

We at JetBrains have spent the last
decade and a half helping developers
code better faster, with intelligent
products like IntelliJ IDEA, ReSharper
and YouTrack. Finally, you too have
a C++ development tool
that you deserve:

Rely on safe C++ code
refactorings to have all usages
updated throughout the whole
code base

Generate functions
and constructors instantly

Improve code quality
with on-the-fly code analysis
and quick-fixes

Find a C++ tool for you
jb.gg/cpp-accu

A Power Language
Needs Power Tools
—

ReSharper C++

Visual Studio Extension
for C++ developers

CLion

Cross-platform IDE
for C and C++ developers

AppCode

IDE for iOS
and OS X development

February 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Mean Properties
Russel Winder walks us through an example of
properties an arithmetic mean function should have.

8 The Importance of Back-of-Envelope
Estimates
Sergey Ignatchenko reminds us why back of the
envelope calculations matter.

13 Multiprocessors and Clusters in Python
Silas S. Brown shows us various ways to do
multiprocessing in Python.

16 doctest - the Lightest C++ Unit Testing
Framework
Viktor Kirilov introduces doctest, a C++ unit testing
framework.

20Correct Integer Operations with Minimal
Runtime Penalties
Robert Ramey introduces a library to enforce
correct numerical calculations.

28Afterwood
Chris Oldwood reminisces on various approaches to
finding a good candidate for a job.

OVERLOAD 137

February 2017

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 138 should be
submitted by 1st March 2017 and
those for Overload 139 by
1st May 2017.

EDITORIAL FRANCES BUONTEMPO
The Uncertainty Guidelines
Uncertainty can be overwhelming. Frances Buontempo
embraces the advantages of ambiguity.
Having a few days off over Christmas has given me
the chance to catch up on some reading, including
revisiting Gödel, Escher, Bach [Hofstadter]. In turn,
this has absorbed rather a lot of time, so I haven’t got
round to writing an editorial. I was also given a
Sudoku Rubik’s cube, which I haven’t managed to

complete yet. Tips welcome. I know I will have to resort to some group
theory and a sensible notation on paper rather than just randomly trying
moves and hoping for the best, though that is a good way to start to
explore a puzzle. As ever, I digress. Near the start of his book, Hofstadter
presents a puzzle he calls ‘MU’. You form valid strings from three
characters, {M, I, U}. Starting with ‘MI’ can you form ‘MU’ using the
following four rules?

1. xI => xIU
2. Mx => Mxx
3. xIIIy => xUy
4. xUUy => xy

where x and y stand for any string of characters. I haven’t solved this
puzzle either, though a bit of trial and error reveals starting with ‘MI’, or
indeed any string starting with M will only form strings starting with M,
since none of the rules remove an M. MU is plausible, but it is neither
self-evident nor certain that it can be made from MI. Of course, it might
be impossible. How, in general, can you be certain that something is
impossible? If you have a finite set of possibilities you can enumerate all
of them and check the claimed impossibility is not held within. In the case
of MU, there are infinite possible strings, so we cannot do this.
Sometimes by assuming the impossible, you can derive a contradiction,
from which all reasonable people would conclude the starting point is
impossible. There are other options. I will leave the reader to explore the
puzzle themselves and drawn their own conclusions or cheat
[Wikipedia].

The ‘Sudokube’ is probably possible. The internet assures me if I remind
myself how to solve a Rubik’s cube it will be simple enough. I have a
confession – I never fully learnt how to do this. I was shown some
instructions, transformed into group theory notation, when I was about
twelve, yet not knowing group theory made these less than useful.
Transforming the situation into another is often a successful way to solve
a problem, provided you transform it into a known problem. Finding a
helpful notation allows you to think more abstractly and drawn
conclusions about blind alleyways and potentially fruitful paths.
Abstracting and generalising can be powerful tools. We do this when we
write functions. Usually, we don’t have a lookup table of all the possible
results, but perform a transformation or calculation to return an answer.
Of course, we sometimes then resort to lookup tables to speed things up

l a t e r , bu t t ha t i s an o t he r m a t t e r . As
programmers, we frequently solve puzzles
or problems. The way the problem is

presented tends to influence the outcome.

If the person setting the problem frames it in terms of how they would
like the problem to be solved, it is useful to ask, ‘What problem are you
really trying to solve?’ or simply ‘Why?’ This type of issue is sometimes
referred to as the XY problem, and frequently mentioned on Stack
Overflow. It has been described as:

a mental block which leads to enormous amounts of wasted time and
energy, both on the part of people asking for help, and on the part of
those providing help. It often goes something like this:
 User wants to do X.
 User doesn’t know how to do X, but thinks they can fumble their

way to a solution if they can just manage to do Y.
 User doesn’t know how to do Y either.
 User asks for help with Y.
 Others try to help user with Y, but are confused because Y seems

like a strange problem to want to solve.
 After much interaction and wasted time, it finally becomes clear that

the user really wants help with X, and that Y wasn’t even a suitable
solution for X.’ [XyProblem]

I am not suggesting spending all your time being a sceptic or doubter;
however, it is worth trying to find the right levels of abstraction to frame
a question or answer. As I said, transforming something into a problem
with a known solution can help, but it must be ‘isomorphic’ (or at least
similar enough) to the original problem. If you admit uncertainty when
you are not sure, this can be fruitful. If you can find a way to express the
problem you are considering, be that in interfaces, function signatures or
a concise mathematical formulation you at least have a way to discuss
and explore the conundrum.

