone
hacking scandals. And what if you knew someone who was interest? Your
life has just become of interest itself. And let’s not forget when the rules
are ignored – there are many known instances of the system being abused
by those on the inside.

In the past you could still be tracked if someone really wanted to, but it
took time effort people and money. Now it is much, much easier and
cheaper, and we now know that the security services have been doing it
for quite a while. The lack of oversight, and even complicity, of these
activities by the people who are meant to make sure these efforts don’t go
too far is troubling. Many people on the committees due to their expertise
have that because they have close connections to the organisations they
are meant to oversee! And often say they cannot tell us why they’ve agreed
to such behaviour because the evidence of why it is useful is itself secret.

Figure 1

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | April 2014

EDITORIALRIC PARKIN
But how do we trust them? Some level of access is needed, but we must
balance that with the right to privacy and potential for abuse.

What other sorts of data security issues can we think of?

Another potential worry is the NHS.care database. In theory, this is a great
idea [Goldacre] – we already get a lot of data from looking at the huge
numbers of hospital visits, and good analysis can give us valuable insights
into the efficacy of procedures, and identify potentially dangerous
hospitals by seeing which operations have a higher than expected mortality
or problem rate. By combining this with data from GP visits, we can gain
even more insights, especially about how interventions work and detect
rare side effects. But the rollout has been badly handled, with poor
communication, and worse a poor understanding of people’s concerns that
even with anonymisation, it can still be easy to discover people and their
medical history. Then there were the other purposes to which this data
could be put, including potentially being sold to insurance companies –
while having better actuarial data could be useful, the worry of being able
to tailor insurance to the individual surely defeats the purpose of insurance,
which is the pooling of risk. Thankfully this will never happen we are
assured, and yet somehow it does [Sold]. This should give us pause for
thought [Goldacre2], and has already led to a welcome improvement in
transparency [Publish]

At least you’re not broadcasting when you’re out of your home. Yet. With
the upcoming rollout of smart meters [SmartMeters] we are potentially
doing just that – while the idea of more accurate metering and billing, not
to mention pooling data to enable the energy grid to be better managed,
there is a danger that the times you are in or out can be inferred, for example
if the meter uploads every half-hour then you can easily work out people’s
work hours, and even if you choose to only update occasionally, long
holidays can be spotted [Frequency]. How can this sort of issue be avoided,
while keeping the benefits? One idea would be to have the meters only
upload data that can be traced to you only when absolutely required in order
to calculate the bill. Other times lots of detailed data could be sent, but only
tagged with broad categories and not anything identifiable, although even
then you can often work out quite a lot if you can afford the time and effort
– this leads to a similar principle to an important rule in cryptography:
make the cost of finding out more than it’s worth. (Talking of
cryptography, it seems that even it may not be enough to be secure, as
adding backdoors can weaken it for everybody [Backdoor])

These sorts of situations are becoming more and more frequent, and most
people do not have the time, knowledge, or the tools to adequately evaluate
and choose what happens to their data, if they even have a choice.
Openness and transparency with data collection and storage is important,
as are strong checks and balances with an independent watchdog with the
ability to investigate abuses and issue strong punishments. But even if we
manage to build a good regime in our own country, it is only part of the
solution as data is often stored in the cloud, and the datacentres could be
in jurisdictions with completely different laws where the hosting company
is required to give security agencies access, or can be collected at an
intervening point. International rules and co-operation
is required with all the problems that are implied by
that. But at least some people are thinking about it
[Berners-Lee].

References
[Backdoor] http://arstechnica.com/security/2014/01/how-the-nsa-may-

have-put-a-backdoor-in-rsas-cryptography-a-technical-primer/

[Berners-Lee] http://www.theguardian.com/technology/2014/mar/12/
online-magna-carta-berners-lee-web

[Cambridge] http://www.theguardian.com/uk-news/2013/nov/14/police-
cambridge-university-secret-footage

[Goldacre] http://www.theguardian.com/society/2014/feb/21/nhs-plan-
share-medical-data-save-lives

[Goldacre2] http://www.theguardian.com/commentisfree/2014/feb/28/
care-data-is-in-chaos

[MeterFrequency] http://www.npower.com/idc/groups/wcms_content/
@wcms/documents/digitalassets/smart_meter_information_pdf.pdf

[Publish] http://www.theguardian.com/society/2014/mar/07/access-list-
national-hospital-records-database-publish

[SmartMeters] https://www.gov.uk/government/policies/helping-
households-to-cut-their-energy-bills/supporting-pages/smart-meters

[Sold] http://www.telegraph.co.uk/health/nhs/10659147/Patient-
records-should-not-have-been-sold-NHS-admits.html
April 2014 | Overload | 3

http://arstechnica.com/security/2014/01/how-the-nsa-may-have-put-a-backdoor-in-rsas-cryptography-a-technical-primer/
http://arstechnica.com/security/2014/01/how-the-nsa-may-have-put-a-backdoor-in-rsas-cryptography-a-technical-primer/
http://www.theguardian.com/technology/2014/mar/12/online-magna-carta-berners-lee-web
http://www.theguardian.com/technology/2014/mar/12/online-magna-carta-berners-lee-web
http://www.theguardian.com/uk-news/2013/nov/14/police-cambridge-university-secret-footage
http://www.theguardian.com/uk-news/2013/nov/14/police-cambridge-university-secret-footage
http://www.theguardian.com/society/2014/feb/21/nhs-plan-share-medical-data-save-lives
http://www.theguardian.com/society/2014/feb/21/nhs-plan-share-medical-data-save-lives
http://www.theguardian.com/commentisfree/2014/feb/28/care-data-is-in-chaos
http://www.theguardian.com/commentisfree/2014/feb/28/care-data-is-in-chaos
http://www.npower.com/idc/groups/wcms_content/@wcms/documents/digitalassets/smart_meter_information_pdf.pdf
http://www.npower.com/idc/groups/wcms_content/@wcms/documents/digitalassets/smart_meter_information_pdf.pdf
http://www.theguardian.com/society/2014/mar/07/access-list-national-hospital-records-database-publish
http://www.theguardian.com/society/2014/mar/07/access-list-national-hospital-records-database-publish
https://www.gov.uk/government/policies/helping-households-to-cut-their-energy-bills/supporting-pages/smart-meters
https://www.gov.uk/government/policies/helping-households-to-cut-their-energy-bills/supporting-pages/smart-meters
http://www.telegraph.co.uk/health/nhs/10659147/Patient-records-should-not-have-been-sold-NHS-admits.html
http://www.telegraph.co.uk/health/nhs/10659147/Patient-records-should-not-have-been-sold-NHS-admits.html

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
Size Matters
Should you target 32 or 64
bits? Sergey Ignatchenko and
Dmytro Ivanchykhin consider
the costs and benefits.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translators
and editors. Please also keep in mind that translation difficulties from Lapine
(like those described in [Loganberry04]) might have prevented an exact
translation. In addition, we expressly disclaim all responsibility from any
action or inaction resulting from reading this article. All mentions of ‘my’, ‘I’,
etc. in the text below belong to ‘No Bugs’ Bunny and to nobody else.

-bit systems are becoming more and more ubiquitous these
days. Not only are servers and PCs 64-bit now, but the most
recent Apple A7 CPU (as used in the iPhone 5s) is 64-bit too,

with the Qualcomm 6xx to follow suit [Techcrunch14].

On the other hand, all the common 64-bit CPUs and OSs also support
running 32-bit applications. This leads us to the question: for 64-bit OS,
should I write an application as a native 64-bit one, or is 32-bit good
enough? Of course, there is a swarm of developers thinking along the lines
of ‘bigger is always better’ – but in practice it is not always the case. In
fact, it has been shown many times that this sort of simplistic approach is
often outright misleading – well-known examples include 14" LCDs
having a larger viewable area of the screen than 15" CRTs; RAID-2 to
RAID-4 being no better compared to RAID-1 (and even RAID-5-vs-
RAID-1 is a choice depending on project specifics); and having 41
megapixels in a cellphone camera being quite different from even 10
megapixels in a DSLR despite all the improvements in cellphone cameras
[DPReview14]. So, let us see what is the price of going 64-bit (ignoring
the migration costs, which can easily be prohibitive, but are outside of
scope of this article).

Amount of memory supported (pro 64-bit)
With memory, everything is simple – if your application needs more than
roughly 2G–4G RAM, re-compile as 64-bit for a 64-bit OS. However, the
number of applications that genuinely needs this amount of RAM is not
that high.

Performance – 64-bit arithmetic (pro 64-bit)
The next thing to consider is if your application intensively uses 64-bit (or
larger) arithmetic. If it does, it is likely that your application will get a
performance boost from being 64-bit at least on x64 architectures (e.g.
x86-64 and AMD64). The reason for this is that if you compile an
application as 32-bit x86, it gets restricted to the x86 instruction set and

this doesn’t use operations for 64-bit arithmetic even if the processor
you’re running on is a 64-bit one.

For example, I’ve measured (on the same machine and within the same
64-bit OS) the performance of OpenSSL’s implementation of RSA, and
observed that the 64-bit executable had an advantage of approx. 2x (for
RSA-512) to approx. 4x (for RSA-4096) over the 32-bit executable. It is
worth noting though that performance here is all about manipulating big
numbers, and the advantage of 64-bit arithmetic manifests itself very
strongly there, so this should be seen as one extreme example of the
advantages of 64-bit executables due to 64-bit arithmetic.

Performance – number of registers (pro 64-bit)
For x64, the number of general purpose registers has been increased
compared to x86, from 8 registers to 16. For many computation-intensive
applications this may provide a noticeable speed improvement.

For ARM the situation is a bit more complicated. While its 64-bit has
almost twice as many general-purpose registers than 32-bit (31 vs 16),
there is a somewhat educated guess (based on informal observations of
typical code complexity and the number of registers which may be
efficiently utilized for such code) that the advantage of doubling 8 registers
(as applies to moving from x86 to x64) will be in most cases significantly
higher than that gained from doubling 16 registers (moving from 32-bit
ARM to 64-bit ARM).

Amount of memory used (pro 32-bit)
With all the benefits of 64-bit platforms outlined above, an obvious
question arises: why not simply re-compile everything to 64-bit and forget
about 32-bit on 64-bit platforms once and for all? The answer is that with
64-bit, every pointer inevitably takes 8 bytes against 4 bytes with 32-bit,
which has its costs. But how much negative effect can it cause in practice?

Impact on performance – worst case is very bad for 64-bit
To investigate, I wrote a simple program that chooses a number N and
creates a set populated with the numbers 0 to N-1, and then benchmarked
the following fragment of code:

 std::set<int> s;
 ...
 int dummyCtr = 0;
 int val;
 for (j = 0; j < N * 10; ++j)
 {
 val = (((rand() << 12) + rand())
 << 12) + rand();
 val %= N;
 dummyCtr += (s.find(val) != s.end());
 }

When running such a program with gradually increasing N, there will be
a point when the program will take all available RAM, and will go

64

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He is currently holding the position of Security
Researcher. Sergey can be contacted at sergey@ignatchenko.com

Dmytro Ivanchykhin has 10+ years of development experience, and
has a strong mathematical background (in the past, he taught maths at
NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com
4 | Overload | April 2014

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
swapping, causing extreme performance degradation (in my case, it was
up to 6400x degradation, but your mileage may vary; what is clear, though,
is that in any case it is expected to be 2 to 4 orders of magnitude).

I ran the program above (both 32-bit and 64-bit versions) on a 64-bit
machine with 1G RAM available, with the results shown on Figure 1.

It is obvious that for N between 224-⅓ and 224+⅓(that is, roughly, between
13,000,000 and 21,000,000), 32-bit application works about 1000x faster.
A pretty bad result for a 64-bit program.

The reason for such behavior is rather obvious: set<int> is normally
implemented as a tree, with each node of the tree1 containing an int, two
bools, and 3 pointers; for 32-bit application it makes each node use
4+4+3*4=20 bytes, and for 64-bit one each node uses 4+4+3*8=32 bytes,
or about 1.6 times more. With the amount of physical RAM being the same
for 32-bit and 64-bit programs, the number of nodes that can fit in memory
for the 64-bit application is expected to be 1.6x smaller than that for the
32-bit application, which roughly corresponds to what we observed on the
graph – the ratio of 21,000,000 and 13,000,000 observed in the experiment
is indeed very close to the ratio between 32 and 20 bytes.

One may argue that nobody uses a 64-bit OS with a mere 1G RAM; while
this is correct, I should mention that [almost] nobody uses a 64-bit OS with
one single executable running, and that in fact, if an application uses 1.6x
more RAM merely because it was recompiled to 64-bit without giving it
a thought, it is a resource hog for no real reason. Another way of seeing it
is that if all applications exhibit the same behaviour then the total amount
of RAM consumed may increase significantly, which will lead to greatly
increased amount of swapping and poorer performance for the end-user.

Impact on performance – caches
The effects of increased RAM usage are not limited to extreme cases of
swapping. A similar effect (though with a significantly smaller
performance hit) can be observed on the boundary of L3 cache. To
demonstrate it, I made another experiment. This program:

 chooses a number N

 creates a list<int> of size of N, with the elements of the list
randomized in memory (as it would look after long history of
random inserts/erases)

 benchmarks the following piece of code:

 std::list<int>lst;
 ...
 int dummyCtr = 0;
 int stepTotal = 10000000;
 int stepCnt = 0;
 for (i = 0;; ++i)
 {
 std::list <int>::iterator lst_Iter =
 lst.begin();

 for (; lst_Iter != lst.end(); ++lst_Iter)
 dummyCtr += *lst_Iter;
 stepCnt += Total;
 if (stepCnt > stepTotal)
 break;
 }

With this program, I got the results which are shown in Figure 2 for my
test system with 3MB of L3 cache.

As it can be seen, the effect is similar to that with swapping, but is
significantly less prominent (the greatest difference in the ‘window’ from
N=215 to N=218 is mere 1.77x with the average of 1.4).

Impact on performance – memory accesses in general
One more thing which can be observed from the graph in Figure 2 is that
performance of the 64-bit memory-intensive application in my
experiments tends to be worse than that of the 32-bit one (by approx. 10-
20%), even if both applications do fit within the cache (or if neither fit).
At this point, I tend to attribute this effect to the more intensive usage by
64-bit application of lower-level caches (L1/L2, and other stuff like
instruction caches and/or TLB may also be involved), though I admit this
is more of a guess now.

Conclusion
As it should be fairly obvious from the above, I suggest to avoid
‘automatically’ recompiling to 64-bit without significant reasons to do it.
So, if you need more than 2–4G RAM, or if you have lots of computational
stuff, or if you have benchmarked your application and found that it
performs better with 64-bit – by all means, recompile to 64 bits and forget
about 32 bits. However, there are cases (especially with memory-intensive
apps with complicated data structures and lots of indirections), where
move to 64 bits can make your application slower (in extreme cases, orders
of magnitude slower).

References
[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Techcrunch14] John Biggs, Qualcomm Announces 64-Bit Snapdragon
Chips With Integrated LTE, http://techcrunch.com/2014/02/24/
qualcomm-announces-64-bit-snapdragon-chips-with-integrated-lte/

[DPReview14] Dean Holland. Smartphones versus DSLRs versus film: A
look at how far we’ve come. http://connect.dpreview.com/post/
5533410947/smartphones-versus-dslr-versus-film?page=4

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

1. for an std implementation which was used for benchmark testing in
this article; differences with other implementations may differ, but not
by much

Figure 1 Figure 2
April 2014 | Overload | 5

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://techcrunch.com/2014/02/24/qualcomm-announces-64-bit-snapdragon-chips-with-integrated-lte/
http://techcrunch.com/2014/02/24/qualcomm-announces-64-bit-snapdragon-chips-with-integrated-lte/
http://connect.dpreview.com/post/5533410947/smartphones-versus-dslr-versus-film?page=4
http://connect.dpreview.com/post/5533410947/smartphones-versus-dslr-versus-film?page=4

FEATURE JUAN ALDAY
Enforcing the Rule of Zero
We’ve had years to get used to the old rules for
making classes copyable. Juan Alday sees how
the new standards change them.
he Rule of Three, considered good practice for many years, became
the Rule of Five under C++11. A proper application of the Rule of
Five and resource management makes users transition to the Rule of

Zero, where the preferable option is to write classes that declare/define
neither a destructor nor a copy/move constructor or copy/move assignment
operator.

Introduction
The rule of three [Koenig/Moo1] is a rule of thumb coined by Marshall
Cline, dating back to 1991. It states that if a class defines a destructor it
should almost always define a copy constructor and an assignment
operator.

In reality it is two rules:

1. If you define a destructor, you probably need to define a copy
constructor and an assignment operator

2. If you defined a copy constructor or assignment operator, you
probably will need both, as well as the destructor

Although considered good practice, the compiler can’t enforce it. The C++
standard [N1316] mandates that implicit versions will be created if a user
doesn’t declare them explicitly:

§ 12.4 / 3 If a class has no user-declared destructor, a destructor is
declared implicitly

§ 12.8 / 4 If the class definition does not explicitly declare a copy
constructor, one is declared implicitly.

