

October 2014 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Debug Complexity: How Assertions Affect
Debugging Time
Sergey Ignatchenko and Dmytro Ivanchykhin extend
their mathematical model of debug complexity.

8 Alternative Overloads
Malcolm Noyes presents ways to return a default
value given a condition in C++.

12 Everyone Hates build.xml
Andy Balaam shows how to structure and test Ant
build code.

17 Defining Visitors Inline in Modern C++
Robert Mill and Jonathan Coe present an inline
visitor in C++.

18 A Scheduling Technique for Small
Software Projects and Teams
Bob Schmidt presents some tips for accurate
scheduling.

24 Paper Bag Escapology Using Partricle
Swarm Optimisation
Frances Buontempo uses particle swarm
optimisation to program her way out of a paper bag.

28Feeding Back
Kevlin Henney contemplates how to make
feedback useful.

OVERLOAD 123

October 2014

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 124 should be submitted
by 1st November 2014 and those for
Overload 125 by 1st January 2015.

EDITORIAL FRANCES BUONTEMPO
Peer Reviewed
Nobody gets it right first time. Frances
Buontempo considers the importance of
the review team.
After being distracted by shopping last time, I have
managed to refocus and believe I am getting closer to
writing an editorial. Before I do, I would like to
consider the other main duty of Overload’s editor –
after gathering articles – making sure they are
thoroughly reviewed before publication. Nowadays

many people write blogs. You write the piece, and then people can argue
with you in the comments after the fact. When finding a blog you
frequently need to peruse the comments in order to get all the details.
Something similar happens with question and answer websites like
Stackoverflow. To get the full answer with all the caveats, one must read
more than just the headline answer. In contrast, a peer reviewed
composition will have been through a few initial drafts and the final
version will be an opus incorporating all the comments from the
reviewers, if the editor has done their job properly. If something does slip
through the net, then letters to the editor are of course welcome, or further
articles showing an alternative approach can be proffered.

This begs the questions, “Who are the reviewers?” and “What is their
role?” In some sense, the reviewers act like a jury. Jury appears to stem
from the Latin jurare meaning to swear, in the sense of a binding promise
rather than a blasphemous stream of obscenities. The idea of a jury brings
to mind the phrase “12 good men and true”. The “good men and true” can
certainly be found in Shakespeare’s Much Ado About Nothing, though I
believe woman have been allowed on juries since the 1920s in the UK and
USA. Overload would welcome female reviewers – if any were to apply.
I am not clear why or when courts decided they required 12 jurors.
Overload currently has 7 reviewers, and from time to time seeks input
from subject specialists as required. Some are more active than others –
reviewers are in no way required to comment on every article, but many
thanks to those who do dutifully attempt this. It seems possible that the
use of twelve peers relates to Charlemagne’s Twelve Peers in the old
romances [Charlemagne], and the internet suggests that peer review was
first recorded in the 1970s [Peers], of course, giving no suggestion 12
reviewers are required. The number 12 crops up frequently in various
contexts – both with religious significance [12 tribes of Israel] and various
measuring systems (for example, feet and inches, old coinage, hours in a
day). I believe is often used because it breaks into many factors – 3 groups
of 4 and so on. This might make it appropriate for coinage and groups of
people requiring different divisions depending on context. Other
examples for twelve people taking on significance include the Magna
Carta [BL]:

All evil customs relating to forests and warrens, foresters,
warreners, sheriffs and their servants, or

river-banks and their wardens, are at
once to be investigated in every county

by twelve sworn knights of the county

Whatever the evil customs were, it certainly makes sense that one person
might not be sufficient to establish the validity of something. For example,
Deuteronomy 19:15 says

One witness is not enough to convict anyone accused of any crime
or offense they may have committed. A matter must be established
by the testimony of two or three witnesses.

Of course, I am not claiming that a submitted article is equivalent to a
crime or offense. It is simply that more pairs of eyes, to a point, can spot
errors and inconsistencies, making a final article more polished. Mind
you, the Bible also says “Judge not, lest ye be judged.” I digress. The
important point is more than one person passing comment on a submission
is more likely to cover all angles, including grammar, spelling, potential
edge cases in any code presented, or all-out glaring bugs, omissions,
alternatives that deserve consideration and so on. Though one can often
find comments on the technical content of a blog, one frequently doesn’t
see suggestions on writing style or alternative wordings. This is one, if
somewhat small, advantage Overload, as a peer reviewed journal, offers
over just writing your own blog. Of course, Overload welcomes blog
entries if the writer wishes them to be published here too, but be warned,
they also go through the review process.

As programmers, many of us will be used to peer reviews in the form of
code reviews, either as a formal or informal process with colleagues at
work, or in order to get contributions into an open source project. This can
be quite an emotional experience until you get used to it. Having someone
say all the things they don’t like about what you have done can be very
deflating. Some submissions have caused a vast number of comments and
nit-picks before finally being accepted. The same can happen in code
reviews. I like to assume the amount of comments is proportional to the
time people spent thinking about what you said. At least they listened,
even if they missed your point. As a writer, or programmer, you will learn
to take criticism, and it does become less personal the more feedback you
get. However, good reviewers, be that of an article, or of code, should
always say what they like as well as saying what they don’t like. It is
important to encourage the positive. Sometimes, places employ pair
programming, and this can be considered to obviate the need for code
reviews, though again the extra pair of eyes can help. An obvious
difference between pair programming and a code review is the review will
tend to take place once the code is complete, in the programmer’s opinion,
whereas the pairing approach means feedback is continuous and happens
during the course of the work. Overload is quite willing to give feedback
before a writer thinks the submission is polished and ready for a final
review. Most articles do go back and forwards a few times. Mind you, so
does code during a code review.

Having briefly looked at what a reviewer does, we should return to the
question “Who are the reviewers?” Staying, for the moment, with the code
review analogy, some organisations only allow senior people to review

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 15 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2014

EDITORIALFRANCES BUONTEMPO
code. Perhaps the team leader or senior architect has to approve any code
changes. This begs the question of who reviews the reviewers’ work. I
personally am happy for less experienced or more junior people to review
my code. They can still spot things I have missed, and the exchange can
allow knowledge to pass in both directions. Perhaps I will be able to
explain why I have taken a given approach. Perhaps they can tell me
elements they don’t understand. This is part of the vital team building
process though and takes us away from the question of who the reviewers
are. Other peer reviewed journals might choose experts in the field or throw
out a periodic call for reviewers asking them to submit a review they have
previously written, for example, a book review as proof of competence.
As an ACCU member, you can volunteer for book reviews – just checkout
the website, if this is something you would like to get good at. If you wish
to volunteer to be a reviewer for Overload, then get in touch with me. You
will not be asked for a sample of your previous work. You will simply get
included on an email list and are welcome to provide feedback on any
aspect of the submitted articles. We tend to keep the reviewers anonymous,
though have sometimes named individuals when asked, for example if they
have produced a stunning alternative code sample. Credit where credit’s
due.

Overload’s review team does usually consistent of volunteers, though
historically a jury would not necessarily have been composed of
volunteers. It seems members were ‘empanelled’ by a sheriff in the
thirteenth century [Musson97]. The eyre was a circuit travelled by the
sheriff and his men in England. The ‘justices’ arrived unannounced at
irregular intervals, forming a flash-mob review panel, of sorts. Of course,
the justices’ main role was raising funds for wars, rather than simply listing
and reviewing the state of the eyre. As editor, I may attempt to empanel
extra reviewers from time to time, if I feel we need someone with expertise
in a subject not currently covered by the team, and do try to avoid wars.
There has been little resistance to being ‘volunteered’ so far. If the jury of
peers are not volunteers, in what sense are they peers? It seems the jury
used to have to be nobles or high ranking, so nobles could not be judged
by ‘less important’ people. References to the idea of peers or equals can
be found in the Magna Carta [BL], for example

Earls and barons shall be fined only by their equals

and

To any man whom we have deprived or dispossessed of lands,
castles, liberties, or rights, without the lawful judgement of his
equals, we will at once restore these.

In a criminal court nowadays, one is supposed to be judged by peers or
contemporaries though I suspect an Earl would not be allowed to insist that
the panel of jurors consistent solely of Earls. Peer itself seems to be rooted
in the word ‘par’ thereby tracing back to the idea of equal ranking. Ranking
is of course, a relative term, and these history lessons remind us of the
extremely hierarchical nature of groups of people in England in times gone
by, though echoes still remain. I like to think every ACCU member is
equally qualified to peer review articles, regardless of membership of the
C++ committee, years of experience and so on. Everybody’s input can be
equally valuable.

Another reason for peer review of academic journals is to carefully validate
any claims made. It is clearly important claimed advances in medicine are
carefully checked and validated. A scientific journal will insist on a
methods section, so that the results can be replicated. This is part of the
essence of scientific discovery, though a brief study of the history of
science will show a long journey to settle on this methodology. Even with
a rigorous review process, things do slip through the net. There are many
examples, including out and out lies, such as the falsification of data in
stem cell research [Suk]. Such lies are usually eventually uncovered and
in this case the journal, Science, editorially retracted the two papers by
Hwang et al. Other peer reviewed articles that eventually get called into
question have not been based on fabrication. For example, the measles,
mumps and rubella vaccine controversy, which tried to link the jab to an
increased risk of autism [MMR]. Hopefully, Overload has never published
falsified data or caused public controversy.

Let us wrap up this review of the review process with an overview, loosely
based on a guide to evaluating information sources [Lloyd Sealy]. First,
the goal of peer review is to assess the quality of articles submitted for
publication. This involves a, possibly iterative, process: An author submits
to the editor who forwards the article to experts in the field, maybe after
an initial read as a sanity check. The reviewers evaluate the submission,
‘For accuracy and assess the validity of the research methodology and
procedures.’ The reviewers can, and often do, suggest revisions. In theory
they can reject the article, though we aim for enough feedback to iron out
any problems. Writing for a peer review journal, rather than self-
publishing, will give you early feedback and potential guidance you will
not get elsewhere. Referencing a peer reviewed article may stand your
words on more solid ground than just surfing the web for quotes that match
your thinking – I do realise the irony of my references
being full of urls. If you feel inspired to submit an
article or join the review team then contact
Overload@accu.org.

References
[12 tribes of Israel] Genesis 49:28

[BL] A British Library online translation of the Magna Carta:
http://www.bl.uk/treasures/magnacarta/translation/mc_trans.html

[Charlemagne] http://www.etymonline.com/index.php?term=peer

[Lloyd Sealy] http://guides.lib.jjay.cuny.edu/
content.php?pid=209679&sid=1746812 (many thanks to Roger Orr
for this link)

[MMR] http://www.bbc.co.uk/sn/tvradio/programmes/horizon/
mmr_prog_summary.shtml

[Musson97] ‘Twelve Good Men and True? The Character of Early
Fourteenth-Century Juries’ Anthony Musson Law and History
Review, Vol. 15, No. 1 (Spring, 1997), pp. 115–144

[Peers] http://thesaurus.com/browse/peers

[Suk] See http://www.sciencemag.org/site/feature/misc/webfeat/
hwang2005/
October 2014 | Overload | 3

http://www.bl.uk/treasures/magnacarta/translation/mc_trans.html
http://www.bl.uk/treasures/magnacarta/translation/mc_trans.html
http://www.etymonline.com/index.php?term=peer
http://guides.lib.jjay.cuny.edu/content.php?pid=209679&sid=1746812
http://guides.lib.jjay.cuny.edu/content.php?pid=209679&sid=1746812
http://www.bbc.co.uk/sn/tvradio/programmes/horizon/mmr_prog_summary.shtml
http://www.bbc.co.uk/sn/tvradio/programmes/horizon/mmr_prog_summary.shtml
http://thesaurus.com/browse/peers
http://www.sciencemag.org/site/feature/misc/webfeat/hwang2005/
http://www.sciencemag.org/site/feature/misc/webfeat/hwang2005/

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
Debug Complexity: How Assertions
Affect Debugging Time
Debugging any program can be time consuming. Sergey
Ignatchenko and Dmytro Ivanchykhin extend their
mathematical model to consider the effect of assertions.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translators
and editors. Please also keep in mind that translation difficulties from Lapine
(like those described in [Loganberry04]) might have prevented an exact
translation. In addition, the translator and Overload expressly disclaim all
responsibility from any action or inaction resulting from reading this article.

n ‘A Model for Debug Complexity’ [Ignatchenko13], we started to build
a mathematical model for estimating debugging efforts, and made some
sanity checks of our model, in particular on relations between coupling

and debug complexity. In this article, we have extended that model to see
the effect of the assertions on debugging time. It should be noted that, as
previously, the model should be considered to be very approximate, with
several assumptions made about the nature of the code and debugging
process (though we’re doing our best to outline these assumptions
explicitly). Nonetheless, the relations observed within the results obtained
look quite reasonable and interesting, which makes us hope that the model
we’re working with represents a reasonable approximation of the real
world.

Assumptions
1. In ‘A Model for Debug Complexity’ [Ignatchenko13], we

considered purely linear code. However, it seems that in the context
of debugging the same analysis applies to arbitrary code, as long as
the execution path is fixed (which is usually the case for
deterministic, repeatable debugging); in this case the execution path
can be interpreted as linear code for the purposes of analysis. In this
article, we’ll use the term ‘linear code’, implying that it is also
applicable to any execution path.

2. The linear code consists of (or the equivalent execution path goes
through) N lines.

3. In a naive debugging model, the developer goes through the code
line by line, and verifies that all the variables are correct. Tsinglecheck
denotes the time to check a single variable.

4. In the earlier article, we mentioned that in many cases it is possible
to use a bisection-like optimization to reduce debugging time very
significantly. However, such an optimization requires well-defined
interfaces to be able to check the whole state of the program easily,
and in such cases individual test cases can be easily built to debug

an appropriate program part. For the purposes of this article, we will
only consider a chunk of code which cannot easily be split into well-
defined portions (in other words, a ‘monolithic’ chunk of code), and
will not analyze it using bisection optimization.

5. Previously, it was mentioned that not all variables need to be
analyzed due to coupling. For the purposes of this article, we’ll use
the term ‘variables to be analyzed’; also we expect that for our
analysis of chunks of code which cannot be easily split (see item 4
above), the chances of tight coupling are rather high, so the
difference between ‘variables’, ‘variables to be analyzed’, and
‘coupled variables’ is not expected to be significant enough to
substantially affect the relations observed within our findings.

