

Start a free 30-day trial
jb.gg/cpp-accu

A Power Language
Needs Power Tools

ReSharper C++
Visual Studio Extension
for C++ developers

CLion
Cross-platform IDE
for C and C++ developers

AppCode
IDE for iOS
and OS X development

Smart editor
with full language support
Support for C++03/C++11,
Boost and libc++, C++
templates and macros.

Code generation
and navigation
Generate menu,
Find context usages,
Go to Symbol, and more

Reliable
refactorings
Rename, Extract Function
/ Constant / Variable,
Change Signature, & more

Profound
code analysis
On-the-fly analysis
with Quick-fixes & dozens
of smart checks

GET A C++ DEVELOPMENT TOOL
THAT YOU DESERVE

October 2016 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Determinism: Requirements vs Features
Sergey Ignatchenko considers how to define
determinism.

8 Eight Rooty Pieces
Patrick Martin demonstrates eight different ways to
find a square root.

13 Polymorphic Comparisons
Robert Mill and Jonathan Coe introduce a template
utility for polymorphic comparisons.

16 C++ Synchronous Continuation Passing
Style
Nick Weatherhead explains a continuation passing
style for synchronous data flow.

20Attacking Licensing Problems with C++
Deák Ferenc presents a framework for C++ code
obfuscation.

32Afterwood
Chris Oldwood considers lessons from comedy
partnerships for programmers.

OVERLOAD 135

October 2016

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.
uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 136 should be
submitted by 1st November 2016
and those for Overload 137 by
1st January 2017.

EDITORIAL FRANCES BUONTEMPO
Ain’t that the truth?!
Witnesses promise to tell the truth, the whole truth
and nothing but the truth. Frances Buontempo
wonders what truth actually means.
It is sometimes difficult to tell if two things are
identical or equivalent. Other times, it is much easier.
If these two pages’ worth at the start of Overload 135
were topical based insights and opinions, it would
count as an editorial of sorts. If, instead, it were me
trying to unpack what counts as equivalence

specifically, or more generally, truth we could be here for a very long
time without an editorial. I shall therefore avoid too much philosophy and
start with Booleans. Clearly, there is more than one: otherwise we
wouldn’t say ‘Booleans’. George Boole was an English mathematician in
the 19th century. He started his career as a school teacher in Yorkshire,
but ended up in academia, despite never obtaining a degree. He published
many papers, starting with differential equations, but more famously
contributing towards the algebra of logic. This algebra operates on two
symbols, {0, 1} or an equivalent, combined with AND and OR
connectives or operations. Different symbols can be used – the structure
of the algebra will not change. Sometimes extra operations, like NOT are
introduced. Shannon proved this algebra’s use for describing switching
circuits, making it “indispensable in the design of computer chips and
integrated circuits” [Wolfram].

Some programming languages have a Boolean type, often called bool,
in his memory. One suspects Boolean is too much typing, and shorter
names like long, or char tend to be preferred. The word boole may
have the same number of letters as short, but much programming tends
to be afflicted by a grand vowel shortage, as often evidenced by variables
names or function names. One random selection of code on the internet
quickly found a function to draw a line in a cube called cubLine
[RosettaCode]. Mocking code is all too easy though, and to be fair
modern IDEs are making this vowel shortage less prevalent, though some
languages tend to produce terser code than others and we tend to be stuck
with keywords. My personal history of encounters with truth types begins
with the very ‘shouty’ BOOLEAN in MFC, interspersed with some macros
defining BOOL ending up with bool. Never work on a code base that has

 #define TRUE 0
 #define FALSE 1

I do seriously wonder where the ‘e’ went though; bool it is then.

Do we actually require a Boolean type? If we need to perform a set of
statements conditionally, we need a way to do a high level equivalent of
a jump instruction. Even if we created a fictional language that just had
JZ – jump on zero – the comparison with zero would be made, and the

jump performed if the value were zero. This may
not requ i re a Boolean type , but i s
mathematically, or at least philosophically,

equivalent to checking the truth of a

statement. Some languages do not have any types, and some are quite
loose where they do have a type system. It is rather too easy to coerce
almost anything to a Boolean in C++. Previously people resorted to the
so-called safe bool idiom [Safe Bool], if they remembered, which
avoided you being able to compare two totally disparate things which
could be treated as bools, such as an int and a std::basic_ios.
C++11 introduced explicit conversion operators [Stroustrup], providing
a neater solution to the problem.

I was amused to find the phrase ‘Truthy’ used in JavaScript a while ago.
The Mozilla Developer Network states that a truthy value is one “that
translates to true when evaluated in a Boolean context. All values are
truthy unless they are defined as falsy (i.e., except for false, 0, "", null,
undefined, and NaN)” [MDN]. Falsy has of course correctly omitted the
‘e’. Falsey would be incorrect and silly. Objects are supposed to be True,
or is that TRUE, or true rather, when ToBoolean is called, but
document.all has unique behaviour, or rather a “wilful violation of the
ECMAScript standard” [MDN] for legacy code. Aside from this quirk,
since all (other) objects are truthy,

 new Boolean(false)

is truthy [Padolsey]. Truthy might be more explicit and honest than C++
accidental coercions, however being able to create a new false object
thereby making it true is of note. I shall resist commenting on Variant
Bool types with a TRUE value of -1. (Thanks to Chris Oldwood for the
reminder.) The truth can be twisted and blurred with great ease in any
context. A recent suggestion that a claim in the media was “100% false”
just emphasises the fuzziness that happens. What status would a 50%
false statement have? Can something really be partially true? First order
logic might be clearer; as we move to higher order logic things become
less well-behaved [HOL].

Boolean algebra has defining laws – commutativity, associativity and so
on – making it an algebra. When combined with other theorems such as
De Morgan’s laws

!(A&B) = (!A) | (!B) and !(A | B) = !A & !B,

proofs of equivalence between various statements can be made. More
generally, a simple truth table allows you to prove equivalence between
expressions, thereby simplifying them. Many of us have resorted to
symbolic manipulation to neaten up some confusing nested ifs and
elses in code, I’m sure. If the derivation of an equivalent formulation is
correct then the code will have identical behaviour; however, when faced
with a tangled mess it is safest to have tests to verify this, as we all know.
Though Boolean logic works precisely, real code has a tendency to take
on a life of its own. As the quote goes “No obvious deficiencies.”

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad's BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2016

EDITORIALFRANCES BUONTEMPO
I have avoided asking what is meant by truth so far. Some may claim
mathematics deals with truth, though it is less controversial to say
mathematics and logic give us ways to deduce equivalence. If A B and
A is given, B may be concluded. Mathematics also gives us a precise
definition of equivalence, though I shall pull back from a maths lesson on
posets, cosets and the like. Theorems allow us to draw further conclusions
from a given starting point. On many occasions we arrive at a conclusion
which may run against our intuition. We may not have discovered a new
truth per se, but discovering something we believed does not hold true can
be startling and exciting in equal measures. That there are more real
numbers than whole numbers, even though there are infinitely many of
each usually gives people pause for thought. There are many other
examples. Our intuition is often incorrect. There are a variety of ways to
prove something mathematically. There are a variety of ways that people
attempt to prove things; authority, intimidation, tautology, stubbornness,
… [Wilson] The toolkit of sound proof is large. We can use proof by
contradiction, for example starting with the assumption that 2 is rational,
we can conclude something inconsistent and are thereby forced, if we are
reasonable, to accept that 2 is irrational. Othertimes, a simple
counterexample will work. All primes are odd. Ah, apart from 2. So not
all primes are odd. People do invoke the phrase “The counterexample that
proves the rule,” though they are missing the point somewhat. I personally
love proof by induction, though it can take a while to realise why it works,
and several initial attempts accidentally end up assuming that which was
to be proved on-route. Using logical equivalence, for example that A B
is identical to !A !B can inspire a different approaching to proving (or
disproving) a given statement, in this case a proof by contraposition.
There are many other approaches to proofs. For those interested, some
material is available based on an Open University proofs workshop
[Stibbe]. We still haven’t defined identical of course. Furthermore, do any
of these proof methodologies give us truth? I shall leave these questions
as an exercise for the reader (proof by boredom?) and stick with the easier
claim that such approaches certainly can uncover incorrect intuition and
falsify conjectures.

Moving on from Mathematics, the essence of science could be regarded
as falsifiability, circumventing the need to define truth or prove anything
is true. Karl Popper [Standford] was an eminent philosopher of science.
He insisted that a statement or model needed to be falsifiable in order to
be scientific. Other types of statements are available but cannot be
regarded as scientific. If one observation could falsify a statement, such
as all swans are white, this is a genuine theory. On the other hand, he held
that Freud’s psychoanalytic ‘theories’ were unfalsifiable stories, and had
similar views on Marx’s account of history. Neither is science. Though
both may seem to provide a model that fits observations, there is no way
to prove them incorrect so they must remain as fiction rather than science.
When we debug a chewy problem we often have a spark of intuition
which we weave into a story to explain the observed behaviour. We must
then try specific observations to ascertain whether our tale is in fact
correct, so our tale must also relate to things we can observe. The
alternative might be just hitting things with a hammer until they work.
This is a tongue in cheek way to disambiguate science and engineering
though. If our code has worked fine up to now, this is a falsifiable
statement. We can keep observing and see if this continues. We can even
try to make it break, say under load. We can never conclude our code is
verifiably correct. “Conclusively falsifiable is not conclusively verifiable.”
[Standford]

Some branches of computing use proofs of correctness, though these
appear to be quite niche. In fact, formal verification strictly speaking
would require a proof of termination which takes us to the halting
problem. This can be avoided by proving partial correctness – that if an
answer is returned, it will be correct. Does this mean all program of the
form

 while (true) ;

are partially correct? It is often joked that mathematics tends to be exactly
and precisely correct but not much use. There are many similar jokes, but
the physicist and engineer lost in a hot air balloon over a field, asking a
mathematician where they are, are fabled to be given the correct, but

useless answer, “In a hot air balloon.” Precisions and proofs are useful, in
the right context. There is more to life than a stick utilitarian stance
though. Some things are beautiful, or surprising, or just fun. Some things
end up being useful at a much later date. Complex numbers might initially
seem like a very abstract concept, but they can make the mathematics of
electronic circuits easier. This is not why they were introduced. Starting
with the observation that the square of any natural number is a natural
number, and the square of any integer is the natural numbers plus zero,
means negative numbers have no square root. Suppose they do. Call
(-1) = i and see what happens. You could ask why i, what’s wrong with
j, or even k. You could use all three, and let ijk = -1, giving what’s known
as the Quaternions, arriving at non-commutative numbers. Asking
‘Why?’, or ‘What if?’, can end up at some surprising and counter-intuitive
places.

In order to prove something mathematical you often need to start with one
or two specific examples to form some intuition before proceeding more
formally. Indeed, that can provide a counterexample. Intuition, though
often incorrect, can be useful. With practise in a given realm, you can
sharpen your intuition. Mechanics can often diagnose a potential cause of
a problem, by listening, or even smell. When our code goes wrong, we do
sometimes have a gut feeling about the area to look in or the sort of
problem to go hunting for. We need to avoid using one hunch as a tool to
apply to everything else in sight though. If we’ve been stung by an off-by-
one error, we can then tend to assume this is the cause of anything else
odd we see. When you have a hammer, everything looks like a nail. Our
circle of influence can limit our approaches too. If everyone around us
insists on unit testing, we will be horrified if we end up meeting people
who don’t unit test. If we follow a group of like-minded people on
Twitter, and thought Brexit was a terrible idea, we’d be taken aback when
the referendum voted for Brexit. We do end up surrounding ourselves
with people we tend to agree with, listening in echo chambers. We can
also end up searching out references that back up our position.
Confirmation bias creeps in to many areas. People seek out positive data,
and disregard negative data. ‘See I told you so,’ when one example fitting
a theory presents itself, but never an “Oh, perhaps I was incorrect” when
falsifying data rears its head. We should avoid echo chambers, be aware
of our assumptions, and realise we aren’t always right. Like-minded
people can spark creativity though, and sometimes you need some basic
assumptions to even get things going. Intuition can be the starting point of
ideas too. History (or Gödel) has shown the strict logic cannot ever give a
complete and consistent framework. Einstein said,

There is no logical path leading to these ... laws.
They can only be reached by intuition, based
upon something like an intellectual love of the
objects of experience. [Stanford]

Do what you love, ain’t that the truth.

References
[HOL] https://en.wikipedia.org/wiki/Higher-order_logic

[MDN] https://developer.mozilla.org/en-US/docs/Glossary/Truthy

[Padolsey] http://james.padolsey.com/javascript/truthy-falsey/

[RosettaCode] http://rosettacode.org/wiki/Draw_a_cuboid#Perl

[Safe Bool] https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/
Safe_bool

[Standford] http://plato.stanford.edu/entries/popper/

[Stibbe] http://www.shirleenstibbe.co.uk/proofs-2/4557195004

[Stroustrup] http://www.stroustrup.com/C++11FAQ.html#explicit-
convertion

[Wilson] http://jwilson.coe.uga.edu/emt668/emat6680.f99/challen/proof/
proof.html

[Wolfram] http://mathworld.wolfram.com/BooleanAlgebra.html
October 2016 | Overload | 3

https://en.wikipedia.org/wiki/Higher-order_logic
https://developer.mozilla.org/en-US/docs/Glossary/Truthy
http://james.padolsey.com/javascript/truthy-falsey/
http://rosettacode.org/wiki/Draw_a_cuboid#Perl
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Safe_bool
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Safe_bool
http://plato.stanford.edu/entries/popper/
http://www.shirleenstibbe.co.uk/proofs-2/4557195004
http://www.stroustrup.com/C++11FAQ.html#explicit-convertion
http://www.stroustrup.com/C++11FAQ.html#explicit-convertion
http://jwilson.coe.uga.edu/emt668/emat6680.f99/challen/proof/proof.html
http://jwilson.coe.uga.edu/emt668/emat6680.f99/challen/proof/proof.html
http://mathworld.wolfram.com/BooleanAlgebra.html

FEATURE SERGEY IGNATCHENKO
Determinism: Requirements
vs Features
A program can easily be non-deterministic. Sergey
Ignatchenko considers how to define determinism.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

s was discussed in a blog post [NoBugs16] a few months ago,
determinism can have quite a few important practical uses, ranging
from replay-based regression testing, to low-latency determinism-

based fault tolerance, with production post-mortem in between.

In the very same post (as well as in Overload [NoBugs15a]) requirements
to achieve determinism were discussed; however, one point was left out
of the deliberations, and this is the question of ‘what exactly is the
definition of determinism our system needs to comply with, to achieve the
deterministic goodies mentioned above’. This article aims to provide
some analysis in this regard.

First of all, let’s mention that, in practice, at least three different types of
somewhat deterministic behavior can be observed; the differences
between them are related to changes which can break deterministic
behavior.

Types of determinism

Cross-platform determinism – an extremely difficult one
The most obvious form of determinism (and usually the one which comes
to mind when speaking about determinism without specifying further
details), is what I call cross-platform determinism. A program which is
cross-platform deterministic has the following properties.

Definition 1. A program in source code form is considered to be cross-
platform deterministic if and only if:

 When the source code of the program is compiled by several
different compilers across several different platforms, the resulting
executable produces exactly the same results given exactly the same
inputs.

 For those platforms where it cannot produce exactly the same
results, ideally such a program shouldn’t compile at all (or at least
should fail immediately after being started).

Notes:

 This should stand for all acceptable inputs

 Ideally, non-acceptable inputs should be filtered out by the
program (for example, asserted or ignored).

 If the program is interactive (i.e. it interacts with the world outside
itself), all the interactions with the outside world need to be
considered as program inputs.

 This also applies to non-deterministic system calls such as
‘current time’; see the discussion on ways to implement this in
‘Deterministic Components for Distributed
Systems’[NoBugs15a].

