

February 2016 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Defining Concepts
Andrew Sutton shows us how to define and use
Concepts.

9 On Zero-Side-Effect Interactive
Programming, Actors, and FSMs
Sergey Ignatchenko considers parallels between
actors and finite state machines.

13 Template Programming Compile Time
Combinations & Sieves
Nick Weatherhead takes a functional approach to
generating sequences in C++.

18 Classdesc: A Reflection System for C++11
Russell Standish brings an automated reflection
system for C++, Classdesc up to date.

24 QM Bites : Maximising Discoverability of
Virtual Methods
Matthew Wilson champions the use of ‘override’.

26So Why is Spock Such a Big Deal?
Russel Winder gives a history of testing on
the JVM and demonstrates why Spock is so
groovy.

OVERLOAD 131

February 2016

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 132 should be submitted by
1st March 2016 and those for
Overload 133 by 1st May 2016.

EDITORIAL FRANCES BUONTEMPO
Be lucky
Do you consider yourself unlucky?
Frances Buontempo wonders what
we can do to avoid disasters.
Unfortunately, I have failed to write an editorial yet
again. My hopeless, failed attempts may be auspicious
though. We have previously considered failure being
a potentially good thing. Perhaps we should now
consider my misfortune. Could I be luckier next time?
Am I just not trying hard enough? Does luck matter,

or even mean anything? If people wish me “Good luck with that!” they
may be stating I don’t have a hope, or they may genuinely be ‘wishing
me luck’. Do wishes ever come true? Yes, they do, but you can’t always
tell in advance if you’re onto a winner.

‘Luck’ seems to have its roots in a Dutch word ‘gheluc’ meaning fortune.
To me this has a hint of ideas concerning gambling – “You win some, you
lose some…” Some viewpoints might subscribe to an alternative stance
taking on a notion of destiny or perhaps karma. “You reap what you sow.”
If you happen to be born into a fairly well-off family in a resource-rich
country, you may have had the good fortune to be bought a PC at a young
age, giving you the opportunity to learn to program in the privacy of your
own bedroom. If you are the less fortunate other sibling, you might not
get a chance to get anywhere near the aforementioned computer. On the
other hand, if you don’t have your own bedroom, don’t have enough
money for a computer, don’t have an electricity supply, or perhaps have
all these, but are told “You’re not technical enough – you won’t be any
good at computers”, you are jinxed, in a sense. Such a curse is the opposite
of luck. Many a rational person would claim they don’t believe in either.
Yet the right circumstances can make a positive outcome more likely,
while awkward circumstances make things harder. Some innovators are
becoming aware of situations other than their own, so we see clockwork
radios and computers, the Raspberry Pi, Code Clubs and so on. I have
recently read several stories of women in Africa learning how to program
which have left me amazed [TechWomen, Jjiguene, AWAP]. Even if fate
hands you a lemon, you can make lemonade, to coin a phrase.

Different cultures have different ideas of luck. People will carry charms,
which vary from place to place. I personally never understood how a
rabbit’s foot could be lucky. It certainly wasn’t for the rabbit. These
superstitions often have a long and interesting history, but sometimes their
origins are lost in the mists of time. People will light joss sticks to appease
the Gods. Or sacrifice some unlucky creature. I had also heard ‘joss’ used
as a Chinese idea of luck, but was surprised to learn it comes from
Portuguese ‘deus’, for God. As programmers, do we burn joss sticks,
maybe just to mask code smells? Do we carry round a rabbit’s foot, maybe

an OS on a stick or similar, which could be a bit more
use than a foot, even if it is the left hind foot

of a bunny killed in a cemetery when there’s
a full moon? We probably all have rituals
that we resort to, to make us feel ‘luckier’

or more hopeful of getting it right. Running tests, looking at the results of
a static analyser, changing the whitespace and code layout to make it easier
for us to read (while causing a massive fight with other team members),
getting a greater variety of people to conduct code reviews in the vague
hope of flushing out problems... The list is long. There is hope, and we
constantly find new ways of making the situation more hopeful. If there’s
no hope, the people perish.

Can programmers ever be considered lucky or unlucky? Imagine for a
moment you catch a multi-threading bug with some load testing in a
development environment, thereby circumventing potential disaster for
your customers, and your team. Is this lucky? In a sense, yes. In another
sense, no, since running load testing in the first place was designed to flush
out exactly this sort of issue. And yet, that you have heard of load testing
is either lucky, or you have made an effort to read the right books or listen
to the right talks or simply just have the imagination to find ways to make
your life easier. Imagine instead, you don’t have any automated tests
round your code, try to manually test a few scenarios for a new feature
and are told you must release this now because there’s a deadline, and
despite your protests, the release goes ahead. And then gets rolled back a
few days later due to the bug reports. Is this unlucky? Perhaps. However,
I suspect many readers would see this as a predictable and probably
avoidable outcome, which happens surprisingly frequently. Why did ‘the
suits’ not listen to your protests? Managing to make yourself understood
is often about more than luck. Instead of complaining to people that an
obscure edge-case may not work or that you can’t possibly estimate how
long it will take you to do something you’ve never done before in your
life, it is better to try to understand what they are trying to achieve and
what information they need. Linda Rising and Barbara Chauvin wrote an
article a few years ago about the clash between programmers and
managers in ‘Using Numbers to Communicate – in the Spirit of Agile’
[Numbers]. They suggested it helps to ease communication if you find a
common way to talk, rather than perpetuating the ‘us-and-them’ attitude.
In a fictitious scenario, they observe that if a programmer had “converted
the issue to something numeric instead of personal, the issue would have
been much clearer and easier for him [the manager] to understand the
impact.” Rather than complaining about meetings, keep a diary showing
how many hours are spent in them. Then subtract how many hours have
been saved by the face to face conversation. If it takes days to manually
test a scenario comparing the numbers between today and two days ago,
guestimate how long it might take to re-architect the code so you can
artificially inject a different business date into the system. Then you can
show if there will be a saving in programmer hours over the next budget
period. Keep evidence, don’t just rant. As you look at what you measure,
you may even realise you were wrong and something completely different

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She works at
Bloomberg, has been a programmer since the 90s, and learnt to program by reading the manual for her
Dad's BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2016

EDITORIALFRANCES BUONTEMPO
is holding you up. This might make you look heroic, and then you may be
listened to more in the future.

You can do a variety of things to increase your luck. Finding a good
‘coding buddy’ who you can turn to for help or advice designing a new
system or troubleshooting an existing one is fortunate. Being a lone ranger
who never gets a code review might make you look heroic, but is a lonely
place to be. Why are no people working with you? Does your amazing
talent frighten them off? Do you need to make an effort to be more
approachable? If you are a newbie you can practise your craft. It is still
worth practising whatever your skill level. A popular custom at the
moment is coding katas, but just writing code might make you better.
Getting the chance to pair program from time to time can be really useful.
It might inspire you with new ways of working. It is often just a keyboard
shortcut that speeds you up in the future. How auspicious. If you do feel
isolated, you could join a geek group, for example the ACCU, just to have
a new stream of ideas, thoughts and opinions. If you try to be nice to people,
to listen, help and inspire you can grow your network in a useful way.
People may start listening to you then. Sometimes it feels slower to work
with other people, but it is often worth it. Just the knowledge sharing makes
the process resilient in the face of staff turnover, illness and so on.
Sometimes you might be wrong. Be willing to say “Oops” gracefully.
Sometimes you might be right. Just stating your case tends not to bring on
board any converts. If you can’t convey your point with words, and
stamping and finger pointing, then try a different approach. Drawing
pictures can convey information, often more clearly than words or even
tables of numbers. If you start to measure what’s going on in your code-
base, for example spotting files that change frequently but have no tests,
this can be graphed easily. And no-one ever argues with facts, right?

You might find as you start measuring things your instinct was incorrect.
Being honest is important. If you know you get stuck on something or are
not very good at it, you can plug gaps in your knowledge. As mentioned,
you could try code katas, read a book or write an article to get the idea
clearer in your head. You could get a review from an expert in the subject.
However, there is not enough time to become an expert at everything. It
is ok to delegate to other people. If someone in your team is very good at
something, allow them to get on with it. Do make sure they work with
someone from time to time to avoid lone rangers and cowboys though.
Perhaps they will give you an executive summary and you might learn a
little yourself. You may find you have to do boring grunt work – fill in
forms, grep log files, while the bright young things get on with the exciting
stuff. That’s OK. If you manage to do it without grumbling, or interfering
with them too much, they may appreciate you. You might successfully
automate the boring stuff while you are there, making everyone’s lives
better. Luck might therefore be about finding the right people to give you
a leg up or a helping hand. “Stand on the shoulders of giants” as the saying
goes. Or just frustration leads you to find a better way of working once
you have figured out the root cause of the problem. The glass may be half
empty, rather than half full. But that might be enough to motivate you to
go to the bar and get a round in for everyone. Then your pint pot may
overflow.

A person’s environment or circumstances does affect the potential
outcomes. However, this is not the full story. Difficult circumstances can
drive innovation. Things being easy, even if not ideal, may stifle
innovation. You may work in a business that is risk-adverse so suspect any
great change is impossible, but even then you can make small things
simpler. The saying about seeing a glass as half-empty or half-full I alluded
to earlier is about attitude to the circumstances you find yourself in. It could
be if you start to feel unlucky, then you sink into a downward spiral. You
might start looking for things that are going wrong, and become paranoid.
If this happens, you may find people notice, and they do start watching you.
On the other hand, if you see a less than full glass as a chance to grab
another pint, or make small but valuable tweaks to the process, code-base
or team morale then the difference you have made might be noticed. Even
if it’s not noticed, which might be a good thing in an ultra-conservative
environment, you have made your own life easier. Your attitude can

influence your luck. Or your peace of mind. To quote Monty Python, “Let
us not be down-hearted. One total catastrophe like this is just the
beginning!”

Various studies have been conducted to analyse the perceived idea of luck.
I am not convinced of the scientific status of any of these. Nonetheless,
they can give pause for thought. For example, Richard Wiseman
[Wiseman], writes about a study he conducted of 400 people who
considered themselves to be either lucky or unlucky. He claims he found
some distinct patterns in the two groups. Many of these revolved around
attitudes. An important and believable point he made was lucky people
followed their instincts, perhaps trusting themselves, while unlucky people
expected trouble making themselves anxious in the process. If you don’t
believe in yourself, how can you expect anyone else to? Another point I
got from the article regarded an experiment which asked how many
pictures were in a magazine. The lucky people got it right, more quickly.
There had been a statement part way through suggesting there were a given
number of pictures in the magazine. The lucky people noticed and went
with this, in the main. I can personally imagine not trusting this in the same
way I might not trust a code comment that proudly claims “//This is
correct”. Yet, on other occasions, I will be on the look-out for clues. If
I have a meeting coming up about some middleware I have never used
before, I will catch a brief moment to read about it, so I can start thinking
through what questions I need answered. I want to know the throughput
and latency. Not just one. If I have an interview, on either side of the desk,
and spot someone has an unusual name, I may search the internet to see if
they have written an article or have some code up publicly. I can then have
a more interesting exchange with them.

For one final thought, if everything does appear to be going wrong, and
you consider yourself the unluckiest person in the world, I learnt one very
valuable lesson in 2015. I attended the one-day Agile in Banking
conference [AiB] where the closing keynote was given by Linda Rising.
She was talking about Fearless change of course [Rising], which I must
read one day. In the course of the talk she also told us about Maria’s Rule
– “there are very few problems that cake cannot solve.” If everything
appears to be a disaster, just bake the team a cake. Or buy donuts. This
might be the best way to win friends and influence people. Then you may
become the luckiest person in the world. The trick might be to spend time
thinking about what you regard as lucky. As discussed, there are ways to
increase your luck. What is the most unfortunate thing that’s ever happened
to you in your programming career? Perhaps you got
sacked, but then ended up with a much better job.
What’s the luckiest thing that ever happened? Was it
actually a close shave that you can avoid another time?

References
[AiB] Agile in Banking, http://agileinbanking.net/2015/

[AWAP] http://www.africanwomenadvocacyproject.org/PDFs/
AWAP_Report_Jan%20201_Final.pdf

[Jjiguene] ‘Women and girls are the answer to innovation in Africa’
http://blogs.worldbank.org/nasikiliza/women-and-girls-are-answer-
innovation-africa

[Numbers] ‘Using Numbers to Communicate – in the Spirit of Agile’
Rising and Chauvin, 2008, http://www.infoq.com/articles/rising-
agile-spirit-numbers

[Techwomen] https://www.techwomen.org/feature-story/josephine-
kamanthe-innovates-youth-education-with-solar-power-in-kenya

[Rising] Fearless Change: Patterns for introducing new ideas Addison
Wesley 2004

[Wiseman] ‘Be lucky – it’s an easy skill to learn’ June 2003
http://www.telegraph.co.uk/technology/3304496/Be-lucky-its-an-
easy-skill-to-learn.html
February 2016 | Overload | 3

http://agileinbanking.net/2015/
http://www.africanwomenadvocacyproject.org/PDFs/AWAP_Report_Jan%20201_Final.pdf
http://www.africanwomenadvocacyproject.org/PDFs/AWAP_Report_Jan%20201_Final.pdf
http://blogs.worldbank.org/nasikiliza/women-and-girls-are-answer-innovation-africa
http://www.infoq.com/articles/rising-agile-spirit-numbers
http://www.infoq.com/articles/rising-agile-spirit-numbers
https://www.techwomen.org/feature-story/josephine-kamanthe-innovates-youth-education-with-solar-power-in-kenya
https://www.techwomen.org/feature-story/josephine-kamanthe-innovates-youth-education-with-solar-power-in-kenya
http://www.telegraph.co.uk/technology/3304496/Be-lucky-its-an-easy-skill-to-learn.html

FEATURE ANDREW SUTTON
Defining Concepts
Concepts provide a new way of
constraining code. Andrew Sutton
shows us how to define and use them.
his article is the second in a series that
describe concepts and their use. In the
first article, I describe how concepts are

used to declare and constrain generic
algorithms [Sutton15]. In this article, I discuss
how to define and use concepts: the building
blocks of the constraints used in the previous
article. The next article will focus on systems
of concepts, overloading, and specialization.

The features described in this article are based
on the ISO Concepts Technical Specification
(TS) [N4549], a formal extension of the C++
Programming Language. The specification is
implemented in GCC and will be part of the
forthcoming 6.0 release. Eric Niebler and Casey Carter are also working
on a Ranges TS [N4560] that incorporates these language features and will
define the base set of concepts needed for the C++ Standard Library.

Recap
In my previous article, I wrote about a simple generic algorithm, in(),
which determines whether an element can be found in a range of iterators.
Here is its declaration, modified slightly to suit the purposes of this article.

 template<Range R, Equality_comparable T>
 requires Same<T, Value_type<R>>()
 bool in(R const& range, T const& value);

The function in takes a range and a value as arguments. To specify the
requirements on those arguments, the declaration uses three concepts:

 the type of the range must be a Range,

 the type of the value must be Equality_comparable, and

 the type of the value and that of the elements in the range must
be the Same.

Value_type is not a concept. It is an alias of an internal type trait:

 template<typename T>
 using Value_type = typename value_type<T>::type;

We’ll see how value_type can be defined later in this article.

Recall that the compiler internally transforms the concepts in the
declaration into a single constraint. In order to use this function, any
template arguments must satisfy this predicate:

 Range<R>()
 && Equality_comparable<T>()
 && Same<T, Value_type<R>>()

If this expression does not evaluate to true (given concrete template
arguments for R and T), then the function cannot be called, and the
compiler emits a useful error message. For example, compiling this
program:

 std::vector<std::string> cities { ... };
 assert(in(cities, "Akron"));

will yield an error such as that shown in Figure 1.1

What exactly are Same, Equality_comparable, and Range, and how
are they defined?

Concept definitions
A concept is a predicate on template arguments. In the Concepts TS,
concepts are defined as a slightly simplified form of constexpr
functions. Here is the declaration of Same:

 template<typename T, typename U>
 concept bool Same() { ... }

Concepts are defined by using the concept keyword in place of constexpr,
and they must return bool. In order to make concepts simple to implement,
fast to compile, yet sufficient to test properties of types, we impose a few
restrictions on their definition:

 concepts must be defined at namespace scope,

 concepts cannot be forward declarations,

 concepts cannot take function arguments,

 concepts cannot be recursive,

 concepts cannot be explicitly specialized,

 concept definitions are limited to a single return statement, and

 the returned expression must be a logical proposition (i.e.,
convertible to bool).