6. We assume that the number of variables to be changed grows from
the beginning to the end of the code; to simplify modeling we also
usually assume that this growth is linear.

I

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
and Dmytro Ivanchykhin using the classic dictionary collated by
Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He is currently holding the position of
Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

Dmytro Ivanchykhin has 10+ years of development experience,
and has a strong mathematical background (in the past, he taught
maths at NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com

N The total number of lines in a ‘monolithic’ code chunk

x The current line

v(x) The number of variables to consider at line x; v(x) ~ k*x for some
k (see Assumption #6 above)

w(x) The amount of work spent on a single line to analyze variables;
as d iscussed in ‘A Mode l fo r Debug Complex i ty ’
[Ignatchenko13]

W(N) The total amount of work for debugging a single bug in a code
of length N; as it was shown in ‘A Model for Debug Complexity’:

This sum may be estimated converting to integrals:

which is, if N is large enough is

with some coefficient k1. That is, it grows exponentially with the
length of code (NB: we do not consider bisection-like
optimization, see Assumption #4 above).

w x v x k x() () 2 2

W N w x
x

N
k x

x

N

() ()

1 1

2

W N dx

e dx

k
e

k

k x

x

N

k x

x

N

k N

()

ln
()

ln

ln

ln

2

1

2
1

1

2

0

2

0

2

(()2 1k N

O kk N k N()2 2 1

Notation
4 | Overload | October 2014

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN

simple assertions, say of an array index
being within the array boundaries, are

extremely rewarding in terms of helping
to reduce debugging times
7. In the earlier article, an obvious optimization – that after the bug is
found, the process of going through the code line by line can be
stopped – wasn’t taken into account. However, we feel that it
doesn’t substantially change relations observed within our findings,
and as taking it into account will complicate the mathematics
significantly, we’ll leave such analysis for the future.

8. Our analysis is language-independent. That is, all language-specific
effects such as ‘in C/C++ you can easily write an assert such as
assert(a=b) which will cause bugs’, are out of scope. Also, we’ll
use the term ASSERT for assertions in any programming language.

Introducing ASSERTs
Now assume that there is an ASSERT that catches the bug, defining ‘an
ASSERT that catches the bug X’ as ‘an ASSERT which fails if bug X is
present’.

If the ASSERT A is at line xA, then it remains to debug only the first xA
lines, and the amount of work required will be

It should be pointed out that the ratio of the amount of work without this
ASSERT A, compared to that with it, will be

This suggests, in particular, that an ASSERT in the middle of code can save
far more than 50% of the work.

For instance, in a one-thousand line code chunk with 10 variables to be
analyzed at the end (that is, N=1000, and k=0.01) the total amount of work
without asserts may be of the order of

And with the ASSERT in the middle of the code this value will become

which is 33 times less!

In practice, an ASSERT may catch a bug with some probability: one may
assume that checking a certain condition in the ASSERT will catch the bug,
but indeed, may not. Let’s say that an ASSERT has a probability pA of
catching a bug. Then, the expectation of the amount of work may be
estimated as a sum of

where the first term is for the case when the ASSERT is successful, and the
second term is for the opposite case.

Quality of ASSERTs
Clearly, the greater the probability of an ASSERT catching the bug, the less
debugging work has to be done. But is it true that an ASSERT with
probability of catching a bug of, say, 0.3 is only twice as bad than that with
probability 0.6? If two ASSERTs are independent and have a probability
of catching a bug of 0.3, then the probability that the bug won’t be caught
by either of them is (1-0.3)2 = 0.49. Let’s use the above example, and
assume that all ASSERTs sit in the middle of the code. Substituting, we may
get for the ASSERT with probability 0.6:

And for two ASSERTs with probability 0.3 each:

Let’s define an ‘assert which has a high probability of catching probable
bugs’ as a ‘high-quality assert’. Unfortunately, there seems to be no simple
recipe on ‘how to write high-quality asserts’, though one consideration
may potentially help: if an assert aims to catch one of the most common
bugs it has quite a good chance of being a ‘high-quality assert’. In
particular, ‘No Bugs’ has observed that, when coding in C/C++, simple
assertions, say of an array index being within the array boundaries, are
extremely rewarding in terms of helping to reduce debugging times –
simply because it is very easy to go beyond allocated memory, and it is
very difficult to find the exact place where this has happened. Another
potential suggestion is related to using asserts as a way of (enforced at
runtime) documenting code [Wikipedia]; such ‘code documenting’ asserts
(in the experience of ‘No Bugs’) tend to catch more subtle logical bugs.

Multiple bugs
In general, ASSERT A may catch more than a single bug, and we may talk
about the probability pA

B of the ASSERT A catching a specific bug B
residing in the code. Thus, if there are n bugs, then ASSERT A may have
probabilities pA

Bi of catching bug Bi for each i from 1 to n. With this
assumption, for instance, the probability that ASSERT A is useless is the
product:

We may call this product the value ineffectiveness of an ASSERT. It is clear
to see that if, with time, some bugs are caught and therefore the number
of bugs decreases, the value ineffectiveness of ASSERTs tend to increase.

W x OA
k xA() () 2

O k N xA()()2

1

0 01 2
2 1 144 27 1023 1475880 01 1000

. ln
() ..

 T

singlecheck S

1

0 01 2
2 1 144 27 31 44720 01 500

. ln
() ..

 T

singlecheck S

p k p kA
k x

A
k NA

1 12 1 2()

W

 0 6
1

0 01 2
2 1 1 0 6

1

0 01 2
2 10 01 500 0 01 1000.

. ln
() (.)

. ln
(). .

0 6 4472 0 4 147588

61718

. .

T
singlecheck S

W

 0 51
1

0 01 2
2 1 0 49

1

0 01 2
2 1

0

0 01 500 0 01 1000.
. ln

() .
. ln

(). .

.. .51 4472 0 49 147588

74599

 T

singlecheck S

()1
1

 pA

Bi

i

n

October 2014 | Overload | 5

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN

catching ‘the last bug’ will usually require
far more work than the first one
Let’s denote it by IL. The complimentary probability, 1-IL, gives a chance
that the ASSERT catches at least one bug.

Multiple bugs – multiple ASSERTs
In a real program, there is often (alas!) more than a single bug, and it is
(luckily!) possible to place more than a single ASSERT. Then the amount
of work to catch a single bug in a code with n bugs and m ASSERTs placed
at lines xi, respectively, may be estimated (assuming for simplicity that
ASSERTs are enumerated in the order of lines they are placed at) as:

For instance, in the above example with three ASSERTs at lines 250, 500,
and 750, respectively, and values of ineffectiveness of 0.5 each, to catch
a single bug the amount of work will be:

which is more than 6 times less than without any ASSERTs.

To illustrate the effect of using asserts from slightly different point of view,
for simplicity we may make another assumption that for any ASSERT the
probability p of catching any specific bug is the same:

Then in the above notation, the value of ineffectiveness IL may be written
as a function of number of remaining k bugs:

Then, using (*) above, we may calculate the work for finding a bug when
only k bugs remain:

Adding up the amounts of work W(k) for each k from n to 1 will give us a
total expected amount of work to debug all n bugs:

To get some taste of what these formulae mean, we have calculated a few
samples based on the example that we considered above: a chunk of 1000
lines of ‘monolithic’ code, a linear increase of the number of variables to
be analyzed along the code from 1 to 10, 5 bugs, and certain number of
ASSERTs with a bit more realistic probability of catching a bug of 0.02;
the resulting graph of ‘cumulative amount of work as debug progresses
through finding bugs’ is shown on Figure 1.

In particular, this graph illustrates that, as we have mentioned above, the
ASSERT effectiveness tends to ‘degrade’ as debugging goes ahead. This
finding is consistent with what we observe in practice, where catching ‘the
last bug’ will usually require far more work than the first one. One way
that is derived from practical experience, and which follows from the
above reasoning, is to add ASSERTs… or to follow a good habit of using
them in any place where conditions may be in doubt whilst coding.

Another example of calculation is shown on Figure 2 and illustrates how
increasing the number of ASSERTs helps to reduce amount of work
necessary to debug the program (note that for presentation purposes, the
number of ASSERTs on the graph is near-logarithmic).

W IL W x IL IL W x

IL IL
A1 A1 A1 A A

A Am

() () (() ()

(...(()

1 1

1
2 2

2 W x IL W NAm Am() ())...)) (*)

W

0 5
1

0 01 2
2 1

0 5 0 5
1

0 01 2
2 1

0 01 250

0 01 500

.
. ln

()

. (.
. ln

(

.

.))

. (
. ln

()

.
. ln

()

.

.

0 5
1

0 01 2
2 1

0 5
1

0 01 2
2 1

0 01 750

0 01 1000)))

. . (. . (. .))

0 5 672 0 5 0 5 4472 0 5 0 5 25971 0 5 147588

231499T
singlecheck S

 i A p pA
Bi, :

IL k p k() () 1

W k IL k W x

IL k IL k W x

IL k

A A

A A A

A

() (()) ()

() ((()) ()

(

1

1
1 1

1 2 2

2)) (...((()) () W(N))...)) 1 IL k W xAm Am (**)

W W
k n

 (k)

1

Figure 2Figure 1
6 | Overload | October 2014

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
Note that while the nature of our analysis is very approximate, the relations
observed within our results are expected to be reasonably close to reality;
that is, while real-world debugging time can easily differ from the results
calculated using our formulae, reduction of the real-world debugging time
as number of ASSERTs increases, should be reasonably close to those
calculated and shown on the graphs.

Conclusion
Good is better than bad,

Happy is better than sad,
My advice is just be nice,

Good is better than bad

~ Pink Dinosaur from Garfield and Friends

Within the debug complexity model previously introduced [II2013], we
have analyzed the impact of asserts on debugging time. Our results seem
to be quite consistent with debugging practice:

 ASSERTs can reduce debugging time dramatically (making it
several times less)

 debugging-wise, there are ‘high-quality asserts’ and ‘not-so-high-
quality asserts’

 purely empirical suggestions for ‘high-quality asserts’ were given in
the ‘Quality of ASSERTs’ section

 the time for debugging ‘the last bug’ is significantly higher than the
time for debugging the first one.

In addition, it should be noted that the impact of ASSERTs on the program
is not limited to a reduction in debugging time. As such effects are well
beyond the scope of this paper, we’ll just mention a few of them very
briefly. On the negative side: depending on the programming language
(and especially for the languages where an ASSERT is a mere function/
macro, such as C/C++) it may be possible to write an ASSERT which
changes the state of the program (see also Assumption #8 above). On the

positive side, ASSERTs can be used to create documentation of the
program, where such documentation (unlike, say, comments) cannot
become out of date easily.

Overall, ‘No Bugs’ highly recommends the using of ASSERTs, though
feels that creating any kind of metrics such as ‘number of ASSERTs per
1000 lines of code’, as a result of Goodhart’s Law [Goodhart], will become
as useless as ‘number of comments per 1000 lines of code’. As
ASSERT(1==1) is as useless as it gets, it is certainly not about sheer
numbers, so it is important to use high-quality ASSERTs. This still seems
to be an art rather than science, though a few hints for ‘high-quality
ASSERTs’ were provided above, and most likely there are many more other
such hints in existence.

References
[Goodhart] http://en.wikipedia.org/wiki/Goodhart%27s_law

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Ignatchenko13] ‘A Model for Debug Complexity’, Sergey Ignatchenko
and Dmytro Ivanchykhin, Overload 114, April 2013

[WikiAssertion] http://en.wikipedia.org/wiki/Assertion_(software_
development)#Assertions_in_design_by_contract:
Assertions can function as a form of documentation: they can describe
the state the code expects to find before it runs (its preconditions), and
the state the code expects to result in when it is finished running
(postconditions); they can also specify invariants of a class.

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.
October 2014 | Overload | 7

http://en.wikipedia.org/wiki/Goodhart%27s_law
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://en.wikipedia.org/wiki/Assertion_(software_development)#Assertions_in_design_by_contract
http://en.wikipedia.org/wiki/Assertion_(software_development)#Assertions_in_design_by_contract

FEATURE MALCOLM NOYES
Alternative Overloads
How do you return a default value given a
condition? Malcolm Noyes presents solutions
using older and newer C++ techniques.
ecently I came across a blog post by Andrzej Krzemieński
[Krzemieński] outlining how to apply an overload so that the
behaviour of a function could depend on the type passed to it; if the

type passed was convertible to the value type of the containing object the
function could return the type passed, otherwise it could attempt to use a
function object to return the value.

The blog post demonstrates two solutions for existing C++11 compilers
and also presents a possible solution if/when ‘Concepts Lite’ [Sutton13]
makes it into the standard; his post explains this in some detail so I won’t
repeat here what he has already said.

When I read it, I wondered whether it might be possible to solve the
problem the other way around, in other words if the passed type was a
function object whose function call operator returned a suitable type, then
the function should use that, otherwise it should assume the type was
convertible and attempt to return the value (with a compile error if that
didn’t work). Although the C++11 solutions that Andrzej presented would
also work with C++98/03 and Boost type traits, I thought it might be
possible to build a solution that used only features available in C++98/03
(some overloads with a little bit of type matching). It turns out that we can
get quite close to a solution in C++98/03 with some constraints on the
function call operator.

During the review of this article for Overload, Jonathan Wakely showed
how easily the same thing could be done in C++11; it seems that this
solution also works with several versions of Visual C++ (at least back as
far as VS2010), so I’ll show his code at the end.

The problem
The underlying problem identified is fairly simple; allow a function to
return a ‘default value’ if some condition is met; in the example in Listing 1
if the ‘optional’ class hasn’t had an initialised value then return the default
(this example is taken from Andrzej’s original blog, slightly simplified).

Andrzej then extends the problem such that the value_or() function can
also accept a type that could be ‘callable’, so it might be either a function
pointer or a functor [Wikipedia]. He presents two solutions for C++11; one
using std::is_convertible to provide tag dispatching [Boost-a] or
std::enable_if [Boost-b] to enable/remove functions from the
overload set. It is this additional requirement that I want to look at...

