

February 2015 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Best Practices vs Witch Hunts
Sergey Ignatchenko notes what happens when
Good Practices turn Bad.

7 Making a Tool of Deception
Björn Fahller introduces Trompeloeil, a header-only
mocking framework for C++14.

9 Modern C++ Testing
Phil Nash compares modern C++ testing
frameworks.

12 I Like Whitespace
Bob Schmidt shares why he thinks whitespace
matters.

17 Faking C Function with fff.h
Mike Long presents a faking function
framework for C.

20How to Write an Article
Frances Buontempo explains how easy this is.

22 Letter to the Editor

OVERLOAD 125

February 2015

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 126 should be submitted
by 1st March 2015 and those for
Overload 127 by 1st May 2015.

EDITORIAL FRANCES BUONTEMPO
FUD – Fear, uncertainty and doubt
Sometimes programming is neither an engineering
discipline nor a science. Frances Buontempo considers
when it slips into the numinous realm.
Previously, I considered how difficult it can be to
allow creative ideas to flow in an attempt to encourage
each of you to be brave and find potential articles to
write up. You may be unsurprised to learn I have failed
to heed my own advice and have in fact found yet
another excuse for not writing an editorial. More than

a lack of ideas or source of inspiration can freeze people up or make them
behave in odd ways. This will require some context, so bear with me.

As I am sure you are aware, debates have raged for ages [e.g. Stack
Exchange] concerning whether programming counts as a science or as an
engineering discipline. It is possible to do a degree in either computer
science, with an emphasis on data structures and algorithms, or in
computer engineering, with an emphasis on the hardware – networks,
multimedia, or circuit boards. Both may involve an element of
programming, yet this is not the whole story. Some of the academic
computing disciplines stray into philosophy along the road. Many early
experiments (does that make it a science?) touched on the realm of
Artificial Intelligence. They asked big questions like the Voight-Kampff
machine, perhaps more correctly referred to as the Turing Test [Turing].
Having recently seen a review of The Imitation Game film about Turing
where a reviewer remarked the Turing Test was like the Voight-Kampff
test from the film Blade Runner, I need to be more discerning about which
reviewers I listen to [thanks to this team for being better informed]. I
digress. My bachelor’s degree is in Mathematics and Philosophy, and is
actually a Bachelor of Arts degree. My philosophy supervisor was heavily
involved in research with the computing department, reputedly getting to
play against the Deep Blue chess computer [Deep Blue], and I did a
module in Pascal programming. Does this mean computing, or
programming, can be regarded as philosophy? An article in Scientific
American [Wartik] considers this question. First, we are reminded
scientific methodology requires repeatable experiments, developing
theories that match observation. “In science, a theory fails if it doesn’t
predict observation. In CS theory, there is no observation.” [op cit] Wartik
then explores similarities with mathematics, which is yet another
viewpoint held by some, but concludes much computer science cannot be
formalised enough to be a branch of mathematics. He remarks that to the
ancient Greeks , mathemat ics and phi losophy were a lmost
indistinguishable, and while they have diverged to an extent now,
computer people do tend to fall into different camps of ‘philosophical
view-points’. Even if you can’t decide which is right you can think about
what you are doing and why.

What impact does deciding if you are doing
science, engineering, mathematics, or even

philosophy have on your day to day
coding? Certainly it can be sensible to step

back and sketch out the complexity of an algorithm, or think for a moment
about the right data structure. It can be clever to devise or engineer a
system using a mixture of science, mathematics, APIs and frameworks.
Though this is part of what we do, it doesn’t seem to be the norm. Working
with legacy code, or even looking back at code you wrote years ago can
reveal the Dunning-Kruger effect in action [Dunning Kruger]. It seems
that at times incompetent people lack awareness of their own
incompetence and call into question the genuine ability in others. They
would frequently be over-optimistic about their own performance in
various tests, though could give more accurate assessment of their test
performance after training, while not necessarily doing any better. Even
armed with an approximately realistic idea of one’s own ability, fear,
uncertainty and doubt – FUD – can take hold. Though the term is a tactic
used in sales and marketing, or even politics [FUD], the elements can grip
a team or a lone coder. For example, if you try to introduce an open-source
solution into a project, will you immediately be asked “Who will fix it if
we find bugs?” If your government claims another has weapons of mass
destruction, are you more likely to support a war effort? There are
countless examples of the deliberate or unintended spread of
misinformation bringing about an effect. Though many of the sales-
focussed FUD has been deliberate, programmers find themselves being
subject to it, and even propagating it. On many occasions, I have seen
situations where running programs in a complicated, fragile environment
leads to various instructions about what to restart in which order. On
further enquiry it often seems the first person happened to do this, and it
worked. Even if it makes no sense, for example to restart a service that
isn’t involved it is hard to resist the temptation to just do what you’re told.
Fear. What if it then gets even more broken? Uncertainty. This makes no
sense, but perhaps they know better than me. Doubt. I doubt it’s required,
but I doubt my own powers of reasoning now.

This FUD can spread beyond attempting to get some software working,
to how it is actually written. Without an understanding of an API or the
language people do unnecessary things, including but not limited to
calling Dispose inside a using block in C# or checking this isn’t null.
Such can be described as Superstitious Code [c2], and has various causes:

Code written by some kind of Bad Programmer, or really exhausted
adventurous programmer.

 ignorance of the language, libraries, system in use

 imaginary assumptions guiding the programming task

 fear of hidden bugs or of doing something wrong

yields Superstitious Code.

Other variants include cargo cult programming, or voodoo chicken
programming. Many people get caught talking to their computer either as
they code, or try to make something run, using geek shibboleths

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2015

EDITORIALFRANCES BUONTEMPO
[Shibboleth] – words either only pronounceable by those in the IT crowd
or used as a stream of now meaningless symbols that people say at specific
points, the etymology now lost in time. In all cases an almost religious habit
is driving the behaviour rather than knowledge. It is worth noting that the
very word ‘religion’ possibly stems from the idea of regulation – going
through something again and again, though could also be from ligare,
meaning bind or connect. For the Romans, relgio was about knowledge of
the rites relating to both private and public life, and had nothing to do with
faith. Programming can involve a mixture of both. That said, regulations
and habit can be good. Knowing some SOLID principles, using version
control, or being able to spot a code smell early on and nip it in the bud
isn’t science or engineering. It may be peppered with some fear about what
may happen if ignored, but not uncertainty or doubt. However, some
cultish programming stances are foolish. You may be subject to strict
coding standards, which were put in place with good reason, but find code
reviewers are sticking to the letter, rather than the spirit of the law. Some
superstitious practices are grounded in a modicum of sense. Avoid ‘airport
checkins’ i.e. committing code to a shared coded based just before jetting
off on a two week holiday. If it builds on the build machine, but not yours,
consider rebuilding locally. I am sure you can think of other examples.
People also consider environmental settings. I don’t just mean checking
how long your PATH variable has become in case something important
falls off the end. It is wise to use a font size large enough that you can spot
the difference between a colon and a semicolon. (This only wasted half an
hour, nonetheless…) Sometimes the tests do only work with a network
cable plugged in. (Shame, I hear you cry.) The environmental superstitions
can go too far though. I have heard talk of the need to be wearing one’s
lucky underpants before going near certain code modules. As a woman,
I’m never clear what to make of that, though I do claim to have a lucky
hat. It’s made entirely of tin foil.

Religion and superstition can only take you so far. Sensible heuristics can
guide you in the right direction, or help you stay on the path, avoiding
dragons and other monsters. At times, this is not enough. If confronted with
a big red button, saying ‘Do not press’ those of a less superstitious bent
will find it almost impossible not to take a scientific approach or some
brand of contumacy and hit the button to find out what happens. This leads
us to a realm of real magic of Hacker’s Folklore [Real magic]. The tale
tells us of a switch, connected by a single wire with two positions ‘Magic’
and ‘More magic’, defying the basic beliefs regarding electrical circuits.
It was in the position ‘More magic’, and curiosity and a stubborn belief in
sense drove people to switch it to just ‘Magic’, being certain it could not
affect the computer. Which subsequently crashed. This story was not
believed, but a repeat experiment led to the same outcome. More magic
was clearly required.

Where does all this talk of FUD leave us? Perhaps we should embrace the
unknown from time to time. If you are petrified by fear, consider walking
into the dark with a friend, either by pair programming or finding a good
code reviewer. Consider just making baby-steps and testing as you go. If
you are unsettled by uncertainty, see what happens. If you can’t be sure of
how long something will take to complete, give bounds not an exact
answer. If you don’t know if the stock prices will go up or down,

guestimate a probability of each and build a stochastic model. If you’re
not sure what happens if you delete some Boolean flags, try a scratch
refactoring [Feathers]. Change the bits you don’t like the look of and see
what the compiler and tests say. Or in the absence of either, try it then roll
back, just to get a better understanding of the code. Are you dithering over
doubt? Just do it, and again, assuming you have version control, you can
roll back. Admittedly xcopying to a prod server is a different matter, so
perhaps talk to someone first. Ideally try to set up a safe environment where
you can try things first. Again, if it’s the config, which you then need to
change completely to run on another environment, this might not work out.
Trying things first and assuming the experiment is repeatable is almost like
science, after all.

All told, it is easy to be persuaded into approaching a problem in a specific
way. Always bounce all the services, ‘Just In Case’. Never use exceptions
because they always slow things down, allegedly. Always be ‘rigidly
agile’. Or never use open source. Or always write an in-house version. We
all know to “Never say ‘Never’” though. FUD may have made me dust off
my rusty hat, and make further excuses for a lack of editorial, but it is worth
considering what’s driving you and why you are doing things in a certain
way. Being un-sure is the start of many fruitful
journeys to greater learning and lots of fun. There is
nothing wrong with continuing to ask “Why?” no
matter how old you are, and just because someone
speaks with authority doesn’t mean they know what
they are talking about.

One of the painful things about our time is that those who feel
certainty are stupid, and those with any imagination and

understanding are filled with doubt and indecision.
~ Bertrand Russell, The Triumph of Stupidity

References
[c2] http://c2.com/cgi/wiki?SuperstitiousCode

[Deep Blue] http://www.theguardian.com/uk/the-northerner/2012/may/
14/alan-turing-gary-kasparov-computer

[Dunning Kruger]
http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

[Feathers] Working Effectively with Legacy Code Michael Feather
Prentice Hall 2004

[FUD] http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

[Real magic] http://www.catb.org/jargon/html/magic-story.html

[Shibboleth] http://en.wikipedia.org/wiki/Shibboleth

[Stack Exchange] http://programmers.stackexchange.com/questions/
18886/what-discipline-does-computer-science-belong-to

[Turing] http://en.wikipedia.org/wiki/Turing_test

[Wartik] ‘I’m not a real scientist, and that’s okay.’ Guest Blog, Scientific
American, Nov 2010 http://blogs.scientificamerican.com/guest-
blog/2010/11/12/im-not-a-real-scientist-and-thats-okay/
February 2015 | Overload | 3

http://en.wikipedia.org/wiki/Turing_test
http://www.theguardian.com/uk/the-northerner/2012/may/14/alan-turing-gary-kasparov-computer
http://www.theguardian.com/uk/the-northerner/2012/may/14/alan-turing-gary-kasparov-computer
http://blogs.scientificamerican.com/guest-blog/2010/11/12/im-not-a-real-scientist-and-thats-okay/
http://blogs.scientificamerican.com/guest-blog/2010/11/12/im-not-a-real-scientist-and-thats-okay/
http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt
http://c2.com/cgi/wiki?SuperstitiousCode
http://programmers.stackexchange.com/questions/18886/what-discipline-does-computer-science-belong-to
http://programmers.stackexchange.com/questions/18886/what-discipline-does-computer-science-belong-to
http://www.catb.org/jargon/html/magic-story.html

FEATURE SERGEY IGNATCHENKO
Best Practices vs Witch Hunts
Best practices can be a Good Thing.
Sergey Ignatchenko considers when they
can turn into Really Bad Things.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

n any field, software development included, there are lots of well- and
less-known best practices. As a rule of thumb, best practices are very
useful and in general should be followed. Unfortunately, way too often,

developers are starting to take best practices as gospel, and/or become
obsessed with them. This turns these best practices into outright witch
hunts. In this article, we’ll discuss what the mechanism behind witch hunts
is, and why they’re Really Bad Things.