§ 12.8 / 10 If the class definition does not explicitly declare a copy
assignment operator, one is declared implicitly

This can lead to code that is fundamentally broken, yet syntactically valid:

 struct A
 {
 A(const char* str) : myStr(strdup(str)) {}
 ~A() {free(myStr);}
 private:
 char* myStr;
 };
 int main()
 {
 A foo(“whatever”);
 A myCopy(foo);
 }

(Note: Most static analysis tools will detect these errors, but that’s beyond
the scope of this article)

C++11 [N3242] added wording to the Standard, deprecating the previous
behavior.

D.3 Implicit declaration of copy functions [depr.impldec]

The implicit definition of a copy constructor as defaulted is
deprecated if the class has a user-declared copy assignment
operator or a user-declared destructor. The implicit definition of a
copy assignment operator as defaulted is deprecated if the class
has a user-declared copy constructor or a user-declared destructor.

In a future revision of this International Standard, these implicit
definitions could become deleted

This means that compilers keep generating a defaulted copy constructor,
assignment operator and destructor if no user-defined declaration is found,
but at least now they might issue a warning.

Before and after the adoption of C++11 there were ongoing discussions
on the need to ban, rather than deprecate this behavior. C++14 [N3797]
kept the same compromise but that does not mean that C++17 will not
switch to a full ban [N3839] if adequate wording can be drafted, thus
enforcing the need to properly enforce the Rule of Three as a standard of
best practices.

C++11 introduced move operations, transforming the Rule of Three into
the Rule of Five, implicitly generating move operations under specific
circumstances.

There was a lot of controversy regarding automatic generation of an
implicit move constructor and assignment operator [Abrahams1]
[Abrahams2] [N3153] [N3174] [N3201] [N3203], and the wording was
adjusted to reach a compromise and tighten the rules under which they
would get defaulted.

C++11 [N3242] says that move operations are ONLY implicitly declared
if the following set of conditions occur:

§ 12.8 / 9

If the definition of a class X does not explicitly declare a move
constructor, one will be implicitly declared as defaulted if and only if

 X does not have a user-declared copy constructor,

 X does not have a user-declared copy assignment operator,

 X does not have a user-declared move assignment operator,

 X does not have a user-declared destructor, and

 The move constructor would not be implicitly defined as deleted.

§ 12.8 / 20

If the definition of a class X does not explicitly declare a move
assignment operator, one will be implicitly declared as defaulted if
and only if

 X does not have a user-declared copy constructor,

 X does not have a user-declared move constructor,

 X does not have a user-declared copy assignment operator,

 X does not have a user-declared destructor, and

 The move assignment operator would not be implicitly defined
as deleted.

Unlike the Rule of three, the Rule of Five is partially enforced by the
compiler. You get a default move constructor and move assignment
operator if and only if none of the other four are defined/defaulted by the
user.

T

Juan Alday has been working in Wall Street for almost 20 years
developing trading systems, mostly in C++. He is a member of accu,
acm and pl22.16. He can be reached at juan@greenwiresoft.com
6 | Overload | April 2014

FEATUREJUAN ALDAY
C++14 expanded the wording, and now an explicit declaration of a move
constructor or move assignment operator marks the defaulted copy
constructor and assignment operator as deleted. This means that explicit
move operations make your objects non-copyable/assignable by default.
This is as close as you get to a real enforcement of the rule of five by a
compiler.

§ 12.8 / 7

If the class definition does not explicitly declare a copy constructor,
one is declared implicitly. If the class definition declares a move
constructor or move assignment operator, the implicitly declared
copy constructor is defined as deleted; otherwise, it is defined as
defaulted (8.4). The latter case is deprecated if the class has a user-
declared copy assignment operator or a user-declared destructor.

§ 12.8 / 18

If the class definition does not explicitly declare a copy assignment
operator, one is declared implicitly. If the class definition declares
a move constructor or move assignment operator, the implicitly
declared copy assignment operator is defined as deleted;
otherwise, it is defined as defaulted (8.4). The latter case is
deprecated if the class has a user-declared copy constructor or a
user-declared destructor.

At this point, the Rule of Five transitions in fact to the Rule of Zero, a term
coined by Peter Sommerlad [Sommerlad1]:

Write your classes in a way that you do not need to declare/define
neither a destructor, nor a copy/move constructor or copy/move
assignment operator

Use smart pointers & standard library classes for managing
resources

There are two cases where users generally bypass the compiler and write
their own declarations:

1. Managed resources
2. polymorphic deletion and/or virtual functions

Managed resources
When possible, use a combination of standard class templates like
std::unique_ptr and std::shared_ptr with custom deleters
to avoid managing resources [Sommerlad1]

In C++98/03, a class managing resources would look something like
Listing 1. In C++11/14, with move operations, it could be implemented as
in Listing 2.

Applying the Rule of Zero, the code would be more expressive (Listing 3).

By using a unique_ptr we make our class non-copyable/assignable and
identical in behavior to the previous examples.

std::unique_ptr and std::shared_ptr help us manage pointer
types. For non-pointers, Sommerlad and Sandoval [N3949] have proposed
two additional RAII wrappers: scope_guard and unique_resource,
to tie zero or one resource to a cleanup function that gets selectively
triggered on scope exit. If it gets accepted, users will have a standard way
of managing almost any type of resource automatically.

Users should try to follow this pattern as much as possible and only
customize their code when there is no clear alternative. For those cases
where we are forced to manage resources (vendor APIs, etc), Martinho
Fernandes [Fernandes1] further extends the definition, tying it to the
Single Responsibility Principle:

Classes that have custom destructors, copy/move constructors or
copy/move assignment operators should deal exclusively with
ownership

Polymorphic deletion / virtual functions
One question on the rule of zero is what to do when we want to support
polymorphic deletion, or when our classes have virtual functions:

For years it has been taught that classes supporting inheritance and/or with
virtual functions should usually have a virtual destructor. [Stroustrup1]
[Koenig/Moo2]

Note: In reality, not all base classes with virtual functions need virtual
destructors. Herb Sutter’s advice [Sutter1]:

If A is intended to be used as a base class, and if callers should be
able to destroy polymorphically, then make A::~A public and virtual.
Otherwise make it protected (and not-virtual)

So a base class with a virtual function like

 struct A
 {
 virtual void foo();
 };

should be written, following standard practices, as:

 struct A
 {
 virtual ~A() {}
 virtual void foo();
 };

One side effect is that now both classes are different. After declaring the
destructor, A doesn’t support move operations. You still get copy and
assignment, but that’s as far as you can go.

Listing 1

struct A
{
 A() : myPtr(API::InitializeStaticData()) {}
 ~A() {API::ReleaseStaticData(myPtr); }
private:
 A(const A&);
 A& operator=(const A&);
 API::Resource* myPtr;
};

Listing 3

struct A
{
 A() : myPtr(API::InitializeData(),
 &API::ReleaseData) {}
private:
 std::unique_ptr<API::Resource,
 decltype(&API::ReleaseData)> myPtr;
};

Listing 2

struct A
{
 A() : myPtr(API::InitializeStaticData()) {}
 ~A() {API::ReleaseStaticData(myPtr);}
 A(const A&) =delete; // no need in C++14
 A& operator=(const A&)=delete;
 // no need in C++14
 A(A&& rhs) : myPtr(rhs.myPtr) {
 rhs.myPtr = nullptr;}
 A& operator=(A&& rhs)
 {
 A tmp {std::move(rhs)};
 std::swap(myPtr, tmp.myPtr);
 return *this;
 }

 private:
 API::Resource* myPtr;
};
April 2014 | Overload | 7

FEATURE JUAN ALDAY
In C++11 the correct way to define it, in order to get move semantics is:

 struct A
 {
 virtual ~A() =default;
 A(A&&)=default;
 A& operator=(A&&)=default;

 virtual void foo();
 };

And in C++14 we need to define all five, since otherwise we disable copy/
assignment:

 struct A
 {
 virtual ~A() = default;
 A(const A&)=default;
 A& operator=(const A&)=default;
 A(A&&)=default;
 A& operator=(A&&)=default;

 virtual void foo();
 };

(Note: Depending on your class needs you might also want to add a
defaulted constructor, as the implicitly generated default constructor
would be marked as deleted since we have specified a copy/move
constructor.)

In this case we have applied a consistent rule of five, defaulting all five
functions due to the virtual destructor. The question is: Do we really need
to do that? Why can’t we apply the Rule of Zero?

The second part of the Rule of Zero (“Use smart pointers & standard library
classes for managing resources”) [Sommerlad1] gives us the answer:

Under current practice, the reason for the virtual destructor is to free
resources via a pointer to base. Under the Rule of Zero we shouldn’t really
be managing our own resources, including instances of our classes (see
Listing 4).

We have removed all the default declarations from our base class, and
shared_ptr<A> will properly invoke B’s destructor on scope exit, even
though the destructor of A is not virtual.

Conclusion
The Rule of Zero lets users do more by writing less. Use it as a guideline
when you can and apply the Rule of Five only when you have to.

There is almost no need to manage your own resources so resist the
temptation to implement your own copy/assign/move construct/move
assign/destructor functions.

Managed resources can be resources inside your class definition or
instances of your classes themselves. Refactoring the code around standard
containers and class templates like unique_ptr or shared_ptr will
make your code more readable and maintainable.

Help is on its way [N3949] in the form of scope_guard and
unique_resource, to extend the way you can enforce the rule.

Acknowledgements
Thanks to Peter Sommerlad, Jonathan Wakely and Ric Parkin for their very
helpful comments on drafts of this material.

References
[Abrahams1] Dave Abrahams, Implicit Move Must Go.

 http://cpp-next.com/archive/2010/10/implicit-move-must-go

[Abrahams2] Dave Abrahams. w00t w00t nix nix
 http://cpp-next.com/archive/2011/02/w00t-w00t-nix-nix

[Fernandes1] Martinho Fernandes. Rule of Zero.
http://flamingdangerzone.com/cxx11/2012/08/15/rule-of-zero.html

[Koenig/Moo1] Andrew Koenig/Barbara Moo. C++ Made Easier: The
Rule of Three: http://www.drdobbs.com/c-made-easier-the-rule-of-
three/184401400

[Koenig/Moo2] Andrew Koenig/Barbara Moo. Ruminations in C++.
Destructors are special. ISBN-10 0-201-42339-1

[N1316] Draft for C++03. Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2001/n1316/

[N3153] Dave Abrahams. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2010/n3153.htm

[N3174] Bjarne Stroustrup. To move or not to move. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2010/n3174.pdf

[N3201] Bjarne Stroustrup. Moving right along. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2010/n3201.pdf

[N3203] Jens Maurer. Tightening the conditions for generating implicit
moves http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/
n3203.htm

[N3242] Draft for C++11. Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/
n3242.pdf

[N3797] Draft for C++14. Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/
n3797.pdf

[N3839] Walter Brown. Proposing the Rule of Five, v2. http://open-
std.org/JTC1/SC22/WG21/docs/papers/2014/n3839.pdf

[N3949] Peter Sommerlad/A L Sandoval. Scoped Resource – Generic
RAII wrapper for the Standard Library http://isocpp.org/files/papers/
N3949.pdf

[Sommerlad1] Peter Sommerlad, Simpler C++ with C++11/14,
http://wiki.hsr.ch/PeterSommerlad/files/
MeetingCPP2013_SimpleC++.pdf

[Stroustrup1] Bjarne Stroustrup. The C++ Programming Language,
Fourth Edition, section 17.2.5. ISBN-13 978-0-321-56384-2

[Sutter1] Herb Sutter/Andrei Alexandrescu. C++ Coding Standards. Ch
50. ISBN-13 978-0-321-11358-0

Listing 4

struct A
{
 virtual void foo() = 0;
};
struct B : A
{
 void foo() {}
};

int main()
{
 std::shared_ptr<A> myPtr =
 std::make_shared();
}

8 | Overload | April 2014

http://cpp-next.com/archive/2010/10/implicit-move-must-go
http://cpp-next.com/archive/2011/02/w00t-w00t-nix-nix
http://flamingdangerzone.com/cxx11/2012/08/15/rule-of-zero.html
http://www.drdobbs.com/c-made-easier-the-rule-of-three/184401400
http://www.drdobbs.com/c-made-easier-the-rule-of-three/184401400
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2001/n1316/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3153.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3153.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3174.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3174.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3201.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3201.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3203.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3203.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3203.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3839.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3839.pdf
http://isocpp.org/files/papers/N3949.pdf
http://isocpp.org/files/papers/N3949.pdf
http://wiki.hsr.ch/PeterSommerlad/files/MeetingCPP2013_SimpleC++.pdf

FEATUREMATTHEW WILSON
Quality Matters #8: Exceptions
for Recoverable Conditions
Too many programs deal with exceptions
incorrectly. Matthew Wilson suggests
practical steps to improve your code.

In this instalment I turn to the use of exceptions with (potentially)
recoverable conditions, and examine what characteristics of exceptions are
necessary in order to support recovery. I also consider what may be done
when the information to support recovery decisions is not provided, and
introduce a new open-source library, Quench.NET, that assists in dealing
with such situations. (To start with, though, I provide a demonstration of
an earlier assertion: exceptions are essentially nothing more than a flow-
control mechanism and we should be careful not to forget it.)

Introduction
his is the eighth instalment of Quality Matters, the fourth on
exceptions, and the first since I averred in the April 2013 edition of
Overload that I would be both regular and frequent from here on in.

The reason I’d been so sketchy 2010–2013 was that I’d been on a very
‘heavy’ engagement as an expert witness on an all-consuming intellectual
copyright case. Since then, I’ve been doing double duty as a development
consultant/manager/software architect for a large Australian online retailer
and working on a start-up, the latter of which is now occupying me full
time (which means 70+hr weeks, as is the way of these things…). Both of
these later activities have informed significantly on the issues of software
quality in general and exception-handling in particular, and so I come back

full of ideas (if not completely fresh and full of energy) and I intend to get
back to more writing and even meet the odd publishing deadline.

In this instalment, I consider a little more about what exceptions are, how
they’re used in recoverable situations, and what characteristics are
required specifically to facilitate the discrimination between recoverable
and practically-unrecoverable conditions. This is a much bigger sub-
subject than I’d ever anticipated when I started on the topic those several
years ago, and I now expect to be covering recoverability alone for several
instalments. I won’t make any further predictions beyond that. I examine
problems both with the design and use of exceptions (and exception
hierarchies) in reporting failure, and the misapprehension regarding and
misuse of thrown exceptions by programmers. I finish by introducing a
new open-source library, Quench.NET, that is designed to assist with the
hairy task of retrofitting fixes to the former, and tolerating the latter.

Prelude of the pedantic contrarian
As I expressed at the end of the first instalment on exceptions, exceptions
are not an error-reporting (or, more properly, a failure-reporting)
mechanism per se; all they are intrinsically is a flow-control mechanism.
It just so happens that they can be (and, indeed, were conceived to be and
should be) used as a failure-reporting mechanism. But just because that’s
how they’re often used does not mean that that’s what they are. I’ve been
surprised lately just how hard a concept this is to convey to programmers,
so I’m going to hammer it home with a simple sample (see Listing 1).

Now, there are a whole lot of simplifications and compromises in this code
for pedagogical purposes (such as use of private-set properties rather
than immutable fields – yuck!) since I’m trying to make my point in the
smallest space. (The fact that I cannot force myself to skip the failure-
handling code adds greatly to the evident size of this simple code, but I
hope you understand why I cannot do so, gentle reader.)

I believe it’s self-evident that the FindCompletionException type is
used exclusively within the normative behaviour of the program. It is not
used to indicate failure; rather it is used specifically to indicate that the
program has achieved its aim, which is to find and report the location, size
and modification time of the first file matching the given name. Should I
choose to do so, I could employ this tactic in real production code, and the
program would not be in any sense ill-formed for the baroque nature of its
implementation. (I confess that I have used exceptions as a short-cut
normative escape from deep recursion, but it was a very, very long time

T

Matthew Wilson is a Yorkshire-Australian who cannot help but
apply his innate contrarianism, stubbornness, tenacity, and other-
bewilderment to his life’s passions as author, cyclist, drummer,
manager, programmer, trainer, ... with mixed results. Matt’s recent
career change sees him as a founding partner and Director of
Software Architecture for Hamlet Research, a company aiming to
change the way we use the world’s resources. He can be contacted
at matthew.wilson@hamletresearch.net.

System.ArgumentException serves double duty, both as a
specific exception class that is used to report specific conditions, and as
a base class of a group of (argument-related) exception classes. This
overloading of purpose raises two problems.

First, it means that one must be careful to remember to include the
required derived types in a ‘multiple catch handler block’ in order to
catch the specific types, and to order them correctly (most specific
classes first).

Second, and more importantly in my opinion, it makes the intent (of the
type) ambiguous:

 Am I catching ArgumentException as ArgumentException,
or am I catching all ‘argument exceptions’?; and

 Why does condition A have its own specific exception type (e.g.
System.ArgumentOutOfRangeException) and condition B
does no t and ins tead uses the gene ra l one
ArgumentException)?

For example , why can we no t have an
ArgumentInvalidValueException , maybe even an
ArgumentEmptyException, and so forth?

The same problem occurs with System.IO.IOException and its
pa rs imon ious s tab le o f de r i ved c lasses – you ge t a
FileNotFoundException and a
DirectoryNotFoundException ok, but if some failures that occur
when trying to access a network path yield a plan-old IOException!
Unlike argument exceptions, I/O exceptions are likely to be involved in
making decisions about recoverability, so this design flaw has much
more serious consequences.