C++98/03 overloads – calling with a function pointer
To call with a function pointer we can simply provide a function overload
that matches a function pointer. This will match any free/static function

that takes no parameters (so will give a compile error if the return type is
not convertible to the value type of the containing object). Note that a class
with a conversion operator also ‘just works’... (see Listing 2).

Calling with a function object
To allow calling with a function object, we can provide an additional
function with two overloads that will either use a function object or return
the value. This is a variation of a commonly used idiom used by tag
dispatching but in our case instead of creating a ‘tag’ we will allow the
compiler to match a function overload if the supplied object has a function
call operator (i.e. operator()).

To see how this will work, consider the more general case of a function
that accepts the supplied value as the first argument and ‘anything’ as the
second (see Listing 3).

This works because the ellipsis (...) matches anything and consequently
the function functor_or_default will match the supplied arguments,
(v and 0).

Fortunately, the compiler considers ellipsis to be the worst possible match
so now all we need to do is provide an overload that is a better match than
ellipsis if the type is a function object with a matching function call
operator. Although our goal is to match the function call operator but we

R

Listing 1

#define REQUIRE(x) std::cout << #x << std::endl;
assert(x);
template <typename T>
class optional
{
 // ...
 template <typename U>
 T value_or(U const& v) const
 {
 // condition changed "if(*this)" in Andrzej's
 // example since people found that confusing...
 if (m_initialized)
 // get contained value
 return this->value();
 else
 // get v converted to T
 return v;
 }
};
...
optional<int> v1(20);
// value was initialised, return it...
REQUIRE(v1.value_or(42) == 20);

// value was not initialised, return default...
optional<int> v2;
REQUIRE(v2.value_or(42) == 42);

Malcolm Noyes has worked as a software developer/author for
several years; just how many can be deduced from the information that
he started programming C++ using a Zortech compiler. He wrote
several string classes before discovering the STL and several thread
classes before multi-threading got standardised. He has never written
a Unit Test framework but probably would have done if Phil Nash hadn’t
got there first!
8 | Overload | October 2014

FEATUREMALCOLM NOYES
will start with something a little simpler to show how this works. For
example, Listing 4 shows the code if we wanted to match int.

In this case the first overload will be called since we passed zero (an int
with value == 0) as the second argument to functor_or_default.

Now all we need to do is replace the overload taking an int with one that
matches the function call operator. We’ll go in two steps; first, let’s
imagine that the passed object has a function called default_value
(this makes the syntax slightly more readable...). Ideally, we would like to
provide a version of functor_or_default that matched a pointer to
the member function, so we could replace functor_or_default with
something like Listing 5.

Whilst this overload matches any class type and works for our functor, the
body of the function now fails to compile for a class without a
default_value function so our class with a conversion operator no
longer compiles; what we need is something more specific for the compiler
to match so we provide a helper that gives another level of indirection
(Listing 6).

The has_functor helper allows us to declare a type that matches only
if it has a matching function pointer; if the member function does not exist

then the template overload is invalid and the compiler removes it from the
candidate list of functions; this is known as ‘substitution failure is not an
error’ [SFINAE]. This is a standard trick often used in tag dispatching,
where it is usually passed to sizeof() but here we’re using it directly as
a parameter to the overload.

Listing 2

// function to be called...
int function() { return -1; }
// struct with conversion operator doesn't
// compile...
struct conversion
{
 operator double() const
 {
 return 13.0;
 }
};
template <typename T>
class optional
{
 // ...
 // overload for free/static functions
 template <typename U>
 T value_or(U (*fn)()) const
 {
 if (m_initialized)
 // get contained value
 return this->value();
 else
 // call function..
 return fn();
 }
 // default for all other types, as before...
 template <typename U>
 T value_or(U const& v) const
 {
 if (m_initialized)
 return this->value();
 else
 return v;
 }
};
...
 optional<double> v2;
 // as before...
 REQUIRE(v2.value_or(42) == 42);

 // calls passed function...
 REQUIRE(v2.value_or(&function) == -1);

 conversion conv;
 // fine, conversion just works...
 REQUIRE(v2.value_or(conv) == 13.0);

Listing 3

template <typename T>
class optional
{
 // ...other functions as before...

 // ellipsis matches everything...
 template <typename U>
 static T functor_or_default(const U& v, ...)
 {
 return v;
 }
 // default for all other types
 template <typename U>
 T value_or(U const& v) const
 {
 if (m_initialized)
 return this->value();
 else
 // get v converted to T or functor...
 return functor_or_default<U>(v, 0);
 }
};
...
 optional<double> v2;
 // still works but now calls
 // 'functor_or_default'...
 REQUIRE(v2.value_or(42) == 42);

Listing 4

template <typename T>
class optional
{
 public:
 // ...
 // overload called for 'int'...
 template <typename U>
 static T functor_or_default(const U& v, int)
 {
 return v;
 }
 // ellipsis still matches everything else...
 template <typename U>
 static T functor_or_default(const U& v, ...)
 {
 return v;
 }
 // default for all other types
 template <typename U>
 T value_or(U const& v) const
 {
 if (m_initialized)
 return this->value();
 else
 // pass 'int' with value 0
 return functor_or_default<U>(v, 0);
 } // ...
};
...
optional<double> v2;
 // as before...
REQUIRE(v2.value_or(42) == 42);
October 2014 | Overload | 9

FEATURE MALCOLM NOYES
Now that we have this overload, we just need to fix up the syntax for calling
a function call operator instead of a function named default_value...so
the final version looks like Listing 7.

Fixing the problems using C++11
If we pass a pointer to a free/static function then the compiler will attempt
to convert the return type for us. Unfortunately the type matching helper
for the function object requires an exact match for the function call
operator – both the return type and any const/volatile qualifiers must be
the same or the pointer won’t match and the ‘anything’ overload gets
selected instead.

We would like to be able to match a function call operator that returns
something convertible to the value type of ‘optional’ type instead of having
a match for a specific function call operator and in C++11 we can do that
with decltype (Listing 8).

If I’ve understood this correctly, if type U has a function call operator with
a return type that is convertible (via static_cast<>()) to type T then

the return type of this function overload of functor_or_default will
be valid; the function will be part of the overload set and the second
parameter (int) will be a better match than ellipsis (...). Note that we
can also remove the overload that takes a pointer to a free/static function
as this overload handles both cases.

It turns out that this also works with many versions of Visual C++ even
though their C++11 support is limited. So the final solution for C++11 (or
VS2010 or later) looks like Listing 9.

Jonathan also pointed out that although it is rarely useful, it can also
successfully match things that aren’t quite function objects (for example,
see Listing 10).

Listing 5

// works...
struct functor
{
 double default_value() const
 {
 return 3.142;
 }
};
// conversion struct as before...
template <typename T>
class optional
{
 public:
 // ...
 // replace call with 'int' with function call ptr
 template <typename U>
 static T functor_or_default(const U& v,
 T (U::*)() const)
 {
 return v.default_value();
 }
 // as before...
 template <typename U>
 static T functor_or_default(const U& v, ...)
 {
 return v;
 }
 // default for all other types
 template <typename U>
 T value_or(U const& v) const
 {
 if (m_initialized)
 return this->value();
 else
 return functor_or_default<U>(v, 0);
 }
 // ...
};
...
optional<double> v2;
functor fn;
// fine, fn has 'default_value()'
REQUIRE(v2.value_or(fn) == 3.142);
// fine, calls ellipsis overload as before
REQUIRE(v2.value_or(42) == 42);

conversion conv;
// doesn't compile...'conversion' doesn't have
// 'default_value' function
REQUIRE(v2.value_or(conv) == 13.0);

Listing 6

 ...
 template <typename U, T (U::*)() const>
 struct has_functor {};
 // now a specific match...
 template <typename U>
 static T functor_or_default(const U& v,
 has_functor<U, &U::default_value>*)
 {
 return v.default_value();
 }
 ...
conversion conv;
// now fine, has_functor can't match
// 'default_value' for conversion type
// so overload removed from candidate functions...
// ...calls function with ellipsis and operator
// double()
REQUIRE(v2.value_or(conv) == 13.0);

Listing 7

// as before...
struct functor
{
 double operator ()() const { return 3.142; }
};
struct conversion
{
 operator double() const { return 13.0; }
};
int function() { return -1; }
template <typename T>
class optional
{
 public:
 optional()
 : m_initialized(false)
 {}
 explicit optional(const T& v)
 : m_initialized(true)
 , t(v)
 {}
 template <typename U, T (U::*)() const>
 struct has_functor {};
 template <typename U> static
 T functor_or_default(const U& v,
 has_functor<U, &U::operator()>*)
 {
 return v();
 }
 template <typename U>
 static T functor_or_default(const U& v, ...)
 {
 return v;
 }
10 | Overload | October 2014

FEATUREMALCOLM NOYES
Wrap up
The solution presented by Andrzej answers the question ‘How can we
select an overload for a type that is convertible?’ In this article I’ve tackled
the problem from the opposite direction, i.e. ‘How can we select an
overload that matches something passed that looks like a function?’

We’ve seen that this can be done in C++98/03 with no additional
requirements from the standard library (or boost) but we do need to be very
specific about exactly what function call operator will match. The C++11
version is very neat (thanks Jonathan!) and has the added bonus of working
with many versions of Visual C++.

I know many organisations are still limited to using C++98/03 and I hope
that this article has shown that alternative techniques are often possible
even for older compilers.

References
[Boost-a] Generic Programming Techniques: http://www.boost.org/

community/generic_programming.html#tag_dispatching

[Boost-b] Boost.EnableIf (Jaakko Järvi, Jeremiah Willcock, Andrew
Lumsdaine, Matt Calabrese) : http://www.boost.org/doc/libs/
1_55_0/libs/utility/enable_if.html

[Krzemieński] Clever Overloading: Andrzej’s C++ blog
http://akrzemi1.wordpress.com/2014/06/26/clever-overloading

[SFINAE] Substitution Failure Is Not An Error (SFINAE):
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/SFINAE

[Sutton13] ‘Concepts Lite: Constraining Templates with Predicates’
Andrew Sutton, Bjarne Stroustrup, Gabriel Dos Reis at:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/
n3580.pdf

[Wikipedia] Function object: http://en.wikipedia.org/wiki/
Function_object

Listing 7 (cont’d)

 // overload for free/static functions
 template <typename U>
 T value_or(U (*fn)()) const
 {
 if (m_initialized)
 return this->value();
 else
 return fn();
 }
 // default for all other types
 template <typename U>
 T value_or(U const& v) const
 {
 if (m_initialized)
 return this->value();
 else
 return functor_or_default<U>(v, 0);
 }
 T value() const { return t; }
 private:
 bool m_initialized;
 T t;
};
...
 optional<double> v2;
 // calls passed function...
 REQUIRE(v2.value_or(&function) == -1);
 functor fn;
 // fine, fn has function call operator
 REQUIRE(v2.value_or(fn) == 3.142);
 // fine, calls ellipsis overload
 REQUIRE(v2.value_or(42) == 42);
 conversion conv;
 // fine, calls ellipsis overload and
 // operator double()
 REQUIRE(v2.value_or(conv) == 13.0);

Listing 8

template <typename T>
class optional
{
 ...
 template <typename U> static
 auto functor_or_default (const U& v, int) ->
 decltype(static_cast<T>(v()))
 {
 return v();
 }
 ...
};

Listing 9

template <typename T>
class optional
{
 public:
 optional()
 : m_initialized(false)
 {}
 explicit optional(const T& v)
 : m_initialized(true)
 , t(v)
 {}
 template <typename U> static auto
 functor_or_default(const U& v, int) ->
 decltype(static_cast<T>(v()))
 {
 return v();
 }
 template <typename U> static T
 functor_or_default(const U& v, ...)
 {
 return v;
 }
 // default for all other types
 template <typename U>
 T value_or(U const& v) const
 {
 if (m_initialized)
 return this->value();
 else
 return functor_or_default<U>(v, 0);
 }
 T value() const { return t; }
 private:
 bool m_initialized;
 T t;
};

Listing 10

struct not_quite_functor
{
 using func = int(*)();
 operator func() const
 {
 return [] { return 1; };
 }
};
October 2014 | Overload | 11

http://www.boost.org/community/generic_programming.html#tag_dispatching
http://www.boost.org/community/generic_programming.html#tag_dispatching
http://www.boost.org/doc/libs/1_55_0/libs/utility/enable_if.html
http://www.boost.org/doc/libs/1_55_0/libs/utility/enable_if.html
http://akrzemi1.wordpress.com/2014/06/26/clever-overloading
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/SFINAE
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3580.pdf
http://en.wikipedia.org/wiki/Function_object
http://en.wikipedia.org/wiki/Function_object

FEATURE ANDY BALAAM
Everyone Hates build.xml
Using the Ant build tool can be tricky.
Andy Balaam shows how to structure
and test the build code.
f you’re starting a new Java project, I’d suggest considering the many
alternatives to Ant, including Gant [Gant], Gradle [Gradle], SCons
[SCons] and, of course, Make [Make]. This article covers how to bend

Ant to work like a programming language, so you can write good code in
it, and how to test that code.

It’s seriously worth considering a build tool that makes structured
programming easier, but if you’ve chosen Ant, or you’re stuck with Ant,
read on.

Most projects I’ve been involved with that use Ant have a hateful
build.xml surrounded by fear. Many projects’ build files grow to
enormous sizes, for example becoming responsible for deployment,
system test execution, notifications and many other jobs.

The most important reason for the fear is that the functionality of the build
file is not properly tested, so you never know whether you’ve broken it,
meaning you never make ‘non-essential’ changes: changes that make it
easier to use or read.

But, before we can write tests, we must address a pre-requisite:

Can you write good code in Ant, even if you aren’t paralysed by fear?

Everyone hates build.xml (code reuse in Ant)
One of the most important aspects of good code is that you only need to
express each concept once. Or, to put it another way, you can re-use code.

I want to share with you some of the things I have discovered recently about
Ant, and how you should (and should not) re-use code.

But first:

What is Ant?
Ant is 2 languages:

 A declarative language to describe dependencies

 A procedural language to proscribe actions

In fact, it’s just like a Makefile (ignore this if Makefiles aren’t familiar).
A Makefile rule consists of a target (the name before the colon) with its
dependencies (the names after the colon), which make up a declarative
description of the dependencies, and the commands (the things indented
by tabs) which are a normal procedural description of what to do to build
that target.