Life cycle: from best practice to witch hunt
Let’s see how best practice usually evolves (YMMV, but usually the
picture is rather similar):

1. A few teams start (usually independently) using a certain practice
within their projects.

2. The practice becomes more widespread.
3. Somebody publishes the practice as a ‘rule of thumb’, usually with

rationale behind, and with certain cases of applicability exceptions.
4. The practice is officially named as ‘best practice’ by some

authoritative source. The rationale is usually still present, but some
of the applicability exceptions are often lost due to the lack of space.

5. The practice becomes pretty much universal. At the same time, both
the rationale and the applicability exceptions are gradually
forgotten.

6. Then some people (‘zealots’) emerge, who think that the Earth will
stop turning project is hopelessly deficient if there is even one single
case of the best practice being violated. Neither the rationale nor the
applicability exceptions are taken into account.

7. When such a ‘zealot’ lays his hands on a real-world project, he starts
to enforce the practice mercilessly.

8. At first, the ‘zealot’ normally starts with eliminating the least
controversial of the best practice violations. Among other things,
this means that at this stage he usually eliminates violations which
are in line with the rationale and in conditions where the
applicability exceptions do not apply. As a result, his efforts at this
stage tend to benefit the project in general, which is usually more or
less obvious to the whole team. This triggers the natural feeling that
the ‘zealot’ is right in his fight for the best practice ideals.

9. As a natural consequence, only a few people dare to challenge the
‘zealot’ with his further fight for the best practice. Also, a substantial
chunk of the team starts to believe that this specific best practice is
the Absolute Good Thing. And this is the point where the best
practice effectively becomes a witch hunt.

10. Applying this specific best practice is never questioned, and both
rationale and applicability are completely ignored. In the name of
this best practice, pretty much anything can be done within this
team. In particular, it includes violating any other best practices
(especially those lacking their own ‘zealots’ in the team). All kinds
of weird things can and will happen in such teams (for practical
examples, see below). As an additional benefit, if there are two best
practices with ‘zealots’ behind them in the same team, any kind of
conflict between these best practices can result in a ‘holy war’.

Wait, but it is still a best practice, isn’t it?
The best practice is useful only if all considerations (including both
rationale and applicability) are carefully considered. Without taking these
considerations into account, applying the best practice often leads to
conflicts with other best practices, which in turn can easily lead to grave
consequences.

What can possibly go wrong when
applying a best practice?
Naming something best practice doesn’t really change its impact on the
projects. As with pretty much anything out there and despite the name, best
practices are not absolute virtues. Rather, they are ‘rules of thumb’, with
all kinds of considerations which need to be taken into account. The very
name ‘best practice’ is misleading – a more appropriate name would be
‘usually a best practice’. Below are a few examples of ‘best practices’
which in application went wrong at some point.

Example 1. Mild example – magic numbers
Use of ‘magic numbers’ (using unnamed numerical constants) is generally
frowned upon in the programming community. An associated best practice
is to replace them with named constants. This best practice exists for two
good reasons.

Rationale:

1. Better readability
2. Better maintainability in case the constant changes

So far, so good, but recently I’ve run into discussion where the author has
asked if in the code

 kbytes = bytes / 1024;

1024 is a ‘magic number’ and should be replaced with the named
BYTES_PER_KBYTE. Moreover, there were quite a few people saying that
1024 is indeed a ‘magic number’ which should be replaced. However, I
contend (and most of the practical programmers I’ve spoken about it agree)
that this is wrong, and that 1024 should be left as is (unless an exception
applies as described below).

I

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He is currently holding the position of
Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com
4 | Overload | February 2015

FEATURESERGEY IGNATCHENKO

best practice is useful only if all
considerations (including both rationale

and applicability) are carefully considered
To realize the reason why this best practice is wrong, one should take a
look at the very reasons behind it. Note that in our case, both reasons behind
having this best practice do not apply. First, bytes / 1024 is more
readable than bytes / BYTES_PER_KBYTE, and second, the chances of
BYTES_PER_KBYTE ever changing are infinitesimally small (ok, unless
you’re into nitpicking between kilobytes and kibibytes, and are planning
to change the semantic meaning of the term KBYTE in the context of your
project, which would be a Very Bad Thing per se).

This means that BYTES_PER_KBYTE is not a good thing to have, and the
plain 1024 is generally preferable. However, as we are speaking about
applicability, this observation is also not an absolute, and there are possible
exceptions. One such exception arises if you need a consistent way of
displaying your bytes to the end-user. In this case, a constant such as
BYTES_TO_DISPLAY_KBYTES might make sense (and it may change
later, which justifies its existence), but the generic BYTES_PER_KBYTE
is still pretty much useless.

Ok, this was a very mild example of a witch hunt, with very mild negative
implications.

Example 2. Stronger example – memory leaks
Those dealing with C/C++ are familiar with memory leaks1. Common best
practice is to avoid them at all costs.

Rationale:

To avoid using unnecessary memory which can exhaust
computer/process resources

Applicability Exception:

All memory allocated via malloc() will be freed on program
exit anyway, so calling free() right before program exit is not
necessary.

One of the common methods used for detecting memory leaks is using
some kind of tool (such as Valgrind for Linux and the built-in debugger
for Windows) which runs on program exit and lists all the blocks which
were allocated via malloc() but were never deallocated via free(). It
is indeed a very useful tool, and it is very good best practice to run this
tool and eliminate as many of these memory leaks as possible. However,
should we always aim to eliminate all of them?

More than once in my programming career, I have needed to allocate a
once-per-program buffer (for example, for logging purposes) which was
used by all the program threads. When I faced this task for the very first
time 20 or so years ago, I tried to deallocate this buffer properly on program
exit. However, in some weird scenarios2 deallocating it caused some race

conditions, which once-in-100-or-so exits have caused a program crash
(thread writing to an already-deallocated buffer) for no real reason.

That time, I spent almost two weeks trying to fix this elusive problem
(which kept reappearing after each fix in a new form). It continued as a
kind of weird ding-dong battle until I asked myself: what would change if
I don’t deallocate this buffer at all? The whole rationale of fighting
memory leaks doesn’t really apply when we’ve already decided to exit the
program, as in a few microseconds it will all be freed anyway (and in a
much more efficient manner BTW). As soon as I realized this, the problem
went away for good, and I was able to throw away a few dozen of rather
weird synchronization lines of code which I wrote when trying to fix the
problem by other means.

In this example, I myself was guilty of witch hunting, though I’m humbly
asking the sentencing judge to consider my inexperience at that point as a
mitigating circumstance.

Our next example is more severe, and would involve breaking the code as
a result of a witch hunt.

Example 3. Breaking code while fighting -Wall
This one I’ve seen myself more than once. In some project, there is a
perfectly valid C code, which involves some implicit casts (like unsigned-
to-signed of the same size, or well-defined integer truncations/
promotions). All these casts are perfectly well-defined in C, and lead to
perfectly well-defined results both in theory and practice. The code is
reasonably readable too. In short, there are no (zero, nada) problems with
the code whatsoever.

Then, a ‘zealot’ comes in and adds -Wall to the compiler command line.
Right away, the compiler starts to complain about these casts (why the
compiler does it is beyond me, but this is not in the scope now). These
warnings are overzealous, as the code is well-defined and standard-
compliant.

Then, our ‘zealot’ starts to get rid of these overzealous warnings – not by
disabling those overzealous warnings, and not even by thoughtfully
adjusting types so there are less conflicts, but by merely inserting explicit
casts as he sees fit. He needs to insert dozens of such casts, and he doesn’t
pay much attention to what the-code-he-changes really does (he’s on the
job of eliminating warnings, and he has much more to do, anything else is
merely an obstacle on his way to achieving the Greater Good of -Wall
without warnings).

As he makes a mistake when inserting casts, the previously perfectly valid
code becomes broken. Even worse, the code might be broken in fringe
cases which may go unnoticed for a while. Not to mention that code with
tons of explicit casts becomes much less readable. I rest my case and ask
the jury to sentence our ‘zealot’ to a life of abstinence from programming.

Now to our next, and final, example of witch hunting.

Example 4. The ultimate example – Debian RNG disaster
Once upon a time, there was a library named OpenSSL. As a part of it,
they used a random number generator, which in turn, had two lines of code

1. While those writing in garbage-collected languages may not be familiar
with memory leaks and even think that there can be no memory leaks
in JVM, it is wrong at least for so-called semantic memory leaks
[NoBugs12]

2. AFAIR, most of the trouble was about threads being not terminated for
various reasons, and it does happen when dealing with network stuff
and you don't want your user to wait forever for no apparent reason.
February 2015 | Overload | 5

FEATURE SERGEY IGNATCHENKO
which were using uninitialized memory. It wasn’t a real problem, as the
whole idea was about gathering as much entropy as they could get their
hands on, and uninitialized memory couldn’t possibly hurt them.

Then, an overzealous Debian supporter, in a holy fight to eliminate all
Valgrind warnings, commented out these two lines of code [Mason08]
[Schneier08] [Kroll13]. Nothing changed, except that all the keys
generated by all the Debian-based distributions (yes, these do include the
all-popular Ubuntu), became easily guessable until this bug was fixed
(which took over two years). Worse than that, when the problem was
discovered, it meant that all the SSL exchanges between such Debian-
based distributions, suddenly became retrospectively vulnerable (i.e. if
somebody recorded them, he’d be able to decrypt them now based on the
nature of this vulnerability).

The whole incident was at the time the worst security incident in the entire
open source community, and it resulted precisely from an overzealous
developer trusting tools and making changes to eliminate warnings
without understanding the context or the potential implications.3

It is interesting to note that when analyzing the disaster, all kinds of
explanations (read: excuses) were given for it happening, including the
outright ridiculous, “The OpenSSL code was too clever by half” [Cox08].
Very few sources (if any) have mentioned the real culprit: an obsession
with the enforcement of best practices, which unfortunately too easily
becomes a witch hunt. BTW, I’m not trying to condemn the person who
made the change – but rather the whole culture where such witch hunts
(without taking into consideration related circumstances) are considered
the Right Thing To Do.

I’m scared, what should I do?
There are at least two lessons to be learned from this article. The first one is:

Whenever you’re in doubt about applying a best practice – think
about the rationale behind it. If the rationale doesn’t apply in your
case – forget about the best practice, it doesn’t apply here.

The second lesson applies to much more dangerous witch hunts within
existing code:

Whenever there is the slightest risk that by enforcing a best practice
on existing code, you’ll break it – think more than twice before
going ahead with your change. And no, the change being just
commenting two lines and having no apparent downsides, is not
guaranteed to be safe.

Merciless refactoring is good, merciless refactoring having no clue about
what you’re doing, is not.