I have another confession; I never managed to learn my times tables
properly at school. Some were easy because they had nice patterns, for
example the nine times table. I tended to count up (or down) from the
numbers I did know, by some combination of lookup and algebra. If I was
uncertain of my answer, I would try another combination, say 7 times 8
stumped me, then 8 times 7 was far easier being double 4 sevens.
Realising the general principle that natural numbers are commutative
under multiplication

x×y=y×x

is powerful. Proving such general principles is another matter. In fact, it
is possible to develop number systems which are not commutative,
specifically Hamilton’s quaternions, which take the form

a+bi+cj+dk

where a,b,c,d ℝ or ℂ with i2= j2=k2= ijk=-1. Those using complex
numbers ℂ are known as bi-quaternions. You cannot be certain of
commutativity; it is a property of basic arithmetic, rather than something
provable. On the face of it, developing new number systems might seem
like a pointless mind game. What’s their use? On one level this should
not matter; theoretical things can be interesting in and of themselves.
Nonetheless, if you insist, the quaternions provide a neat shortcut in
theoretical physics to represent the Lorenz group of special relativity.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad's BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2017

EDITORIALFRANCES BUONTEMPO
They also provide quicker ways to calculate transformations in computer
graphics, compared to matrices. Surprising things happen when you
question things that seem certain, obvious or no-brainers.

Revisiting Hofstadter reminded me of Euclid’s fifth axiom. I remember it
as given a ‘straight line’ and a point not on the line, there is only one way
to draw a line through that point which doesn’t cross the line, though this
appears to be Playfair’s axiom [Playfair]. The fifth axiom, or parallel
postulate, is more usually stated as

If a straight line crossing two straight lines makes the interior angles on
the same side less than two right angles, the two straight lines, if
extended indefinitely, meet on that side on which are the angles less
than the two right angles. [Cut-the-knot]

For the MU puzzle, MI was given as an axiom; you assume it is ‘true’ or
take it as given and see what follows. We can do likewise with Euclid’s
axioms, and derive theorems of Euclidean geometry, such as the internal
angles of a triangle sum to 180°. The thing about axioms or principles is
they are more like guidelines. The inner child shouts ‘But why?’ then
finds out what happens if you disobey the claimed ‘rules’. By dropping
Euclid’s parallel postulate, you develop or discover so-called Non-
Euclidean geometries. For a hyperbolic geometry, parallel lines get
further apart, whereas for an elliptical geometry they get closer together.
The fifth postulate got picked on because it seemed untidy compared to
the others, which in essence defined a straight line, circles and right
angles. Many people tried to prove the fifth postulate, using just the first
four and all failed. In the process, counterintuitive, yet consistent
geometries were discovered. Poincare accepted these counterintuitive
ideas, paving the way for Einstein [Barbosa]. It is worth noting that
special relativity’s use of non-Euclidean geometry is not equivalent to
saying it is ‘true’ or correct, just that the more counterintuitive
mathematical setting made the scientific theory simpler. This echoes the
quaternions; a different representation with fewer or different constraints
can give more powerful or simpler ways to approach puzzles.

Many scientific theories are referred to as ‘Laws’, for example Kepler’s
laws of planetary motion. This suggests they are unbreakable and in some
sense fixed. Newton took on board Kepler’s ideas, and talks of Kepler’s
guesses, deductions and discoveries; he did not describe these as laws.
Any ideas, be that scientific or otherwise, tended to be described as
‘philosophy’ at the time. It seems Voltaire first introduced the term ‘Law’
of Kepler’s philosophy, where he describes the area rule as a ‘Law
inviolably observed by all the Planets’ [Wilson]. Using the word law
suggests either a divine decree, or a rule following from the essence or
nature of the planets and indeed space. They are fundamental principles,
which fit observation. Most people would just take the term on board
nowadays, without giving it too much thought. We tend to regard
scientific models as something which fits observations, but expect them
to change and evolve over time. Our thinking about science, and indeed
thinking itself, changes over time. Similarly, our approach to coding has
changed over time. Some things are driven by trends or new language
features. Other things are more fundamental; the move to structured code
changed how we wrote and reasoned about code. Introduction of object
oriented programming has an effect. Attempting to write in a functional
language influences how you solve a problem. I wonder what we might
discover if we looked at coding standards through the last decades?
Would we see trends and changes? Perhaps they should actually be

referred to as conventions, or guidelines. Some laws are more like models,
and others an attempt to enforce a norm. They can still be questioned or
modified over time. They may be governed by some guiding principles,
like fit our current observations, communicate clearly, or be nice. Laws
and conventions give ways to assess and reason about things, but should
never be set in stone.

In general, our syntax and abstractions allow us to frame problems in
different ways, which in turn can make analysis easier or, if we are not
careful, more difficult. We see this when we try to add features to code,
or even test it. Sometimes an abstraction introduced in just the right place
allows us to hook something different in, be that a test or a new feature.
Sometimes this was a deliberate choice from a developer, or we just got
lucky. Kevlin Henney [Henney] wrote about what he coined ‘The
Uncertainty Principle’ for Overload a few years ago. In particular, he said,
‘in software development, a lack of certainty about something can be part
of the solution rather than part of the problem.’ Rather than having a long
meeting and countless arguments when a choice is presented, he
advocates structuring your code so it doesn’t matter which is chosen.
Hiding the choice between an algorithm or lookup table behind an
interface helps to ‘mark out the boundaries in a software system and
loosen the coupling’. Using uncertainty as a positive force is a great
guideline.

Uncertainty can be unnerving, but if you embrace it and remember all the
times it has driven new discoveries this should give
you hope. We don’t know everything, and there is
always room for improvement. Let’s see what chaos,
new discoveries and surprising, unpredicted results the
New Year brings.

References
[Barbosa] Pedro M. Rosario Barbosa The Relation between Formal

Science and Natural Science: Underdetermination of Science
Project http://pmrb.net/uos/?q=4_3_2

[Cut-the-knot] http://www.cut-the-knot.org/triangle/pythpar/Fifth.shtml

[Henney] ‘The Uncertainty Principle’, Overload 115, June 2013
https://accu.org/index.php/journals/1854

[Hofstadter] Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal
Golden Braid, New York: Basic Books, 1979.