Exception-class Split Personality Syndrome
April 2014 | Overload | 9

FEATURE MATTHEW WILSON

what characteristics are required
specifically to facilitate the
discrimination between recoverable and
practically-unrecoverable conditions
ago, when I was only a neophyte C++ programmer, just out of college ...
for shame! :$)

’Please note, still-gentle reader, that I’m not saying this is good design, or
a good use of exceptions; indeed, I’m saying it’s poor design, and a foolish
use of exceptions. But it does illustrate what is possible, and in a way that
is not a perversion of the language or runtime.

’Since I have become incapable of writing code that is knowingly wrong/
inadequate – especially in an article espousing quality – I have perforce
included a catch(Exception) handler to deal with failing conditions

Listing 1

namespace ExceptionFlowControl
{
 using System;
 using System.IO;

 class FindCompletionException
 : Exception
 {
 public string FileDirectoryPath
 { get; private set; }
 public DateTime FileDate { get; private set; }
 public long FileSize { get; private set; }

 public FindCompletionException(
 string directoryPath
 , DateTime dateTime
 , long size
)
 {
 FileDirectoryPath = directoryPath;
 FileDate = dateTime;
 FileSize = size;
 }
 }

 static class Program
 {
 private static void FindFile
 (string directory, string fileFullName)
 {
 System.IO.DirectoryInfo di =
 new DirectoryInfo(directory);
 foreach(FileInfo fi in
 di.EnumerateFiles(fileFullName))
 {
 if(fi.Name == fileFullName)
 {
 throw new FindCompletionException
 (fi.DirectoryName
 , fi.LastWriteTime, fi.Length);
 }
 }

Listing 1 (cont’d)

 foreach(DirectoryInfo subdi in
 di.EnumerateDirectories())
 {
 FindFile(subdi.FullName, fileFullName);
 }
 }

 static void Main(string[] args)
 {
 if(2 != args.Length)
 {
 Console.Error.WriteLine("USAGE:
 program <root-directory><file>");
 Environment.Exit(1);
 }

 Environment.ExitCode = 1;
 try
 {
 FindFile(args[0], args[1]);
 Console.Error.WriteLine("could not find
 '{0}' under directory '{1}'",
 args[1], args[0]);
 }

 catch(FindCompletionException x)
 {
 Console.WriteLine("found '{0}' in '{1}':
 it was modified on {1} and is {2}
 byte(s) long", args[1],
 x.FileDirectoryPath, x.FileDate,
 x.FileSize);

 Environment.ExitCode = 0;
 }

 catch(Exception x)
 {
 Console.Error.WriteLine("could not find
 '{0}' under directory '{1}': {2}",
 args[1], args[0], x.Message);
 }
 }
 }
}

10 | Overload | April 2014

FEATUREMATTHEW WILSON
(such as specification of an invalid directory). Consequently, this program
not only illustrates my main point that exceptions are a flow-control
mechanism, but also makes a secondary illustration that the use of the
exceptions is overloaded – in this case we're doing both short-circuiting
normative behaviour and failure-handling.

Had I been so foolish I could have gone further in overloading the meaning
applied to the use of exceptions by eschewing the if-statement and instead
catching IndexOutOfRangeException and issuing the USAGE
advisory there, as shown in Listing 2. Alas, I’ve seen exactly this
perversion in production code recently.

The problems of such a choice are described in detail in [QM#5]; in
summary:

 IndexOutOfRangeException is taken by many programmers to
be an indication of programmer error, not some valid runtime
condition; and, given that

 In a more complex program there may be a bona fide coding error
that precipitates IndexOutOfRangeException, which is then
(mis)handled to inform the surprised user that (s)he has misused the
program.

Thus, we would see a conflation of (and confusion between) three
meanings of the use of exceptions:

 for short-circuit processing (normative);

 for reporting runtime failure (recoverable and, as in this case,
practically-unrecoverable); and

 for reporting programmer error (faulted).

Recoverable
When we looked at the business of handling practically-unrecoverable
conditions [QM#5], we utilised two aspects of the exceptions that were
being used to report those conditions. First, we relied on the type of the
exception to indicate generally the broad sweep of the failure: a
std::bad_alloc was interpreted as an out-of-memory condition in the
runtime heap; a clasp::clasp_exception indicated that an invalid
command-line argument (combination) had been specified by the user; a
recls::recls_exception indicated that a file-system search
operation had failed.

A second-level of interpretation was then done in some of those handlers
to inform (the user, via contingent reports, the administrator/developer/
power-user via diagnostic log-statements) the nature of the failure by
utilising state ‘attributes’ of the exception types: the unrecognised

command-line option/flag for a clasp_exception; the missing/
inaccessible item for a recls_exception.

Information can be conferred from the site of failure to the site of handling
in three ways. Two are obvious: type and state; the third is context, which
can be so obvious as to escape observation.

Type, state, and context
In the examples examined in [QM#5], only type was used in discriminating
between how to handle the practically-unrecoverable conditions, and only
insofar as it determined what type-specific state information could be
presented in the diagnostic log statement and contingent report in addition
to (or, in some cases, instead of) the what()-message information
provided by every C++ except ion class (that der ives f rom
std::exception).

Handling (potentially) recoverable conditions requires more than this
simple and somewhat vague recipe. This is because a decision has to be
made by a chunk of decision-making software coded by we humans, and
since (non-faulting) software only does what we tell it to do (however
indirectly and/or inchoately), we are going to need information with a
whole bunch of exacting characteristics.

Before I define them – and I won’t provide a fully-fledged definition until
a later instalment – I would like to consider an example drawn from recent
practical experience, which illustrates nicely issues of type, state, and
context. Consider the C# code in Listing 3, simplified for pedagogical
purpose. There are four important normative actions to consider:

1. Construct an instance of the port
(System.IO.Ports.SerialPort);

2. Open the port instance;
3. Write the request to the port;
4. Read the response from the port.
5.

The constructor of System.IO.Ports.SerialPort has the following
signature:

 SerialPort(
 string portName
 , int baudRate
 , Parity parity
 , int dataBits
 , StopBits stopBits
);

Listing 2

. . .
static void Main(string[] args)
{
 Environment.ExitCode = 1;

 try
 {
. . . // same
 }
 catch(IndexOutOfRangeException)
 {
 Console.Error.WriteLine("USAGE: program
 <root-directory><file>");
 }
 catch(FindCompletionException x)
 {
. . . // same
 }
 catch(Exception x)
 {
. . . // same
 }
}

Listing 3

string portName = . . .
int baudRate = . . .
Parity parity = . . .
int dataBits = . . .
StopBits stopBits = . . .
byte[] request = . . .
byte[] response = . . .

try
{
 SerialPort port = new SerialPort(portName,
 baudRate, parity, dataBits, stopBits);
 port.Open();
 port.Write(request, 0, request.Length);
 int numRead = port.Read(response, 0,
 response.Length);
 . . .
}

catch(Exception x)
{
 Console.Error.WriteLine("exception ({0}): {1}",
 x.GetType().FullName, x.Message);
 Environment.Exit(1);
}

April 2014 | Overload | 11

FEATURE MATTHEW WILSON
Open() has no parameters and a return type of void. Read() and
Write() have the following signatures:

 int
 Read(
 byte[] buffer
 , int offset
 , int count
);

 void
 Write(
 byte[] buffer
 , int offset
 , int count
);

There are numerous ways in which this set of statements can fail, ranging
from programmer error through to hardware failures, and they can be said
to fall into one of two failure classes: unacceptable arguments, and runtime
failures.

Unacceptable arguments
This class of failures pertain to ‘unacceptable arguments’, and comprises
predominantly those that arise from conditions that could, in theory, be
dealt with by other means (without incurring thrown exceptions); in some
cases failure to do so can be deemed reasonably to be programming error;
in others a judgement has to be made as to the best manner to deal with
the possible condition; in only a minority is an exception the only credible
alternative. The findings are summarised in Table 1.

Null port name; null request; null response

If portName is null , the constructor throws an instance of
System.ArgumentNullException (which der ives f rom
System.ArgumentException) with the ParamName property value
(string) "PortName", and the Message property (string) value
"Value cannot be null.\r\nParameter name: PortName".

When considering the constructor alone, this is definitive, because no other
parameter of the constructor can (conceivably) throw this exception. If we
cons ide r a l l f ou r s t a t e men t s , t hough , i t i s c l ea r t ha t a n
ArgumentNullException can also come from Read() and Write():
if request is null, the Write() method throws an instance of
ArgumentNullException, with ParamName value "buffer" and
the Message value "Buffer cannot be null.\r\nParameter
name: buffer"; if response is null, the Read() method throws an
instance of ArgumentNullException with exactly the same
properties.

Were we to need to identify programmatically the specific source of the
problem given the try-catch block structure of Listing 3, we would not
be able to discriminate between null argument failure to Write() and
Read() at all, and to do so between either of these methods and the
constructor would require reliance on the value of the ParamName
property. Thankfully, we do not have to worry about this, since it is hard
to conceive of any scenario where we might want to wrest recovery from
such a circumstance. In my opinion, passing a null value for portName,
request, or response is a programming error, plain and simple, and all
thoughts of recovery should be forgotten.

Empty port name

If portName is the empty string, "", the constructor throws an instance
of ArgumentException, with the ParamName value "PortName",
and the Message value "The Portname cannot be empty.
\r\nParameter name: PortName".

Invalid port name

If portName is "C:\Windows", the constructor completes, but the
Open() method throws an instance of ArgumentException, with the
ParamName value "portName", and the Message value "The given
port name does not start with COM/com or does not
resolve to a valid serial port.\r\nParameter name:
portName".

Zero baud rate

I f ba udRa te i s 0 , t he cons t ruc to r t h rows a n i n s t a nc e o f
System.ArgumentOutOfRangeException, with the ParamName
value "BaudRate", and the Message value "Positive number
required.\r\nParameter name: BaudRate".

Negative baud rate
If baudRate is -1, the behaviour is exactly the same as with a zero baud
rate.

Zero data bits

I f dataBits i s 0 , the cons t ruc to r th rows an ins tance o f
ArgumentOutOfRangeException, with the ParamName value
"DataBits" and the Message value "Argument must be between
5 and 8.\r\nParameter name: DataBits".

Negative data bits; out-of-range data bits

If dataBits is -1, or any number outside the (inclusive) range 5–8, the
behaviour is exactly the same as with a zero data bits.

Condition Method Exception ParamName

Null Port Name ctor System.ArgumentNullException PortName

Null Request Write() System.ArgumentNullException buffer

Null Response Read() System.ArgumentException buffer

Empty Port Name ctor System.ArgumentException PortName

Invalid Port Name Open() System.ArgumentException portName

Zero Baud Rate ctor System.ArgumentOutOfRangeException BaudRate

Negative Baud Rate ctor System.ArgumentOutOfRangeException BaudRate

Zero Data Bits ctor System.ArgumentOutOfRangeException DataBits

Negative Data Bits ctor System.ArgumentOutOfRangeException DataBits

Out-of-range Data Bits ctor System.ArgumentOutOfRangeException DataBits

Unnamed Parity Values ctor System.ArgumentOutOfRangeException Parity

Unnamed StopBits Values ctor System.ArgumentOutOfRangeException StopBits

Invalid Buffer Length Read(), Write() System.ArgumentException (null)

Table 1
12 | Overload | April 2014

FEATUREMATTHEW WILSON
Unnamed parity values

If parity is (Parity)(-1), the constructor throws an instance of
ArgumentOutOfRangeException, with the ParamName value
"Parity" and the Message value "Enum value was out of legal
range.\r\nParameter name: Parity".

It has the same behaviour for other unnamed Parity values [ENUMS].

Unnamed StopBits values

The constructor exhibits the same behaviour as for unnamed values of
Parity (except that the parameter name is "StopBits").

Invalid buffer length

If we specify, say, response.Length + 10 in our call to Read() (and
having written enough such that it will attempt to use the non-existent extra
10), then we will be thrown an instance of ArgumentException, with
ParamName value null and the Message value "Offset and length
were out of bounds for the array or count is greater
than the number of elements from index to the end of
the source collection.".

Analysis

Unlike the case with null port name, it may be argued that empty and
invalid port names are legitimate, albeit practically-unrecoverable,
runtime conditions: a user may have entered either in a dialog, or they may
be obtained via configuration file settings (that can be wrong). Clearly,
being able to filter out an empty name at a higher level is both easy and
arguably desirable, and it depends on the details of your design as to
whether you choose to do so.

It is clear that zero and negative baud rates are incorrect, and specification
of either could be stipulated to be programmer error (and therefore could
have been prevented outside the purview of this class, i.e. in the client
code’s filtering layer). There are several widely-recognised baud-rates,
but, as far as I know, there is no final definitive list of serial port baud rates.
Hence, we have to be able to supply a (positive) integer value, and we need
to be able to account both for reading this from somewhere (e.g. config.,
command-line) at runtime and for the fact that the value presented may be
rejected by the device (e.g. as being outside its minimum/maximum
range).

In most respects, data-bits may be considered in the same way as baud rate,
just that the possible range is (by convention) small and finite, i.e. between
five and eight.

Where things get more interesting are in the two enumeration type
parameters, parity and stopBits. By providing an enumeration, the
API implies that the set of options is small, known exhaustively, and fixed,
and that there should be no way to specify programmatically an invalid
value. Furthermore, since .NET has reasonably good (not great!) facilities
for helping interconvert between enumeration values and strings, we
should be able to rely (at the level of abstraction of SerialPort) on
receiving only valid values.

There are three important specific points to make:

1. The port name is not validated (completely) until the port is opened.
I suggest that this is reasonable, albeit not necessarily desirable;

2. The value of the ParamName property, "portName", differs from
that in the first two cases, where it was "PortName". Clearly
there’s an inconsistency in the implementation, and I suggest that
this means we cannot rely on the values contained in ParamName
as being definitive (which I doubt anyone would be contemplating

anyway). I further suggest that we must distrust any framework
exception string properties as having accurate, precise, and reliable
values;

3. While it’s easy to imagine how it may have come to be implemented
this way, it is nonetheless inconceivable to me that a parameter-less
method – Open() in this case – can throw an instance of
ArgumentException (or any of its derived types)! Perhaps I’m
being precious, but I find this tremendously confidence-sapping
when faced with using this component.

Runtime failures
This class of failures comprises those that arise entirely through
circumstances in the runtime environment, and could be experienced by
even the ‘best designed program’ (whatever that means). The findings are
summarised in Table 2.

Unknown (but valid) port name

If portName is "COM9", which does not exist on my system, the
constructor completes but the Open() method throws an instance of
System.IO.IOException, and the Message (string) property has the
va lu e "The port 'COM9' does not exist." ; t he
InnerException property is null.

The HRESULT value associated with the exception is 0x80131920, which
i s COR_E_IO, a s documen te d i n MSDN fo r
System.IO.IOException. Note that this is not available via any public
field/property/method, and requires reflection to elicit (when possible).

Device disconnected before write

In the case where portName is of valid form and corresponds to an
existing and available port on the current system, the call to Open() may
return (indicating success). If the port device becomes subsequently
unavailable – e.g. by depowering it or unplugging the device from the
computer – a call to Write() results in the throwing of an instance of
System.IO.IOException, with the Message value "The device
does not recognize the command."; the InnerException
property is null.

The HRESULT value associated with the exception is 0x80070016, which
is no well-known constant (of which I’m aware) in its own right. However,
since it uses the well-known FACILITY_WIN32 (7), the lower 16-bits
should correspond to a Windows ‘error’ code (defined in WinError.h).
The Windows constant ERROR_BAD_COMMAND (22L == 0x16) is
associated with the message "The device does not recognize
the command.", so that seems like our culprit. Clearly, some .NET
exceptions carry Windows failure codes (wrapped up in HRESULT
values).

Device disconnected before read

In the case where the Write() succeeds but the device then becomes
unavailable, the subsequent call to Read() results in the throwing of an
instance of System.InvalidOperationException, with the
Message value "The port is closed."; the InnerException
property is null.

The HRESULT value associated with the exception is 0x80131509, which
is COR_E_INVALIDOPERATION, as documented in MSDN for
System.InvalidOperationException. Note that, just as with
IOException, this is not available via any public field/property/method,
and requires reflection to elicit (when possible).

Condition Method Exception (HResult) Message

Unknown Port Name Open() System.IO.IOException 0x80131920 "The port 'COM9' does not exist."

Device Disconnected Before Write Write() System.IO.IOException 0x80070016 "The device does not recognise the command."

Device Disconnected Before Read Read() System.InvalidOperationException 0x80131509 "The port is closed."

Table 2
April 2014 | Overload | 13

FEATURE MATTHEW WILSON
Furthermore, in some circumstances (e.g. when performing reads on
another thread via SerialPort’s DataReceived event, which may
have ‘first bite’ at the device failure, resulting in a change of state, such
t ha t) a c a l l t o Write() m ay a l so r e su l t i n a t h rown
InvalidOperationException, rather than IOException.