T

1. This error is generated by GCC (compiled from trunk) with an extra
patch (pending review) to improve concept checking diagnostics. The
message has been modified for better presentation. Some type names
have been shortened and the definition of Same is elided (...)

Figure 1

error: cannot call function ‘bool in(const R&, const T&)
[with R = std::vector<std::string>; T = char [6]]’
in(v, "Akron");
^
note: constraints not satisfied
in(R const& range, T const& value)
note: concept ‘Same<char [6], std::string>()’ was not satisfied
note: within the concept template<class T, class U> concept bool Same()
[with T = char [6]; U = std::string]
concept bool Same() { ... }
 ^~~~
note: ‘char [6]’ is not the same as ‘std::string’

Andrew Sutton is an assistant professor at the University of Akron
in Ohio where he teaches and researches programming software,
programming languages, and computer networking. He is also
project editor for the ISO Technical Specification, ‘C++ Extensions
for Concepts’. You can contact Andrew at asutton@uakron.edu.
4 | Overload | February 2016

FEATUREANDREW SUTTON

The language syntactically limits concepts
to simple logical propositions, but this isn’t

quite as restrictive as it sounds
The language syntactically limits concepts to simple logical propositions,
but this isn’t quite as restrictive as it sounds. Those propositions can
evaluate any other constant expression. For example, here is the definition
of the Same concept:

 template<typename T, typename U>
 concept bool Same() {
 return std::is_same<T, U>::value;
 }

This concept expresses the requirement that two types must be the same.
The concept is satisfied whenever std::is_same<T, U>::value is
true. Of course, this concept is so fundamental and obvious that it may
as well be defined by the compiler.

Concepts can also be defined as variable templates. For example, we could
have defined Same like this:

 template<typename T, typename U>
 concept bool Same = std::is_same<T, U>::value;

Variable templates [N3615] were added to C++14 at the 2013 Bristol
meeting, the same meeting at which the ISO Concepts TS was formally
created. A variable template declares a family of variables whose values
depend on template arguments. For example, the value of Same would
depend on the types given for T and U.

Variable concepts are restricted in many of the same ways that function
concepts are restricted:

 concepts must be defined at namespace scope,

 concepts cannot be explicitly or partially specialized, and

 the initializer expression must be a logical proposition.

Defining concepts in this way means that you can leave off the extra
parentheses when using concepts in a requires clause:

 template<Range R, Equality_comparable T>
 requires Same<T, Value_type<R>> // no parens!
 bool in(R const& range, T const& value)

We’ve found that some developers prefer concepts to be declared and
written this way despite the lack of overloading. The Concepts TS supports
variable templates specifically because of this concern. Variable concepts
were added to the TS only after variable templates were added for C++14.
My preference is to define concepts as functions, so I use that style
throughout this and the other articles in the series.

Syntactic requirements
While every type trait is potentially a concept, the most useful concepts
a r e much more t han s i mp le wrappe r s . Th ink abou t
Equality_comparable. It requires its template arguments to be usable
with == and != operators. In C++14, we might express those requirements
using a conjunction of type traits or some other advanced mechanism.
Listing 1 is a trait-based implementation. Here, has_equal and
has_not_equal are type traits that rely on subtle use of language
features to determine the availability of an expression for a type. Their
definitions are not shown here.

This approach is both simple and powerful, yet indirect and totally
inadequate to the task at hand. Using traits to state requirements obfuscates
the intent, making concepts more difficult to read and write. It can also
slow compilations, especially when the use of such constraints is
ubiquitous throughout a library. More recent concept emulation techniques
improve on readability [Niebler13], but we can do better still. The
Concepts TS provides direct language support that makes writing concepts
simpler, faster to compile, and allows the compiler to produce far better
error messages.

To do this, we introduced a new kind of expression: the requires
expression. Here is a complete definition of the Equality_comparable
concept (see Listing 2). The requires keyword can be followed by a
parameter list introducing names to be used to express requirements. Here,
we have declarations of a and b.

The body of a requires expression is a sequence of requirements, each
of which specifies one or more constraints for expressions and types
related to a template argument. We refer to these as a concept’s syntactic
requirements.

In the Equality_comparable concept, both requirements are
compound requirements, meaning they introduce multiple constraints:
The expression enclosed within braces (e.g., a == b) denotes a constraint
for a valid expression. When the concept is checked against a (concrete)
template argument, the constraint is satisfied if the substitution of the
template argument into the expression does not result in an error.

The trailing -> bool denotes an implicit conversion constraint on the
result type of the instantiated expression. That constraint is satisfied only
if the result is implicitly convertible to bool.

The Range concept has more interesting requirements. Let us define it in
stages, starting with a first and naïve version (Listing 3). That is, a Range
must supply a begin() and an end() function, each taking a Range

Listing 1

template<typename T>
concept bool Equality_comparable()
{
 return has_equal<T>::value &&
 has_not_equal<T>::value;
}

Listing 2

template<typename T>
concept bool Equality_comparable() {
 return requires (T a, T b) {
 { a == b } -> bool;
 { a != b } -> bool;
 };
}

February 2016 | Overload | 5

FEATURE ANDREW SUTTON

A concept should include requirements for
only the types and operations needed for its
intended abstraction
argument. That’s correct, but not every begin() and an end() function
will do.

To be a Range, they must return input iterators:

 requires (R range) {
 { begin(range) } -> Input_iterator;
 { end(range) } -> Input_iterator;
 }

Input_iterator in another useful concept. When defining new
concepts, we almost always build on a library of existing ones.
Input_iterator is the representation in code of what is defined in
English text in the ISO C++ standard.

When the type following the -> is a concept name (or placeholder), the
result type is deduced from the required expression. This is called an
argument deduction constraint. If deduction fails, or if the deduced type
does not satisfy the named concept, the constraint is not satisfied.

With this definition of Range, the result types of begin() and end()
are deduced separately, which means that they can differ. This may not be
your intent. As a general rule, if you have several operations that you intend
to be the same type, give it a name:

 requires (R range) {
 typename Iterator_type<R>;
 { begin(range) } -> Iterator_type<R>;
 { end(range) } -> Iterator_type<R>;
 requires Input_iterator<Iterator_type<R>>();
 };

That is, begin() and end() must return the same type (here called
Iterator_type<R>) and that type must be an Input_iterator. This
last requirement is added by the nested requires clause within the body
of the requires expression.

To be useful for our purposes, a Range must also name the type of its
elements, its Value_type. For example, in() requires that the
Value_type of its range is the same type as the type of its value
argument. To complete the Range concept we require that it have a
Value_type in addition to its Iterator_type (see Listing 4).

To ensure consistency, the value type of a range and its iterators must be
the Same. Beyond that, however, there are no other requirements we want
to make of Value_type. Those other requirements are imposed by
algorithms. For example, the in() algorithm requires equality
comparison, whereas std::sort() requires a total order. A concept

should include requirements for only the types and operations needed for
its intended abstraction. Including extra requirements can make a concept
too strict (i.e., not broadly applicable).

When defining requirements for a concept, I introduce type requirements
first, then simple and compound requirements, and nested requirements
last. This is because constraint checking, the substitution of arguments into
constraints to test for satisfaction, follows the short-circuiting logic of the
&& and || operators. This means that failures detected earlier are less
likely to result in unrecoverable instantiation failures later.

Ad hoc requirements
The use of alias templates to refer to associated types greatly reduces the
verbosity of template declarations. Alias templates like Value_type and
Iterator_type refer to facilities that compute associated types based
on pattern matching on the ‘shape’ of the template argument. Listing 5 is
a first naïve attempt to define Value_type.

This seems reasonable at first glance. However, we have not constrained
the primary template of the trait definition, and that can cause problems.
When the compiler selects the primary template for a template argument
that does not have a nested ::value_type, compilation will fail. This
is an unrecoverable error that breaks concept checking.

We want to define the value_type trait so that it is instantiated if and
only if there is a specialization that provides an appropriate type. To do
this, we factor a new constrained specialization out of the primary template
leaving it unconstrained and undefined (see Listing 6). Now, the
value_type is defined only where it is meaningful. The new
specialization is chosen only for classes that have a member called
value_type.

Listing 3

template<typename R>
concept bool Range() {
 return requires (R range) {
 begin(range);
 end(range);
 };
}

Listing 4

template<typename R>
concept bool Range() {
 return requires (R range) {
 typename Value_type<R>; // Must have a
 // value type.
 typename Iterator_type<R>; // Must have an
 // iterator type.
 { begin(range) } -> Iterator_type<R>;
 { end(range) } -> Iterator_type<R>;
 // The iterator type must really be an
 // input iterator.
 requires Input_iterator<Iterator_type<R>>();
 // The value of R is the same as its
 // iterator's value type.
 requires Same<Value_type<R>,
 Value_type<Iterator_type<R>>>().
 };
}

6 | Overload | February 2016

FEATUREANDREW SUTTON

Writing fundamental concepts requires an
understanding of the way the type system

and other language rules interact
To avo id ve rb os i ty , I d id no t d e f ine a new co ncep t l i ke
Has_value_type. Instead, I used a requires expression directly
within the requires clause. Yes, requires requires is syntactically
correct – it is not a typo. The first requires introduces the requires
clause, the second starts the requires expression.

This syntax for ad hoc constraints is not optimized (i.e., gross) on purpose.
Providing a more elegant syntax for these kinds of constraints might
encourage programmers to think about generic code in terms of small
syntactic fragments (although these are sometimes helpful when laying the
foundations of higher level abstractions). In general, useful concepts have
obvious and meaningful names.

Writing fundamental concepts requires an understanding of the way the
type system and other language rules interact. For example, we cannot
constrain the primary template directly because constraints are checked

after name lookup. Every lookup for T* would fail because pointers do not
have nested members. Libraries of concepts saves us from having to
consider such subtleties all the time.

When the type trait is instantiated during concept checking, the compiler
considers each partial specialization, if none match (e.g., int is neither
an array, nor does it have nested type names), then the compiler selects the
primary template, which happens to be undefined. The result is a
substitution failure that gets ‘trapped’ by the requires expression that
causes the instantiation, and this causes enclosing concept to be
unsatisfied.

In other words, value_type is a recipe for writing SFINAE-friendly type
traits using concepts. The definition of the Iterator_type and its
underlying trait have similar definitions.

Mixed-type requirements
Listing 7 is our working definition for the in() algorithm. As declared,
the value type of R must be the same as T, which would make the following
program ill-formed.

 std::vector<std::string> cities { ... };
 assert(in(cities, "Akron"));

A string literal does not have the same type as std::string, so the
constraints are not satisfied. That’s not good enough. The std::string
class provides a number of overloads to make it work seamlessly with C-
strings, and we should be able to use those in our generic algorithms. How
can we change the algorithm to support these kinds of mixed-type
operations?

We could redefine the algorithm so that value was a Value_type<R>.
However, this would always require a conversion at the call site, which
would almost certainly be a pessimization (converting a C-string to a
std::string may require an allocation).

We could drop the Same requirement. But then the interface would not
express how the elements in range are related to value, and we want
our constraints to fully express the syntax used within the definition.

Our best choice is to change the Same requirement to something more
permissive: a concept that supports equality comparisons between values
of different types. Rather creating a concept with a different, name we can
extend Equality_comparable by adding a new definition that takes
t w o a rg um e n t s i n s t e a d o f o ne . T ha t i s , w e ov e r l o a d t he

Listing 5

template<typename T> struct value_type;

template<typename T>
using Value_type = typename value_type<T>::type;

// The value_type of a class is a member type.
template<typename T>
struct value_type {
 using type = typename T::value_type;
};

// The value_type of a pointer is the type of
// element pointed to.
template<typename T>
struct value_type<T*> {
 using type = T;
};

// The value_type of an array is its element type.
template<typename T, int N>
struct value_type<T[N]> {
 using type = T;
};

Listing 6

template<typename T>
struct value_type;

// The value_type of a class is a member type.
template<typename T>
 requires requires { typename T::value_type; }
struct iterator_type<T> {
 using type = typename T::value_type;
};

Listing 7

template<Range R, Equality_comparable T>
 requires Same<T, Value_type<R>>()
bool in(R const& range, T const& value) {
 for (Equality_comparable const& x : range) {
 if (x == value)
 return true;
 }
 return false;
}

February 2016 | Overload | 7

FEATURE ANDREW SUTTON

The ability to extend a concept to support mixed-type
requirements is an essential tool for making
algorithms more broadly applicable
Equality_comparable() function. That concept must express
requirements for all the ways in which we can compare values of different
types for equality (see Listing 8).

This concept requires the symmetric comparison of values of type T and U.

We can now use the mixed-type Equality_comparable concept to
weaken the constraints on the in().

 template<Range R, Equality_comparable T>
 requires Equality_comparable<T, Value_type<R>>()
 bool in(R const& range, T const& value);

These constraints fully specify the syntax used within the implementation,
the program compiles as expected, and it does not introduce any additional
runtime overhead. This is a better declaration of in(); it’s also the version
we used in the first article. The ability to extend a concept to support
mixed-type requirements is an essential tool for making algorithms more
broadly applicable, without extra notational or runtime overheads. The
Palo Alto report, for example, uses this technique for total ordered types,
all binary relations, and all binary operations.

These extended definitions are not available for variable concepts because
the capability is based on function overloading. This is not a limitation
imposed by concepts; you simply cannot overload variables in C++.

Semantic requirements
The syntactic requirements of a concept only tells us what expressions and
associated types can be used with a template argument (or template
arguments). In general, we would very much like to know what those
expressions and types actually mean. Just as importantly, it would be
helpful for the compiler and other tools to be able to reason about the
meaning of such expressions in order to support optimization and
verification. Unfortunately, the Concepts TS does not provide direct
language support for writing semantic requirements. Instead, we must rely
on conventional forms of documentation to specify the semantics of
operations operations.

C++0x concepts supported a feature called ‘axioms’, but it was added late
in the development of C++11 [N2887], and their utility had not been fully
explored by the time concepts were removed. Axioms were also major
feature of the Palo Alto report [N3351]. However, as the proposal for
Concepts Lite evolved, the Concepts Study Group (SG8) decided to leave
axioms out pending further exploration. There is ongoing research related

to compile-time checking of semantic requirements [DosReis09], so we
hope to see axioms in the future.

Conclusions
Concepts are fundamental building blocks for our thinking and for our
code; they provide the foundation upon which we design and implement
software. The Concepts TS provides direct language support for the
specification of concepts and their syntactic requirements. However, we
must not forget or downplay the importance of the semantic aspects of
concepts. A concept without semantics is merely a snippet of code.

In the next article, I will discuss systems of concepts, and how overloading
and specialization based on constraints can be used to select optimal
algorithms at compile time.

Acknowledgements
The design of the features in the Concepts TS was the result of
collaboration with Bjarne Stroustrup and Gabriel Dos Reis. That material
is based upon work supported by the National Science Foundation under
Grant No. ACI-1148461. Bjarne Stroustrup also provided valuable
feedback on drafts of this paper.

The WG21 Core Working group spent many, many hours over several
meetings and teleconferences reviewing the Concepts TS design and
wording. This work would not have been possible without their patience
and attention to detail. Many people have submitted pull requests to the
TS or emailed me separately to describe issues or suggest solutions. I am
grateful for their contributions.

I would also like to acknowledge all of the early adopters of the GCC
concepts implementation. Their feedback (often in the form of bug reports)
has been invaluable.

References
[DosReis09] Dos Reis, G. ‘A System for Axiomatic Programming’

Lecture Notes in Compute Science. Vol. 7362. 2012. pp 295-309.

[N2887] Dos Reis, G., Stroustrup. B., Merideth, A. ‘Axioms: Semantics
Aspects of C++ Concepts’ ISO/IEC WG21 N2887, Jun 2009.

[N3351] Stroustrup, B., Sutton, A. (eds). ‘A Concept Design for the STL’
ISO/IEC WG21 N3351, Feb 2012.

[N3615] Dos Reis, G.. ‘Constexpr Variable Templates’ ISO/IEC WG21
N3615, Mar 2013.

[N4549] Sutton, A. (ed). ISO/IEC Technical Specification 19217.
‘Programming Languages – C++ Extensions for Concepts’,
Aug 2015.

[N4560] Niebler, Eric, Carter, C. Working Draft, ‘C++ Extensions for
Concepts’, ISO/IEC WG21 N450. Nov 2015. pp. 213.