[Playfair] Playfair, J. Elements of Geometry: Containing the First Six
Books of Euclid, with a Supplement on the Circle and the Geometry
of Solids to which are added Elements of Plane and Spherical
Trigonometry. New York: W. E. Dean, 1861. (according to
http://mathworld.wolfram.com/PlayfairsAxiom.html)

[Wikipedia] https://en.wikipedia.org/wiki/MU_puzzle

[Wilson] Wilson, Curtis ‘Kepler’s Laws, So-Called’, HAD News
(Historical astronomy division of the American Astronomical
Society, May 1994. https://had.aas.org/sites/had.aas.org/files/
HADN31.pdf

[XyProblem] http://mywiki.wooledge.org/XyProblem
February 2017 | Overload | 3

http://pmrb.net/uos/?q=4_3_2
http://www.cut-the-knot.org/triangle/pythpar/Fifth.shtml
https://accu.org/index.php/journals/1854
http://mathworld.wolfram.com/PlayfairsAxiom.html
https://en.wikipedia.org/wiki/MU_puzzle
http://mywiki.wooledge.org/XyProblem
https://had.aas.org/sites/had.aas.org/files/HADN31.pdf
https://had.aas.org/sites/had.aas.org/files/HADN31.pdf

FEATURE RUSSEL WINDER
Mean Properties
Property based testing is all the rage. Russel
Winder walks us through an example of properties
an arithmetic mean function should have.
n the article Testing Propositions [Winder16], I used the example of
factorial to introduce proposition-based testing. One of the criticisms
from an unnamed reviewer was that it was not clear what constituted a

proposition; the test code looked very much like the implementation code,
confusing the message. The reviewer had clearly missed the point, which
most likely must indicate a problem with the presentation and/or the
example chosen in the article. This short article is to try and present an
example to address that reviewer’s valid, and important, point.

A really (really) small problem
Let us consider the calculation of the mean of a set of data.
Mathematically we would write:

where represents the mean of the dataset
comprising all the values xi. The mathematical
statement leads us inexorably to an algorithm for
computing the mean of a given data set: using
Python1 we implement a function mean as shown in
Listing 1. Of course many people might have just
written the code as shown in Listing 2 and whilst
correct, this code is likely to be much slower than
using NumPy.2

The question now is obviously: how can we test these
implementations?

Do we have to?
The insightful reader will already have spotted that
there is probably not a testing obligation for us with
the mean function as implemented in Listing 1. The
code uses assignment (which should work because the Python compiler
and virtual machine3 implementers have tested that it works correctly)
and a reference to numpy.mean which should work because the NumPy
implementers should have tested that that function works correctly.

But what about Listing 2? Is there a testing obligation given that the sum
function, the len function and the / (division) operator are all Python
features and the Python language people should have tests for all of them?
Is this function not correct simply by observation, and that it reflects so
easily the mathematical definition? No. We must test this function.4

Yes, we will test things
So what tests can we do in the property-based rather than example-based
philosophy? Well we have two implementations of the same functionality
so maybe we can test that they both produce the same answer. The
property being tested here is that all correct implementations give the
same answer. Using [Hypothesis] and [PyTest], I came up with the test
code shown in Listing 3.

I

1. And the NumPy package, obviously.
2. Of course, we have no real data on this hypothesis without undertaking

some sensible benchmarking activity. Which we will not be doing in this
article since it is far too much effort.

3. In case you weren’t aware, Python is a virtual machine based language;
source code is compiled to bytecodes which are executed at run time.

4. Whether this is the correct answer to the question is left as an exercise
for the reader.

Russel Winder Ex-theoretical physicist, ex-UNIX system
programmer, ex-academic. Now an independent consultant,
analyst, author, expert witness and trainer. Also doing startups.
Interested in all things parallel and concurrent. And build. Actively
involved with Groovy, GPars, GroovyFX, SCons, and Gant. Also
Gradle, Ceylon, Kotlin, D and bit of Rust. And lots of Python
especially Python-CSP.

Listing 3

from math import isclose

from hypothesis import given
from hypothesis.strategies import lists, floats

import python_numpy
import python_pure

lower_bound = -1e5
upper_bound = 1e5

effectively_zero = 1e-3

@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: abs(x) > effectively_zero)))
def test_the_two_implementations_give_the_same_result(data):
 assert isclose(python_numpy.mean(data), python_pure.mean(data))

Listing 1

python_numpy.py
import numpy
mean = numpy.mean

Listing 2

python_pure.py
def mean(data):
 return sum(data) / len(data)
4 | Overload | February 2017

FEATURERUSSEL WINDER
There is clearly a lot going on in this code. There is a
single test function, but we use the Hypothesis
given decorator and lists and floats strategies
to automatically generate (more or less randomly)
lists of floating point values that the test is run on.
Most of the work is in conditioning the float values
that we allow in the test: the float values are
constrained to the ranges [-1e5, -1e-3] and [1e-3,
1e5], via the combination of min_value and
max_value constraints in the floats strategy
combined with the filter strategy that applies a
predicate to remove values in the range [-1e-3, 1e-3].
Values close to zero are not allowed since hardware
floating point values close to zero generally cause
serious problems with any and all expression
evaluation and hence testing.5 Similarly, admitting
very large floating point values allows Hypothesis to
easily discover values that hardware floating point
expression evaluation cannot cope with – again
resulting in problems of testing nothing to do with the
actual properties under test.6 So, for the purposes of
testing, we stick with floating point values of about
eight significant digits to try and ensure we do not get
rounding errors in the hardware evaluation that
falsify our properties due to the behaviour of floating
point hardware rather than a failing of the property.

