

August 2014 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Does Test-Driven Development
Harm Clarity?
Andy Balaam asks if TDD harms clarity.

6 Musings on Python – by a C++
Developer
Sergey Ignatchenko walks through some Python
gotchas for C++ programmers.

11 Activatable Object
Len Holgate presents an Activatable Object
pattern to speed up threaded code.

14 KISSing SOLID Goodbye
Chris Oldwood distills SOLID down to two
principles.

18 TDD Discussions and
Disagreements
Seb Rose considers recent arguments about TDD.

OVERLOAD 122

August 2014

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 123 should be submitted
by 1st September 2014 and those
for Overload 124 by 1st November
2014.

EDITORIAL FRANCES BUONTEMPO
Shop ’til you Drop
Deciding which tools to acquire can be a
difficult decision. Frances Buontempo
muses on a failed shopping trip.
Having had a birthday recently I am now the proud
owner of some tokens for a high street ‘fashion’ store.
I did try very hard to spend them – I spent something
like an hour wandering round a branch of the shop in
question looking at almost everything. Possibly
longer. I did see quite a nice pair of black trousers, but

they matched the ones I was wearing at the time and having two identical
pairs seemed a bit pointless. I suspect this drew attention to me, since at
least three people who worked there came up to me and asked if I wanted
help. I was going to ask if they’d swap the vouchers for cash, but didn’t
want to push my luck. This time consuming activity might be the best
excuse I’ve got for not writing an editorial once more.

Shopping isn’t just restricted to buying, or failing to buy, clothes, shoes
or even socks. Some of us may be lucky enough to choose the tool chain
at work. If you use a compiled language, which compiler will you use?
This, of course, may be dictated by the platform the code will eventually
run on, and may not be in your control. You may need it to run on more
than one platform, so might have to end up using the lowest common
denominator of an unfortunate combination, such as Microsoft’s VC6 and
the latest gcc. Such a combination may be deeply unpleasant, and might
drive a hardware upgrade so you could avoid the older compiler, and hence
more shopping. You may be writing web pages, and just tell your
customers “It doesn’t work on your browser, use a different one” if this
happens to be the case.

What tool chain would you have in place, if you had free control? Would
you dictate IDEs or editors to the rest of your team, or allow a consensus
to evolve or let anarchy reign and each person individually do their own
thing? Would you use Excel as a bug tracking system, write your own,
use an open source application, or pay for something? Or cover your
monitor in post-it notes? I have been in the unfortunate position of being
asked to use spreadsheets to track bugs at work a couple of times, and
adding screenshots of various GUI bugs was less than perfect. Trying to
use a data filter to figure out who was doing what and what was going to
happen when was also a tad difficult. How do you decide which language
to use? This can be based on expertise of the team, though if everyone
knows FORTRAN or Cobol you are restricting potential future new hires.
Going to the other extreme and constantly rewriting your software in the
latest trendy language will cause a different set of problems. How many
people actually know them? Can you afford the time to train new people?
You may give the impression the code will continue to be rewritten each

time a new language comes on the block. Perhaps you
could go even further and write your own in-

house language, though it may be worth
considering how highly transferrable
skills tend to be rated in many quarters. Of

course, DSLs have a place and the ability to pick up new skills easily and
deal with whatever gets thrown at you is at least as important as having
experience of specific libraries, frameworks and even languages.

Do you choose to enforce coding standards? Might these include doxygen
style comments, even if the parameters have no description and in general
it’s only half done thereby causing 1,500 warnings hiding several import
ones? Turning off these specific warnings is always possible, though it
could be argued that this defeats the object of demanding the doxygen
style comments in the first place. You could always go the other way and
entirely ban comments. If you have coding standards do you enforce them
by paying for software to help with code reviews, or do you let the troops
just use pen and paper or pair programming? Perhaps you could settle for
some pre-commit checks in your set up. Or use a policing system, like
FxCop [FxCop] after the fact (i.e. a commit) and just leave any offenders
to buy donuts in the case of a blunder. Either way, it involves shopping.
Or, worse, talking to each other. Do you even have coding standards? You
could simply say follow the Good Book [Sutter and Alexandrescu] or
follow what Google do [Google]. There are many possible approaches.

Even having decided which language to use, you still need to decide which
compiler or interpreter, which build tool, how you will support your
applications, how you will deploy them, which platforms you will support.
Some of these decisions may be out of your hands. How many places are
still running Windows XP due to the perceived risk of upgrading the
operating system? Some businesses have only recently moved to
Windows 7, and there have been rumours that the next Visual Studio ‘14’
may not work on Windows 7, though certainly it is suggested that you only
run the community technology preview on a virtual machine rather than
side by side [VS]. Does an OS service pack force a compiler upgrade [SO],
and if so are you comfortable changing things?

How do you decide between other supporting tools, like libraries,
frameworks and so on? Do you find something open source which hasn’t
had a bug report in years? This either means it is completely stable and
just works, or no-one uses it, possibly with good reason. As people who
code, we may tend to have a tendency to assume all software has bugs so
be suspicious of something that hasn’t changed for years. Nonetheless,
typing ‘ls’ at a prompt probably wouldn’t even cause a moment’s pause
for thought. Perhaps bug free software is possible, but just unlikely. How
do you choose continuous integration software? If you would rather avoid
manipulating xml directly that will close down at least one choice (naming
no names). Personal taste and previous experience will tend to have an
influence in these situations. If you are selecting open source middleware,
seeing the number of forks for ZMQs .Net port may be off-putting. Nuget
[Nuget] currently finds 25 packages and github is showing 85 forks
[netmq]. Some companies stick with tooling from one place, maybe

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2014

EDITORIALFRANCES BUONTEMPO
Microsoft or Atlassian and so on. Others may stick with free software, or
even insist on using open source software. These decisions can be based
on previous choices, making it difficult to swap tooling. Alternatively, a
perception that one has better support or quicker bug fixes than the other
may hold sway. Ideally, it would be nice to be able to swap from one tool
chain and set of libraries to another easily, or at least be able to upgrade
compilers without several months of code changes.

Stepping back, observe that choice of language is frequently claimed to
affect thought [Language]. For example if a number system just has 1, 2
and many this might appear to affect what you are capable of thinking
about. How many colours are there in a rainbow? This varies from culture
to culture too. Do choices about programming languages or even tool chain
affect your programming behaviour and ultimately the code your write?
If you think something like Resharper [Resharper] will show you code that
can be improved do you just tap it out and just accept the recommendation
afterwards? It can be too easy to do this, without thinking about the
suggestions and their consequences. Clearly some may be good and some
not. This is, of course, configurable, which requires further choices. Some
setups are easier to debug than others, which can mean it becomes tempting
to write more code and just step through in a debugger when it doesn’t
work. If something needs deploying to an embedded system, or controls
a spaceship then just running it to see what happens might not be so easy.
The context in which you are experiencing your development process is
shaped by your language choices, tool-chain and hardware.

More generally, your context affects your perceptions. Kant claimed that
we never have direct experience of the ‘noumenal’ world, but rather
experience ‘phenomena’ as conveyed by our senses [Kant]. This differs
slightly from Plato’s cave [Plato], where prisoners in a cave see shadows
on a wall rather than directly experience what is real, in that it does not
presuppose a prototypical universe where there is one true Form for
everything e.g. one true sort algorithm. Rather, for Kant what we
experience is through the filter of our senses and, if you will allow me, our
preconceptions. We see events happening in space and time and so may
conclude one event, which always comes first, causes another. The theory
of relativity may seem to upset this view somewhat, though is not
incompatible with the idea that our perspective or standpoint influences
what we perceive. As Nelson probably never said “I see no ships”
[Nelson]. Or was that “bugs”, or “shops”? It just depends on your
standpoint. It is possible to trace the history of ideas from Kant to Einstein,
but this would be something of a digression.

Having got your tool chain in place, how will your development proceed?
Is there ‘One, true way’ or just what currently works, given the targeted
hardware, teams competency, current trend, legal requirements and so on?
Does it matter if some team members write tests after they write the code,
rather than before? Or perhaps having any form of tests at all seems like
pure luxury. How will you deploy any software you write? If you have a
continuous delivery setup then a failing test or a broken build may seem
less dramatic than a continuous integration set up with a top rule: don’t

check-in on a broken build [Thoughtworks]. Furthermore, broken tests
overnight might not work for a distributed team. Do you have a prod
environment, or even a testing environment, or can you just release new
features straight to you customers and fix things as you go? Again, the
context will matter. What works for free mobile phones applications may
not be appropriate for air traffic control software.

Even having decide to buy or acquire libraries, tool chains, compilers,
hardware or more generally other digital items such as music or films, will
they end up cluttering up your house or work space? Many things are
running on virtual machines or moving off to the cloud. There is a
noticeable trend towards having e-books, rather than dead tree versions
and further, people will now pay for entertainment to be streamed from
the internet rather than own a hard copy. What will happen when the lights
go off? Clearly this is a topic for another day. For now, let me conclude
by saying I am now the proud owner of far too many socks, the reasons
for which I will not bore you with, but I still have several high street store
vouchers left, and probably need to buy a new chest of drawers to
accommodate the new socks. Unless I find a way to stream socks. Once
you attempt to shop, you have started on a slippery
slope, I assure you. I will try to avoid attempting to buy
anything before the next issue of Overload and hope
normal service will finally be resumed by then.

References
[FxCop] http://msdn.microsoft.com/en-us/library/

bb429476(v=vs.80).aspx

[Google] https://code.google.com/p/google-styleguide/

[Kant] Critique of Pure Reason, 1781

[Language] http://en.wikipedia.org/wiki/Language_and_thought

[Nelson] http://en.wikiquote.org/wiki/Talk:Horatio_Nelson

[netmq] https://github.com/zeromq/netmq

[Nuget] https://www.nuget.org/packages?q=zeromq

[Plato] The Republic (or see https://www.princeton.edu/~achaney/tmve/
wiki100k/docs/Allegory_of_the_cave.html)

[Resharper] http://www.jetbrains.com/resharper/

[SO] http://stackoverflow.com/questions/16782409/visual-studio-2012-
and-program-compatibility-assistant

[Sutter and Alexandrescu] C++ Coding Standards: 101 Rules, Guidelines
and Best Practises, Herb Sutter and Andrei Alexandrescu, Addison
Wesley, 2004

[Thoughtworks] http://www.thoughtworks.com/continuous-integration

[VS] http://www.visualstudio.com/en-us/downloads/visual-studio-14-
ctp-vs.aspx
August 2014 | Overload | 3

http://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
https://code.google.com/p/google-styleguide/
http://en.wikipedia.org/wiki/Language_and_thought
http://en.wikiquote.org/wiki/Talk:Horatio_Nelson
https://github.com/zeromq/netmq
https://www.nuget.org/packages?q=zeromq
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Allegory_of_the_cave.html
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Allegory_of_the_cave.html
http://www.jetbrains.com/resharper/
http://stackoverflow.com/questions/16782409/visual-studio-2012-and-program-compatibility-assistant
http://stackoverflow.com/questions/16782409/visual-studio-2012-and-program-compatibility-assistant
http://www.thoughtworks.com/continuous-integration
http://www.visualstudio.com/en-us/downloads/visual-studio-14-ctp-vs.aspx
http://www.visualstudio.com/en-us/downloads/visual-studio-14-ctp-vs.aspx

FEATURE ANDY BALAAM
Does Test-Driven Development
Harm Clarity?
Is clarity the key thing to aim for when writing
software? Andy Balaam considers if TDD
harms clarity and if this matters.
n a recent keynote at RailsConf called ‘Writing Software’1, David
Heinemeier Hansson [Hansson] argues that test-driven development
(TDD) can harm the clarity of our code, and that clarity is the key thing

we should be aiming for when writing software.