Analysis

There are clear problems presented by these runtime failures for arbitrating
successfully between recoverable and practically-unrecoverable
conditions, and for providing useful information in any diagnostic log
statements/contingent reports in either case.

Perhaps the least important problem is that two of the three messages
border on the useless:

 "The port is closed" is not likely to enlighten the normal or
power user much beyond the self-evident insight that ‘the system is
not working for me’;

 "The device does not recognise the command" sounds
like the basis of something useful, but it neglects to specify (or even
hint at) which command: does it mean the .NET class method just
invoked, or the underlying system device command. Whichever, it
seems bizarre since the device must at some other times recognise
the ‘command’, so isn’t the real message that ‘the device cannot
fulfil the command <COMMAND> in the current state’, or some
such;

 Only the message "The port 'COM9' does not exist" is
adequate, insofar as it will provide something genuinely meaningful
to whomever will read the diagnostic log/contingent report

All the remaining problems are more serious, and reflect what I have
experienced to be a very poor standard of design in the .NET exception
hierarchy and of application of the exception types in other components,
particularly those that interact with the operating system.

I also note here that the Exception.Message property documentation
is unclear, particularly with respect to localisation, which means we cannot
rely on the message contents with any precision such as we would need
were we to think of, say, parsing information in exception messages in
order to make recoverability decisions. The information contained therein
can only be relied upon to be potentially helpful in a diagnostic log
statement / contingent report.

First, although I’ve mentioned somewhat casually the HRESULT values
associated with the exceptions, these are not publicly available. They are
stored in a private field _HResult within the Exception type, which is
read/write-accessible to derived types via the HResult protected
property. Some exception classes, such as IOException, provide the
means to supply an HRESULT value in the constructor that directly
pertains to the condition that precipitated the exception; when not provided
a stock code is used that represents the subsystem or exception class (e.g.
COR_E_IO for IOException), as seems always the case for those
exception types that do not provide such a constructor (e.g.
COR_E_INVALIDOPERATION fo r
InvalidOperationException).

The only way to access this value is to use reflection, whether directly (e.g.
u s i n g Object.GetType() , Type.GetField() ,
FieldInfo.GetValue()) o r v i a
System.Runtime.InteropServices.Marshal.GetHRForExce
ption(). In either case, this will succeed only in execution contexts in
which the calling thread has the requisite rights. Absent that, we cannot
assume we’ll be able to access the value, which pretty much kills it for
general-purpose programming.

And it gets worse. The meaning ascribed to the HRESULT value is not
consistent. In the above three cases it is condition-specific only in the
Device Disconnected Before Write case, which is reported by an instance
of IOException. In the other two cases it is sub-system/exception-class
specific, one reported by InvalidOperationException and the other
by IOException! We cannot expect condition-specific information even
within one (IOException-rooted) branch of the Exception family
tree.

Third, given that (i) .NET does not have checked exceptions and
documentation must always be taken with a grain of salt, and (ii) I’ve
discovered the above behaviour through testing, which will necessarily be
inexhaustive, we must pose the obvious question: How do we know there
aren’t others? Indeed, the documentation states that: Open() may also
throw System.UnauthorizedAccessException; Read() may
also throw System.TimeoutException; Write() may also throw
System.ServiceProcess.TimeoutException. Note the two
different TimeoutException types. If the documentation is correct, it’s
bad design, which does not engender confidence. If the documentation is
wrong, it’s bad documentation, which does not engender confidence.

Imagine now, if you will, how we might actually use the serial port in the
wild. In one of the daemons that we’re developing we are interfacing to
an external hardware device via a serial port. The device runs continually,
and the daemon must (attempt to) maintain connectivity to it on an ongoing
basis. In such a case it is essential to be able to react differently to a
practically-unrecoverable condition, such as the wrong port name being
specified in the daemon configuration information (Unknown Port
Name), and a (potentially) recoverable loss of connectivity to the device
(Device Disconnected ...). In the former case, we want to react to the
reported condition by issuing diagnostic and contingent report information
and terminating the process (since there’s absolutely no sense in
continuing); in the latter we want the daemon to issue diagnostic
information (which will raise alarms in the wider system environment) but
retry continually (until it reconnects or until a human tells it to stop). In
order to write that system to these requirements, we need to be able to
distinguish between the failures.

Thus, the final and most compelling, disturbing, and disabling problem is
that the .NET SerialPort component does not support our eminently
sensible failure behaviour requirements, because the Unknown Port
Name condition and the Device Disconnected ... conditions are reported
by the same type of exception, IOException, whose messages we must
not parse (since we do not know if we can trust them), and whose putatively
definitive discriminating HRESULT information is assigned
inconsistently and may not even be accessible!

There is no way, with the given type and state information provided, to
discriminate between these two conditions.

Contrast this with the situation in C, programming with the Windows API
functions CreateFile(), WriteFile(), and ReadFile(): if we
pass an unknown COM port we get ERROR_FILE_NOT_FOUND; if we
pass "C:\Windows" we get ERROR_ACCESS_DENIED; if we have a
comms failure we get ERROR_BAD_COMMAND. It’s certainly arguable that
the latter two constants’ names do not directly bear on the conditions that
precipitated them, but the point is that programming at the C-level allows
us to discriminate these conditions by state, relying on accessible and (as
far as I can tell) predictable and reliable values; programming at the C#-
level (using the .NET standard library) does not.

Resort to context

This only leaves context. Our only recourse is to wrap separately the calls
to Open() and Write() in try-catch in order to intercept the useless-
in-a-wider-context exceptions and translate them into something
definitive, along the lines shown in Listing 4.

Let’s be clear about this: what we’re trying to do with the serial port is a
combination of good practices – simplicity, abstraction, transparency – in
so far as we’re focusing on the normative code, and relying on the
‘sophistication’ of exception-handling to allow us to deal with failures
elsewhere. Unfortunately, the .NET exception hierarchy is poorly
designed and badly applied, so we’ve been forced to pollute the code with
low-level try-catch handlers, using context to rebuild the missing type/
state information before passing on the reported failure condition; it’s
arguable that using P/Invoke to get at the Windows API calls and using
return codes would have been better, which is quite a reversal!

We’ve had to violate one of the important purposes/advantages of the
exception-paradigm, the separation of normative code from failure-
handling code, for the purposes of increased transparency and
14 | Overload | April 2014

FEATUREMATTHEW WILSON
expressiveness. In this case, making the code adequately robust results in
a serious detraction from both. Thankfully, we can rely on old reliable
‘another level of indirection’ by wrapping all the filth in a class, although
we cannot hide from the burden of creating appropriate exception types,
nor hide our client code completely from the burden of understanding and
coupling to them. All the details of which I now cunningly leave until next
time. And now for something slightly different ...

Quench.NET
Quench is an open-source library designed to:

1. Facilitate diagnosis and correction of badly-written application code
that inappropriately quenches exceptions; and

2. Provides assistance in the use (and correction of that use) of badly-
designed standard and third-party components that indicate failure,
via thrown exceptions, without providing adequate information to
delineate unambiguously between practically-unrecoverable and
recoverable conditions

In both regards, Quench facilitates post-hoc discovery and adjustment of
application-behaviour, while ensuring that ‘safe’ defaults are applied, at
varying levels of precision.

Quench.NET is the first (and currently only) application of the Quench
design principle; others will follow in due course.

There be dragons!
Consider the (C#) code fragments in Listings 5–8.I find it deeply
concerning to see such code in production software. Over the last couple
of years I’ve had occasion to work with codebases containing literally
thousands of inappropriate exception quenches; indeed, the extent of such
constructs in one codebase meant that a case-by-case remediation was

quite impractical. (I find it even more disheartening to see code such as
this in strongly-selling and widely-recommended text books – I’ve
encountered the second in one such book I read last year. There is a
considerable challenge in writing worthwhile material about programming
because publishers – and readers, according to publishers – want only pithy
tomes that can fit in a pocket and be read in a day. As a consequence, many
books show simplistic views of real programs (and program fragments)
that may not reflect fairly their author’s practice in order to focus on their
subject and to present digestible quanta of material to the reader. As I have
already acknowledged in [QM#5], this is a hard conflict to redress
satisfactorily: certainly, I am not sure that I have not erred previously in
this way myself. Nonetheless, now having realised the full import and
complexity of failure-handling, I can’t forget it, and I can’t forgive books
and articles that mislead, since I meet far too many programmers who have
been misled.)

In the first case (Listing 5), the user intends to try an operation that may
fail (and will indicate its failure by throwing an exception), and to provide
some reasonable default instead if it does so. This is a perfectly reasonable
intent, just realised badly. The problem is, catching Exception (rather
than the appropriate precise expected exception type) is far too broad:
every exception in the .NET ecology derives from Exception, and this
code will quench (almost) all of them, including those that are practically-
unrecoverable (such as System.OutOfMemoryException). Dragon!

The way to do this properly is as shown in Listing 9: it’s hardly any more
effort to catch only the exception representing the failure we want to
intercept, rather than (almost) all possible failures.(Note: prior to .NET 2
this Parse()&catch was the way to try-to-parse a number (or date, or
IP address, or ...) from a string. Thankfully, this ugly and inefficient
technique was obviated with the introduction of the TryParse()
methods, which return true or false, and do not need to throw
System.FormatException.)

The second case (Listing 6) also represents good intentions, and has a
veneer of robustness insofar as it issues a diagnostic log statement. Alas,
this is specious comfort. First, diagnostic log statements are subject to the
principle of removability [QM#6], so provision of a diagnostic log
statement alone is an invitation to do nothing. Rather, the (removable)
diagnostic log statement should be associated with additional (non-
removable) action, whether that be to set a flag, throw a different
exception, return, or whatever. Second, we still have the huge but subtle
issue that we’re catching everything, including those things that should
denote practically-unrecoverable conditions.

Furthermore, the text book to which I’ve alluded above has a construct like
this – albeit that it’s notionally a contingent report, in the form of
Console.WriteLine(x); – at the outermost scope in Main(), so it
fails the requirement to indicate failure to the operating environment

Listing 4

SerialPort port = new SerialPort(portName,
 baudRate, parity, dataBits, stopBits);

try
{
 port.Open();
}
catch(IOException x)
{
 throw new UnknownPortNameException(portName,
 x);
}

try
{
 port.Write(request, 0, request.Length);
}
catch(IOException x)
{
 throw new PortWriteFailedException(x);
}
catch(InvalidOperationException x)
{
 throw new PortWriteFailedException(x);
}

try
{
 int numRead = port.Read(response, 0,
 response.Length);
 . . .
}
catch(InvalidOperationException x)
{
 throw new PortReadFailedException(x);
}

Listing 5

try
{
. . . // something important
}
catch(Exception /* x */)
{
 return someValue;
}

Listing 6

try
{
 . . . // something important
}
catch(Exception x)
{
 LogException(x);
}

April 2014 | Overload | 15

FEATURE MATTHEW WILSON
[QM#6]: any exception is caught and yet the program returns 0, indicating
successful execution, to the operating environment. Dragon!

The third case is not even defensible from the position of good intentions
gone bad. This is flat-out, unequivocal, inexcusable, malpractice. If you
write code such as this, you don’t deserve to earn a crust as a programmer.
If you encounter code such as this and don’t raise the alarm to your team
lead, manager, head of IT..., then you’re being incredibly reckless and
risking having to deal with system failures that you may be literally
clueless to diagnose. The problem is a distilled version of the slip we’ve
seen in the first two cases: when you write code such as this you are
asserting ‘I know everything that can possibly happen and I deem it all to
be of no consequence’. Apart from the most trivial cases, I doubt anyone
can stand behind either half of that assertion. Dragon!

The fourth case (Listing 8) is the same as the third (Listing 7) – just a bit
of syntactic sugar(!) provided by the C# language, to avoid the unused
reference warning that would result from compiling the code from
Listing 7 at warning level 3 or 4. Here, the language designers have gone
out of their way to ease the application of a total anti-pattern. Honestly!
(More a case of Bats in the Belfry than Dragon!)

Insufficient information to determine recoverability
As I mentioned earlier, it is conceivable that other exception types may be
thrown in circumstances not yet considered, indeed, in circumstances
never encountered before the system goes into production. As we’ve
already seen with the ambiguity in the serial port Write() operation,
sometimes exceptions may be thrown that should be quenched and handled
in ways that are already established for other types.

But a key plank of the exception paradigm is that if you don’t know of/
about an exception type, you cannot be written to expect it and should
instead allow it to percolate up to a layer that can handle it, albeit that that
handling may mean termination.

How do we deal with this situation?

Quench(.NET) to the rescue
In the first situation – the carelessly high-level Exception quenching –
the answer was to rewrite all the offensive constructs in terms of

Quench.NET + diagnostic logging facilities + a throw statement, as
shown in Listing 10, which illustrates Quench’s (attempt at a) fluent API.
Due to the sheer number of cases, and the fact that most of them followed
just a few simple forms, more than 90% of the cases were effected
automatically by a custom-written Ruby script; the remainder by hand and/
or IDE macro.

Changing the behaviour of a large commercial production system with a
mountain of such technical debt, even if the changes are to stop doing the
wrong thing (of ignoring important failures), is a sensitive and risky
undertaking. Even though theoretically changing things for the best, the
complex behaviour profile is something to which the ‘organisational
phenotype’ – the business systems, the admin and support function, the
development team, the users, the customer assistance operatives – has
become accustomed. Because of this, it was important to allow the system
to carry on precisely as is, and to tune its behaviour in a slow, incremental,
methodical, and observed way. Quench supports this because its default
r e s po n s e t o t h e (f l u e n t A P I) q ue s t i o n
Quench.Deems.CaughtException.MustBeRethrown() is ‘yes’
(true). This method (and others in the API) are overloaded in order to
allow the caller to specify more precisely the catch context, allowing fine-
grained tuning of recoverability for exception types and/or catch contexts;
I’ll provide more details next time.

In the second situation – the use of ‘surprising’ APIs, usually (in my
experience) on operating system façades – the solution looks much the
same. The difference is that this is not retrofitted in extremis, but is
designed and coded up-front. Listing 11 is an extract of some a daemon
control routine from one of our current systems under development. Since
I (have learned to) mistrust expectations (and documentation) about what
.NET APIs will throw, I pre-empt any possible surprises by using Quench.
I wa n t p ra c t i ca l l y -un rec ove r ab l e exc ep t ions (suc h a s
OutOfMemoryException, already acknowledged with its own catch)
that don’t directly pertain to a failure of registration per se to be handled
at a higher level (and stop the program), and since I do not (yet) know all
the exceptions that may emanate from the system registration, I employ
Quench to allow me to tune this at runtime (likely via configuration);
integration testing (and, unfortunately, actual use) may inform more
definitely, in which case the code can be refactored to catch (and rethrow)
specific exceptions rather than use Quench.

There’s a third, lesser motivation for using Quench, albeit one that, based
on my experience, I think is particularly relevant with .NET. Consider the
case where we’ve done the mooted experiential learning in testing/
production and now wish to remove Quench, since its use rightly gives us
an uneasy feeling that we’ve somehow done the wrong thing. However, it
can be the case that we’ve identified a large number of such exceptions,
and either they do not share a base class that we could catch in their stead,
or some of their peer classes are ones that we do not wish to catch.
Whatever the reason, we’re now left with a large number of catch-handlers,
several of which we wish to take the same action, as in Listing 12. In this
case, use of Quench may be the lesser of two evils, since the list of which
exceptions can be quenched (and, by inference, which others must be
rethrown) can be maintained, either in code or in configuration, more
flexibly and neatly. This is even more advantageous where we may find

Listing 7

try
{
. . . // something important
}
catch(Exception x)
{}

Listing 8

try
{
. . . // something important
}
catch
{}

Listing 9

int i;
try
{
 i = Int32.Parse(s);
}
catch(System.FormatException)
{
 i = -1;
}

Listing 10

try
{
 . . . // something important
}
catch(Exception x)
{
 LogException(x);
 if(Quench.Deems.CaughtException.MustBeRethrown
 (x))
 {
 throw;
 }
}

16 | Overload | April 2014

FEATUREMATTHEW WILSON
ourselves having the same list of quench-vs.-throw rules in several similar
contexts.

In whichever case, Quench is not a library to be applied lightly, and it
should never be used as a licence to slack off on thinking, reading
(documentation), or testing. But, when you have absolutely, positively got
to handle every exception in the room, accept no substitutes!

In the next issue
I’m somewhat gun-shy about making predictions of when, but I do feel
certain that the next instalment, when it comes, will consider more
definitively the kinds of information that exceptions should contain,
including how to (re)define exception hierarchies that offer rich

information on which one can base solid recovery decisions, along with
some/all of the following:

 the design principles, implementation, and customisation and use of
Quench.NET. In the meantime, please check it out (at http://
www.libquench.org/);

 details of the serial port abstraction, and the supporting exception
hierarchy; and

 maybe the new STLSoft C++ exception hierarchy (if I get time
between all my C# coding).