 # Ignore this if you don't care about Makefiles!
 target: dep1 dep2 # Declarative
 action1 # Procedural
 action2

The declarative language
In Ant, the declarative language is a directed graph of targets and
dependencies, shown graphically in Figure 1:

 <target name="A"/>
 <target name="B" depends="A"/>
 <target name="C" depends="B"/>
 <target name="D" depends="A"/>

This language describes a directed graph of dependencies. I.e. they say
what depends on what, or what must be built before you can build
something else. Targets and dependencies are completely separate from
what lives inside them, which are tasks.

The procedural language
The procedural language is a list of tasks:

 <target ...>
 <javac ...>
 <copy ...>
 <zip ...>
 <junit ...>
 </target>

When the dependency mechanism has decided a target will be executed,
its tasks are executed one by one in order, just like in a programming
language. Except that tasks live inside targets, they are completely separate
from them. Essentially each target has a little program inside it consisting
of tasks, and these tasks are a conventional programming language,
nothing special (except for the lack of basic looping and branching
constructs).

I’m sorry if the above is glaringly obvious to you, but it only recently
became clear to me, and it helped me a lot when thinking about how to
improve my Ant files.

Avoiding repeated code
Imagine you have two similar Ant targets (see Listing 1).

The classpath and debug information are the same in both targets, and
we would like to write this information in one single place. Imagine with

I

Figure 1

Andy Balaam is happy as long as he has a programming language
and a problem. He finds over time he has more and more of each.
You can find his many open source projects at artificialworlds.net
or contact him on andybalaam@artificialworlds.net
12 | Overload | October 2014

FEATUREANDY BALAAM

Any dependencies of the compile target
will be run even if they’ve already been

run, meaning some of your assumptions
about order of running could be incorrect
me that the code we want to share is too complex for it to be possible to
store it as the values of properties in some properties file.

How do we share this code?

The wrong way: antcall
Listing 2 shows the solution we were using in my project until I discovered
the right way.

Here we put the shared code into a target called compile, which makes
use of properties to access the varying information (or the parameters, if
we think of this as a function). The targets A and B use the <antcall>
task to launch the compile target, setting the values of the relevant
properties.

This works, so why is it wrong?

Why not antcall?
antcall launches a whole new Ant process and runs the supplied target
within that. This is wrong because it subverts the way Ant is supposed to
work. The new process will re-calculate all the dependencies in the project
(even if our target doesn’t depend on anything) which could be slow. Any
dependencies of the compile target will be run even if they’ve already been
run, meaning some of your assumptions about order of running could be
incorrect, and the assumption that each target will only run once will be
violated. What’s more, it subverts the Ant concept that properties are
immutable, and remain set once you’ve set them: in the example above,
srcdir and destdir will have different values at different times
(because they exist inside different Ant processes).

Basically what we’re doing here is breaking all of Ant’s paradigms to force
it to do what we want. Before Ant 1.6 you could have considered it a
necessary evil. Now, it’s just evil.

The horrific way: custom tasks
Ant allows you to write your own tasks (not targets) in Java. So our
example would look something like Listing 3 (Java) and Listing 4 (Ant).

Here we write the shared code as a Java task, then call that task from inside
targets A and B. The only word to describe this approach is ‘cumbersome’.
Not only do we need to ensure our code gets compiled before we try to use
it, and add a taskdef to allow Ant to see our new task (meaning every
target gets a new dependency on the ‘first’ target), but much worse, our
re-used code has to be written in Java, rather than the Ant syntax we’re
using for everything else. At this point you might start asking yourself why

Listing 1

<target name="A">
 <javac
 srcdir="a/src" destdir="a/bin"
 classpath="myutil.jar" debug="false"
 />
</target>

<target name="B">
 <javac
 srcdir="b/code" destdir="b/int"
 classpath="myutil.jar" debug="false"
 />
</target>

Listing 2

<target name="compile">
 <javac
 srcdir="${srcdir}" destdir="${destdir}"
 classpath="myutil.jar" debug="false"
 />
</target>

<target name="A">
 <antcall target="compile">
 <param name="srcdir" value="a/src"/>
 <param name="destdir" value="a/bin"/>
 </antcall>
</target>

<target name="B">
 <antcall target="compile">
 ...

Listing 3

// ... imports here ...
public class MyCompile extends Task {
 String srcdir;
 public void setSrcDir(String s) {
 srcdir = s;
 }
 String destdir;
 public void setDestDir(String d) {
 destdir = d;
 }
 public void execute() throws BuildException
 {
 Project p = getProject();
 Javac javac = new Javac();
 javac.setSrcdir(new Path(p, srcdir));
 javac.setDestdir(new File(destdir));
 javac.setClasspath(new Path(p,
 "myutil.jar"));
 javac.setDebug(false);
 javac.execute();
 }
}

October 2014 | Overload | 13

FEATURE ANDY BALAAM
you’re using Ant at all – my thoughts start drifting towards writing my own
build scripts in Java ... anyway, I’m sure that would be a very bad idea.

The relatively OK way: macrodef
So, enough teasing. Listing 5 shows the Right Way.

Since Ant 1.6, we have the macrodef task, which allows us to write our
own tasks in Ant syntax. In any other language these would be called
functions, with arguments which Ant calls attributes. You use these
attributes by giving their name wrapped in a @{} rather than the normal
${} for properties. The body of the function lives inside a sequential tag.

This allows us to write re-usable tasks within Ant. But what about re-using
parts from the other language – the declarative targets and dependencies?

Avoiding repeated dependencies?
Imagine we have a build file containing targets like this:

 <target name="everyoneneedsme"...
 <target name="A" depends="everyoneneedsme"...
 <target name="B" depends="everyoneneedsme"...
 <target name="C" depends="everyoneneedsme"...
 <target name="D" depends="everyoneneedsme"...

In Ant, I don’t know how to share this. The best I can do is make a single
target that is re-used whenever I want the same long list of dependencies,
but in a situation like this where everything needs to depend on something,
I don’t know what to do. (Except, of course, drop to the Nuclear Option
of the <script> tag, which we’ll see later.)

I haven’t used it in anger, but this kind of thing seems pretty
straightforward with Gradle. I believe Listing 6 is roughly equivalent to
my example above, but I hope someone will correct me if I get it wrong.

(Disclaimer: I haven’t run this.)

So, if you want nice features in your build tool, like code-reuse and
testability, you should consider a build tool that is integrated into a grown-

up programming language where all this stuff comes for free. But, if you’re
stuck with Ant, you should not despair: basic good practice is possible if
you make the effort.

Everyone loves build.xml (test-driven Ant)
Of course, if you’re going to have any confidence in your build file you’re
going to need to test it. Now we’ve learnt some basic Ant techniques, we’re
ready to do the necessary magic that allows us to write tests.

First, let me clear up what we’re testing:

What do we want to test?
We’re not testing our Java code. We know how to do that, and to run tests,
if we’ve written them using JUnit [JUnit], just needs a <junit> tag in
our build.xml. (Other testing frameworks are available and some people
say they’re better.)

The things we want to test are:

 build artifacts – the ‘output’ of our builds i.e. JAR files, zips and
things created when we run the build,

 build logic – such as whether dependencies are correct, whether the
build succeeds or fails under certain conditions, and

 units of code – checking whether individual macros or code
snippets are correct.

Note, if you’re familiar with the terminology, that testing build artifacts
can never be a ‘unit test’, since it involves creating real files on the disk
and running the real build.

Below we’ll see how I found ways to test build artifacts, and some ideas
I had to do the other two, but certainly not a comprehensive solution. Your
contributions are welcome.

Before we start, let’s see how I’m laying out my code:

Code layout
build.xml - real build file
asserts.xml - support code for tests
test-build.xml - actual tests

I have a normal build file called build.xml, a file containing support
code for the tests (mostly macros allowing us to make assertions) called
asserts.xml, and a file containing the actual tests called test-
build.xml.

To run the tests I invoke Ant like this:

 ant -f test-build.xml test-name

test-build.xml uses an include to get the assertions:

 <include file="asserts.xml"/>

Tests call a target inside build.xml using subant, then use the code in
asserts.xml to make assertions about what happened.

Simple example: code got compiled
If we want to check that a <javac ...> task worked, we can just check
that a .class file was created. Here’s the test, in test-build.xml:

 <target name="test-class-file-created">
 <assert-target-creates-file
 target="build"
 file="bin/my/package/ExampleFile.class"
 />
 </target>

Listing 4

<target name="first">
 <javac srcdir="mycompile"/>
 <taskdef name="mycompile" classname="MyCompile"
 classpath="mycompile"/>
</target>

<target name="A" depends="first">
 <mycompile srcdir="a/src" destdir="a/bin"/>
</target>

<target name="B" depends="first">
 <mycompile srcdir="b/code" destdir="b/int"/>
</target>

Listing 5

<macrodef name="mycompile">
 <attribute name="srcdir"/>
 <attribute name="destdir"/>
 <sequential>
 <javac
 srcdir="@{srcdir}" destdir="@{destdir}"
 classpath="myutil.jar" debug="false"
 />
 </sequential>
</macrodef>

<target name="A">
 <mycompile srcdir="a/src" destdir="a/bin"/>
</target>

<target name="B">
 <mycompile srcdir="b/code" destdir="b/int"/>
</target>

Listing 6

task everyoneneedsme
tasks.whenTaskAdded { task ->
 task.dependsOn everyoneneedsme
}
task A
task B
task C
task D
14 | Overload | October 2014

FEATUREANDY BALAAM
We run it like this:

 ant -f test-build.xml test-class-file-created

The assert-target-creates-file assertion is a macrodef in
asserts.xml like this:

 <macrodef name="assert-target-creates-file">
 <attribute name="target"/>
 <attribute name="file"/>
 <sequential>
 <delete file="@{file}" quiet="true"/>
 <subant antfile="build.xml" buildpath="."
 target="@{target}"/>
 <assert-file-exists file="@{file}"/>
 </sequential>
 </macrodef>

It just deletes a file (if it exists), runs the target using subant, then asserts
that the file exists, which uses the macrodef in Listing 7.

This uses a trick I’ve used a lot, which is the fail task, with a condition
inside it, meaning that we only fail if the condition is satisfied. Here we
use not available which means fail if the file doesn’t exist.

Harder example: JAR file
Now let’s check that a JAR file was created, and has the right contents.
Listing 8 is the test.

This just says after we’ve run the target, the file MyProduct.jar exists,
and it contains a file called MANIFEST.MF that has the right Main-Class
information in it.

assert-file-in-jar-contains looks like Listing 9, which
basically unzips the JAR into a directory, then searches the directory using
fileset for a file with the right name and contents, and fails if it’s not found
(i.e. if the resourcecount of the fileset is zero). These are the kinds of
backflips you need to do to bend Ant to your will.

Or, you can choose the Nuclear Option.

The Nuclear Option
If ant tasks just won’t do, since Ant 1.7 and Java 1.6 we can drop into a
<script> tag. You ain’t gonna like it:

 <script language="javascript"><![CDATA[
 system.launchMissiles(); // Muhahahaha
]]></script>

The script tag allows us to use a scripting language as provided through
the JSR 223 Java feature directly within our Ant file [DrDobbs], meaning
we can do anything.

In all the JVMs I’ve tried, the only scripting language actually available
is JavaScript, provided by the Rhino virtual machine [MDN], which is now
part of standard Java.

When using the script tag, expect bad error messages. Rhino produces
unhelpful stack traces, and Ant doesn’t really tell you what went wrong.

So now we know how to test the artifacts our build produces, but what
about directly testing the logic in build.xml?

Testing build logic
We want to:

 Confirm that targets succeed or fail under certain conditions

 Check indirect dependencies are as expected

 Test a unit of Ant logic (e.g. a macrodef)

Success and failure
Listing 10 is a little macro I cooked up to assert that something is going
to fail.

Listing 7

<macrodef name="assert-file-exists">
 <attribute name="file"/>
 <sequential>
 <echo message=
 "Checking existence of file: @{file}"/>
 <fail message=
 "File '@{file}' does not exist.">
 <condition>
 <not><available file="@{file}"/></not>
 </condition>
 </fail>
 </sequential>
</macrodef>

Listing 8

<target name="test-jar-created-with-manifest">
 <assert-target-creates-file
 target="build"
 file="dist/MyProduct.jar"
 />
 <assert-file-in-jar-contains
 jarfile="dist/MyProduct.jar"
 filename="MANIFEST.MF"
 find="Main-Class: my.package.MyMain"
 />

Listing 9

<macrodef name="assert-file-in-jar-contains">
 <attribute name="jarfile"/>
 <attribute name="filename"/>
 <attribute name="find"/>
 <sequential>
 <!-- ... insert checks that jar exists, and
 contains file -->
 <delete dir="${tmpdir}/unzip"/>
 <unzip src="@{jarfile}"
 dest="${tmpdir}/unzip"/>
 <fail message="@{jarfile}:@{filename} should
 contain @{find}">
 <condition>
 <resourcecount when="equal" count="0">
 <fileset dir="${tmpdir}/unzip">
 <and>
 <filename name="**/@{filename}"/>
 <contains text="@{find}"/>
 </and>
 </fileset>
 </resourcecount>
 </condition>
 </fail>
 <delete dir="${tmpdir}/unzip"/>
 </sequential>
</macrodef>

Listing 10

<macrodef name="expect-failure">
 <attribute name="target"/>
 <sequential>
 <local name="ex.caught"/>
 <script language="javascript"><![CDATA[
 try {
 project.executeTarget("@{target}");
 } catch(e) {
 project.setProperty("ex.caught", "yes")
 }
]]></script>
 <fail message="@{target} succeeded!!!"
 unless="ex.caught"/>
 </sequential>
</macrodef>
October 2014 | Overload | 15

FEATURE ANDY BALAAM
I resorted to the Nuclear Option of a script tag, and used Ant’s Java API
(through JavaScript) to execute the target, and catch any exceptions that
are thrown. If no exception is thrown, we fail.

Testing dependencies
To check that the dependencies are as we expect, we really want to run
ant’s dependency resolution without doing anything. Remarkably, ant has
no support for this. But we can hack it in (see Listing 11).