The test itself eschews asserting equality of two
hardware floating point values, as this is clearly not a
thing any right thinking programmer would ever
dream would work.7 Instead the math.isclose
predicate is used to determine if the values are close
enough to each other to be deemed equal.

Anyone ‘on the ball’ will already have realised that there was going to be
an error executing this test, even with the carefully constructed test. When
pytest is run on the test code we get:

 dataset = []
 def mean(dataset):
 > return sum(dataset) / len(dataset)
 E ZeroDivisionError: division by zero

One up to Hypothesis for finding that the empty dataset breaks our
implementation.

If we took a ‘Just fix the tests so they are green’ approach8 we might just
change the tests to that as seen in Listing 4. The empty dataset case is
separated out and the @given decorator is extended to required that only
lists with at least one item are generated.

But is this the right behaviour?
The question we have to ask is whether this behaviour of the
implementation of Listing 2 with empty lists is the right behaviour. Indeed
this should have been the question asked instead of just patching the test
in the first place.9

We note that numpy.mean returns NaN for empty data rather than
throwing an exception. In the original submission of this article, I
amended the pure_python.mean to return NaN, just to be consistent

with python_numpy.mean. The reviewers, though, were fairly
unanimous that NumPy was doing the wrong thing, that mean of an empty
dataset should be undefined, i.e. raise an exception. This viewpoint is
encouraged when looking at the statistics module in the Python
standard library (from Python 3.4 onwards). Its mean function definitely
raises an exception on no data. So, let’s treat the numpy.mean behaviour
as an aberration: let’s change the implementation of our pure Python
mean function to that shown in Listing 5 and make the appropriate change
to the test for empty data, as shown in Listing 6.

But what are the properties?
None of this has though really opened up the question of properties of the
computation: we have only example-based tests for the empty dataset, and
a comparison test to test the equivalence of different implementations. So
what are the properties of the mean calculation that we can test in the form
of property-based tests for each implementation separately?

A search of Google10 should always turn up the property that:

i.e. the sum of the differences of individual items from the mean should
be zero. Given a dataset and a putative mean calculation function, we can
test that this property is not falsifiable. Further delving into the notion of
‘properties of the mean’ may well also turn up the following properties:

5. Allow values close to zero in the sample set and Hypothesis will always
find a case that falsifies any property.

6. This property of hardware floating point numbers and Hypothesis (or
any random test value generator with a good search algorithm) is well
understood and is unavoidable, hence having to take great care
conditioning the floating point values selected.

7. Any programmer claiming competence that uses equality between
floating point values clearly requires re-education on this point.

8. Anyone taking this approach in real life is definitely doing it wrong, even
though we all know this is what actually happens all too often. Clearly
we should fight against this approach at all times.

9. Except then I wouldn’t have had a chance to chide people taking the
‘just fix the tests so they are green’ approach.

10. Yes, Google searching can actually turn up useful facts, as well as
satire, spoof, and fictional stuff. And pictures of cats, obviously.

Listing 4

from math import isclose

from numpy import isnan

from hypothesis import given
from hypothesis.strategies import lists, floats

from pytest import raises

import python_numpy
import python_pure

lower_bound = -1e5
upper_bound = 1e5

effectively_zero = 1e-3

def test_numpy_mean_return_nan_on_no_data():
 assert isnan(python_numpy.mean([]))

def test_our_mean_raises_exception_on_no_data():
 with raises(ZeroDivisionError):
 python_pure.mean([])

@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: abs(x) > effectively_zero),
 min_size=1))
def test_the_two_implementations_give_the_same_result(data):
 assert isclose(python_numpy.mean(data), python_pure.mean(data))

Listing 5

python_pure_corrected.py

def mean(data):
 if len(data) == 0:
 raise ValueError('Cannot take mean of no data.')
 return sum(data) / len(data)
February 2017 | Overload | 5

FEATURE RUSSEL WINDER
So here we have a number of
expressions (that we can treat as
predicates, i.e. properties) that can be
evaluated, that our putative mean
implementation should pass.11 All of
them are exactly the sort of property
that Hypothesis can test using its
random generation of values from a
set.

And the result is…
Putting all this together I present the
test as shown in Listing 7.12,13,14

We have the example-driven test of
the empty list case, as previously.

The test of equivalence of different
implementations is replaced by tests
o f t he p ro p e r t i e s f o r e a c h
i mp leme n t a t i on s epa ra t e ly :
test_sum_of_data_minus_me
an_is_zero realises the first
equa t i on , and
test_mean_of_offset_data_
is_correct handles all four
‘offset testing’ equations. Both of
these functions are parameterised
u s i n g t h e
pytest.mark.parametrize
decorator so as to create tests for
each of the mean implementations
being tested, three in this case. The
test_mean_offset_data_is_
correct test function is also parameterised over the arithmetic
operations +, -, *, and /,15 implementing the four ‘offset testing’
equations. The selection of lists of floating point values is very much as

previously, but with the creation of the offset value added as a second
parameter to the given decorator.

All the tests pass.16

So, hopefully, this short article has ‘filled in the gaps’ left by the previous
article, about what a property is and what property-based testing is about.

Final thought
Is the mean of a dataset the only function that has the properties tested
here?

References
[Hypothesis] http://hypothesis.works/

[PyTest] http://pytest.org/

[Winder16] Testing Propositions, Overload 134, pp.17–27, 2016-08.
PDF file of the entire issue: https://accu.org/var/uploads/journals/
Overload134.pdf .
Web page of this article: https://accu.org/index.php/journals/2272

11. In the early draft of this article, I failed to note the constraints on k in the
equations, although I had implemented the constraints in the code. This
raised a debate amongst the reviewers that there were only two, not
four, equations. Both sides were right because the presentation was, at
that time, inconsistent. The question was which consistency to go with.
For a small number of minor ‘hidden agenda’ points, I have gone with
four equations, but going with two equations and not restricting the
domain would be an equally valid way forward.