References
[ENUMS] Enumerating Experiences, Matthew Wilson, CVu, September

2011

[QM#5] Quality Matters 5: Exceptions: The Worst Form of ‘Error’
Handling, Apart from all the Others, Matthew Wilson, Overload 98,
August 2010

[QM#6] Quality Matters 6: Exceptions for Practically-Unrecoverable
Conditions, Matthew Wilson, Overload 99, October 2010

Listing 11

private static bool
DoInstallationOperation(
string installationOperationName
, Action<AssemblyInstaller, IDictionary> func)
{
 using(Pantheios.Api.Scope.MethodTrace
 (Severity.Debug))
 {
 try
 {
 AssemblyInstaller installer =
 new AssemblyInstaller
 (Assembly.GetEntryAssembly(),
 new string[0]);
 IDictionary state = new Hashtable();
 func(installer, state);
 installer.Commit(state);
 Pantheios.Api.Flog(RegistrationLog,
 Severity.Notice,
 "{0} service installed successfully",
 Program.Constants.ProcessIdentity);
 Console.Out.WriteLine("{0} service
 installed successfully",
 Program.Constants.ProcessIdentity);

 return true;
 }
 catch(OutOfMemoryException)
 {
 throw;
 }
 catch(Exception x)
 {
 Pantheios.Api.Log(Severity.Alert,
 "Could not ", installationOperationName,
 " service ",
 Program.Constants.ProcessIdentity,
 ": ", Pantheios.Api.Insert.Exception(x));
 if(Quench.Deems.CaughtException
 .MustBeRethrown(x, typeof(Program)))
 {
 throw;
 }

 Console.Error.WriteLine("Could not {2}
 service {0}: {1}",
 Program.Constants.ProcessIdentity,
 Pantheios.Api.Insert.Exception(x),
 installationOperationName);
 }
 }

 return false;
}

Listing 12

public static void Blah1()
{
 Exception y = null;

 try
 {
 . . . // complex operation,
 //can throw many exceptions
 }
 catch(OutOfMemoryException)
 {
 throw;
 }
 catch(SomeLeafException x)
 {
 y = x;
 }
 catch(AnotherLeafException x)
 {
 throw;
 }
 catch(SomeParentException x)
 {
 y = x;
 }
 catch(SomeEntirelySeparateException x)
 {
 y = x;
 }
 catch(AnotherEntirelySeparateException x)
 {
 y = x;
 }
 catch(Exception)
 {
 throw;
 }
 System.Console.WriteLine("{0}: ", y);
}

April 2014 | Overload | 17

FEATURE CHRIS OLDWOOD
Static – A Force for Good and Evil
We’ve all learnt to avoid the use of
the static keyword. Chris Oldwood
questions this wisdom.
’ve noticed a trend among C# programmers which is to avoid the use
of the static keyword. It seems I’m not the only one who’s noticed
this either [Twitter]. It’s not inherently limited to C# programmers as

C++ can be written in a similar manner, but the terminology bias (functions
vs. methods) and its clearer multi-paradigm stance means it’s probably less
susceptible.

There is a perception that ‘static’ things – data and methods – are bad. In
the wrong hands that can be true, but by throwing the proverbial baby out
with the bathwater we have closed the door on embracing some of the
goodness that functional-style programming brings.

This article attempts to dispel the myths by illustrating which uses of
static are bad and which are actually beneficial.

Shared mutable state
My guess is that the static keyword has got a bad rap because of past
transgressions caused by functions that were designed decades ago in a
time when re-entrancy and multi-threading were something only specialist
programmers had to worry about. Yes strtok() I’m looking at you.

This old C function which is used to tokenise a string has some serious side-
effects. Behind the scenes it keeps track of the string being tokenised
(which it also modifies) so that you can keep calling it without supplying
the original input string when fetching the next token:

 char input[] = "unit test ";
 char separators[] = " ";
 assert(strcmp(strtok(input, separators),
 "unit") == 0);
 assert(strcmp(strtok(NULL, separators),
 "test") == 0);

In a single-threaded environment you have to be careful not to ‘nest’ use
of it (e.g. tokenise a token), and in a multi-threaded environment this kind
of behaviour is a disaster waiting to happen. Fortunately many C
implementations managed to avoid ruining a programmer’s day due to
spurious errors by utilising thread-local storage, but this was a courtesy and
not standards-defined behaviour.

The anti-pattern, for want of a better term, which can lead to this kind of
sorry state of affairs, is to take a simple function that only depends on its
inputs and then find you need to add new behaviour without changing its
interface. In a waterfall-esque development process the new behaviour
could be the need to cache results, and the inability to change the interface
might come from discovering this very late during The Testing Phase. Of
course adding a cache and then accidentally making it non-thread-safe is
only going to exacerbate your woes at this point of the cycle. More likely

it doesn’t need to be thread-safe initially but does later; only no one notices
it's not. The C# example in Listing 1 shows how easy it can be to naively
add a cache to an existing class.

Sharing mutable state via global variables (public static properties)
is definitely a very bad smell and has been for many years, but also sharing
it implicitly across threads can be dangerous too. It’s not just a matter of
ensuring our own types are safe, it’s the whole object graph, so any 3rd
party collection types have to be checked too.

Although I’ve focused on complex types above, it should be noted that
primitive values are not immune from this problem either. If anything they
are likely to ‘appear to work’ more than a complex type due to their small
footprint. Use of volatile and the various Interlocked helper
methods are required to keep them behaving properly.

Sometimes sharing mutable state is a necessary evil but there should be
precious few times when we need to enter those murky waters. If possible
we should look to change the interface or find some other design to make
the problem disappear altogether and keep the code simple.

Before moving on let’s just go back to the procedural world of C to look
at how we might tackle this problematic function. Putting aside for the
moment the fact that strtok() is a published function specified by a
standards process, we could avoid its state problem by changing the
interface to allow the state to passed back in by the caller. Also we’d tackle
the mutation of the input string to restrict the side-effects to just the state
object. (See Listing 2.)

There is still more that could be done to improve matters, such as using
two separate functions (e.g. firsttok()/nexttok()). But this is C and
combining state and functions into a more cohesive package is exactly
what object-orientation allows us to do more cleanly in languages like C++
and C#. Hence in OO you might choose to present a strtok-style class
in C# like Listing 3.

I

Listing 1

public static class ThingyProcessor
{
 public static int CalculateThing(int input)
 {
 int output;
 if (Cache.TryGetValue(input, out output))
 return output;

 // Long calculation...

 Cache.Add(input, output);
 return output;
 }
 // Non-thread-safe collection
 private static Dictionary<int, int> Cache =
 new Dictionary<int, int>();
}

Chris Oldwood is a freelance developer who started out as a
bedroom coder in the 80s, writing assembler on 8-bit micros. These
days it’s C++ and C# on Windows in big plush corporate offices. He
is the commentator for the Godmanchester Gala Day Duck Race
and can be contacted via gort@cix.co.uk or @chrisoldwood
18 | Overload | April 2014

FEATURECHRIS OLDWOOD
Shared immutable state
When talking about the pitfalls of ‘shared state’ it’s important to qualify
what sort of state you’re talking about. As we just discussed, shared
mutable state can be dangerous when done badly. In contrast shared
immutable state is much safer; at least once the potentially tricky
initialisation phase is complete. Once we have a read-only data structure
it can be used concurrently without the need for any kind of locking. Even
if it can be referenced globally, which may still be another smell; it cannot
be changed behind our backs.

For example, imagine you’re writing a simple XML parser in C#. To
handle the translation of entity references, such as & to their
equivalents you might decide to use a lookup table. This table will likely
be immutable and so it requires no additional locking in the event that two
threads attempt to parse separate XML documents concurrently. (See
Listing 4.)

The initialisation issue is handled for us by the C# language which
guarantees that type constructors are thread-safe. That said we need to be
especially careful inside a type constructor because if it throws things start
going horribly wrong as the type can’t be loaded.

Static classes
C#, unlike C++, does not allow methods to exist outside of classes (often
called free functions in C++). Consequently you are forced into defining

a class even when all you want to write is a simple function. I suspect this
has an undesirable side-effect on C# programmers because I’ve seen them
create classes that hold no state, or only hold compile-time immutable state
(i.e. constants), e.g.:

 public class ConfigurationSettings
 {
 public string DatabaseName { get
 { return ". . . "; } }
 }

It’s not always as obvious as this and it might be returned as a property of
another class. These extra levels of indirection make it harder for a static
code analysis tool to spot it and suggest a refactoring.

 public class Configuration
 {
 public ConfigurationSettings Settings { get
 { return _settings; }}
 private readonly
 ConfigurationSettings _settings =
 new ConfigurationSettings();
 }

In a m anage d e nv i ronm en t l i ke C# , c l a s se s such a s t he
ConfigurationSettings class above are quite literally garbage – the
objects just get created and then destroyed again and their behaviour can
be determined entirely at compile-time. As with free functions, constants
in C# need to be defined as part of a class too:

 public static class ConfigurationSettings
 {
 public const string DatabaseName = ". . . ";
 }

The C# answer to classes which shouldn’t be instantiated is to declare them
‘static’. In essence the class is now acting as merely a namespace, albeit
one that you can’t elide with a using declaration at the top.

The canonical example in C# for a static class of ‘pure’ functions
(deterministic functions that only depend on their inputs and have no side-
effects) is probably the Math class which plays hosts to fundamentals like
Abs() and Min().

 public static class Math
 {
 public static int Abs (int value)
 {
 return (value < 0) ? -value : value;
 }
 }

Listing 2

typedef struct strtok
{
 const char* string;
 const char* separators;
 const char* tokenBegin;
 const char* tokenEnd;
} strtok_state_t;

const char* input = "unit test ";
const char* separators = " ";
strtok_state_t state;

strtok(input, separators, &state);
assert(strncmp(state.tokenBegin, "unit",
state.tokenEnd - state.tokenBegin) == 0);

strtok(NULL, NULL, &state);
assert(strncmp(state.tokenBegin, "test",
state.tokenEnd - state.tokenBegin) == 0);

Listing 3

public class StringTokeniser
{
 public StringTokeniser(string input,
 string separators)
 {
 // Remember inputs
 }

 public string NextToken()
 {
 // Find next separator or the string end by
 // searching onwards from the last 'position'.
 }

 private readonly string _input;
 private readonly string _separators;
 private int _position;
}

Listing 4

public class XmlParser
{
 private static string DecodeEntity(string
entity)
 {
 string output;

 if (EntityTable.TryGetValue(entity,
 out output))
 return output;
 return entity;
 }

 private static Dictionary<string, string>
 EntityTable = new Dictionary<string, string>
 {
 { "&", "&" },
 { ">", ">" },
 { "<", "<" },
 };
}

April 2014 | Overload | 19

FEATURE CHRIS OLDWOOD
Static functions
Right back at the beginning I suggested one reason why there might be a
fear of static functions is because of where their implementation could end
up. I’d also suggest that programmers find it easier to pass parameters to
functions by making them implicit, i.e. through class members accessible
via this.

Back in the 1980s, Meilir Page-Jones wrote a book called The Practical
Guide to Structured System Design. He goes into detail about the various
types of coupling we might see in code, with each category being viewed
as a less desirable form from a maintenance perspective. Whilst the most
serious forms of coupling should be avoided, Page-Jones suggests that the
weaker forms can be used effectively in the right hands, but also have the
potential to cause grief in the wrong ones.

At the farthest end of the spectrum we have Content Coupling which is of
little concern in today’s languages. Back in the days of assembler
programming you could jump from the middle of one ‘function’ right into
the middle of another, meaning you couldn’t ever be sure where you’d
come from. Next up is Common Coupling, i.e. global variables. As the
name implies they have the ability to affect any and every part of the code-
base in unanticipated ways.

Then we come to Control Coupling. This is where one function passes
some kind of flag or signal to tell another how to behave. Depending on
the direction of the signal either a child is telling its parent how to behave
or the parent might know too much about the child’s implementation,
either way it’s a symptom of low cohesion.

Moving onwards we come to Stamp Coupling. This oddly named formed
of coupling is about passing excessive input to functions that don’t need
it. For example, if you had a function that formatted a customer’s full name
from their first and last names, you should consider only passing those two
arguments, not an entire Customer record. By passing the entire type you
make the function (appear to be) dependent on attributes it doesn’t use.

Finally we reach Data Coupling which is analogous to a ‘pure’ function.
What Page-Jones tells us is that the easiest code to reason about is this style
of function which, as mentioned earlier, has a deterministic output solely
based on its direct inputs with no side-effects. In essence, given that some
form of coupling is a necessity to do anything useful, then Data Coupling
is the most preferable.

Member coupling
His book was published in a time before Object-Orientated Programming
was A Big Thing. He is also concerned more with inter-module coupling
rather than intra-module coupling, such as between methods of the same
class. As the size of a class grows it becomes more common to rely further
and further on data being passed between methods via its own state, i.e.
its members. I believe there is a form of Stamp Coupling going on here as
any method might use its input arguments plus any aspect of the object’s
current state or per-class state, and so it is impossible to know what that
is without looking at the implementation of an instance method. And that
is what coupling is all about – being able to reason about the knock-on
effects of a change to other parts of the code.

The over reliance of implied state makes it harder to refactor code later
because pulling that state out to another data structure may require lots of
unexpected fixing up of other methods. I’ve found that taking Page-Jones’s
advice to favour Data Coupling right into the heart of classes has made
code easier to read because simple methods start looking like simple black
boxes again.

As a simple example consider the class-based OO version of the
strtok() function I mentioned earlier. In the implementation, when it
comes to finding the next token we could rely solely on the implied state
held in the member variables and code it up as one method (see Listing 5).

One alternative would be to hand-off the finding off the end of the token
to a separate little method that is only dependent on its inputs (Listing 6).

Although the first implementation of NextToken() is quite small there
is perhaps a temptation to put a comment above the bit of code that finds

the end of the token because it’s not immediately apparent due to the
overloaded use of the _position member (initial start of the next token
and then the end of next token). Whenever I find myself wanting to write
a comment I consider that to be a sign I should use the Extract Method or
Introduce Explaining Variable [Fowler] refactorings instead.

There might be a knee-jerk reaction that splitting code up into so many
simple methods would create a big hit on performance. It is possible, but
then we all know that premature optimisation is a dangerous pastime. The
JIT compiler in .Net and modern C++ compilers can do a pretty good job
these days of inlining methods so you’ll probably not notice it in the vast
majority of your code.

Exception safety
Whilst it’s highly unlikely that any client code would attempt to recover
direct ly from an OutOfMemory exception thrown from our
StringTokeniser class, it is a library function and they often get used

Listing 5

public class StringTokeniser
{
 . . .
 public string NextToken()
 {
 if (_position == _input.Length)
 return null;
 var start = _position + 1;
 _position =
 _input.IndexOf(_separators, start);
 if (_position == -1)
 _position = _input.Length;
 return _input.Substring(start,
 _position - start);
 }
 private readonly string _input;
 private readonly string _separators;
 private int _position = -1;
}

Listing 6

public class StringTokeniser
{
 . . .
 public string NextToken()
 {
 if (_position == _input.Length)
 return null;
 var start = _position + 1;
 var end = FindTokenEnd(_input, _separators,
 start);
 var token = _input.Substring(start,
 end - start);
 _position = end;
 return token;
 }
 public static int FindTokenEnd(string input,
 string separators, int start)
 {
 var end = input.IndexOf(separators, start);
 if (end == -1)
 return input.Length;
 return end;
 }
 private string _input;
 private string _separators;
 private int _position = -1;
}

20 | Overload | April 2014

FEATURECHRIS OLDWOOD
in mysterious ways. Writing exception safe code is hard, especially when
it’s so easy to mutate state at an unsafe moment.

A common example I’ve seen of this is when two-phase construction is
used and the second phase throws an exception, leaving a member mutated
by accident (see Listing 7).

Here, if ExecuteJob() throws when the Start() method is called the
_process member will be left pointing to a partially initialised object.
When the second call to ExecuteJob() comes in it will assume the
_process member is fully initialised and will try and to use it.

The general pattern for writing exception safe code is to perform all code
that might throw off to the side and then commit the changes locally with
non-throwing operations. In this example we could have written it like
Listing 8.

Internal factory methods are a good fit for being static because object
creation and initialisation is often full of code likely to throw that you might
want to keep at arms length until you know you’re dealing with fully
constructed objects. By factoring the creation out into a static method you
also convey to both the compiler and the reader that they shouldn’t be
messing with any of this object’s state at that point of its lifecycle
(Listing 9).

Extension methods
Whilst C# might not support ‘free functions’, it does have Extension
Methods and these often embody the practice of writing small independent
methods. They are members of a static class and are themselves declared
static, despite the fact that they appear to be called as instance methods. If
you ever wished that the C# String class had an instance method that could
tell you whether a string was empty or just contained white-space, you can
make it happen yourself (see Listing 10).

This is often how I find extension methods come about. Initially they start
as a simple static method in a class that looks suspiciously as though the
first argument really wants to be this. Once reuse rears its head, it’s a

simple step to factor it out into a common extension method. Alternatively
it could be pulled out as a formal extension method, but left defined inside
a private static class of the current consumer to avoid publishing it formally
as that comes with the possible burden of needing to write separate unit
tests.

Building classes from static methods
The Object-Orientated paradigm is good for creating types that represent
things, but when it comes to algorithms and processes it can start to get
ugly. Take the process of parsing a string of XML into a DOM for example.
Whilst the input string can be an object, and the output is a tree of objects,
the algorithm used to process the characters in the string and create the tree
of objects feels much less object-like. It feels to me more like a function
that transforms one to the other. Yes, there will be some temporal state
involved during the processing, but by-and-large the decomposition of the
problem has more of a focus on functions.