It’s an excellent talk, and I would highly recommend watching it,
especially if you are convinced (like me) that TDD is a good thing.

I was inspired by watching the video. Clarity certainly is extremely
important, and the name he coins, Software Writer, sits better with me than
Software Engineer or Software Developer. I have often felt Programmer
was the best name for what I am, but maybe I will adopt Software Writer.

The real goal
I would argue that clarity is not our goal in writing software. I think our
goal is:

Working, modifiable software

Clarity helps us feel confident that our software works because we can read
the code and understand what it does.

Clarity helps us modify our software because we can understand what
needs to be changed and are less likely to make mistakes when we change it.

A good set of full-system-level tests helps us feel confident that our
software works because they prove it works in certain well-defined
scenarios. A good set of component-level and unit tests gives us confidence
that various parts work, but as David points out, confidence in these
separate parts does not give us much meaningful confidence that the whole
system works.

Good sets of tests at all levels help us modify our software because we are
free to refactor (or re-draft as David puts it). Unit and component tests give
us confidence that structural changes we are making don’t modify the
external behaviour of the part we are re-structuring. Once we have made
enabling structural changes, the changes we make that actually modify the
system’s behaviour are smaller and easier to deal with. The tests that break
or must be written when we modify the system’s behaviour help us
understand and explain the behaviour changes we are making.

So both clarity and tests at all levels can contribute to our goal of writing
working, modifiable software.

But David wasn’t talking about tests – he was talking about TDD – driving
the design of software by writing tests.

How TDD encourages clarity
Before I talk about how we should accept some of what David is saying,
let’s first remind ourselves of some counter-points. TDD is explicitly
intended to improve our code.

I agree with David when he defines good code as clear code, so how does
TDD encourage clarity?

TDD encourages us to break code into smaller parts, with names.
Smaller, named classes and functions are clearer to me than large blocks
of code containing sub-blocks that do specific jobs but are not named.
When I write in a TDD style I find it encourages me to break code into
smaller parts.

TDD encourages us to write code that works at a single level of
abstraction. Code that mixes different levels is less clear than code at a
single level. I find that using TDD helps me resist the temptation to mix
levels because it encourages me to compose two pieces that deal separately
with each level, rather than linking them together.

It is vital to point out here that TDD doesn’t push you towards clarity unless
you already wanted to go there. I have seen TDD code that is unclear,
stuffed full of boilerplate, formed by copy-paste repetition, and is generally
awful. As a minimal counter-example, TDD doesn’t stop you using terrible
names for things.

But, when you care about clarity, and have an eye for it, I feel TDD can
help you achieve it.

How TDD hurts clarity
David’s argument against TDD is that it makes us write code that is less
clear. His main argument, as I understand it, is:

TDD forces us to use unnecessary layers of abstraction. Because we
must never depend on ‘the world’, TDD forces us to inject dependencies
at every level. This makes our code more complex and less clear.

At its core, we must acknowledge that this argument is true. Where TDD
causes us to inject dependencies that we otherwise would not inject, we
are making our code more complex.

However, there are elements of a straw man here too. Whenever I can, I
allow TDD to drive me towards systems with fewer dependencies, not
injected dependencies. When I see a system with fewer dependencies, I
almost always find it clearer.

Test against the real database?
David frequently repeats his example of testing without hitting the
database. He points out that allowing this increases complexity, and that
the resulting tests do not have anything like as much value as tests that do
use the database.

This hurts, because I think his point is highly valid. I have seen lots of bugs,
throughout systems (not just in code close to the database) that came from

I

Andy Balaam is happy as long as he has a programming language
and a problem. He finds over time he has more and more of each.
You can find his many open source projects at artificialworlds.net or
contact him on andybalaam@artificialworlds.net

1. Caution – contains swearing
4 | Overload | August 2014

FEATUREANDY BALAAM
wrong assumptions about how the database would behave. Testing a wide
range of functionality against the real database seems to be the only answer
to this problem. Even testing against a real system that is faster (e.g. an in-
memory database) will not help your discover all of these bugs because
the faster database will have different behaviour from the production one.

On the other hand, tests that run against a real database will be too slow
to run frequently during development, slowing everything down and
reducing the positive effects of TDD.

I don’t know what the answer is, but part of it has got to be to write tests
at component level, testing all the behaviour that is driven by database
behaviour, but not requiring huge amounts of other systems to be spun up
(e.g. the web server, LDAP, other HTTP endpoints) and run these against
the real database as often as possible. If they only take about 5 minutes
maybe it’s reasonable to ask developers to run them before they commit
code.

But my gut tells me that running tests at this level should not absolve us
from abstracting our code from the production database. It just feels Right
to write code that works with different storage back ends. We are very
likely to have to change the specific database we use several times in the
history of our code, and we may well need to change the paradigm e.g.
NoSQL → SQL.

In a component that is based on the database, I think you should unit test
the logic in the standard TDD way, unit test the database code (e.g. code
that generates SQL statements) against a fast fake database, AND
comprehensively test the behaviour of the component as a whole against
a real database. I admit this looks like a lot of tests, but if you avoid “dumb”
unit tests that e.g. check getters and setters, I think these 3 levels have 3
different purposes, and all have value.2

Injecting the database as a dependency gives us the advantage of our code
having two consumers, which is one of the strongest arguments put
forward by proponents of TDD that it gives us better code. All
programmers know that there are only three numbers: 0, 1 and more. By
having ‘more’ users of our database code, we (hopefully) end up with code
that speaks at a single level e.g. there are no SQL statements peppered
around code which has no business talking direct to the database.

Clarity of tests
In order for tests to drive good APIs in our production code, and for them
to serve as documentation, they must be clear. I see a lot of test code that
is full of repetition and long methods, and for me this makes it much less
useful.

If our tests are complex and poorly factored, they won’t drive good practice
in our production code. If we view unclear tests as a smell, the fixes we
make will often encourage us to improve the clarity of our production code.

If our tests resemble (or actually are) automatically-generated dumb
callers of each method, we will have high coverage and almost value from
them. If we try to change code that is tested in this way, we will be thwarted
at every turn.

If, on the other hand, we write tests that are clear and simple expressions
of behaviour we expect, we will find them easy to understand and maintain,
they will drive clear code in production, and sometimes we may realise
we are writing them at a higher level than unit tests. When this happens,
we should ‘float freely’ with David and embrace that. They are testing
more. That is good.

Higher-level tests
David (with the support of Jim Coplien [Coplien]) encourages us to test
at a coarser grain than the unit. I strongly agree that we need more emphasis
on testing at the component and system levels, and sometimes less unit
testing, since we don’t want write two tests that test the same thing.

However, there are some problems with larger tests.

First, larger tests make it difficult to identify what caused a problem. When
a good unit test fails, the problem we have introduced (or the legitimate
change in behaviour) is obvious. When a component or system test fails,
often all we know is that something is wrong, and the dreaded debugging
process must begin. In my experience, this is not just a myth. One of the
pieces of code that I am most proud of in my career was a testing
framework allowed you to write concise and clear tests of a horrible
tangled mess of a component. The tests ran fairly quickly, with no external
dependencies being used, but if one of them failed your heart sank.

Second, large tests can be fragile. Sometimes they fail because the database
or network is down. Sometimes they fail because your threads did stuff in
an unexpected order. Threading is a really good example: when I want to
debug a weird threading issue I want to write an unthreaded test that throws
stuff at a component in a well-defined but unusual order. When I can get
that test to fail I know I’ve found a real problem, and I can fix it. If the
code is not already unit tested (with dependencies being injected,
sometimes) then writing that test can be really difficult.

TDD makes our code testable, and while testability (like clarity) is not an
end in itself, it can be darn useful.

Conclusion

Good things
 Clarity is good because it supports working, modifiable code.

 Tests are good because they support working, modifiable code.

 Testability is good because it supports tests, especially debugging
tests.

 TDD is good when it supports clarity, testability and tests.

TDD is bad when it hurts clarity.

If you throw out TDD, try not to throw out tests or testability. You will
regret it.

What to do
 Write tests at the right level. Don’t worry if the clearest level is not

the unit level.

 Use tests to improve clarity.

 If your tests are unclear, there is something wrong. Fix it.

Steps to success
1. Get addicted to TDD.
2. Wean yourself off TDD and start to look at the minimal set of tests

you can write to feel that sweet, sweet drug of confidence.
3. Do not skip step 1.

References
[Coplien] Jim Coplien – https://sites.google.com/a/gertrudandcope.com/

www/jimcoplien

[Hansson] ‘Writing Software’ – keynote at RailsConf 2014.
http://www.confreaks.com/videos/3315-railsconf-keynote

First published
This article was first published at:

http://www.artificialworlds.net/blog/2014/05/09/does-test-driven-
development-harm-clarity/

2. Writing the logic TDD encourages smaller units of logic, and gives
confidence that it is correct. Testing the database code against a fake
database gives confidence that our syntax is right, and testing the
whole component against the real database gives us confidence that
our behaviour really works.
August 2014 | Overload | 5

http://www.confreaks.com/videos/3315-railsconf-keynote
https://sites.google.com/a/gertrudandcope.com/www/jimcoplien
https://sites.google.com/a/gertrudandcope.com/www/jimcoplien
http://www.artificialworlds.net/blog/2014/05/09/does-test-driven-development-harm-clarity/

FEATURE SERGEY IGNATCHENKO
Musings on Python –
by a C++ Developer
Python and C++ are very different languages.
Sergey Ignatchenko walks through things in
Python that can confuse a C++ programmer.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translators
and editors. Please also keep in mind that translation difficulties from Lapine
(like those described in [Loganberry04]) might have prevented an exact
translation. In addition, the translator and Overload expressly disclaim all
responsibility from any action or inaction resulting from reading this article.

uring my vacation in Watership Down warren, I met a fellow rabbit
developer who’s got some experience with developing in Python,
after spending quite a while worshiping C++. Below is my humble

attempt to express his feelings about Python in a more or less literary form.
It doesn’t aim to be a comprehensive analysis of the subject, but rather a
set of things the guy himself has run into (YMMV).