[Niebler13] Niebler, E. ‘Concept Checking in C++11’ 23 Nov 2013. Web.

[Sutton15] Sutton, A. ‘Introducing Concepts’ ACCU Overload. Vol 129.
Oct 2015. pp. 4–8.

Listing 8

template<typename T, typename U>
concept bool Equality_comparable() {
 return requires(T t, U u) {
 { t == u } -> bool;
 { u == t } -> bool;
 { t != u } -> bool;
 { u != t } -> bool;
 };
}

8 | Overload | February 2016

FEATURESERGEY IGNATCHENKO
On Zero-Side-Effect Interactive
Programming, Actors, and FSMs
Functional programming is alien to many
programmers. Sergey Ignatchenko considers
parallels between actors and finite state machines.
Greetings Earthlings! We come in peace. Take me to your leader...
~ Aliens

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have
prevented an exact translation. In addition, the translator and Overload
expressly disclaim all responsibility from any action or inaction resulting
from reading this article.

NB: Please don’t expect to find any Big Computer Science Truths within
this article; all the things mentioned here are either well-known or should
be well-known to computer science people. It is the question ‘how to make
functional programming more usable in industry’ which this article is
about. Also note that I’m coming from the imperative programming side,
so don’t hit me too hard if I use terminology which is unusual in functional
programming circles.

unctional programming introduces quite a few interesting concepts
(personally, I am a big fan of pure functions). However, whether we
like it or not, functional programming languages (especially ‘pure’

ones such as Haskell) are very much out of mainstream use, at least within
that part of the industry which deals with interactive programming (more
on interactive programming below).

This utter lack of popularity outside of computational programming is a
trivial observation, hardly worth any further discussion, except for the
question “WHY are functional programming languages not popular?” Of
course, any explanation which says that there is something wrong with a
language inevitably invites brutal lashing by its hardcore zealots (who will
say that the problem is not with the language, and that it has all the
necessary features,1 it is just idiots like me who don’t understand the
beauty of it all). On the other hand, to start improving things one needs to
realize what the problems are, so I will take the risk of being pounded in
the name of the ‘greater good’ (the one of pure functions getting into
industry programming).

On computational programming and interactive
programming’
IMHO, one of the big reasons behind the lack of popularity of functional
languages is that for functional programming,2 there is a significant
difference between two well-known entities, which I will call
computational programming and interactive programming.

Computational programming
Let’s define computational programming as the process of traditional
calculations, with lots of input data coming in, and some results coming

out. For computational programming, the result is completely defined by
inputs (with inputs not allowed to change while we’re computing), and all
we need is to calculate an arbitrarily complex function

 F(INPUTS[])

where F is our function, and INPUTS[] is a vector of inputs.

This is the area where functional programming really shines. All the
functions can be made ‘pure functions’ in a very natural manner (‘natural
manner’ being a synonym for ‘a manner easily understandable by subject
matter experts’), with no real need to assign variables, and all the other
resulting goodies. This is to be expected, as it is also very natural for
academics (who’re traditionally positively in love with formulas), so no
wonder that they’ve designed something optimized for their own needs.
BTW, I don’t mean that such an optimization is a bad thing per se.
However, when we’re using something optimized for one field, using it in
another field requires us to conduct applicability analysis.

From practical perspective, computational programming applies to such
fields as HPC.

Interactive programming
Most of out-of-academia (and out-of-HPC) programming cannot easily be
described by merely taking pre-defined inputs and producing outputs.
Let’s take a very simple (but immensely practical) example. Let’s consider
a system which has two users, and needs to give something (let’s say, a
cookie) to the user who comes first. This task, while being extremely
simple, illustrates the huge difference between computational
programming and interactive programming. In particular, we cannot
possibly decide which of the users will get the cookie until after we’ve
launched our program.

Describing this kind of logic in terms of imperative programming is trivial,
while describing it in terms of functional programming is much less
obvious. Strictly speaking, to solve an interactive problem such as above
via functions, we’d need to write a function

 F'(INPUTSINTIME[][])

with vector INPUTSINTIME of inputs being two-dimensional, with the
first dimension being the same as that for INPUTS[], and the second

1. Of course, they are. All Turing-complete programming languages do
have all the necessary features, and this includes the Brainfuck
programming language. The only difference between the languages is
how convenient is it to use the language.

2. Actually, the difference stands for any kind of programming paradigm,
but imperative languages tend to hide the differences with more skill
than functional ones.

F

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko using
the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com

High Performance Computing (HPC) most generally refers to the practice
of aggregating computing power in a way that delivers much higher
performance than one could get out of a typical desktop computer or
workstation in order to solve large problems in science, engineering, or
business. [HPC]

HPC
February 2016 | Overload | 9

FEATURE SERGEY IGNATCHENKO
dimension being time (thank
goodness, time can be seen as
discrete for our purposes).

Now, let’s observe that while the
F'() representation is technically
correct, dealing with it in practice is
really awkward. Not only does the
logic itself have nothing to do
with the terms in which the
task is defined, but we’re
also required to keep all the
history of all the INPUTSINTIME vector to run our program, real ouch!

One common solution to deal with this problem practically is to introduce
(in addition to pure functions) some ‘actions’. However, I don’t want to
accept ‘actions’ as a viable solution for the business-logic parts of the code,
as they re-introduce side effects, defeat all the purity-related goodies, and
essentially bring us back to the side-effect-ridden world :-(.

Alternatively, for the vast majority of cases (if not for all cases) we can
rewrite our function F'() into a much easier to deal with form, by defining
a finite state machine (more precisely – an ad hoc finite state machine, as
defined in [Calderone13] and [NoBugs15a]) with a transition function
T(S,INPUTS[]) (with T() taking current state S and current INPUTS[]
and r e tu rn in g new s t a t e S' back) . Then , we can r ewr i t e
F'(INPUTSINTIME[][]) as follows:

 F'(INPUTSINTIME[][]) =
 T(...T(T(S0,INPUTSINTIME[][0]),
 INPUTSINTIME[][1])...)

where S0 is an initial state of our state machine.

It means that to design an interactive program in a really pure function
s t y l e , we don ’ t need t o de f ine t he r ea l l y awkward
F'(INPUTSINTIME[][]),3 but can define the easily understandable
transition function T(S,INPUTS[]) (which can and should be a ‘pure
function’). Now, compared to our F'() function, we have come much
closer to having a ‘natural’ representation of our interactive program.4 In
fact, function T() is very similar to the way interactive (and especially
distributed) programs are usually written in a imperative programming
language: as an event-driven program (which is equivalent to an ad hoc
state machine).

BTW, implementation-wise, when a programming language knows that
our function T is going to be used as a part of state machine, it can easily
discard all the states except for current one from the cache, as well as
discard all the previous values of INPUTSINTIME[][] provided that it
always carries the last state. On the other hand, technically, it is no more
than optimization compared to our purely functional completely side-
effect-free function F'(), albeit a very important one (as storing all the

INPUTSINTIME[][]
vector forever can be

way too much for
lots of practical
uses).

On the other hand, let’s mention that while it is technically possible to
describe our interactive system in terms of pure functions (see F'()
above), it is strictly necessary to store some kind of historical state for our
system; it may take the form of storing prior inputs (INPUTSINTIME[]),
or may take the form of storing S, but for any interactive system we cannot
possibly live without some kind of state which changes over time. And
given the choice between storing INPUTSINTIME[] and storing S, I
certainly prefer storing S.

FSM-based actors: a very practical observation
In practice, even before I learned about functional programming, I found
myself using (and forcing my teams to use as part of system-wide
architecture) ‘actors’ based on ad hoc finite state machines for large-scale
distributed systems; here I mean ‘actor’ as a thread, a queue, and a
deterministic Finite State Machine (FSM, a.k.a. finite-state automaton).5

I’ve found that this Actor/FSM approach has lots (and I mean LOTS) of
very practical benefits (described, in particular, in [NoBugs15a]). Just to
give one extremely practical example described in [NoBugs15a], such
deterministic FSMs allow the holy grail of production post-mortem to be
achieved(!).

The programming style of these ad hoc finite state machines, while
imperative, has almost universally used the pattern in Listing 1.

Moreover, I’ve found myself arguing to make the process_event()
function entirely deterministic (by moving all the time-related and other
system-related stuff out of the function, see [NoBugs15a] for further
discussion), which brings the process_event() very close to being a
‘pure’ function (in a sense that it doesn’t have side effects, with side effects
defined quite loosely but still guaranteeing 100% determinism).

Now, if we take a closer look at this pattern, we’ll see that it can be
converted into a functional-style function T() in a trivial manner, simply
by making a transition function T out of the CHECK INPUTS and
CALCULATE CHANGES parts of process_event() (and the APPLY
CHANGES part will stay outside our function T() and will be made by the
compiler or something).

3. Nor to define ‘actions’ with side effects.
4. When compared to ‘actions’, we are still completely within the ‘pure

function’ world(!)

5. I don’t want (nor I am really qualified) to go into discussions whether this
interpretation of Actors is a strict Actor concurrency model as defined
by Hewitt [Hewitt73]; it does, however, correspond to ‘actors’ as
implemented by Erlang and Akka, which I think is more important for
our purposes.
10 | Overload | February 2016

FEATURESERGEY IGNATCHENKO
Let’s take our very simple example of a stateful program, which needs to
give a cookie on a first-come first-served basis.

Then, in usual C++ code, this might look like Listing 2.

The separation between different parts of the process_event() is not
100% clear, but this can be easily rewritten into Listing 3.

Note that here all substantial logic resides within the side-effect-free
function T() (which is actually nothing but a classic FSM transition
function), and that process_event() can actually be written in a very
generic manner. More importantly, this second C++ form is very close to
pure functional programming. In fact, in Haskell, the very same transition
function T() can be defined along the lines shown in Listing 4, which is
probably not the best Haskell but is hopefully sufficient to tell the story.

While syntactically Haskell’s t() looks quite different from C++::T(),
semantically they’re strictly equivalent. For example, for the C++::T()
give_cookie variable, the Haskell version has an equivalent function

give_cookie (which, when called, will return exactly the same value
which C++::give_cookie variable will have when the C++ code is
executed). The same stands for each and every variable from C++::T(),
all the way to the returned C++ pair<> (and the Haskell tuple).

And note that the Haskell version is functional in its purest form – as there
is no I/O, there is no need for actions, no sequencing, no monads, etc.

This similarity in semantics between imperative event-driven
programming and functional programming (I hope) means that in fact,
industry developers (especially those who need to deal with distributed
systems) are already more or less prepared to write state machines in a style
that is very close to functional (a ‘pure function’ style), the only remaining
(though admittedly large) challenge being how to wrap this style into more
familiar syntax.

Another way to put this observation (which is the key point I want to make
in this article) is the following.

Listing 1

class FSM {
 State s;
 void process_event(Event& event) {
 // CHECK INPUTS
 // check validity of event,
 // taking into account s
 // DO NOT modify s
 // may throw an exception
 // semantics of thrown exception is obvious
 // as s is not modified
 ...

 // CALCULATE CHANGES
 // calculate changes which are to be made
 // DO NOT modify s (yet)
 // may throw an exception
 // semantics of thrown exception is still
 // obvious
 ...

 // APPLY CHANGES AND SEND OUTGOING EVENTS
 // modify s
 // no exceptions thrown, as semantics can
 // become difficult to manage
 }
};

Listing 2

class FSM {
 bool still_have_cookie;
 FSM() {
 still_have_cookie = true;
 }

 void process_event(const Event& ev) {
 // we assume that the only event which can come,
 // is request for a cookie
 // CALCULATE CHANGES
 bool give_cookie = still_have_cookie;

 // APPLY CHANGES
 if(give_cookie) {
 post_event(GIVE_COOKIE_ID);
 still_have_cookie = false;
 }
 else {
 post_event(NO_COOKIE_ID);
 }
 }
};

Listing 3

void process_event(const Event& ev) {
 pair<int,bool> event_and_new_state = T(ev);
 //APPLY CHANGES
 still_have_cookie = event_and_new_state.second;
 post_event(event_and_new_state.first);
}

pair<int,bool> T(const Event& ev) const {
 //we still assume that the only event which
 //can come, is request for a cookie
 //CALCULATE CHANGES
 bool give_cookie = still_have_cookie;

 //STILL CALCULATE CHANGES
 int event_to_be_posted;
 new_still_have_cookie = still_have_cookie;
 if(give_cookie) {
 event_to_be_posted = GIVE_COOKIE_ID;
 new_still_have_cookie = false;
 }
 else {
 event_to_be_posted = NO_COOKIE_ID;
 }
 return pair<int,bool>(event_to_be_posted,
 new_still_have_cookie);
}

Listing 4

t :: State -> Event -> ([Event],State)

give_cookie :: State -> Bool
give_cookie st = still_have_cookie st
event_to_be_posted st ev
 = if give_cookie st then [Event(give_cookie_id)]
else [Event(no_cookie_id)]
new_still_have_cookie st ev
 = if give_cookie st then State(False) else st

t st ev = (event_to_be_posted st ev,
 new_still_have_cookie st ev)

-- t() just calculates and returns (new_state,
-- list_of_events_to_be_posted)
-- process_event() (not shown) will need to have
-- side effects, but can be written in a
-- completely generic manner and kept completely
-- out of sight so our FSM code is completely
-- side-effect free
February 2016 | Overload | 11

FEATURE SERGEY IGNATCHENKO
Ad hoc deterministic Finite State Machines is an interactive programming
style, which can be understood (and reasonably expressed) by both
industry-oriented imperative programmers, and functional programmers.

On Actors, concurrency, and interactive programming
Usually, Actors are considered as merely a way to achieve concurrency. I
am arguing that they have a much more important role than just doing that:
I see Actors (based on deterministic FSMs) as the way to implement
interactive programs as defined above. And as interactive programming
is what the vast majority of the industry developers are doing out there,
making writing such Actors convenient is important for the industry to start
benefiting from some of functional programming concepts (specifically –
from ‘pure functions’ and determinism).

On Actors and composability
In [Chiusano10], it is argued that actors are not ‘composable’,6 which
impedes their use for concurrency purposes. If this is the case, it would
mean that indeed actors are not so good for practical use. Let’s take a closer
look at this problem.

Actually, the author admits that actors can be made composable, but he
argues that in this case they will be just an inferior form of pure functions.
While this observation does stand for computational programming as
described above (and where all the examples provided by the author
belong), it doesn’t stand for interactive programming. With interactive
programming, even if we have our Actor as completely deterministic, it
still inherently has some kind of state (see above), so it won’t degenerate
into a mere ‘pure function’.

In other words, I tend to agree with [Chiusano10] that using Actors to
describe concurrency for computational programming might be not that
good an idea and that pure functions describe what we need for
concurrency better (in theory, that is, while we can leave practical
considerations such as compilers able to compile these things properly to
others).

However, using Actors for interactive programming is a very different
story, and that’s where (stateful!) Actors really shine. It is confirmed by
real-world experiences, starting from the practical use of Erlang for
building large systems (with billions of transactions per day), continuing
with my own experience with C++ FSMs for a highly interactive system
(processing around a billion messages per day), and the recent wave of
popularity for Akka Actors. IMNSHO, deterministic Actors are the very
best thing in existence for interactive programming, with lots of very
practical benefits (from replay-based regression testing and production
post-mortem described in [NoBugs15a], to protection of in-memory state
against server faults as described in [NoBugs15b], with no need to deal
with thread sync and business logic at the same time, in between).

Bottom line
With this article, I actually want to emphasize two points. The first
one is more of theoretical nature (and it is known but not often
articulated). It is that deterministic FSMs (or ‘actors’ with the event
processing function being ‘pure’) can be seen as a flavour of
functional programming with a quite specific caching.

The second point is of more practical nature. There are certainly
some very useful things which are already carried from functional
programming into industry; in particular, its pure functions and
determinism. However, to simplify adoption of functional languages
for interactive programming which forms a huuuge part of the industry,
I (as a guy coming from industry), would like to see the following:

 explicit and extensive discussion about the differences between
computational programming and interactive programming. These
two are very different beasts, and mixing them together causes lots

of confusion. While the difference can be found in literature, it is by
far not as prominent as it should be

 support for ad hoc FSMs (a.k.a. event-driven programs) as ‘first-
class citizens’ (of course, with transition function being ‘pure’).
While it is possible to program a finite-state automaton in most (all?)
functional programming languages, the syntax is usually ugly and
confusing (for example, creating a new instance of FSM on each
iteration certainly doesn’t look ‘natural’ enough for subject matter
experts; and ‘actions’ seem to go against the very nature of
functional programming; an explicit ‘transition function’ will do
much better in this regard). Event-driven programs are very
common for interactive stuff in the industry, and can be explained
very easily to the guys coming from there. On the other hand, given
that interactive programming covers the vast majority of industry
programs, explicitly supporting it (and spending time on making it
very easy to use) makes perfect sense (of course, this only makes
sense if there is a desire to proliferate functional programming
beyond academia and HPC).