If I was using Test-Driven Development to tackle a problem like this my
initial tests would very likely start out with just a simple function (Listing
11). You can argue about whether it should be a member of a class called

Listing 7

public class ProcessManager
{
 . . .
 public void ExecuteJob(Job job)
 {
 if (_process == null)
 {
 _process = new Process();
 _process.Start(_applicationName);
 }
 . . .
 _process.Execute(job);
 }
 . . .
 private readonly string _applicationName;
 private Process _process;
}

Listing 8

public void ExecuteJob(Job job)
{
 if (_process == null)
 {
 var process = new Process();
 process.Start(_applicationName);

 _process = process;
 }
 . . .
 _process.Execute(job);
}

Listing 9

public class ProcessManager
{
 public void ExecuteJob(Job job)
 {
 if (_process == null)
 _process = CreateProcess(_applicationName);
 . . .
 _process.Execute(job);
 }

 private static Process
 CreateProcess(string applicationName)
 {
 var process = new Process();
 process.Start(applicationName);
 return process;
 }
 . . .
 private Process _process;
}

Listing 10

public static class StringExtensions
{
 public static bool IsBlank(this string value)
 {
 return (value.Trim().Length == 0);
 }
}

public static class Program
{
 public static int Main(string[] args)
 {
 . . .
 string connectionString =
 configuration.ConnectionString;

 if (!connectionString.IsBlank())
 connection =
 OpenConnection(connectionString);
 . . .
 }
}

April 2014 | Overload | 21

FEATURE CHRIS OLDWOOD
XmlDocument, or XmlReader, etc. but either way I wouldn’t start out
expecting to create a class like Listing 12.

Anyone who uses FizzBuzz [FizzBuzz] or the Roman Numerals kata in
their interview process to separate the ‘wheat from the chaff’ will probably
see this kind of thing. It’s not wrong, per se, but it can lead to the kind of
‘empty’ classes described above.

From a Design Pattern’s perspective what my eventual function will
become is akin to a façade over a bunch of other functions. As the number
of tests grow, so will the number of internal functions. Internal refactoring
will start to push some of those out into separate (internal) classes which
in turn will likely receive their own more focused unit tests. The handling
of XML entity references earlier was very simplistic, just a lookup table,
but as more scenarios are discovered so the complexity of that aspect of
the implementation will likely increase.

The state required during parsing is entirely transient from the perspective
of the caller. It could be held inside an instance of the XmlParser class,
where the public class gets a private constructor because it just becomes
an implementation detail of the static ParseDocument() method. But
why even expose that, why not create an internal class, say,
XmlParserImpl and treat ParseDocument() as a sort of top-level
factory method? (See Listing 13.)

If the implementation class is internal then the entire type is encapsulated
and so we could hold the state as a Dumb Data Object [DDO] and access
it in our static methods via public fields (so long as we promise never to
expose it). Then again we could hold the state entirely on the stack by
passing it as parameters to recursion functions.

Methods on immutable types
Jon Skeet raised a question at the Norfolk Developers Conference
[Norfolk] about how to make methods on immutable types more intention
revealing. His canonical example in C# involves the DateTime class like
this:

 DateTime date = DateTime.Today;
 date.AddDays(1);

The method name AddDays suggests that it will add 1 day to date and
give us the date for tomorrow. Only it won’t. It will create a new
DateTime value based on date (with an offset) which will subsequently
be thrown away by the caller. It’s an easy mistake to make and one of the
reasons why writing tests is such a worthy pursuit. The example should
have been:

 DateTime date = DateTime.Today;
 DateTime tomorrow = date.AddDays(1);

Jon went on to question whether there is a way to name methods to make
this pattern (returning a new value instead of mutating the existing one)
more revealing. He proposed this for the example above:

 DateTime tomorrow = date.PlusDays(1);

It is an improvement, but I would posit that it’s just too subtle a change in
language to really make a difference. Part of the problem is that mutability
is the default position in C#; for example the object initializer syntactic
sugar relies on the class having writable properties.

My own stance is that once again we can draw from the functional side
and use static methods (aka functions) to more clearly suggest that a new
value will be created from an existing one and some adjustment:

 DateTime tomorrow = Date.AddDays(date, 1);

If you started making the same mistake above with this style, would it be
any more obvious?

 Date.AddDays(date, 1);

At least this way you start by invoking a static method and so that should
tell you something extra that you don’t get by invoking an instance method.

Summary
The static keyword is in need of a public relations exercise in C# to try
and overcome prejudices caused by misunderstanding its role. C# might
have started out with a heavy bias towards the object-orientated paradigm
but over the years its audience and the language have tried to embrace a
multi-paradigm world. This means a stronger focus on immutability and
the use of functions instead of objects and mutable state, at least for those
problems where it’s beneficial.

The natural outcome of this is code that is easier to reason about and
inherently thread-safe. Whilst another language such as F# might be a
better tool for the job by removing some of the ceremony, there is no reason
why you cannot adopt some of their practices to improve a C# codebase.

Acknowledgements
A debt of gratitude is owed to Ric Parkin and Roger Orr for helping me
polish this article.

References
[DDO] http://c2.com/cgi/wiki?DumbDataObject

[FizzBuzz] http://c2.com/cgi/wiki?FizzBuzzTest

[Fowler] http://martinfowler.com/books/refactoring.html

[Norfolk] http://nordevcon.com/

[Twitter] https://twitter.com/codemonkey_uk/statuses/
385518295958683649

Listing 11

[Test]
public void when_xml_is_empty_then_dom_is_empty()
{
 const string emptyXml = "";
 var document =
 XmlParser.ParseDocument(emptyXml);
 Assert.That(document, Is.Not.Null);
}

Listing 12

[Test]
public void when_xml_is_empty_then_dom_is_empty()
{
 const string emptyXml = "";
 var parser = new XmlParser();
 var document = parser.ParseDocument(emptyXml);
 Assert.That(document, Is.Not.Null);
}

Listing 13

internal class XmlParserImpl
{
 . . .
}
public static class XmlParser
{
 public static Dom ParseDocument(string xml)
 {
 var parser = new XmlParserImpl(xml);
 return parser.ParseDocument();
 }
}

22 | Overload | April 2014

http://c2.com/cgi/wiki?DumbDataObject
http://c2.com/cgi/wiki?FizzBuzzTest
http://martinfowler.com/books/refactoring.html
http://nordevcon.com/
https://twitter.com/codemonkey_uk/statuses/385518295958683649
https://twitter.com/codemonkey_uk/statuses/385518295958683649

FEATUREMARTIN MOENE
Search with CppCheck
Finding code of interest is a vital skill
but our tools are often too simple.
Martin Moene tries something better.
riting software isn’t what it used to be. ‘But I enjoy it more than
ever’, you say. Yes, indeed. I mean, we write differently, our
writing style has changed. And sometimes we may like to rewrite

history a little and change some old-fashioned code to something
contemporary.

Take for example software I’m working on and that contains code not
unlike the Ariane 5 code in Figure 1 in several places. (The definition of
uiMinValue and uiMaxValue is not shown here.)

 void foo(const int uiValue)
 {
 int uiTrueValue = uiValue;
 if (uiTrueValue < uiMinValue)
 {
 uiTrueValue = uiMinValue;
 }
 else if (value > uiMaxValue)
 {
 uiTrueValue = uiMaxValue;
 }
 //use uiTrueValue...
 }

Use a more intent-revealing name and change the formatting and it’s easier
to see what the code is about, as similarities and differences in the code
fragment now stand out.

 void foo(const int value)
 {
 int clampedValue = value;
 if (clampedValue < minValue)
 clampedValue = minValue;
 else if (clampedValue > maxValue)
 clampedValue = maxValue;
 // use clampedValue...
 }

Although I like this kind of code formatting, it touches on the
unsustainable [Henney11]. It’s also still rather long winded and
clampedValue is mutable while there’s no reason why it should be. So,
let’s change the code further to use a single assignment.

 void foo(const int value)
 {
 using namespace std;
 const int clampedValue =
 min(max(value, minValue),maxValue);
 // use clampedValue ...
 }

A nice C++ idiom. Or so I thought. Until I looked at such code with a
domain expert. I had to explain that this code clamps the given value
between two extremes. And I agree: the code tells what it’s intended for
in a rather obscure way. Why not just say clamp or limit?

 void foo(const int value)
 {
 const int clampedValue =
 clamp(value, minValue, maxValue);
 // use clampedValue ...
 }

I t turns out that clamp is one of the algori thms in l ibrary
Boost.Algoritms [Boost]. Microsoft’s C++ AMP library for
parallelism also provides a clamp function [AMP]. Several interesting
suggestions for such a function were made on mailing list accu-general
[Alternative].

CppCheck rules
Knowing what we have and what we want to change it to, the next question
is: how do we find all occurrences we want to change?

Of course we can try and use grep or the search function of our IDE, but
it may prove difficult to specify a search that allows for sufficient variation
and that may span multiple lines.

Now I had been using CppCheck occasionally to assess code from the
CodeBlocks IDE [CppCheck]. When I noticed a new version was available
I glanced over the manual and noticed CppCheck allows you to specify
simple rules via an XML format specification [Manual].

 <?xml version="1.0"?>
 <rule>
 <tokenlist>LIST</tokenlist>
 <pattern>PATTERN</pattern>
 <message>
 <id>ID</id>
 <severity>SEVERITY</severity>
 <summary>SUMMARY</summary>
 </message>
 </rule>

W

Figure 1

ADA source code excerpt that led to the rapid unscheduled
disassembly of Ariane 5, Flight 501 [Ariane-5].

Martin Moene has a background in electronics engineering and has
been programming professionally since 1983, mostly in C++. Much
programming revolves around instrument control and image
processing and he enjoys seeing elegance in code. Martin Moene can
be contacted at m.j.moene@eld.physics.LeidenUniv.nl.
April 2014 | Overload | 23

FEATURE MARTIN MOENE

Without further parameters, CppCheck
only shows error messages and
matches to our own rules
With such a rule, CppCheck can search for a pattern in the code that may
span multiple lines. PATTERN, a Perl-compatible regular expression
[PCRE] controls which code patterns will match the search. For our
purpose, LIST is specified as simple and can be omitted. Examples for ID,
SEVERITY and SUMMARY of an existing message are: variableScope,
style and "The scope of the variable 'var' can be
reduced".

Please don’t also fall into the trap of thinking your PCRE knowledge
suffices to proceed and specify a search pattern. Instead start with reading
Writing Cppcheck rules [Rules].

CppCheck search pattern
As a first step to compose a regular expression for the pattern you are
interested in, run CppCheck with rule .+ on a code excerpt that contains
the pattern.

 prompt> cppcheck.exe" --rule=".+" file-with-code-
 pattern.cpp

For the first example above, this gives:

 [example1.cpp:1]: (style) found \
 ' int foo (const int uiValue) { \
 int uiTrueValue ; uiTrueValue = uiValue ; \
 if (uiValue < uiMinValue) { uiTrueValue =
 uiMinValue ; } \
 else { if (uiMaxValue < uiTrueValue) {
 uiTrueValue = uiMaxValue ; } } \
 return uiTrueValue ; }'

The multiple-line source code is parsed, simplified and presented as a
single-line token stream. Note that the second comparison is changed from
> to < and has its left- and right-hand sides swapped. If CppCheck
discovers that uiTrueValue isn’t used further on, it removes the
assignments from the if-else block. For more information on the
transformations CppCheck applies, see [Simplification].

To find the code we’re looking for, we may search for the following token
stream.

 if (... < ...) { ... = ... ; } else {
 if (... < ...) { ... = ... ; }

Here we choose to match the if-else-if language construct and
comparison operator. We accept any operand as indicated by the ellipses,
and require the presence of an assignment in the if blocks of the program.

This token stream can be matched by the following regular expression.

 if \(\w+ \x3c \w+ \) { \w+ = \w+ ; }
 else { if \(\w+ \x3c \w+ \) { \w+ = \w+ ; } }

We use \x3c for the comparison, as specifying < or \< does not work,
due to the embedding in XML. Change \x3c to \x3c=? if you want to
match both less-than and less-equal. If you want to match no-matter-what
code instead of the assignment, you can use { .*? } or { [^}]*? }
for the block. Be careful though to not specify a pattern that is too greedy.
Apparently leaving part of the pattern unused when all input has been

consumed does not prevent declaring victory. You’ll get a single match at
best.

To allow both if...if and if...else if, specify (else_{_)?if
for the second if in the pattern and omit the terminating _} from the
pattern. Take note of the space following the opening brace in the
(else_{_)? part. (The underscore denotes a space.)

Now let’s apply CppCheck with a rule for this pattern to a file that contains
several variations of if-else constructs (available from [GitHub]).

 prompt> cppcheck --rule-file="my-rule.xml"
 sample.cpp

This gives:

Checking sample.cpp...
[sample.cpp:118]: (error) Address of an auto-
variable returned.
[sample.cpp:5]: (style) Consider replacing if-else-
if with clamp(value, minval, maxval).
... 6 more similar messages

Without further parameters, CppCheck only shows error messages and
matches to our own rules. You can use option --enable=... to enable
more kinds of checks from CppCheck itself, such as style and
portability warnings [Wiki]. With option --template=... you
can get various output formats, e.g. Visual Studio compatible output (vs)
and GNUC compatible output (gcc). Run cppcheck -h to see the tool’s
complete command line usage.

Results
In the circa 400k line codebase at hand, CppCheck found 15 occurrences
with the pattern that matches both if-if and if-else-if and both less-
than and less-equal comparisons. Of these, 7 represent code we are
interested in and 8 are false positives. Six false positives are due to two
long if-else chains in a single file and the other 2 are due to the same
code of a duplicated file.

Running a check with a looser search pattern for the code in the if blocks
({ .*? }) gave 31 occurrences but didn’t reveal any missed opportunities.

To get rid of the false positives due to longer if-else-if chains, we may
extend our rule with look-ahead and look-behind assertions [PCRE-man].
A positive look-ahead assertion is specified with (?=...), a negative
assertion as (?!...). Look-behind assertions are (?<=...) for positive
and (?<!...) for negative assertions.

To not match if when preceded by else_{_ we can specify a negative
look-behind assertion like:

 (?<!else {)if

Unfortunately this pattern contains a < which cannot be replaced with \x3.
To protect it, we enclose the complete pattern within <![CDATA[...]]>
[XML].

<pattern><![CDATA[(?<!else {)if \(\w+ <=? \w+ \)
{ [^}]*? } else { if \(\w+ <=? \w+ \) { [^}]*? }
}]]></pattern>
24 | Overload | April 2014

FEATUREMARTIN MOENE

This may indicate that a relatively
general pattern doesn’t necessarily

lead to many false positives
Note that we also specified the less-than character in the if statements as
plain <.

Searching the complete Boost 1.53 source tree with the rule in my-
rule.xml didn’t turn up a single occurrence. This may indicate that a
relatively general pattern doesn’t necessarily lead to many false positives,
or perhaps more likely, that Boost’s programming style involves none of
these old-fashioned if-else-if constructs.

Wrapup
This article showed how we can use CppCheck to easily find occurrences
of code fragments with a specific structure that may span multiple lines.

To close, a quote from the CppCheck webpage:

Using a battery of tools is better than using 1 tool. Therefore we
recommend that you also use other tools.

For inspiration, see Wikipedia’s ‘List of tools for static code analysis’
[Wikipedia].

Acknowledgements
Many thanks to Ric Parkin and the Overload team for their care and
feedback. Also thanks to all who made suggestions on the subject of
clamping via accu-general [Alternative].

Notes and references
Code for this article is available on [GitHub].

[Alternative] On mailinglist accu-general several people made
suggestions about a clamp function.

Phil Nash suggests the following approaches:

 clamp(factor).between(minFactor,
maxFactor);

 clampBetween(factor, minFactor, maxFactor);

 [Limits clamp: factor between: minFactor and:
maxFactor] (Objective-C)

Gennaro Prota suggests names clamp_to_range,
constrain_to_range, restrain_to_range,
limit_to_range, bring_to_range and
to_nearest_in_range. He also notes that to make such
function constexpr, it shouldn’t be implemented in terms of
std:min() and std::max(). In turn a reviewer noted that
std:min() and std::max() are likely to become constexpr
in C++17 (LWG issue 2350, voted into the working paper at the last
meeting, in Issaquah).

Initially I used limit as this word also appears in
std::numeric_limits in the C++ standard library. However
Jonathan Wakely argues ... if you propose it [for the standard] I
suggest you call it clamp, I expect that’s the most well-known name.

[AMP] Microsoft. C++ Accelerated Massive Parallelism library.
http://msdn.microsoft.com/en-us/library/hh265137.aspx

[Ariane-5] Image from presentation ‘A Question of Craftsmanship’ by
Kevlin Henney. InfoQ. 9 March 2014 http://www.infoq.com/
presentations/craftsmanship-view. See also ‘Cluster (spacecraft)’
Wikipedia. http://en.wikipedia.org/wiki/Ariane_5_Flight_501
Accessed on 12 March 2014.