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

References
[Cox08] Russ Cox, ‘Lessons from the Debian/OpenSSL Fiasco’,

http://research.swtch.com/openssl

[Kroll13] Joshua Kroll, ‘The Debian OpenSSL Bug: Backdoor or
Security Accident?’, https://freedom-to-tinker.com/blog/kroll/
software-transparency-debian-openssl-bug/

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/
lapine/overview.htm

[Mason08] Justin Mason, ‘Serious Debian/Ubuntu openssl/openssh bug
found’, http://taint.org/2008/05/13/153959a.html

[NoBugs12] ‘No Bugs’ Bunny, ‘Memory Leaks and Memory Leaks‘,
http://accu.org/index.php/journals/1936

[Schneier08] Bruce Schneier, ‘Random Number Bug in Debian Linux’,
https://www.schneier.com/blog/archives/2008/05/
random_number_b.html

3. The argument that he tried to ask OpenSSL team and asked in the
wrong place, and who’s responsible for it happening (which has
resulted in lots of fingerpointing between Debian and OpenSSL at the
time), is beyond the scope of this article.
6 | Overload | February 2015

http://bitsnbobstones.watershipdown.org/lapine/overview.htm
http://bitsnbobstones.watershipdown.org/lapine/overview.htm
http://research.swtch.com/openssl
https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/
https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/
http://taint.org/2008/05/13/153959a.html
https://www.schneier.com/blog/archives/2008/05/random_number_b.html
http://accu.org/index.php/journals/1936

FEATUREBJÖRN FAHLLER
Making a Tool of Deception
Is it possible to use modern C++ to make mocking
easy? Björn Fahller introduces Trompeloeil, a
header-only mocking framework for C++14.
 wonder if I can...?” are dangerous words. They often lead to
disappointment, occasionally to commitment, and almost always to
spending time.

In this particular case I wondered if I could use lambdas and other modern
C++ features to make powerful mocking constructs easy to use. It turned
out that this time I hit all of the three consequences of my question, and
the result is the Trompeloeil mocking framework [trompeloeil].

My unit-testing experience is heavily coloured by google-mock [gmock].
While I have tinkered with other mocking frameworks, [gmock] is the one
I have a working experience with. This has undoubtedly influenced my
view on how mocks are used.

The issues I wanted to address may sound like [gmock] bashing, but that
would be unfair – the extra expressive power that C++11/14 gives over
C++98 makes a huge difference. My list of desired features are:

1. Match parameter values as boolean expressions inline in
expectations.

2. Write side effects for matched expectations inline as any statement.
3. Express return values for matched expectations inline as

expressions.
4. Allow wild cards for “don’t care” values in expectations, even for

overloaded functions.
5. Easily understood lifetime of objects used in expectations.
6. Control of lifetime of a mock object that may be destroyed by the

test subject.
7. Implementation a in single header file.
8. Compilation errors from simple mistakes (like forgetting return in a

non-void function.)
9. Rely less on the preprocessor than [gmock] does.
10. Shorter compilation times compared to [gmock].

This article tries to explain how [trompeloeil] is made, although all
solutions listed here are simplified to save space and keep focus on the
important bits.

Mock implementations
The syntax chosen for defining and placing expectations on mocks is
similar to that of [gmock]. Listing 1 shows the definition of a class with
two mocked functions, and Listing 2 shows how expectations are placed
on an instance.

The first problem to solve is that the mock implementation of a member
function must search for matching expectations, and this must also work

when the signature types don’t match perfectly. In Listing 2 "cat" is not
a std::string for the first expectation, but it is equal-comparable to
one, and the wild card in the second expectation must only match the int
overload.

The chosen implementation is that MAKE_MOCKn() adds a list of
expectations as a member variable, and REQUIRE_CALL() creates an
expectation object that is added to the list, which leaves the problem of
knowing the type of the expectation object. A simplified, slightly
pseudocoded, version of this logic implemented by the MAKE_MOCKn()
macro, is shown in Listing 3, where PARAMS(num, sig) creates a
parameter list of num parameters from the signature sig, and
LINEID(name) appends the current line number to the name.

The idea is that REQUIRE_CALL(obj, func(params)), can use
decltype(obj.tag_func(params)) to get the tag_type, and
from there call the static member function to create the matcher object.
This works even if the type isn’t a perfect match, like using a c-string literal
for a std::string parameter, and for the wild card, which can convert
to the desired type when finding the tag, and compares equal to any value
of the desired type. This takes care of item 4 in the list of desired features.

The logic for finding the list of expectations that the matcher object adds
itself to is similar.

Matches and actions
The expectation object created by REQUIRE_CALL() is an instance of the
template call_matcher<Sig, Value>, and is basically a simple struct
containing additional conditions, side effects and a return handler.
Listing 4 shows a simplified version.

In call_matcher<Sig, Value>, Sig is the signature of the mocked
member function, and Value is a tuple containing copies of all values
given in the parameter list to the function in REQUIRE_CALL().

In addition, condition<Sig> is std::function<bool(const
param_tuple&)>, and side_effect<Sig> is std::function<void
(param_tuple&)>, where param_tuple is a std::tuple<> with
references to all parameters given in the call.

“I
Listing 2

Mock obj;
REQUIRE_CALL(obj, foo("cat"));
REQUIRE_CALL(obj, foo(ANY(int))
 .RETURN(_1 > 0);

class Mock
February 2015 | Overload | 7

Björn Fahller is a systems analyst, technical team leader and
software developer, with experience in embedded systems
development since 1994. Smiles are brought through playful
programming, aviating and socializing a no-longer-quite-feral cat.
He can be reached at bjorn@fahller.seListing 1

{
public:
 MAKE_MOCK1(foo, void(std::string));
 MAKE_MOCK1(foo, bool(int));
};

FEATURE BJÖRN FAHLLER

The solution outlined works, but it is not very
friendly to an error prone developer using it
The mock implementation of a member function creates a param_tuple
instance, and searches the list of call_matchers, checking first if
value matches, and if it does, if all conditions match. If no match is
found, a violation is reported. If a match is found, all actions are called
and finally the result of calling the return_handler is returned.

If you look at the RETURN() in Listing 2, you see that the parameter is
referred to as _1. RETURN is a macro, with a shortened implementation in
Listing 5.

The lambda parameter x becomes a reference to the param_tuple
instance mentioned above, and mkarg<n>(x) returns the reference held
by t he t up l e i f n i s a l e g a l i nd e x , o r a n i n s t a n c e o f
illegal_parameter<n> otherwise. The latter ensures compilation
errors if you accidentally refer to something that doesn’t exist. ignore()
is a simple empty function that prevents compiler warnings for unused
local variables. The use of auto in the parameter list for the lambda is the
only construction in [trompeloeil] that requires C++14, in other places
C++14 offers a convenience over C++11, but is not strictly needed. Extra
conditions are handled similarly using a WITH() macro, and actions using
a SIDE_EFFECT() macro. This construction takes care of items 1, 2, and
3 in the feature list. It also solves item 5, easily understood lifetimes of
objects used. Any value given directly in the parameter list to
REQUIRE_CALL() is copied and lives as long as the expectation object
does. Any value in RETURN(), SIDE_EFFECT() and WITH() are
copied/moved, and the lifetime ends when the expectation object is
destroyed. There are also versions of the latter 3 macros, LR_RETURN(),
LR_SIDE_EFFECT() and LR_WITH(), which use a reference capture for
the lambda (LR for Local Reference, not an ideal name, but it works.)

If it will fail, fail immediately
The solution outlined above works, but it is not very friendly to an error
prone developer using it. Forgetting a RETURN() in a non-void member
function gives a run time error. A RETURN() with wrong type gives the
all too familiar C++ template error vomit, and somehow squeezing in
RETURN() several times uses only the last one added.

In order to provide better error pinpointing, REQUIRE_CALL() does not
only instantiate a call_matcher template, it also instantiates a
call_modifier template that operates on the call_matcher. A
simplified call_modifier template is shown in Listing 6. The
call_modifier template is instantiated with the type of the
call_matcher, and matcher_info of the function signature. The
helper return_of_t<>, is a simple template alias of the return type from
a function signature.

This technique of using a template inhering stepwise modifications of
known types as a trampoline for the actual work works very well for
providing good error messages. static_assert is often messy because

Listing 3

template <typename sig, typename ... U>
auto make_call_matcher(U&& ... u)
{
 using std::forward;
 using std::make_tuple;
 using param_t =
 decltype(make_tuple(forward<U>(u)...));
 using matcher = call_matcher<sig, param_t>;
 return new matcher(forward<U>(u)...);
}
#define MAKE_MOCK_NUM(num, name, sig) \
 struct LINEID(tag_type) \
 { \
 template <typename ... U> \
 static auto name(U&& ... u) \
 { \
 return make_matcher<sig> \
 (std::forward<U>(u)...); \
 } \
 }; \
 LINEID(tag_type) tag_ \
 ## name(PARAMS(num, sig));
#define MAKE_MOCK1(name, sig) \
MAKE_MOCK_NUM(1, name, sig)

Listing 4

template <typename Sig, typename Value>
struct call_matcher
{
 template <typename ... U>
 call_matcher(U&& u) :
 value(std::forward<U>(u)...) {}
 template <typename R>
 call_matcher& set_return(R&& r) {
 return_handler = std::forward<R>(r);
 return *this;
 }
 std::list<condition<Sig>> conditions;
 std::list<side_effect<Sig>> actions;
 std::function<return_handler_sig<Sig>>
 return_handler;
 Value value;
}

Listing 5

#define RETURN(...) \
 set_return([=](auto& x) { \
 auto& _1 = mkarg<1>(x); \
 auto& _2 = mkarg<2>(x); \
 ignore(_1, _2); \
 return __VA_ARGS__; \
 })
8 | Overload | February 2015

FEATUREBJÖRN FAHLLER

An amazingly cool feature would be if
parameters could be referenced in expectations

by their names, instead of positional identities.
compilation doesn’t stop at failure, and the intended message is lost in
loads of other messages. This technique, however, limits the mess
substantially and typically provides good feedback that is not hidden in a
long list of irrelevant problems. The conditions for each static_assert
are stricter than necessary to avoid tripping several of them.

This takes care of item 8 in the list of desired features, good compilation
errors for simple mistakes, but it does so at a compile time cost.

Now and then
I’m rather pleased with where this has come so far. Mocking with
[trompeloeil] is easy, with very readable test code due to inline expressions
in the expectations, and it is easy to understand the lifetimes of objects.
Most error messages are good, but more work can be done there. In this
article I have not shown how lifetime expectations are controlled, nor how
you can decide which expectations must be met in sequence, and which
are unrelated to each other, but those too are easily expressed.

Compilation time and binary size are disappointing. Better than [gmock],
but only by a narrow margin, and the the frivolous reliance on the
preprocessor feels like a failure.

Going forward, I really want to address the compilation times. Faster than
[gmock] means it’s within what people accept, but I think it’s too slow for
good edit-build-run TDD cycles.

I would also like to have a better MAKE_MOCK() macro, which doesn’t
need the number of arguments explicitly, since that is a recurring source
of unhelpful errors.

An amazingly cool feature would be if parameters could be referenced in
expectations by their names, instead of positional identities.

If you have ideas for advancing [trompeloeil] further, please get in touch.