Factors breaking cross-platform determinism

Cross-platform determinism is the strictest definition of determinism I
know; not surprisingly, there are quite a few factors which can break it:

1. CPU compatibility issues. Just as one example – if the CPU has
non-IEEE-compliant floating-point arithmetic, it can easily break
cross-platform determinism. The same goes for CPUs with bugs
(such as an infamous Pentium FDIV bug). NB: even IEEE-
compliant floating point per se doesn’t guarantee determinism; see
‘Compiler compatibility issues’.

2. Compiler compatibility issues. It just so happens that compilers
can generate code which produces subtly different results depending
on the platform. In particular, some compilers are known to
rearrange floating-point calculations – which is not exactly correct
(as floating-point addition is non-associative due to non-linear
rounding); another example of problems relate to ‘what does the
compiler use for intermediaries’ [RandomASCII]. These issues are
also known to depend heavily on compiler settings .

3. Runtime library compatibility issues. Even standard libraries
leave quite a bit of leeway to implementers (at least in C/C++). Just
as one example – if we have a partially ordered collection (such as
multimap<>), then iteration over this collection doesn’t specify a
‘correct’ order for those items with equal keys; as a result, two
perfectly compliant implementations can produce rather different
results, breaking cross-platform determinism as specified above.
Floating-point libraries are known to introduce quite a bit of not-
exactly-matching behavior too.

4. C/C++: Reading dirty RAM, and other ‘Undefined Behavior’
stuff.

5. C/C++: Using pointers for anything except for dereferencing.
Especially dreadful in the presence of ASLR (Address Space Layout
Randomization), but has been seen to cause severe problems in other
cases too.

6. Multithreaded stuff. As a rule of thumb, multithreaded programs
as such are not deterministic. They can be made deterministic by
restricting the multithreaded model to certain limited patterns of
inter-thread interactions.
a. My (by far) favorite example of a deterministic multithreaded

program is having SHARED-NOTHING REACTORS as described in
[NoBugs15a] / [NoBugs16], with all the inputs of each
REACTOR separately considered as program inputs. This way,
we make each individual SHARED-NOTHING REACTOR

deterministic, effectively removing multithreading from scope.

A

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com
4 | Overload | October 2016

http://ithare.com
[Loganberry04]

FEATURESERGEY IGNATCHENKO

With such a long list of potential troubles, it
is no wonder that achieving cross-platform

determinism is extremely difficult
b. SHARED-NOTHING REACTOR is not the only possible way to
ensure determinism. Strictly speaking, even mutex-based inter-
thread synchronization can be made deterministic; however, to
do it, we’ll need to consider the whole state of the object
protected by mutex to be program input at this point, which will
reduce the practical uses of this approach to a pretty much empty
set.

With such a long list of potential troubles, it is no wonder that achieving
cross-platform determinism is extremely difficult (at least for C/C++). In
practice, it has been observed that it is items #2 (compiler compatibility)
and #3 (runtime library compatibility) which tend to cause the most
problems. Item #1 is usually not that bad (though YMMV), and items #4–
6 are in our hands, so we can avoid them.

Which leads us to the following observation (which is well-known in
gamedev circles):

Achieving cross-platform determinism for a sizeable program ranges
from ‘extremely difficult’ to ‘next to impossible’

However, taking a look at the list above (and our notes about things which
tend to cause the most trouble), we can try to limit our deterministic
appetites to the very same platform – and even to the very same
executable.

Same-executable determinism – the easiest one
Let’s change our Definition 1 to the following

Definition 2. A program in source code form is considered to be same-
executable deterministic if and only if:

 When the source code of the program is compiled on a single
compiler for a single platform, using the same libraries, the resulting
executable produces exactly the same results given exactly the same
inputs.

Note: the same notes as for Definition 1 still apply.

As follows from Definition 2, the same-executable deterministic program
no longer suffers from breaking-determinism factors #1 (well, save for an
occasional FDIV bug), #2, and #3. This makes it much more realistic for
being implemented in practice (and yes, it has been done more than once
too).

Same-platform determinism against minor changes –
in-between one
To implement some features (mostly this applies to Regression Replay
Testing), a same-executable determinism is not sufficient; what we need
is something along the lines of the following Definition 3:

Definition 3. A program in source code form is considered to be same-
platform deterministic against minor changes if and only if:

 It is same-executable deterministic, and

 When relatively small changes to the source code are made (creating
‘new’ source from the ‘old’ one), and these changes break
determinism in an unmodified piece of code, the number of changes

to the source code which are necessary to restore determinism (so
that the ‘new’ executable produced with the same platform +
compiler + libraries but produced out from the ‘new’ code, behaves
exactly as the ‘old’ one with regards to unmodified portions of the
code), is relatively small too.

Note: same notes as for Definition 1 still apply.

The second condition in Definition 3 is necessary to deal with scenarios
when minor changes to the code break determinism (for example, it may
happen because of the compiler using a different reordering of floating-
point operations for different executables); however, such occurrences of
non-determinism should be identifiable and locally fixable.

Of course, any definition which says something is minor is inherently
vague, and yet in practice I’ve seen these kind of things working
reasonably well. Usually, it goes along the following lines:

 the code is maintained as almost cross-platform deterministic. More
specifically, it is written with the intent to be 100% cross-platform
deterministic – and as soon as any non-determinism is spotted, it is
fixed. This is not that difficult; the real difficulty lies in getting from
almost cross-platform determinism to real cross-platform
determinism (and the main obstacle to this approach is that spotting
rarely occurring non-determinism is difficult, especially when it
comes to floating-point stuff – because it doesn’t manifest itself
often).

 when we have a need to exploit this type of determinism, we’re
always working with ‘old’ source code and ‘new’ source code. And
if non-determinism is spotted in ‘new’ source – it can (and should)
be fixed, just as any with other kind of non-determinism. More on
this in the ‘Replay-based regression testing’ section below.

One really simple example to illustrate this might go as follows. In our
‘old’ source code, we have something like

 double f(float a, float b, float c) {
 //do something
 return a + b + c; //(1)
 }

Usually, the formula is much more complicated than that, but this one will
do for our purposes. In fact, the line is highly likely to be non-
deterministic but we didn’t spot it (or didn’t care at that point). And let’s
assume (just for the sake of defining things more precisely) that the
compiler interpreted it as

 double f(float a, float b, float c) {
 //do something
 double tmp = (double)b + (double)c; //(2)
 return (double)a + tmp; //(2)
 }

Note that while this is a perfectly valid interpretation of our first sample,
it is not the only valid one. For example, a compiler might add b and c as
floats, and only then convert it to a double, or it might use a different
order of additions. Any such variation would produce almost the same –
but not identical – results.
October 2016 | Overload | 5

FEATURE SERGEY IGNATCHENKO

a compiler can rearrange things to use a
different kinds of intermediaries , or a
different order of floating-point additions
As a result, when we change some code near line (1) – for example, the
‘do something’ part, a compiler can rearrange things to use a different
kinds of intermediaries (because it has different registers available), or a
different order of floating-point additions (just because it felt that it would
allow for better use of a pipeline for this specific target CPU). As a result,
our new code can start to behave differently from the old one. As the
difference is about extreme corner cases, it may or may not pop up during
our testing. However, from the point of view of our Definition 3 (and in
particular, from the point of view of replay-based regression testing as
discussed below) we’re fine in both cases:

 if the difference didn’t manifest itself during testing, then for the
purposes of these specific tests, our code is still perfectly
deterministic (!). In other words, as long as we cannot observe that
the program is non-deterministic, in the context of specific input
vectors we don’t care about it.

 if the difference did manifest itself during the testing, it can be
identified, and the line (1) can be rewritten into two lines (2),
making the ‘new’ code deterministic (and consistent with the ‘old’
code too). Strictly speaking, this second property (consistency with
the old code) is not guaranteed; however, most of the time finding a
deterministic version of the new code which is equivalent to the old
one is perfectly feasible.

Deterministic goodies
Now, let’s list those goodies which we can get out of determinism – and
see which type of determinism is required for each one.

Deterministic lockstep etc.
Description. One common example of a reason to use determinism (in
particular, in games) is to produce exactly the same results across
different computers. In this case, it would be possible just to send the same
inputs across the network to all the computers (and for games, the inputs
are usually very small) and to get all of the computers to run exactly in
sync. One notable example of such a protocols is deterministic lockstep
[GafferOnGames].

Required Determinism. To make deterministic lockstep (and other
similar protocols) work across clients running on different platforms, we
need cross-platform determinism as defined in Definition 1 .
Unfortunately, it is rarely possible (and to the best of my knowledge, most
such attempts have failed).

Client-side replay
Description. Another common example of determinism-based features
(also coming from the gamedev world) is client-side replay. In such cases,
we record only the inputs of the game, and then replay it by simply
feeding the same inputs to the client.

Required Determinism. To make client-side replay work across clients
running on different platforms, we also need cross-platform determinism
as defined in Definition 1 .

Production post-mortem
Description. As described in [NoBugs15a], if we have deterministic
REACTOR, then we can write a log of all the events for that REACTOR.
Then, if something bad happens (like a crash or an assert failure), we have
not only the current state, but the whole history of the events which led to
the crash. We can replay this history in the comfort of a developer’s
machine to reproduce the bug 100% of the time because of the behavior
being deterministic (and a reproducible bug is pretty much a dead bug).

In practice, when saving the whole history is not practical (and it usually
isn’t ;-)), we can still have a circular buffer storing the last N seconds of
the program before the crash. While this doesn’t allow identification of
all the bugs out there (because the bug condition could have occurred
before those N seconds), for quite a few systems it still allows
identification of 80–90% of them.

Required Determinism. To make production post-mortem work, only
same-executable determinism (as defined in Definition 2) is necessary
(well, usually it is not a problem to store all the released executables).

Low-latency fault tolerance
Description. As described in [NoBugs15b], deterministic REACTORs
(with circular logging) can be used to achieve low-latency fault tolerance
(in a sense, it is ideologically similar to the now-discontinued ‘Virtual
Lockstep’ technique which was used by VMWare). Such determinism-
based implementation of fault tolerance allows latencies which are
inherently better than those of ‘Fast Checkpoints’.

Required Determinism. For determinism-based fault tolerance to work,
we only need same-executable determinism (as defined in Definition 2).
That’s because after the catastrophic server failure, we’ll use exactly the
same executable to achieve exactly the same results.

Replay-based regression testing
Description. As it was described in [NoBugs16], the same REACTORs
with input logging can allow the use of real-world inputs to test that
certain changes didn’t really change the behavior of the system. While
such testing is inherently limited to the testing of (a) refactoring and (b)
new features (and is not applicable to the testing of changes) – it can still
facilitate testing quite a few things in an extremely reliable manner (and
it is especially important as most of development is about new features).

The idea for such testing goes along the following lines:

 record all the program inputs while the old code runs in production
(usually this is done on per-REACTOR basis)

 make changes, producing new code (and a new executable)

 run a replay of the recorded inputs against the new executable, and
compare the results with those of the old code. Any changes indicate
that 100% regression is not achieved.

Required Determinism. To get the benefits from replay-based
regression testing, we need to have same-platform determinism against
minor changes as defined in Definition 3.
6 | Overload | October 2016

FEATURESERGEY IGNATCHENKO
In practice, this is often possible. While small changes can cause different
behavior (in particular, with floating-point order and intermediaries) – it
is usually not that difficult to fix them (in the case of floating-point issues
due to compiler optimizations, by removing ambiguities and enforcing the
behavior which was used by the old code, see example above). As soon as
the regression test passes, this floating-point disambiguation can be rolled
back if desirable; this can be done as a separate stage, and although it will
be breaking strict regression testing, with the change being trivial, it can
be reviewed for near-equivalence very easily.

Features-vs-determinism-type matrix
Now, we’re in position to summarize our findings in the following table:

Conclusions
We’ve analysed different types of determinism (as encountered in the real
world), and figured out which of these types of determinism are required
to obtain different benefits.

From a practical point of view, this means that while deterministic
lockstep and client-side replay are not usually feasible if multiple
platforms are involved, goodies such as replay-based regression testing,
production post-mortem, and low-latency fault tolerance are usually well
within reach.

References
[GafferOnGames] Glenn Fiedler, Deterministic Lockstep,

http://gafferongames.com/networked-physics/deterministic-
lockstep/

[Loganberry04] David ‘Loganberry’, ‘Frithaes! – an Introduction to
Colloquial Lapine!’, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[NoBugs15a] ‘No Bugs’ Hare, ‘Deterministic Components for
Distributed Systems’, Overload #133 (June 2016)

[NoBugs15b] ‘No Bugs’ Hare, ‘Server-Side MMO Architecture. Naïve,
Web-Based, and Classical Deployment Architectures’,
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-
and-classical-deployment-architectures/

[NoBugs16] ‘No Bugs’ Hare, ‘Modular Architecture: Client-Side. On
Debugging Distributed Systems, Deterministic Logic, and Finite
State Machines’, http://ithare.com/chapter-vc-modular-architecture-
client-side-on-debugging-distributed-systems-deterministic-logic-
and-finite-state-machines/

[RandomASCII] Bruce Dawson, ‘Floating-Point Determinism’,
https://randomascii.wordpress.com/2013/07/16/floating-point-
determinism/

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Same-
Executable

Determinism
(Definition 2) –

the simplest

Same-Platform
Determinism
against Minor

Changes
(Definition 3)

Cross-Platform
Determinism

(Definition 1) –
most

complicated

Deterministic
lockstep

Yes

Client-side replay Yes

Replay-based
regression testing

Yes Yes

Production post-
mortem

Yes Yes Yes

Low-latency fault
tolerance

Yes Yes Yes
October 2016 | Overload | 7

http://gafferongames.com/networked-physics/deterministic-lockstep/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-and-classical-deployment-architectures/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/

FEATURE PATRICK MARTIN
Eight Rooty Pieces
Finding a square root is a common interview
question. Patrick Martin demonstrates eight
different ways to find a root.
igh Some things we have to deal with...like interview questions.
Recently I’ve been interviewing candidates a bit more and naturally
some old coding exercises I’ve collected over time have come to the

fore, along with some impressions I’ve developed.

Let’s assume it’s that time in the interview when the candidate shows
signs of being suitable to step up to the next level. At this point it really
starts to matter whether the interviewer has prepared sufficiently well for
this eventuality. Therefore, a question that has several such plateaus to
provide some good challenge for the candidates who are on a roll would
be very useful. I’m also suggesting the topic should generate discussion
points so that in the initial 15 minutes that the candidate and I are forming
a mutual opinion, I will get (and generate) as representative an impression
as possible. Remember, the candidate is also interviewing you, and they
might well form an opinion if all you’re asking them to do is regurgitate
facts.

So are there interview questions that have genuine ‘breadth and depth’?1

Well, here’s a fun little question I’ve been carting along to interviews in
note form for some time that I aim to persuade you will generate
discussion points, and my notes have grown to either being

 a significant number of sheets of paper

 or one page of an entirely unusable font size

So, without further ado.

The question
Please implement the square root function
[Wikipedia_1] [monkeys_sqrt]

One thing I like about this question as that it’s really quite easy to run and
test even in some minimal web based online coding tool.

What one learns in asking this question
 First up: some people are really quite wary of sqrt() in this

context. I am not judging, let us be clear.

 There is a giant range in the comfort level for working through the
issues in implementing this deceptively simple function.

 People are generally wrong to be frightened of the problem.

They often surprise themselves when they reach the end.

 There are quite a few approaches that are recognisable.

5.000000 stages of shock.
It would be a fair point that there is a sneaky element of testing character
and resilience with this question. I am going to argue this is both
legitimate and worthwhile, based on my assertion that [i] it’s not that hard

and [ii] there is so much to discuss that running out of steam / time is not
that much of an issue in the wider scheme of things.