[Boost] The Boost Algoritm library contains a version of clamp as shown
here plus a version that also takes a comparison predicate.
http://www.boost.org/libs/algorithm/doc/html/algorithm/
Misc.html#the_boost_algorithm_library.Misc.clamp

[CppCheck] CppCheck homepage: http://cppcheck.sourceforge.net/
Cppcheck is a static analysis tool for C/C++ code. Unlike C/C++
compilers and many other analysis tools it does not detect syntax
errors in the code. Cppcheck primarily detects the types of bugs that
the compilers normally do not detect. The goal is to detect only real
errors in the code (i.e. have zero false positives). Cppcheck is
supposed to work on any platform that has sufficient cpu and
memory and can be used from a GUI, from the command line, or via
a plugin.

[GitHub] Code for Search with CppCheck. Martin Moene. 11 March
2014. https://github.com/martinmoene/martin-
moene.blogspot.com/tree/master/Search%20with%20CppCheck

[Henney11] Kevlin Henney. ‘Sustainable space’ CVu, 22(6):3, January
2011. Kevlin Henney shares a code layout pattern.

[Manual] CppCheck Manual. http://cppcheck.sourceforge.net/
manual.html (HTML format) and http://cppcheck.sourceforge.net/
manual.pdf (PDF format)

[PCRE] PCRE – Perl Compatible Regular Expressions.
http://www.pcre.org/

[PCRE-man] PCRE man page, section Lookbehind assertions.
http://www.pcre.org/pcre.txt

[Rules] Daniel Marjamäki. Writing Cppcheck rules. Part 1 – Getting
started (PDF). 2010. http://sourceforge.net/projects/cppcheck/files/
Articles/writing-rules-1.pdf/download

[Simplification] Daniel Marjamäki. Writing Cppcheck rules. Part 2 – The
Cppcheck data representation (PDF). 2010. http://sourceforge.net/
projects/cppcheck/files/Articles/writing-rules-2.pdf/download

[Wiki] CppCheck Wiki (http://sourceforge.net/apps/mediawiki/
cppcheck/) Describes checks performed by CppCheck.

[Wikipedia] List of tools for static code analysis: http://en.wikipedia.org/
w/index.php?title=List_of_tools_for_static_code_analysis
Accessed 17 February 2014.

[XML] It took me some time to discover to use the CDATA construct.
Once I found out, I couldn’t easily find a suggestion of this approach
in relation to CppCheck.

I filed this suggestion (https://sourceforge.net/apps/trac/cppcheck/
ticket/5551) in the CppCheck issue tracker.
April 2014 | Overload | 25

http://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.infoq.com/presentations/craftsmanship-view
http://www.infoq.com/presentations/craftsmanship-view
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.boost.org/libs/algorithm/doc/html/algorithm/Misc.html#the_boost_algorithm_library.Misc.clamp
http://cppcheck.sourceforge.net/
https://github.com/martinmoene/martin-moene.blogspot.com/tree/master/Search%20with%20CppCheck
https://github.com/martinmoene/martin-moene.blogspot.com/tree/master/Search%20with%20CppCheck
http://cppcheck.sourceforge.net/manual.html
http://cppcheck.sourceforge.net/manual.html
http://cppcheck.sourceforge.net/manual.pdf
http://cppcheck.sourceforge.net/manual.pdf
http://www.pcre.org/
http://www.pcre.org/pcre.txt
http://sourceforge.net/projects/cppcheck/files/Articles/writing-rules-1.pdf/download
http://sourceforge.net/projects/cppcheck/files/Articles/writing-rules-1.pdf/download
http://sourceforge.net/projects/cppcheck/files/Articles/writing-rules-2.pdf/download
http://sourceforge.net/projects/cppcheck/files/Articles/writing-rules-2.pdf/download
http://sourceforge.net/apps/mediawiki/cppcheck/
http://sourceforge.net/apps/mediawiki/cppcheck/
http://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis
http://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis
https://sourceforge.net/apps/trac/cppcheck/ticket/5551
https://sourceforge.net/apps/trac/cppcheck/ticket/5551

FEATURE ROGER ORR
Windows 64-bit Calling
Conventions
How the stack works is useful to
understanding your programs’ behaviour.
Roger Orr compares and contrasts.
Roger Orr has been programming for over 20 years, most recently
in C++ and Java for various investment banks in Canary Wharf and
the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

here are many layers of technology in computing: we even use the
term ‘technology stack’ when trying to name the set of components
used in the development of a given application. While it may not be

necessary to understand all the layers to make use of them a little
comprehension of what’s going on can improve our overall grasp of the
environment and, sometimes help us to work with, rather than against, the
underlying technology.

Besides, it’s interesting!

Many of us write programs that run on the Windows operating system and
increasingly many of these programs are running as 64-bit applications.
While Microsoft have done a fairly good job at hiding the differences
between the 32-bit and 64-bit windows environments there are differences
and some of the things we may have learnt in the 32-bit world are no longer
true, or at least have changed subtly.

In this article I will cover how the calling convention has changed for 64-
bit Windows. Note that while this is very similar to the 64-bit calling
conventions used in other environments, notably Linux, on the same 64-
bit hardware I’m not going to specifically address other environments
(other than in passing.) I am also only targeting the ‘x86-64’ architecture
(also known as ‘AMD 64’) and I’m not going to refer to the Intel ‘IA-64’
architecture. I think Intel have lost that battle.

I will be looking at a small number of assembler instructions; but you
shouldn’t need to understand much assembler to make sense of the
principles of what the code is doing. I am also using the 32-bit calling
conventions as something to contrast the 64-bit ones with; but again, I am
not assuming that you are already familiar with these.

A simple model of stack frames
The basic principle of a stack frame is that each function call operates
against a ‘frame’ of data held on the stack that includes all the directly
visible function arguments and local variables. When a second function is
called from the first, the call sets up a new frame further into the stack
(confusingly the new frame is sometimes described as ‘further up’ the
stack and sometimes as ‘further down’).

This design allows for good encapsulation: each function deals with a well-
defined set of variables and, in general, you do not need to concern yourself
with variables outside the current stack frame in order to fully understand
the behaviour and semantics of a specific function. Global variables,
pointers and references make things a little more complicated in practice.

The ‘base’ address of the frame is not necessarily the lowest address in the
frame, and so some items in the frame may have a higher address than the
frame pointer (+ve offset) and some may have a lower address (-ve offset).

In the 32-bit world the esp register (the sp stands for ‘stack pointer’) holds
the current value of the stack pointer and the ebp register (the bp stands

for ‘base pointer’) is used by default as the pointer to the base address of
the stack frame (the use of ‘frame pointer optimisation’ (FPO) – also called
‘frame pointer omission’ – can repurpose this register.) Later on we’ll see
what happens in 64-bits.

Let’s consider a simple example function foo:

 void foo(int i, char ch)
 {
 double k;
 // ...
 }

Here is how the stack frame might look when compiled as part of a 32-bit
program:

Note: the assembler listing output that can be obtained from the MSVC
compiler (/FAsc) handily displays many of these offsets, for example:

 _k$ = -8 ; size = 8
 _i$ = 8 ; size = 4
 _ch$ = 12 ; size = 1

This is conceptually quite simple and, at least without optimisation, the
actual implementation of the program in terms of the underlying machine
code and use of memory may well match this model. This is the model that
many programmers are used to and they may even implicitly translate the
source code into something like the above memory layout.

The total size of the stack frame is 24 bytes: there are 21 bytes in use (the
contiguous range from -8 to +13) but the frame top is rounded up to the
next 4 byte boundary.

You can demonstrate the stack frame size in several ways; one way is by
calling a function that takes the address of a local variable before and
during calling foo (although note that this simple-minded technique may
not work as-is when aggressive optimisation is enabled). For example, see
Listings 1.

In the function:

 check();

 foo(12, 'c');

T

Offset Size Contents

High mem +16 Top of frame

+13 3 bytes padding

+12 1 byte char ch (arguments pushed R to L)

+8 4 bytes int i

+4 4 bytes return address

ebp-> +0 4 bytes previous frame base

esp*-> -8 8 bytes double k (and other local variables)

Low mem

* esp starts here but takes values lower in memory as the
function executes.
26 | Overload | April 2014

FEATUREROGER ORR

Optimisers often re-use memory
addresses for various different purposes
and may make extensive use of registers
In the caller:

 void foo(int i, char ch)
 {
 check();
 double k;

 // ...

The 32-bit stack frame for foo may be built up like this when it is called:

While the code might be changed in various ways when, for example,
optimisation is applied or a different calling convention is used there is still
a reasonable correlation between the resultant code and this model.

 Optimisers often re-use memory addresses for various different
purposes and may make extensive use of registers to avoid having to
read and write values to the stack.

 The stdcall calling convention used for the Win32 API itself
slightly changes the function return: the called function is
responsible for popping the arguments off the stack, but the basic
principles are unchanged.

 The ‘fastcall’ convention passes one or two arguments in registers,
rather than on the stack.

 ‘frame pointer optimisation’ re-purposes the ebp register as a
general purpose register and uses the esp register, suitably biased
by its current offset, as the frame pointer register.

In the 64-bit world while what happens from the programmer’s view will
be identical, the underlying implementation has some differences. Here is
a summary of how the stack frame for foo might look when compiled as
part of a 64-bit program:

(Again, offsets can be taken from the assembler output). Notice that all the
offsets are positive, and the smallest offset is 32. Perhaps even more
surprising is that the stack frame size (from a debugger, the assembler
output or by adding calls to a checking function) is 64 bytes; more than
double the 24 bytes used in the 32-bit case. Why would this be the case –
we might expect some of the items to double in size to match the word size
but something else is going on here.

In the 64-bit calling convention the caller passes the first four arguments
in registers but must reserve space on the stack for them. This provides a
well-defined location for the called program to save and restore the
corresponding argument if the value passed in the register would otherwise
be overwritten.

Additionally space for four arguments is always reserved even when the
function takes fewer than that. (These 32 bytes just above the return
address on each function call are sometimes called the ‘home space’.) So
in our example, although we only have two arguments (i and ch) our caller
will have reserved space for two other (unused) arguments. The full stack
frame for foo can therefore be written as in the table overleaf.

The first offset in the stack frame is +32 because this function will in turn
need to reserve stack space for up to four arguments when it calls another

In the caller

push 99 set ch in what will become foo’s frame to ‘c’

push 12 set up i in foo's frame

call foo enter foo, return address now in place

In foo

Function prolog

push ebp save the previous frame register

mov ebp, esp set register ebp to point to the frame base

sub esp, 8 reserve space in the stack for the variable k

Function body starts

...

mov eax, dword ptr
[ebp+8]

example of accessing the argument i

movsd qword ptr
[ebp-8], xmm0

example of accessing the variable k

...

Function epilog starts

mov esp,ebp reset the stack pointer to a known value

pop ebp restore the previous frame pointer

ret return to the caller

Back in the caller

add esp,8 restore the stack pointer

Listing 1

void check()
{
 static char *prev = 0;
 char ch(0);
 if (prev)
 {
 printf("Delta: %i\n", (prev - &ch));
 }
 prev = &ch;
}

Offset Size Contents

+72 1 byte char ch

+64 4 bytes int i

+56 8 bytes return address

+32 8 bytes double k
April 2014 | Overload | 27

FEATURE ROGER ORR

by default both 32-bit and 64-bit
applications are given a 1Mb stack
function. So the function presets the stack pointer just below these four
words to avoid having to modify the stack pointer when making function
calls – it can just make the call.

The actual size of the first offset can be greater than 32 if, for example,
more than four arguments are passed to a child function; but it can only
be less if the function itself does not call any other functions.

Note that although we’re only using 21 bytes of memory the stack frame
is 64 bytes in size: that’s over twice as much being wasted as being used.
The 64-bit calling convention does, in general, seem to increase the stack
consumption of the program. However, there are a couple of things that
help to reduce the stack consumption.

 Firstly the 64-bit architecture has more registers (eight more
general-purpose registers r8 – r15). This allows more temporary
results (or local variables) to be held in registers without requiring
stack space to be reserved.

 Secondly, the uniform stack frame convention increases the number
of places where a nested function call at the end of a function can be
replaced with a jump. This technique, known as ‘tail call
elimination’, allows the called function to ‘take over’ the current
stack frame without requiring additional stack usage.

However, it still seems odd (at least to me) that Microsoft did not change
the default stack size for applications when compiled as 64-bits: by default
both 32-bit and 64-bit applications are given a 1Mb stack.

If your existing 32-bit program gets anywhere near this stack limit you may
find the 64-bit equivalent needs a bigger stack (obviously this is very
dependent on the exact call pattern of your program). This can be set, if
necessary, by using the /stack linker option when the program is created

– or even after the program has been linked using the same /stack option
with the editbin program provided with Visual Studio.

This is a possible sequence of instructions for setting up the stack frame
when foo is called in a 64-bit application:

As you can see the 64-bit code is simpler than the 32-bit code because most
things are done with the mov instruction rather than using push and pop.
Since the stack pointer register rsp does not change once the prolog is
completed it can be used as the pointer to the stack frame, which releases
the rbp register to be a general-purpose register.

Note too that the 64-bit code only updates the relevant part of the register
and memory location. This has the unfortunate effect that, if you are
writing tools to analyse a running program or are debugging code to which
you do not have the complete source, you cannot as easily tell the actual
value of function arguments as the complete value in the 64-bit register or
memory location may include artefacts from earlier. In the 32-bit case,
when an 8bit char was pushed into the stack, the high 24bits of the 32-bit
value were set to zero.

One other change in the 64-bit convention is that the stack pointer must
(outside the function prolog and epilog) always be aligned to a multiple

Offset Size Contents

High mem +96 top of frame

+88 8 bytes reserved for 4th argument

+80 8 bytes reserved for 3rd argument

+73 7 bytes padding

+72 1 byte char ch

+68 4 bytes padding

+64 4 bytes int i

+56 8 bytes return address

+40 16 bytes padding

+32 8 bytes double k

rsp*-> +0 32 bytes argument space for child functions

Low mem

* rsp normally remains here for the duration of the function.

In the caller

mov dl, 'c’ set up low 8 bits of the rdx register with
'ch'

mov ecx, 12 set up low 32 bits of the rcx register with 'i'

call foo enter foo, return address now in place

In foo

Function prolog starts

mov byte ptr
[rsp+16], dl

save the second argument in the stack
frame

mov dword ptr
[rsp+8], ecx

save the first argument in the stack frame

sub rsp,56 reserve space for the local variables, and
32 bytes for when foo calls a further
function

Function body starts

...

mov eax, ecx example of accessing the argument i

movsdx qword ptr
[rsp+32], xmm0

example of accessing the variable k

...

Function epilog starts

add rsp, 56 reset the stack pointer

ret return to the caller

Back in the caller

nothing to see here ... move along
28 | Overload | April 2014

FEATUREROGER ORR

‘over-sized’ variables will be located
in working storage above the stack

frame for the target function
of 16 bytes (not, as you might at first expect, 8 bytes to match the word
size). This helps to optimise use of the various instructions that read
multiple words of memory at once, without requiring each function to align
the stack dynamically.

Finally note that the 64-bit convention means that the called function
returns with the stack restored to its value on entry. This means function
calls can be made with a variable number of arguments and the caller will
ensure the stack is managed correctly.

Note that in Visual Studio 2013 Microsoft have added a second (explicit)
calling convention for both 32-bit and 64-bit programs, the
__vectorcall convention. This passes up to six 128bit or 256bit values
using the SSE2 registers xmm and ymm. I’m not discussing this convention
further – interested readers can investigate this by looking up the keyword
on MSDN.

More on passing variables
The 64-bit bit convention dictates that the first four arguments are passed
in fixed registers. These registers, for integral and pointer values are rcx,
rdx, r8 and r9. For floating point values the arguments are passed in
xmm0 – xmm3. (The older x87 FPU registers are not used to pass floating
point values in 64-bit mode.)

If there is a mix of integral and floating point arguments the unused
registers are normally simply skipped, for example passing a long, a
double and an int would use rcx, xmm1 and r8.

However, when the function prototype uses ellipses (i.e. it takes a variable
number of arguments), any floating pointing values are placed in both the
integral and the corresponding xmm register since the caller does not know
the argument type expected by the called function.

For example, printf("%lf\n", 1.0); will pass the 64-bit value
representing 1.0 in both the xmm1 and rdx registers.

When a member function is called, the this pointer is passed as an
implicit argument; it is always the first argument and hence is passed in
rcx.

The overall register conventions in the x64 world are quite clearly defined.
The documentation [Register Usage] describes how each register is used
and lists which register values must be retained over a function call and
which ones might be destroyed.

Bigger (or odder) values
Another change in the 64-bit calling convention is how larger variables
(those too big for a single 64-bit register) or ‘odd’ sized variables (those
that are not exactly the size of a char, short, int or full register) are
passed. In the 32-bit world arguments passed by value were simply copied
onto the stack, taking up as many complete 32-bit words of stack space as
required. The resulting temporary variable (and any padding bytes) would
be contiguous in memory with the other function arguments.

In the 64-bit world any argument that isn’t 8, 16 32 or 64-bits in size is
passed by reference – the caller is responsible for making a copy of the

argument on the stack and passing the address of this temporary as the
appropriate argument. (Note that this passing by reference is transparent
to the source code.) Additionally the caller must ensure that any temporary
so allocated is on a 16byte aligned address. This means that the temporary
variables themselves will not necessarily be contiguous in memory – the
‘over-sized’ variables will be located in working storage above the stack
frame for the target function. While this should very rarely affect any code
it is something to be aware of when working with code that tries to play
‘clever tricks’ with its function arguments.