The good

Ad-hoc typing
When I see a bird that walks like a duck and swims like a duck

and quacks like a duck, I call that bird a duck.
~ James Whitcomb Riley

One good thing about Python is its ad-hoc typing system (which is known
in Python world as ‘duck typing’). I’ve observed that it does speed up
initial development quite a bit.

In any language, it is common to write something specific, and then to
generalize it. In C++, it is doable, but difficulties related to generalization
are quite substantial. In fact, you can either generalize via making a
function virtual (relying on common base class), or making it a template.
I won’t discuss the advantages and disadvantages of each of the approaches
here, but in any case you’re expected to spend some time performing this
generalization. If you prefer (or need, as it routinely happens with
containers) the C++ template route, the necessary textual changes are
massive (even when they’re mostly mechanical), and debugging of the
generalized program requires quite an effort (to put it mildly); in fact, it is
such a big effort that many developers won’t do it at all, and those who
will, will think twice before going the template way. If going down the
virtualization route, changes are not that massive (though are still
substantial), but you’re introducing a common base class, which is
essentially a dependency which often leads to strange problems down the
road (like multiple inheritance with virtual base classes etc.); while these
problems can always be solved, solving them takes time, and this is my
point here.

In contrast, in Python you don’t need to do anything special to make your
code generic. In fact, each and every piece of code becomes as generic as
possible at the very moment it is written. For example, with code such as

 def f(x,y):
 return x*y

you don’t care about types of x and y, as long as they support
multiplication. While in C++ it can be written as a template quite easily,
the amount of textual changes necessary when converting a function f
from int f(int x, int y) to its template counterpart will be quite
substantial (and if we consider more complicated functions, the
complexity will rise further).

It should be noted that in Python you can (and should) use classes more
or less like in C++. However, in Python you have an option not to do so
(in trivial cases) – and this flexibility often saves quite a lot of development
time.

Overall, it is not about ‘what you can do’ in Python and in C++ (whatever
you can do in Python, you can do in C++), but more of ‘what you can do
faster’. This matters, because the more time you need to spend on
technicalities related to your programming language, the less time you
have left for the task in hand; in a sense, it is similar to an argument between
assembler and C developers 40 or so years ago (I don’t want to say that
C++ will follow the fate of assembler, at least not yet).

A word for those who have arguments about advantages of strong typing
– I will tell a bit about these advantages too, so please keep reading until
you reach ‘The bad’ section :-).

Garbage collection with RAII support
One thing which I like about Python is that while it is garbage collected,
it has explicit support for Resource Allocation Is Initialization (RAII).
Garbage collection IMHO does speed development up (though contrary
to common belief you still need to be careful to avoid memory leaks
[Ignatchenko12]). On the other hand, some garbage-collected
programming languages (notably Java, at least at the time I last saw it) have
a problem that freeing resources becomes really cumbersome and error-
prone.

Let’s consider the C++ class File, which opens a file in constructor, and
closes it in the destructor. It means that even if there was an exception, then
when my object of class File goes out of scope, the file is closed and the
resource is freed. Good, but we don’t have garbage collection in C++.

The same class File in Java won’t be able to have a real destructor (there
are no destructors in Java). In Java, to guarantee that you always close all
the relevant files, you have three and a half options. Option 1 is to find all
places where you have instantiated File, enclose them in try-finally
blocks, and close file manually in each finally block. Horrible. Option 1a
is a variation of Option 1, based on the ‘execute around’ pattern. Basically,
you’re declaring a function wrapper which allocates resource, then calls

D

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He is currently holding the position of Security
Researcher. Sergey can be contacted at sergey@ignatchenko.com

From a philosophical perspective, one can think of classical pre-template
C++ (which relies on virtual functions) as having an ‘it matters who you
are’ paradigm, while C++ templates and Python in general, relying on a
quite different ‘it matters what you can do’ approach.

A philosphical approach
6 | Overload | August 2014

FEATURESERGEY IGNATCHENKO

One good thing about Python is its ad-hoc
typing system (which is known in Python

world as ‘duck typing’)
whatever function you need via an interface (doing it within try-
finally block), and then frees allocated resource. As long as you can
make sure that class File is used only within such a wrapper – it is not
‘horrible’ anymore, just ‘very cumbersome’.

Option 2 looks a bit better on the surface – in Java you can define a
finalize() function, which looks like ‘almost a destructor’.
Unfortunately, this ‘almost’ kills the whole idea: due to the very nature of
garbage collection, Java cannot guarantee when exactly finalize() will
be called; it means all kinds of trouble, including the program passing all
the tests but failing in production. For example, you have file.close()
in finalize(), and then re-open the same file somewhere down the
road. It just so happens during the tests that finalize() is called before
re-opening, and all tests pass, but in production finalize() is
sometimes called later than re-opening the file, and therefore re-opening
the file fails (to make things worse, it will invariably fail intermittently and
at the very worst time to make debugging even more complicated).
Overall, there is pretty much a consensus that finalize() should not
be used for a generic resource cleanup. Ouch. In fact, this ‘how to
guarantee that resources are always freed when they’re not necessary
anymore’ problem has always been my biggest complaint about Java.

Option 3 (thanks to Roger Orr for pointing it out): if you’re lucky enough
to run Java 7, you may implement the java.lang.AutoCloseable
interface and then write code such as:

 try (MyClass x = new MyClass(/*...*/))
 //'try-with-resources' statement
 {
 x.method("this might throw");
 } // x.close() is called in any case

Not bad – and we can say that Java 7 does support both RAII and garbage
collection.

In a manner which is quite similar to Java 7, Python provides a neat way
of expressing RAII. In Python, you can declare your class with special
functions like __entry__() and __exit__() (and many of Python’s
own objects such as the file object, implement them too). Then, you can
write something like:

 with open(“myfile.txt”,”r”) as f:
 #work with f
 #more work with f
 #at this point, f.__exit__() will be called

For me, it solves all my resource allocation concerns (and Python has
garbage collection too). Oh, and while we’re on the subject of garbage
collection and finalizers in Python – a word of advice: never declare
Python finalizers (__del__() functions) unless you really know
what it means (Python __del__() causes very different behavior from
the Java finalize()).

Usable Lambdas
I didn’t think that I would ever be able to write anything good about lambda
functions for any practical purpose, but here it is: lambda functions in

Python are surprisingly readable and useful. They have a very simple
syntax, and they’re limited, but they’re very readable. Compare:

Plain C++11:

 1 sort(myVector.begin(), myVector.end(),
 2 [](const MyClass& a, const MyClass& b)
 3 { return a.x < b.x; }
 4);

Python:

 sort(myList, key=lambda a: a.x)

I have never been a fan of one-line expressions just for the sake of being
one-line, but the Python version is not only a one-line, it is obvious from
the very first glance, while the C++ version requires quite a lot of time to
parse when reading.

It should be noted that the point of the example above is not about
begin() and end() in C++ line 1 or comparison in C++ line 3; as we’re
discussing lambdas, the difference under consideration is about C++ line
2 (and inevitable curly brackets from line 3).

As it was pointed out by Jens Auer in accu-general, the boost::lambda
library (BLL) allows much shorter way of writing it.

 boost::lambda library:

 sort(myVector.begin(), myVector.end(),
 _1.x < _2.x);

Still, I’d argue that while certainly shorter than plain C++, it is not exactly
readable compared to Python version – first, numbered parameters are
definitely worse than Python’s named ones, and second, unless you know
about BLL (and most developers don’t as of now), such code becomes
extremely confusing. Honestly, for a C++ project with more developers
than just me I don’t know which way I’d use – cumbersome plain C++ or
a much shorter BLL with a comment for each such lambda saying /*
boost lambda */, so an unaware reader knows how to Google it (with
Python syntax, it is quite self-documented).

NB: Obviously, it is possible to write a non-lambda wrapper for a specific
task of sorting a vector, but this won’t get us any closer to having usable
and readable lambdas, which this section is about. While it is perfectly
possible to write code without lambdas at all, usable and readable lambdas
do simplify development (not by much, but every bit counts), and having
to write a non-lambda wrapper for each scenario where lambdas are useful,
defeats the whole purpose of lambdas.

NB #2: there is a caveat related to lambdas in Python, please see ‘The
ugly’section

Standard library
The standard library in Python is huge and is very-well organized. It
includes 90% of the things one may want from an application-level library;
overall, having pretty much everything included into the standard Python
library is often referred to with the ‘Python. Batteries Included’ phrase.
With all due respect to the enormous efforts of boost:: folks, matching
functionality with the Python library isn’t going to happen (and probably
August 2014 | Overload | 7

FEATURE SERGEY IGNATCHENKO
is not aimed for) – there are just so
many things in there, including
cryptography, wide protocol and
file format support, database
interface libraries, etc. etc. Once
again, it is not about ‘you
cannot do it in C++’, but
about ‘how long it will
take to do’.

Let us now consider some
of the most important parts of
the Python standard library.

Collections are supported at
language level, and include tuples
(somewhat similar to return of C++’s
std::make_tuple()) , l i s t s (s imi lar to
std::vector<>), dictionaries (similar to
std::unordered_map<>), and sets
(similar to std::unordered_set<>).
Notably missing (well, you can use the
bintrees package but it is not exactly
‘standard library’) are tree-based
maps/sets which allow fast ordered
iterations over large datasets.

Assertions are first-class citizens and are recognized at language level,
which is a good thing. They also allow specification of the message to
report in case of assertion failure – if you feel like it.

Furthermore, the packages profile and cProfile provide a rather
convenient built-in means of profiling of your program.

Regular expressions in Python are very efficient and are aided by ‘raw
string’ literals. ‘Raw string’ literals are useful because the escaping rules
for ‘\’ in default C++ strings and default Python strings tend to make
regexps quite cumbersome and poorly readable. In Python (as well as in
C++11), there is an elegant way around it: whenever you prefix string
literal with ‘r’ (such as r"\([0-9]*\)"), the escaping rules for
backslashes will be different, which allows you to write regular
expressions in quite a natural way.

Built-in unit testing framework
Having a built-in unit testing framework is a good thing in any language.
For weakly typed languages such as Python, integrated unit testing
(especially automated regression testing) becomes an absolute must.
Fortunately, Python has support for it too (for details, see the unittest
package).

Performance
For those who want to write Python off due to performance issues, I have
a word of advice: don’t rush. While it is perfectly possible to find an
application where Python’s performance (or as some C/C++ developers

will probably say, Python’s lack of performance)
will make a difference, the chances are that you won’t be able
to see the difference in your program. In 99% of business

applications, 99% of code is ‘glue code’, and for 99% of
‘glue code’, Python’s performance will be more than
enough.

Of course, if you’re developing some non-
s t anda rd compu t a t i on -

intensive stuff such as a
video decoder, you will
probably be out of luck.
However, if you will run
into situation where you
need to write certain parts
in C/C++, Python will
provide a way to call your
DLLs / . so ' s (t he

appropriate Python package
is ctypes).