Nevertheless it seems people pass through shock and a number of other
stages when presented with this challenge: Denial, Anger, Bargaining,
Depression. I would like to think we can short-circuit this and skip straight
to Acceptance (and perhaps a little Fun?). Let’s dive in and see what I’m
talking about.

Initial unstructured points
The exercise typically goes through a number of phases, sometimes the
first of which is akin to scoping out the problem.

This can be a very revealing phase: demonstrating the candidate’s process
for collecting information. Amusingly, some make adequate assumptions
and plough on, because as we will see later: ‘double is just fine’2, whereas
some might ask about which arbitrary precision packages we’re allowed
to use.

Assuming we’re here though: here’s an incomplete list of things one
might want to touch upon

 what is the return type?

discussion points might be considering arbitrary precision

 what’s the input type?

discussion points – is it the same as the return type, what bit size is
the range, compared to the domain?2

 what happens for inputs of 1, > 1, < 1 or negative values?

is this going to influence your thinking on the approach you take?

 what is your criterion for accuracy?

 how about float denormal values inputs, results [Wikipedia_2]

 what about NAN, NaNQ, NaNS? [Wikipedia_3]

 ‘Oh hey, what do CPUs do?’ discussion points3

you may want to keep your powder dry when asked, so push it, and
pop it later

 finally, $bright_spark may well know the POSIX prototypes
[posix].

These prototypes address a lot of the above questions

 #include <math.h>
 double sqrt(double x);
 float sqrtf(float x);
 long double sqrtl(long double x);

S

Patrick Martin Patrick’s github repo was classified using a
machine learning gadget as belonging to a ‘noble corporate toiler’.
He can’t top that. Patrick can be contacted at
patrickmmartin@gmail.com.

1. Why are we using questions?
2. For IEEE 754 double, the maximum sqrt will exceed the maximum

value for IEEE 754 float, so this forces us to consider the same return
type as the input type.

3. These might be using dedicated FPU hardware or native CPU
commands. In the silicon itself, one might find GoldSchmidt’s method,
or Newton Raphson; Some Assembly Required [SAR] has a large
number of interesting comparisons, including old and modern native
SQRT instructions.
8 | Overload | October 2016

FEATUREPATRICK MARTIN

the name of the game here is to
get discussion points, any and all

means are acceptable
Eight approaches
So, having got past the initial stage of get to know the question, it’s
probably time to start writing code. Here follow eight implementations of
varying quality, nominally in C++.

Caveat
Please remember that for some of these implementations, it may be hard
to find canonical examples ‘out there’ of some of these algorithms. This
is because they are in fact a bit rubbish. The more ‘recognisable versions’
are pretty much shadows of the many already thoroughly written-up
versions available for research. Remember though, the name of the game
here is to get discussion points, any and all means are acceptable.

Alien technology
An additional benefit of these discussions is when a novel-looking
implementation arises, having some preparation under your belt will serve
you well in recognising a variant of one of the following principles and
steering the code/conversation in a more productive direction for
discussion points.

‘One liners’

Closed form FOR THE WIN
Explanation: closed form for the win!

 return exp(0.5 * log(val));

This hinges on the identity

log xy = y log x

and if we remind ourselves that the power that generates a square root is
0.5, and exp is the inverse of log

sqrt(x) == x1/2, log(exp(x)) == x

it all drops into place.4

Note that I did eliminate pow(x, 0.5) as a possible solution as that felt
a bit too much like cheating to me.

Search algorithms
This class of solution hinges on iterating upon a trial value until
convergence is attained – I’ve introduced a seed_root() function with
no explanation that returns a ‘good initial guess’ for sqrt() in order to
concentrate on the details. We’ll come back to seed_root() later on.

The Babylonian method or Hero’s method
The graphical explanation of this algorithm is: iterative search for square
root by successive reduction of difference in length between the 2 sides of
a rectangle with the area of the input value. [Wikipedia_4]:

pick side

derive other_side by A / side

if side == other_side: return side

else split the difference for the next side and loop

and hence Listing 1.

The loop is controlled by a test on whether we’re ‘near enough’ to the
answer, which may be a discussion point. Also note the mechanism for
generating a new trial value always narrows the difference between the
trial and trial / input.

Notable points:

 it’s quite possibly the only algorithm to be presented here that you
can implement using a piece of rope and a setsquare. See
[Wikipedia_5] for the classical Ancient toolset

 this algorithm is somewhat unique in that it can handle finding the
negative root if the trial value passed in is negative

 there is one more interesting fact we will discover shortly

Although there is the amazing Bablyonian Tablet YBC 7289 [YBC7289],
it’s hard to find a lo-fi image of this implementation so I persuaded a
12-year old to do it for me. Figure 1 shows a Hero’s Method
contemporary reimplementation for the value 23. We started with a trial
value of 6 and got the result 4.8 which is accurate to 0.08%.

Note the Babylonian tablet has sqrt(2) to 9 decimal digits of precision –
how did they do that?

Finding the root using Newton Raphson
Explanation: Newton Raphson [Wikipedia_6] searches for the value of x
yielding zero for x2 - value, (hence x2 = value)

Graphical explanation:

pick a trial value

search for the zero

by building the line passing through

the current trial output with the gradient

of the function at that point

 – a numerically estimated gradient will do, for discussion points.

the intersection of that triangle with zero is the new trial

exit when desired accuracy attained

Listing 2 is one interpretation.

Listing 1

double my_sqrt_bablyonian(double val) {
 double x = seed_root();
 while (fabs((x * x) - val) > (val * TOLERANCE))
 {
 x = 0.5 * (x + (val / x));
 }
 return x;
}

4. When multiplied, powers are added, hence sqrt is pow(0.5). Two very
good examples of working through this identity are available at [SO_1].
October 2016 | Overload | 9

FEATURE PATRICK MARTIN

Having encountered the two methods
independently, I missed the
equivalence between them until I took a
look at the iteration values
For discussion points see also the related Householder methods
[Wikipedia_7]

Newton Raphson with a closed form identity for the gradient
Now, some may know that there is a very simple result d(x2)/dx = 2x for
the gradient that is needed for Newton Raphson and hence plugging in the
closed form result for dy/dx, we can skip some typing to yield this (see
Listing 3).

Note the original expression containing the gradient:

double gradient = (((x * 1.5) * (x * 1.5)) - ((x * 0.5) * (x * 0.5)));

This is the lazy man’s version of calculating the gradient around the
domain value x using the values at x +/- b.

(x + b)2 - (x - b)2 / 2b

 x2 + 2bx + b2 - x2 + 2bx - b2 / 2b

 2x

If b were a constant this would not scale with the value of x; however, b
can be substituted by x/2 and we recover the initial gradient calculation,
and hence an equivalent expression for the closed form expression.

Confession time: I first picked 0.5 * x and 1.5 * x intuitively, having been
hand-bodging numerical estimates into code for some time now, so I
didn’t think too hard about it (this time around) and serendipitously hit a
solution that can be transformed using simple algebra into the closed form
solution.

3.0, 2.0 or 1.0 methods?
So far the last 3 solutions have used identical outer loops, merely with
different expressions for generating new trial values in the middle. Let’s
take a closer look at that expression: with the closed form for the gradient
we get this expression:

x = x - ((x * x - value) / (2 * x));

 x = 0.5 * (2x - (x - (value /x)))

 x = 0.5 * (x + (value / x))

This is the Hero’s method expression, so the final notable point about
Hero’s method is that it’s a condensed version of the more taxing Newton
Raphson approach.

Confession time
Having encountered the two methods (Babylonian and Newton Raphson)
independently, I missed the equivalence between them until I took a look
at the iteration values.

Another confession – even with the mathematical equivalence, there was
still a difference as the version just shown has an issue: it fails to locate
values for roots above sqrt(std::numeric_limits::max()). This is
due to an overflow in the expression to generate the new trial value.

The fix – perhaps unsurprisingly enough – is thus:

 - double x = seed_root();

 + long double x = seed_root();Figure 1

Listing 2

double my_sqrt_newtonraphson(double val) {
 double x = seed_root();
 while (fabs((x * x) - val) > (val * TOLERANCE))
 {
 // x * x - value is the root sought
 double gradient =
 (((x * 1.5) * (x * 1.5)) -
 ((x * 0.5) * (x * 0.5))) / (x);
 x = x - ((x * x - value) / gradient);
 }
 return x;
}

Listing 3

double my_sqrt_newtonraphson(double val) {
 double x = seed_root();
 while (fabs((x * x) - val) > (val * TOLERANCE))
 {
 // x * x - val is root sought
 x = x - ((x * x - val) / (2 * x));
 }
 return x;
}

10 | Overload | October 2016

FEATUREPATRICK MARTIN

If this is found in the wild it would
probably be best to put it out of its misery
Another set of discussion points arise from the necessity of introducing
the long version of the type in the algorithm. Is this choice leading to an
implicit conversion in the return statement a maintenance wart? What if
we need this to be a generic algorithm, parameterised on the input type?

Slow but sure (?)

A range reduction approach
Graphical explanation: a range reduction approach which aims to halve
the range [upper, lower] upon each iteration (does not rely upon a
particularly good initial guess, though the bounds do need to be ordered).
Newton Raphson / Hero can be proven to converge quadratically
[Wikipedia_8], whereas this approach effectively converges linearly,
hence it requires many more iterations. The algorithm takes 30 iterations
for a double sqrt as achieving over 10 digits of decimal precision will
typically require approximately 30 halvings of the interval. (See
Listing 4.)

If this is found in the wild it would probably be best to put it out of its
misery. The possible benefit of this is that candidates less confident of
their mathematics will be able to implement this by concentrating purely
upon the logic of searching.

Scan and step reduction
This is a very naive guess step and scan approach, reversing and
decreasing the step on each transition from above to below. Feed it a
decent enough initial guess and it will work its way towards the solution,
as it is another linearly convergent solution. (See Listing 5).

‘Homage to Carmack’ method
Finally, the origin of seed_root() can be revealed. Yes, just for fun, an old
example of a very fast approximate inverse square root. Here is the
obligatory xkcd reference [xkcd_1]. This still works (on Intel), and there
is also a good write-up of how this works [Wikipedia_9]. Note there are
other values for the magic value than 0x5f375a86 – which oddly get more
search hits in Google(?!!).

The original code, sadly has comments and #ifdef rendering it
unsuitable for printing in a family oriented programming publication, so
Listing 6 is a modified version from Stack Overflow [SO_2], and Listing
7 is a version supporting double, with the appropriate 64-bit magic
value.

The result is not super accurate, but works in constant time and can be
used as a seed into another algorithm.

For the most condensed explanation as to how that even works, see the
closed form solution and consider that the bits of a floating point number
when interpreted as an integer can be used to approximate its logarithm.

‘Also ran’
In the grand tradition of sort algorithms [Wikipedia_10], one could
always break the ice by discussing solutions that make brute force look
cunning.

Listing 4

double my_sqrt_range(double val) {
 double upper = seed_root(value) * 10;
 double lower = seed_root(value) / 10;

 double x = (lower + upper) / 2;
 int n = 1;

 while ((n < RANGE_ITERATIONS) &&
 (fabs((x * x) - value) > (value * TOLERANCE)))
 {
 if (((x * x) > value))
 upper = x;
 else
 lower = x;
 x = (lower + upper) / 2;
 n++;
 }
 return x;
}

Listing 5

double my_sqrt_naive(double val) {
 int n = 1;
 double x = seed_root(value) / 2;
 double step = x / 4;
 double lastdiff = 0;
 double diff = (x * x) - value;

 while ((n < RANGE_ITERATIONS) &&
 (fabs(diff) > (value * TOLERANCE))) {
 if (diff > 0)
 x -= step;
 else
 x += step;

 if ((diff > 0) != (lastdiff > 0)) {
 step = step * 0.5;
 }
 lastdiff = diff;
 diff = (x * x) - value;
 }

 return x;
}

October 2016 | Overload | 11

FEATURE PATRICK MARTIN
brutesqrt
 d = min_double()
 while true:
 if (d * d == input) return d
 d = next_double(d)

bogosqrt (homage to bogosort)
 d = random_double()
 while true:
 if (d * d == input) return d
 d = random_double()

This and the prior approach will need an approach to define the accuracy
of match. And perhaps a rather forgiving user calling that code.

Quantum computer method
 for value in all_doubles:
 return value if value ^ 2 == input

It would be hoped that parallelising this would lead to good wall clock
times?

Code and tests
Code demonstrating C++ implementations with tests of all the following
are available at:
h t t p : / /www.g i t hub . co m/pa t r i ckmmar t i n /
2.8284271247461900976033774484194

Conclusion
So, let’s review what we can get out of ‘implement sqrt()’ in terms of
discussion topics: closed form results versus algorithmic solutions –
discussion on the many interesting properties of floating point
calculations, bronze age mathematical algorithms, consideration of

domains and ranges. I haven’t even touched upon error handling, but it’s
needed.

And finally there are other really fascinating techniques I haven’t touched
upon as I judged them too abstruse for an interview scenario: like
Lagrange’s continued fractions [Wikipedia_11], and also the Vedic
techniques mentioned in [Wikipedia_1].

You may have some questions.

Here’s my attempt to anticipate them.

1. What’s with the name for the repo?

It’s the square root of 8, the number of methods, of course cube root
would be have yielded a simpler name – presaging the next
installment! Of course, there will be no next installment, as one
thing we have learned is that this topic is a giant nerd trap [xkcd_2].
Merely perusing the references to this article for a short time will
show how many areas of exploration exist to be followed.

2. Will the Fast sqrt work on big-endian?

Very funny.

Acknowledgements
I would like to take the opportunity to thank Frances Buontempo and the
Overload review team for their careful review comments.

Gabriel Martin recreated the ancient world glories of calculating the
square root of 23.

Also thanks to Hillel Y. Sims for spotting an issue in a code sample that
got past everyone.