References
[gmock] https://code.google.com/p/googlemock/

[trompeloeil] https://github.com/rollbear/trompeloeil

Listing 6

template <typename Sig>
struct matcher_info
{
 using signature = Sig;
 using return_type = void;
};

template <typename RetType, typename Parent>
struct return_injector : Parent
{
 using return_type = RetType;
};

template <typename Matcher, typename Parent>
struct call_modifier : public Parent
{
 using typename Parent::signature;
 using typename Parent::return_type;

 template <typename H>
 auto set_return(H&& h)
 -> call_modifier<Matcher,
 return_injector<
 return_of_t<signature>,
 Parent
 >
 {
 using namespace std;
 using h_rt =
 decltype(h(declval<param_tuple>());
 using rt = return_of_t<signature>;
 static_assert(
 is_constructible<rt, h_rt>::value
 || !is_same<rt, void>::value,
 "RETURN for void function");
 static_assert(
 is_constructible<rt, h_rt>::value
 || is_same<rt, void>::value,
 "RETURN wrong type for function");
 static_assert(
 is_same<return_type, void>::value,
 "Multiple RETURN");
 matcher.set_return(forward<H>(h));
 return {matcher}
 }
February 2015 | Overload | 9

https://github.com/rollbear/trompeloeil
https://code.google.com/p/googlemock/

FEATURE PHIL NASH
Modern C++ Testing
Various C++ testing framework exist.
Phil Nash compares CATCH with the
competition.
s many readers may know, Catch is a test framework that I originally
wrote (and still largely maintain) for C++ [Catch]. It’s been growing
steadily in popularity and has found its way to the dubious spotlight

of HackerNews on more than one occasion.

The most recent of such events was late last August. I was holidaying with
my family at the time and didn’t get to follow the thread as it was unfolding
so had to catch up with the comments when I got back. One of them
[HackerNews] stuck out because it called me out on describing Catch as
a ‘Modern C++’ framework (the commenter recommended another
framework, Bandit, as being ‘more modern’).

I first released Catch back in 2010. At that time C++11 was still referred
to as C++1x (or even C++0x!) and the final release date was uncertain. So
Catch was written to target C++03. When I described it as being ‘modern’
it was in that context and I was emphasising that it was a break from the
past. Most other C++ frameworks were just reimplementations of JUnit in
C++ and did not really embrace the language as it was then. The use of
expression templates for decomposing the expressions under test was also
a factor.

Of course since then C++11 has not only been standardised but is fully, or
nearly fully, implemented by many leading, mainstream, compilers. I think
adoption is still not high enough, at this point, that I’d be willing to drop
support for C++03 in Catch (there is even an actively maintained fork for
VC6! [Moene12]). But it is enough that the baseline for what constitutes
‘modern C++’ has definitely moved on. And now C++14 is here too
[Sutter14] – pushing it even further forward.

‘Modern’ is not what it used to be
What does it mean to be a ‘Modern C++ Test Framework’ these days
anyway? Well the most obvious thing for the user is probably the use of
lambdas. Along with a few other features, lambdas allow for a lot of what
previously required macros to be done in pure C++. I’m usually the first
to hold this up as A Good Thing. In a moment I’ll get to why I don’t think
it’s necessarily as good a step as you might think.

But before I get to that; one other thing: For me, as a framework author,
the biggest difference C++11/14 would make to something like Catch
would be in the internals. Large chunks of code could be removed, reduced
or at least cleaned up. The ‘no dependencies’ policy means that Catch has
complete implementations of things like shared pointers, optional types
and function objects – as well as many things that must be done the long
way round (such as iterating collections – I long for range for loops – or
at least BOOST_FOREACH).

The competition
I’ve come across three frameworks that I’d say qualify as truly trying to
be ‘modern C++ test frameworks’. I’m sure there are others – and I’ve not
really even used these ones extensively – but these are the ones I’ll
reference in this discussion. The three frameworks are:

 Lest – by Martin Moene, an active contributor to Catch – and partly
based on some Catch ideas – re-imagined for a C++11 world
[Moene].

 Bandit – this is the one mentioned in the Hacker News comment I
kicked off with [Karlsson].

 Mettle – Seeing this mentioned in a tweet from @MeetingCpp is
what kicked off the train of thought that led me to this article
[Porter].

The case for test case macros
But why did I say that the use of lambdas is not such a good idea? Actually
I didn’t quite say that. I think lambdas are a very good idea – and in many
ways they would certainly clean up at least the mechanics of defining and
registering test cases and sections.

Before lambdas C++ had only one place you could write a block of
imperative code: in a function (or method). That means that, in Catch, test
cases are really just functions – which must have a function signature –
including a name (which we hide – because in Catch the test name is a
string). Those functions must be captured somehow. This is done by
passing a pointer to the function to the constructor of a small class – whose
sole purposes is to forward the function pointer onto a global registry.
Later, when the tests are being run, the registry is iterated and the function
pointers invoked.

So a test case like this:

 TEST_CASE("test name", "[tags]")
 {
 /* ... */
 }

...written out in full (after macro expansion) looks something Listing 1.

(generatedFunctionName is generated by yet another macro, which
combines root with the current line number. Because the function is
declared static the identifier is only visible in the current translation unit
(cpp file), so this should be unique enough)

So there’s a lot of boilerplate here – you wouldn’t want to write this all by
hand every time you start a new test case!

With lambdas, though, blocks of code are now first class entities, and you
can introduce them anonymously. So you could write them like:

 Catch11::TestCase("test name", "[tags]", []()
 {
 /* ... */
 });

A

Phil Nash is easily fascinated. Along the way, outside of contract
work, consulting, training and coaching he has authored open
source projects such as Catch (a C++ & Objective-C test
framework), Clara (a C++ command line parser) and several iOS
apps. He can be contacted at accu@philnash.me
10 | Overload | February 2015

FEATUREPHIL NASH
This is clearly far better than the expanded macro. But it’s still noisier than
the version that uses the macro. Most of the C++11/14 test frameworks I’ve
looked at tend to group tests together at a higher level. The individual tests
are more like Catch’s sections – but the pattern is still the same – you get
noise from the lambda syntax in the form of the []() or [&]() to
introduce the lambda and an extra); at the end.

Is that really worth worrying about?

Personally I find it’s enough extra noise that I think I’d prefer to continue
to use a macro – even if it used lambdas under the hood. But it’s also small
enough that I can certainly see the case for going macro free here. Since
the first version of this article was published on my blog the author of Lest
commented that he now uses a macro for test case registration too. He also
reported that, at least with present compilers, the lambda-based version has
a significant compile-time overhead

Assert yourself
But that’s just test cases (and sections). Assertions have traditionally been
written using macros too. In this case the main reasons are twofold:

1. It allows the expression evaluation to be wrapped in an exception
handler.

2. It allows us the capture the file and line number to report on.

(1) can arguably be handled in whatever is holding the current lambda (e.g.
it or describe in Bandit, suite, subsuite or expect in Mettle). If these blocks
are small enough we should get sufficient locality of exception handling
– but it’s not as tight as the per-expression handling with the macro
approach.

(2) simply cannot be done without involving the preprocessor in some way
(whether it’s to pass __FILE__ and __LINE__ manually, or to
encapsulate that with a macro). How much does that matter? Again it’s a
matter of taste but you get several benefits from having that information.
Whether you use it to manually locate the failing assertion or if you’re
running the reporter in an IDE window that automatically allows you to
double-click the failure message to take you to the line – it’s really useful
to be able to go straight to it. Do you want to give that up in order to go
macro free? Perhaps. Perhaps not.

Interestingly Lest still uses a macro for assertions and (again, as the author
commented on my blog) Mettle now uses a macro for expect() in order
to capture that information.

Weighing up
So we’ve seen that a truly modern C++ test framework, using lambdas in
particular, can allow you to write tests without the use of macros – but at
a cost!

So the other side of the equation must be: what benefit do you get from
eschewing the macros?

Personally I’ve always striven to minimise or eliminate the use of macros
in C++. In the early days that was mostly about using const, inline and
templates. Now lambdas allow us to address some of the remaining cases
and I’m all for that.

But I also tend to associate a much higher ‘cost’ to macro usage when it
generates imperative code. This is code that you’re likely to find yourself
needing to step through in a debugger at runtime – and macros really
obfuscate this process. When I use macros it tends to be in declarative code.
Code that generates purely declarative statements, or effectively
declarative statements (such as the test case function registration code). It
tends to always generate the exact same machinery – so should not be
sensitive to its inputs in ways that will require debugging.

How do Catch’s macros play out in that regard? Well the test case
registration macros get a pass. Sections are a grey area – they are on the
path of code that needs to be stepped over – and, worse, hide a conditional
(a section is really just an if statement on a global variable!). So score a
few points down there. Assertions are also very much runtime executable
– and are frequently on the debugging path! In fact stepping into
expressions being asserted on in Catch tests can be quite a pain as you end
up stepping into some of the ‘hidden’ calls before you get to the expression
you supplied (in Visual Studio, at least, this can be mitigated by excluding
the Catch namespace using the StepOver registry key [Pennell04]).

Now, interestingly, the use of macros for the assertions was never really
about C++03 vs C++11. It was about capturing extra information (file/
line) and wrapping in a try-catch. So if you’re willing to make that trade-
off there’s no reason you can’t have non-macro assertions even in C++03!
That said, the future may hold a non-macro solution even for that, in the
form of proposal N4129 for a source_context type to be provided by
the language [N4129].

Back to the future
One of my longer arcs of development on Catch (that I edge towards on
each refactoring) is to decouple the assertion mechanism from the guts of
the test runner. You should be able to provide your own assertions that
work with Catch. Many other test frameworks work this way and it allows
them to be much more flexible. In particular it will allow me to decouple
the matcher framework (and maybe allow third-party matchers to work
with Catch).

Of course this would also allow macro-less assertions to be used (as it
happens the assertions in bandit and mettle are both matcher-like already).

So, while I think Catch is committed to supporting C++03 for some time
yet, that doesn’t mean there is no scope for modernising it and keeping it
relevant. And, modern or not, I still believe it is the simplest C++ test
framework to get up and running with, and the least noisy to work with.

References
[Catch] http://catch-lib.net

[HackerNews] https://news.ycombinator.com/item?id=8221135

[Karlsson] https://github.com/joakimkarlsson/bandit

[Moene] https://github.com/martinmoene/lest

[Moene12] http://martin-moene.blogspot.co.uk/2012/12/catch-c-test-
framework-vc6-port.html

[N4129] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n4129

[Pennell04] http://blogs.msdn.com/b/andypennell/archive/2004/02/06/
69004.aspx

[Porter] https://github.com/jimporter/mettle

[Sutter14] http://isocpp.org/blog/2014/08/we-have-cpp14

Listing 1

static void generatedFunctionName();
namespace{
 ::Catch::AutoReg generatedNameAutoRegistrar
 (&generatedFunctionName,
 ::Catch::SourceLineInfo(__FILE__,
 static_cast<std::size_t>(__LINE__)
),
 ::Catch::NameAndDesc("test name",
 "[tags]"));
 }
 static void generatedFunctionName()
 {
 /* */
 }
February 2015 | Overload | 11

https://news.ycombinator.com/item?id=8221135
http://martin-moene.blogspot.co.uk/2012/12/catch-c-test-framework-vc6-port.html
http://martin-moene.blogspot.co.uk/2012/12/catch-c-test-framework-vc6-port.html
http://isocpp.org/blog/2014/08/we-have-cpp14
https://github.com/martinmoene/lest
https://github.com/joakimkarlsson/bandit
https://github.com/jimporter/mettle
http://blogs.msdn.com/b/andypennell/archive/2004/02/06/69004.aspx
http://blogs.msdn.com/b/andypennell/archive/2004/02/06/69004.aspx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4129
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4129
http://catch-lib.net

FEATURE BOB SCHMIDT
I Like Whitespace
Programming style can cause endless
arguments. Bob Schmidt shares why he
thinks whitespace matters.
This is an opinion piece. The opinions expressed are my own, and
nobody else’s, and most likely don’t reflect the opinions of Fran or the
reviewers. Because they are my opinions, I think they are right. If I
thought they were wrong I’d have other opinions. If I thought they were
wrong and still subscribed to them it would be a serious case of cognitive
disconnect, and we can’t be having any of that.