12. I have added statistics.mean in here as well, just for good
measure. Formally, fairly useless, or it should be, but fun nonetheless.

13. Actually, we really should note that testing numpy.mean and
statistics.mean here is completely superfluous and totally
redundant in terms of testing obligation. It is done here to show that all
the implementations do, in fact, pass the tests.

14. Thanks to D R MacIver, the author of Hypothesis, for being around on
Twitter on 2017-01-01 to fix a serious architectural failing with the draft
of this code. In summary: each test should have one and only one given
decorator.

15. Python provides functional forms of the +, -, and * operators, but not /,
hence the lambda function for division.

16. At the time of submission of this article, running on Debian Sid with
Python 3.5.2, PyTest 3.0.5, and Hypothesis 3.6.0, anyway.

Listing 6

from math import isclose

from numpy import isnan

from hypothesis import given
from hypothesis.strategies import lists, floats

from pytest import raises

import python_numpy
import python_pure_corrected

lower_bound = -1e5
upper_bound = 1e5

effectively_zero = 1e-3

def test_numpy_mean_return_nan_on_no_data():
 assert isnan(python_numpy.mean([]))

def test_our_mean_raises_exception_on_no_data():
 with raises(ValueError) as error:
 python_pure_corrected.mean([])
 assert error.value == 'Cannot take mean of no data.'

@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: abs(x) > effectively_zero),
 min_size=1))
def test_the_two_implementations_give_the_same_result(data):
 assert isclose(python_numpy.mean(data), python_pure_corrected.mean(data))
6 | Overload | February 2017

http://hypothesis.works/
http://pytest.org/
https://accu.org/var/uploads/journals/Overload134.pdf
https://accu.org/var/uploads/journals/Overload134.pdf
https://accu.org/index.php/journals/2272

FEATURERUSSEL WINDER
Listing 7

from math import fabs, isclose
import operator
import statistics

from numpy import isnan
from hypothesis import given, settings
from hypothesis.strategies import lists, floats
from pytest import mark, raises
import python_numpy
import python_pure_corrected

implementations = (python_numpy.mean, python_pure_corrected.mean, statistics.mean)
operators = (operator.add, operator.sub, operator.mul, lambda a, b: a / b)

lower_bound = -1e5
upper_bound = 1e5
effectively_zero = 1e-3

def test_numpy_mean_return_nan_on_no_data():
 assert isnan(python_numpy.mean([]))
def test_our_mean_raises_exception_on_no_data():
 with raises(ValueError) as error:
 python_pure_corrected.mean([])
 assert error.value == 'Cannot take mean of no data.'
def test_statistics_mean_raises_exception_on_no_data():
 with raises(statistics.StatisticsError):
 statistics.mean([])

@mark.parametrize('implementation', implementations)
@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound)
 .filter(lambda x: fabs(x) > effectively_zero),
 min_size=1, max_size=100))
def test_sum_of_data_minus_mean_is_zero(implementation, data):
 x_bar = implementation(data)
 assert sum(x - x_bar for x in data) < effectively_zero

@mark.parametrize('implementation', implementations)
@mark.parametrize('op', operators)
@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: fabs(x) > effectively_zero).
 map(lambda x: round(x, 3)),
 min_size=1),
 floats(min_value=2.0, max_value=upper_bound),
)
def test_mean_of_changed_data_obeys_property(implementation, op, data, offset):
 x_bar = implementation(data)
 x_bar_offset = implementation([op(x, offset) for x in data])
 assert isclose(x_bar_offset, op(x_bar, offset))

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!
February 2017 | Overload | 7

FEATURE SERGEY IGNATCHENKO
The Importance of Back-of-
Envelope Estimates
Guestimate questions make many people grumble.
Sergey Ignatchenko reminds us why they matter.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

ith all the techniques we use during development (ranging from
‘just keyboard and vim’ to ‘RAD IDE which claims to make
writing code unnecessary’), there is one thing which is

unfortunately meticulously neglected across the software development
industry (and moreover, there are arguments pushed forward that it is a
Bad Thing even to try using it). I’m speaking about order-of-magnitude
estimates made on the back of an envelope. While it is impossible to
provide any strict proof that such estimates are useful, we’ll see some
anecdotal kinda-evidence that such estimates do help us to avoid spending
months (and even years) on development which is apparently unnecessary
or outright infeasible.

BTW, the subject of back-of-the-envelope estimates in IT is not
something new (it was discussed at least in [McConnell] and [Atwood],
and recently mentioned in [Acton]); indeed, I myself am guilty of using it
in [NoBugs12] and [NoBugs13]. However, with such estimates being
so important and so frequently neglected, I am sure it is necessary to
emphasize their importance once again (and again, and again ;-)).

Definition and examples from physics
First of all, let’s define what we’re talking about. Without going into
lengthy discussion, let’s just quote Wikipedia:

In the hard sciences, back-of-the-envelope calculation is often
associated with physicist Enrico Fermi, who was well known for
emphasizing ways that complex scientific equations could be
approximated within an order of magnitude using simple calculations.

Besides noting that with Enrico Fermi being one of the brightest minds of
the XX century, we’re certainly in a good company ;-), we should
emphasize this ‘within an order of magnitude’ qualifier. In other words,
we’re not even trying to get results which can be seen as a replacement for
benchmarking. On the other hand, if our simplified calculations can give
us an order of magnitude that is appropriate for approximating the exact
value we need, we don’t have to spend time performing an actual
experiment.