The bad
If you’ve read until this
point, you may think that

I’m a Python missionary on a quest to convert as many
people as possible. Don’t worry, I will mention bad sides of Python too.

Ad-hoc typing
While ad-hoc typing does have its advantages (as was discussed above),
it has a big problem too, and this is a lack of scalability. Let me elaborate
a bit. If you’re creating an ad-hoc object such as (1,2,3) (similar to
std::make_tuple(1,2,3)), it works very well for those cases where
you need just to pass it from one point to another point, without going into
hassle of declaring things. However, ad-hoc typing doesn’t really scale –
as soon as you’re using the same ad-hoc type in 10 places, and it does need
to be the same in all 10 places, code maintenance becomes a nightmare.

Many Python developers seem to realize the problem, and several
workarounds have been created. In particular, I’ve found namedtuple
package to be quite useful (in a sense, it is a close cousin of C++ struct):

C++:

 struct X { int i; string s; }

Python:

 X = namedtuple('X', ['i','s'])

On the other hand, more recent development of the Python abstract base
classes (package abc) feels like a contradictio in adjecto: it is like writing
in Python using C++ paradigms, which defeats the advantages of one while
not providing benefits of the other one.

An ideal IMHO would be an environment where I could write ad-hoc types
without declaring them (while they are still small), and then, whenever I
feel that they became too large to be ad-hoc, to change them (just by adding
8 | Overload | August 2014

FEATURESERGEY IGNATCHENKO
declarations where necessary, and not
changing the actual code(!)) to strict
typing. I have some ideas in this regard, though it is a
bit too early to describe them.

Performance
In general, Python performs surprisingly well
fo r a s c r i p t i ng l anguage . S t i l l , i f
computationally intensive work is involved,
one may end up with a need to rewrite big
chunks of the program (or even the whole
program). Also, multithreading, while
technically possible, does not allow
performing calculations on more than one core
(see below).

Multithreading
Multithreading in Python is a
joke; well, it is at least for
those of us coming from a
non-Pythonic world. Due to the fact
that all data processing in Python is
made under the so-called Global
Interpreter Lock (GIL), trying to
perform calculations on two
cores in two threads is doomed
(well, it will work, but it won’t
work any faster – and
probably a tad slower –
than s ingle- threaded
code). It limits the usage
of multithreading to the
cases when a thread is
blocked due to I/O wait. Technically speaking, while the default Python
distribution uses cPython which does have a GIL, GIL is not a restriction
of Python as such, so you may be able to get away with using something
like Jython or IronPython (I didn’t try it myself though).

If you need to perform computational-intensive calculations in parallel
while using the default cPython, there is still an option to spawn another
process (which will have its own GIL so you will be able to calculate things
in parallel). An appropriate Python package is multiprocessing, and
it is quite convenient (in fact, it has an interface which is very similar to
that of the threading package). However, you should keep in mind that
under the hood it relies on marshaling/unmarshaling of all the parameters
passed to the working process (and of all the values returned back), so if
your parameters and/or return values are large you can easily get quite a
performance hit. Which in turn can be overcome (at least in theory) by
using shared memory, but this has a caveat too – shared memory cannot
contain anything but very simple data. Overall, you can end up with a
scenario where you’ll essentially be forced to write the computational code
in C/C++.

The ugly
Every programming language has its own peculiarities, and Python

is not an exception. I will try to point out a few items which looked
quite unusual to me after coming from a mainly C++ world.

‘Pythonic’
When speaking to Pythonic developers (whether in person or in
forums) there is a big chance that you’ll run into somebody who with

almost religious zealousy will tell you, “You shouldn’t write it this
way, because it is not ‘Pythonic’”. In fact, way too often ‘Pythonic’

becomes a synonym to “I believe that it is the
only way of doing it; I cannot explain why, so I’m

telling it is ‘Pythonic’”. Fortunately, in more
or less populated forums (such as

StackOverflow), usually
there are enough people
wh o m ake su r e t h a t
wha te ve r i s c a l l ed

‘Pythonic’ makes sense. Still,
ongoing arguments about
something being ‘Pythonic’ (or

‘not Pythonic’) can be rather
annoying.

Python 3
Whereupon the emperor his father
published an edict, commanding

all his subjects, upon great
penalties, to break the smaller

end of their eggs.
~ Jonathan Swift, circa 1726

With all due respect to Guido
van Rossum, I s t rong ly

believe that the approach taken with Python 3 is a huge mortgage-crisis-
sized mistake. What has happened with Python 3 is that developers were
told that Python 3 will be incompatible with Python 2. No smooth
migration, no gradual deprecation, just ‘all or nothing# migration path
(well, with a helper ‘2to3’ tool which ‘sorta’ converts Python 2 source code
to Python 3). Moreover, certain constructs which are allowed in both
Python 2 and Python 3, have a subtly different meaning in Python 3 (one
such example is dict.items()). This has lead to enormous confusion
and significant reluctance to move towards Python 3 (in fact, the adoption
rate of Python 3 was reported to be as low as 2% 5 years after it has been
introduced [Hiltmon14]).

Without going into Blefuscian-Lilliputian discussions of “What is better –
to suffer from imperfections of Python 2 in Python 3 or to have better but
incompatible Python 3?”, I’ll try to summarize the current situation:

 the official position of Guido and the Python core team is that all
new development SHOULD be done in Python 3
August 2014 | Overload | 9

FEATURE SERGEY IGNATCHENKO
 however, if you have Python as a part of a 3rd-party application
(which tend to use Python 2, as they need to support older scripts
written in Python 2) – you’re pretty much doomed to Python 2

 moreover, as there is a ‘2to3’ tool which ‘sorta’ converts your code
from Python 2 to Python 3 (and there is no tool which converts code
back – from Python 3 to Python 2), one way to have code which
supports both Python 2 and Python 3, is to keep your codebase in
Python 2. Alternatively, you may write in a dialect known as
Polyglot (which works in both Python 2 and Python 3), though it has
been argued that Polyglot is the worst language out of Python 2,
Python 3, and Polyglot [Faassen14].

Phew, this is ugly indeed. To make it even uglier, there were even
suggestions to stop supporting Python 2 to force migration to Python 3
[Faassen2014]. One thing I wonder about is how those people would stop
a huge Python 2 community from creating an unofficial fork with ongoing
support for Python 2 (it is open source, after all)?

Semantics of whitespace
Python is a quite unusual language in that it relies on whitespace to provide
semantic data (or in other words – changing whitespace can change
semantics of the program in Python). For example,

 if a < b:
 x = 1
 y = 2

and

 if a < b:
 x = 1
 y = 2

are two different programs producing different results.

The Python approach has both advantages and disadvantages. On the
positive side, it enforces code readability. On the negative side, it has
several issues (in practice, rather minor if you are careful):

 you need to be careful when switching between windows using Alt-
Tab: there is a substantial chance that an accidentally added tab can
go unnoticed but will break your code, ouch

 you need to make sure that ‘diff’ tool which you’re using with your
source control system, does not ignore whitespace

 instead of an endless C/C++/C#/Java debate of “Where is the right
way to put curly brackets?” it leads to another endless debate of
“What is the right thing to use – tabs or spaces?” As it doesn’t matter
any more than which end of the egg is broken, the only thing which
matters is consistency. And as such, I prefer to stick to the (widely
accepted) recommendation from [PEP8]: use spaces, with 4 spaces
per indentation level. Why? Just for the sake of consistency.

Lambdas within loops
With all the good things said about lambdas in Python, there is one thing
to keep in mind: if you try to use lambda which captures variables within
a loop, it won’t work as you might have expected. For details, refer, for
example, to [StackOverflow-1]. The best workaround I was able to find is
a direct replacement with a function object. Instead of not-working-as-
expected:

 for i in range(10):
 a[i] = lambda x: x+i
 #every a[i] function will use the same i=10

you can use, for example, an almost equivalent but working as you (or at
least me) would intuitively expect:

 class MyLambda:
 def __init__(self,i):
 self.i = i
 def __call__(self):
 return x+self.i
 #...
 for i in range(10):
 a[i] = MyLambda(i)

There are other alternatives too, see, for example, [StackOverflow-1] and
[StackOverflow-2] for details.

Overall, this is rather annoying, but is not that a big deal when you know
about it.

Optimizing performance
Optimizing the performance of a Python program is very different from
optimizing a C or C++ counterpart. For a Python program, instead of an
‘I can write it myself’ approach, one should look for highly optimized
(a.k.a. ‘written in C’) functions from the Python standard library. Just one
example: when we’ve needed to read a multi-megabyte text file accounting
for ‘universal line endings’ (either \r or \n), the standard Python library
did rather a poor job. Rewriting it to byte-by-byte processing (which
would help in C/C++) has only made things worse, as more work for
Python bytecode is rarely a good thing. However, when we became
creative and started reading the file in chunks (each chunk being several
kilobytes in size, so it usually contained multiple lines), pre-creating a
regular expression pattern

 eol_pattern = re.compile(r'([^\r\n]*)([\r\n])')

and using

 line = eol_pattern.match(chunk,
 current_pos_within_chunk)

on the chunk to extract the next line (with an appropriate handling of
double-symbol line endings), we got about a 2x speed improvement over
the standard Python library universal line handling (which apparently was
pure Python and was not that creative in this regard). The reason for this
is quite obvious: the regular expression library is a heavily optimized C
code, and when we pushed most of the processing there instead of doing
it in Python, we got quite an improvement.

Conclusion
The guy who told me this story, is of the opinion (which I may or may not
share) that Python is by far the best language available for writing ‘glue’
code. Yes, it has its quirks, but for most of the business-level code it is
clearly ‘good enough’, and whenever top performance is necessary, C/C++
code can be integrated rather easily.

From my perspective, I would say that as both C++ and Python are Turing-
complete,: you can always implement any practical program in both of
them (well, assuming that Church-Turing thesis stands). In practice, of
course, there are restrictions such as, ‘Will we live long enough to write
the program?’ (an argument for C++ over asm and for Python over C++)
and ‘Will we live long enough for the program to execute?’ (an argument
in the opposite direction). As usual, it is all about choosing right tool for
the job.