References
[monkeys_sqrt] http://www.azillionmonkeys.com/qed/sqroot.html

[posix] http://pubs.opengroup.org/onlinepubs/9699919799/functions/
sqrt.html

[SO_1] http://math.stackexchange.com/questions/537383/why-is-x-
frac12-the-same-as-sqrt-x
although the alleged duplicate has a beautiful answer:
http://math.stackexchange.com/questions/656198/why-the-square-
root-of-x-equals-x-to-the-one-half-power

[SO_2] http://stackoverflow.com/questions/1349542/john-carmacks-
unusual-fast-inverse-square-root-quake-iii

[SAR] http://assemblyrequired.crashworks.org/timing-square-root/

[Wikipedia_1] https://en.wikipedia.org/wiki/
Methods_of_computing_square_roots

[Wikipedia_2] https://en.wikipedia.org/wiki/Denormal_number

[Wikipedia_3] https://en.wikipedia.org/wiki/NaN

[Wikipedia_4] https://en.wikipedia.org/wiki/
Methods_of_computing_square_roots#Babylonian_method

[Wikipedia_5] https://en.wikipedia.org/wiki/Compass-and-
straightedge_construction

[Wikipedia_6] https://en.wikipedia.org/wiki/Newton%27s_method

[Wikipedia_7] https://en.wikipedia.org/wiki/Householder%27s_method

[Wikipedia_8] https://en.wikipedia.org/wiki/Rate_of_convergence

[Wikipedia_9] https://en.wikipedia.org/wiki/Fast_inverse_square_root

[Wikipedia_10] https://en.wikipedia.org/wiki/Bogosort

[Wikipedia_11] https://en.wikipedia.org/wiki/Square_root

[xkcd_1] http://www.xkcd.com/664/

[xkcd_2] https://xkcd.com/356/

[YBC7289] https://www.math.ubc.ca/~cass/Euclid/ybc/analysis.html

Listing 6

float my_sqrt_homage_to_carmack(float x) {
 // PMM: adapted from the doubly cleaner
 // Chris Lomont version

 float xhalf = 0.5f * x;
 int i = *(int *)&x;
 // get bits for floating value
 i = 0x5f375a86 - (i >> 1);
 // gives initial guess y0
 x = *(float *)&i; // convert bits back to float

 // PMM: initial guess: to within 10% already!
 x = x * (1.5f - xhalf * x * x);
 // Newton step, repeating increases accuracy

 return 1 / x;
}

Listing 7

double my_sqrt_homage_to_carmack64(double x) {
 double xhalf = x * 0.5;
 // get bits for floating value
 long long i = *(long long *)&x;
 // gives initial guess y0
 i = 0x5fe6eb50c7b537a9 - (i >> 1);
 // convert bits back into double
 x = *(double *)&i;

 // one Newton Raphson step
 x = x * (1.5f - xhalf * x * x);

 return 1 / x;
}

12 | Overload | October 2016

https://www.math.ubc.ca/~cass/Euclid/ybc/analysis.html
http://www.github.com/patrickmmartin/2.8284271247461900976033774484194
https://xkcd.com/356/
http://www.azillionmonkeys.com/qed/sqroot.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/sqrt.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/sqrt.html
http://math.stackexchange.com/questions/537383/why-is-x-frac12-the-same-as-sqrt-x
http://math.stackexchange.com/questions/537383/why-is-x-frac12-the-same-as-sqrt-x
http://math.stackexchange.com/questions/656198/why-the-square-root-of-x-equals-x-to-the-one-half-power
http://stackoverflow.com/questions/1349542/john-carmacks-unusual-fast-inverse-square-root-quake-iii
http://stackoverflow.com/questions/1349542/john-carmacks-unusual-fast-inverse-square-root-quake-iii
http://assemblyrequired.crashworks.org/timing-square-root/
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/NaN
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
https://en.wikipedia.org/wiki/Compass-and-straightedge_construction
https://en.wikipedia.org/wiki/Compass-and-straightedge_construction
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Householder%27s_method
https://en.wikipedia.org/wiki/Rate_of_convergence
https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Bogosort
https://en.wikipedia.org/wiki/Square_root
http://www.xkcd.com/664/

FEATUREROBERT MILL AND JONATHAN COE
Polymorphic Comparisons
Polymorphic comparisons require much
boilerplate. Robert Mill and Jonathan Coe
introduce a template utility for such comparisons.
n this article, we discuss a class template utility called PolyLessThan
that enables C++ programmers to rapidly develop and easily maintain
a polymorphic comparator. PolyLessThan relies on the VISITOR

pattern.

Ordering polymorphic objects
Suppose that we wish to maintain a collection of teachers and students
resident in a school. Teachers are ordered by their employee number,
whereas students are ordered sorted by their name. The ordering within a
type is defined trivially by overloading the < operator, but comparisons
across types (i.e., between Residents) are not catered for. The classes
that define these entities are outlined in Listing 1.

Suppose next that we wish to maintain (i) a set of pointers to residents and
(ii) a map of pointers to residents to their age in years. A standard solution
that makes use of the Containers library is shown below:

 set<const Resident*> set_residents;
 map<const Resident*, int> map_resident_age;

Unless otherwise specified, a set or map will order these pointers
according to their memory address, which may be unstable from one
program execution to another and are obscure in relation to the object
content, meaning that an iterator will traverse the objects in an unnatural
and possibly unpredictable order. Consequently, one typically supplies a
functor that provides a ‘less-than’ comparison operation via an additional

template argument. This is straightforward in the case of a derived type.
Listing 2 shows an ordered set of Teachers.

We now face the issue of how to compare Residents – or pointers to
them – in a natural, robust and extensible fashion.

By natural, we mean that the order should be defined in a content-wise
fashion, based on datatypes and values, rather than in relation to a
memory address or a hashcode. For instance, we could insist that x < y for
a teacher x and a student y.

By robust, we mean that reasoning about the types involved in the
comparisons should work ‘with the grain’ of the C++ type system and not
rely on support from type enums, type casts or similar indicators. This we
accomplish via use of the well-known VISITOR pattern, discussed below.

Finally, by extensible, we mean that it should be possible to derive new
types from the base class and have them participate in comparisons (e.g.,
as set members or map keys) with minimal effort. For instance, we may
wish to add an AdminStaff class, whose objects are sorted by start date.

Visitor pattern
The VISITOR pattern is a form of dependency inversion, which permits the
definition of an operation outside of the class definitions, whilst retaining
polymorphism via virtual dispatch [Gamma95]. Listing 3 shows how the
code in Listing 1 can be fleshed out such that the Resident inheritance
structure supports visiting.

To maintain a set of pointers to Resident ordered by content (as
opposed to address or insertion order), we require a binary comparator

I

Listing 1

struct Resident
{
 ...
};

struct Teacher : Resident
{
 ...
 bool operator< (const Teacher& that) const
 {
 return that.ref < ref;
 }
 int ref;
};

struct Student : Resident
{
 ...
 bool operator< (const Student& that) const
 {
 return that.name < name;
 }
 string name;
};

Listing 2

struct TeacherLessThan
{
 bool operator() (
 const Teacher* pTeacher1,
 const Teacher* pTeacher2) const
 {
 return *pTeacher1 < *pTeacher2;
 }
}

set<const Teacher*,
 TeacherLessThan> set_teachers;

Robert Mill received his bachelor and Ph.D. degrees in Computer
Science from the University of Sheffield. He now works in industrial
process engineering as a mathematical developer, and retains an
interest in machine learning and signal processing.

Jonathan Coe has been programming commercially for about 10
years. He has worked in the energy industry on process simulation
and optimisation and is currently employed in the financial sector.
You can contact Jonathan at jbcoe@me.com
October 2016 | Overload | 13

FEATURE ROBERT MILL AND JONATHAN COE

Writing this code every time a new
visitable inheritance hierarchy is

defined is laborious
functor, such as that shown in Listing 4. How such a comparator should
be defined is not immediately obvious, owing to the polymorphism of
Resident.

Any visitor-based comparator must visit both *pr1 and *pr2 in order to
establish their type. Within- or across-type comparisons can proceed once

this information is available. However, writing this code every time a new
visitable inheritance hierarchy is defined is laborious.

Comparator Visitor
We propose the labour-saving class template PolyLessThan to
facilitate sorting of visitable objects, defined in Listing 5.

The class template takes a pure virtual visitor base class as its first
argument, followed by a complete variadic list of visitable types for the
remainder of its arguments, such that types specified earlier in the list are
less than those that come later. Listing 6 shows a Resident comparator
that sorts Teachers before Students, along with an example of its
deployment.

From the programmer’s perspective, the task of defining a polymorphic
comparator is accomplished entirely by this alias. If a new Visit clause
is added to ResidentVisitor, then the using statement will not
compile until the ordering over types is updated.

The implementation of the class template itself proceeds along similar
lines to the inline visitor [Mill14, Coe15]. The private class Impl is
templated on a particular item type and an ordering integer N. As each
variadic argument is stripped off the list TArgs, N is incremented, and a
new base class is defined; and this pattern recurses until all the arguments
are consumed. The Visit functions are designed to be called up to twice.

 First, *pt1 accepts Impl as a visitor. The invoked Visit member
retains the pointer pt1, along with the template argument N,
established at compile-time, which serves to enumerate the type.
These are stored in protected members of the innermost Impl base
class, pt and n, respectively. The Impl class is aware of the first
invocation because a value of 0 for n serves as a sentinel.

 Second, *pt2 accepts Impl as a visitor. When the control path
enters the base class containing the Visit member, if the value for
N matches that stored from the previous iteration, the types match,
and the values are compared using the <operator particular to that
sub-type. Otherwise, the values of N are themselves compared,
which effects an ordering over types.

Listing 3

struct ResidentVisitor
{
 virtual ~ResidentVisitor() = default;
 virtual void Visit(const Teacher&) = 0;
 virtual void Visit(const Student&) = 0;
};

struct Resident
{
 virtual ~Resident() = default;
 virtual void Accept(ResidentVisitor& visitor)
 const = 0;
};

struct Teacher : Resident
{
 Teacher(int ref_) : ref(ref_) { }
 void Accept(ResidentVisitor& visitor)
 const override final
 {
 visitor.Visit(*this);
 }

 bool operator< (const Teacher& that) const
 {
 return ref < that.ref;
 }
 int ref;
};

struct Student : Resident
{
 Student(string name_) : name(name_) { }
 void Accept(ResidentVisitor& visitor) const
 override final
 {
 visitor.Visit(*this);
 }

 bool operator< (const Student& that) const
 {
 return name < that.name;
 }
 string name;
};

Listing 4

struct ResidentLessThan
{
 bool operator() (const Resident* pr1,
 const Resident* pr2) const
 {
 // Implementation...
 }
}

set<Resident*, ResidentLessThan> set_residents;
map<Resident*, Contact,
 ResidentLessThan> map_resident_contact;
14 | Overload | October 2016

FEATUREROBERT MILL AND JONATHAN COE

Although the logic underlying the
template is recursive, this does not
translate into recursive logic at runtime
Although the logic underlying the template is recursive, this does not
translate into recursive logic at runtime; the outermost (i.e. the most
derived) Impl class is simply an automated implementation of the visitor
class that the consumer would need to write themselves without
PolyLessThan.

References
[Coe15] Jonathan Coe, ‘An Inline-variant-visitor with C++ Concepts’,

Overload 129, October 2015.

[Gamma95] E. Gamma et al., Design Patterns, Addison-Wesley,
Longman, 1995.

[Mill14] Robert Mill and Jonathan Coe, ‘Defining Visitors Inline in
Modern C++’ Overload 123, October 2014.

Listing 5

template <class TVisitorBase, class ...TArgs>
class PolyLessThan
{

public:
 template <class T1, class T2>
 bool operator()(const T1* pt1,
 const T2* pt2) const
 {
 auto polyCompare = Impl<1, TArgs...>();
 pt1->Accept(polyCompare);
 pt2->Accept(polyCompare);
 return polyCompare.result;
 }

private:
 template <int N, class ...TInnerArgs>
 struct Impl : TVisitorBase
 {
 bool result = false;
 protected:
 int n = 0;
 const void* pt = nullptr;
 };
 template <int N, class TItem,
 class ...TInnerArgs>
 struct Impl<N, TItem, TInnerArgs...>
 : Impl<N+1, TInnerArgs...>
 {
 void Visit(const TItem &t) override final
 {
 if (this->n == 0)
 {
 this->n = N;
 this->pt = static_cast<const void *>(&t);
 }
 else if (this->n < N)
 {
 this->result = true;
 }
 else if (N < this->n)
 {
 this->result = false;
 }
 else
 {
 this->result = *static_cast<const TItem
 *>(this->pt) < t;
 }
 }
 };

Listing 6

using ResidentLessThan =
 PolyLessThan<ResidentVisitor,
 Teacher,
 Student>;

 auto student1 = Student("Jarvis");
 auto student2 = Student("Deborah");
 auto teacher1 = Teacher(1701);
 auto teacher2 = Teacher(24601);
 auto residents =
 set<const Resident*, ResidentLessThan>({
 &student1,
 &student2,
 &teacher1,
 &teacher2 });

Listing 5 (cont’d)

 static_assert(
 !std::is_abstract<Impl<1, TArgs...>>::value,
 "Cannot compile polymorphic comparator: "
 "no concrete implementation for one or more "
 "Visit functions");
};
October 2016 | Overload | 15

FEATURE NICK WEATHERHEAD
C++ Synchronous Continuation
Passing Style
Direct and continuation passing styles differ.
Nick Weatherhead explains a continuation
passing style for synchronous data flow.
mperative code can be viewed in terms of
routines that in turn call sub-routines before
passing control back to the point at which

they were initiated and proceeding from there;
this is known as Direct Style programming.
Command shells often have the facility to pipe
the output from one utility into the input of
another. Adjoining self-contained modules in
t h i s wa y p romote s l oose ly c oup l ed
functionality with a single purpose and well
insulated state. For example, instrumentation
can be convenien t ly implemented by
intercepting a call, inspecting it and passing it
on unaltered. It also enables content to be
recorded and played to create or restore the
state of a program.

Procedures can also transfer control forward if
their product is a further procedure to call,
hence the moniker Continuation Passing Style
(CPS). Instead of a function having no
visibility of where it returns and what is done
with the result, it knows of the continuation
called and the parameters passed to it. Different
continuations can be chosen for different
conditions including exceptional ones. They
represent a program from a point forth. In
doing so the call-stack is reified enabling
computation to be captured and resumed. This
article is an introductory exploration of their
application in synchronous data flows,
a l t hough they a r e equa l l y adep t a s
asynchronous callbacks.

Trampoline style execution
Invoking a function places a frame containing variables local to it onto the
runtime stack. Under normal circumstances this is removed once it
returns. However, CPS logically flows forward so there are no returns in
the traditional sense; instead a return is substituted by a function to
goto next. In doing so, tail calls will accumulate until the stack
overflows. Drawing an analogy to a trampoline this can be circumvented
if, with each call, the stack cyclically goes up and comes back down again.

When parameters in the call before are not used again they can be replaced
and the program counter sent back from whence it came. On other
occasions the variables retained in outer frames are used once control
returns. For example, the Quicksort is doubly recursive; repeatedly
dividing partitions in two around a pivot point. Whilst the directives to
partition one way, say left, need not be retained, those to the right need to
be held until all the operations left of them have been completed. To
accomplish this without use of the runtime stack they must be kept in
auxiliary storage, nominally the heap, until required.

Figure 1 illustrates how a trampoline incorporating deferred computations
can operate. Current points to a continuation to invoke and is repeatedly
set as the result of its last operation and then called until the program
aborts. Buffered continuations are written to a space set aside for their
immediate use whilst deferred continuations are held in the heap for later.
A continuation returns an opaque reference to one or other of these. So
executing a buffered continuation results in it replacing itself or returning

I

Nick Weatherhead Nick's first encounter with programming was
copying lines of code from magazines into the now venerable family
BBC B. His teacher persuaded him to take computer science during
his first term of A-Levels. This led to many hours of puzzle solving
and programming, a relevant degree and finally gainful employment
within London's financial sector. You can contact Nick at
weatherhead.nick@gmail.com

Figure 1
16 | Overload | October 2016

FEATURENICK WEATHERHEAD

Drawing an analogy to a trampoline this can be
circumvented if, with each call, the stack

cyclically goes up and comes back down again
one that had been deferred. Similarly a deferred continuation may return.
or create one that is buffered. Executing either may result in the creation
of one or more deferred operations. With each iteration the call stack
unwinds and a loop returns the program counter back to where the
aforementioned continuation is now ready to perform the next operation.

Quicksort example
Utilising the runtime stack is an elegant way to implement the Quicksort;
however, its recursive nature means that this will grow. Adapting it to use
continuations demonstrates the elimination of tail recursive calls, known
as Tail Call Optimisation (TCO), and the utilisation of deferred
computation. An implementation is shown below.

Chain (Listing 1) is the abstract base class for a continuation. It is
composed of a single member, the function reference onto_, thereby
avoiding the need for a virtual function table. This is initialised on
construction and invoked via the function operator, which once called
executes the current continuation and returns the subsequent one. The
global pointer, buffer_, references space set aside for buffered
continuations. This will later be sized to accommodate the largest one
possible. Other strategies might arrange for the continuation object to be
returned at the bottom of the call stack and proceed by advancing over it
and on. While this may save space, manipulating the call stack adds
complexity and must be done in a way that prevents corruption.