Two most famous examples of back-of-the-envelope calculations in
physics are the following (with lots and lots of others not recorded as
they’re not seen as anything special):

 Fermi estimating the yield of an atomic bomb by dropping bits of
paper and measuring the distance they were blown by the blast wave
(he estimated 10K tons of TNT, the actual result was 18.6K tons).
See also his famous ‘Fermi problem’ of ‘how many piano tuners are
there in Chicago?’ .

 Arnold Wilkins spending a few hours proving that radio-based
‘death rays’ (claimed to be invented by several influential people,
including Guglielmo Marconi and Nicola Tesla) are outright
impossible, but using radio waves to detect moving objects is
perfectly feasible. This, in turn, led to the development of the radar.

Estimating CPU and RAM usage
Well, as most of us are not physicists, and are more like software
developers and/or admins, let’s take a look at some real-world examples
from IT. While (of course), any such examples at best count as anecdotal
evidence, they still illustrate the tremendous practical value which can
come out of them.

My first family of examples are about estimating CPU and RAM usage.
Actually, examples of such calculations are so routine that they come and
go without being noticed. Still, I managed to remember four recent ones
which I encountered within the last two months.

The first example was about CPU. In an otherwise very good and
insightful presentation (which I won’t name exactly since it was very
good and insightful), an example was provided where a certain
suboptimality had led to memory reads of 1Megabyte per 10,000 frames
of the video game – instead of the 1 Kbyte which was really necessary. As
it was noted (and perfectly correctly too), this corresponds to 99.9% of
CPU memory bandwidth being wasted. What wasn’t mentioned,
however, is that:

 1Megabyte of waste per 10,000 frames corresponds to a mere 100
bytes/frame

 at a typical 60 frames/second, this corresponds to a mere 6K bytes/
second of memory bandwidth being wasted

 with modern x64 CPU bandwidth being of the order of 20+ GByte/
second, we’re talking about the waste of about 3e-7 of the total
memory bandwidth.

BTW, let’s note that I am not arguing with the main point of the
presentation – that you can easily waste a lot of memory bandwidth; it is
just in this specific example, trying to optimize out a 3e-7 performance hit
is very rarely worth the trouble.

The second example was also about CPU. In a high-performance event-
driven machine handling TCP/UDP packets coming over the Ethernet, the
question has arisen whether it is ok to use virtual functions to implement
event dispatch. A very quick calculation on the back of the envelope has
shown that:

W

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
and Dmytro Ivanchykhin using the classic dictionary collated by
Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He currently holds the position of
Security Researcher and writes for a software blog (http://ithare.com).
Sergey can be contacted at sergey@ignatchenko.com
8 | Overload | February 2017

http://ithare.com
[Loganberry04]

FEATURESERGEY IGNATCHENKO

if our simplified calculations can give us an order of
magnitude that is appropriate for approximating the

exact value we need, we don’t have to spend time
performing an actual experiment
 The minimal size of an Ethernet packet which such a system can
possibly receive is Ethernet_Frame_Gap + Ethernet_Preamble +
Minimal_Ethernet_Packet_Size, or 12+8+64 bytes = 84 bytes.

 For a 100MBit/s link (which is the limit the system has for other
reasons), in the very, very best case, it can get 100Mbit/8 ~= 1.2e7
bytes/second, or (given the 84 bytes/packet) 150K packets/second.

 As it is noted in [NoBugs16], the cost of a virtual function call is
usually within 50 CPU cycles

 On the other hand, at 3GHz and with 150K packets/second, we’re
talking about 20,000 CPU cycles available for handling each packet.

 The waste of at most 50 CPU cycles – compared to 20K CPU cycles
– is about 0.2%. Compared to the trouble of avoiding virtual
dispatch, the saving seems too small to bother with.

On the other hand, the picture would be very different if we were talking
about virtualizing some operation which is done 100 times per packet (or
about handling the 10GBit/s link, but the latter is quite difficult regardless
of the virtual function calls). The whole point is about the numbers in
specific scenarios – and certainly not about blanket statements such as
‘virtual functions costs are {negligible|very high} regardless of the
context’.

The third example of back-of-the-envelope estimates which I encountered
in recent months was about the cost of exceptions vs the cost of the return-
and-check of the error code. The cost of modern implementations of
exception handling in C++ are ‘zero-cost when no exception happens’ –
but they cost thousands of CPU cycles when they do happen. On the other
hand, an old-fashioned return of the error code from the function being
checked by the caller will cost some single-digit CPU cycles on each
function call even if nothing wrong happens. When we combine these two
numbers together, we realize that performance-wise exceptions will beat
return-and-checks as soon as there is 10K function calls per one
exception; on the other hand, having one exception per 100 function calls
is probably detrimental to performance. Anything between 100 and 10K
function calls is too close to call – but on the other hand, the performance
difference probably won’t be too drastic regardless of the approach
chosen. NB: I am intentionally ignoring the other advantages of
exceptions at the moment; for the purposes of this article, the whole
discussion is about performance, and only about performance.

The fourth example (and final among those which I’ve run into during the
last month or two) was about RAM. In the context of app-level caching of
USERS from a database, I was asked “Hey, if we try to cache a million
users, will they fit in memory?” My very simple analysis went along the
following lines:

 If we are talking about a ‘user’ which is just a current state of the
user (and not the history of those things which user has ever done),
we’re usually talking about user id, name, hashed password, e-mail
address, maybe physical address, and some attributes such as current
credit. If we add all these items together, we’ll be talking about some
hundreds of bytes. Accounting for all the inefficiencies and
overheads, let’s say the upper bound is around 1K bytes/user.

 With this in mind, a million users will take around 1 GByte.

 As this whole discussion was in the context of servers, and as
modern ‘workhorse’ 2S/1U servers are able to host up to 512G
RAM easily (and modern 4S/4U servers able to host 4+ terabytes1),
it means that even 100M users aren’t likely to cause too much
trouble. In addition, noting that this is not really the number of all
users in the DB, but just those users which need to be cached (which
roughly corresponds to ‘users currently on site’) – well, it means that
there aren’t that many systems out there (if any) which would have
any trouble caching users in the app-level cache.