References
[Faassen14] ‘The Gravity of Python 2’, Martijn Faassen,

http://blog.startifact.com/posts/python-2-gravity.html

[Hiltmon14] ‘Python: It’s a Trap’, Hilton Lipschitz, http://hiltmon.com/
blog/2014/01/04/python-its-a-trap/

[Ignatchenko12] ‘Memory Leaks and Memory Leaks’, Sergey
Ignatchenko, Overload 107, February 2012

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[PEP8] http://legacy.python.org/dev/peps/pep-0008

[StackOverflow-1] http://stackoverflow.com/questions/1841268/
generating-functions-inside-loop-with-lambda-expression-in-
python

[StackOverflow-2] http://stackoverflow.com/questions/938429/scope-
of-python-lambda-functions-and-their-parameters

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.
10 | Overload | August 2014

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://blog.startifact.com/posts/python-2-gravity.html
http://hiltmon.com/blog/2014/01/04/python-its-a-trap/
http://hiltmon.com/blog/2014/01/04/python-its-a-trap/
http://legacy.python.org/dev/peps/pep-0008
http://stackoverflow.com/questions/1841268/generating-functions-inside-loop-with-lambda-expression-in-python
http://stackoverflow.com/questions/1841268/generating-functions-inside-loop-with-lambda-expression-in-python
http://stackoverflow.com/questions/938429/scope-of-python-lambda-functions-and-their-parameters
http://stackoverflow.com/questions/938429/scope-of-python-lambda-functions-and-their-parameters

FEATURELEN HOLGATE
Activatable Object
Using locks will slow down threaded code.
Len Holgate demonstrates how an Activatable
Object can reduce the time spent blocked.
n Activatable Object is a variation on the ACTIVE OBJECT PATTERN

[Wikipedia-1] in which the object does not run on a thread of its own
but instead borrows one of the calling threads to process operations.

Activatable Objects can be used to replace objects that can be accessed by
multiple-threads and that have state that can only be manipulated by one
thread at a time. They play nicely with threads in thread pools and allow
for scaling to vast numbers without burdening the process with an
excessive number of threads.

Background
I work on high performance networking systems on Windows platforms
and these deal with many thousands of concurrent connections each of
which is represented by a connection object with complex state. Things
such as SSL and asynchronous f low cont ro l requi rements
[ServerFramework] mean that when I/O events occur on a connection it’s
often necessary to ensure that only one thread is manipulating the
connection object’s state at a given time. Since multiple I/O events can
occur at the same time for a given connection and since ‘user code’ could
also be calling into the connection object to initiate new I/O requests it is
often necessary to protect these objects with locks. Unfortunately using
locks in this way meant that threads are often blocked by other threads
whilst operations are processed on the connection. See Figure 1.

In Figure 1, we have a thread-safe connection object whose internal state
is protected by a lock. Given the threads 1, 2, 3 & 4 with the four work
items A, B, C & D, the threads are serialised and block until each can
process its own operation on the object. This is bad for performance, bad
for contention and bad for locality of reference as the thread-safe object
can be bounced back and forth between different CPU caches as different
threads enter the object to perform work. It also means that a lock is held
whilst the threads do their work on the object. Holding a lock like this
makes it more complicated to call back into ‘user code’ as it’s easy to cause
lock inversions if you hold locks whilst calling into code that you don’t
own [DrDobbs].

Active Objects, where the object itself contains a thread and where
operations are passed to that thread via a work queue, can’t help here as
we do not wish to use one thread per connection as this does not scale
[Kegel]. The preferred method of high performance I/O on Windows is to
use I/O Completion Ports and this method can scale to tens of thousands

of concurrent connections with but a small number of threads. In this kind
of system a small number of threads reside in a thread pool and perform
work on the connections as I/O operations complete.

The Activatable Object that I describe in the rest of this article enables
efficient command queuing from multiple threads where commands are
only ever processed on one thread at a time, minimal thread blocking
occurs, no locks are held whilst processing and an object tends to stay on
the same thread whilst there’s work to be done with it.

Reducing thread blocking
The amount of time that a thread needs to block on an object can be reduced
by adding a per-object queue of operations to be performed. If we state that
all operations must be placed into this queue before being processed and
only one thread can ever own the right to remove and process operations
then we have a design whereby a single thread will process an operation
and any additional operations that occur whilst the thread is processing will
be queued for processing by that same thread.

Obviously the per-object operation queue needs to be thread-safe and so
we need to lock before accessing it. We also need a way to indicate that a
thread has ownership of the queue for processing. The important thing is
that the processing thread does not hold the queue lock whilst it is
processing and so threads with operations for this object are only blocked
by other threads with operations for this object whilst one of them is
holding the lock to add its operation to the queue rather than for the
duration of all operations that are ahead of it in the queue.

In general, it should be cheaper to marshal the command and command
data into the work queue and onto to the processing thread than it is to move
the object to the thread that is issuing the command, both in terms of the
enqueue/dequeue process that is required and in terms of locality of
reference [Wikipedia-2]. This is generally true for my use cases as the
connection objects are usually pretty heavy weight and the commands are
generally marshalling pointers to memory buffers. Any marshalling costs
are also mitigated by the fact that the alternative thread-safe object would
block the calling thread until all previous operations have been completed
on the object whereas the Activatable Object only blocks the thread if the
work queue is locked by another thread.

In the diagram below three operations for an Activatable Object occur
simultaneously and the first thread, thread 1, enters the work queue lock,
adds its operation to the queue and sees if any other threads are processing.
During this time the other two threads must wait. See Figure 2.

Note that it’s possible to optimise the processing of an operation if the work
queue is empty and there is currently no thread processing by avoiding the

A

Figure 1

34 2

11

A

BCD

Object is locked whilst
Thread 1 processes work

item A. Other threads wait.

Len Holgate has been programming for far too long and currently
specialises in server-side C++ on Windows platforms. He worked
for investment banks in London for several years before switching
to working for clients directly from his office in Guildford, Surrey.
You can contact him at len.holgate@jetbyte.com
August 2014 | Overload | 11

FEATURE LEN HOLGATE

it should be cheaper to marshal the command
and command data into the work queue and onto

to the processing thread than it is to move the
object to the thread that is issuing the command
enqueue/dequeue steps and allowing thread 1 to become the processing
thread and process the operation directly.

Once thread 1 is processing it releases the lock on the queue and enters the
object to process the operation. Thread 2 can then obtain the lock on the
queue and enters to add its operation to the queue and see if any other thread
is processing. See Figure 3.

Since thread 1 is processing, thread 2 simply enqueues its operation and
returns to do other work. Thread 3 can then enter the lock that protects the
queue. See Figure 4.

As thread 1 is still processing, thread 3 also simply enqueues its operation
and returns. See Figure 5.

When thread 1 has completed processing its operation it needs to give up
the right to be the ‘processing thread’. To ensure that operations are
processed efficiently it must first check the queue for more operations to
process and process those before leaving the object to do other work. If

another operation occurs whilst thread 1 is checking the queue then the
thread with the operation, in this case thread 4, will block for a time. See
Figure 6.

Thread 4 can then enter the queue, check to see if it can process and if it
cannot then enqueue its operation for processing by the processing thread.
See Figure 7.

Eventually the processing thread will reach a point where no further
operations are queued for the object and it can surrender ‘processing mode’
and return to do other work. See Figure 8.

The key features of the design used above are as follows:

 Operations can be enqueued quickly and efficiently so that the lock
around the object’s operation queue is held for the least amount of
time possible.

 Only one thread can be ‘processing’ at any given time.

Figure 2

11

A

3 2

BC

Object’s queue is locked
whilst Thread 1 sees if it can
process. Other threads wait.

Figure 3

11

3

C

2

B

A

Thread 1 enters object to process work item
A. Object is NOT locked during processing.

Thread 2 locks queue and
sees if it can process.

Thread 3 waits.

Figure 4

11

3

C B

A

Thread 1 continues to
process work item A.

Thread 2 leaves work item B
in the queue.

Thread 3 will lock
the queue as soon
as Thread 2 has left.

Figure 5

11
C

B

A

Thread 1 continues to
process work item A.

Thread 3 locks the queue,
finds that it can’t process and
leaves work item C in the

queue.

Figure 6

14

CD

B

Object’s queue is locked
whilst Thread 1 sees if it can
stop processing. It can’t as
there are queued work

items.

Thread 4 waits.

Figure 7

11

C

D

B

Thread 1 continues to
process work items B and C.

Thread 4 leaves work
item D in the queue.
12 | Overload | August 2014

FEATURELEN HOLGATE
 The processing thread removes all queued operations when it checks
the queue.

 Locks are not held whilst processing occurs.

When I was designing this code for integration into my networking system
several other requirements emerged during integration:

 The processing thread must be able to enqueue a new operation.

 Some operations require that they are processed synchronously,
before the thread that is to enqueue them is released to do other work
as the other work may require that the operation on the object has
already been processed.

The final requirement for synchronous operations introduces some
complication as these operations should block each other but not affect
threads with asynchronous operations. This requires a second lock and an
event for the blocking threads to wait on. If a processing thread discovers
other threads waiting to process synchronous operations it relinquishes
processing and allows one of the waiting threads in to process. That thread
processes its operation and then continues to process any queued
operations in the usual way, unless, of course, there’s another thread
waiting to process.

A synchronous operation works exactly the same as all operations would
on the alternative thread-safe object but doesn’t affect any of the
asynchronous operations. Obviously a thread executing a synchronous
operation on an Activatable Object will block until the asynchronous
operations that are currently being processed are complete, but this is the
same situation as would be encountered with a thread-safe object.

Whilst my current implementation of an Activatable Object includes
support for synchronous operations it's possibly a better design to preclude
these and rely solely on commands which can be completed
asynchronously.

No returns
One thing that you may have noticed is that none of the operations that are
performed on the Activatable Object can return a result. All are fully
asynchronous and are initiated in a ‘fire and forget’ style. If results need
to be delivered somewhere then this must be done asynchronously, usually
via some form of callback interface or by adding the result to another
Activatable Object’s input queue.

Implementation details
One of the key pieces of the C++ design that I ended up with was the
simplicity of the command queue. In my implementation this is just a
simple memory buffer which can be expanded when it fills up. Each
command is represented by a one byte value and a variable number of
parameter bytes. The user of the queue is responsible for adding their
commands and deblocking the commands once a thread is processing. To
enable a swift switch from inserting data into the queue to processing the

queued commands I have two queues; the active queue and the processing
queue. When a thread makes the transition to processing mode it swaps
the active queue for the processing queue and processes all of the
commands in the processing queue. New commands are always queued to
the active queue. There’s a lock around the active queue which must be
acquired before you can manipulate the active queue and a separate lock
to enter processing mode.

When attempting to leave processing mode a thread must first check the
active queue for commands. If the active queue contains commands then
it must swap the active queue for the, now empty, processing queue and
continue processing. A thread can only leave processing mode when both
the active and processing queues are empty. This in turn means that when
there are lot of operations to be performed on a given object in a short
period of time it’s usually a single thread that will end up doing all of the
work.

It’s possible that an ‘over-active’ Activatable Object could never
relinquish control of a thread. If a constant stream of work items comes in
at a rate that means there’s always work to do then the processing thread
will just continue processing. In many designs this isn’t an issue, but it
could be a problem if you’re using a fixed sized pool of threads and
expecting to share the threads between a larger number of objects with a
lot of work to do. In this situation I’ve found that the Activatable Object
needs to know a little more about how work is fed to the threads that service
it. It’s then often possible to have the object decide that it has done enough
for now and have the processing thread stop processing even if there are
items left in the object’s work queue. Care must be taken to ensure that
the object will eventually have these outstanding work items processed.