References
[Calderone13] Jean-Paul Calderone, ‘What is a State Machine?’

[Chiusano10] Paul Chiusano, ‘Actors are not a good concurrency model’,
http://pchiusano.blogspot.com/2010/01/actors-are-not-good-
concurrency-model.html

[Hewitt73] Carl Hewitt; Peter Bishop; Richard Steiger (1973). ‘A
Universal Modular Actor Formalism for Artificial Intelligence’.
IJCAI.

[HPC] http://insidehpc.com/hpc-basic-training/what-is-hpc/

[Loganberry04] David ‘Loganberry’ Buttery, ‘Frithaes! – an Introduction
to Colloquial Lapine’, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[NoBugs15a] ‘No Bugs’ Hare, ‘MMO Modular Architecture: Client-
Side. On Debugging Distributed Systems, Deterministic Logic, and
Finite State Machines’. http://ithare.com/chapter-vc-modular-
architecture-client-side-on-debugging-distributed-systems-
deterministic-logic-and-finite-state-machines

[NoBugs15b] ‘No Bugs’ Hare, ‘Server-Side MMO Architecture. Naïve,
Web-Based, and Classical Deployment Architectures’,
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-
and-classical-deployment-architectures/

Acknowledgement
Cartoons by Sergey Gordeev

from Gordeev Animation
Graphics, Prague.

6. Entities are composable if we can easily and generally combine their
behaviours in some way without having to modify the entities being
combined.
12 | Overload | February 2016

http://pchiusano.blogspot.com/2010/01/actors-are-not-good-concurrency-model.html
http://insidehpc.com/hpc-basic-training/what-is-hpc/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-and-classical-deployment-architectures/

FEATURENICK WEATHERHEAD
Template Programming Compile
Time Combinations & Sieves
Functional style frequently uses sequences. Nick Weatherhead
applies these ideas to combinations in C++.
reviously [Weatherhead15], I discussed the use of C++ templates to
compile time program some well-known string katas. Template
metaprogramming in this way imposes a functional style with the

immutability of variables a key consideration. In this article I’m applying
the same treatment to combinations of k elements and a variation on
Eratosthenes sieve. The foundations for each are built as we go along
including holding data within lists, adding and removing items from them,
implementing queues, defining sequences and operating on them with sets.
There is a bit to it so you may wish to skip ahead to a solution and come
back to the detail. Either is fine but you’ll probably want to keep Listing 1
to hand for reference.

Lists
Without arrays and mutability at our disposal, a structure is required that
can represent a list and after each operation produces a new variant. It’s
common for functional languages to have an operation which adds an
element to the beginning of a list and is typically known as cons (short for
construct). This functional list differs from the imperative viewpoint of
linearly linking elements with a head at one end, a body and a tail at the
other. Instead it is woven from a compound pair of pairs. Each pair
comprises a head plus tail that splits until a null tail terminates a given path.
It’s good to have an appreciation of its recursive nature and the other
features it affords see [SICP96]. However, for the most part, this article
will attempt to adhere to the metaphor for a single chain.

In Listing 1, list_ (42–179) takes a HEAD element and TAIL elements;
an additional parameter DELIM defines the separator used between
elements when printing. Appending an underscore to a class’s name is the
convention used here to indicate internal usage, hence, list (181–183)
exposes list_. No-operation nop (5–11) simply places a null marker into
the output as a guard element. A specialisation of list_ (185–191) which
has nop as its head element is used to indicate that it’s a list of lists and
when printed each list can be delimited by another character. Another
list (193–207) is provided for elements at the end of a list i.e. that’s TAIL
is nil (13–40) where some functions are overridden whilst nil
implements functions that operate on an empty list. When performing
operations between elements it is convenient to think in terms of what
appears on the right and left hand sides, so list_ provides some internal
functions that take RHS and LHS respectively. A value of type v (209–212)
is itself a list_ with its HEAD being a single value element of the same
type. Thus each element can be operated on in the same way.

Queues
Imperative lists and vectors describe consecutive elements, as does the
functional list, and all can be used as the underlying structure of a queue.
Removing the HEAD of a list_ requires a simple reference to the TAIL
elements. To prepend (28–29, 61–62, 205–206) elements another list_
is created with the new content in the HEAD and the existing content in the
TAIL; append (28–29, 59–60, 203–204) just reverses the concatenation
of the HEAD and TAIL. There are also implementations of these that take

P

Listing 1

 1 #include <iostream>
 2
 3 using namespace std;
 4
 5 struct nop {
 6
 7 static const char delim = '\0';
 8
 9 friend ostream& operator<<(ostream& os
 10 , const nop&) { return os; }
 11 };
 12
 13 struct nil : nop {
 14
 15 typedef nil type;
 16
 17 template< size_t SIZE = 0 > struct size {
 18
 19 static const size_t value = SIZE;
 20
 21 friend ostream& operator<<(ostream& os
 22 , const size&) { return os << SIZE; }
 23 };
 24
 25 template< class RHS >
 26 struct append : RHS { typedef RHS type; };
 27 template< class RHS >
 28 struct prepend : append< RHS > { };
 29 template< class RHS >
 30 struct uunion : append< RHS > { };
 31 template< class RHS >
 32 struct except : nop { typedef nil type; };
 33 template< class RHS >
 34 struct intrsct : except< RHS > { };
 35
 36 template< size_t N, size_t I_SIZE, class O
 37 , size_t O_SIZE = 0 > struct kombine_
 38 : conditional< O_SIZE == N, O, nop >::type
 39 { };
 40 };
 41

Nick Weatherhead Nick's first encounter with programming was
copying lines of code from magazines into the now venerable
family BBC B. His teacher persuaded him to take computer science
during his first term of A-Levels. This led to many hours of puzzle
solving and programming, a relevant degree and finally gainful
employment within London's financial sector. You can contact Nick
at weatherhead.nick@gmail.com
February 2016 | Overload | 13

14 | Overload | February 2016

FEATURE NICK WEATHERHEAD

Listing 1 (cont’d)

 42 template< class HEAD, class TAIL
 43 , char DELIM = ',' > struct list_ {
 44
 45 #define t typename
 46
 47 typedef list_ type; typedef list_ LHS;
 48 typedef HEAD head; typedef TAIL tail;
 49
 50 static const char delim = DELIM;
 51
 52 friend ostream& operator<<(ostream& os
 53 , const list_&) { return os
 54 << HEAD() << tail::delim << TAIL(); }
 55
 56 template< size_t SIZE = 0 > struct size
 57 : tail::template size< SIZE + 1 > { };
 58
 59 template< class RHS > struct append
 60 : list_< LHS, RHS, DELIM > { };
 61 template< class RHS > struct prepend
 62 : list_< RHS, LHS, DELIM > { };
 63
 64 template< class LHS, class RHS >
 65 struct append_
 66 : LHS::type::template append< RHS > { };
 67 template< class LHS, class RHS >
 68 struct prepend_
 69 : LHS::type::template prepend< RHS > { };
 70 template< class LHS, class RHS >
 71 struct except_
 72 : LHS::type::template except< RHS > { };
 73 template< class LHS, class RHS >
 74 struct uunion_
 75 : LHS::type::template uunion< RHS > { };
 76 template< class LHS, class RHS >
 77 struct intrsct_
 78 : LHS::type::template intrsct< RHS > { };
 79
 80 template< class RHS, bool = true >
 81 struct uunion
 82 : conditional< (LHS::head::value <
 83 RHS::head::value)
 84 , append_< LHS::head
 85 , uunion_< LHS::tail, RHS > >
 86 , append_< t RHS::head
 87 , uunion_< LHS , t RHS::tail > >
 88 >::type {
 89 typedef HEAD head; typedef TAIL tail; };
 90
 91 template< bool NA > struct uunion< nil, NA >
 92 : append_< head, tail > { };

Listing 1 (cont’d)

 93
 94 template< class RHS, bool = true >
 95 struct intrsct
 96 : conditional< is_same< LHS, RHS >::value
 97 , LHS
 98 , t conditional< (LHS::head::value ==
 99 RHS::head::value)
100 , append_< LHS::head
101 , intrsct_< LHS::tail, t RHS::tail > >
102 , t conditional< (LHS::head::value <
103 RHS::head::value)
104 , intrsct_< LHS::tail, RHS >
105 , intrsct_< LHS , t RHS::tail >
106 >::type
107 >::type
108 >::type {
109 typedef HEAD head; typedef TAIL tail; };
110
111 template< bool NA >
112 struct intrsct< nil, NA > : nil { };
113
114 template< class RHS, bool = true >
115 struct except
116 : conditional< is_same< LHS, RHS >::value
117 , nil
118 ,t conditional< (LHS::head::value <
119 RHS::head::value)
120 , append_< t LHS::head
121 , except_< LHS::tail, RHS > >
122 , t conditional< (LHS::head::value >
123 RHS::head::value)
124 , except_< LHS , t RHS::tail >
125 , except_< LHS::tail, t RHS::tail >
126 >::type
127 >::type
128 >::type {
129 typedef HEAD head; typedef TAIL tail; };
130
131 template< bool NA > struct except< nil, NA >
132 : append_< head, tail > { };
133
134 template< size_t N, size_t I_SIZE
135 , class O, size_t O_SIZE > class kkombine_ {
136
137 friend ostream& operator<<(ostream& os
138 , const kkombine_& that) {
139
140 static const int i_size = I_SIZE - 1;
141
142 return os
143 << t TAIL::template kombine_< N, i_size

When performing operations between
elements it is convenient to think in terms of
what appears on the right and left hand sides

FEATURENICK WEATHERHEAD
explicit left and right hand side arguments – see append_ (65–66) and
prepend_ (67–78).

Size
Functional programs don’t have loop constructs so rely on recursion to
perform inductive operations. Templates don’t optimise tail recursive calls
so each grows the stack, hence compilers place a limit on its depth (note
that despite this if an expression is sufficiently long it’s still feasible to
exhaust the memory). A classic way to observe this is to use a size function
size< > (17–23, 56–57) that iterates over a list to obtain a count. What’s
not always clear is that functors used as default template parameter
arguments can be evaluated independently of the template to which they’re
applied. Take list_<HEAD, TAIL>::kombine_<N, I_SIZE, O =
nop, O_SIZE = 0> (149–158), if the input size I_SIZE is defaulted
to size<> one might expect it to be calculated, as per a regular function,
on invocation. However, as size<>’s template parameters are not
dependent on kombine_’s the compiler instantiates it whenever list_
is called. This is okay for k-combinations but would unintentionally
execute for primes too. To prevent this the default is wrapped by
kombine<N> (160–161). Alternatively how about having a size attribute
i.e. size = 1 for single elements and size = HEAD::size +
TAIL::size as they are combined? This is fine when the HEAD and TAIL
are lists. However, they are also used for list expressions; size isn’t intrinsic
to these and their resultant type is unknown until fully evaluated.

Combinations
The brief is to find all the unique combinations of k elements from a set
of distinct values. For the purpose of this discussion each element has its
own letter and the input set is in alphabetical order.

In Figure 1 (k-combinations) the input elements are treated as a queue; at
each step the last item is removed from the top of the queue and either
placed at the bottom of the output queue when branching right or dropped
when going left. If the output reaches the desired length before the input
queue is exhausted then it forms a terminal node and branching ceases.
Further, if the input is of the required length and the output queue is empty
then the input can be directly substituted for the output without further
branching.

Here k-combinations (Listing 2) are represented with consecutive
characters, specified by c and cs . As previously mentioned
list_<HEAD, TAIL>::kombine<N> (160–161) wraps the initial call
list_<HEAD, TAIL>::kombine_<N, size< >, nop, 0>. This
takes parameters for the desired combination length, the size of the input
list which when first called is the size of the initial list, the output list and
its size which are initially empty. The underlying definition

144 , prepend_< HEAD, O >, O_SIZE + 1 >()
145 << t TAIL::template kombine_< N, i_size
146 , O , O_SIZE >();
147 } };
148
149 template< size_t N, size_t I_SIZE, class O
150 = nop, size_t O_SIZE = 0 > struct kombine_
151 : conditional< !O_SIZE && I_SIZE == N
152 , prepend_< type, nop >
153 , t conditional< O_SIZE == N, O
154 , t conditional< !I_SIZE, nil
155 , kkombine_< N, I_SIZE, O, O_SIZE >
156 >::type
157 >::type
158 >::type { };
159
160 template< size_t N > struct kombine
161 : kombine_< N, size< >::value > { };
162
163 template< size_t N, bool NA = true >
164 struct powerset_ {
165
166 friend ostream& operator<<(ostream& os
167 , const powerset_& that) { return os
168 << powerset_< N - 1 >()
169 << kombine< N >(); }
170 };
171
172 template< bool NA >
173 struct powerset_< 0, NA > : nop { };
174
175 struct powerset
176 : powerset_< size< >::value > { };
177
178 #undef t
179 };
180
181 template< class HEAD, class TAIL
182 , char DELIM = ',' > struct list
183 : list_< HEAD, TAIL, DELIM > { };
184
185 template< class TAIL, char DELIM >
186 struct list_< nop, TAIL, DELIM > : TAIL {
187
188 friend ostream& operator<<(
189 ostream& os, const list_&) {
190 return os << ' ' << TAIL(); }
191 };
192
193 template< class HEAD, char DELIM >
194 struct list< HEAD, nil, DELIM >
195 : list_< HEAD, nil, DELIM > {
196
197 typedef HEAD type;
198
199 friend ostream& operator<<(
200 ostream& os, const list&) {
201 return os << HEAD::value; }
202
203 template< class RHS > struct append
204 : list< HEAD, RHS, DELIM > { };
205 template< class RHS > struct prepend
206 : list< RHS, HEAD, DELIM > { };
207 };
208
209 template< class T, T V, class VS, char DELIM >
210 struct v
211 : list< v< T, V, nil, DELIM >, VS, DELIM > {
212 static const T value = V; };

Listing 1 (cont’d) Listing 2

…
template< char C, class CS = nil
, char DELIM = '\0' > struct c
: v< char, C, CS, DELIM > { };
template< char C, char... CS >
struct cs : c< C, cs< CS... > > { };
template< char C >
struct cs< C > : c< C > { };

int main() {

 /* kombine('abcd', 2)=' ab ac ad bc bd cd' *
 * powerset('abcd')=' a b c d ab ac ad bc *
 * bd cd abc abd acd bcd abcd' */
 cout
 << "\nkombine('abcd', 2)='"
 << cs<'a','b','c','d'>::kombine<2>()<< "'"
 << "\npowerset('abcd')='"
 << cs<'a','b','c','d'>::powerset() << "'";
}

February 2016 | Overload | 15

FEATURE NICK WEATHERHEAD
list_<HEAD, TAIL>::kombine_<N, I_SIZE, O, O_SIZE>
(149–158) makes several checks. The first sees if the output can be directly
substituted with the input. Otherwise a check is made to see if the output
list has reached the desired length. If neither of these are satisfied
list_<HEAD, TAIL >::kkombine_<N, I_SIZE, O, O_SIZE>
(134–147) is called to branch left and right. If the end of the input list is
reached i.e. nil::kombine_<N, size<>, nop, 0> (36–39)
branching ceases with or without the output having reached the specified
length. The powerset (175–176) is implemented as all the combinations
of k for 0 to n elements.

It can be seen from the enumeration of elements that the permutations,
whilst not strictly necessary, are in lexicographic order. Another way of
representing combinations is in binary whereby each bit set maps to a
corresponding value to print. Investigation of this is left as an additional
exercise.

Member template specialisation
You may have noticed that there are a number of member template functors
that take an additional, seemingly redundant, parameter; in each case these
have a specialisation. For example the power set is all the subsets of an
input set including itself and the empty set. In the general case this is lists
between the length of the input list powerset_<N> to powerset_<1>
(163–170). A specialisation powerset_<0> (172–173) terminates the set
with an empty list. Nested classes are dependent on their enclosing
template types, hence if explicitly specialised the enclosing classes need
to be too. A work-around to this restriction is to provide partial
specialisations by adding a dummy parameter.