Buffered (Listing 2) glues the definition of an abstract continuation to
a derived class’s implementation. Static polymorphism is achieved by
utilising the CURIOUSLY RECURRING TEMPLATE PATTERN [CRTP16].
Here the principle of inheriting derived behaviour is similar, but instead

of a class inheriting from a class template instantiation using itself, which
in this case would be of the form chain< buffered >, it inherits from
a regular class i.e. just chain. Thus chain is the base class from which
both buffered and deferred objects derive and in turn means a
chain pointer can be downcast to determine to which of these it refers.
Variadic template arguments enable the creation of objects implementing
a chain but which have different constructor signatures. Here a factory
method, create, takes args to construct a derived continuation. This
calls the derived class’s constructor and placement new writes the
object directly into the continuation buffer.

The onto function downcasts chain to the derived Chain; its function
operator is then called. Before returning its destructor is explicitly called
because of being placed in a buffer rather than on the call stack. It is these
callbacks that are said to imitate ‘goto statements with arguments’.
Whilst these jumps can make tracing code by hand more challenging, it
need not make determining the execution path onerous. A continuation
concerns itself with the content of the input rather than where it came
from. Therefore, those that inspect input and output it unaltered can be
injected between those that perform transformation without altering
intent. Here, rather than injecting continuations, a stderr statement
suffices for outputting trace. In production-like code, this could be
replaced by categorised trace with each continuation having a bitmap of
those categories to associate it with. This demonstrates that, unlike the
traditional approach of peppering trace throughout a program,
instrumentation can be achieved by observing what is passed between
continuations.

Listing 1

#ifndef CHAIN_H
#define CHAIN_H
#include <iostream>

class chain {
public:
 constexpr const chain* operator()() const {
 return onto_(*this); }

protected:
 static void* const buffer_;
 using fn = const chain* (&)(const chain&);
 explicit constexpr chain(fn onto)
 : onto_(onto) { }
 constexpr chain(const chain& that)
 : onto_(that.onto_) { }

private:
 fn const onto_;
 const chain& operator=(const chain&);
};
…

Listing 2

…
template< class Chain, typename... Args >
class buffered : public chain {
public:
 static constexpr const Chain* create(
 Args... args) {
 return new(chain::buffer_) Chain(args...);
 }

protected:
 constexpr buffered() : chain(
 static_cast< fn >(buffered::onto)) { }

private:
 static const chain* onto(const chain& that) {
 const Chain& next =
 static_cast< const Chain& >(that);
 std::cerr << "buffered(" << next << ")\n";
 const chain* onto = next();
 next.~Chain(); return onto;
 }
};
…

October 2016 | Overload | 17

FEATURE NICK WEATHERHEAD

As evidenced by eliminating tail recursion in
Quicksort, inductive calls and non-local control
flows are good candidates for continuations
Deferred (Listing 3) is the heap allocated equivalent of buffered.
Static polymorphism enables a continuation, chain_, to be embedded
within a deferred object. This is as opposed to maintaining a reference to
one passed in, thus keeping allocation contiguous. As a deferred object
is itself a continuation it can use its own function, onto, as its chained
functor. When this is called it invokes chain_ from the heap and the
memory is freed by the encompassing object deleting itself. In this way it
is a one-time computation responsible for its own allocation and
deallocation.

Bound (Listing 4) uses a pair of pointers, begin and end, to demark an
extent within an array. Begin points to the first element, and end just
past the last element. From this its length can be calculated and there is an
output operator that iterates over, and prints out, each element.

Terminate (Listing 5) prints the elements of an array and aborts a
program. When instantiating a Quicksort it is passed in as a deferred
operation, hence the friend class declaration so that a cached
instance can access the private constructor. It is the first continuation
on the stack of these deferred operations and thus the last in the chain of
execution.

Quick (Listing 6) implements a rudimentary Quicksort taking the middle
element of an array, placing elements lower than it to its left and higher
than it to its right. The left and right partitions are then taken and
repeatedly divided until they can’t be partitioned any more, leaving the
array in sorted order. Partitioning results in the left hand portion being
written directly into the continuation buffer which is returned as the

current continuation. The right hand portion references those already
deferred, and adds itself to them, forming a stack of cached computation.
If there are insufficient elements to partition then that most recently
deferred is returned as the current continuation; and so it proceeds until
the final deferred operation is reached and terminates the program. When
pivoting left quick is created, by default, as a buffered object and
when pivoting right as a deferred object. The buffered and
deferred friend class declarations are requires so that quick’s
private constructor can be accessed via each one’s respective create
factory method.

Listing 3

…
template< class Chain, typename... Args >
class deferred : public chain {
public:
 static constexpr const chain* create(
 Args... args) {
 return new deferred(args...);
 }

private:
 Chain const chain_;
 constexpr deferred(Args... args)
 : chain(deferred::onto), chain_(args...) { }
 static const chain* onto(const chain& that) {
 const deferred& next =
 static_cast< const deferred& >(that);
 std::cerr << "deferred(" << next.chain_
 << ")\n";
 const chain* onto = next.chain_();
 delete &next; return onto;
 }
};
#endif

Listing 4

#ifndef QUICK_H
#define QUICK_H
#include <cstdlib>
#include "chain.h"
template< typename T > struct bound {
 T* const begin_; T* const end_;
 constexpr bound(T* begin, T* end)
 : begin_(begin), end_(end) { }
 constexpr size_t length() const {
 return end_ - begin_; }
 friend std::ostream& operator<<(
 std::ostream& os, const bound& that) {
 const T* itr = that.begin_; os << *itr;
 while(++itr < that.end_) os << ' ' << *itr;
 return os;
 }
};
…

Listing 5

…
template< typename T > class terminator {
 friend class deferred< terminator, T*, T* >;
public:
 friend std::ostream& operator<<(
 std::ostream& os, const terminator& that) {
 return os << "terminator(" <<
 that.bound_ << ")";
 }
 const chain* operator()() const {
 std::cout << bound_ << "\n"; exit(1); }

private:
 const bound< T > bound_;
 constexpr terminator(T* begin, T* end)
 : bound_(begin, end) { }
};
…

18 | Overload | October 2016

FEATURENICK WEATHERHEAD
Quick’s constructor takes the continuation to move onto next as its last
parameter. If there is no subsequent action to perform the program can
exit, hence an overloaded constructor might be purposed to take just
begin and end whilst defaulting the initialisation of onto to terminate.
Nevertheless, when the compiler analyses the create factory method it
continues to deduce that the constructor with more arguments, rather than
those matching its signature, should be used. So, instead the call is
wrapped in the aptly named create_with_terminator.

Finally, before starting the program (Listing 7) the continuation buffer is
allocated of a size sufficient to store the largest continuation; in this case
a quick sort operating on an array of integers. The main routine takes a
space separated list of integer arguments from the command line and
creates an array. The current continuation is defined as a quick sort on
the entire array which, once complete, will execute terminate.
Alternatively a continuation could be specified to go and use the sorted
array in some other way. An infinite loop executes the program in

trampoline style; the current continuation performing an operation and
returning the next continuation in the chain.

Conclusion
As evidenced, by eliminating tail recursion in Quicksort, inductive calls
and non-local control flows are good candidates for continuations. When
flow is linear the active context is not revisited so can be overwritten with
the next. This in combination with trampoline style execution ensures a
compact stack. For flows parallel in nature the division of work, whether
run separately or interleaved with others, needs to be captured. In the
direct style the runtime stack implicitly suspends and resumes calls in the
required order, but when using CPS these complexities are exposed and
must be managed explicitly.

A detailed comparison of performance between direct and continuation
passing styles isn’t examined here. There is some overhead in calling a
continuation over a regular function call. Unlike regular functions they are
polymorphic requiring an indirection to execute them. There is also the
auxiliary storage required to hold those deferred. Despite this only a
marginal increase in execution time was observed when comparing the
Quicksort presented with a recursive implementation. This could well be
accentuated if, by specifying smaller packets of work, a proliferation of
continuations occurred.

Whilst it takes time to become accustomed to CPS, it affords a way to
express tasks and handle events via callbacks. An application programmer
is likely to encounter its use for this purpose. CPS is also relevant in the
implementation of programming languages and their compilers.
Constructs can be defined, and conversely programs can be described, in
terms of it [CPS16].

References
[CRTP16] Curiously recurring template pattern, Wikipedia 2016.

[CPS16] Continuation-passing style, Wikipedia 2016.

Further reading
Andy Balham, Tail Call Optimisation in C++, Overload 109, June 2012.

Cristina Videira Lopes. Exercises in programming style Chapter 8: Kick
Forward, Chapman and Hall/CRC, November 2015.

Acknowledgments
Many thanks to the Overload review team for their tips and observations
which have benefited this article and my own understanding.

Listing 6

…
template< class T > class quick
: public buffered< quick< T >, T*, T*,
 const chain* > {
 friend class buffered< quick, T*, T*,
 const chain* >;
 friend class deferred< quick, T*, T*,
 const chain* >;

public:
 friend std::ostream& operator<<(
 std::ostream& os, const quick& that) {
 return os << "quick(" << that.bound_ << ")";
 }
 const chain* operator()() const {
 size_t length = bound_.length();
 if (length < 2) return onto_;
 T mid = bound_.begin_[length / 2];
 T* begin = bound_.begin_ - 1;
 T* end = bound_.end_;
 for (;;) {
 while(*(++begin) < mid);
 while(*(--end) > mid);
 if (begin >= end) break;
 T temp = *begin; *begin = *end; *end = temp;
 }
 return quick::create(bound_.begin_, begin,
 deferred< quick, T*, T*, const chain* >::
 create(begin, bound_.end_, onto_));
 }
 static constexpr const quick*
 create_with_terminator(T* begin, T* end) {
 return quick::create(begin, end,
 deferred< terminator<T>, T*, T* >::
 create(begin, end));
 }

private:
 const bound< T > bound_;
 const chain* const onto_;
 constexpr quick(T* begin, T* end,
 const chain* onto)
 : bound_(begin, end), onto_(onto) { }
};
#endif

Listing 7

#include <cstddef>
#include "quick.h"

alignas(max_align_t)
char buffer[sizeof(quick<int>)];
void* const chain::buffer_ = buffer;

int main(int argc, char* argv[]) {
 int *data = (int*) calloc(
 --argc, sizeof(int));
 for(int i = 0; i < argc; ++i)
 data[i] = atoi(argv[i + 1]);
 const chain* current = quick<int>::
 create_with_terminator(data, &data[argc]);
 for (;;) current = (*current)();
}

October 2016 | Overload | 19

FEATURE DEÁK FERENC
Attacking Licensing Problems
with C++
Software licenses are often crackable. Deák Ferenc
presents a technique for tackling this problem.
rom the early days of the commercialization of computer software,
malicious programmers, also known as crackers, have been
continuously nettling the programmers of the aforementioned

software by constantly bypassing the clever licensing mechanisms they
have implemented in their software, thus causing financial damages to the
companies providing the software.

This trend has not changed in recent years: the cleverer the routines the
programmers write, the more time is spent by crackers in invalidating the
newly created routines, and in the end the crackers always succeed. For
companies to be able to keep up with the constant pressure provided by
the cracking community, they would need to constantly change their
licensing and identification algorithms, but in practice this is not a feasible
way to deal with the problem.

An entire industry has evolved around software protection and licensing
technologies, where renowned companies offer advanced (and expensive)
solutions to tackle this problem. The protection schemes range from using
various resources such as hardware dongles, to network activation, from
unique license keys to using complex encryption of personalized data –
the list is long.

This article provides a short introduction to illustrate a very simple and
naive licensing algorithm’s internal workings. We will show how to
bypass it in an almost real life scenario, and finally present a software
based approach to mitigate the real problem by hiding the license
checking code in a layer of obfuscated operations generated by the C++
template metaprogramming framework, which will make the life of the
person wanting to crack the application a little bit harder. Certainly, if
they are well determined, the code will still be cracked at some point, but
at least we’ll make it harder for them.

A naive licensing algorithm
The naive licensing algorithm is a very simple implementation that checks
the validity of a license associated with the name of the user who
purchased the associated software. It is not an industrial strength
algorithm: it only has demonstrative power, while trying to provide
insight to the actual responsibilities of a real licensing algorithm.

Since the license checking code is usually shipped with the software
product in compiled form, I’ll put in here both the generated code (in Intel
x86 assembly) since that is what the crackers will see after a successful
disassembly of the executable and the C++ code for the licensing
algorithm. In order not to pollute precious page space with unintelligible
binary code, I will restrict myself to including only the relevant bits of the
code that naively determines whether a supplied license is valid or not,
together with the C++ code that was used to generate the binary code.

Listing 1 is the source code of the licensing algorithm.

The license which this method validates comes is in the form ABCD-
EFGH-IJKL-MNOP, and there is an associated generate_license
method which is presented as an appendix to this article.

Also, the naivety of this method is easily exposed by using the very proper
name of check_license which immediately reveals to the want-to-be
attacker where to look for the code checking the ... license. If you want to
make harder for the attacker to identify the license checking method, I’d
recommend either using some irrelevant names or just stripping all
symbols from the executable as part of the release process.

The interesting part is the binary code of the method obtained via
compilation of the corresponding C++ code (see Listing 2), which we
obtained by compiling it with Microsoft Visual C++ 2015. I have
compiled it in Release mode (with Debug information included for
educational purposes) but it is intentionally not the Debug version, since
we would hardly ship the debug version of the code to our customers.

I have also used the built-in debugger of the VS IDE to visualize the
generated code next to the source, which facilitates a better understanding
of the relation between the two of them.

Let’s analyze it for a few moments. The essence of the validity checking
happens at address 00FC15F8 where the comparison cmp al, byte

F

Listing 1

static const char letters[] =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
bool check_license(const char* user,
 const char* users_license)
{
 std::string license;
 size_t ll = strlen(users_license);
 size_t l = strlen(user), lic_ctr = 0;
 int add = 0;
 for (size_t i = 0; i < ll; i++)
 if (users_license[i] != '-')
 license += users_license[i];
 while (lic_ctr < license.length()) {
 size_t i = lic_ctr;
 i %= l;
 int current = 0;
 while (i < l) current += user[i ++];
 current += add;
 add++;
 if (license[lic_ctr]
 != letters[current % sizeof letters])
 return false;
 lic_ctr++;
 }
 return true;
}

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at FARA (Trondheim, Norway) as a system programmer, and in his
free time, by exploring the hidden corners of the C++ language in
search for new quests. fritzone@gmail.com
20 | Overload | October 2016

FEATUREDEÁK FERENC

reverse engineering the license checking
algorithm presented in the previous section
would prove to be a highly challenging task
ptr [edx+0FC42A4h] takes place (for those wondering, edx gets its
value as being the remainder of the division at 00FC15F0).

At this stage, the value of the al register is already initialized with the
value of license[lic_ctr] and that is what is compared to the
expected character. If it does not match, the code jumps to 0FC1625h
where the bl register is zeroed out (xor bl, bl) and from there the
jump goes backward to 0FC1611h to leave the method with the ret
instruction found at 00FC1624. Otherwise the loop continues.

The most common way of returning a value from a method call is to place
the value in the eax register and let the calling code handle it, so before
returning from the method the value of al is populated with the value of
the bl register (via mov al, bl found at 00FC161D).

Please remember that if the check discussed before did not succeed the
value of the bl register was 0, but this bl was initialized to 1 (via mov
bl,1 at 00FC160F) if the entire loop was successfully completed.

From the perspective of an attacker, the only thing that needs to be done
is to replace the binary sequence of xor bl,bl with the binary code of
mov bl,1 in the executable. Since luckily these two are the same length
(2 bytes), the crack is ready to be published within a few seconds.

Moreover, due to the simplicity of the implementation of the algorithm, a
highly skilled cracker could easily create a key-generator for the
application, which would be an even worse scenario as the cracker doesn’t
have to modify the executable. This means that further safety steps, such
as integrity checks of the application, would all be executed correctly, but
there would be a publicly available key-generator which could be used by
anyone to generate a license-key without ever paying for it, or malicious
salesmen could generate counterfeit licenses which they could sell to
unsuspecting customers.