An important consequence of the Activatable Object design is that the
processing thread need not hold any lock whilst processing. Locks are only
held when manipulating the command queue or entering and leaving
processing mode. This simplifies command processing code as the
processing thread can safely call into user-defined callbacks without risk
of creating lock inversions.

Acknowledgements
Thanks to Chris Oldwood for encouraging me to adjust my original blog
posting and write it up for Overload. He also helpfully pointed out the
Active Object similarity which was obvious once he’d mentioned it but
didn’t occur to me initially. Thanks also to Fran, the Overload editor, for
making the whole process of submitting an article so painless.

References
[DrDobbs] http://www.drdobbs.com/cpp/avoid-calling-unknown-code-

while-inside/202802983

[Kegel] ‘Dan Kegel’s Web Hostel’, http://www.kegel.com/
c10k.html#threaded

[ServerFramework] http://www.serverframework.com/
asynchronousevents/2011/06/tcp-flow-control-and-asynchronous-
writes.html

[Wikipedia-1] http://en.wikipedia.org/wiki/Active_object

[Wikipedia-2] http://en.wikipedia.org/wiki/Locality_of_reference

Previously published
This article was previously published at:

http://www.lenholgate.com/blog/2014/07/efficient-multi-
threading.html

Figure 8

11

D

Thread 1 again checks to see
if it can stop processing and
then continues to process
work item D. Once this is

done if no more work items
are queued then it will return

to other work.
August 2014 | Overload | 13

http://en.wikipedia.org/wiki/Active_object
http://www.drdobbs.com/cpp/avoid-calling-unknown-code-while-inside/202802983
http://www.drdobbs.com/cpp/avoid-calling-unknown-code-while-inside/202802983
http://www.lenholgate.com/blog/2014/07/efficient-multi-threading.html
http://www.serverframework.com/asynchronousevents/2011/06/tcp-flow-control-and-asynchronous-writes.html
http://www.serverframework.com/asynchronousevents/2011/06/tcp-flow-control-and-asynchronous-writes.html
http://en.wikipedia.org/wiki/Locality_of_reference
http://www.kegel.com/c10k.html#threaded
http://www.kegel.com/c10k.html#threaded

FEATURE CHRIS OLDWOOD
KISSing SOLID Goodbye
Can you remember what SOLID stands for?
Chris Oldwood distills it down to two easy to
remember principles.
he SOLID acronym and the design principles behind it have been the
guiding light for achieving good object-orientated (OO) designs for
as long as I can remember. It also features in nearly every job

interview I’ve attended, and yet I have to revise it because I can never
remember exactly what each of the letters stands for!

Over the last few years the reason for my inability to remember these 5
core design principles has become apparent – they are just not dissimilar
enough to make them memorable. You would think that any design review
meeting where OO was being used as the fundamental paradigm would
feature one or more of these terms at almost every turn. But no, there are
two other terms which I find always seem better suited and universally
covers all the SOLID principles, but with much less confusion – Separation
of Concerns (SoC) and Program to an Interface (PtaI).

This article attempts to highlight the seeming redundancy in the SOLID
principles and shows where either of the two terms above could be used
instead. This does not mean the SOLID principles themselves have no
intrinsic value, individually they may well hold a much deeper meaning,
but that at a higher level, which is where you might initially look for
guidance, it is more beneficial to keep it simple (KISS).

Already on shaky ground
In recent years I have seen a number of talks where this theme has come
up. Kevlin Henney, a man who seems to know a thing or two about object-
orientated design (amongst many other things), has given a talk where he
has deconstructed SOLID [Henney11] and even provided (in collaboration
with Anders Norås) his own alternative – FLUID [Henney12].

More recently I attended a talk at the 2014 ACCU conference by James
Grenning [Grenning14] about applying the SOLID principles to a non-
native OO language – C. During this talk he raised a similar question about
which are the two core principles of SOLID, and provided the Single
Responsibility Principle (SRP) and the Dependency Inversion Principle
(DIP) as his selection.

Whilst the recognition that there is some duplication within the SOLID
principles is useful, I wanted to avoid the confusion that would result from
trying to always pick two of the five and then use them consistently in any
future discussion. What I realised is that I’ve naturally always side-stepped
this issue by using the terms Separation of Concerns (SoC) and Program
to an Interface (PtaI) instead.

The remainder of this article looks at each of the SOLID principles and
frames them within the context of the two more generalised ones. Rather
than discuss them in acronym order I’ve therefore grouped them in two so
they are discussed collectively under the same banner.

Separation of concerns
The basis of the Separation of Concerns (SoC) principle is not specifically
within software design; it transcends that and applies to many other
pursuits in life too, such as writing. Consequently it is far less prescriptive
in nature, instead preferring only to state that ‘stuff’ should be thought of
in a different light to other ‘stuff’. The exact nature of that stuff, how big
it is, what it does, who owns it, etc. is entirely context dependent. In terms
of a software system we could be talking about the client and server, or
marshalling layer and business logic, or production code and test code. It’s
also entirely possible that the same two areas of discussion be considered
separate in one context and yet be united in another, e.g. subsystems versus
components.

Single Responsibility Principle
It should be fairly obvious that the Single Responsibility Principle (SRP)
is essentially just a more rigid form of SoC. The fact that an actual value
has been used to define how many responsibilities can be tolerated has lead
some to taking this principle literally, which is why I’ve found a personal
preference for the more general term.

The subtext of SRP is that any class should only ever have one reason to
change when that class has a single, well-defined role within the system.
For example, I once worked on a codebase where a class was used to enrich
an object model with display names for presentation. The class that did the
enriching looked similar to Listing 1.

When it came to testing the class a virtual method was introduced to allow
the HTTP request to be mocked out; however virtual methods in C# are
often a design smell [Oldwood13]. Although it might seem that the class
has only one responsibility – enrich the object model with data – in this
instance it really has two:

 Make the remote HTTP call to retrieve the enrichment data

 Transform the object model to include the presentation data

When it comes to further responsibilities later, such as error handling of
the remote call, caching of data, additional data attributes, etc. the entire
responsibility of the class grows and often for more than one reason –
HTTP request invocation or object model transformation.

T

Listing 1

public ProductNameEnricher : Enricher
{
 public void Enrich(Order order)
 {
 // code to make HTTP request to retrieve
 // product details

 // code to transform the object model
 }
}

Chris Oldwood is a freelance developer who started out as a
bedroom coder in the 80's writing assembler on 8-bit micros; these
days it's C++ and C#. He also commentates on the Godmanchester
duck race and can be contacted via gort@cix.co.uk or @chrisoldwood.
14 | Overload | August 2014

FEATURECHRIS OLDWOOD

The exact nature of that stuff, how big it is,
what it does, who owns it, etc. is entirely

context dependent
Hence the two concerns can be split out into separate classes that can then
be independently tested (therefore removing the need for the virtual
method), e.g. see Listing 2.

Interface Segregation Principle
The clue that the Interface Segregation Principle (ISP) is just a
specialisation of SoC is the use of the word ‘segregation’. Replace it with
‘separation’, jiggle the words around a little and soon you have Separation
of Interfaces.

The idea behind ISP is that although a class may support a rich interface,
its clients are quite often only interested in a (common) subset of those at
any one time. Consequently it would be better to split the interface into
just the surface areas that are commonly of interest. A typical example of
this is a class for manipulating files or in-memory streams:

 public class MemoryStream
 {
 void Read(byte[] buffer, int count);
 void Write(byte[] buffer, int count);
 }

It is more prevalent for a client to only be concerned with reading or writing
to/from a stream at any one time. Therefore we can use the Extract
Interface refactoring [Fowler] and split those responsibilities into two
separate interfaces (see Listing 3).

Program to an interface
I first came across the expression ‘program to an interface, not an
implementation’ when reading the seminal work on Design Patterns by
the Gang of Four [GoF]. The idea is that you should not (need to) care about
how a class is implemented, only that its interface provides you with the
semantics you require. Unlike languages such as Java and C#, C++
(amongst others) does not support interfaces as a first-class concept which
means the notion of ‘interface’ is somewhat subtler than just the methods
declared within an independently defined interface-style type.

Where the two SOLID principles that fall into the SoC category above are
fairly easily to guess from their names alone, the latter three are probably
a little more obscure. And this, I feel, is in stark contrast to the name of
this encompassing principle.

Liskov Substitution Principle
The Liskov Substitution Principle (LSP) is usually ‘explained’ by quoting
directly from it. What it boils down to is the proposition that two types are
related if one can be used in place of the other and the code still works
exactly as before. One less intuitive example of this would be switching
containers in C++ (see Listing 4).

Listing 2

public ProductService : ProductFinder
{
 public Product[] FindProducts(...)
 {
 // code to make HTTP request to retrieve
 // product details
 }
}

public ProductNameEnricher : Enricher
{
 public void Enrich(Order order)
 {
 var products = _proxy.FindProducts(...);

 Enrich(order, products);
 }

 private static void Enrich(order, products)
 {
 // code to transform the object model
 }

 private readonly ProductFinder _proxy;
}

Listing 3

public interface Reader
{
 void Read(byte[] buffer, int count);
}

public interface Writer
{
 void Write(byte[] buffer, int count);
}

public class MemoryStream : Reader, Writer
{
 void Read(byte[] buffer, int count);
 void Write(byte[] buffer, int count);
}

Listing 4

int sum(const std::vector<int>& values)
{
 int sum = 0;
 for (auto it = values.begin();
 it != values.end(); ++it)
 sum += *it;
 return sum;
}

August 2014 | Overload | 15

FEATURE CHRIS OLDWOOD

If the client only depends on abstractions,
then the opportunity to substitute different
implementations becomes possible
In this example the container could be replaced with std::dequeue or
std::list and the program would still compile, execute and give the
exact same result. And yet none of the C++ containers derive from a
common ‘container interface’; they merely implement the same set of
methods to provide the same semantics and can therefore be considered
directly substitutable.

Interestingly Kevlin Henney, in the first talk I saw about SOLID
[Henney11], made the observation that the Liskov Substitution Principle
states that a condition of the relationship is based on there being “no
change in the program’s behaviour”. The example above adheres precisely
to that constraint. However many interpret the principle as allowing
substitution if it conforms to the same abstract interface, despite the fact
that the implementation of that interface could produce a program that does
something completely different (Listing 5).

Whichever way you interpret it, the ability to substitute one
implementation for another is predicated on the need of the two
implementations to confirm to the same interface, and for the consumer
of that interface to only invoke it in such a way that is compatible with the
common semantics of all potential implementations.

Dependency Inversion Principle
Whilst LSP considers what it means for the client code to be able to
consume similar types based on semantics, the Dependency Inversion
Principle (DIP) tackles how the implementation can be physically
partitioned without the client needing direct access to it. If the client only
depends on abstractions, then the opportunity to substitute different
implementations becomes possible. And because the details of the
abstraction is all that is required by the client, then the implementation can
live in a different part of the codebase.