This article contains sarcasm and (possibly failed) attempts at humor.
My sarcasm font is broken, so you’re just going to have to recognize
those sections without any help from me.

know that nothing attracts more heat than light than discussions about
programming style. Where do the braces go; how many spaces to indent;
in C++ where should the const keyword be placed. We all have

opinions on all of these subjects, and more. Most aspects of programming
style are matters of taste, and taste is subjective. My style is, of course, the
only correct one.

I use a lot of whitespace when writing code. From reviewing and
maintaining a lot of code written by others I know that this is not a common
practice. I think it is an issue of weak thumbs and pinky fingers. Later I’ll
suggest exercises for strengthening these digits so that inserting additional
whitespace (in the form of spaces, carriage returns and (temporary) tabs)
will become easier.

Motivation
Back in the mid-1980s I had the misfortune of working on a system that
used RATFOR, a language created by Brian Kernighan that is a pre-
compiler for FORTRAN 66 [Kernighan76]. RATFOR provides modern
programming structure syntax to FORTRAN 66, ostensibly making it
easier to write good code than straight FORTRAN.

A code beautifier was part of the RATFOR software tool set. Running a
source file through the beautifier generated a hard-copy listing of the
source, with indentations based on the source syntax. It was an OK tool
for the time, although it didn’t always represent the true structure of the
code correctly.

Unfortunately, the presence of the beautifier gave some of the original
programmers on the project ‘permission’ to not structure their source code.
Open a source file on a programmer’s terminal, and every line started in
the far left-hand column. (See Listing 1.)

This was perhaps the ugliest code I have ever had the misfortune to work
on. I would completely format the entire source file prior to trying to fix
or enhance the code. (I have not yet recovered from the trauma, in spite of
all the software conference ‘therapy’ I’ve attended in the intervening
years.)

It was working on this ugly RATFOR code that first got me really thinking
about coding style. When I first started programming, back in the dark ages
of 1981, any resemblance my code had to a style was strictly an accident.
I like to think my coding style has evolved a lot since then. Today I prefer
a style that showcases the code and its structure, so I don't have to go
looking for it.

Spaces
Iwouldn’treadalineoftextinanarticleifitwaswrittenlikethis. So why should
I have to read a line of code formatted like this:

 for(int i=0;i<someMaxValue;++i)

I believe it is so much easier to read if it is written more like this:

 for (int i = 0; i < some_max_value; ++ i)

Note the extra spaces: on either side of the opening parenthesis; on both
sides of the assignment and less than operators; and multiple spaces after
the semicolons. The multiple spaces after the semicolons make each of the
sections of the for statement stand out.

For more complex cases, separate the three sections of a for statement to
separate lines (see Listing 2).

Long iterator type names can lead to long for statements; the multi-line
version of the for statement is particularly useful there. (Note that the new
auto keyword should help alleviate some of those problems.)

I see a lot of code where an array index is itself an index into an array –
sometimes to a third level. (See first line in Listing 3.)

I find this difficult to parse mentally. When writing array subscripts, I put
a space after the opening bracket and one before the closing bracket (see
second line in Listing 3).

I

Listing 1

 IF(A<B) THEN
[
IF(B<C) THEN
[
CALL X(A)
]
ELSE
[
CALL Y(B)
]
ENDIF
]
ELSE
[
CALL Z(C)
]
ENDIF

Bob Schmidt is president of Sandia Control Systems, Inc. in
Albuquerque, New Mexico. In the software business for 33 years,
he specializes in software for the process control and access
control industries, and dabbles in the hardware side of the business
whenever he has the chance. He can be contacted at
bob@sandiacontrolsystems.com.
12 | Overload | February 2015

FEATUREBOB SCHMIDT

Aligning types, names, equal signs, and
initial values makes each section of a

definition stand out
Admittedly, it is clearer to pull the nested indices out into their own
variables, but I still like to put spaces around the index:

 index2 = array3[index3].index2;
 index1 = array2[index2].index1;
 x = array1[index1];

For complex Boolean expressions I tend to use extra spaces to separate
sub-expressions:

 if ((x < 0) || (y > 0))

At times I’ll use extra spaces instead of parenthesis:

 if (x < 0 || y > 0)

I find either of the previous versions easier to parse than either of these
options:

 if((x<0)||(y>0))

or

 if(x<0||y>0)

If you continue reading you will notice that I also put a space after a
function name and before the opening parenthesis of the parameter list.
This is a holdover from my FORTRAN days (which weren’t that long ago)
when I used that space to differentiate between a function name (with the
space) and an array name (without the space).

 X = SINE (ANGLE)
 Y = ARRAY(ELEMENT)

Blank lines
Like spaces, I use blank lines liberally in my code. I use a blank
line to separate variable declarations from other statements in
a function, particularly in C where the declarations typically
occur at the beginning of a function, or the beginning of a
block. I also use a blank line to visually separate different steps
in the code, such as the setup of a function call and the call
itself.

 message.header = TYPE;
 message.body = contents;

 status = send_message (&message);

A line with nothing but a curly brace is a blank line for this purpose.

 if (something)
 {
 do_something_else ();
 }

Putting the brace on the line after the if statement provides visual
separation for the then clause.

Alignment
I find it easier to read code when certain aspects of the code are aligned.
Consider variable definitions:

 int x=0;
 short longer_name=1;
 char short_name[2]={0,0};

I find this style easier to follow:

 int x = 0;
 short longer_name = 1;
 char short_name[2] = { 0, 0 };

Aligning types, names, equal signs, and initial values makes each section
of a definition stand out. The example here is trivial, but recently I’ve been
working on some legacy C code with functions that have 20 or more
definitions at the beginning of each function. My eyes started to water
when I had to find a particular entry in the list. (It’s fixed, now.)

When making multiple assignments, I like to align the equals sign (see
Listing 4).

Listing 2

for (int i = 0, j = 0;
 i < some_max_value && j < some_other_max_value;
 ++ i, ++ j)

Listing 3

array1[array2[array3[index3].index2].index1]

x = array1[array2[array3[index3].index2].index1]

Listing 4

structure.element_the_first = 1;
structure.second_element = 2;
structure.third_element = function_that_returns_the_needed_value ();
February 2015 | Overload | 13

FEATURE BOB SCHMIDT

iWouldn’tReadTextIfItWasWrittenLikeThis, so
why should I have to read variable and function
names written this way?
Complex Boolean expressions are a place where spacing and alignment
can come into play at the same time.

Who can look at this mess and easily tell what’s going on?

 if(((x==0)&&(x==1))||((y==3)&&((z==5)||(z==6))))

Using a combination of spacing and alignment makes it a little easier to
parse mentally:

 if (((x == 0) && (x == 1)) ||
 ((y == 3) &&
 ((z == 5) || z == 6))))

Camel case
I don ’ t l i ke wr i t i ng o r r ea d i ng nam es i n ca me l ca se .
iWouldn’tReadTextIfItWasWrittenLikeThis, so why should I have to read
variable and function names written this way? We can’t embed spaces in
names (unless you’re still writing in FORTRAN, which deletes whitespace
prior to parsing), so the best we can do is use the underscore.
some_max_value is easier to read than SomeMaxValue, and the longer
and more descriptive the name the easier it is.

Braces and indentation
I used to think that three-space indentation was just about perfect. One or
two spaces aren’t enough visually, and four or more pushed code way too
far to the right, particularly on old 80-character wide TTY terminals.

 if (x == 0)
 {
 process_x_when_0 ();
 }
 else
 {
 process_x_when_not_0 ();
 }

Note that using three space indentation, and indenting the braces, causes
the if and else blocks to line up under the opening parenthesis of the
if statement (assuming you put a space between the if and the opening
parenthesis). I found this visually appealing, and I wrote a lot of code that
way.

I’ve since adopted a four space indentation, with the braces lined up with
the if and else keywords, for one major reason – it is the common
indentation used by my major customer (they have no standards), and it is
easier in this case to adapt than be the odd man out. Plus, taking the advice
of Bob Martin, I don’t write functions with large, heavily indented if-
then-else trees anymore [Martin09]. (But note that Bob is against the
aligning rules I use, so he’s not right about everything.)

 if (x == 0)
 {
 process_x_when_0 ();
 }

 else
 {
 process_x_when_not_0 ();
 }

I really don’t like this style:

 if (x == 0) {
 process_x_when_0 ();
 }
 else {
 process_x_when_not_0 ();
 }

I like putting my opening and closing braces on separate lines, for two
reasons: they are always easy to find, and the line with nothing on it but
the brace provides a line of whitespace around the statements that make
up the then and else clauses.

MISRA standards [MISRA13] require that braces be used around if and
else clauses even if there is only one statement in the clause (as in each
of the three previous examples). I try not to write code that looks like this:

 if (x == 0)
 process_x_when_0 ();
 else
 process_x_when_not_0 ();

The standard is meant to eliminate problems introduced in maintenance:

 if (x == 0)
 process_x_when_0 ();
 else
 process_x_when_not_0 ();
 process_something_else (); // ALWAYS EXECUTED

Or with nested if statements (I have seen an error of this type just
recently):

 if (x == 0)
 if (y == 0)
 process_x_and_y_are_0 ();
 else
 process_x_is_not_0 ();

This only works the way you want it to with properly applied braces:

 if (x == 0)
 {
 if (y == 0)
 {
 process_x_and_y_are_0 ();
 }
 }
 else
 {
 process_x_is_not_0 ();
 }
14 | Overload | February 2015

FEATUREBOB SCHMIDT

Dan explained to me that I wasn’t the
person I should be writing it for, and

I’ve used his style ever since
I admit that I do, sometimes, omit the braces, based
on the context of the code. I’m working on forcing
myself to always include them.

Tabs
If you don’t want to over-work your thumbs hitting
the space bar, by all means use the tab key, but
please, set your editor to replace tabs with spaces.
Two things frustrate me when it comes to the tab
character remaining in code. I have to figure out
what tab setting was used to begin with (seconds
of my life I will never get back), and if I’m editing
a line and delete a tab I now have to re-add spaces
I may not have wanted to delete.

const
Where, exactly, should const be placed in a
definition or declaration?

The most common placement of const is (was?)
as in Listing 5.

Dan Saks is an advocate of placing const in a way
that makes it easy to read the declaration, when
read from right to left [Saks88] (see Listing 6).

In a conversation with Dan, I mentioned that I was
using the other style, because in general I didn’t
find it difficult to parse mentally. Dan explained to me that I wasn’t the
person I should be writing it for, and I’ve used his style ever since. (I can
be persuaded.)

So what does this have to do with whitespace? As you can see, in either
style I like to line up the const keywords in a block of declarations. I think
it’s an important part of a declaration, and the alignment makes the const
(or lack of it) pop out. (And line up the comments, too; it makes them easier
to read.) I treat the volatile keyword the same way.

Function parameters
I write function prototypes like this:

 int function_name (int first_parameter,
 double second_paramter,
 CLASS_NAME third_parameter);

When calling a function I will format it in a similar way. Having each
parameter on a separate line makes them easy to distinquish from one
another, and it is easy to add a comment to a parameter (which I find
particularly useful when calling one of Microsoft’s multi-parameter SDK
functions):

 int result = function_name (first_parameter,
 second_parameter,
 class_parameter);

There are some exceptions. For functions with only two parameters, I tend
to put them on the same line as the function name; two parameters are not
hard to pick out on one line (Listing 7).

I do the same thing for standard library and STL functions and member
functions, regardless of the number of parameters, because the parameter
lists for these functions tend to be well known.