Here let’s look at our C++ obfuscating framework.

The C++ obfuscating framework
The C++ obfuscating framework provides a simple macro-based
mechanism, combined with advanced C++ template meta-programming
techniques for relevant methods and control structures, to replace the
basic C++ control structures and statements with highly obfuscated code
which makes the reverse engineering of the product a complex and
complicated procedure.

By using the framework, reverse engineering the license checking
algorithm presented in the previous section would prove to be a highly
challenging task due to the sheer amount of extra code generated by the
framework engine.

The framework has adopted a familiar, BASIC-like, syntax to make the
switch from real C++ source code to the macro language of the framework
as easy and painless as possible.

Functionality of the framework
The role of the obfuscating framework is to generate extra code, while
providing functionality which is expected by the user, with as few syntax
changes to the language as possible.

The following functionalities are provided by the framework:

 wrap all values into a valueholder class thus hiding them from
immediate access

 provide a BASIC-like syntax for the basic C++ control structures
(if, for, while ...)

 generate extra code to achieve complex code, making it harder to
understand

 randomize constant values in order to hide the information.

Listing 2

if (license[lic_ctr]
 != letters[current % sizeof letters])
 00FC15E4 lea ecx,[license]
 00FC15E7 cmovae ecx,dword ptr [license]
 00FC15EB xor edx,edx
 00FC15ED push 1Bh
 00FC15EF pop esi
 00FC15F0 div eax,esi
 00FC15F2 mov eax,dword ptr [lic_ctr]
 00FC15F5 mov al,byte ptr [ecx+eax]
 00FC15F8 cmp al,byte ptr [edx+0FC42A4h]
 00FC15FE jne check_license+0DEh (0FC1625h)
 return false;
lic_ctr++;
 00FC1600 mov eax,dword ptr [lic_ctr]
 00FC1603 mov ecx,dword ptr [add]
 00FC1606 inc eax
 00FC1607 mov dword ptr [lic_ctr],eax
 00FC160A cmp eax,dword ptr [ebp-18h]
 00FC160D jb check_license+7Fh (0FC15C6h)
}
return true;
 00FC160F mov bl,1
 00FC1611 push 0
 00FC1613 push 1
 00FC1615 lea ecx,[license]
 00FC1618 call
 std::basic_string<char,std::char_traits<char>,
 std::allocator<char> >::_Tidy (0FC1944h)
 00FC161D mov al,bl
}
 00FC161F call _EH_epilog3_GS (0FC2F7Ch)
 00FC1624 ret
 00FC1625 xor bl,bl
 00FC1627 jmp check_license+0CAh (0FC1611h)
October 2016 | Overload | 21

FEATURE DEÁK FERENC

The value wrappers implement a limited
set of operations which you can use to
change the value of the wrapped variable
Debugging with the framework
Like every developer who has been there, we know that debugging
complex and highly templated C++ code can sometimes be a nightmare.
In order to avoid this nightmare while using the framework, we decided
to implement a debugging mode.

To activate the debugging mode of the framework, define the
OBF_DEBUG identifier before including the obfuscation header file.
Please see the specific control structures for how the debugging mode
alters the behaviour of the macro.

Using the framework
The basic usage of the framework boils down to including the header file
providing the obfuscating functionality

 #include "instr.h"

then using the macro pair OBF_BEGIN and OBF_END as delimiters of the
code sequences that will be using obfuscated expressions.

For a more under-the-hood view of the framework, the OBF_BEGIN and
OBF_END macros declare a try-catch block, which has support for
returning values from the obfuscated current code sequence, and also
provides support for basic control flow modifications such as the usage of
continue and break emulator macros CONTINUE and BREAK.

Behind the scenes: OBF_BEGIN and OBF_END
OBF_BEGIN expands to:

 #define OBF_BEGIN \
 try {obf::next_step __crv = \
 obf::next_step::ns_done; \
 std::shared_ptr<obf::base_rvholder> \
 __rvlocal;

and OBF_END becomes:

 #define OBF_END } \
 catch(std::shared_ptr<obf::base_rvholder>& r) { \
 return *r; } catch (...) {throw;}

In order to support for ‘returning’ a value from the current obfuscated
block we need a special variable __rvlocal. At later stages, this value
will be populated with meaningful values as a result of executing the code
of the RETURN macro (which will ‘throw’ a value with a type of
std::shared_ptr<obf::base_rvholder>). The OBF_END will
catch this specific value and handle it appropriately, while all other values
thrown will be re-thrown in order to not to disturb the client code’s
exception handling.

Value and numerical wrappers
To achieve an extra layer of obfuscation, the integral numerical values can
be wrapped in the macro N() and all integral numeric variables (int,
long, ...) can be wrapped in the macro V() to provide an extra layer of
obfuscation for doing the calculation operations. The V() value wrapper
also can wrap individual array elements(x[2]), but not arrays (x) and

also cannot wrap class instantiation values due to the fact that the macro
expands to a reference holder object.

The implementation of the wrappers uses the link time random number
generator provided by [Andrivet] and the values are obfuscated by
performing various operations to hide the original value.

And here is an example for using the value and variable wrappers:

 int a, b = N(6);
 V(a) = N(1);

After executing the statement above, the value of a will be 1.

The value wrappers implement a limited set of operations which you can
use to change the value of the wrapped variable. These are the compound
assignment operators: +=, -=, *=, /=, %=, <<=, >>=, &=, |= and ^=, and
the post/pre-increment operations -- and ++. All of the binary operators
(+, -, *, /, %, &, |, << and >>) are also implemented, so you can write
V(a) + N(1) or V(a) - V(b).

Also, the assignment operator to a specific type and from a different value
wrapper is implemented, together with the comparison operators.

As the name implies, the value wrappers will wrap values by offering a
behaviour similar to the usage of simple values, so be aware that variables
which are const values can be wrapped into the V() wrapper but, as with
real const variables, you cannot assign to them. So for example the
following code will not compile:

 const char* t = "ABC";
 if(V(t[1]) == 'B')
 {
 V(t[1]) = 'D';
 }

And the following

 char* t = "ABC";
 if(V(t[1]) == 'B')
 {
 V(t[1]) = 'D';
 }

will be undefined behaviour because the compiler will highly probably
allocate the string "ABC" in a constant memory area (although I would
expect your compiler to choke heavily on this expression since it’s not
valid modern C++ anymore). To work with this kind of data, always use
char[] instead of char*.

Behind the scenes of the implementation of numeric wrapping
The N macro is defined like the following:

 #define N(a) (obf::Num<decltype(a), \
 obf::MetaRandom<__COUNTER__, 4096>:: value ^ \
 a>().get() ^ obf::MetaRandom<__COUNTER__ - 1, \
 4096>::value)

As a first step, let’s consider that due to the implementation of [Andrivet]
and the (more or less standard) __COUNTER__ macro, the following will
have the same value:
22 | Overload | October 2016

[Andrivet]

FEATUREDEÁK FERENC

The value wrappers add an extra
obfuscation layer to the values they wrap
 obf::MetaRandom<__COUNTER__, 4096>::value
 obf::MetaRandom<__COUNTER__ - 1, 4096>::value)

Now, taking the obf::Num class into view, we have Listing 3, where the
iteration of the templates is finalized by Listing 4.

The Num class tries to add some protection by adding some extra xor
operations to the use of a simple number, thus turning a simple numeric
assignment into several steps of assembly code (Visual Studio 2015
generated the code Listing 5 in Release With Debug Info mode).

However, please note the several volatile variables ... which are
required to circumvent today’s extremely clever optimizing compilers. If
we remove the volatile from the variables, the compiler is clever
enough to guess the value I wanted to obfuscate, so ... there goes the
obfuscation.

Behind the scenes of the implementation of variable wrapping
When we are not building the code in debugging mode, the macro V
expands to the following C++ nightmare:

 #define MAX_BOGUS_IMPLEMENTATIONS 3

 #define V(a) ([&]() \
 {obf::extra_chooser<std::remove_reference \
 <decltype(a)>::type, \
 obf::MetaRandom<__COUNTER__,\
 MAX_BOGUS_IMPLEMENTATIONS>::value > \
 ::type _JOIN(_ec_,__COUNTER__)(a);\
 return obf::stream_helper();}() << a)

So let’s dissect it in order to understand the underlying operations.

The value wrappers add an extra obfuscation layer to the values they
wrap, by performing an extra addition, an extra subtraction or an extra xor
operation on the value itself. This is picked randomly when compilation
happens by the extra_chooser class, which is like:

 template <typename T, int N>
 class extra_chooser
 {
 using type = basic_extra;
 };

and is helped by the following constructs:

 #define DEFINE_EXTRA(N,implementer) template \
 <typename T> struct extra_chooser<T,N> { \
 using type = implementer<T>; }

 DEFINE_EXTRA(0, extra_xor);
 DEFINE_EXTRA(1, extra_substraction);
 DEFINE_EXTRA(2, extra_addition);

which are the actual definition of the classes for the extra operations,
which in their turn look like Listing 6, where the extra addition and
subtraction are also very similar.

The next thing we observe is that an object of this kind (extra bogus
operation chooser) is defined in a lambda function for the variable we are
wrapp ing . The va r i ab l e na me fo r t h i s i s de t e rmined b y
_JOIN(_ec_,__COUNTER__)(a), where _JOIN is just a simple joiner
macro:

 #define _JOIN(a,b) a##b

Upon creation and destruction of this extra_chooser object, the value
of the object will remain unchanged; however, extra code will be
generated by the compiler (thanks to the numerous volatile modifiers

Listing 3

template<typename T, T n> class Num final {
public:
 enum { value = ((n & 0x01)
 | (Num < T , (n >> 1)>::value << 1))
 };
 Num() : v(0) {
 v = value ^ MetaRandom<32, 4096>::value;
 }
 T get() const {
 volatile T x = v ^ MetaRandom<32,
 4096>::value; return x;
 }
private:
 volatile T v;
};

Listing 4

struct ObfZero { enum {value = 0}; };
struct ObfOne { enum {value = 1}; };

#define OBF_ZERO(t) template <> struct Num<t,0>
final : public ObfZero { t v = value; };

#define OBF_ONE(t) template <> struct Num<t,1>
final : public ObfOne { t v = value; };

#define OBF_TYPE(t) OBF_ZERO(t) OBF_ONE(t)
OBF_TYPE(int) // And for all other integral types

Listing 5

 int n;
 OBF_BEGIN
 n = N(42);
002A5F74 mov dword ptr [ebp-4],0
002A5F7B mov dword ptr [ebp-4],78Ch
002A5F82 mov eax,dword ptr [ebp-4]
002A5F85 xor eax,0E8Fh
002A5F8A mov dword ptr [ebp-4],eax
002A5F8D mov eax,dword ptr [ebp-4]
002A5F90 xor eax,929h
 OBF_END
October 2016 | Overload | 23

FEATURE DEÁK FERENC
found in the extra operation classes, otherwise the compiler would ‘cheat’
again and just ‘skip’ our obfuscation). This is actually an extensible
interface, so you can use it to define your own class for bogus operations
u s i n g t he DEFINE_EXTRA m ac ro (and i nc re a se t he
MAX_BOGUS_IMPLEMENTATIONS as required).

Now, back to the lambda because it plays an important role. The lambda
returns an object of type obf::stream_helper(), which is basically
an empty class (class stream_helper {};), but the role of the
lambda is still not done. As we can see in the macro, the lambda is
executed and into its result (the obf::stream_helper() object) we
stream the parameter of the macro (<< a). This gives control to the
following operator:

 template <typename T>
 refholder<T> operator << (stream_helper, T& a)
 {
 return refholder<T>(a);
 }

providing us with a controversial class, refholder (Listing 7).

This class has all the support for the basic operations you can execute on
a variable either via the member operators (defined explicitly or via the

macro COMP_ASSIGNMENT_OPERATOR) either defined via the
DEFINE_BINARY_OPERATOR macro which defines binary operators for
refholder classes. In cases when the variable wrapping is done on
constant variables, there are specializations of this template class for
constant Ts. There are various arguments against the construct of storing

Listing 6

template <class T>
class extra_xor final : public basic_extra
{
public:
 extra_xor(T& a) : v(a)
 {
 volatile T lv
 = MetaRandom<__COUNTER__, 4096>::value;
 v ^= lv;
 }
 virtual ~extra_xor()
 {
 volatile T lv
 = MetaRandom<__COUNTER__ - 1, 4096>::value;
 v ^= lv;
 }
private:
 volatile T& v;
};

Listing 7

template <typename T>
class refholder final
{
public:
 refholder() = delete;
 refholder(T& pv) : v(pv) {}
 refholder(T&&) = delete;

Listing 7 (cont’d)

 ~refholder() = default;
 refholder<T>& operator = (const T& ov) {
 v = ov; return *this;
 }
 refholder<T>& operator
 = (const refholder<T>& ov) {
 v = ov.v; return *this;
 }
 bool operator == (const T& ov) {
 return !(v ^ ov);
 }
 bool operator != (const T& ov) {
 return !operator ==(ov);
 }
 COMPARISON_OPERATOR(>=)
 COMPARISON_OPERATOR(<=)
 COMPARISON_OPERATOR(>)
 COMPARISON_OPERATOR(<)
 operator T() {return v;}
 refholder<T>& operator++() {
 ++ v; return *this;
 }
 refholder<T>& operator--() {
 -- v; return *this;
 }
 refholder<T> operator++(int) {
 refholder<T> rv(*this); operator ++();
 return rv;
 }
 refholder<T> operator--(int) {
 refholder<T> rv(*this); operator --();
 return rv;
 }
 COMP_ASSIGNMENT_OPERATOR(+)
 COMP_ASSIGNMENT_OPERATOR(-)
 COMP_ASSIGNMENT_OPERATOR(*)
 COMP_ASSIGNMENT_OPERATOR(/)
 COMP_ASSIGNMENT_OPERATOR(%)
 COMP_ASSIGNMENT_OPERATOR(<<)
 COMP_ASSIGNMENT_OPERATOR(>>)
 COMP_ASSIGNMENT_OPERATOR(&)
 COMP_ASSIGNMENT_OPERATOR(|)
 COMP_ASSIGNMENT_OPERATOR(^)
private:
 volatile T& v;
};
24 | Overload | October 2016

FEATUREDEÁK FERENC

The sheer amount of extra code
generated for a simple

assignment is overwhelming
references as class members [Stackoverflow]; however, I consider this
situation to be a reasonably safe one which can be exploited for this
specific reason. So, here (Listing 8) comes a piece of generated assembly
code for a very simple expression.

The sheer amount of extra code generated for a simple assignment is
overwhelming.

Control structures of the framework
The basic control structures which are familiar from C++ are made
available for immediate use by the developers by means of macros, which
expand into complex templated code.

They are meant to provide the same functionality as the standard C++
keyword they are emulating, and if the framework is compiled in DEBUG
mode, most of them actually expand to the C++ control structure itself.

Decision making
When there is a need in the application to take a decision based on the
value of a specific expression, the obfuscated framework offers the
familiar if-then-else statement for the developers in the form of the
IF-ELSE-ENDIF construct.

The IF statement
For checking the true-ness of an expression the framework offers the IF
macro which has the following form:

 IF (expression)
 statements
 ELSE
 other statements
 ENDIF

where the ELSE is not mandatory, but the ENDIF is, since it indicates the
end of the IF block’s statements.

And here is an example for the usage of the IF macro.

 IF(V(a) == N(9))
 V(b) = a + N(5);
 ELSE
 V(a) = N(9);
 V(b) = a + b;
 ENDIF

Due to the way the IF macro is defined, it is not necessary to create a new
scope between the IF and ENDIF; it is automatically defined and all
variables declared in the statements between IF and ENDIF are
destroyed.