The ‘inversion’ aspect comes from the idea of a layered architecture where
the consuming code that only relies on the abstraction can live in the lower
layers whilst the actual implementation can live in the higher ones. In an

onion-like architecture the abstractions can live in the core whilst the
implementations live in the outer service layers.

The word ‘abstraction’ could be considered as synonymous with
‘interface’ if considering it in the context of a programming language that
supports it as a first-class concept. In a duck typing environment the subtler
meaning is harder to translate as there is nothing concrete to use as an aid
in ensuring you’re only relying on the abstract behaviour. Either way
Program to an Interface is really another way of saying Program to an
Abstraction.

Open/Closed Principle
The Open/Closed Principle (OCP) has taken quite a beating in recent times
with the likes of Jon Skeet [Skeet13] putting it under the microscope. It
appears that some have taken the ‘closed for modification’ aspect quite
literally meaning that the code cannot be modified under any
circumstances, even to fix a bug! Others have interpreted it a little more
liberally and employed polymorphism as a means to shield both the caller
and 3rd party (i.e. uncontrolled) implementations from change.

For example, in languages where polymorphism is not supported as a first-
class concept, such as C, switching on a field holding an object’s
underlying ‘type’ is a common way of varying behaviour (Listing 6).

With direct support for polymorphism the client code reduces to a single
line and is ‘open for extension’ without requiring modification of the caller
by virtue of the fact that any new subclasses will be automatically
supported:

 shape->Draw();

Similarly an implementation can be made ‘open for extension’ by breaking
the functionality down into small, focused methods that can be overridden
piecemeal by a derived class, e.g. via the Template Method design pattern
[Wikipedia]. See Listing 7.

In both these cases the mechanism that decouples the client from the
implementation and allows the implementation to be composed at an
abstract-level is the interface. Whilst inheritance is a common choice for
implementation reuse, composition is more desirable due to its lower
coupling. The interface provides the means of describing the extensible
behaviour.

Listing 5

public interface Writer
{
 void Write(string message);
}

public class FileWriter : Writer
{
 void Write(string message);
}

public class DatabaseWriter : Writer
{
 void Write(string message);
}

Listing 6

switch (shape->type)
{
 . . .
 case Shape::Square:
 DrawSquare((const Square*)shape);
 break;
 case Shape::Circle:
 DrawCircle((const Circle*)shape);
 break;
 . . .
}

16 | Overload | August 2014

FEATURECHRIS OLDWOOD

Whilst inheritance is a common choice
for implementation reuse, composition

is more desirable
If taken in a literal sense the notion of programming to an interface
encourages the design of abstractions rather than concrete types which in
turn promotes looser coupling between caller and callee. Consequently it
also relaxes the need to rely on inheritance as the sole method of extension
and instead paves the way for composition to be used as an alternative.

Further simplification
In a private conversation about this idea Kevlin Henney mused that you
could even drop Program to an Interface as that is in itself just another
variation of the Separation of Concerns principle:

“If you think about it, Programming to an Interface is an articulation
of separating concerns: separate interface from implementation,
have dependent code work in terms of interface, i.e., separate from
implementation dependency.”

Whilst in theory this is an interesting observation, I not sure what, if any,
practical value it has. Einstein once said “Everything should be made as
simple as possible, but no simpler”. The reduction of SOLID down to just
the Separation of Concerns and Program to an Interface principles feels to
me to be a valuable simplification, whilst the above would be a step too far.

Summary
The goal of this article was to reduce the five core SOLID principles to a
more manageable and memorable number for the purposes of everyday

use. Instead of getting distracted with the finer details of SOLID I’ve
shown that the two more generalised principles of Program to an Interface
and Separation of Concerns are able to provide just as much gravitas to
shape a software design.

Acknowledgements
This article is merely a refinement of similar ideas already put forward.
As such I’m just standing on the shoulders of the giants that are Kevlin
Henney and James Grenning. The Overload peer reviewers have also
helped me stand on my tippy-toes to see that little bit further afield.

References
[Fowler] ‘Refactoring: Improving the Design of Existing Code’ by

Martin Fowler – http://refactoring.com/catalog/extractInterface.html

[GoF] Design Patterns: Elements of Reusable Object-Oriented Software
by Ralph Johnson, John Vlissides, Richard Helm, and Erich Gamma

[Grenning14] ‘Designing SOLID C’ by James Grenning (ACCU
Conference 2014) – http://www.slideshare.net/JamesGrenning/
solid-c-accu2014key

[Henney11] ‘Will the Real OO Please Stand Up?’ by Kevlin Henney
(ACCU 2011 conference) – http://accu.org/content/conf2011/
Kevlin-Henney-Will-the-Real-OO-Please-Stand-Up.pdf and
http://www.slideshare.net/Kevlin/solid-deconstruction

[Henney12] ‘SOLID deconstruction’ by Kevlin Henney (ACCU 2012
conference) – http://accu.org/content/conf2012/
Kevlin_SOLID_Deconstruction.pdf and http://www.slideshare.net/
Kevlin/introducing-the-fluid-principles

[Oldwood13] ‘Virtual Methods in C# Are a Design Smell’ by Chris
Oldwood – http://chrisoldwood.blogspot.co.uk/2013/09/virtual-
methods-in-c-are-design-smell.html

[Skeet13] ‘The Open-Closed Principle’, in review by Jon Skeet –
http://msmvps.com/blogs/jon_skeet/archive/2013/03/15/the-open-
closed-principle-in-review.aspx

[Wikipedia] ‘Template Method from Design Patterns’ –
http://en.wikipedia.org/wiki/Template_method_pattern

Listing 7

class DocumentPrinter
{
public:
 virtual void Print(Document doc)
 {
 PrintHeader(doc);
 PrintBody(doc);
 PrintFooter(doc);
 }
protected:
 virtual void PrintHeader();
 virtual void PrintBody();
 virtual void PrintFooter();
};
August 2014 | Overload | 17

http://refactoring.com/catalog/extractInterface.html
http://www.slideshare.net/JamesGrenning/solid-c-accu2014key
http://www.slideshare.net/JamesGrenning/solid-c-accu2014key
http://accu.org/content/conf2011/Kevlin-Henney-Will-the-Real-OO-Please-Stand-Up.pdf
http://accu.org/content/conf2011/Kevlin-Henney-Will-the-Real-OO-Please-Stand-Up.pdf
http://www.slideshare.net/Kevlin/solid-deconstruction
http://accu.org/content/conf2012/Kevlin_SOLID_Deconstruction.pdf
http://accu.org/content/conf2012/Kevlin_SOLID_Deconstruction.pdf
http://www.slideshare.net/Kevlin/introducing-the-fluid-principles
http://www.slideshare.net/Kevlin/introducing-the-fluid-principles
http://chrisoldwood.blogspot.co.uk/2013/09/virtual-methods-in-c-are-design-smell.html
http://chrisoldwood.blogspot.co.uk/2013/09/virtual-methods-in-c-are-design-smell.html
http://msmvps.com/blogs/jon_skeet/archive/2013/03/15/the-open-closed-principle-in-review.aspx
http://en.wikipedia.org/wiki/Template_method_pattern

FEATURE SEB ROSE
TDD Discussions and
Disagreements
Recently people have been arguing about the
benefits and pitfalls if TDD. Seb Rose summarises
the differing standpoints and presents his own.
n recent weeks, a TDD debate has been raging (again) in the blog-o-
sphere and on Twitter. A lot of big names have been making bold
statements and setting out arguments, of both the carefully constructed

and the rhetorically inflammatory variety. I’m not going to revisit those
arguments – go read the relevant posts, which I have collected in a handy
timeline at the end of this post.

Everyone is right
Instead of joining in the argument, I want to consider a conciliatory post
by Cory House entitled ‘The TDD Divide: Everyone is right’. He proposes
an explanation for these diametrically opposed views, based upon where
you are in the software development eco-system:

Software ‘coaches’ like Uncle Bob believe strongly in TDD and
software craftsmanship because that’s their business. Software
salespeople like Joel Spolsky, Jeff Atwood, and DHH believe in
pragmatism and ‘good enough’ because their goal isn’t perfection.
It’s profit.

This is a helpful observation to make. We work in different contexts and
these affect our behaviour and colour our perceptions. But I don’t believe
this is the root cause of the disagreement. So what is?

How skilled are you?
In Japanese martial arts they follow an age old tradition known as Shu Ha
Ri, which is a concept that describes the stages of learning to mastery. This
roughly translates as “first learn, then detach, and finally transcend”. (I
don’t want to overload you with Japanese philosophy, but if you are
interested, please take a look at Endo Shihan’s short explanation.)

This approach has been confirmed, and expanded on, in modern times by
research conducted by Stuart and Hubert Dreyfus, which led to a paper
published in 1980. There’s a lot of detail in their paper, but Figure 1 shows
the main thrust of their findings.

For me, the important point is that novices follow rules and ‘don’t know
what they don’t know’. They need to be given unambiguous instructions
while they learn what’s important.

At the other end of the spectrum, experts use their intuition and
metacognition (an awareness and understanding of one’s own thought
processes). They often can’t accurately describe how or why they arrived
at a particular decision.

Who are they talking to?
When presenting information it’s important to
understand who your audience is. Material that’s
suitable for novices is often not useful for experts.
Material for experts can be dangerous in the hands
of novices.

Some of the contributors to the TDD debate do try
to indicate who they are writing for, but most don’t.
And even when you do say something like “for
experts only” you’re leaving it to the reader to decide
if they are an expert or not, which is a decision that
we are poorly equipped to make. In fact, the Dunning-Kruger effect shows
that people who are in the early stages of acquiring a skill frequently
overestimate their competence, while those who are very skilled tend to
underestimate it.

The internet is an open resource. No matter what sort of health warning
you put on your blog posts, they will inevitably be read by people of
differing skill levels. And therein lies the problem. The bloggers have an
implicit idea of who their audience is – and it might not be you.

The people who warn against TDD usually come from environments
where the team is working at competent level or above and that’s who they
are talking to. If you respond to these posts by thinking “Oh cool. This
person is saying that I don’t have to do this difficult thing” then you’re
probably a novice. Carry on practising until it becomes easy and then you’ll
know why they didn’t find it useful.

Those who promote TDD often work with teams that are less skilled and
they have seen the benefits that derive from acquiring these skills. If TDD
is something you’ve already become comfortable with, then you’ll know
why you’ve chosen not to use it any more and it won’t be “because it was
difficult”.

To TDD or not to TDD. That is not the question.
TDD is a technique that has costs and benefits. Whether it is right for you
and your colleagues depends on your team’s context – the domain, the skill
level, the schedule, the risk. Like any technique, it’s no use if you do it
badly. Like any technique, it can neither help nor hinder if you don’t apply
it. If you want to get good at TDD you have got to practice it.