In his presentation ‘Seven Ineffective Coding Habits of Many
Programmers’, Kevlin Henney [Henney14] talks about “unsustainable
spacing” (approximately minute 24), and rejects the idea of certain styles
of aligning code as being unmaintainable. He makes the point that
maintaining certain styles (mine being one) is “doomed to failure” unless
the code never changes. He uses as an example changing the name of a
function.

Changing the name of the function breaks the alignment (see Listing 8).

Kevlin suggests the style in Listing 9, or something similar, because
performing a refactoring such as changing the name doesn’t break the
alignment.

I see Kevlin’s point, but I’m not … wait, hold the presses.

I have had a rough time with this section on function parameter placement.
As I said in my opening note, this is nothing but an opinion piece, and my
goal was to document the way I do things, give an explanation as to why
I do it that way, and leave it up to you, dear reader, to ignore what I have

Listing 5

const int i; // i is a const int
 int* const p1; // p1 is a const ptr to int
const int* p2; // p2 is a ptr to a const int
const int* const p3; // p3 is a const ptr to a const int

Listing 6

int const i; // i is a const int
int* const p1; // p1 is a const ptr to int
int const* p2; // p2 is a ptr to a const int
int const* const p3; // p3 is a const ptr to a const int

Listing 7

int result = function_name (first_parameter, second_parameter);

Listing 8

int not_aligned_like_this (int first_parameter,
 String second_parameter)

int new_function_name (int first_parameter,
 short second_parameter)
February 2015 | Overload | 15

FEATURE BOB SCHMIDT

It is not easier to write code in this
style ... the payoff occurs when the
code is read
to say and do it the way you want. That’s fine; I don’t really expect to sway
many opinions. (Maybe one person? Anybody? <crickets>)

The problem occurred when I tried to pick a rhetorical fight with Kevlin
with regard to placement and alignment of function parameters. I really
don’t like the style Kevlin advocates in his presentation. There is
something about starting the parameter list on the line after the function
call I find aesthetically unpleasing. I tried five or six times to justify using
my style, and not his, but I kept running into this wall.

With all due respect to Kevlin, just how often is a function name
changed over a large code base? I don’t work on any code base
that easily allows that type of change. Changing a widely used
function name isn’t something to be taken lightly, and if you do it you
should be prepared to do it correctly. (OK, Bob, but what are you
going to do when you start working on a code base that does allow
those types of changes, and actively encourages them?)

I see Kevlin’s point, but using the shortcomings of our current tool
set to advocate use of such an ugly style is wrong. (Compromise
isn’t a dirty word, Bob.)

And on it went.

In his presentation Kevlin asks a rhetorical question, “Why do you choose
an approach that is difficult to maintain?” I do it because I feel it is the right
thing to do. I truly believe if we’re not actively improving our code we are
passively making it worse. I consider it part of doing a good job, and
nobody said it would be easy.

Then Kevlin followed up with “Do your colleagues also do what you do?”
Sadly, the answer is no. And that is where I kept getting tripped up in my
counter-argument.

So, after all of the false starts I realized that I do see Kevlin’s point, and
most of my justifications boiled down to “this is the way I have always
done it, I like it that way, and I don’t want to change”. Not exactly the end
to the rhetorical fight I envisioned when I started this section.

Now the question is, will I actually change the way I write function
prototypes and calls? The answer is, I don’t know. I will try to come up
with a style that satisfies my need for readability and consistency, and
Kevlin’s need for sustainability. It's the aesthetic issue that is going to be
the problem. (Cue cognitive disconnect in five, four, three…)

Conclusion
Most of us, if not all of us, spend a lot more time reading code than writing
it. My chosen style isn’t more efficient on the writing end; on the contrary,
I would say that it takes a bit more time. It is not easier to write code in
this style – I would say that it requires a bit more discipline. I believe the
payoff occurs when the code is read, by myself or by others.

Thirty years ago, when hard drives were expensive, programmers were
cheap, and programmer’s terminals had 23 lines and 80 columns, it might
have made sense to use the fewest number of characters possible to
implement code. Here we are in 2015, where terabyte drives are almost
trivially cheap, programmers are expensive, and we are no longer using
TTYs. Making use of whitespace to make code easier to read for ourselves
and our colleagues makes sense – to me, at least.

Acknowledgements
As always, my thanks to Fran and the reviewers. You read this and
published it anyway. And a special thank you to Kevlin Henney, who
didn’t volunteer for the rhetorical fight, but easily won it, anyway.

References
[Henney14] ‘Seven Ineffective Coding Habits of Many Programmers’,

Henney, Kevlin, NDC 2014 http://vimeo.com/97329157

[Kernighan76] Software Tools, Kernighan, Brian and Plauger, P.J.,
Addison-Wesley Professional, 1976

[Martin09] Clean Code, Martin, Robert C., Prentice Hall, 2009

[MISRA13] ‘Guidelines for the use of the C language in critical systems’,
MISRA, http://www.misra-c.com/

[Saks88] ‘Placing const in Declarations’, Saks, Dan, Embedded Systems
Programming, June 1988

Exercises
‘Pinky Finger Workout’, typingweb,

https://www.typingweb.com/tutor/lesson/index/id/357/

‘Thumb Exercises: Active Motion’, Northwestern Memorial Hospital,
http://www.nmh.org/ccurl/275/700/thumb-exercises-active.pdf

Listing 9

int original_function_name (
 int first_parameter,
 short second_parameter)

int new_function_name (
 int first_parameter,
 short second_parameter)
16 | Overload | February 2015

http://www.misra-c.com/
http://vimeo.com/97329157
http://www.nmh.org/ccurl/275/700/thumb-exercises-active.pdf
http://www.nmh.org/ccurl/275/700/thumb-exercises-active.pdf

FEATUREMIKE LONG
Faking C Function with fff.h
Faking functions for testing in C can
ease testing. Mike Long overviews a
micro-framework for mocking.
have a little micro-framework called fff.h for generating fake functions
(sometimes these types of functions are called mocks) in C. The basic
premise is that testing a C source file is difficult in idiomatic C because

of all the external function calls that are hardwired into the production
code. The way fff.h helps is to make it a one-liner to create fake
implementations of these for the purposes of testing.

Let me give an example. In my last C project, the basic formula for testing
a C module was like Listing 1.

Now, this is a simple example but it illustrates the method. As you can see,
most of the test code is taken up writing the fake functions and their
associated data members. When modules have many dependencies, I
would find myself having to write hundreds of lines of code to get anything
compiled and ready to test (did I forget to mention this was legacy code :-)).

After a while of doing this, I started to see a pattern appear. Nearly every
fake followed the same pattern, and they all needed to capture the same
information. Around this time, Jon Jagger had written some interesting
blog posts on using the C preprocessor to do fun things like count. It got
me wondering, could I generate the fake code I wanted with the
preprocessor?

I played around with different approaches, but soon I had something basic
working - I could write a macro that would generate a fake function. After
a bit of extra help from Tore Martin Hagen and Jon Jagger I had generalized
it to be able to count the number of arguments it would require, and
generate the correct code at compile time. A few more iterations, and
Listing 2 is the updated code.

Now, you might think that there is not much difference between the two
options, and you are correct. By creating the Fake Function Framework I
can only save 20% less code, big deal. But that misses a few points:

 Every fake is defined in a standard way

 Fakes can be defined in C or C++ file with correct extern wrappers

 More complex dependencies save more coding

And beyond that, there are a bunch of additional features you get when you
define your fakes using fff.h:

Function call history with arguments
Say you want to test that a function calls functionA, then functionB,
then functionA again, how would you do that? Well fff.h maintains

I

Listing 1

extern "C"
{
 #include "driver.h"
 #include "registers.h"
}
#include "../../fff.h"
#include <gtest/gtest.h>

extern "C"
{
 static uint8_t readVal;
 static int readCalled;
 static uint32_t readRegister;
 uint8_t IO_MEM_RD8(uint32_t reg)
 {
 readRegister = reg;
 readCalled++;
 return readVal;
 }
 static uint32_t writeRegister;
 static uint8_t writeVal;
 static int writeCalled;
 void IO_MEM_WR8(uint32_t reg, uint8_t val)
 {
 writeRegister = reg;
 writeVal = val;
 writeCalled++;
 }
}

TEST(Driver,
When_writing_Then_writes_data_to_DRIVER_OUTPUT_RE
GISTER)
{
 driver_write(0x34);
 ASSERT_EQ(1u, writeCalled);
 ASSERT_EQ(0x34u, writeVal);
 ASSERT_EQ(DRIVER_OUTPUT_REGISTER,
writeRegister);
}

Listing 1 (cont’d)

TEST(Driver,
When_reading_data_Then_reads_from_DRIVER_INPUT_RE
GISTER)
{
 readVal = 0x55;
 uint8_t returnedValue = driver_read();
 ASSERT_EQ(1u, readCalled);
 ASSERT_EQ(0x55u, returnedValue);
 ASSERT_EQ(readRegister, DRIVER_INPUT_REGISTER);
}

Mike Long is an independent software consultant based in Oslo,
Norway. He specialises coaching and mentoring teams adopting
modern technical practices in hostile embedded and legacy
environments. He is a regular speaker at international conferences in
Europe and Asia, and founded the Beijing Software Craftmanship
Meetup. You can contact him on twitter at @meekrosoft
February 2015 | Overload | 17

FEATURE MIKE LONG
a call history and also stores the history of function arguments so that it is
easy to assert these expectations.

Listing 3 shows how it works.

Of course, if you wish to control how many calls to capture for argument
history you can override the default by defining it before include the fff.h
like this:

 // Want to keep the argument history for 13 calls
 #define FFF_ARG_HISTORY_LEN 13
 // Want to keep the call sequence history for
 // 17 function calls
 #define FFF_CALL_HISTORY_LEN 17

 #include "../fff.h"

Function return value sequences
Often in testing we would like to test the behaviour of sequence of function
call events. One way to do this with fff is to specify a sequence of return
values with for the fake function. It is probably easier to describe with an
example (see Listing 4).

By specifying a return value sequence using the SET_RETURN_SEQ
macro, the fake will return the values given in the parameter array in
sequence. When the end of the sequence is reached the fake will continue
to return the last value in the sequence indefinitely.

Custom return value delegate
You can specify your own function to provide the return value for the fake.
This is done by setting the custom_fake member of the fake. Listing 5
is an example.

Under the hood
So how does this all work under the hood? Let’s take a look at an example:

 // faking "long longfunc(long argument);"
 FAKE_VALUE_FUNC(long, longfunc0, long);

This expands to create a function declaration with its associated capture
variables, and a function definition (see Listing 6).

These macros can be used separately if you want to put the declarations in
a header file and definitions in a sharable module.

In the declaration macro, we declare a struct and a function with C linkage
(see Listing 7).

The implementation of the fake function is defined with the macro in
Listing 8.