Since the evaluation of the expression is bound to the execution of a
hidden (well, at least from the outer world) lambda, unfortunately it is not
possible to declare variables in the expression so the following:

 IF(int x = some_function())

is not valid, and will yield a compiler error. This is partially intentional,
since it gives that extra layer of obfuscation required to hide the
operations done on a variable in a nameless lambda somewhere deep in
the code.

In cases when debugging mode is active, the IF-ELSE-ENDIF macros are
defined to expand to the following statements:

 #define IF(x) if(x) {
 #define ELSE } else {
 #define ENDIF }

Implementation of the IF construct
The IF macro expands to the following:

 #define IF(x) { \
 std::shared_ptr<obf::base_rvholder> __rvlocal;\
 obf::if_wrapper(([&]()->bool{ return (x); \
 })).set_then([&]() {

the ELSE macro expands to:

 #define ELSE return __crv;}).set_else([&]() {

and the ENDIF will give:

 #define ENDIF return __crv;}).run(); }Listing 8

 int n;
 OBF_BEGIN
 V(n) = N(42);
00048466 mov dword ptr [ebp-8],0
0004846D mov dword ptr [ebp-8],97Ch
00048474 push esi
00048475 mov esi,dword ptr [ebp-8]
00048478 mov dword ptr [ebp-8],48Bh
0004847F xor esi,0DC4h
00048485 mov eax,dword ptr [ebp-8]
00048488 add eax,dword ptr [n]
0004848B mov dword ptr [n],eax
0004848E mov dword ptr [ebp-8],48Bh
00048495 mov eax,dword ptr [ebp-8]
00048498 sub dword ptr [n],eax
0004849B lea eax,[n]
0004849E push eax
0004849F push dword ptr [ebp-8]
000484A2 lea eax,[ebp-0Ch]
000484A5 push eax
000484A6 call obf::operator<<<int>
(0414C9h)
000484AB add esp,0Ch
000484AE xor esi,492h
000484B4 mov eax,dword ptr [eax]
000484B6 mov dword ptr [eax],esi
 OBF_END
October 2016 | Overload | 25

FEATURE DEÁK FERENC
So to wrap it all up, the following code:

 IF(n == 42)
 n = 43;
 ELSE
 n = 44;
 ENDIF

will expand to Listing 9.

Now let’s examine the if_wrapper class (Listing 10).

It is very clear why we needed the lambda created by the IF macro
(([&]()->bool { return (n == 42); })): we needed to create
an object of type class bool_functor from it, which will give us the
true-ness of the if condition. The bool functor class looks like Listing 11,
where the important part is the bool run() – which in fact runs the
condition and returns its true-ness.

The two branches of the if are represented by the member variables
std::unique_ptr<next_step_functor_base> thens;
std::unique_ptr<next_step_functor_base> elses; and
they behave very similarly to the conditional.

The run() method of the if_wrapper class firstly checks the condition
and then, depending on the presence of the then and else branches,
executes the required operations.

Support for looping
There are times when every application needs to iterate over a set of
values, so I tried to re-implement the basic loop structures used in C++:
the for loop, the while and the do-while have been reincarnated in the
framework.

Listing 9

{
 std::shared_ptr<obf::base_rvholder> __rvlocal;
 obf::if_wrapper(([&]()->bool
 {
 return (n == 42);
 }))
 .set_then([&]()
 {
 n = 43;
 return __crv;
 })
 .set_else([&]()
 {
 n = 44;
 return __crv;
 })
 .run();
}

Listing 10

class if_wrapper final
{
public:
 template<class T>
 if_wrapper(T lambda) {
 condition.reset(new bool_functor<T>(lambda));}
 void run()
 {
 if(condition->run()) { if(thens) {
 thens->run();
 }}
 else { if(elses) {
 elses->run();
 }}
 }
 ~if_wrapper() noexcept = default;
 template<class T>
 if_wrapper& set_then(T lambda)
 {
 thens.reset(new next_step_functor<T>(lambda));
 return *this;
 }
 template<class T>
 if_wrapper& set_else(T lambda)
 {
 elses.reset(new next_step_functor<T>(lambda));
 return *this;
 }
private:
 std::unique_ptr<bool_functor_base> condition;
 std::unique_ptr<next_step_functor_base> thens;
 std::unique_ptr<next_step_functor_base> elses;
};

Listing 11

struct bool_functor_base
{
 virtual bool run() = 0;
};

template <class T>
struct bool_functor final : public
bool_functor_base
{
 bool_functor(T r) : runner(r) {}
 virtual bool run() {return runner();}

private:
 T runner;
};
26 | Overload | October 2016

FEATUREDEÁK FERENC
The FOR statement
The macro provided to imitate the for statement is:

 FOR(initializer, condition, incrementer)
 statements
 ENDFOR

Please note that, since FOR is a macro, it should use , (comma) not the
traditional ; which is used in the standard C++ for loops, and do not
forget to include your initializer, condition and incrementer
in parentheses if they are expressions which have , (comma) in them.

The FOR loops should be ended with and ENDFOR statement to signal the
end of the structure. Here is a simple example for the FOR loop.

 FOR(V(a) = N(0), V(a) < N(10), V(a) += 1)
 std::cout << V(a) << std::endl;
 ENDFOR

The same restriction concerning the variable declaration in the
initializer as in the case of the IF applies for the FOR macro too, so
it is not valid to write:

 FOR(int x=0, x<10, x++)

and the reasons are again the same as presented above.

In a debugging session, the FOR-ENDFOR macros expand to the following:

 #define FOR(init,cond,inc) for(init;cond;inc) {
 #define ENDFOR }

The WHILE loop
The macro provided as replacement for the while is:

 WHILE(condition)
 statements
 ENDWHILE

The WHILE loop has the same characteristics as the IF construct and
behaves the same way as you would expect from a well-mannered while
statement: it checks the condition at the top, and executes the statements
repeatedly as long as the given condition is true. Here is an example for
WHILE:

 V(a) = 1;
 WHILE(V(a) < N(10))
 std::cout << "IN:" << a<< std::endl;
 V(a) += N(1);
 ENDWHILE

Unfortunately the WHILE loop also has the same restrictions as the IF:
you cannot declare a variable in its condition.

If compiled in debugging mode, the WHILE evaluates to:

 #define WHILE(x) while(x) {
 #define ENDWHILE }

The REPEAT-AS_LONG_AS construct posing as do-while
Due to the complexity of the solution, the familiar do-while construct of
the C++ language had to be renamed a bit, since the WHILE ‘keyword’
was already taken for the benefit of the while loop, so I created the
REPEAT-AS_LONG_AS keywords to achieve this goal.

This is the syntax of the REPEAT-AS_LONG_AS construct:

 REPEAT
 statements
 AS_LONG_AS(expression)

This will execute the statements at least once and then, depending on the
value of the expression, either will continue the execution, or will stop
and exit the loop. If the expression is true, it will continue the execution
from the beginning of the loop; if the expression is false, execution will
stop and the loop will be exited.

And here is an example:

 REPEAT
 std::cout << a << std::endl;
 ++ V(a);
 AS_LONG_AS(V(a) != N(12))

When debugging, the REPEAT - AS_LONG_AS construct expands to the
following:

 #define REPEAT do {
 #define AS_LONG_AS(x) } while (x);

Implementation of the looping constructs
The logic and design of the looping constructs are very similar to each
other. They behave very similarly to IF and each of them uses the same
building blocks. There are the wrapper classes (for_wrapper,
repeat_wrapper, while_wrapper), each of them with their functors
for verifying the condition, and the steps to be executed.

The implementation in each of the run() method of the wrapper class
follows the logic of the keyword it tries to emulate, with the exception that
the commands are wrapped into a try - catch to enable BREAK and
CONTINUE to function properly. Let’s see for example the run() of the
for wrapper:

 void run()
 {
 for(initializer->run(); condition->run();
 increment->run())
 {
 try
 {
 next_step c = body->run();
 }
 catch(next_step& c)
 {
 if(c == next_step::ns_break) break;
 if(c == next_step::ns_continue) continue;
 }
 }
 }

Altering the control flow of the application
Sometimes there is a need to alter the execution flow of a loop. C++
supports this operation by providing the continue and break
statements. The framework offers the CONTINUE and BREAK macros to
achieve this goal.

The CONTINUE statement
The CONTINUE statement will skip all statements that follow it in the
body of the loop, thus altering the flow of the application.

Here is an example for the CONTINUE used in a FOR loop:

 FOR(a = 0, a < 5, a++)
 std::cout << "counter before=" << a
 << std::endl;
 IF(a == 2)
 CONTINUE
 ENDIF
 std::cout << "counter after=" << a
 << std::endl;
 ENDFOR

and the equivalent WHILE loop:

 a = 0;
 WHILE(a < 5)
 std::cout << "counter before=" << a
 << std::endl;
 IF(a == 2)
 a++;
 CONTINUE
 ENDIF
 std::cout << "counter after=" << a
 << std::endl;
 a++;
 ENDWHILE

Neither of these should print out the counter after=2 text.
October 2016 | Overload | 27

FEATURE DEÁK FERENC
The BREAK statement
The BREAK statement terminates the loop statement it resides in and
transfers execution to the statement immediately following the loop.

Here is an example for the BREAK statement used in a FOR loop:

 FOR(a = 0, a < 10, a++)
 std::cout << "counter=" << a << std::endl;
 IF(a == 1)
 BREAK
 ENDIF
 ENDFOR

This loop will print counter=0 and counter=1 then it will leave the
body of the loop, continuing the execution after the ENDFOR.

The RETURN statement
As expected, the RETURN statement returns the execution of the current
function and will return the specified value to the caller function. Here is
an example of returning 42 from a function:

 int some_fun()
 {
 OBF_BEGIN
 RETURN(42)
 OBF_END
 }

With the introduction of RETURN, an important issue arose: the
obfuscation framework does not support the use of void functions, so the
following code will not compile:

 void void_test(int& a)
 {
 OBF_BEGIN
 IF(V(a) == 42)
 V(a) = 43;
 ENDIF
 OBF_END
 }

This is a seemingly annoying feature, but it can easily be fixed by simply
changing the return type of the function to any non-void type. The reason
is that the RETURN macro and the underlying C++ constructs should
handle a wide variety of returnable types in a manner which can be
handled easily by the programmer without causing confusion.

Implementation of CONTINUE, BREAK and RETURN
These keywords give the following when not compiled in debug mode:

 #define BREAK __crv = obf::next_step::ns_break; \
 throw __crv;

 #define CONTINUE __crv = \
 obf::next_step::ns_continue; throw __crv;

 #define RETURN(x) __rvlocal.reset\
 (new obf::rvholder<std::remove_reference\
 <decltype(x)> ::type>(x,x)); throw __rvlocal;

BREAK and CONTINUE offer no surprises in the implementation and they
comply to the expectation that has been formulated in the looping
constructs: they throw a specific value, which is then caught in the local
loop of the implementation, which handles it accordingly.

However, RETURN is a different kind of beast.

It initializes the __rvlocal (the local return value) to the returned value
and then throws it for the catch which is to be found in the OBF_END
macro, which in its turn handles it correctly.

As you can see, there are three evaluations of the x macro parameter. To
avoid unwanted behaviour from your application, do not use expressions
which might turn out to be dangerous, such as RETURN (x++);, which
will give a three-times increment to your variable and undefined
behaviour.

The rvholder class has the body shown in Listing 12.

As you can see there is a redundant equals method in the base class, and
this is due to the fact that during development of the framework, the
Visual Studio compiler constantly crashed due to some internal error in
the implementation of the CASE construct, and it always reported the error
in the operator == of the base class. In order to make it work, I have
added the extra equals member.

The CASE statement
When programming in C++, the switch-case statement comes in
handy when there is a need to avoid long chains of if statements. The
obfuscation framework provides a similar construct, although not exactly
a functional and syntactical copy of the original switch-case construct.

Here is the CASE statement:

 CASE (<variable>)
 WHEN(<value>) [OR WHEN(<other_value>)] DO
 statements
 [BREAK]
 DONE
 [DEFAULT
 statements
 DONE]
 ENDCASE

The functionality is very similar to the well-known switch-case
construct, the main differences are:

1. It is possible to use non-numeric, non-constant values (variables and
strings) for the WHEN due to the fact that all of the CASE statement is
wrapped up in a templated, lambdaized, well-hidden from the

Listing 12

struct base_rvholder
{
 virtual ~base_rvholder() = default;

 template<class T>
 operator T () const
 {
 return *reinterpret_cast<const T*>(get());
 }
 template<class T>
 bool operator == (const T& o) const
 {
 return o == operator T ();
 }
 template<class T>
 bool equals(const T& o) const
 {
 return o ==
 reinterpret_cast<const T>(get());
 }
 virtual const void* get() const = 0;
};

template<class T>
class rvholder : public base_rvholder
{
public:
 rvholder(T t, T c) :
 base_rvholder(), v(t), check(c) {}
 ~rvholder() = default;
 virtual const void* get() const override
 {
 return reinterpret_cast<const void*>(&v);
 }
private:
 T v;
 T check;
};
28 | Overload | October 2016

FEATUREDEÁK FERENC
outside world, construct. Be careful with this extra feature when
using the debugging mode of the library because the CASE macro
expands to the standard case keyword.

2. It is possible to have multiple conditions for a WHEN label joined
together with OR.

The fall through behaviour of the switch construct which is familiar to
C++ programmers was kept, so there is a need to put in a BREAK statement
if you wish the operation to stop after entering a branch.

Listing 13 is an example for the CASE statement.

In cases when the framework is used in debugging mode, the macros
expand to the following statements:

 #define CASE(a) switch (a) {
 #define ENDCASE }
 #define WHEN(c) case c:
 #define DO {
 #define DONE }
 #define OR
 #define DEFAULT default:

Implementation of the CASE construct
Certainly, the most complex of all constructs is the CASE one. Just the
number of macros supporting it is huge:

 #define CASE(a) try { \
 std::shared_ptr<obf::base_rvholder> __rvlocal;\
 auto __avholder = a; \
 obf::case_wrapper<std::remove_reference \
 <decltype(a)>::type>(a).

 #define ENDCASE run(); } \
 catch(obf::next_step& cv) {}

 #define WHEN(c)\
 add_entry(obf::branch<std::remove_reference\
 <decltype(__avholder)>::type> \
 ([&,__avholder]() -> \
 std::remove_reference<decltype(__avholder)>\
 ::type { \
 std::remove_reference<decltype(__avholder)>\
 ::type __c = (c); return __c;})).

 #define DO add_entry(obf::body([&](){

 #define DONE return \
 obf::next_step::ns_continue;})).

 #define OR join().

 #define DEFAULT add_default(obf::body([&](){

Let’s dive into it.

The case_wrapper name should be already familiar from the various
wrappers, but for CASE, the real workhorse is the case_wrapper_base
class. The case_wrapper class is necessary in order to make CASE
select ion on const or non const objects possible , so the
case_wrapper classes just derive from case_wrapper_base and
specialize on the constness of the CASE expression. Please note that the
CASE macro also evaluates more than one the a parameters, so writing
CASE(x++) will lead to undefined behaviour.

The case_wrapper_base class looks like Listing 14.

The const CT check; is the expression that is being checked for the
various case branches. Please note the add_entry and add_default
methods, together with the join() method which allow chaining of
ex p r e s s i on s an d m e th o d ca l l s o n t h e s a m e ob j e c t . The
std::vector<const case_instruction*> steps; is a
cumulative container for all the branch condition expressions and bodies
(code which is executed in a branch). This will introduce more complex
code at a later stage; however, it was necessary to have these two joined
in the same container in order to allow behaviour as similar to the original
way the C++ case works as possible.

The inner mechanism of the CASE depends on the following classes:

1. The obf::case_instruction class, which acts as a basic class
for:

2. obf::branch and
3. obf::body classes.