I

Seb Rose is an independent software developer, trainer and
consultant based in the UK. He specialises in working with teams
adopting and refining their agile practices, with a particular focus on
automated testing. He first worked as a programmer in 1980 writing
applications in compiled BASIC on an Apple II. He has worked with
many mainstream technologies since then, and is a regular
conference speaker, contributor to O’Reilly’s 97 Things Every
Programmer Should Know and co-author of the Pragmatic
Programmer’s The Cucumber-JVM Book.

Figure 1
18 | Overload | August 2014

FEATURESEB ROSE

The internet is an open resource. No matter
what sort of health warning you put on your

blog posts, they will inevitably be read by
people of differing skill levels
You will need to get good at writing robust unit tests that exercise the
behaviour not the implementation. You will find yourself getting better at
creating designs that are made up of smaller, cohesive, decoupled
components. You will have an automated suite of tests that give you fast
feedback, the confidence to refactor and protection from regressions. You
will have executable documentation that doesn’t rot over time.

If your development process doesn’t deliver these benefits, you’ll have
inevitably felt the pain caused by long debugging sessions, unexpected
regressions, poorly structured code and stale (or missing) documentation.
There will be parts of the codebase where you fear to tread.

You can acquire unit testing and design skills without practicing TDD, but
many people find that the structure of TDD really helps keep focus. Once
you get good, you’ll be competent (or better) in all these skills and well
placed to decide whether the cost of TDD outweighs the benefits or not.
The skills you’ve picked up on the way will be invaluable whichever
choice you make.

But if you’ve never tried TDD, or you’ve never practised enough to be
comfortable with it, then you’re still a novice. My advice is to keep on
practising – it’ll be worth it.

Teaching TDD (TTDD)
Another flurry of discussion about TDD was sparked off by a recent post
from Justin Searls [Searls]. In it he lists a number of failures that range from
“Encouraging costly Extract refactors” to “Making a mess with mocks” all
of which distract attention from the concept that “TDD’s primary benefit is
to improve the design of our code”. He concludes by suggesting that once
you have written a failing test, rather than get-to-green (see Figure 2) in
the simplest way possible you should “intentionally defer writing any
implementation logic! Instead, break down the problem by dreaming up all
of the objects you wish you had at your disposal”. In essence, design the
elements of the solution while the first test is still red.

It’s an interesting post that raises a number of issues, but for me its value
lies chiefly in opening the subject up for debate. The introduction is
particularly pertinent – just setting a class a bundle of katas to do does not,
of itself, encourage learning. The pains experienced while doing the

exercise need to be teased out, discussed and have alternative approaches
described. If you don’t hear the penny drop, then it hasn’t dropped.

Pitching in with characteristic vigour and brimstone came Uncle Bob with
a robust rebuttal containing both heat and light (though some have been
put off by the heat and never got to the light). Bob makes some good points
regarding the fallacy of writing tests around extracted classes, the tool
support for extract refactoring and the central place of refactoring in the
Red-Green-Refactor cycle.

By the conclusion, however, Bob has switched tack. He states that while
refactorings are cheap within architectural boundaries, they are expensive
across them. Whether he’s right or wrong on this point1 is of no concern
because now he’s addressing the wrong question. The question at hand is
“how is it best to teach TDD?” and it was taken up in a short Twitter
exchange between me, Kevlin Henney and Mike Long.

Mike, being hard-core, says that he teaches TDD by “start[ing] with writing
the test framework. Start from assert and up.” There’s much more to
discover about this approach, and it’s certainly reminiscent of how Kent
Beck learns a new language (by reimplementing xUnit).

Kevlin, in an e-mail, is more discursive. He works with a mixture of
prepared material, discussions, instructor-led demonstrations and learning
exercises. There are katas in the material, but there’s lots of interaction to
draw out the key points and really get them to stick.

In my TDD training, I start by focusing on fundamental unit testing
practices. The key word here is ‘fundamental’. TDD is unit testing++, so
you need to have a firm grasp of what a good unit test looks like. We work
through a series of simple bank account examples (in pairs, using Cyber-
Dojo, of course [CyberDojo]) that bring out the 6 essential properties of
unit testing [Rose12]. I then use an example (based on an idea of Rob
Chatley [Chatley]) to introduce test doubles before moving into one of my
own legacy code exercises. In-between I use a couple of the katas that ship
with Cyber-Dojo – usually LcdDigits and PrintDiamond – to get a more
varied domain experience.

There are lots of ways to teach TDD and Justin Searls has certainly
identified one way of doing it sub-optimally. I have to disagree with his
conclusion that the fix for this is to defer implementation till after the
solution design is fully sketched out. At the opposite end of the spectrum
is Keith Braithwaite‘s “TDD as if you meant it” [Braithwaite09] which is
an exercise you can (and should) try at home.

In my opinion, the success of any training is dependent on the trainer – the
material is of secondary importance. So if you decide that some TDD
training is for you, remember to think about who is training you, not just
how long the course is and how much it costs.

Figure 2

1. Grady Booch once said: “All architecture is design but not all design is
architecture. Architecture represents the significant design decisions
that shape a system, where significant is measured by cost of change.”
Steve Tooke pointed me to an old post by Nat Pryce, which hints at a
different trade off between change and cost. After all, when was the last
time you were perfectly happy with an ‘architectural’ decision that was
made more than a week ago by somebody else?
August 2014 | Overload | 19

FEATURE SEB ROSE

In my opinion, the success of any training is
dependent on the trainer – the material is of
secondary importance
References
[Braithwaite09] Keith Braithwaite, (2009) ‘Thought-provoking TDD

exercise at the Software Craftmanship conference’, February 2009.
http://gojko.net/2009/02/27/thought-provoking-tdd-exercise-at-the-
software-craftsmanship-conference/

[Chatley] Robert Chatley http://chatley.com/

[CyberDojo] Cyber-dojo website: cyber-dojo.org

[Rose12] ‘Bad Test, Good Test’, Seb Rose, available on slideshare,
http://www.slideshare.net/sebrose/bad-test-good-test

[Searls] Justin Searl’s blog: http://blog.testdouble.com/

Selected posts and tweets
September 30, 2008 – Kent Beck

http://stackoverflow.com/questions/153234/how-deep-are-your-
unit-tests/153565#153565

Unknown date, 2009 – J.B. Rainsberger
http://www.jbrains.ca/permalink/how-test-driven-development-
works-and-more

October 6, 2011 – Ian Cooper
http://codebetter.com/iancooper/2011/10/06/avoid-testing-
implementation-details-test-behaviours/

May 1, 2013 – Steve Fenton
http://www.stevefenton.co.uk/Content/Blog/Date/201305/Blog/My-
Unit-Testing-Epiphany/

May 13, 2013 – Steve Fenton
http://www.stevefenton.co.uk/Content/Blog/Date/201305/Blog/My-
Unit-Testing-Epiphany-Continued/

July 15, 2013 – Philip Ledgerwood
http://thecuttingledge.com/?cat=5

January 13, 2012 – Dan North
https://twitter.com/tastapod/status/157633913009864704

June 12, 2013 – Ian Cooper
http://vimeo.com/68375232

January 25, 2014 – Justin Searls
http://blog.testdouble.com/posts/2014-01-25-the-failures-of-intro-
to-tdd.html

January 27, 2014 – Uncle Bob
http://blog.8thlight.com/uncle-bob/2014/01/27/
TheChickenOrTheRoad.html

February 25, 2014 – Santiago Basulto
https://medium.com/tech-talk/e810d9b4fb02

April 23, 2014 – David Heinemeier Hansson
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-
testing.html

April 25, 2014 – Uncle Bob
http://blog.8thlight.com/uncle-bob/2014/04/25/
MonogamousTDD.html

April 29, 2014 – Kent Beck
https://www.facebook.com/notes/kent-beck/rip-tdd/
750840194948847

April 29, 2014 – David Heinemeier Hansson
http://david.heinemeierhansson.com/2014/test-induced-design-
damage.html

April 30, 2014 – Gary Bernhardt
https://www.destroyallsoftware.com/blog/2014/tdd-straw-men-and-
rhetoric

April 30, 2014 – Uncle Bob
http://blog.8thlight.com/uncle-bob/2014/04/30/When-tdd-does-not-
work.html

April 30, 2014 – Tom Stuart
http://codon.com/how-testability-can-help

May 1, 2014 – Uncle Bob
http://blog.8thlight.com/uncle-bob/2014/05/01/Design-
Damage.html

May 1, 2014 – Cory House
http://www.bitnative.com/2014/05/01/the-tdd-divide/

Acknowledgements
The diagram in Figure 2 was provided by Nat Pryce.

Previously published
This article was previously published at:
http://claysnow.co.uk/to-tdd-or-not-to-tdd/ and http://claysnow.co.uk/
teaching-tdd-ttdd/
20 | Overload | August 2014

http://blog.testdouble.com/
cyber-dojo.org
http://stackoverflow.com/questions/153234/how-deep-are-your-unit-tests/153565#153565
http://www.jbrains.ca/permalink/how-test-driven-development-works-and-more
http://codebetter.com/iancooper/2011/10/06/avoid-testing-implementation-details-test-behaviours/
http://www.stevefenton.co.uk/Content/Blog/Date/201305/Blog/My-Unit-Testing-Epiphany/
http://www.stevefenton.co.uk/Content/Blog/Date/201305/Blog/My-Unit-Testing-Epiphany-Continued/
http://thecuttingledge.com/?cat=5
https://twitter.com/tastapod/status/157633913009864704
http://vimeo.com/68375232
http://blog.testdouble.com/posts/2014-01-25-the-failures-of-intro-to-tdd.html
http://blog.8thlight.com/uncle-bob/2014/01/27/TheChickenOrTheRoad.html
https://medium.com/tech-talk/e810d9b4fb02
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://blog.8thlight.com/uncle-bob/2014/04/25/MonogamousTDD.html
https://www.facebook.com/notes/kent-beck/rip-tdd/750840194948847
http://david.heinemeierhansson.com/2014/test-induced-design-damage.html
https://www.destroyallsoftware.com/blog/2014/tdd-straw-men-and-rhetoric
http://blog.8thlight.com/uncle-bob/2014/04/30/When-tdd-does-not-work.html
http://codon.com/how-testability-can-help
http://blog.8thlight.com/uncle-bob/2014/05/01/Design-Damage.html
http://www.bitnative.com/2014/05/01/the-tdd-divide/
http://claysnow.co.uk/to-tdd-or-not-to-tdd/
http://www.slideshare.net/sebrose/bad-test-good-test
http://chatley.com/
http://gojko.net/2009/02/27/thought-provoking-tdd-exercise-at-the-software-craftsmanship-conference/
http://claysnow.co.uk/teaching-tdd-ttdd/
http://claysnow.co.uk/teaching-tdd-ttdd/

	Overload122.pdf
	Shop ’til you Drop
	Does Test-Driven Development Harm Clarity?
	Musings on Python – by a C++ Developer
	Activatable Object
	KISSing SOLID Goodbye
	TDD Discussions and Disagreements