Listing 2

extern "C"{
 #include "driver.h"
 #include "registers.h"
}
#include "../../fff.h"
#include <gtest/gtest.h>

DEFINE_FFF_GLOBALS;

FAKE_VOID_FUNC(IO_MEM_WR8, uint32_t, uint8_t);
FAKE_VALUE_FUNC(uint8_t, IO_MEM_RD8, uint32_t);

class DriverTestFFF : public testing::Test
{
public:
 void SetUp()
 {
 RESET_FAKE(IO_MEM_WR8);
 RESET_FAKE(IO_MEM_RD8);
 FFF_RESET_HISTORY();
 }
};
TEST_F(DriverTestFFF,
When_writing_Then_writes_data_to_DRIVER_OUTPUT_RE
GISTER)
{
 driver_write(0x34);
 ASSERT_EQ(1u, IO_MEM_WR8_fake.call_count);
 ASSERT_EQ(0x34u, IO_MEM_WR8_fake.arg1_val);
 ASSERT_EQ(DRIVER_OUTPUT_REGISTER,
 IO_MEM_WR8_fake.arg0_val);
}
TEST_F(DriverTestFFF,
When_reading_data_Then_reads_from_DRIVER_INPUT_RE
GISTER)
{
 IO_MEM_RD8_fake.return_val = 0x55;
 uint8_t returnedValue = driver_read();
 ASSERT_EQ(1u, IO_MEM_RD8_fake.call_count);
 ASSERT_EQ(0x55u, returnedValue);
 ASSERT_EQ(IO_MEM_RD8_fake.arg0_val,
 DRIVER_INPUT_REGISTER);
}

Listing 3

TEST_F(DriverTestFFF,
Given_revisionB_device_When_initialize_Then_enabl
e_peripheral_before_initial
izing_it)
{
 // Given
 IO_MEM_RD8_fake.return_val = HARDWARE_REV_B;
 // When
 driver_init_device();

 // Then
 // Gets the hardware revision
 ASSERT_EQ((void*) IO_MEM_RD8,
 fff.call_history[0]);
 ASSERT_EQ(HARDWARE_VERSION_REGISTER,
 IO_MEM_RD8_fake.arg0_history[0]);
 // Enables Peripheral
 ASSERT_EQ((void*) IO_MEM_WR8,
 fff.call_history[1]);
 ASSERT_EQ(DRIVER_PERIPHERAL_ENABLE_REG,
 IO_MEM_WR8_fake.arg0_history[0]);
 ASSERT_EQ(1, IO_MEM_WR8_fake.arg1_history[0]);
 // Initializes Peripheral
 ASSERT_EQ((void*) IO_MEM_WR8,
 fff.call_history[2]);
 ASSERT_EQ(DRIVER_PERIPHERAL_INITIALIZE_REG,
 IO_MEM_WR8_fake.arg0_history[1]);
 ASSERT_EQ(1, IO_MEM_WR8_fake.arg1_history[1]);
}

Listing 4

// faking "long longfunc();"
FAKE_VALUE_FUNC(long, longfunc0);

TEST_F(FFFTestSuite,
 return_value_sequences_exhausted)
{
 long myReturnVals[3] = { 3, 7, 9 };
 SET_RETURN_SEQ(longfunc0, myReturnVals, 3);
 ASSERT_EQ(myReturnVals[0], longfunc0());
 ASSERT_EQ(myReturnVals[1], longfunc0());
 ASSERT_EQ(myReturnVals[2], longfunc0());
 ASSERT_EQ(myReturnVals[2], longfunc0());
 ASSERT_EQ(myReturnVals[2], longfunc0());
}

18 | Overload | February 2015

FEATUREMIKE LONG
Counting with the preprocessor
The curious among you might be wondering about how the preprocessor
does counting. Well, the macros are in Listing 9.

You can learn more about this technique in the resources section at the end
of this article.

Summary
The goal of the Fake Function Framework is:

 to make it easy to create fake functions for testing C code

 to be simple – you just download a header file and include include it
in your project, there are no fancy build requirements or
dependencies of any kind

 to work seamlessly in both C and C++ test environments.

Acknowledgements
The fake function framework would not exist as it does today without the
support of key people. Tore Martin Hagen (and his whiteboard), my
partner-in-crime in Oslo, was instrumental during the genesis of fff. Jon
Jagger, who during ACCU 2011 helped me teach the preprocessor to
count. James Grenning, who convinced me the value of global fakes, sent
me a prototype Implementation, and showed me how expressive a DSL
can be. Micha Hoiting helped me to add support for const arguments.
Thanks to you all!

Resources
If you have any questions, drop me a line on twitter @meekrosoft.

To learn more you might want to check out some of these resources:

 The project has lots of example code and documentation on Github
– https://github.com/meekrosoft/fff

 James Grenning explains how to fake an RTOS with fff.h –
http://www.renaissancesoftware.net/blog/archives/303

 Strongminds blog introduction – http://blog.strongminds.dk/post/
2012/08/17/Faked-Function-Framework.aspx

 C macro magic - PP_NARG - http://jonjagger.blogspot.co.uk/2010/
11/c-macromagic-ppnarg.html

Listing 5

#define MEANING_OF_LIFE 42
long my_custom_value_fake(void)
{
 return MEANING_OF_LIFE;
}
TEST_F(FFFTestSuite,
when_value_custom_fake_called_THEN_it_returns_cus
tom_return_value)
{
 longfunc0_fake.custom_fake =
 my_custom_value_fake;
 long retval = longfunc0();
 ASSERT_EQ(MEANING_OF_LIFE, retval);
}

Listing 6

#define FAKE_VALUE_FUNC1(RETURN_TYPE, \
 FUNCNAME, ARG0_TYPE) \
DECLARE_FAKE_VALUE_FUNC1(RETURN_TYPE, \
 FUNCNAME, ARG0_TYPE) \
DEFINE_FAKE_VALUE_FUNC1(RETURN_TYPE, \
 FUNCNAME, ARG0_TYPE) \

Listing 9

#define PP_NARG_MINUS2(...) PP_NARG_MINUS2_(__VA_ARGS__, PP_RSEQ_N_MINUS2())

#define PP_NARG_MINUS2_(...) PP_ARG_MINUS2_N(__VA_ARGS__)

#define PP_ARG_MINUS2_N(returnVal, _0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15,
_16, _17, _18, _19, N, ...) N

#define PP_RSEQ_N_MINUS2() 19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0

#define FAKE_VALUE_FUNC(...) FUNC_VALUE_(PP_NARG_MINUS2(__VA_ARGS__), __VA_ARGS__)

#define FUNC_VALUE_(N,...) FUNC_VALUE_N(N,__VA_ARGS__)

#define FUNC_VALUE_N(N,...) FAKE_VALUE_FUNC ## N(__VA_ARGS__)

Listing 8

#define DEFINE_FAKE_VALUE_FUNC1(RETURN_TYPE, \
 FUNCNAME, ARG0_TYPE) \
 EXTERN_C \
 FUNCNAME##_Fake FUNCNAME##_fake;\
 RETURN_TYPE FUNCNAME(ARG0_TYPE arg0){ \
 SAVE_ARG(FUNCNAME, 0); \
 if(ROOM_FOR_MORE_HISTORY(FUNCNAME)){\
 SAVE_ARG_HISTORY(FUNCNAME, 0); \
 }\
 else{\
 HISTORY_DROPPED(FUNCNAME);\
 }\
 INCREMENT_CALL_COUNT(FUNCNAME); \
 REGISTER_CALL(FUNCNAME); \
 if (FUNCNAME##_fake.custom_fake) return \
 FUNCNAME##_fake.custom_fake(arg0); \
 RETURN_FAKE_RESULT(FUNCNAME) \
 } \
 DEFINE_RESET_FUNCTION(FUNCNAME) \
 END_EXTERN_C \

Listing 7

#define DECLARE_FAKE_VALUE_FUNC1(RETURN_TYPE, \
 FUNCNAME, ARG0_TYPE) \
 EXTERN_C \
 typedef struct FUNCNAME##_Fake { \
 DECLARE_ARG(ARG0_TYPE, 0, FUNCNAME) \
 DECLARE_ALL_FUNC_COMMON \
 DECLARE_VALUE_FUNCTION_VARIABLES \
 (RETURN_TYPE) \
 RETURN_TYPE(*custom_fake)(ARG0_TYPE arg0); \
 } FUNCNAME##_Fake;\
 extern FUNCNAME##_Fake FUNCNAME##_fake;\
 void FUNCNAME##_reset(); \
END_EXTERN_C \
February 2015 | Overload | 19

FEATURE FRANCES BUONTEMPO
How to Write an Article
Submitting an article for publication
might seem difficult. Frances
Buontempo explains how easy it is.
ho writes articles in Overload? Taking names from the list of
Overload authors on the ACCU website gives around 250
authors, without breaking down joint authorship. The top three

authors have been Alan Griffiths, with 57, Kevlin Henney with 56 and
Francis Glassborow with 49 articles. Figure 1 shows a histogram of the
top few authors. A consistent pattern emerges of a few people who
contribute again and again – most regular Overload readers have never
written an article. Some readers may have a blog, or join in a discussion
on accu-general, or discuss something technical over a beer with
colleagues one evening, but never get as far was writing it up for the
ACCU. The majority of the articles published here are from ACCU
members, but from time to time other people submit articles. Indeed, as a
peer reviewed journal we are open to submissions from anyone. One of
the benefits of such a journal is the feedback process. The article can be
improved before being read by the public at large whereas a blog gets the
feedback after it is published. Don’t forget being published in a peer review
journal counts as a few extra kudos points.

Idea
How do you decide what to write about? Bear in mind writing is usually
a learning process. Even if you think you are the world’s leading expert
on a particular field, writing it up clearly will find gaps in your knowledge
or spark off new ideas. It can be worthwhile to simply write a summary
style article, with the latest thinking on a subject you are interested in,
perhaps delving way back to its beginnings years ago or simply introducing
a new language feature. This will get you, and your readers, up to speed
with a way of doing something. Some articles have started life with a
question on a discussion group, like accu general. In fact, my first Overload
article, ‘Floating point fun and frolics’ [Overload 91], started there. It can
make life easier to just have a trail of comments and ideas to summarise
if you don’t feel you have enough ideas yourself. Alternatively, you can
present a new technique, library or even language you have developed
yourself. Either way, the audience may expect to see a few references, so
it is possible to do further background reading on a subject. If you’re not
sure whether to submit to Overload or CVu, try both and see what happens.
The main points to bear in mind are

 Overload is freely available, so anyone may read it. You may want
to just try something in CVu first time, but this is not a requirement.

 Overload tries to take a more academic tone, so might tend towards
more technical content, with more references. Something like ‘My
first 'Hello World' program in JavaScript’ might be more suited to

CVu, while something like ‘Advanced C++17’ might be more suited
to Overload.

If you do not have a full blown article, but just a sketch of an idea, it is ok
to get in touch for some early feedback. We might be able to give a few
pointers of further things to research or other ways of doing things. If you
do want to submit a full-blown article, try to give it some kind of structure.
Simply having an introduction, main work and conclusion is far better than
sending in a list of bullet points. Spare a little thought for your target
audience. How much background might need fully explaining? What can
be covered by a reference and leave them to go read up if required. We are
always open to other ideas, including but not limited to letters to the editor,
for example if a previous article has set you thinking.

Submission
How do you submit an article to Overload? The best approach is to use
email: Overload@ACCU.org. An easy to copy format, like Open Office,
Word, or just plain text is best, though other formats are acceptable. Any
diagrams should be attached as separate scalable graphics, so they can be
positioned and sized easily for the final layout. If you are demonstrating
code you have written, it might not need listing in its entirety. Enough
listings to get the main point across often work well. It is sensible to add
a link to the whole codebase, for example a github repository, if relevant,
though. We also like to have a short biography, with a contact email. Your
readers may get in touch and say ‘Thanks’.

Some journals offer a template, expecting submissions in a specific font,
with a specific size, number of columns and so on. We don’t mind – the
formatting and layout will happen later. We won’t fuss too much about
length either. Approximately one thousand words fill a page. Anything
from one page upwards is ok. If your article is a 20 page epic, it might make
more sense to split in into two or more mini-articles. This will depend on
how many other pages have already been taken up, and where we can find
a natural place in which to insert a break. More details on the format and
structure can be found in ‘Guidelines for contributors’ [Overload 80].