Sequences
Lists can be long; however, if the content is not arbitrarily distributed then
it can be described as a function rather than with individual elements.
Evaluating the function and generating the list can then be deferred until
first use. This is the case for sieving ranges of numbers with set intervals.

In Listing 3 (Sequences & Sets) a cons of integers i is defined for use as
a sequence seq. The common case produces all integers in ascending order
between a low LO and high HI value. The interval I can be altered to
increase the step size. Reversing direction by beginning at a high value,
ending with a low value and specifying a negative increment will produce
a sequence in descending order. At each step the current value is appended
to the list and, whilst within bounds, the next step is defined as a sequence
of itself with an incremented starting range.

Sets
In addition to sequences some set theory is required to sieve. Union,
intersection and difference of ascending ordered sets are provided (a
description of each follows) although not all will be required. When
combining operations it’s feasible that earlier operations result in an empty
list, hence the member templates for sets (30–34) in nil.

Listing 3

…
template< int I, class IS = nil
, char DELIM = ',' > struct i
: v< int, I, IS, DELIM > { };
template< int I, int... IS >
struct is : i< I, is< IS... > > { };
template< int I >
struct is< I > : i< I > { };

template< int LO, int HI, int I = 1
, char DELIM = ',' > struct seq
: conditional<
 (I > 0 ? LO + I <= HI : LO >= HI - I)
 , i< LO, seq< LO + I, HI, I, DELIM > >
 , i< LO > >::type { };

int main() {

 /* seq(-3, 3, 2).uunion(seq(-2, 2, 2))= *
 * -3,-2,-1,0,1,2,3 *
 * seq(-3, 3).intrsct(seq(-2, 2, 2))= *
 * -2,0,2 *
 * seq(-3, 3).except(seq(-2, 2, 2))= *
 * -3,-1,1,3 */
 cout
 << "\nseq(-3, 3, 2).uunion(seq(-2, 2, 2))="
 << seq<-3, 3, 2>::uunion< seq<-2, 2, 2>>()
 << "\nseq(-3, 3).intrsct(seq(-2, 2, 2))="
 << seq<-3, 3>::intrsct<seq< -2, 2, 2>>()
 << "\nseq(-3, 3).except(seq(-2, 2, 2))="
 << seq<-3, 3>::except<seq<-2, 2, 2>>();
}

Figure 1
16 | Overload | February 2016

FEATURENICK WEATHERHEAD
Union
The general case list<HEAD, TAIL>::uunion<RHS> (80–89)
determines which HEAD, the LHS or RHS, is less than the other. Whichever
is chosen becomes the HEAD of a new list with the rest being the union of
its TAIL with the other list. The union of a list with an empty list is the list
itself (91–92). As it isn’t fully defined at the point of parsing its creation
is delayed with a concatenation operation i.e. append_<HEAD, TAIL>.

Intersection
The general case list<HEAD, TAIL>::intrsct<R> (94–109)
determines whether the LHS and RHS’s HEADs are of equal value; if they
are one becomes the HEAD of the resulting list with the rest comprising the
intersection of the respective list’s TAILs. Otherwise, the HEAD with least
value is discarded and the intersection between the remaining elements is
performed. Intersection with an empty list (111–112) is, of course, nil.

Set difference
Known here as list<HEAD, TAIL>::except<R> (114–129) it is the
equivalent of minus where any elements in the LHS that also appear in the
RHS are removed. If both the LHS and RHS are identical then they cancel
one another out resulting in the empty list nil; otherwise, the HEAD of each
is compared. If the LHS is less than the RHS then it becomes the HEAD of
a new list with the rest being the set difference between its TAIL and the
RHS’s. If it’s greater the RHS’s HEAD is removed and if equal both HEADs
are removed with the set difference calculated between the remaining
elements. If the RHS is an empty list then there is nothing to minus (131–
132); as with union the list isn’t fully defined at the point of parsing so a
concatenation operation i.e. append_<HEAD, TAIL> delays its creation.

Sieves
Eratosthenes proposed a simple way for finding primes up to a specified
integer using the efficient principal of sieving. There are other well-known
variations such as Euler’s sieve. The basic mechanism removes multiples
of each integer between 2 and n thereby leaving only those that are divisible
by one and themselves. There are some quick ways to refine this algorithm
which also reduce recursive calls. All even numbers with the exception of
2 can be removed from the initial range; that is all multiples seeded from
an even index and every other value from those with an odd. Further, as
in table 1, higher order progressions have some values that overlap with
lower ones. Thus sequences can begin at the square of their seed. Similarly
it is unnecessary to go beyond an index that is √n as if n is not prime it
must have a divisor less than or equal to √n [SICP96]. Table 1 shows the
arithmetic progressions required to sieve integers between 2 and 100.

A common solution is to have an array of elements indexed from 1 to n,
marking 1 for removal, then generating multiples from 2 to the square root
of n, beginning each sequence with the square of its index and marking
these for removal too, and finally printing all unmarked values. Instead the
algorithm can be conceived in terms of operations on ordered sets.

In Listing 4 (Eratosthenes Sieve) the template parameter HI is the limit
value, N is the current sieving multiple beginning at 3 and incrementing

by 2 for odd intervals. O is the output list which will be successively sieved;
it begins as a list of a fixed value of 2 followed by the sequence of odd
numbers up to and including the limit value. Whilst the square of the
multiple i.e. LO = N * N is less than or equal to the HI boundary every
other odd multiple N + N is sieved from the output list.

Summary
In [Weatherhead15] I covered ASCII to integer conversion, roman
numerals and palindromes. Each used a variant of the list construct to
represent strings. Here it was used to generate combinations with a queue
and to sieve sequences by applying set operations. Representative of the
way runtime classes are developed the data and methods were
encapsulated for reuse. Further ways to experiment with this include
implementing other sieves and adding functions to filter and sort.

Note
All the code in this article compiles with GCC 4.9.2 and Clang 3.5.2 using
-std=c++11. However, your mileage may vary with other compilers. Also
whilst a null character should not be displayed in a terminal, some
platforms show them as a space.

References
[SICP96] Harold Abelson and Gerald Jay Sussman with Julie Sussman.

Structure and Interpretation of Computer Programs Second Edition
pp.53–54, 116, 139–145, The MIT Press, 1996.

[Weatherhead15] Nick Weatherhead. Template Programming Compile
Time String Functions, Overload 128, August 2015.

Further reading
Chris Oldwood. List incomprehension, CVu Volume 26 Issue 2 pp.7–8,

May 2014.

Stuart Golodetz. Functional Programming Using C++ Templates (Part 1),
Overload 81, October 2007.

Acknowledgements
I’d like to thank the Overload review team for providing their feedback
which enabled me to elevate the content presented in this article.

Table 1

Index
(Odd N)

Interval
(N + N)

Begin
(N x N)

Arithmetic Progression

3 6 9 9 15 21 27 ... 99

5 10 25 … 15 25 35 45 … 95

7 14 49 … 21 35 49 63 … 98

9 18 81 … 27 45 63 81 99

Listing 4

…
template< int HI, int N = 3
, class O = i< 2, seq< 3, HI, 2 > >
, int LO = N * N > struct primes
: conditional< LO <= HI
 , primes< HI, N + 2
 , typename O::type::template except<
 seq< LO, HI, N + N > > >
 , O >::type { };

int main() {

 /* primes(350)=2,3,5,7,11,13,17,19,23,29,31 *
 * ,37,41,43,47,53,59,61,67,71,73,79,83,89 *
 * ,97,101,103,107,109,113,127,131,137,139 *
 * ,149,151,157,163,167,173,179,181,191,193 *
 * ,197,199,211,223,227,229,233,239,241,251 *
 * ,257,263,269,271,277,281,283,293,307,311 *
 * ,313,317,331,337,347,349 */
 cout << "\nprimes(350)=" << primes<350>();
}

February 2016 | Overload | 17

FEATURE RUSSELL STANDISH
Classdesc: A Reflection System
for C++11
C++ lacks direct support for reflection.
Russell Standish brings an automated reflection
system for C++, Classdesc, up to date.
lassdesc is a system for providing pure C++ automated reflection
support for C++ objects that has been in active development and use
since the year 2000. Classdesc consists of a simplified C++ parser/

code generator along with support libraries implementing a range of
reflection tasks, such as serialisation to/from a variety of formats and
exposure of the C++ objects to other language environments.

With the increasing adoption of the new C++ standard, C++11, amongst
compilers, and in C++ development, it is time for Classdesc to be adapted
to support C++11. This is in terms of being able to parse new language
constructs, and also to support new concepts, such as enum class. Finally,
there is the opportunity to leverage things like variadic templates to
generalise and simplify support for function member processing.

Introduction
Classdesc [Madina01] is a system for automated reflection in C++ that has
been in continual development since the year 2000, and has been deployed
in a number of open source and commercial projects. Classdesc was first
published as part of EcoLab 4.D1 in April 2001, before being separated
and released as Classdesc 1.D1 in February 2002.

To understand Classdesc, it is necessary to consider one of C++’s more
powerful features, the compiler generated constructors and assignment
operators. Consider, for example, the default copy constructor, which the
C++ compiler generates as needed for any user defined class if the user
has not explicitly provided a custom version. To create a new object
identical to an existing object, the most common situation is that each
component of the existing object is copied to the new object, along with
calling the inherited copy constructor of any base class. The copy
constructors of each component is called in a hierarchical fashion. At any
point in the hierarchy, the programmer can provide a custom copy
operator, that suppresses the compiler generated version. An example of
a custom copy constructor might be say in the implementation of a vector
class, which will typically have a size member, and a pointer to some
storage on the heap. The compiler generated copy will copy these
members, implementing what is known as a shallow copy. But
semantically, one needs a deep copy, where a copy of the data is created,
so C++ allows the programmer to provide a deep copy implementation that
copies the data as well, possibly even as a ‘copy-on-write’ implementation
that only pays the copy cost when needed.

Just like copy constructors, the default constructor, default destructor and
assignment operator are similarly compiler generated to implement a
hierarchical call of the respective default constructors/destructors and
assignment operators of the component parts. In C++11, two new compiler

generated hierarchical methods were added: the move constructor, and
move assignment operator, where the object being moved from is left in
a valid, but necessarily empty state. Move operations are typically used
when the original object is no longer accessed. In the vector example
above, the move operation may simply move the pointer to the data into
the new structure, rather than copying the data, filling the original pointer
in with NULL, a far more efficient operation than regular assignment.

Classdesc takes this notion of compiler generated methods to arbitrary user
defined methods, called descriptors, extending the six compiler generated
methods defined in C++11. It uses a code generator to create these, based
on parsing the C++ class definitions. Because class definitions are closed
to extension, descriptors are actually implemented as global functions,
with the following signature (eg the pack descriptor):

 template <class T>
 void pack(classdesc::pack_t&,
 const std::string& name, T& a);

The Classdesc code generator generates recursive calls of this function on
each component of a. The first argument is a descriptor dependent
structure that can be used for any purpose. In this serialisation example, it
will hold the serialised data, or a reference to a stream. The second string
argument is used to pass a dot-concatenated name of the members being
passed as the third argument – eg "foo.bar.a". This is important for
applications that need member names, such as the generation of XML
[Bray08] or JSON [ECMA13] plain text representations.

The user has the option of providing their own implementation of the
descriptor for specific classes when needed, without having to provide
code for the usual (tedious) case. Just as with compiler generated
assignment operators, the Classdesc generated code is automatically
updated as the class definition evolves during the lifetime of the code. The
way this is arranged is to hook the classdesc processor into the build system
being used. For example, with a Makefile, one defines an automated rule
such as

 .SUFFIXES: .cd $(SUFFIXES)
 .h.cd:
 classdesc -nodef -typeName -i \
 $< json_pack json_unpack >$@

Furthermore, if automatic generation of Makefile dependency rules is
enabled, then simply adding the line

 #include "foo.cd"

to a C++ source file is sufficient to cause make to invoke classdesc on the
header file foo.h and create or update the necessary reflection code, and
make it available to the compilation module.

The Classdesc distribution comes with descriptors for serialising to/from
a binary stream (even machine independent via the XDR library), to/from
an XML or JSON streams, and exposure of C++ objects to the JVM via
the JNI interface. In EcoLab [Standish03], a C++ simulation environment
oriented towards agent based modelling, C++ objects are exposed to a TCL
programming environment, providing almost instant scriptability of a C++
written object.

C

Russell Standish gained a PhD in Theoretical Physics, and has
had a long career in computational science and high performance
computing. Currently, he operates a consultancy specialising in
computational science and HPC, with a range of clients from
academia and the private sector. He is also a visiting Senior Fellow
at Kingston University in London. Russell can be contacted at
hpcoder@hpcoders.com.au
18 | Overload | February 2016

FEATURERUSSELL STANDISH

Since the C++ language only exposes limited
type information to the programmer, some

form of a preprocessing system is required
Alternative C++ reflection systems
In other languages, such as Java, reflection is supported by the system
providing objects representing the classes. One can use these class objects
to navigate the members and base classes of the objects, querying attributes
of those members as you go. Such a reflection system can be called a
runtime reflection system, as the code navigates the reflected information
at runtime.

Classdesc generated code is a static reflection system, in that a descriptor
corresponds to a fixed traversal of the object’s component tree. This can
be used to generate a class object like above, and so formally is at least as
powerful as a runtime reflection system. However, for the more usual
special purpose applications, such as serialisation, the entire object’s
serialisation is compiled, leading to better performance than a pure runtime
system would.

Since the C++ language only exposes limited type information to the
programmer, some form of a preprocessing system is required. Classic
special purpose reflection systems include the CORBA IDL [Open12]
(which defines another language – the interface definition language)
which is translated into C++ code to allow exposure of an object’s methods
to another object running in a remote address space (i.e. remote procedure
calls), Qt’s moc processor, which extends C++ with a slot and signal model
suitable for wiring up GUI components, and Swig [Beazley96] which
allows for exposure of object methods and attributes to a range of other
programming languages. All of these systems are preprocessors of some
language that is sort of an extension of C++, generating standard C++ on
its output, so strictly speaking are not reflection systems, but are used for
the same sorts of tasks reflection is. Classdesc differs from each of these
approaches by processing the same standard C++ header files that the
compiler sees.

OpenC++ [Chiba95] tries to generalise this by creating a metaobject
processing language which controls a source-to-source code translater,
adding in the reflection information before the code is seen by the
compiler. Unfortunately, it is now rather dated, and no longer capable of
supporting modern dialects of C++.

Chochlík [Chochlík12] reviews a number of other reflection systems, such
as SEAL [Roiser04], under the umbrella of ‘runtime reflection systems’.
SEAL is definitely like that, with a runtime class object being generated
by a perl script that analyses the output of gcc_xml, a variant of gcc’s C++
front end that output an XML representation of the parse tree.

On the other hand, Mirror [Chochlík12] is a fully static reflection system,
with metaprogramming techniques allowing traversal of type information
at compile time. A script Maureen uses the Doxygen parser to generate the
templates supporting the metaprogramming. Unfortunately, the library did
not compile on my system, nor did the Maureen script run, but this is
perhaps only an indication of the experimental status of a quite ambitious
system, rather than unsoundness of the general approach.

The Classdesc system described here was also described by Chochlík as
a runtime reflection system, which is not quite accurate. Whilst it is true
that Classdesc can be used to generate runtime class objects like runtime

reflection systems, so is at least as general as those, that is not how it is
usually used. Rather it should be considered as a special purpose static
reflection system, admittedly not as general as the full blown static
reflection system provided by Mirror.

Dynamic polymorphism
Dynamic polymorphism is the capability of handling a range of different
types of object via a common interface, which in C++ is a common base
class of the object types being represented, with special methods (called
virtual methods) that reference the specific method implementations
appropriate for each specific type.

For Classdesc to work properly, the correct descriptor overload needs to
be called for the actual type being represented, which requires that the base
class implement a virtual method for calling the actual descriptor. For
example, consider an interface Foo implementing a JSON serialiser
(Listing 1).

This ensures that no matter what type a reference to a Foo object refers
to, the correct automatically generated JSON serialiser for that type is
called.

Whilst this technique is simple enough, and has the advantage that changes
to Bar are automatically reflected in the json method, it is still tedious to
have to provide even the one liner above (particularly if multiple descriptor
methods are required), moreover error prone if the base class (Foo in this
case) needs to be concrete for some reason, eliminating the protection
provided by the pure virtual specifier.