(See ‘Dry run mode for Ant’ [Balaam] for more.)

Now we need to be able to run a build and capture the output. We can do
that like Listing 12.

We use ant to run the build, telling it to write to a file cdeps.txt. Then,
to assert that C depends on A, we just fail if cdeps.txt doesn’t contain
a line indicating we ran A. (To assert a file contains a certain line we use
a load of fail, condition, resourcecount and fileset machinery
as before. This could do with some improvement to cover target names that
overlap – for example ‘compile-a’ will be wrongly found if ‘test-compile-
abc’ was run.)

So, we can check that targets depend on each other, directly or indirectly.
Can we write proper unit tests for our macrodefs?

Testing ant units
To test a macrodef or target as a piece of logic, without touching the file
system or really running it, we will need fake versions of all the tasks,
including <jar>, <copy>, <javac> and many more.

If we replace the real versions with fakes and then run our tasks, we can
set up our fakes to track what happened, and then make assertions about it.

If we create a file called real-fake-tasks.xml, we can put things like
this inside:

 <macrodef name="jar">
 <attribute name="destfile"/>
 <sequential>
 <property name="jar.was.run" value="yes"/>
 </sequential>
 </macrodef>

and, in build.xml we include something called fake-tasks.xml,
with the optional attribute set to true:

 <include file="fake-tasks.xml" optional="true"/>

If the target we want to test looks like this (in build.xml):

 <target name="targetA">
 <jar destfile="foo.jar"/>
 </target>

Then we can write a test like this in test-build.xml:

 <target name="test-A-runs-jar"
 depends="build.targetA">
 <fail message="Didn't jar!"
 unless="jar.was.run"/>
 </target>

and run the tests like this:

 cp real-fake-tasks.xml fake-tasks.xml

 ant -f test-build.xml test-A-runs-jar
 rm fake-tasks.xml

If fake-tasks.xml doesn’t exist, the real tasks will be used, so running
your build normally should still work.

This trick relies on the fact that our fake tasks replace the real ones, which
appears to be an undocumented behaviour of my version of Ant. Ant
complains about us doing this, with an error message that sounds like it
didn’t work, but actually it did (on my machine).

If we wanted to avoid relying on this undocumented behaviour, we’d need
to write our real targets based on special macrodefs called things like do-
jar and provide a version of do-jar that hands off to the real jar, and a
version that is a fake. This would be a lot of work, and pollutes our
production code with machinery needed for testing, but it could work with
Ant’s documented behaviour, making it unlikely to fail unexpectedly in
the future.

Summary
You can write Ant code in a test-driven way, and there are even structures
that allow you to write things that might be described as unit tests.

At the moment, I am using mostly the ‘testing artifacts’ way. The tests run
slowly, but they give real confidence that your build file is really working.

Since I introduced this form of testing into our build, I enjoy working with
build.xml a lot more, because I know when I’ve messed it up.

But I do spend more time waiting around for the tests to run.

References
[Balaam] ‘Dry run mode for Ant’ on Andy Balaam’s blog

http://www.artificialworlds.net/blog/2013/01/31/dry-run-mode-for-
ant-ant-n-ant-dry-run/

[Gant] http://gant.codehaus.org/

[Gradle] http://www.gradle.org/

[DrDobbs] http://www.drdobbs.com/jvm/jsr-223-scripting-for-the-java-
platform/215801163

[JUnit] http://junit.org/

[Make] http://www.gnu.org/software/make/

[MDN] https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
Rhino

[SCons] http://www.scons.org/

Listing 11

<target name="printCdeps">
 <script language="javascript"><![CDATA[
 var targs = project.getTargets().elements();
 while(targs.hasMoreElements())
 {
 var targ = targs.nextElement();
 targ.setUnless("DRY.RUN");
 }
 project.setProperty("DRY.RUN", "1");
 project.executeTarget("targetC");
]]></script>
</target>

Listing 12

<target name="test-C-depends-on-A">
 <delete file="${tmpdir}/cdeps.txt"/>
 <ant
 target="printCdeps"
 output="${tmpdir}/cdeps.txt"
 />
 <fail message="Target A did not execute when
 we ran C!">
 <condition>
 <resourcecount when="equal" count="0">
 <fileset file="${tmpdir}/cdeps.txt">
 <contains text="targetA:"/>
 </fileset>
 </resourcecount>
 </condition>
 </fail>
 <delete file="${tmpdir}/cdeps.txt"/>
</target>
16 | Overload | October 2014

http://www.artificialworlds.net/blog/2013/01/31/dry-run-mode-for-ant-ant-n-ant-dry-run/
http://www.gradle.org/
http://gant.codehaus.org/
http://www.drdobbs.com/jvm/jsr-223-scripting-for-the-java-platform/215801163
http://www.drdobbs.com/jvm/jsr-223-scripting-for-the-java-platform/215801163
http://junit.org/
http://www.gnu.org/software/make/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
http://www.scons.org/

FEATUREROBERT MILL AND JONATHAN COE
Defining Visitors Inline in
Modern C++
The VISITOR pattern can involve non-local boilerplate
code. Robert Mill and Jonathan Coe present an inline
VISITOR in C++.
he VISITOR pattern can be useful when type-specific handling is
required and tight coupling of type-handling logic and handled types
is either an acceptable cost or desirable in its own right. We’ve found

that selective application of the classical VISITOR pattern adds strong
compile-time safety, as the handling of new types needs explicit
consideration in every context where type-specific handling occurs. The
VISITOR pattern presents an inversion of control that can feel unnatural and
often requires introduction of considerable non-local boilerplate code.
We’ve found that this slows adoption of the VISITOR pattern especially
among engineers and scientists who traditionally write their type-handling
logic inline. Here we present a solution for defining VISITORs inline.

The problem
In object-oriented programming, we may need to perform a function on
an object of polymorphic type, such that the behaviour of the function is
specific to the derived type. Suppose that for the abstract base class
Polygon we derive the concrete classes Triangle and Square. The
free function CountSides, returns the number of sides in the polygon, p
(see Listing 1).

CountSides will need the derived type of the polygon p to compute its
result, which is problematic, because its argument is conveyed by a
reference of the base class type, Polygon.

Visitor pattern
The VISITOR design pattern offers a mechanism for type-specific handling
using virtual dispatch [Gamma95]. In the words of Scott Meyers: “VISITOR

lets you define a new operation without changing the classes of the elements
on which it operates” [Meyers06]. The pattern uses the this pointer inside
the class to identify the derived type. Each derived object must accept a
VISITOR interface which provides a list of visit members with a single
argument overloaded on various derived types. To continue our
illustration, the PolygonVisitor is able to visit Triangles and

Squares , and al l these polygons must be able to accept a
PolygonVisitor. (See Listing 2.)

Squares and Triangles accept the VISITOR as shown in Listing 3.
Observe that the this pointer is used to select the appropriate overloaded
function in the VISITOR interface.

A VISITOR object, SideCounter, which counts the number of sides of a
polygon and stores the result, is implemented and used as in Listing 4.

T

Listing 1

struct Triangle : Polygon
{
 // members
}

struct Square : Polygon
{
 // members
}

int CountSides(Polygon& p)
{
 // implementation
}

Listing 2

struct Triangle;
struct Square;

struct PolygonVisitor
{
 virtual ~PolygonVisitor() {}

 virtual void visit(Triangle& tr) = 0;
 virtual void visit(Square& sq) = 0;
};

struct Polygon
{
 virtual void accept(PolygonVisitor& v) = 0;
}

Listing 3

struct Triangle : Polygon
{
 void accept(PolygonVisitor& v) override
 {
 v.visit(*this);
 }
};

struct Square : Polygon
{
 void accept(PolygonVisitor& v) override
 {
 v.visit(*this);
 }
};

Robert Mill received his bachelor and Ph.D. degrees in Computer
Science from the University of Sheffield. He now works in industrial
process engineering as a mathematical developer, and retains an
interest in machine learning and signal processing.

Jonathan Coe has been programming commercially for about 6
years. He has worked in the energy industry on process simulation
and optimisation and is currently employed in the financial sector.
October 2014 | Overload | 17

FEATURE ROBERT MILL AND JONATHAN COE

it requires the creation of a new visitor
object type for each algorithm that
operates on the derived type
Inline Visitor pattern
One potential drawback of the VISITOR pattern is that it requires the
creation of a new visitor object type for each algorithm that operates on
the derived type. In some cases, the class created will not be reused and,
much like a lambda, it would be more convenient to write the visitor
clauses inline. Listing 5 shows how this can be accomplished in a form that
resembles a switch statement.

In List ing 6, we demonstrate generic code that permits the
begin_visitor ... end_visitor construction to be used with any
visitor base. The initial begin_visitor call instantiates a class
which defines an inner object inheriting from the visitor interface; each
subsequent call of the on function instantiates a class whose inner class
inherits from the previous inner class implementing an additional visit
function. Finally the end_visitor call returns an instance of the inner
visitor class.

Listing 4

struct SideCounter : PolygonVisitor
{
 void visit(Square& sq) override
 {
 m_sides = 4;
 }

 void visit(Triangle& tr) override
 {
 m_sides = 3;
 }

 int m_sides = 0;
};

int CountSides(Polygon& p)
{
 SideCounter sideCounter;
 p.accept(sideCounter);
 return sideCounter.m_sides;
}

Listing 5

int CountSides(Polygon& p)
{
 int sides = 0;

 auto v = begin_visitor<PolygonVisitor>
 .on<Triangle>([&sides](Triangle& tr)
 {
 sides = 3;
 })
 .on<Square>([&sides](Square& sq)
 {
 sides = 4;
 })
 .end_visitor();

 p.accept(v);
 return sides;
}

Listing 6

template <typename T,
 typename F,
 typename BaseInner,
 typename ArgsT>
struct ComposeVisitor
{
 struct Inner : public BaseInner
 {
 using BaseInner::visit;
 Inner(ArgsT&& args) :
 BaseInner(move(args.second)),
 m_f(move(args.first))
 {
 }
 void visit(T& t) final override
 {
 m_f(t);
 }
 private:
 F m_f;
 };
 ComposeVisitor(ArgsT&& args) :
 m_args(move(args))
 {
 }
 template <typename Tadd,
 typename Fadd>
 ComposeVisitor<
 Tadd,
 Fadd,
 Inner,
 pair<Fadd, ArgsT>> on(Fadd&& f)
 {
 return ComposeVisitor<
 Tadd,
 Fadd,
 Inner,
 pair<Fadd, ArgsT>>(
 make_pair(
 move(f),
 move(m_args)));
 }
18 | Overload | October 2014

FEATUREROBERT MILL AND JONATHAN COE

That inline visitors cannot be constructed
when clauses are missing may also be

considered desirable in some contexts
The consistency between the list of types used with on and those in the
visitor base is verified at compilation time. Since the override qualifier
is specified on the visit member function, it is not possible to add a
superfluous visit which does not correspond to a type overload in the
visitor base. Similarly, because the final qualifier is specified on the
visit member function it is not possible to define a visit member
function more than once. That inline visitors cannot be constructed when
clauses are missing may also be considered desirable in some contexts. For
instance, if a new type Hexagon is derived from Polygon, then the code

base will compile only when appropriate visit functions been introduced
to handle it. In large code bases, this may serve maintainability. If it is
deemed that a visitor clause should have some default behaviour (e.g., no
operation), a concrete visitor base can be passed into begin_visitor.

Performance
With optimizations turned on MSVC 2013, GCC 4.9.1 and Clang 3.4.2
compile the inline visitor without introducing any cost. GCC and Clang
produce identical assembly code in the case when a visitor class is
explicitly written out. MSVC produces different assembly code for the
inline visitor and explicit visitor class; the inline visitor has been measured
to run marginally faster.

Other visitors
Loki’s Acyclic Visitor [Martin] [Loki] removes compile-time coupling
from visiting and visited classes but at the cost of introducing dynamic
casts and run-time detection of unhandled types. When run-time
performance and compile-time detection of unhandled types are favoured
over shorter compile-times then we would recommend use of the inline
visitor. The inline visitor does not have the flexibility of the Cooperative
Visitor [Krishnamoorthi07], which allows different method names and
return types, but as it is intended to be lightweight this flexibility is not
needed: the visit functions are not explicitly named and variables in
local scope can be modified by lambda capture alleviating the need for a
return value.

Conclusion
We have presented a method for defining inline visitors in standard C++.
The method does not, by design, remove the tight coupling between visited
and visiting class hierarchies. Performance, portability and convenience
of the inline visitor mean that we would encourage its use where tight-
coupling is acceptable and type-specific handling is logically localized.

References
[Gamma95] E. Gamma et al., Design Patterns, Addison-Wesley

Longman, 1995.

[Krishnamoorthi07] A. S. Krishnamoorthi, ‘The Cooperative Visitor: A
Template Technique for Visitor Creation’, 11 July 2007, Artima
Developer
http://www.artima.com/cppsource/cooperative_visitor.html

[Loki] Loki library http://loki-lib.sourceforge.net/

[Martin] R. C. Martin, ‘Acyclic Visitor’
http://www.objectmentor.com/resources/articles/acv.pdf

[Meyers06] S. Meyers, ‘My Most Important C++ Aha! Moments...Ever’,
Artima Developer
http://www.artima.com/cppsource/top_cpp_aha_moments.html

Listing 6 (cont’d)

 Inner end_visitor()
 {
 return Inner(move(m_args));
 }

 ArgsT m_args;
};
template <typename TVisitorBase>
struct EmptyVisitor
{
 struct Inner : public TVisitorBase
 {
 using TVisitorBase::visit;
 Inner(nullptr_t) {}
 };

 template <typename Tadd, typename Fadd>
 ComposeVisitor<
 Tadd,
 Fadd,
 Inner,
 pair<Fadd, nullptr_t>> on(Fadd&& f)
 {
 return ComposeVisitor<
 Tadd,
 Fadd,
 Inner,
 pair<Fadd, nullptr_t>>(
 make_pair(
 move(f),
 nullptr));
 }
};
template <typename TVisitorBase>
EmptyVisitor<TVisitorBase> begin_visitor()
{
 return EmptyVisitor<TVisitorBase>();
}

October 2014 | Overload | 19

http://www.artima.com/cppsource/top_cpp_aha_moments.html
http://www.objectmentor.com/resources/articles/acv.pdf
http://loki-lib.sourceforge.net/
http://www.artima.com/cppsource/cooperative_visitor.html

FEATURE BOB SCHMIDT
A Scheduling Technique for Small
Software Projects and Teams
Despite myriad scheduling tools, projects still overrun. Bob
Schmidt presents some tips for accurate scheduling.
ith all of the scheduling programs on the market today one might
wonder why software project deadlines are still missed and over
budget. These programs look at the tasks and schedule employees

accordingly. What these programs don’t take into account is the human
factor: software professionals need food, drink and rest, and don’t always
operate according to plan. The irony is that a scheduling program
developed by software professionals may not completely meet the needs
of software professionals teamed to complete a programming project.