Feedback
If your article looks like a plausible candidate, it will get sent round the
review team, and you will be emailed back comments. We try to make sure
we get a mix of positive encouraging comments, nit-picks over typos and
grammar, and suggestions of unclear parts that may need rewording. On
top of this basic style feedback, be prepared for the reviewers to point out
something you may have missed, for example newer language techniques,
more succinct ways of doing things, pre-existing libraries you can use off
the shelf. You are allowed to argue back, of course, but this process can
make the articles more thorough and you may learn even more during the
process. Once in a while, the only feedback simply says, “This is great.”
Not often, but it can happen. On very few occasions the potential author
decides not to take on board the feedback, and the idea is taken no further.

Once all the articles have been reviewed they are sent to the production
editor, and you will then receive a proof first-draft, showing the actual
layout. At this stage everyone needs to keep their eye open for omissions,

W

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She
has been a programmer since the 90s, and learnt to program by
reading the manual for her Dad’s BBC model B machine. She can
be contacted at frances.buontempo@gmail.com.
20 | Overload | February 2015

FEATUREFRANCES BUONTEMPO

If you do not have a full blown article,
but just a sketch of an idea, it is ok to
get in touch for some early feedback
like second author’s names, missing diagrams, copy and paste errors and
other typos that have slipped under the net. Not matter how hard we try
there always seem to be at least one in the final printed version.

Fame
Shortly after the drafts, the whole magazine will be pieced together. You
are likely to see an announcement on accu-general, the accu.org webpage
and possibly Twitter. Obviously, if you are a member and have paid for it
you will get a paper copy through your door at some point and can leave

it lying around open on your desk to show off to all your friends and
colleagues. If you aren’t a member, you can ask for a printed copy – yours
to show off and share with others. It might even persuade someone to join.
Almost nothing beats the sight of your name in print – try it.

References
[Overload 80] http://www.accu.org/index.php/journals/1414

[Overload 91] http://accu.org/index.php/journals/1558

Figure 1
February 2015 | Overload | 21

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

http://www.accu.org/index.php/journals/1414
http://accu.org/index.php/journals/1558

FEATURE LION GUTJAHR
Letter to the Editor
I recently received an email regarding an article from an Overload
published way back in 2001. It is wonderful to hear people are still
looking back through items people have written, no matter how long
ago . The ema i l d rew my a t ten t ion to C++11 ’s
std::numeric_limits<T>::lowest(), which I hadn’t come
across so I thought others might be in the same situation. Lion has kindly
taken the time to formalise his initial observations into the following
letter, and I have included a response from the original author,
Thaddaeus Frogley.

Dear Editor,

have just read the Overload article ‘An introduction to C++ Traits’
[Frogley01] and noticed that the initialisation of largest in the first
code fragment (the one adapted from [Veldhuizen]):

 T largest = std::numeric_limits< T >::min();

is done using std::numeric_limits<T>::min() where it could
now be C++11’s std::numeric_limits<T>::lowest() for cases
where the type T is float or double and all array members are below or equal
to zero.

Although I couldn’t find an explicit reference, this seems to originate from
C where INT_MIN and FLT_MIN or DBL_MIN show the same semantic
difference; some people guess that it is because the libraries for rational
and for integral numbers have been developed by different groups.
Fernando Cacciola explains it very nicely in the N1880 proposal to the C++
standard [N1880]:

numeric_limits::min() (18.2.1.2) is defined with a meaning which is
inconsistent across integer and floating-point types. Specifically, for
integer types, it is the minimum finite value whereas for floating point
types i t is the minimum posit ive normalized value. The
inconsistency here lies in the interpretation of minimum: in the case
of integer types, it signifies lowest, while for floating point types, it
signifies smallest non-zero.

N2348 adds some history [N2348]:

At Mont Tremblant, Pete Becker noted that the wording was flawed,
because not all floating point representations have the feature that
the most negative representable finite value is the negative of the
most positive representable finite value.

An example (Listing 1) shows the different behaviour.

Because std::lowest() is not available in C++98, an alternative might
be needed. I created a second example which uses the traits technique (see
Listing 2).

Please note that it could be possible to distinguish at compile time between
pre and post C++11 so that newer compilers could be routed to lowest()
directly, but I couldn’t find a short and clean way to do that, although #if
(__cplusplus > 199711L) would come pretty close for many
compilers.

Regards,

Lion Gutjahr

I

Listing 1

#include <limits>
#include <iostream>

template< class T >
T findMax(const T * data, const size_t numItems)
{
 // Obtain the minimum value for type T
 T largest = std::numeric_limits< T >::min();
 for (unsigned int i = 0; i<numItems; ++i)
 if (data[i] > largest)
 largest = data[i];
 return largest;
}

template< class T >
T findMaxNew(const T * data, const size_t
numItems) {
 // Obtain the minimum value for type T
 T largest = std::numeric_limits< T >::lowest();
 for (unsigned int i = 0; i<numItems; ++i)
 if (data[i] > largest)
 largest = data[i];
 return largest;
}
template< class T >
void printAry(const T * data, const size_t
numItems) {
 for (unsigned int i = 0; i<numItems; ++i)
 std::cout << data[i] << " ";
 std::cout << std::endl;
}
void test(float* ary, size_t nof) {
 printAry(ary, nof);
 float maxFloat = findMax<float>(ary, nof);
 float newMaxFloat =
 findMaxNew<float>(ary, nof);
 std::cout << "max in only negative floats is "
 << maxFloat;
 if (std::abs(maxFloat - newMaxFloat) >
 std::numeric_limits<float>::epsilon())
 std::cout << " but should have been "
 << newMaxFloat;
 std::cout << std::endl << std::endl;
}

int main() {
 float onlyNegativeFloats[] = { -2, -1, -3 };
 std::cout << "array of only negative floats: ";
 test(onlyNegativeFloats, 3);
 float positiveAndNegativeFloats[] = {
 2, -1, -3 };
 std::cout << "array of positive and negative
 floats: ";
 test(positiveAndNegativeFloats, 3);
 return 0;
}

Lion Gutjahr wrote his first piece of code on a C64 he got for his
8th birthday, and he hasn’t stopped programming since. He has 20
years of professional experience in the industry and service sectors
and loves to express himself in C++ during his spare time. Lion can
be contacted at lion.gutjahr@gmx.net
22 | Overload | February 2015

FEATURELION GUTJAHR
Listing 2

#include <cstdlib>
#include <cmath>
#include <limits>
#include <iostream>
#include <string>

template< class T >
T findMax(const T * data, const size_t numItems)
{
 // Obtain the minimum value for type T
 T largest =
 std::numeric_limits< T >::min();
 for (unsigned int i = 0; i<numItems; ++i)
 if (data[i] > largest)
 largest = data[i];
 return largest;
}

namespace detail {
 template< class T, bool isFloat >
 struct cpp98_numeric_limits_lowest {};
 template< class T >
 struct cpp98_numeric_limits_lowest<T, true> {
 static T value() {
 return -std::numeric_limits<T>::max(); }
 };
 template< class T >
 struct cpp98_numeric_limits_lowest<T, false> {
 static T value() {
 return std::numeric_limits<T>::min(); }
 };
} // end namespace detail

template< class T >
T cpp98_numeric_limits_lowest() {
 return detail::cpp98_numeric_limits_lowest< T,
 std::numeric_limits<T>::is_specialized &&
 !std::numeric_limits<T>::is_integer>
 ::value();
}

template< class T >
T findMaxNew(const T * data,
 const size_t numItems) {
 // Obtain the minimum value for type T
 T largest = cpp98_numeric_limits_lowest<T>();
 for (unsigned int i = 0; i<numItems; ++i)
 if (data[i] > largest)
 largest = data[i];
 return largest;
}

template< class T >
void printAry(const T * data,
 const size_t numItems) {
 for (unsigned int i = 0; i<numItems; ++i)
 std::cout << data[i] << " ";
 std::cout << std::endl;
}

namespace detail {
 template< typename T, bool isFloat >
 struct areEqual {};
 template< typename T >
 struct areEqual<T, true > {
 static bool value(const T& a, const T& b) {
 return std::abs(a - b) <=
 std::numeric_limits<T>::epsilon(); }
 };

Listing 2 (cont’d)

 template< class T >
 struct areEqual<T, false > {
 static bool value(const T& a, const T& b) {
 return a == b; }
 };
} // end namespace detail

template< class T >
T areEqual(const T& a, const T& b) {
 return detail::areEqual< T,
 std::numeric_limits<T>::is_specialized &&
 !std::numeric_limits<T>::is_integer>
 ::value(a, b);
}

template< class T >
void test(const std::string& desc,
 const T * data, const size_t numItems) {
 std::cout << "array of " << desc << ": ";
 printAry(data, numItems);

 T maxval = findMax<T>(data, numItems);
 T newMaxval = findMaxNew<T>(data, numItems);

 std::cout << "max in " << desc << " is "
 << maxval;
 if (!areEqual<T>(maxval, newMaxval))
 std::cout << " but should have been "
 << newMaxval;
 std::cout << std::endl << std::endl;
}
int main()
{
 {float vals[] = { -2, -1, -3 };
 test<float>("only negative floats", vals, 3); }

 {float vals[] = { 2, -1, -3 };
 test<float>("positive and negative floats",
 vals, 3); }

 {double vals[] = { -2, -1, -3 };
 test<double>("only negative doubles",
 vals, 3); }

 {double vals[] = { 2, -1, -3 };
 test<double>("positive and negative doubles",
 vals, 3); }

 {long double vals[] = { -2, -1, -3 };
 test<long double>("only negative long doubles",
 vals, 3); }

 {long double vals[] = { 2, -1, -3 };
 test<long double>("positive and negative long
 doubles", vals, 3); }

 {int vals[] = { -2, -1, -3 };
 test<int>("only negative ints", vals, 3); }

 {int vals[] = { 2, -1, -3 };
 test<int>("positive and negative ints", vals,
 3); }

 {unsigned short vals[] = { 2, 3, 1 };
 test<unsigned short>("unsigned shorts", vals,
 3); }

 return 0;
}

February 2015 | Overload | 23

FEATURE LION GUTJAHR
References
[Frogley01] Frogley, Thaddaeus ‘An introduction to C++ Traits’,

Overload Journal #43 (June 2001)

[N1880] N1880 proposal to the C++ standard
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/
n1880.htm

[N2348] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/
n2348.pdf

Response from Thaddaeus
If anything, it highlights the need to introduce lowest, if there is (was) no
clear and straightforward way to achieve the same goal in the C++ of 2001,
noting that -max doesn’t work for unsigned integers!

My preferred solution these days would to write something like this (and
this is also a more language agnostic approach):

 template< class T >
 T findMax(const T* data, int numItems)
 {
 assert(numItems>0);
 // Obtain the minimum value for type T
 int i=0;
 T largest = data[i++];
 for (;i < numItems; ++i)
 if (data[i] > largest)
 largest = data[i];
 return largest;
 }

which avoids the problem altogether, provided numItems != 0.
24 | Overload | February 2015

T 0115 8492271 E info@clearly-stated.co.uk W www.clearly-stated.co.uk

What we really
need is a system

that can...

If the current system is yours,
that’s a lost customer

We can help you with:
 � product manuals/user guides
 � online help
 � training materials
(including e-learning)

 � bids and proposals...

Good product information is
about helping your customers
reach their goals

For help turning frustrated customers into product champions, get in touch.

We are members of the Institute of Scientific and Technical Communicators, the UK
professional body for technical authors. For information about the ISTC, visit www.istc.org.uk

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2348.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2348.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1880.htm

	Overload125.pdf
	FUD – Fear, uncertainty and doubt
	Best Practices vs Witch Hunts
	Making a Tool of Deception
	Modern C++ Testing
	I Like Whitespace
	Faking C Function with fff.h
	How to Write an Article
	Letter to the Editor