As an alternative, Classdesc descriptors provide ‘mixin’ interface classes,
that can be used via the CURIOUSLY RECURRING TEMPLATE PATTERN:

 class Bar: public classdesc::PolyJson<Bar>
 {
 ...
 };

This adds the PolyJsonBase interface class, which defines the following
virtual methods, which covariantly call the appropriate descriptor for the
concrete derived class Bar (Listing 2).

Listing 1

class Foo
{
 public:
 virtual string json() const=0;
};
class Bar: public Foo
{
 public:
 string json() const override
 {return ::json(*this);}
 ...
};
February 2016 | Overload | 19

FEATURE RUSSELL STANDISH

Since the Classdesc parser only parses user defined
types, namely classes, structs and enums, language
features that only appear within the code bodies of
functions or class methods can be ignored
Speaking of json_unpack, which is the converse deserialisation
operation, the desirable action would be for an object of the appropriate
type to be created and then populated from the JSON data. To pull off this
trick, we have to pack and unpack from/to a smart pointer class, such as
std::shared_ptr or std::unique_ptr. On packing, an extra ‘type’
attribute is added to the JSON stream, which is used to call a factory create
method in the json_unpack attribute. The type of the ‘type’ attribute can
be anything, but popular choices are enums (which translate to a symbolic
representation within the JSON stream) or strings, using the Classdesc
provided typeName<T>() method to return a human readable type string
for T.

Much of the work can be eliminated by adding the following mixin
(available in the polyBase.h header file) to your polymorphic type,
where T is the type of your ‘type’ attribute (Listing 3).

The only thing needed to be implemented in the derived class is the
type() method. An enum type implementation might be something like
Listing 4.

A string type implementation might look like Listing 5 and a full example,
including the JSON descriptor methods would be as shown in Listing 6.
Note the use of virtual inheritance to ensure that only a single version of
PolyJsonBase is in the inheritance hierarchy.

The static method FooBase::create needs to be supplied, but even
here, Classdesc provides assistance in the form of a Factory class
(Listing 7).

Parsing of C++11 code
The first task was to test the Classdesc parser/code generator on the new
C++11 features. Stroustrup [Stroustrup13, p 1268] provides a convenient
40-point list of the new language features, which provided the starting
point for the work to update Classdesc.

Since the Classdesc parser only parses user defined types, namely classes,
structs and enums, language features that only appear within the code
bodies of functions or class methods can be ignored. A test header file was

Listing 2

struct PolyJsonBase
{
 virtual void json_pack(json_pack_t&,
 const string&) const=0;
 virtual void json_unpack(json_unpack_t&,
 const string&)=0;
 virtual ~PolyJsonBase() {}
};

Listing 4

enum class MyTypes {foo, bar, foobar};
class FooBase: public PolyBase<MyTypes> {};
template <enum class MyTypes T>
class Foo: public Poly<Foo, FooBase>
{
 MyTypes type() const {return T;}
 ...
};

Listing 5

class FooBase: public PolyBase<std::string> {};
template <class T>
class FooTypeBase: public Poly<T, FooBase>
{
 std::string type() const
 {return classdesc::typeName<T>();}
};
class Foo: public FooTypeBase<Foo>
{
 ...
};

Listing 3

template <class T>
struct PolyBase: public PolyBaseMarker
{
 typedef T Type;
 virtual Type type() const=0;
 virtual PolyBase* clone() const=0;
 /// cloneT is more user friendly way of getting
 /// clone to return the correct type.
 /// Returns NULL if \a U is invalid
 template <class U>
 U* cloneT() const {
 std::auto_ptr<PolyBase> p(clone());
 U* t=dynamic_cast<U*>(p.get());
 if (t)
 p.release();
 return t;
 }
 virtual ~PolyBase() {}
};
template <class T, class Base>
struct Poly: virtual public Base
{
 /// clone has to return a Poly* to satisfy
 /// covariance
 Poly* clone() const
 {return new T(*static_cast<const T*>(this));}
};
20 | Overload | February 2016

FEATURERUSSELL STANDISH

C++11 introduces four new containers
starting with the name ‘unordered’, which

provide hash map functionality in the
standard library
created with those features that might cause problems to Classdesc,
namely:

 enum class (item 7)

 brace style initialisation of members both inline and within
constructors (item 1)

 inline member initialisation (item 30)

 alignas type attribute (item 17)

 constexpr (item 4)

 default and delete declarations (item 31)

 spaceless closing of nested templates (item 11)

 attributes, in particular [[noreturn]] (item 24)

 noexcept attribute (item 25)

 deduced method return type (item 23)

 variadic template arguments (item 13)

and then a set of unit test cases linking this header file, and all the classdesc
provided descriptors was created to ensure completeness of the work.

Of these new features listed above, about half required changes to
Classdesc, which will be described in more detail in the following section.

New C++11 features

Enum class
C++ introduces a new user defined type called enum class. This pretty
much fixes a name scope problem with the original C enum type. Classdesc
was modified to process enum classes in the same way that it processes
enums, which includes the generation of a symbolic lookup table (map of
the enum tag names as strings to/from the numerical tag values). This is
desirable for generation and parsing of formats such as XML or JSON, for
which the numerical values are not meaningful, and may even differ from
the C++ numerical values if processed by a different language.

Smart pointers
C++11 adds a couple of new smart pointers: the unique_ptr and
shared_ptr, and deprecates an existing one (auto_ptr). These
pointers, in particular the shared_ptr, have been available in external
libraries for some time, notably in the boost library [Boost], and then later
in a precursor to the C++11 standard library known as TR1 [TR05].
Classdesc has required the use of shared_ptrs for some time to
adequately support dynamic polymorphism, as well as containers of
noncopiable objects. Since the design of Classdesc is to not rely on 3rd
party l ibraries l ike boost , by preference i t wil l use C++11
std::shared_ptr if available, otherwise the TR1 shared pointer, and
only use boost shared pointers as a last resort.

The problem is that these three different smart pointer implementations are
distinct types. The solution in Classdesc is to define a typedef alias of
shared_ptr in the classdesc namespace, which refers to whichever
implementation is being used. A similar consideration applies to a variety
of metaprogramming support functions (eg is_class) which have been
introduced into the language via external libraries before being finally
standardised in C++11.

If a pre-C++ compiler is used, one can select the version of shared_ptr
to be used by defining the TR1 or the BOOST_TR1 macros respectively. If
neither macro is defined, then the tr1 namespace is assumed to be defined
in the standard <memory> header file, as is the case with Microsoft’s
Visual C++.

Listing 6

class FooBase:
 public classdesc::PolyBase<std::string>,
 public virtual classdesc::PolyJsonBase
{
 static FooBase* create(std::string);
};

template <class T>
class FooTypeBase:
 public classdesc::Poly<T, FooBase>,
 public classdesc::PolyJson<T>
{
 std::string type() const
 {return classdesc::typeName<T>();}
};

class Foo: public FooTypeBase<Foo>
{
 ...
};

Listing 7

class FooBase:
 public classdesc::PolyBase<std::string>,
 public classdesc::Factory<FooBase, std::string>
{};

template <class T>
class FooTypeBase:
 public Poly<T, FooBase>,
 public PolyJsonBase<T>
{
 std::string type() const
 {return classdesc::typeName<T>();}
};

class Foo: public FooTypeBase<Foo>
{
 Foo() {registerType(type());}
};
February 2016 | Overload | 21

FEATURE RUSSELL STANDISH

Classdesc now introduces metaprogramming
type attributes to represent the sequence and
associative container concepts from the
Standard Template Library (STL)
New STL containers
C++11 introduces four new containers starting with the name ‘unordered’,
which provide hash map functionality in the standard library, along with
a single linked list. Whilst, one could have extended the standard Classdesc
provided descriptors to cover these new containers, it highlighted that it
was high time to deal with these in a more generic way. Consequently,
Classdesc now introduces metaprogramming type attributes to represent
the sequence and associative container concepts from the Standard
Template Library (STL). Descriptors are now implemented in terms of
these type attributes, instead of referring directly to the container types:
vector, list, set etc. The STL container types have these attributes defined
in the classdesc.h header. Users can avail themselves of this descriptor
support for their own custom container types merely by defining an
is_sequence or an is_associative_container type attribute as
appropriate:

 namespace classdesc
 {
 template <>
 struct is_sequence<MySequenceContainer>
 { static const bool value=true; }
 };

New fundamental types
C++11 adds a whole slew of new types, including explicitly 16 and 32 bit
wide characters (char16_t and char32_t), a long long integer and a
number of type-name aliases for explicitly referring an integer’s size (eg
int64_t). Typename aliases do not cause a problem for classdesc, as their
use will be covered by the type they are an alias for. However, traditional
descriptor implementations required explicit implementations for all the
fundamental types, so supporting these new types requires a lot of
additional code. So the decision was made to rewrite as much descriptor
code as possible using type traits such as is_fundamental, and use
metaprogramming techniques [Veldhuizen95].

There is, however, one place where all the basic types need to be
enumerated, and that is in the implementation of the typeName template,
which returns a human readable string representation of the type. Explicit
template specialisation for each fundamental type needs to be provided.
One might ask why type_info::name() could not be used for this
purpose. Unfortunately, the standard does not specify how compiler
should map type names to strings, and compilers often choose quite
mangled names that are unsuitable for some reflection purposes, such as
in XML processing, in a compiler independent way.

Opportunities

Move operators
Certain Classdesc types, such as pack buffers, are unable to be copied. In
particular, lacking copiability restricts the use of these objects in
containers, unless stored as smart pointers. C++11 provides the concept
of move construction and assignment, where the source object in a valid,

but empty state, which can usually be implemented in an inexpensive and
simple fashion. An object with a move operator can be used in a C++11
container. The update to Classdesc provides implementations of these
move operators where appropriate to extend their use cases.

Functional support
Classdesc provides a metaprogramming library to support the analysis of
method signatures for supporting the exposure of methods to other
programming environments, such as the JVM. Key metaprogramming
requirements are arity (number of arguments), the individual types of each
argument Arg<F, i>::type and the return type of the function or
method type F. For pre-C++11 compilers, this was implemented for all
cases up to a certain number of arguments (usually 10), with the code being
generated by a Bourne shell script. This peculiar break from a pure C++
solution was deemed a necessary evil – in practice the provided code
limited to 10 arguments suffices for most practical cases, and if not, then
access to a Bourne shell to generate support for higher arities is usually
not difficult to arrange.

Nevertheless, C++11’s variadic templates allows the possibility of
handling an arbitrary number of function arguments without the need to
generate specific templates from a script. At the time of writing, though,
this has not been implemented in Classdesc.

A proposal for an extension to the C++ language
Since Classdesc-provided reflection naturally maps to the same recursive
hierarchical concept as do the compiler generated constructors and
assignment operators, and C++11 has introduced a new syntactic construct
based on the default keyword that forces the compiler to generate these
methods, this leads to a natural proposal. That is, allow any method
signature suffixed by default to have a compiler generated body that
recursively applies that method signature to the object’s components.

For example, consider a struct declared as:

 struct Example
 {
 A a;
 B b;
 void pack(pack_t& buf)=default;
 };

The compiler is instructed to generate the method:

 void Example::pack(pack_t& buf)
 {
 a.pack(buf);
 b.pack(buf);
 }

There are some subtleties that need to be worked out. For example, if the
class is a mix of private and public attributes, we need to be able to specify
whether private attributes should be processed (eg in serialisation
applications) or not (eg in exposing object APIs to another language), a
feature currently implemented as a flag on the classdesc code generator
22 | Overload | February 2016

FEATURERUSSELL STANDISH
command line. One suggestion is to qualify the default keyword with
public/protected/private to indicate which attributes are processed:

 void pack(pack_t& buf)=default private;

The question is what do if the access qualifier is not specified. Should it
default to private, which is effectively what the existing compiler
generated methods do, or should it be public, which would be the more
common usage.

The next issue is how to handle the situation where a type does not have
a method of that name defined? The obvious solution is to borrow from
operator overloading, and if (say) a.pack(buf) is an invalid expression,
substitute pack(a,buf), resolved according to the usual namespace
resolution rules. This will allow writers of descriptors to add new
descriptors to existing types, particularly the fundamental types.

The final issue to address is how to implement an equivalent of the
covariant member name feature of Classdesc, which is available as a string
passed as the second argument of the descriptor. The most obvious
suggestion is a magic type declared in namespace std (in the same way that
std::initializer_list is magically populated by brace
initialisers), that will be populated by the appropriate hierarchical list of
names of the member.

 void xml_pack(pack_t& buf,
 std::refl_name)=default;

This will be populated in the compiler generated code as follows:

 void Example::xml_pack(pack_t& buf,
 std::refl_name nm)
 {
 a.xml_pack(buf,nm+"a");
 b.pack(buf,nm+"b");
 }

refl_name will be a sequence, and can be iterated over by the usual
means, with perhaps a concatenation method to return the dot separated
list currently used by Classdesc.

Proposals for reflection in C++17
Support for reflection in standard C++ has been discussed a number of
times, but generally been dismissed as requiring metaobjects to be present
in the resulting executable, even though the classes themselves may not
end up being used by the programmer, and hence can be optimised away.
Clearly, this is only an objection for a traditional runtime reflection
systems, not static systems – for example, even using Classdesc to generate
metaobjects, the metaobject will only exist if explicitly created by the
programmer calling the appropriate descriptor, which is just a standard
function that can be eliminated by the linker if not used.

Nevertheless, Carruth and Snyder [Carruth13] issued a general call for
reflection proposals for consideration of inclusion in the next (C++17)
standard. To date, two proposals have been put forward: Chochlík’s
[Chochlík15], which is largely based on the Mirror library and Silva and
Auresco’s [Auresco15], who propose extending the keywords typename
and typedef to return variadic templates that can be used in a
metaprogramming context, but does not specify any extensions to the
standard type traits library. In Chochlík’s proposal, a new operator
(tentatively mirrored) returns a compile time static metaobject, that can
iterated over, or otherwise queried. In a way, the two proposals mesh
together quite well. The mirror library is a quite well thought out reflection
library extending std::type_traits, but the actual structure of the
MetaObjectSequence is not well specified in Chochlík’s proposal. On the
other hand, Silva and Auresco’s idea of using variadic templates to encode
the MetaObjectSequence concept at least fits in with how ‘loops’ are
currently implemented in C++11 metaprogramming, and has the further
advantage of not requiring new keywords.

In either proposal, Classdesc-like functionality could be achieved by
arranging for the generic descriptor template to be a metaprogrammed loop
of the class members.

Conclusion
Classdesc has been under development for 15 years, and has a reputation
for being a solid, no-fuss, portable reflection system for C++. With the
increasing use of C++11 code, it was time to bring Classdesc up to date
with the new C++ standard, which has now been achieved.

References
[Auresco15] Daniel Auresco, Cleiton Santoia Silva. ‘From a type T,

gather members name and type information, via variadic template
expansion. Technical Report N4447, ISO/IEC JTC, 2015.
 http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/
n4447.pdf

[Beazley96] David M. Beazley. ‘SWIG : An easy to use tool for
integrating scripting languages with C and C+’+. In Proceedings of
4th Annual USENIX Tcl/Tk Workshop. USENIX, 1996.
http://www.usenix.org/publications/library/proceedings/tcl96/
beazley.html

[Boost] Boost C++ Libraries. http://www.boost.org/

[Bray08] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and
François Yergeau. ‘Extensible markup language (XML) 1.0 (fifth
edition)’. Technical report, W3C, 2008. http://www.w3.org/TR/
2008/REC-xml-20081126/.

[Carruth13] C. Carruth, J. Snyder. ‘Call for compile-time reflection
proposals’. Technical Report N3814, ISO/IEC JTC, 2013.
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/
n3814.html

[Chiba95] Shigeru Chiba. ‘A metaobject protocol for C++’. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 285–
299, 1995.

[Chochlík12] Matúš Chochlík. ‘Portable reflection for C++ with mirror’.
Journal of Information and Organizational Sciences, 36(1):13.26,
2012.

[Chochlík15] Matúš Chochlík. ‘Static reflection’. Technical Report
N4451, ISO/IEC JTC, 2015. http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2015/n4451.pdf.

[ECMA13] ECMA. The JSON data interchange format. Technical Report
ECMA-404, ECMA International, 2013. http://www.ecma-
international.org/publications/standards/Ecma-404.htm

[Madina01] Duraid Madina and Russell K. Standish. ‘A system for
reflection in C++’. In Proceedings of AUUG2001: Always on and
Everywhere, page 207. Australian Unix Users Group, 2001.