This article introduces tips and techniques for creating and maintaining a
more accurate and easy-to-use schedule, in the context of small software
teams.

The systems and practices you are about to see occurred at a real company.
The names have been changed to protect, well, everyone but me.

The scenario
Your company has been contracted to develop a real-time process control
system with a combination of software and hardware deliverables and a
pre-determined schedule with a completion date fixed by contract.

These contracts are bid by marketing and sales with assistance from project
managers, using minimal input from people who will do the actual work.
The bids contain salary and overhead for X software bodies of differing
levels. These are ‘virtual’ bodies; in most cases actual personnel aren’t
assigned to the project until after contract award and notice to proceed. Too
often a large number of the bodies belong to people who are coming free
from a prior job, rather than people whose skill sets match the job’s
requirements.

The project team consists of a project manager (who is responsible for
more than one project); a system engineer responsible for the day-to-day
running of the project, primarily on the hardware side; one or more
hardware specialists who report to the system engineer; a lead analyst
responsible for the software side of the project, who reports to the project
manager but coordinates through the system engineer; and one or more
software specialists who report to the lead analyst.

The problem
The system engineer is given the task of scheduling the project, usually
before all of the other individuals have been assigned to the project. The
result of this work is a detailed critical path chart, with finish-to-start
dependencies neatly laid out in detail: purchase hardware items A and B;
receive hardware items A and B; assemble hardware items A and B; test
assembly; etc. Buried somewhere in the midst of all of this hardware

mumbo jumbo is one item – Software – which starts with the project’s
notice to proceed and ends at the factory acceptance test.

The system engineer, who is usually a hardware person, concerns himself
very little with the software end of things. He’s been given the project’s
start and end dates, and hardware to deal with, and, well, the rest is SMOP
– a Simple Matter of Programming – and left up to the software team.

The software team is faced with producing the software, in a finite period
of time, with a fixed set of requirements, without knowing the true scope
of the software development effort. Nothing the team says or does will
change management’s attitude toward the deadlines imposed by the
project schedule, especially because it is common for the contracts for
projects of this type to include provisions for liquidated damages.

Liquidated damages – two words guaranteed to keep a C-level executive
up at night. Liquidated damages are monetary penalties imposed on the
contractor for missed deadlines. Keep in mind that these types of projects
are often all-or-nothing affairs. Partial solutions that do not fulfill the entire
specification just aren’t good enough. A control system for a water
treatment plant that does not implement the dual-media-filter backwash
process is not going to be of any use.

The solution is for someone on your team, who best knows the strengths
and weakness and dependencies of your team, to take control of the
software schedule. Ideally, the lead analyst should be the one to do this;
however, any of the more experienced analysts can do the job as long as
the support is there.

The road to schedule happiness
The first step on the road to schedule nirvana is to get a grasp of what needs
to be done. I recommend developing a short description of each task to be
performed (which may map to a program or programs to be written or
modified on the coarse-grained end of the detail spectrum, to more specific
functionality on the fine-grained end). Record pertinent information about
the task, including the task name, a short description of the task, references
to the purchase specification (the customer’s document) and the system

W

Bob Schmidt is president of Sandia Control Systems, Inc. in
Albuquerque, New Mexico. In the software business for 33 years,
he specializes in software for the process control and access
control industries, and dabbles in the hardware side of the business
whenever he has the chance. He can be contacted at
bob@sandiacontrolsystems.com.

I estimate projects using days as the unit of time, with no task taking less
than one day to complete; a colleague advocated scheduling no task to
take less than a week. Either way, your time estimates should be based
on what can be accomplished in eight hour days and/or five-day work-
weeks.

Harumph, you say – in the real world we all work (at least) six ten-hour
days. This may be true, but if you schedule people based on the true
number of hours they work, then you allow your project no slack time with
which to take care of all of the things you can’t anticipate. It may be that
your team members work 60 plus hours a week because they are true
workaholics; more likely they work crazy hours because they feel forced
to do so because of unrealistic scheduling. It is far better to base your
initial estimates on a forty-hour week (or whatever your cultural norm).
Your team members will love you for being realistic, and they will be more
willing – and able – to put in those long hours when a true crisis calls for it..

Time estimates
20 | Overload | October 2014

FEATUREBOB SCHMIDT
functional specification or high-level design document (your response to
the purchase spec), any items or other tasks the task depends on, and an
estimated time to perform the task. (See the ‘Time estimates’ and ‘High
vs. low tech’ boxes.) There should also be a space for the person assigned
to the task, a starting date and a completion date.

Your first pass at filling in this data is just that – a first pass. You may not
be able to fill in the details of all tasks right away; create a placeholder for
it, and fill in the details when you know them. (You most likely will add
tasks during the course of the project, as those inevitable gotchas spring
up.) Where appropriate, scribble in the name or names of the people on
the team who have to do the task (because of their familiarity with the
existing code, or areas of expertise, for example) or who are able do the
task (based on what you already know about the rest of the project team
members).

I usually defined these tasks at a fairly high level of abstraction. Typically,
a task for a multitasking process control system correlated to a task running
in that system. In some cases a task was broken down further; the need to
integrate a new piece of process I/O gear might have been broken into a
communications section, an input section (for analog and discrete inputs,
pulse accumulators, etc.), and an output section (for analog and discrete
outputs).

At this point you should be ready to discuss your results with the rest of
the project team. You should encourage them to inspect your results, and
comment on them. What you want is to receive feedback on your time

estimates from the people who are going to be doing the work. You also
will learn of additional tasks; you may also find out that two or more tasks
can be better stated as one.

The schedule
Now that you have a grasp on the ‘what’, it is time to worry about the ‘how
long’. For this you need a software package that creates schedules, such
as Microsoft Project or Primavera. These typically create a schedule with
a calendar along the top, tasks down the left hand side, and which shows
when a task is to be performed by printing a bar to the right of the task
aligned with the actual dates across the top. The package you choose
should allow you to enter dependencies, milestones, etc. and should also
calculate slack time and critical paths.

Most scheduling packages are highly configurable, so this is where you
should start. I recommend the following initial assumptions:

 Configure the package to plot tasks on a daily basis,

 Configure the package to reflect all of the standard holidays your
company schedules, and

 Configure the package to not count (or plot) weekends and holidays
when scheduling.

If you follow the first suggestion you will wind up with a much larger chart,
but it will contain more detail; you will be thankful for that detail later.
The last two items are very important for a very simple reason: there is
nothing that will deflate morale quicker than to see that work has been
scheduled for every weekend and every holiday, even if the package
automatically adds days to a task which spans weekends and holidays. I
believe the chart in Figure 1b is much more desirable than the chart in
Figure 1a, because there is a more visible one-to-one relationship between
your time estimates (in days) and the number of days shown on the chart.
If your package does not allow you to filter out weekends and holidays,
then you should go out of your way to show your fellow team members
that the duration of the task is based on a five-day work-week.

Creating the first pass of the schedule requires time and patience. The first
step is to take all of the task assignments and sort them by the people who
are able to perform the tasks. If a task can be accomplished by more than
one team member, take a guess and assign it to one member. (The guess
can be based on who you think is best for the job; or, if team members are
equally talented, whom you think is the more lightly loaded.)

The next step is to sort each team member’s initial assignments by priority
and by any dependencies. Once you have performed this initial sort it is
time to plug all of the data into the scheduler.

If your previous schedules have been like the ones I have received from
‘on high’, the tasks all are entered into the package, without regard to any
previously known dependencies, or the person or persons who are going
to do the work. This results in a schedule that is very difficult to follow,
requiring the use of mental calisthenics to follow a dependency path from
start to finish as you bounce up and down the chart. Look at the sample
schedule in Figure 2, and imagine what it would take to follow if there were
100 tasks scheduled over 12 months or more.

I believe in creating a schedule that can be followed by mere mortals, so
I base my chart on people. Although this is a more difficult way to use these
types of scheduling programs, the results are worth the effort.

Figure 1

Scheduling packages allow tasks to be allocated to resources (people),
and they allow dependencies between tasks to be defined. A task
dependency simply states that one task needs to be completed before
another can be started.

If tasks are entered into the scheduling software without resource
allocation or explicit dependencies, you wind up with a schedule that
looks like this:

All tasks start at the same time; this is not very useful. By adding resource
definitions to the tasks, the scheduler can spread the tasks out in time.
This shows what this might look like:

This figure looks an awful lot like Figure 2, but is even less readable. It
is not immediately obvious which tasks are in whose timeline.

I like to use explicit dependencies on tasks assigned to a person. My
experience is that it is easier to use the scheduler this way than assigning
resources and letting the scheduler make its own decisions about which
tasks should be done first. Plus, there are always real dependencies
between tasks, both within the timeline of a single person and between
the timelines of different persons. Sticking with one method of defining
the ‘end-to-start’ relationships between tasks simplifies my job, by
eliminating the modification of the additional resource data within the
scheduler.

Dependencies vs. resource allocation
October 2014 | Overload | 21

FEATURE BOB SCHMIDT
Start with the assignments for one team member only. Enter this team
member’s assignments into the scheduler, in an order that makes sense.
Make each task’s start date dependent on the prior task’s end date, as well
as any other dependencies you have noted. (See the ‘Dependencies vs.
resource allocation’ box.) If a task has a hard start date (which might be
caused by the known arrival date of a prerequisite for the task) or a hard
end date, enter these dates into the scheduler, too. Repeat this task for each
team member’s assignments. What you want to end up with is an initial
schedule that looks like the one in Figure 3.

The format of the schedule in Figure 3, which is people-based, is much
easier to follow than the one in Figure 2 (which contains the same data).
It is also easier to detect an imbalance between the loadings of each of the
team members, places where dependencies between team members cause
slack time in one member’s schedule, and where the critical path lies.

The last step (and perhaps the most lengthy) is to minimize the slack time
in each team member’s schedule, and to attempt to equalize the end date
of each member’s schedule, by switching tasks between members (where
possible) and rearranging the order of arbitrarily ordered tasks. (Don’t kill
yourself trying to get all of the slack time out of your schedule; a little slack
time scattered throughout each team member’s schedule can help absorb
some of the inevitable delays.) For the simple example in Figure 3, if Task
4 can be performed by either of the team members (and assuming there
are no dependencies which would prevent the reassignment), it can be
reassigned to the first team member to achieve the schedule shown in
Figure 4. The result is a schedule that beats the completion milestone.

Now that you have fiddled, tweaked, moved, rearranged, reordered and
otherwise completely redone your schedule multiple times, and have
finally come up with a schedule that optimizes your resources, what do you
do with it? If you are one of the fortunate few, your schedule has ample
slack time in it, there are no missed milestones, and most – or all – of the
critical path is assigned to your most productive team member, then – get
to work! However, if you are like the rest of us, your carefully crafted
schedule shows what you expected all along: there just aren’t enough days
in the week to get your project done on time.

This is the point where doing all of this upfront work really pays off. You
could have taken your task sheets, added up all of the time estimates,
divided the sum by the number of people allocated to the team, and come
to a similar conclusion without having expended nearly the same amount
of effort. But your carefully crafted schedule is more apt to convince a
manager that one of three things needs to be done: the completion date must
be pushed out, features need to be cut from the specification, or you need

one or more additional people. (A rational manager might ask you if you
have cut out all of the fat from the schedule before recognizing the obvious;
an irrational manager will just tell you to shorten the schedule, dammit,
and don’t bother me with your problems.)

On projects such as these, the completion date and specifications are
contractual, and not likely to be open to discussion (remember – liquidated
damages). So you are most likely going to be faced with adding one or
more team members. Unfortunately, what will probably happen is that
your manager will tell you to rework the schedule assuming that there are
X additional players to be named later. Once again you will be faced with
the problem of assigning tasks to unknown individuals, and reworking the
schedule to meet the projects requirements.

Plan the dive, and dive the plan?
SCUBA divers are taught to plan a dive carefully before getting into the
water, and then to ‘dive the plan’ and not to change the characteristics
(maximum depth and time underwater) of the dive while in the water (with
the exception of an emergency, of course). Well, the same can be said of
your schedule. You have put a lot of time and effort into your schedule;
the project team members should be required to stick to it, right? Penalties
for missing a deadline should be stiff, tasks should never be performed out
of order, heads will roll if major changes are necessary – you get the point.

What a bunch of hooey. In order for your schedule to be effective over time,
it has to be flexible. This is simple reality – no project ever goes completely
according to plan. Your schedule has to be a work-in-progress at all times.

A scheduler’s work is never done
The easiest way to get the maximum results from your schedule is to follow
these guidelines:

Print out your schedule using the finest grain you can handle. (I like a
printed schedule that goes right down to days.) If your scheduling package

Figure 2

Figure 3 Figure 4

I developed this technique back in the mid-1980s when IBM PCs were
under-powered and over-priced, so a lot of the work of defining tasks was
done by hand, written with pencil on paper placed in a 3-ring binder. We
used Quicknet for producing schedules; the resulting charts were printed
on green-bar, with pages taped together to form a horizontally-oriented
calendar.

This scheduling technique works independently of the level of technology
used to implement it. I used the project timeline stencils that come with
Visio to produce my last schedule, working from paper-based forms filled
in by hand. (The diagrams accompanying this article were prepared that
way.) A higher tech solution was not required.