The obf::branch class is the class which gets instantiated by the WHEN
macro in a call to the add_entry method of the case_wrapper object
created by CASE. Its role is to act as the condition chooser, and it looks
like Listing 15.

Listing 13

std::string something = "D";
std::string something_else = "D";

CASE (something)
 WHEN("A") OR WHEN("B") DO
 std::cout <<"Hurra, something is "
 << something << std::endl;
 BREAK;
 DONE

 WHEN("C") DO
 std::cout <<"Too bad, something is "
 << something << std::endl;
 BREAK;
 DONE

 WHEN(something_else) DO
 std::cout <<"Interesting, something is "
 << something_else << std::endl;
 BREAK;
 DONE

 DEFAULT
 std::cout << "something is neither A, B or C,"
 " but:" << something <<std::endl;
 DONE
ENDCASE

Listing 14

template <class CT>
class case_wrapper_base
{
public:
 explicit case_wrapper_base(const CT& v) :
check(v), default_step(nullptr) {}
 case_wrapper_base& add_entry(const
case_instruction& lambda_holder) {
 steps.push_back(&lambda_holder);
 return *this;
 }
 case_wrapper_base& add_default(const
 case_instruction& lambda_holder) {
 default_step = &lambda_holder;
 return *this;
 }
 case_wrapper_base& join() {
 return *this;
 }
 void run() const ; // body extracted from here,
 // see later in the article for the
 // description of it
private:
 std::vector<const case_instruction*> steps;
 const CT check;
 const case_instruction* default_step;
};
October 2016 | Overload | 29

FEATURE DEÁK FERENC
The WHEN macro has a more or less confusing lambda declaration which
includes the local __avholder as being passed in by value. This is again
due to the fact that various compilers decided to not to compile the same
source code in the same way... well, some of them had a coup and bluntly
declined to compile what the others already digested, that’s why the ugly
solution came into existence.

The code that is executed upon entering a branch (including the default
branch) is created by the DO and the DEFAULT macros. They both create
an instance of the obf::body class: DO adds it to the steps of the case
wrapper class, and DEFAULT calls the add_default member in order to
specify a default branch. The oft::body class is much simpler, just a
few lines (see Listing 16).

The most interesting (and longest) part of the case implementation is the
run() method, presented here (in a somewhat stripped manner – I have
removed all the security checks in order to have presentable code
considering its length) – see Listing 17.

As a first step the code looks for the first branch which satisfies the
condition (if (*it)->execute(rvholder<CT>(check,check));
returns next_step::ns_done it means it has found a branch satisfying

the check). In this case it skips all the other conditions for this branch and
starts executing the code for all the ofb::body classes that are in the
object. In case a BREAK statement was issued while executing the bodies
the code w i l l t h row and t he catch i n ENDCASE
(catch(obf::next_step& cv) will swallow it, and will return the
execution to the normal flow.

The last resort is that if we have a default_step and we are still in the
body of the run (no-one issued a BREAK command) it also executes it.

And with this we have presented the entire framework, together with
implementation details, and now we are ready to catch up with our initial
goal.

The naive licensing algorithm revisited
Now that we are aware of a library that offers code obfuscation without
too many headaches from our side (at least, this was the intention of the
author) let’s re-consider the implementation of the naive licensing
algorithm using these new terms (see Listing 18).

Indeed, it looks a little bit more ‘obfuscated’ than the original source, but
after compilation it adds a great layer of extra code around the standard
logic, and the generated binary is much more cumbersome to understand
than the one ‘before’ the obfuscation. And due to the sheer size of the
generated assembly code, we simply omit publishing it here.

Disadvantages of the framework
Those who dislike the usage of CAPITAL letters in code may find the
framework to be annoying. As presented in [Wakely14] this almost feels
like the code is shouting at you. However, for this particular use case, I
intentionally made it like this because of the need to have familiar words
that a developer can instantly connect with (because the lower case words
are already keywords), and also to subscribe to the C++ rule that macros
should be upper case.

This brings us back to the swampy area of C++ and macros. There are
several voices whispering loudly that macros have nothing to do in C++
code, and there are several voices echoing back that macros, if used

Listing 15

template<class CT>
class branch final : public case_instruction
{
public:
 template<class T>
 branch(T lambda)
 {
 condition.reset(new any_functor<T>(lambda));
 }
 bool equals(const base_rvholder& rv, CT lv)
const
 {
 return rv.equals(lv);
 }
 virtual next_step execute(const base_rvholder&
against) const override
 {
 CT retv;
 condition->run(const_cast<void*>
 (reinterpret_cast<const void*>(&retv)));
 return equals(against,retv) ?
 next_step::ns_done : next_step::ns_continue;
 }
private:
 std::unique_ptr<any_functor_base> condition;
};

Listing 16

class body final : public case_instruction
{
public:
 template<class T>
 body(T lambda)
 {
 instructions.reset
 (new next_step_functor<T>(lambda));
 }
 virtual next_step execute
 (const base_rvholder&) const override
 {
 return instructions->run();
 }
private:
 std::unique_ptr<next_step_functor_base>
 instructions;
};

Listing 17

void run() const
{
 auto it = steps.begin();
 while(it != steps.end()) {
 next_step enter
 = (*it)->execute(rvholder<CT>(check,check));
 if(enter == next_step::ns_continue) {
 ++it;
 }
 else {
 while(! dynamic_cast<const body*>(*it)
 && it != steps.end())
 {
 ++it;
 }
 // found the first body.
 while(it != steps.end()) {
 if(dynamic_cast<const body*>(*it))
 {
 (*it)->execute(rvholder<CT>
 (check,check));
 }
 ++it;
 }
 }
 }
 if(default_step) {
 default_step->execute(rvholder<CT>
 (check,check));
 }
}

30 | Overload | October 2016

FEATUREDEÁK FERENC
wisely, can help C++ code as well as good old style C. I personally have
nothing against the wise use of macros, indeed they became very helpful
while developing this framework.

Last but not least, the numeric value wrappers do not work with floating
point numbers. This is due to the fact that extensive binary operations are
used on the number to obfuscate its value and this would be impossible to
accomplish with floating point values.

Some requirements
The code is written with ‘older’ compilers in mind, so not all the latest and
greatest features of C++14 and 17 are included. CLang version 3.4.1
happily compiles the source code, so does g++ 4.8.2. Visual Studio 2015
is also compiling the code.

Unit testing is done using the Boost Unit test framework. The build
system for the unit tests is CMake and there is support for code coverage
(the last two were tested only under Linux).

License and getting the framework
The library is a header only library, released in the public domain under
the MIT license. You can get it from https://github.com/fritzone/obfy

Conclusion
History has shown us that if a piece of software is crackable, it will be
cracked. And it just depends on the dedication, time spent, and effort
invested by the software cracker when that piece of a software is to be
proven crackable. There is no Swiss army knife when it comes to
protecting your software against malicious interference because from the
moment it left your build server and was downloaded, the software was
out of your hands, and entered an uncontrollable environment. The only
sensible thing you can do to protect your intellectual property is to make
it as hard to crack as possible. This little framework provides a few ways
of achieving this goal, and by making it open source, freely available and
modifiable, to the developer community, we can only hope this will give
it an advantage by allowing everyone to tailor it in order to suit their needs
best.

Appendix: the license generating algorithm
As promised, Listing 19 is the naive license generating algorithm. Any
further improvements to it are more than welcome.

References
[Andrivet] Random Generator by Sebastien Andrivet

https://github.com/andrivet/ADVobfuscator

[Stackoverflow] http://stackoverflow.com/questions/12387239/
reference-member-variables-as-class-members

[Wakely14] ‘Stop the Constant Shouting’ Overload 121 June 2014,
Jonathan Wakely

Listing 18

bool check_license1(const char* user,
 const char* users_license)
{
 OBF_BEGIN
 std::string license;
 size_t ll = strlen(users_license);
 size_t l = strlen(user), lic_ctr = N(0);
 size_t add = N(0), i =N(0);

 FOR (V(i) = N(0), V(i) < V(ll), V(i)++)
 IF (V(users_license[i]) != N(45))
 license += users_license[i];
 ENDIF
 ENDFOR

 WHILE (V(lic_ctr) < license.length())
 size_t i = lic_ctr;
 V(i) %= l;
 int current = 0;
 WHILE(V(i) < V(l))
 V(current) += user[V(i)++];
 ENDWHILE
 V(current) += V(add);
 ++V(add);
 IF ((license [lic_ctr]
 != letters[current % sizeof letters]))
 RETURN(false);
 ENDIF
 lic_ctr++;
 ENDWHILE

 RETURN (true);
 OBF_END
}

Listing 19

static const char letters[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
std::string generate_license(const char* user)
{
 if(!user) return "";
 // the license will contain only these character
 // 16 chars + 0
 char result[17] = { 0 };
 size_t l = strlen(user), lic_ctr = 0;
 int add = 0;
 while (lic_ctr < 16)
 {
 size_t i = lic_ctr;
 i %= l;
 int current = 0;
 while (i < l)
 {
 current += user[i];
 i++;
 }
 current += add;
 add++;
 result[lic_ctr] =
 letters[current % sizeof letters];
 lic_ctr++;
 }
 return std::string(result);
}

October 2016 | Overload | 31

https://github.com/fritzone/obfy
https://github.com/andrivet/ADVobfuscator
http://stackoverflow.com/questions/12387239/reference-member-variables-as-class-members
http://stackoverflow.com/questions/12387239/reference-member-variables-as-class-members

FEATURE CHRIS OLDWOOD
Afterwood
Comedy partnerships have a long history. Chris Oldwood
considers their lessons for programmers.
hen I think of some of the most memorable comedy acts, I
instinctively go for the partnerships, such as Laurel & Hardy,
Morecambe & Wise, The Two Ronnies, and The Chuckle

Brothers. Okay, maybe that last suggestion isn’t in my top 10 but they do
spring to mind very quickly because they are another famous comedy
partnership.

Does this mean that the best comedy only comes from partnerships? If I try
and think of specific comedians then I’d possibly go with Bob Monkhouse,
Steven Wright, Jimmy Carr or Jack Dee. Of course the face of the comedy
act, the end product if you like, is the performance, the eventual delivery
of the stream of gags from script to audience. What we might perceive as
being a solo act, duo or group may just be the chosen form of delivery;
behind the scenes the people that produce the actual content – the writers
– may well be comprised of an entirely different number.

If you’re bored enough to watch the credits at the end of a TV show, you’ll
often find there is more than one writer listed. Even if they acknowledge
some writers under the separate heading of ‘additional content’, you’re
still likely to find the lion’s share of the writing attributed to more than a
single person. It’s not uncommon for one half of a writing duo to be the
most prominent face (e.g. Bob Monkhouse and Ricky Gervais), whereas
the other half remains less well known because they are only supporting
players in the performance (e.g. Denis Goodwin and Steven Merchant).
Naturally, it doesn’t stop at two, there are bigger teams of writers as well,
but the point is that writing (and clearly not just in the field of comedy
either) is commonly seen as a highly collaborative profession that benefits
greatly from the input of many sources.

So why is writing software, which is also largely about communication,
still often perceived as being a solo activity? Has the word of Eliyahu
Goldratt [Goldratt84] (or more recently Kim, Behr & Spafford [Kim13])
about focusing on product flow instead of programmer utilisation still not
reached in to the heart of the software industry’s extensive management
culture? Or is it ourselves, the legions of programmers, that are reluctant
to give up our cubicles for fear of losing our identity?

In the past year I have done very little programming by myself. The vast
majority of my time has been working in a pair, but I have also had the
pleasure of doing a significant amount of mob programming too, usually
in a group of four. I’m reaching a point now where the thought of having
to work by myself makes me feel uncomfortable because I don’t want to
suffer the loss in productivity. It’s still nice to do some background
learning in the comfort of my own space but when it comes to delivering
product features where the focus is on delivering working code to the
customer, the joint effort is now feeling like a more natural way to go.

The reason it’s taken so long (for me) to see the light has almost certainly
been of my own making. Back when the ACCU conference was hosted in
Oxford I remember a late night conversation in the bar (of course) where
I posed the question about how the productivity of experienced
programmers would benefit from practices like pair programming. The
mistake I made back then was to think of two programmers as two CPUs
sharing a problem – each additional CPU only adds another 60%
(historically) due to communication overhead. But reading The Goal (and

more recently The Phoenix Project) I realised my mistake was to think of
myself as a resource to be utilised to 100% capacity, rather than leveraged
to minimise the time to market of features (and therefore maximise the
value extracted from each proposition).

Whilst I had always felt that being able to help unblock other people at the
cost of not delivering as much personally was the right thing to do (a global
optimisation) the management focus around individual performance always
made it a choice which I was ill equipped to explain. Luckily books like
Laurie William’s Pair Programming Illuminated is becoming more well-
known and has concrete data to back up the anecdotal evidence which has
been floating around for much longer. This book, along with a number of
other sources, came to my attention via talks given by Jon Jagger [Jagger16]
and they have in turn been passed on to some of my clients that have also
been sceptical of the practice. Their scepticism, like my own though, is
usually borne out of looking for the answer to the wrong question.

As I suspect is the case with traditional writing partnerships, some work
much better than others. Being a couple of decades into my professional
programming career, I can’t know how it would pan out for more junior
developers but pairing and mobbing with experienced developers has
mostly worked out extremely well. It’s entirely possible that being mature
freelancers, we’re not worried about climbing the greasy pole and so we’re
entirely comfortable with just getting on with the task at hand and don’t
assume that any criticism is intended as a personal attack. We all have
different backgrounds and that is something to be embraced, not diluted.

Programming in a group of two or more is definitely a skill in its own
right. Just as with any conversation knowing when to speak and when to
be silent is something you have to learn. Similarly if you currently have
the keyboard you’ll probably be bombarded with ‘advice’ and you’ll need
to learn to mediate. There are likely many things you’ll want to pick up in
the early days of your relationship, such as better ways to use the tooling
and express concepts in code, and that’s all on top of working together to
solve the actual problem at hand, which should always be the primary
focus. Personally I find the small scale scope creep trap all too easy to fall
into and really appreciate having ‘Gold Five’ constantly reminding me in
my ear to ‘stay on target’.

One day I hope the software tooling world will catch up and each commit
can read like the credits at the end of a TV show or film where all those
who contributed to the feature are rightfully acknowledged, instead of just
the one programmer who got to execute the final commit and push. And
it’s not just the programmers’ names either; if you work in a cross-
functional team you may well have a BA and QA providing valuable
insights and direction which means your commit should be attributed to
The Three Amigos.

The world of software is still dominated by the names of individuals, such
as Linus Torvalds, Larry Wall and David Heinemeier Hansson. I wonder
if in the future, when more of us start to work more closely with our fellow
colleagues, we’ll see a rise in the kind of partnerships that roll off the
tongue, like Kernighan & Richie or Pike & Thompson?

References
[Goldratt84] The Goal Eliyahu M. Goldratt (1984)

[Jagger16] http://jonjagger.blogspot.co.uk/2016/04/pair-programming-
keynote.html

[Kim13] The Phoenix Project Gene Kim, Kevin Behr, George Spafford
(2013)

W

Chris Oldwood Chris is a freelance programmer who started out
as a bedroom coder in the 80’s writing assembler on 8-bit micros.
These days it’s enterprise grade technology in plush corporate
offices. He also commentates on the Godmanchester duck race
and can be easily distracted via gort@cix.co.uk or @chrisoldwood
32 | Overload | October 2016

http://jonjagger.blogspot.co.uk/2016/04/pair-programming-keynote.html
http://jonjagger.blogspot.co.uk/2016/04/pair-programming-keynote.html

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Overload135-Final.pdf
	Ain’t that the truth?!
	Determinism: Requirements vs Features
	Eight Rooty Pieces
	Polymorphic Comparisons
	C++ Synchronous Continuation Passing Style
	Attacking Licensing Problems with C++
	Afterwood