[Open12] Open Management Group. ‘C++ language mapping’. Technical
report, OpenManagement Group, http://www.omg.org/spec/CPP/
1.3, 2012. Version 1.3.

[Roiser04] S. Roiser and P. Mato. ‘The SEAL C++ reflection system’. In
Proceedings of Computing in High Energy Physics, CHEP ’04,
Interlaken, Switzerland, 2004. http://chep2004.web.cern.ch/
chep2004/

[Standish03] Russell K. Standish and Richard Leow. ‘EcoLab: Agent
based modeling for C++ programmers’. In Proceedings SwarmFest
2003, 2003. arXiv:cs.MA/0401026.

[Stroustrup13] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 4th edition, 2013.

[TR05] Draft technical report on C++ library extensions. Technical
Report DTR 19768, International Standards Organization, 2005.

[Veldhuizen95] Todd Veldhuizen. Using C++ template metaprograms.
C++ Report, 7:36.43, 1995.
February 2016 | Overload | 23

http://www.boost.org/
http://www.usenix.org/publications/library/proceedings/tcl96/beazley.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4451.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4451.pdf
http://www.omg.org/spec/CPP/1.3
http://www.omg.org/spec/CPP/1.3
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4447.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4447.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3814.html
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://chep2004.web.cern.ch/chep2004/
http://chep2004.web.cern.ch/chep2004/

FEATURE MATTHEW WILSON
QM Bites : Maximising
Discoverability of Virtual Methods
C++11 introduced override as a
contextual keyword. Matthew Wilson
encourages us to use it.
TL;DR:
Reduce opacity in C++ inheritance hierarchies w override k/w (or
comments in C++03/earlier)

Bite:
One of the myriad sources of confusion about C++’s ambiguous syntax is
in determining whether or not a virtual function is one prescribed in the
type one is currently examining or prescribed from a parent class. Consider
the following:

 class MidLevel
 : public TopLevel
 {
 . . .
 virtual void SomeMethod();
 };

There are several possible interpretations:

1. The virtual method SomeMethod() is defined and implemented
only within the class MidLevel (and may be overridden by derived
types);?

2. The virtual method SomeMethod() is defined by the class
TopLevel (or one of its ancestors) in which it is pure, so
MidLevel::SomeMethod() is (at this level) its one and only
definition;?

3. The virtual method SomeMethod() is defined and implemented by
the class TopLevel (or one of its ancestors) so
MidLevel::SomeMethod() is an override (which may or may
not invoke TopLevel::SomeMethod() in its implementation);?

The only way to know is to examine the definition of the class TopLevel,
or the definition of (a) parent class of TopLevel, or the definition of (a)
grandparent class of TopLevel, or …

Application of the C++ 11 keyword override is a boon to discoverability,
in that it connotes that the method is an override of a method declared/
defined by a parent class. Hence, Listing 1 implies either case 2 or 3 above.

With C++-98/03 (or any compiler that does not support C++ 11’s
override), an alternative declarative technique is simply to use a comment,
as in Listing 2, or object-like pseudo-keyword macro (that resolves to
override with compilers that support the keyword, and to nothing with
those that do not), as in Listing 3 and Listing 4.

Of course, the virtue of the new keyword is far greater than that of
connotation of design intent – it facilitates enforcement of design intent.
If Listing 1 is presented to the compiler in case 1, it will be a compiler error,
since one cannot override something that does not (previously) exist.
That’s great.

Just as importantly, it guards against coding errors and/or design changes,
in requiring that the overriding method matches the overridden method. If
Listing 1 compiles, but then the method signature (or return type, or cv-
qualification, or universality) changes in the parent class – the fragile base
class problem – it will be a compile error. That’s great too.

(Obviously, neither the comment-form nor the macro-form do any
enforcement with non-C++-11-compatible compilation, but it still is a non-
trivial amount of help for the human side of things.)

Prior to the advent of override my practice was to distinguish between
case 1 and cases 2/3 by placing the virtual keyword in comments, as
in Listing 5.

Should you wish, you may do this too, but since override does a superior
job in connoting overriding, you might prefer to elide it completely, as in
Listing 6.

Listing 1

class MidLevel
 : public TopLevel
{
 . . .
 virtual void SomeMethod() override;
};

Listing 2

class MidLevel
 : public TopLevel
{
 . . .
 virtual void SomeMethod() /* override */;
};

Listing 3

#ifdef
 ACMESOFT_COMPILER_SUPPORTS_override_KEYWORD
define ACMESOFT_override_K override
#else
define ACMESOFT_override_K
#endif

Listing 4

class MidLevel
 : public TopLevel
{
 . . .
 virtual void SomeMethod() ACMESOFT_override_K;
};

Matthew Wilson Matthew is a software development consultant
and trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of articles
and books that attempt to do the same. He can be contacted at
matthew@synesis.com.au.
24 | Overload | February 2016

FEATUREMATTHEW WILSON

One of the myriad sources of confusion ... whether
or not a virtual function is one prescribed in the

type one is currently examining
After all this you might be wondering what we do about distinguishing
between cases 2 and 3. That’s another story (but if I give you a hint and

suggest that case 3 is pretty much a design smell, pertaining to modularity
as well as discoverability, you might get there before we visit that subject
in this place).

Listing 5

class MidLevel
 : public TopLevel
{
 . . .
 /* virtual */
 void SomeMethod() ACMESOFT_override_K;
}; Listing 6

class MidLevel
 : public TopLevel
{
 . . .
 void SomeMethod() ACMESOFT_override_K;
};

And the winners are...
In the last Overload we invited our readers to vote for their favourite articles in 2015 from CVu, which
is our sibling magazine for members, and Overload.

For Overload, in joint first place we have:

Adam Tornhill, Meet the Social Side of Your Codebase

Andrew Sutton, Introducing Concepts

Peter Sommerlad, Variadic and Variable Templates

For CVu, we have a clear winner with over 50% of the votes:

Roger Orr, One Definition Rule

In joint second place we have

Adam Tornhill, Writing a Technical Book

Richard Falconer, Functional Programming in C++

Thank you for everyone who took time to vote, and for those who wrote. We can’t offer a prize to
these winners, just the mention here. A huge number of other writers got a vote – so be assured if
you wrote for us someone probably thoroughly enjoyed what you had to say. Keep up the good work.

The article titles above link to the articles if you are reading this as a PDF. Overload
articles are publicly available, but you must be a member (and logged in) to access
the CVu ones. If you’re not a member yet, why not join?
February 2016 | Overload | 25

http://accu.org/index.php/journals/2107
http://accu.org/index.php/journals/2157
http://accu.org/index.php/journals/2087
http://accu.org/index.php/journals/2167
http://accu.org/index.php/journals/2096
http://accu.org/index.php/journals/2168
http://accu.org/index.php/membership

FEATURE RUSSEL WINDER
So Why is Spock Such a Big Deal?
Spock testing in a Java environment is all the rage.
Russel Winder talks through the history of testing on the
JVM and demonstrates why Spock is so groovy.
e will take as read the fact that all programmers know that testing
is a good thing, and that they do it as a matter of course. Whether
programmers use test-driven development (TDD), behaviour-

driven development (BDD), and/or some other process, we will take as
read that all programmers have good test coverage of their systems at all
times.

So the only question is which testing framework?

For some platforms, there is very little argument about which test
framework to use. For example, with Go and D there is a built-in
framework that most people use. There tend to be extensions, but most
programmers just use what is provided by default. With C++ though, as
most ACCU members will know, there has been a long history of a
plethora of frameworks. This article is though about the Java Platform. If
you think this just means Java and JUnit, then… wrong.

A bit of history
Given that we are talking about the Java Platform milieu only here…

In the beginning (mid-1990s), Java was used for making Web browser
plugins, and few plugin writers really cared much about testing. As Java
started being used server-side, the development process known as TDD
jumped from its Smalltalk roots to the rapidly expanding Java-verse. Kent
Beck and Erich Gamma created JUnit based on the architecture of sUnit
that Kent Beck had developed for use with Smalltalk in the early 1990s.
Unlike other programming languages of the time, where the model was
‘everyone writes their own test framework’, the model in the Java-verse
rapidly became ‘use JUnit’. JUnit just became an integral part of the Java-
verse, treated almost as a part of the Java Platform – even though it was,
and is, not.

Around 2003 though there was a stirring in the Java-verse: generics and
annotations were coming to Java 5. Although this wasn’t a change of
computational model, and so JUnit could work as it had ever done,
annotations brought a whole new way of thinking about Java code and
about test frameworks. Cédric Beust saw this as an opportunity and set
about creating TestNG. This replaced the naming conventions and use of
inheritance that was integral to the JUnit way of working, with the use of
annotations, and it changed the way programmers implemented their
tests.

JUnit remained in maintenance mode whilst TestNG rushed into the new
Java 5 style of programming. Now there were two. However TestNG, the
‘new kid in town’ was having to fight the incumbent and entrenched JUnit
for usage. For many, working with Java meant using Eclipse and JUnit

came as standard, whereas TestNG was an ‘added extra’. Programmers
had to do something to switch from JUnit to TestNG, and generally
didn’t, even though TestNG brought new capabilities as well as a Java 5
way of working.

After what seemed like an age after the release of Java 5, a new JUnit
appeared, JUnit4 – the old JUnit was relabelled JUnit3. In many, many
ways, JUnit4 was just a copy of TestNG. Where JUnit4 and TestNG
differ, TestNG is generally the better framework. The most obvious
‘grand difference’ was that JUnit was a unit testing framework whereas
TestNG was a test framework covering unit, integration, smoke, and
some system testing. However JUnit4 was JUnit and therefore, at least in
many Java programmers’ minds, the one true Java test framework. More
importantly though JUnit4 was seen as an upgrade from JUnit3 and so it
was very easy for all the IDEs, and in particular Eclipse, to claim they
were modern and hip with Java 5 by switching JUnit3 out and JUnit4 in.

Where else have we seen technical superiority ignored in the market?

So JUnit4 became established as the Java 5 style test framework, leaving
TestNG as a minor player. Of course, some people didn’t bother to move
from JUnit3 since they could see no benefit to the use of annotations
rather than a naming convention and use of inheritance. These people
argued that the switch from a naming convention to use of annotations
didn’t actually bring any new capability: JUnit4 was not actually a
functional improvement over JUnit3. TestNG brought integration and
system testing mindsets yes, but most programmers still thought testing
meant unit testing. The JUnit3 ‘die hards’ were, indeed are, wrong.

Things get groovy
Concurrent with the JUnit4 vs. TestNG vs. JUnit3 battle came the
invention, development and rise of the Groovy programming language.1

Whereas Java is a statically-typed compiled language, Groovy is a
dynamic language. Yes, Groovy is compiled to JVM bytecodes just as
Python is compiled to PVM bytecodes, but a Groovy program is a
dynamically typed system. Perhaps bizarrely, Groovy now has the
capability of being statically type checked, and indeed fully statically
compiled. This makes it a competitor to Java as a statically typed
language as well as being a dynamic symbiote to the static Java.

In its dynamic language guise, Groovy is much closer to Smalltalk than
Java ever can be. Algorithms, programming techniques, and idioms of
Smalltalk are much easier to represent in Groovy than they are in Java.
The JUnit3 way of working is completely natural in Groovy where it can
be a little awkward in Java. Of course Groovy can work with JUnit4 and
TestNG since it is symbiotic with Java, inter-working very easily with
Java.

For a while Groovy used principally the JUnit3 approach, to the extent of
integrating it directly into the runtime system via the GroovyTestCase
class. Of course, JUnit4 and TestNG could be used, but Groovy arose in

W

1. Groovy is now (2015 Q4) a top-level Apache project, and is properly
called Apache Groovy.

Russel Winder Ex-theoretical physicist, ex-UNIX system
programmer, ex-academic. Now an independent consultant,
analyst, author, expert witness and trainer. Also doing startups.
Interested in all things parallel and concurrent. And build. Actively
involved with Groovy, GPars, GroovyFX, SCons, and Gant. Also
Gradle, Ceylon, Kotlin, D and bit of Rust. And lots of Python
especially Python-CSP.
26 | Overload | February 2016

FEATURERUSSEL WINDER

Where else have we seen technical
superiority ignored in the market?
a fundamentally JUnit3 context, and the model of working fitted very
well.

Then around 2007–2009 Abstract Syntax Tree Transformations (AST
Transforms) came to Groovy, formally released in Groovy 1.6. These are
very similar to what are called macros in other languages or annotations
in Java. Many see them as ways of providing just the sort of thing that
annotations and macros can provide. This misses some of the truly
devious things that can be achieved with Groovy AST transforms. Peter
Niederwieser, however, did not miss the potential: he proceeded to create
Spock, based on the new AST transform capabilities with a desire to
escape the straight-jackets that are JUnit3, JUnit4, and TestNG.

Testing by example
Clearly the best way of showing Spock’s, indeed any test framework’s,
capabilities and comparing with other frameworks, e.g. JUnit3, JUnit4,
and TestNG, is by example. For this we need some code that needs
testing: code that is small enough to fit on the pages of this august
journal,2 but which highlights some critical features of the test
frameworks.

We need an example that requires testing, but that gets out of the way of
the testing code because it is so trivial.

We need factorial.

Factorial is a classic example usually of the imperative vs. functional way
of programming, and so is beloved of teachers of first year undergraduate
programming courses.3 I like this example though because it allows
investigating techniques of testing, and allows comparison of test
frameworks.

Factorial is usually presented via the recurrence relation:

However, this way of presenting the semantics of factorial is just the
beginning of the tragedy that is most people’s first recursive (functional)
implementation.

Being naïvely imperative
Let us completely avoid the whole recursive function thing for this article,
since we are focusing on testing.4 Let us instead consider what almost
every programmer would wri te as an i terat ive (imperat ive)
implementation using Java5 see Listing 1.

We can imagine a programmer constructing the JUnit4 test as shown in
Listing 2 and feeling very pleased with themselves.

There is so much wrong with these codes, it is difficult to know where to
start – and switching to TestNG with this style of testing will not help.
The two most obvious problems with this test are:

1. What happens for negative arguments? (Factorial is undefined for
negative arguments.)

2. What happens for arguments greater than 13? (The above
implementation will give the wrong answer.)

Point 1 is just highlighting the fact that most programmers tend to
consider testing only the success modes of their code and fail to deal with
the failure modes. Good QA people tend to immediately break things,
exactly because they look at failure modes, which leads to tensions,
sometimes animosity, but is a road that eventually leads to DevOps.

Point 2 is actually also about failure modes but is about underlying
implementations rather than testing of the domain of the units. In this case

2. This is not though an annual magazine sent out only in August.
3. Though with the changes to UK school curriculum in 2014 of IT to

computing, this example may well have to move down the age scale.
4. I shall reserve the right to rant about this in another article.
5. We will ignore the whole ‘Integer’ vs. ‘int’ thing for the purposes of this

article, which is about testing not benchmarking.

f0 1=

fn nfn 1–=

package uk.org.russel.stuff;

 public class Factorial_Naïve {
 public final static Integer iterative(
 final Integer n) {
 Integer total = 1;
 for (Integer i = 2; i <= n; ++i) {
 total *= i;
 }
 return total;
 }
 }

Listing 1

package uk.org.russel.stuff;

import org.junit.Test;
import static
 org.junit.Assert.assertEquals;

import static
 uk.org.russel.stuff.Factorial_Naïve.iterative;

public class Test_Factorial_Naïve_JUnit4_Java {
 @Test public void zero() {
 assertEquals(new Integer(1), iterative(0));
 }
 @Test public void one() {
 assertEquals(new Integer(1), iterative(1));
 }
 @Test public void seven() {
 assertEquals(new Integer(5040), iterative(7));
 }
}

Listing 2
February 2016 | Overload | 27

FEATURE RUSSEL WINDER

most programmers tend to consider
testing only the success modes of their
code and fail to deal with the failure modes
it is about the fixed size of JVM integral types and the overflow that
occurs. This means we must immediately give up using Integer and
switch to BigInteger, how else can we deal with a function whose
values are generally ####### big numbers.6

Becoming less naïve
Listing 3 is something of a transliteration of the earlier implementation to
us ing BigInteger . Over load ing i s employed to p rov ide
implementations for different argument types to try and fully cover the
domain. Note that negative arguments are now dealt with.