The level of technology you apply to this technique should be tailored to
your situation. Do you have a distributed team? A low-tech 3-ring binder
approach to task definitions may not work, and a printed schedule pinned
to the wall will not be accessible to all team members. Already have a
software-based manner of defining and tracking tasks or change
requests? Use the tool to accumulate the required data and then create
your schedule. (I have a customer that uses Borland’s StarTeam for this
purpose. Their change request entries contain task descriptions and time
estimates perfectly suited as inputs to the scheduling process.)

High vs. low tech
22 | Overload | October 2014

FEATUREBOB SCHMIDT
doesn’t do it, print the name of each team member next to the line of tasks
to which he or she is assigned.

Hang a copy of your completed schedule in a place that is easily accessible
to the project team. (See the ‘Schedule Location’ box.) Try to display the
schedule on one plane, without having to resort to multiple levels. Show
your team the relationship between the tasks on the schedule and the tasks
definitions. Encourage them to do the following: record the actual start and
end dates of a task; mark the actual start and end dates of a task on the
schedule; and record any problems they had.

Update the schedule once a month. Start by interviewing all of the project
team members and asking them how their current task is going. Ask them
how far they have progressed, and how much longer they think it will take
to finish. You should also inquire about any other tasks on which they have
worked since the previous month’s update. Make it clear that you are not
asking these questions to nail them on missed deadlines, but rather to make
it easier for you to better estimate the rest of the job.

Insofar as the schedule is concerned, you have two goals to accomplish:
1) update the schedule so that it realistically reflects the activities of the
team members over the past month; and 2) modify the schedule as
necessary for future work. The first step is important because it accurately
records the past. This is why you want the team members to mark down
real start and end dates for tasks.

The second step is even more important, because it is here that you use the
historical data to better predict the future. (If this seems dangerously close
to collecting metrics, all the better. I won’t presume to call any of this data
a metric because the process is too subjective.) The goal is to continuously
narrow the ‘cone of uncertainty’. [McConnell97]

Use the results of your discussions with team members to estimate the
completion of their current tasks. For example, if they say they are 50%
done, and they have spent nine days on the task already, then adjust the
schedule for the item to read 18 days (regardless of what it started out to
be). You may need to adjust this up or down, depending on whether the
team member is a strong starter or a strong finisher; use what you have
learned of each team member from all of the prior schedules.

You may find that the schedule undergoes drastic changes during some or
all of your updates. You may find that a team member is not suited for
certain work you have assigned to him or her, requiring a complete
shuffling of tasks for the rest of the project.

A schedule update is also the time to add tasks associated with those
‘gotchas’ I talked about earlier.

Another very good reason to update the schedule every month to accurately
reflect past work is that it hides the evidence of missed schedules. This in
turn makes it more likely that each team member will annotate the schedule
accurately, which will make it a better forecasting tool. I advocate burning,
shredding or, at the very least, hiding all previous schedules; you really
don’t want indicators of past performance lying around. It is also a good
idea to keep any type of relative performance data out of the hands of

management. If you are perceived as a performance information pipeline
to management, the other team members may stop cooperating with your
efforts. After all, when updating the schedule it is more important to know
a person’s total performance on a similar task than whether the person
finished the job early or late.

What about Agile? Isn’t this just big <something> up
front?
What about it? I have heard great things about agile methodologies –
Scrum, XP, and the like – and if I ever get to work on an agile project I’ll
let you know how it worked out. Agile methodologies seem to be short-
term oriented – two to four week intervals of planning and execution. I can
see how this works for internal development projects, or projects where
partial, functional solutions are possible and even desirable. I have never
been able to figure out how you would know if your resources are allocated
correctly for a long term project if you don’t take time to plan for the long
term. (I am willing to be corrected on this.)

Although I haven’t used it this way, these techniques could be adapted to
a quasi-agile form. The schedule you create could be broken up into the
agile increments in use by your team. In this case there would be a project
milestone at the end of each interval, and the tasks assigned to team
members would need to fit not only into the overall, long-term schedule,
but each of the intervals as well.

Costs versus benefits
It took me about one full week to create an initial schedule for four or five
team members and approximately 100 tasks. I spent one full day a month
updating the schedule. I set aside the last work day of the month for this
purpose. By keeping to a schedule for updating the schedule I was sure to
get the updates done, and the other team members got used to thinking
about the questions I would inevitably ask them.

I developed and refined this technique over the course of two projects, a
nuclear power plant security system and a retrofit of a waste water
treatment plant process control system. The security system project lasted
twelve months and was staffed by four programmer/ analysts, including
myself. The waste water treatment plant control system project lasted
fourteen months and was staffed by four to six programmer/analysts at any
given time. Both of these projects were completed and successfully passed
their factory acceptance tests on time, a rare occurrence for those types of
systems at that company.

I was not the lead analyst on either job, but I had the support of the lead
analyst and project manager in both cases. The second project was one
third of the way into its overall schedule when I joined the team. After I
was given my assignments, I sat down to schedule them out using the
techniques developed on the first project. The lead analyst asked what I
was doing, and when I told him I was scheduling my own work he directed
me to schedule everyone else on the team, too. We discovered there was
no way to meet the schedule given the currently allocated resources, and
were able to add a person early enough to finish on time.

There were some other benefits to this approach. Team members from the
project supported the scheduling process, since they had a say in the time
estimates used. We had a small level of process feedback, since I was able
to use historical data to better estimate work yet to be done. And, best of
all, we were able to complete both jobs with less overtime overall than
other projects of their type.

Acknowledgements
My thanks to Nicole Wascoe Bauman for her input on the article, and to
Don Perkins for supporting my efforts on these projects.

References
[McConnell97] Software Project Survival Guide, Steve McConnell

If you decide to post a copy of the schedule, avoid the tendency to turn
it into what I call a ‘public embarrassment board’. The schedule should
not be hung in a high-traffic hallway, conference room or cafeteria.I once
had a cubicle around the corner from another project’s public
embarrassment board. It was located in the hallway next to one of the
main employee entrances to the building. To my knowledge it was never
updated past a certain point in the project and continued to display missed
deadlines and ‘90% complete’ long after the job was finished. Perhaps
the worst example of this sort of thing was a defense contractor that had
graded the progress of its projects and placed the grades on the wall right
in front of the main entrance to the facility. How would you feel if you saw
that your project’s current grade was a D minus or an F, every time you
walked into work? Would you really want your customers to see it?

Schedule location
October 2014 | Overload | 23

FEATURE FRANCES BUONTEMPO
Paper Bag Escapology Using
Particle Swarm Optimisation
Some attempts at programming one’s way out of a paper bag
need an upfront model. Frances Buontempo simplifies things
using particle swarm optimisation.
reviously [Buontempo13c], I demonstrated how to use a genetic
algorithm to program your way out of a paper bag. This had the main
drawback that an initial model was required. In this specific case, we

used the well-known equations for the ballistic trajectory of a projectile:

In this article, I will introduce a method for solving problems which does
not require a model up front. This is one of a vast class of optimisation
techniques which seems to be well suited to paper bag escapology, though
does have other somewhat more practical uses, for example finding
training weights for neural networks. Though the genetic algorithm
approach worked well, there are often circumstances in which one does
not have a model, and even if armed with an upfront model it often requires
calibration to find suitable constants. In the projectile equations, we just
require a numerical value for the single constant g. In the general case more
‘constants’ may need finding, and frequently models need to be
recalibrated since the constants they use are in fact not constant
[Buontempo13a].Though, for example, measuring instruments will tend
to just need calibrating once, in other areas, such as finance, models are
recalibrated weekly or even more frequently, perhaps suggesting that the
models are not that close to reality. Specifically, various sources ascribe
the quote “When you have to keep recalibrating a model, something is
wrong with it,” to Paul Wilmott [e.g. Freedman11]. In contrast to
approaches requiring a model, particle swarm optimisations still explore
the solution space, partially randomly as with genetic algorithms, but
exploit the idea of a social sharing of information, via the fitness function,
thereby supposedly mimicking swarm or foraging behaviour.

Initial attempt
Starting from first principles, it is not difficult to write code to make one
particle move around in space and stop when (and if) it finally escapes from
a paper bag. If you will indulge me, I will use JavaScript this time, and
draw on the HTML canvas. If you are unfamiliar with this technology there
are many online tutorials to get you up to speed (for example, https://
developer.mozilla.org/en-US/docs/Web/Guide/HTML/Canvas_tutorial).
Hopefully the code is intuitive enough that it needs no explanation.

Given a canvas declared in html, with a message for browsers that do not
support this

 <canvas id="myCanvas" width="800" height="400">
 Your browser does not support the canvas element.
 </canvas>

First, we draw a 2 dimensional bag and place a small rectangle,
representing the particle somewhere in it. (See Listing 1.)

Then, we set up a callback function, allowing the gap between invocations
to redraw the canvas, which draws the present position and then moves the
particle. If it escapes the bag we stop, otherwise we re-call the callback.
Without loss of generality, assuming a square paper bag, we can move as
follows: Starting with the particle at position (x, y), indicated by the small
black rectangle at some point, say in the middle of the bag, it is allowed
to move a little in either direction – vertically, up or down and horizontally,
either left or right. The random movements are allowed to continue until
the particle finally escapes the paper bag.

 x += bag_width * 0.2 * (-0.5 + Math.random());
 y += bag_width * 0.2 * (-0.5 + Math.random());

The particle starts as requested and wends its way round the canvas like
an angry ant until it finds its way out of the bag.

When it escapes we cancel the callback using the id we remembered:

 clearInterval(id);

In theory it may never escape, but always has done so far. It takes about 3
seconds, though varies greatly, sometimes taking just one second and other
times more than 10.

P
x k w vt

vt gt

1

2
1

2
2

cos()

y sin()

Listing 1

//Draw the bag
var c=document.getElementById("myCanvas");
var ctx=c.getContext("2d");
ctx.clearRect(0,0,c.width,c.height);
ctx.fillStyle="#E0B044";
var bag_width = 300;
var left = 75;
var right = left + bag_width;
var up = 25;
var down = up + bag_width;
ctx.fillRect(left,up,bag_width,bag_width);

//Draw the particle
ctx.beginPath();
ctx.rect(150, 150, width,width);
ctx.strokeStyle="black";
ctx.stroke();

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She
has been a programmer for over 15 years professionally, and learnt
to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com
24 | Overload | October 2014

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Canvas_tutorial
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Canvas_tutorial

FEATUREFRANCES BUONTEMPO

If they all move towards each other they
are likely to swarm, or indeed clump,

together and move no further
What have we learnt from this? Aside from how to use the canvas, very
little apart from how simply trying some random moves can work. It could
possibly be sped up, or optimised in a sense, by allowing several particles
to set off on their journey simultaneously and seeing who wins.

Attempt 1 – Every man for himself
Changing the original code to have an array of ‘Beasties’ or particles,
rather than just tracking the x and y coordinates of a single item is relatively
straightforward. First we need a Beastie, perhaps given a starting x and y
position:

 function Beasty(x, y, id, index)
 {
 this.x = x;
 this.y = y;
 this.id = id;
 this.index = index;
 }

Then we need to track these, having decided how to start them off. I took
the approach of clicking a button to form a new particle, though there are
other options.

 id = setInterval(function()
 { move(index); }, 100);
 var beast = new Beasty(x, y, id, index);
 ids.push(beast);

We store the id of the interval in order to cancel all the particles when
we’re done. As previously, the move function moves the given particle by
a small random amount. If the particle ends up outside the bag it then stops
and freezes the others in their tracks, using their ids. The algorithm could
be altered to wait for all of them to escape. This is left as an exercise for
the reader.

Previously we used a genetic algorithm to allow several attempts at
problem solving to ‘share knowledge’ by combining the angle and velocity
from randomly selected better particles of the previous generation to form
a new better younger generation. In this approach, the particles each follow
their own random walk and do not communicate with each other. If they
influence one another we could end with all the particles escaping the paper
bag.

Attempt 2 – The blind following the blind
Making the particles follow each other is relatively easy though will prove
to be a foolish thing to do. There are several options, but obviously we can’t
have every particle following every other particle otherwise they are likely

to freeze. If they all move towards each other they are likely to swarm, or
indeed clump, together and move no further. A more fruitful approach
might be a variant of the k nearest neighbours [k-NN] algorithm. Allowing
each particle to take a step independently, but also pulling it towards some
of its nearest neighbours will allow the particles to actually move but still
tend to swarm together.

To find the nearest neighbours of a given particle in our array of particles
with index index we find its distance from the particle under consideration,
order them by distance and just return the top n as in Listing 2.

The number of neighbours can either be specified in advance or changed
as the simulation runs. I settled for the minimum of 5 and the number of
particles, though as you can see the function is flexible. In general, the
distance function must be chosen carefully so it is suitable for the domain.
In our case, the straightforward Euclidean distance

should be suitable since this is inherently a spatial problem. For the
mathematically challenged, think Pythagoras. Finding the average x and
y displacement or nudge of these nearest neighbours from each particle can
be used in conjunction with a small stochastic (or random) step (Listing 3).

Listing 2

function knn(items, index, n) {
 var results =[];
 var item = items[index];
 for (var i=0; i<items.length; i++) {
 if (i !==index) {
 var neighbour = items[i];
 var distance = Math.sqrt(item.x*neighbour.x
 + item.y*neighbour.y);
 results.push(new distance_index
 (distance, i));
 }
 }
 results.sort(function(a,b) {
 return a.distance - b.distance;
 });
 var top_n = Math.min(n, results.length);
 return results.slice(0,top_n);
}

() (y)x x y1 2
2

1 2
2

Listing 3

x_move += (x_nudge - beast.x)
 * neighbour_weight
 * (-0.5 + Math.random());
y_move += (y_nudge - beast.y)
 * neighbour_weight
 * (-0.5 + Math.random());
October 2014 | Overload | 25

FEATURE FRANCES BUONTEMPO

even though we intended to encourage
them to swarm together they have tended
to each escape from a different spot
Unfortunately, this means the particles do tend to swarm together but if
some of them are not doing very well, they can greatly increase the time
taken for all of the particles to escape. The particles do all tend to escape
eventually but can take an hour or so to finish.

We tend to find the particles clump together initially

Sometimes one starts to escape

However, it can tend to be pulled back with the others. Clearly, its nearest
neighbours are in the main clump or swarm of particles, so this is
unsurprising. Usually, they do manage to move away from the main
swarm.