Overall, as we can see, there are quite a few situations when back-of-the-
envelope (a.k.a. order of magnitude) analysis can provide very valuable
information even before we start implementing our system. Sure, such
calculations are not a substitute for benchmarking, but they can save us
lots and lots of trouble either (a) trying to implement things which won’t
be able to cope with the load, or (b) trying to do premature optimizations
which aim to eliminate problems which will never really bite us.

Estimating MTBF
While estimating CPU and RAM usage is very important, they’re
certainly not the only cases when calculations on the back of the envelope
come in handy.

Quite recently, I was involved in quite an interesting analysis related to
making systems redundant. Lots of people out there tend to postulate that
‘Hey, to be reliable your system needs to be redundant, period!’; however,
under a more thorough analysis this claim fails pretty badly in quite a
significant number of real-world scenarios.

First of all, let’s note that when talking about reliability, it is only MTBF
(= Mean Time Between Failures) which matters; in other words,

if comparing two systems – one being redundant but failing every
month, and another being non-redundant but failing every year – I
will clearly pick the second one every day of the week.2

Ok, sure we should note that there are other factors which may need to be
considered within the context of reliability (in particular, the way in which
the system fails; there is quite a significant difference between losing all
the business data, having a ‘split-brain’, or just needing a restart). On the
other hand, all these things we’re really interested in are inherently
observable ones; as redundancy is not an observable property, it is merely
an implementation detail to implement those observable MTBFs etc.

Now, let’s consider an OLTP database running on a larger 4S/4U box; as
noted in [NoBugs16a]. Such a box (with proper optimizations) can be able
to run up to dozens of billions transactions/year, and this is quite a
substantial number for quite a few systems out there.

With 4S/4U boxes having typical MTBFs of 3–5 years, the next question
we should ask ourselves, is “Hey, will we really be able to write software

1. 4S = "4-Socket"; 4U = "4 rack Units". Popular examples include HP
DL580 (my personal favourite for years ;-)), and Dell R930.

2. And this happens in real-world too, see also below
February 2017 | Overload | 9

FEATURE SERGEY IGNATCHENKO

spending time making the system redundant is
not efficient, and that spending the same time on
things such as code reviews can lead to better
overall reliability
which crashes much more rarely than that?” If not (and for any business
software, the chance of failures being much more frequent than once
every 3–5 years is overwhelmingly high), then the whole point of being
redundant pretty much goes away; in other words, it can easily be the case
that spending time making the system redundant is not efficient, and that
spending the same time on things such as code reviews can lead to better
overall reliability.

On MTBFs of redundant systems
As a side note – actually, when calculating MTBFs of a redundant system
with 2 nodes, the numbers are not as good as they might seem on first
glance. Let’s consider a redundant system Z consisting of 2 redundant
components X and Y. Now we need to introduce MDT (= Mean Down
Time), which is the mean time between the node going down; MDT is
usually measured in hours and usually ranges from 8 hours to several
days. (Note that MTTR (= Mean Time To Repair), while closely related
to MDT, doesn’t normally include such things as ‘How to get the
replacement part to your datacenter’ – and so is not directly usable for our
MTBF analysis.)

Let’s note that the maths below, while perfectly common and accepted
(see, for example, Chapter 8 in [Smith]) is using quite a few implicit
assumptions, which are beyond the scope of our exercise. In particular, it
assumes that (a) MDTs are negligible compared to MTBFs, and (b) that
failure probabilities (inverse of MTBFs) can be added together (i.e. that
failure probabilities are small enough to say that non-linear effects when
adding probabilities, are negligible).

Note that all these assumptions, while potentially confusing, do stand in
most real-world situations. What we’ll be concentrating on is a different
implicit assumption – the one which doesn’t usually stand .

//WARNING: INVALID IMPLICIT ASSUMPTION AHEAD

At this point, it is common to say (erroneously! See below) that redundant
system Z will fail if and only if one of the following scenarios happen: (a)
after component X fails, component Y will fail within MDTx (i.e. while
component X is still being repaired); or (b) after component Y fails,
component X will fail within MDTy (i.e. while component Y is still being
repaired). The probability of such a failure of component Y within the
MDTx, assuming that MTBFs are large, and MDTs are relatively small
compared to MTBFs, is

Pyx = 1/MTBFy * MDTx

NB: relying on assumption (a) above

It means that MTBFz can be calculated as

MTBFz
incorrect = 1 / (1 / MTBFx * Pyx + 1 / MTBFy * Pyx)

= 1 / (1 / MTBFx * 1/MTBFy * MDTx
 + 1 / MTBFy * 1/MTBFx * MDTy)
= MTBFx * MTBFy / (MDTx + MDTy)

NB: relying on assumption (b) above

//END OF INVALID IMPLICIT ASSUMPTION

It looks all grand and dandy (and with typical MTBFs of 3–5 years and
MDTs being maximum 3–5 days, we’d have an MTBFz

incorrect of
thousands of years – wow!) – until we notice that there is one thing which
is utterly unaccounted for in the formula above: it is the MTBF of the
redundancy system itself. Let’s name it MTBFr.

Practically, MTBFr needs to cover all the components which form the
redundancy system itself. Just one example: if our system uses a
‘heartbeat’ Ethernet cable between two nodes to detect failure of the other
node, then failure of this cable is likely to lead to all kinds of trouble
(including extremely disastrous ‘split-brain’ failures), and so it needs to
be accounted for in MTBFr. In a similar manner, network cards (and their
respective drivers(!)) serving this ‘heartbeat’ cable, also need to be
included into MTBFr. Moreover, if this cable and NICs are made
redundant (which would be quite unusual, but is certainly doable), they
will still have their respective MTBFr, and moreover there will be some
kind of software (or, Linus forbid, drivers) handling this redundancy,
which will also have its own MTBFr. And so on, and so forth.