I think we can all agree that writing code in Java working with
BigInteger is somewhat less than pleasant.

6. Note that switching from ‘Integer’ to ‘Long’ serves no useful purpose
other than raising the point of failure from arguments greater than 13 to
arguments greater than 20.

package uk.org.russel.stuff;

import java.math.BigInteger;

public class Factorial {

 public final static BigInteger iterative(
 final Integer n) {
 if (n < 0) {
 throw new IllegalArgumentException(
"Argument must be a non-negative Integer.");
 }
 return iterative(BigInteger.valueOf(n));
 }

 public final static BigInteger iterative(
 final Long n) {
 if (n < 0l) {
 throw new IllegalArgumentException(
"Argument must be a non-negative Long.");
 }
 return iterative(BigInteger.valueOf(n));
 }

 public final static BigInteger iterative(
 final BigInteger n) {
 if (n.compareTo(BigInteger.ZERO) < 0) {
 throw new IllegalArgumentException(
"Argument must be a non-negative BigInteger.");
 }
 BigInteger total = BigInteger.ONE;
 if (n.compareTo(BigInteger.ONE) > 0) {
 BigInteger i = BigInteger.ONE;
 while (i.compareTo(n) <= 0) {
 total = total.multiply(i);
 i = i.add(BigInteger.ONE);
 }
 }
 return total;
 }

}

Listing 3

package uk.org.russel.stuff;

import java.math.BigInteger;

public class Factorial {

 public final static BigInteger iterative(
 final Integer n) {
 if (n < 0) {
 throw new IllegalArgumentException(
"Argument must be a non-negative Integer.");
 }
 return iterative(BigInteger.valueOf(n));
 }

 public final static BigInteger iterative(
 final Long n) {
 if (n < 0l) {
 throw new IllegalArgumentException(
"Argument must be a non-negative Long.");
 }
 return iterative(BigInteger.valueOf(n));
 }

 public final static BigInteger iterative(
 final BigInteger n) {
 if (n.compareTo(BigInteger.ZERO) < 0) {
 throw new IllegalArgumentException(
"Argument must be a non-negative BigInteger.");
 }
 BigInteger total = BigInteger.ONE;
 if (n.compareTo(BigInteger.ONE) > 0) {
 BigInteger i = BigInteger.ONE;
 while (i.compareTo(n) <= 0) {
 total = total.multiply(i);
 i = i.add(BigInteger.ONE);
 }
 }
 return total;
 }

}

Listing 4
28 | Overload | February 2016

FEATURERUSSEL WINDER

Have we lost anything by not using
annotations to specify test

methods? Not really.
Of course we must have some tests (see Listing 4). Which I guess is fine,
well fine-ish, anyway.

Being Groovy
Instead of using Java for the test code, we can use Groovy code. Although
Groovy is a dynamic language whereas Java is a statically typed one,
Groovy is based on the exact same data model and so we can just access
the JUnit4 features directly, as shown in Listing 5.

One could argue that there is little or no benefit accruing here to using
Groovy rather than Java, even though being able to render the
BigInteger literals more readably makes for a nicer read of the testing
code. And there are no semicolons.

As previously there is little or no benefit to using TestNG compared to
JUnit4 in this situation.

So why use Groovy at all?

Two obvious reasons spring to mind:

1. We can rewrite the Factorial implementation in Groovy: Groovy
can be a very nice, statically-typed, compiled language simply by
using the @CompileStatic AST transform. We could write the

factorial implementations using Groovy code as shown in Listing 6,
which produces the same results at fundamentally the same
performance of the earlier Java code. Having BigInteger literals
and the ability to define operators on types,7 the code is much easier
to read and much easier to maintain. Despite this superiority of
Groovy, many think they have to use Java for production code.

2. We can use Spock.

Enter Spock
Let’s dive straight into an example: Listing 7 is a Spock version of the
tests of the Java implementation of factorial.

package uk.org.russel.stuff;

import org.junit.Test;
import static org.junit.Assert.assertEquals;

import java.math.BigInteger;

import static
 uk.org.russel.stuff.Factorial.iterative;

public class Test_Factorial_JUnit4_Java {

 @Test
 public void zero() {
 assertEquals(BigInteger.ONE, iterative(0)); }

 @Test
 public void one() {
 assertEquals(BigInteger.ONE, iterative(1)); }

 @Test
 public void seven() {
 assertEquals(BigInteger.valueOf(5040),
 iterative(7)); }

 @Test(expected=IllegalArgumentException.class)
 public void minusOne() { iterative(-1); }

}

Listing 5

7. We leave for another article a rant about how excluding operator
definition from Java may not actually have been as a good a
programming language design choice as the Project Green people
thought in the early 1990s.

package uk.org.russel.stuff

import groovy.transform.CompileStatic

@CompileStatic
class Factorial_Groovy {

 static BigInteger iterative(Integer n) {
 if (n < 0) {
 throw new IllegalArgumentException(
'Argument must be a non-negative Integer.')
 }
 iterative(n as BigInteger)
 }

 static BigInteger iterative(Long n) {
 if (n < 0) {
 throw new IllegalArgumentException(
 'Argument must be a non-negative Long.')
 }
 iterative(n as BigInteger)
 }

 static BigInteger iterative(BigInteger n) {
 if (n < 0G) {
 throw new IllegalArgumentException(
'Argument must be a non-negative BigInteger.')
 }
 def total = 1G
 if (n > 1G) { (2G..n).forEach{total *= it} }
 total
 }

}

Listing 6
February 2016 | Overload | 29

FEATURE RUSSEL WINDER

The idea of writing one test method for each test case is
fine in principle. Actually it is a very, very good idea.
However the idea of manually writing one test method
for each test case is clearly a very, very silly one.
Very Groovy. And very much a return to the sUnit/JUnit3 sort of thinking
in that inheritance is used to deal with marking classes that are test code,
and method names are important: Spock assumes all except some specific
method names are test methods, feature method in Spock nomenclature.
Have we lost anything by not using annotations to specify test methods?
Not really. Have we gained anything using Groovy? Apart from a much
nicer way of expressing BigInteger literals, arguably not – except that
we can use Spock. Has Spock brought something to the case. Definitely.
The whole naming and structuring of tests is revolutionized. Assuming
methods are test methods cleans things up, but the real win is that Spock
steps away from the traditional test method structure. Instead, Spock uses
a block structuring of test methods to give much more of an obvious
Arrange–Act–Assert structure. Labels introduce blocks of code. Expect
blocks are sequences of Boolean expressions that are assertions about the
state – a mix of act and assert. when/then block pairs provide an action
separate from the assertion. In this last case we are seeing the Spock way

of specifying that an exception is expected. If nothing else the code reads
much more easily and enables both TDD- and BDD-style thinking about
tests.

Of course, there is a lot more to Spock that makes it the framework of
choice for Java and Groovy codebases – also possibly Scala, Ceylon, and
Kotlin codebases. Let us delve into arguably the most important.

Getting parameterized: the Spock variant
The idea of writing one test method for each test case is fine in principle.
Actually it is a very, very good idea. However the idea of manually
writing one test method for each test case is clearly a very, very silly one.
We should be getting the framework to write the methods for us given
input of a table of test cases. Data-driven testing is a very good idea, and
any framework that does not support this cleanly, with easy use, is clearly
not fit for purpose.

TestNG has ‘data providers’ which work very well. JUnit has
‘parameterized tests’ which are a little less nice than TestNG data
providers but can achieve more or less the same thing.8

Listing 8 is an extended version of a test for the Java iterative factorial
implementation, using some of the power of Spock. Here we can see the
power associated with use of Groovy:

 Method names can be arbitrary strings.

 Operator definition allows a nice syntax for internal DSLs giving:

 a tabular structure of data (as in the first test method); and

 providing an iterable over which to iterate (as in the second
method).

In the second method the iterable need not be a literal, it can (and usually
is) just a variable referring to a computed iterable. This allows for very
powerful test-driven testing.

The Spock features are:

 the where clause which enforces the iteration structure over the
iterable providing data.

 the @Unroll AST transform, which causes Spock to rewrite the
code creating one test method per entry in the iterable using the
method as a ‘template’.

So the code as written represents 12 test methods, with the name of each
of them incorporating the value of the data that the method was generated
for – this is what the #i in the method name does for us. Without the
@Unroll the test still works but it is just a single test method with
iteration – not as good as the situation with the @Unroll.

This is surely jump up and down for joy impressive?

package uk.org.russel.stuff

import spock.lang.Specification

import static
 uk.org.russel.stuff.Factorial.iterative

class Test_Factorial_Spock_Groovy
 extends Specification {

 def zero() {
 expect:
 iterative(0) == 1G
 }

 def one() {
 expect:
 iterative(1) == 1G
 }

 def seven() {
 expect:
 iterative(7) == 5040G
 }

 def minusOne() {
 when:
 iterative(-1)
 then:
 thrown(IllegalArgumentException)
 }
}

Listing 7

8. For anyone trying to undertake data-driven testing, TestNG data
providers are a much nicer tool than JUnit4 parameterized tests. This
is a good reason for using TestNG over JUnit4. Of course Spock is
even better than TestNG, so the only choice is Spock.
30 | Overload | February 2016

FEATURERUSSEL WINDER

there is just so much text here, especially
compared to the Spock version. Java is a

verbose language, and here it shows
Getting parameterized: the TestNG Variant
So as to ‘prove’ the Spock way of doing things is superior in all ways, it
is necessary to show an alternative. To date we have seen JUnit4 codes,
but with comments that ‘TestNG is better’. So now is the time for a
TestNG example. Listing 9 is a test of the iterative factorial function
using TestNG and its data providers.

This creates 12 distinct test methods, just as the Spock version did.
However, for me, there is just so much text here, especially compared to
the Spock version. Java is a verbose language, and here it shows. Coding
this TestNG code in Groovy doesn’t help that much because of the use of
arrays and the annotations. Much as I used to love TestNG for testing, I
have deserted its use for use of Spock.

Getting parameterized: the JUnit4 variant
I suggest we just do not go here. JUnit4 parameterized tests relies on use
of public classes and so you have to have one test per file. In this case we
would have to have two files (one for positive values, one for negative
values) with most of the content the same. Let us leave this as an exercise

for the reader. I can assure you that after just
a short while, you will agree that the TestNG
way is far superior to the JUnit4 way. The
only moot point will be whether the TestNG
approach is coming anywhere close to the
readability, and efficacy of the Spock
approach. Not so much a moot more a
forgone conclusion. Spock long and prosper.

Mocking the code under test
Some people like to use mocks when unit
testing, and perhaps a bit when integration
tests.9 Other claim that any use of mocks in
any form of testing misses the point about
what testing is and what testable software
structuring is. We shall ignore this entire
debate for the purposes of this article.

So why this little section? JUnit3, JUnit4,
and TestNG have no notion of mock built in
to t he f r amework . In s t ead the re i s
EasyMock, JMock, Mockito, an entire
plethora of mocking frameworks, some of
which are not at all bad. Spock though has
absorbed directly, earlier work on mocks in
a Groovy context: Groovy being a dynamic
language, i t is incredibly easy to do
mocking, monkey patching, stubs, fakes,
spies, etc., etc. So whilst mocking is a ‘big
deal’ in Java, hence many sophisticated
mocking frameworks using all sorts of
(bizarre) reflection techniques,10 mocking in
a dynamic language is actually rather easy –

but still benefits from a formalized framework, cf. unittest.mock in
Python.

The point here is that dynamic languages are great languages for writing
testing frameworks, whereas things can get rather complicated in static
ones. Groovy is a splendid base for Spock, and Spock makes most
excellent use of Groovy and its capabilities.11

Conclusions
I expect that you are already impressed by Spock and want to use it for all
Java (and Groovy) code testing. Many people working on the JVM have
had the Spock revelation, and I hope there will be more articles on Spock

9. Anyone found using mocks as part of what they claim is system or end-
to-end testing, clearly need some re-education.

10. Java’s reflection system exists, but is not really that good.
11. The real reason for this section is to be a bit of a tease for a future

article.

package uk.org.russel.stuff

import spock.lang.Specification
import spock.lang.Unroll

import static uk.org.russel.stuff.Factorial.iterative

class Test_Factorial_Spock_Parameterized_Groovy extends Specification {
 @Unroll
 def 'iterative(#i) succeeds'() {
 expect:
 iterative(i) == r
 where:
 i | r
 0 | 1G
 1 | 1G
 7 | 5040G
 12 | 479001600G
 20 | 2432902008176640000G
 40 | 815915283247897734345611269596115894272000000000
 }
 @Unroll
 def 'iterative(#i) throws exception'() {
 when:
 iterative(i)
 then:
 thrown(IllegalArgumentException)
 where:
 i << [-1, -2, -5, -10, -20, -100]
 }
}

Listing 8
February 2016 | Overload | 31

FEATURE RUSSEL WINDER
in the pages of this august journal.12 Certainly I have a few ideas for more
articles, some of which will expand on the Spock theme.

Obviously the set of available testing frameworks associated with the
JVM is much, much larger than I have set out here, there is ScalaTest,
ScalaCheck, Specks,… the list goes on. In the main though people tend to
use Scala frameworks for Scala code, Ceylon frameworks for Ceylon
code, and by habit JUnit (or TestNG) for Java code. Many are though now
using Spock for any Java or Groovy code. The point here is that Groovy
and Java have a special relationship in that Groovy uses the Java data
model directly whereas Scala, Ceylon, Kotlin do not – though these other
languages are able to inter-work with Java easily (so as to access the Java
Platform in its entirety), but there is an adaption layer. This is not the case
with Groovy. Thus Spock, JUnit TestNG are in direct competition for
testing Java and Groovy code. For me, Spock wins, hands down. Many
others believe the same thing.

Places to look
This is a list of links (checked on 2 Jan 2016) of places for further
information about Spock and the other technologies mentioned in this
article:

 Java’s homes: https://www.java.com, http://openjdk.java.net/

 JUnit’s home: http://junit.org/

 TestNG’s home: http://testng.org/

 Groovy’s home: http://www.groovy-lang.org/

 Spock’s home: http://spockframework.org still redirects to the now
defunct Googlecode project area.

Spock’s documentation is at http://docs.spockframework.org/
which redirects to a GitHub Pages area.

The project is active at GitHub https://github.com/spockframework.

Acknowledgements and thanks
Thanks to Frances Buontempo and the anonymous reviewers for various
comments and feedback on an earlier version of this article. All the typos
were fixed, but that doesn’t mean there are none left! Most of the points
of content led to updates to the article, but one or two I chose not to take
on board. The ‘ignored’ topics raised lead to quite long points, that may
end up as short articles in the future.12. I think I already did the August ‘joke’.
32 | Overload | February 2016

package uk.org.russel.stuff;

import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import static org.testng.Assert.assertEquals;

import java.math.BigInteger;

import static uk.org.russel.stuff.Factorial.iterative;

public final class Test_Factorial_TestNG_DataProvider_Java {
 @DataProvider
 private final Object[][] positiveData() {
 return new Object[][] {
 {0, BigInteger.valueOf(1)},
 {1, BigInteger.valueOf(1)},
 {7, BigInteger.valueOf(5040)},
 {12, BigInteger.valueOf(479001600)},
 {20, new BigInteger("2432902008176640000")},
 {40, new BigInteger("815915283247897734345611269596115894272000000000")}
 };
 }
 @DataProvider
 private final Object[][] negativeData() {
 return new Object[][]{{-1}, {-2}, {-5}, {-10}, {-20}, {-100}};
 }
 @Test(dataProvider = "positiveData")
 public void positiveArgumentShouldWork(final long n, final BigInteger expected) {
 assertEquals(iterative(n), expected);
 }
 @Test(dataProvider = "negativeData", expectedExceptions = {IllegalArgumentException.class})
 public void negativeArgumentShouldThrowException(final long n) { iterative(n); }
}

Listing 9

https://www.java.com, http://openjdk.java.net/
http://junit.org/
http://testng.org/
http://www.groovy-lang.org/
http://spockframework.org
http://docs.spockframework.org/
https://github.com/spockframework

	Overload131-final2.pdf
	Be lucky
	Defining Concepts
	On Zero-Side-Effect Interactive Programming, Actors, and FSMs
	Template Programming Compile Time Combinations & Sieves
	Classdesc: A Reflection System for C++11
	And the winners are...
	QM Bites : Maximising Discoverability of Virtual Methods
	So Why is Spock Such a Big Deal?