The simulation stops once all the particles have escaped the paper bag.
Notice that even though we intended to encourage them to swarm together
they have tended to each escape from a different spot. They did swarm
together but it seems that only the individual randomness allow individuals
to escape from the mindless herd and then escape from the paper bag. This
was not our intention, though it has paved the way for a more successful
approach.

Attempt 3 – A swarm with memory
If each particle still tends to move randomly, but also moves towards the
best of the rest rather than the nearest few of the rest and also is pulled
towards its best position so far, it seems likely things may improve. This
will allow the swarm to use what it discovers as it moves, both individually
and from the swarm memory. In fact, this is the essence of a particle swarm
optimisation [Kennedy95].

The pseudo code is as follows:

 Choose n
 Initialise n particles to a random starting point
 in the bag
 While some particles are still in the bag
 Update best global position
 Draw particles current positions
 Move particles - updating each particle's
 current best position

In order to move the particles, each has a position and ‘velocity’. In the
move function, each particle’s current velocity is first updated based on
its current velocity, the particle’s local information and global swarm
information. Then, each particle’s position is updated using the particle’s
new velocity. In mathematical terms the two update equations are:

Here w, c1 and c2 are weighting constants though variants of the algorithm
allow them to change over time. r1 and r2 are random variables. p is
personal best, and g is the global best. So, this combines the current
velocity, a step in the direction of the personal best for each particle and a
step towards the current global or swarm best. Choosing the weightings
requires care, as we shall see.

The best positions can either be found synchronously or asynchronously,
where best will be defined shortly. This paper presents results for
synchronous updates, updating the global best after everything has moved.

The algorithm above implements synchronous updates of particle
positions and best positions, where the best position found is
updated only after all particle positions and personal best positions
have been updated. In asynchronous update mode, the best
position found is updated immediately after each particle's position
update. Asynchronous updates lead to a faster propagation of the
best solutions through the swarm. [Dorigo08]

Unlike several other optimisation methods, this is ‘gradientless’. For
example, neural networks traditionally find their weights by using the
differences between error functions for a change in their value and stepping
the weights in the direction of the best value. The steps are always based
on the gradient (difference per step size) [Wolfram].In contrast, PSO does
not require any calculus to find gradients and use them to infer a step size
and direction. In other words, no difficult maths is required to work out
optimal ways to find the minimum or maximum of some function or best
solution to a problem. We simply try a few things and remember the best
so far.

Finally, we need a definition of ‘best’. In our initial attempts, the particles
were allowed to burst through the sides of the bag. In the case of PSO if
we simply find the distance to the edge of the bag it is possible to have
two equidistant particles with the current particle to be updated exactly in
between them. In this case, it will not move towards either of them if both
are allowed to exert influence. There are various ways to tackle this
problem. I have decided to concentrate on the definition of ‘best’,

v w v c r p x r g x

x x v
t t t t t t

t t t

1 1 1 2 2

1 1

() c ()
26 | Overload | October 2014

FEATUREFRANCES BUONTEMPO
providing a fitness function which, along with the approach taken in my
genetic algorithm escapology, simply measures the distance to the top of
the bag. This way all the particles will be given an imperative to move up.
See Listing 4.

Note that the canvas has 0 at the top, but I have flipped things to have 0 at
the bottom to fit with my mathematical bent. Bigger y coordinates are
better, though the drawing code in the case must remember to flip the u
coordinate back again:

 var particle = item[i];
 ctx.fillRect (particle.x,
 canvas.height - particle.y - 2,
 particle_size, particle_size);

We leave a small gap, here 2, to give the particles space to actually come
out of the bag. Care must be taken with the weights, otherwise positions
can zoom off to infinity very easily – we need ‘sensible’ weights.
Specifically, since the velocity will tend to make the particles move up due
to the chosen fitness function, we can end up with exponential upwards
motion. See Listing 5.

The move_in_range function simply clamps the particle to the edge of
the bag or stops it when it peaks above the top. We could adapt the
algorithm and allow it just to consider the best of its nearest neighbours
rather than the global best, which could give us more of a flock than a
swarm. In other words, you will see some overall shape of motion with a
flock, rather than a mass of particles moving together in a swarm. We could
also allow the particles to escape from the sides of the bag. There are
several variants, but we shall just report the one approach outlined so far.

Unlike our first attempt, we can see all the particles tend to move together
and escape in approximately the same place. They do tend to either all

move left or all move right, which might indicate inappropriate weightings
for the horizontal movement. Further work could be done to investigate
the parameter choice.

They do all consistently escape within a few seconds.

Conclusion
This article has considered how to program one’s way out of a paper bag
without needing an up-front model. This has some obvious advantages
over simulations which require a believable model of how a situation might
evolve over time. Particle swarm optimisations are part of the more general
swarm intelligence algorithms, which allow a collection or swarm of
potential solutions to a problem to collaborate, gradually nudging towards
a better solution. Other examples include ant colony optimisations
[Buontempo13b] or bee foraging algorithms [Quijano10]. In general, the
‘points’ explored will be values to solve another problem rather than
spatial points, but hopefully this demonstration has served as a simple
introduction for anyone who wishes to take this further. It would be nice
to extend this to other swarming and flocking algorithms, perhaps having
flights of birds or similar moving out of the bag. I will leave that as an
exercise for the reader.

Notes
The code is on github at https://github.com/doctorlove/paperbag

Many thanks to my reviewers.

References
[Buontempo13a] Frances Buontempo ‘What’s a model’ http://accu.org/

content/pdf/presentations/accu2011nov/models.pdf

[Buontempo13b] Frances Buontempo (2013) ‘How to program your way
out of a paper bag’ http://accu.org/content/conf2013/
Frances_Buontempo_paperbag.pdf

[Buontempo13c] Frances Buontempo ‘How to Program Your Way Out
of a Paper Bag Using Genetic Algorithms’ in Overload 118

[Dorigo08] Marco Dorigo, Marco Montes de Oca and Prof. Andries
Engelbrecht ‘Particle swarm optimization’ in Scholarpedia, http://
www.scholarpedia.org/article/Particle_swarm_optimization

[Freedman11] David Freedman ‘Why economic models are always
wrong’ in Scientific American, article dated 26 October 2011
http://www.scientificamerican.com/article/finance-why-economic-
models-are-always-wrong/

[k-NN] ‘k-nearest neighbors alogorithm’ – http://en.wikipedia.org/wiki/
K-nearest_neighbors_algorithm

[Kennedy95] J. Kennedy and R. Eberhart ‘Particle swarm optimization’
in Proceedings of IEEE International Conference on Neural
Networks, pages 1942–1948, IEEE Press, Piscataway, NJ, 1995 (See
http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/
_reading6%201995%20particle%20swarming.pdf)

[Quijano10] Nicanor Quijano and Kevin Passino (2010) ‘Honey bee
social foraging algorithms for resource allocation: Theory and
application’ in Engineering Applications of Artificial Intelligence
Volume 23, Issue 6, September 2010, Pages 845–861 (See http://
www.sciencedirect.com/science/article/pii/S0952197610001090)

[Wolfram] ‘Method of Steepest Descent’ at Wolfram MathWorld:
http://mathworld.wolfram.com/MethodofSteepestDescent.html

Listing 4

function best(first, second) {
 if (first.y > second.y) {
 return first;
 }
 return second;
}

function updateBest(item, bestGlobal) {
 var i;
 for (i = 0; i < item.length; ++i) {
 bestGlobal = best(item[i], bestGlobal);
 item[i].best = best(item[i].best, item[i]);
 }
 return bestGlobal;
}

Listing 5

function move(item, w, c1, c2, height, width,
bestGlobal) {
 var i;
 for (i = 0; i < item.length; ++i) {
 var current = item[i];
 var r1 = getRandomInt(0, 5);
 var r2 = getRandomInt(0, 5);
 var vy = (w * current.v.y) +
 (c1 * r1 *
 (current.best.y - current.y)) +
 (c2 * r2 * (bestGlobal.y -
current.y));
 var vx = (w * current.v.x) +
 (c1 * r1 * (current.best.x - current.x)) +
 (c2 * r2 * (bestGlobal.x - current.x));
 move_in_range(vy, height, item[i], "y");
 move_in_range(vx, width, item[i], "x");
}

October 2014 | Overload | 27

https://github.com/doctorlove/paperbag
http://accu.org/content/pdf/presentations/accu2011nov/models.pdf
http://accu.org/content/pdf/presentations/accu2011nov/models.pdf
http://accu.org/content/conf2013/Frances_Buontempo_paperbag.pdf
http://accu.org/content/conf2013/Frances_Buontempo_paperbag.pdf
http://www.sciencedirect.com/science/article/pii/S0952197610001090
http://www.sciencedirect.com/science/article/pii/S0952197610001090
http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.scientificamerican.com/article/finance-why-economic-models-are-always-wrong/
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://mathworld.wolfram.com/MethodofSteepestDescent.html

FEATURE KEVLIN HENNEY
Feeding Back
Feedback can be positive and negative.
Kevlin Henney contemplates how to
make feedback useful.
slim figure takes to the stage, dressed in orange and black, wreathed
in a bandana, his guitar flipped over and strung for left-handed play.
It’s the close of over three days of hedonistic and culturally shifting

psychedelia and sound. Humans have recently and for the first time set foot
on another world.

It’s 1969. It’s Woodstock. It’s Jimi Hendrix. During his set he splices
metallic whale song into his fluid solos, coaxing sounds from his
Stratocaster that guitars simply have no business making.

This is feedback. Not the negative feedback that dampens sound and
enthusiasm. Positive feedback. But not gushing and uncontrolled, neither
excessive nor insincere. There is an art to feedback.

Feedback, especially positive feedback, is normally a sound engineer’s
nightmare. A skilled guitarist can make it part of the performance, part of
the music. For software engineers, offering and taking feedback, positive
or negative, can be just as much a minefield. When there is a problem, it
is too easy to resort to silence or complaint. When there isn’t a problem,
it is too easy to resort to silence.

When you ride a bicycle, feedback is essential. Sight, hearing and
proprioception allow you to navigate and balance, to respond to the bike
and the road. You respond when the bike is balanced and on a steady
course: you respond by continuing to do what you are doing, preserving
your course and your balance. You respond when the bike loses balance,
destabilized perhaps by a hole or a bump. You change behaviour, you react
to recover and put the bike back on course. And you respond when the
situation on the road changes. You avoid pedestrians, cars and other bikes,
stop at junctions and red lights, cycle more carefully in the rain.

Part of team leadership involves leading by example, but part involves
guidance. For simple systems, guidance is programmatic, a matter of
command and control. This doesn’t work well for complex systems, and
individuals and teams are very complex systems indeed. Feedback is a
guidance technique, but there is an art to it that goes beyond the simple
presentation of the facts as you see them. To be effective, feedback also
needs to be trusted, concrete and constructive.

No matter how upstanding they might be, we do not generally consider
people to be objective sources of information in the way that inanimate
objects and software tools are. When a piece of code fails a test or doesn’t
compile, we do not attribute this to a subjective judgement of the test or
the emotional state of the compiler (unless we’re having a really bad day).

When we get feedback from people we are more likely to hear what they
are saying through a veil of emotions, cognitive biases and relationships.

If the only feedback you offer is negative and corrective, it is likely to
dampen anyone’s spirits, independently of whether or not it is factually
correct. Negative feedback is likely to breed mistrust and resentment. It is
disempowering and demotivating. The absence of any positive feedback,
by implication, suggests that there is nothing the person is doing right.

Relentless feedback of any one form does not offer the guidance or build
the trust that will help you, the individual or the team. This applies just as
much to unconditional positive feedback as it does to negative feedback.
Positive feedback is psychologically necessary, otherwise people feel like
they’re operating in a vacuum — the few humans who have ever been
privileged to work in a literal rather than figurative vacuum know that
support is a necessity not an option — but there is a balance to be struck:
excessive and unwarranted positive feedback simply becomes saccharine
and insincere.

Feedback should also be contextual and concrete. Simply saying
someone’s work is good is a pat on the back, but it’s vague and there is
little guidance, little they can take away from it beyond feeling
congratulated. What is it that is good? Whether we are talking about
someone overcoming a personal or technical challenge, meeting a goal or
fielding ideas, be specific. Unless you are specific, it is difficult for them
to know what it is about what they did that is good so that they can learn
from it, repeat it and build on it.

It is this question of learning and allowing someone else to do the learning
that highlights the weakness of negative feedback. Even without the
question of self-esteem, simply pointing out that something is not good is
not helpful, and in this case adding detail doesn’t help. Just saying
something is not good does not tell someone what is good. There is little
they can learn from it. It’s like a no-entry sign on a one-way street: you
are told which way you should not go, but you are not told which way you
should go.

Negative feedback is often given in response to seeing a problem, but it is
not intrinsically problem solving and constructive. To be constructive you
need to offer a concrete suggestion for improvement or you need to make
the giving of feedback part of a problem-solving conversation. If you want
someone to learn, create the opportunity and environment for them to
discuss and contribute, otherwise the feedback becomes more about the
person giving the feedback than the person receiving it. Feedback should
have purpose and it should enable purpose.

Feedback, as a term, is often taken to be unidirectional but, as its
engineering origins suggest, it is definitely about a relationship. It involves
guidance and balance. Steady as she goes.

This is based on material previously published in Roy Osherove’s
Notes to a Software Team Leader: https://leanpub.com/teamleader

A

Kevlin Henney Kevlin is an independent consultant and trainer
with an interest in programming, patterns, practice and process. He
has been a columnist for a number of magazines and web sites, not
all of which have folded, and is the co-author of A Pattern
Language for Distributed Computing and On Patterns and Pattern
Languages, two volumes in the Pattern-Oriented Software
Architecture series. He is also the editor of 97 Things Every
Programmer Should Know. Kevlin speaks at conferences, lives
online and in transit, and writes short fiction in what perhaps
qualifies as his spare time.
28 | Overload | October 2014

https://leanpub.com/teamleader

	Overload123_final3.pdf
	Peer Reviewed
	Debug Complexity: How Assertions Affect Debugging Time
	Alternative Overloads
	Everyone Hates build.xml
	Defining Visitors Inline in Modern C++
	A Scheduling Technique for Small Software Projects and Teams
	Paper Bag Escapology Using Particle Swarm Optimisation
	Feeding Back