Local variables
The compiler will reserve stack space for local variables (whether named
or temporary) unless they can be held in registers. However it will re-order
the variables for various reasons – for example to pack two int values next
to each other. Additionally arrays are normally placed together at one end
to try and reduce the damage that can be done by a buffer overrun.

Return values
Integer (or pointer) values up to 64-bits in size are returned from a function
using the rax register, and floating point values are returned in xmm0.
Values other than these are constructed in memory at an address specified
by the caller. The pointer to this memory is passed as a hidden first
argument to the function (or a hidden second argument, following the
this pointer, when calling a member function) and then returned in rax.

Debugging
In this example the first two instructions in the prolog save the argument
values, passed in as register values, in the stack frame. When optimisation
is turned on this step is typically omitted and the register values are simply
used directly. This saves at least one memory access for each argument
and so improves performance.

The compiler can now use the stack space for saving intermediate results
(which reduces its need for other stack space) knowing there will always
be space for four 64-bit values on the stack.

Unfortunately this performance benefit comes at the price of making
debugging much harder: since the function arguments are now only held
in (volatile) registers it can become hard to determine their values in a
debugger (or when examining a dump). In many cases the value has simply
been lost and you have to work back up the call stack to try and identify
what the value might have been on entry to the function.

While this sort of optimisation is common in 32-bits for local variables the
fact the arguments are (usually) passed on the stack does increase their
longevity. For example, consider this simple function:

 void test(int a, int b, int c, int d, int e)
 {
 printf("sum: %i\n", a + b + c + d + e);
 }

If I build a program with an optimised build of this function and breakpoint
on the printf statement, in a 32-bit application I can still see the values
April 2014 | Overload | 29

FEATURE ROGER ORR
of the arguments (when using the default calling convention, unless the
optimiser has made the entire function inlined). If I try the same thing with
a 64-bit optimised build I get, for example:

As you can see, the fifth argument is displayed correctly because, as
described above, only the first four arguments (in Windows 64-bit) are
passed in registers. In general the debugger cannot locate the values from
the register (even assuming the value is still there!) and so it simply
displays what is in the stack frame location reserved for that argument; but
as the argument has not been persisted to the stack frame in the release
build the contents are arbitrary.

In some cases, for example where the argument is a pointer value, the
arbitrary value can even break the debugger (at least in VS 2012).

This can make it significantly harder to identify the reason for a failure in
a build of an application where some or all of the code is compiled with
optimisation. This is a particular problem when you get a dump of a
production system, where reproducing the fault yourself on a non-
optimised build may be hard.

Stack walking
The other main area where the 64-bit calling convention differs from the
32-bit one is when walking the stack. There are two main cases when the
stack is walked.

 Handling an exception

 In various debugging scenarios

In the 32-bit world these two cases were handled very differently.

For exceptions, each thread in the Win32 subsystem contained a singly-
linked list of exception handlers, maintained in the stack with the address
of the first handler held in the thread environment block.

Additionally the MSVC compiler maintained a simple state machine for
each function containing exception handling logic (either implicit or
explicit) and used the state variable, which was also held in the stack frame,
during unwinding of the stack when handling an exception.

This state variable was used by the exception handling logic, in
conjunction with some other tables built into the binary image by the
compiler, to find the catch handler, if any, for the thrown exception and
also to identify the completely constructed objects on the stack that should
be destroyed when unwinding the stack.

There were at least three main problems with this approach.

 The exception code was fragile under accidental or malicious stack
overwrites

 Management of the exception chain had a measurable performance
impact

 The stack frame was larger, again impacting performance (among
other things)

For the various debugging scenarios the simplest approach was to follow
the chained base pointers: the value of the ebp register provides the
address of the current frame. Each frame was expected to have the entry
at +0 containing the previous base pointer and the entry at +4 to contain
the return address.

This mechanism was, like the exception chain, quite fragile and was also
complicated by the ‘frame pointer optimisation’. The MSVC toolchain
would add additional data to the debugging files (with the pdb extension)

for each module containing information to enable a debugger to locate the
stack frame even when this optimisation was enabled, but this required the
PDB files to be present and accessible to allow the stack to be reliably
walked. The tables were also quite slow to access, meaning their use was
unfeasible in some of the places where stack walking at runtime was used
(such as tracking memory allocations and deallocations).

As you may know, although the frame pointer optimisation does produce
a performance benefit (normally a low single digit percentage), Microsoft
have disabled it in their operating system builds since Windows XP service
pack 2 as they considered the increased ability to debug production
problems was more significant than the loss of performance.

The 64-bit convention uses a pure table-based system that is linked into
the binary image and is used to walk the stack in both the cases above.
This has several benefits. Firstly, there is improved robustness and security
since the data structures are in read-only memory rather than created on
the stack. Secondly, there is a small performance improvement as the
tables are fixed and only accessed if and when stack walking is required.
Thirdly, since the data structures are held in the binary itself, stack walking
is reliable even if the PDB file is not present.

The instruction pointer is used to find the currently executing image and
the offset into that image. This offset is then used to look up the correct
entry for the current function in the tables for the current module. The table
entries contain, among other things, a description of the stack frame for
each function: in particular which register contains the base address and
what the vital offset values are. This information allows the stack walker
to reliably walk up the list of stack frames to identify the calling functions
and/or find the correct exception handler without relying on data tables
held in the stack itself.

While not quite as fast a simply chaining up a linked list of exception
records or frame pointers the mechanism is fast enough to be used at
runtime. The Win32 API exposes a method, CaptureStackBackTrace
that understands the data structures involved and can be used by
application programs to capture the address of the functions in the call
stack.

There are further functions providing support for this stack walking: such
as RtlLookupFunctionEntry which obtains a pointer to the relevant
data for a specific address; but I recommend that you use the supplied stack
capture function: as while the data structures are (at least partly)
documented making correct use of them is not for the faint hearted.

If you need to write 64-bit assembler code then you need to ensure that
these tables are correctly built. There are a number of restrictions as to the
instructions that can be used in the function prolog and epilog; and
additional assembler directives must be written to ensure the assembler
generates the correct data structures.

An even more complicated activity is when you need to generate
executable code on the fly at runtime. The Win32 API provides a function
RtlAddFunctionTable that you can use to dynamically add function
table entries to the running module. Unfortunately there do not seem to be
any helper functions to facilitate building up the required data structures.

Additionally, it can be hard to verify that the data structures are in fact
correct – the first indication that they are incorrect may occur when the
system is trying to handle an exception as, if it is unable to correctly process
the function table entry for your dynamically created code this will almost
certainly result in unexpected program termination.

However, since the same control structures are used for walking the call
stack in the debugger as are used when an exception is thrown, some
checking can be done by verifying the call stack displays correctly in a
debugger as you step through the generated code.

Dump busting
While in general the data tables in the binary images do provide a very
reliable way to walk the stack, the technique can fail when processing a
dump if the actual binaries are not accessible to the debugger that is reading
the dump file.

As an example, consider a very simple function that throws an exception:

Argument Actual value passed Value displayed in the debugger

a 11111 1

b 22222 1067332614

c 33333 1

d 44444 4058400

e 55555 55555
30 | Overload | April 2014

FEATUREROGER ORR
 void func()
 {
 throw 27;
 }

If we package this function in a DLL, and call this DLL from a main
program, the exception handling logic walks up the chain from the site of
the exception (which is actually the RaiseException function inside
kernelbase.dll) to the handler, if any, in the calling function. At the
time of the exception all these tables are present in the executing binaries;
but if a minidump is taken then the code modules may well not be included
in the dump. This will depend on which options are used when the
minidump is created, but space is often at a premium and so a complete
memory dump may not be realistic.

Let us look at what happens when the resulting dump is processed on a
different machine where not all the binaries are present: in this example
we have access to a copy of the main.exe program but not of the
function.dll. In the 32-bit world the absence of the binaries simply
means the function names are missing, but the stack walk itself can
complete (I’ve disabled FPO in this example).

The 32-bit exception in a debugger
 KERNELBASE!RaiseException+0x58

 function.dll!_CxxThrowException(void *
pExceptionObject, const _s__ThrowInfo *
pThrowInfo) Line 152

 function.dll!func() Line 4

 main.exe!main() Line 12

 main.exe!__tmainCRTStartup() Line 241

 kernel32.dll!@BaseThreadInitThunk@12 ()

 ntdll.dll!___RtlUserThreadStart@8 ()

 ntdll.dll!__RtlUserThreadStart@8 ()

The same exception, examined from a minidump on another
machine
 KERNELBASE!RaiseException+0x58

 function+0x108b

 function+0x1029

 main.exe!main() Line 12

 main.exe!__tmainCRTStartup() Line 241

 kernel32.dll!@BaseThreadInitThunk@12 ()

 ntdll.dll!___RtlUserThreadStart@8 ()

 ntdll.dll!__RtlUserThreadStart@8 ()

If the same operations are performed with a 64-bit build of the same
program the results when reading the dump are quite different.

The 64-bit exception in a debugger
 KernelBase.dll!RaiseException ()

 function.dll!_CxxThrowException(void *
pExceptionObject, const _s__ThrowInfo *
pThrowInfo) Line 152

 function.dll!func() Line 4

 main.exe!main() Line 11

 main.exe!__tmainCRTStartup() Line 241

 kernel32.dll!BaseThreadInitThunk ()

 ntdll.dll!RtlUserThreadStart ()

(Note that debuggers sometimes display slightly different line numbers –
the entry for main.exe!main() from which func was called is shown
as Line 11 in the 64-bit debugger (correctly) but as the next line, Line 12,
in the 32-bit debugger.)

The same exception, examined from a minidump on another
machine
 KERNELBASE!RaiseException+0x39

 function+0x1110

 function+0x2bd90

 0x2af870

 0x1

 function+0xf0

 0x00000001`e06d7363

The stack walk is unable to get before the first address inside
function.dll in the absence of the function data tables. (What the
debugger seems to do when the data is missing is to simply try the next
few possible entries on the stack but it is very rarely successful in finding
the next stack frame.)

Note that providing the PDB files in this case does not help to walk the
stack correctly, as it is the DLL and EXE files that contain the stack
walking data. It therefore becomes important to ensure that you can easily
obtain the exact versions of the binary files that the target machine is using
if you wish to successfully process the smaller format minidump files.

Conclusion
The 64-bit Windows calling convention does seem to be an improvement
on the 32-bit convention, although I personally wish that a little more care
had been taken to ensure that problem analysis was easier. As I have
mentioned above, while the mechanism does offer increased performance,
it also decreases the likelihood of successful problem determination
(especially with an optimised build.)

It is my hope that some understanding of how the 64-bit convention works
will aid programmers as they migrate towards writing more 64-bit
programs for the Windows platform.

Acknowledgements
Many thanks to Lee Benfield, Dan Azzopardi and the Overload reviewers
for their suggestions and corrections which have helped to improve this
article.

Useful references
Microsoft x64 Calling Convention http://msdn.microsoft.com/en-us/

library/9b372w95.aspx

Microsoft Macro Assembler Directives http://msdn.microsoft.com/en-us/
library/8t163bt0.aspx

[Register Usage] http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
April 2014 | Overload | 31

http://msdn.microsoft.com/en-us/library/9b372w95.aspx
http://msdn.microsoft.com/en-us/library/9b372w95.aspx
http://msdn.microsoft.com/en-us/library/8t163bt0.aspx
http://msdn.microsoft.com/en-us/library/8t163bt0.aspx
http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx

FEATURE TEEDY DEIGH
Teenage Hex
There’s a big push to get programming
into schools. Teedy Deigh considers
what would suit the target audience.
s P = NP? Why would you ever play Twister when sober? How do you
get adolescents interested in programming? This last question is a
simpler and more concrete instance of the larger problem of how to get

adolescents interested in anything. It is hoped that any solution to this
programming challenge (P) will allow parents, teachers and society to then
solve the non-programming challenge (NP).

There has been much discussion of how to get teenagers interested in tech
beyond their phones. The Raspberry Pi has helped support this trend by
introducing a device named after fruit, following a venerable tradition of
tech targeted at children, such as Tangerine, BlackBerry and Apple.

But if the goal is programming, what should be the programming
language? In the 1980s BASIC was considered the language of choice and
made a strong impression on a whole generation. The home computing
boom succeeded where previous initiatives, such as Teenage CICS, were
felt to have corporate undertones. Edsger Dijkstra observed, however, that

It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential programmers
they are mentally mutilated beyond hope of regeneration.

Dijkstra’s insight does much to explain most of the code written in industry
from the 1990s onwards.

These days Python is typically considered the language of choice,
representing, as it does, a language that will set false expectations about
what other mainstream programming languages are like in terms of feature
set (orthogonal and considered), syntax (in space no one can hear you
scream) and culture (humorous and surreal with a 1970s twist, washed
through with British cynicism and Dutch De Stijl sensibilities). This
dovetails nicely with the practice of teaching Haskell to computer science
undergraduates in preparation for industry.

A more careful analysis of the target audience, however, suggests that
Python may not be the most suitable choice. For example, the torpor of a
typical adolescent suggests a preference for static rather than dynamic
typing and lazy rather than strict evaluation.

If not Python, then what? As it’s a software problem we already have a
process (indeed, many processes) for helping to determine a solution:
requirements gathering and specification. As it’s a software problem, we
already know that any discussion of requirements can be circumvented and
left to people who failed to make the grade as programmers, washed up in
dead-end jobs and made-up disciplines such as business analysis, where
they are left to write stories and play cards. They can be humoured,
encouraged and given the belief that their work has meaning and relevance,
even when it is ultimately ignored. If there is one thing that may help to
motivate adolescents into programming, it is being shown this kind of
McJob. On the other hand, they may find much in common with their
existing situation.

As it’s a software problem we already know the universal solution: invent
another programming language. Riding on the coat-tails of a previous fad,
it can be considered a domain-specific language. In this case the domain
is teenagers and the co-domain is programmers.

Beyond laziness and a general lack of dynamic, what other characteristics
should such a language have? Laziness suggests something functional,
although it is worth noting that teens object to most things. The typical

object model, however, involves classes, which is often at odds with the
politics of the target demographic. Following any kind of procedure is
beyond reason, so classic imperative and procedural programming is
unlikely to be a wise choice. And logic programming is clearly a non-
starter.

The programming style chosen should be driven primarily by arguments,
which lends further support to functional programming. The language need
not, however, be a pure functional language. Given that most teenagers are
mixed up, it seems appropriate to reflect this confusion in the language
design. It will also enable them to employ words like multi-paradigm and
postmodern with greater confidence in their media studies essays.

The language should capitalise on already familiar operators and concepts,
such as the Maybe and Whatever monads and the like and isKindOf
comparisons. Other relational operators would include owns instead of
greater than, although, because fuzzy rather than Boolean logic should be
used, this is not like an exact drop-in replacement, you know, right. The
use of null is discouraged in modern language design; Duh is proposed
as an alternative. Teen sensitivity to anything and everything can be
acknowledged by ensuring the language is case sensitive, although a
compelling case can also be made for case-indifferent syntax.

What of the language’s execution model? A benefit of functional
programming is the lack of side effects, so adolescents would be able to
enjoy doing what they wanted without having to worry about the
consequences. In contrast to many functional languages, however, a heavy
reliance on exceptions is a likely need, although the exception model
should be as layered as possible. Throwing up meets a common need.

Although the possibility for concurrency is intrinsic to many functional
languages, it may be prudent not to include support for concurrency in a
teaching language. The scheduling model favoured by most adolescents
is at best frustrating, being typically pre-emptive but with long delays and
without resumption of existing tasks, i.e., easily distracted. Any alternative
scheduling algorithm is likely to be considered (so) unfair. Priority
inversion would undoubtedly be a common problem, with things adults
consider trivial taking precedence over things considered to be more
important. Similarly, deadlock would hamper much progress.

In terms of development environment, an IDE would be unsuitable as there
is little that is integrated about teenagers. Something that is console-based,
preferably black-and-white, will most likely satisfy needs and neediness
given the amount of time teenagers already spend consoling one another.

It almost goes without saying that test-driven development is completely
anathema to the adolescent mindset, involving, as it does, a cautious and
considered test-first approach, where desires are clearly specified in
advance of their realisation. That does not, however, preclude unit testing
in general. The approach most suited to teenagers is the test-after approach
of plain ol’ unit testing, i.e., POUTing.

And, finally, what of the design philosophy that should be taught? This
choice, at least, is simple: KISS.

I

Teedy Deigh learned to program when the only visual thing about
BASIC was the line numbering. She does not believe that BASIC has
had any lingering effects on her abstraction-lite, GOTO-inflected coding
style, although she confesses to occasionally missing the line numbers.
32 | Overload | April 2014

	Your Life in Their Hands
	Size Matters
	Enforcing the Rule of Zero
	Quality Matters #8: Exceptions for Recoverable Conditions
	Static – A Force for Good and Evil
	Search with CppCheck
	Windows 64-bit Calling Conventions
	Teenage Hex