With MTBFr in mind (and realizing that whenever redundancy system
itself fails – the whole thing will fail too) – MTBFz

correct can be written as

MTBFz
correct = 1 / (1/ MTBFz

incorrect + 1/ MTBFr). (*)

How large your MTBFr is depends, but I can assure you that for the vast
majority of real-world cases, it will be much smaller than those hyper-
optimistic ‘thousands of years’.

Moreover, according to the formula (*) above, if MTBFr is smaller
than MTBFx and MTBFy, adding redundancy makes things worse
than it was without any redundancy.

And in practice (and especially whenever redundancy is implemented in
software), MTBFr can be easily much smaller than MTBFx. For example,
if MTBFr is 1 month (BTW, it is not a joke, I’ve seen quite a few
redundancy systems which exhibited less-than-a-week MTBFs under
serious loads) while having MTBFx at 3–5 years – the formula (*) will
show that MTBFz

correct is about 0.9999 of MTBFr (i.e. much smaller than
original non-redundant MTBFx).

Redundancy estimates – sanity checks
As a nice side effect, our formula of MTBFz

correct also explains an
apparent discrepancy of theoretically predicted MTBFs (those calculated
in a manner similar to the calculation of MTBFz

incorrect), and realistic
numbers – especially if redundancy is implemented in software. Just two
real-world stories in this regard.

Once upon a time (around 1997 or so), Stratus (one of the leaders of really
serious redundant systems aimed at military, nuclear stations etc. – and
generally performing as promised) decided to produce a software-based
RADIO cluster. Essentially, the RADIO cluster was just two Windows
boxes with a fault-tolerant logic implemented in software; using
MTBFz

incorrect-like calculations, its MTBF was in hundreds of years. It
was a rather impressive system (well, all the Stratuses are quite
impressive) – that is, until RADIO crashed with a dreaded Blue Screen Of
Death (coming from redundancy driver) just half an hour into testing ;
10 | Overload | February 2017

FEATURESERGEY IGNATCHENKO
and it wasn’t a fluke: under any kind of decent load, RADIO kept crashing
several times a day. So much for very-nicely-looking MTBFs calculated
along the lines of MTBFz

incorrect. RADIO was discontinued really soon,
and to the best of my knowledge, Stratus has given up on software-based
redundancy at least for a long while. BTW, for hardware-based Stratuses
MTBF is indeed in hundreds of years.

In a completely separate story, at some point a rather seriously loaded
system was undergoing pre-IPO technical audit. Out of the whole audit,
two points are of interest to our discussion:

 At some point, the auditor asked about system downtime, and after
hearing the answer, he was really surprised; the wording went along
the lines of ‘how do you guys manage to achieve unplanned
downtimes which are 5x–10x lower than others in the industry?!’
Ok, the full log files were provided, essentially proving that the
downtimes-being-much-lower-than-industry-average were real.

 At another point (coming much later in the discussion), the auditor
noticed that main DB server of the system runs without redundancy.
From this point on, the dialog went along the following lines:

 Auditor: Why don’t you use clusters?

 Team: Why should we?

 Auditor: Because it isn’t reliable without redundancy.

 Team: Actually, the reason why we have unplanned downtimes
which are that much lower than industry average is because we
do NOT use clusters – and the rest of the industry does.

 The curtain falls.

At that point, the team wasn’t able to articulate the formulae and back-of-
the-envelope estimates discussed above to explain the whole thing;
however, as of now, feel free to use it as an argument with all kinds of the
auditors (and management) insisting on redundancy of all the mission-
critical boxes. Note, though, that this logic stands only if both of the
following two observations stand for your system:

 The cost of failure can be calculated; in other words, it is not about
loss of life, and even not about loss of the whole business.

 the number of boxes involved is very low (like in ‘just one, maybe
two’). As the formulae above will show, the cost of redundancy
(even if it has an MTBFr as poor as 1 failure per month) is low
enough compared to the chance of any one of a thousand of servers
failing.

Estimating network traffic and RTT
Last but not least, back-of-the-envelope estimates often come handy in
the context of network programming.

One rather typical case for traffic calculations occurs when we want to
push small pieces of information to the clients all the time; this happens
all the time in the context of a game (and IMNSHO, games include stock
exchanges, etc.).

Let’s consider an example where we need to calculate traffic for an RPG
game server which handles 10K players, with each of the players
receiving updates about 10 other players and 50 objects (those which are
nearby, so the player can see them), with each of players and objects
described with three coordinates and a quaternion (the latter to describe
rotation), and the updates are sent 60 times per second (at the frame rate
of the game client). In this case, if we’re encoding each coordinate and
each angle as an 8-byte double, we’ll find that:

 Each update will take ((10+50)*7*8) bytes of payload, plus at least
14+28 bytes of Ethernet + IP + UDP headers, totalling to ~3K per
update

 Each player will need to receive 3Kbytes / update * 60 updates/
second = 180 kBytes/second

 With 10K players/server, it means that per-server traffic will be like
1,8 GByte/second, or 14.5 GBit/second

 Even with typical pricing these days being of the order of $3K /
month for 10 Gbit/s, it is going to cost quite a lot.

On the other hand, if we:

 reduce the update frequency (for most RPG out there, 20 updates /
second will be perfectly unnoticeable, and 10 updates / second will
still probably be fine)

 switch to rounded fixed-point representation for coordinates (which
can be as little as 10–12 bits per coordinate; 10 bits is enough to
represent 10 cm precision in a 100m radius around our character). It
will mean that each coordinate will use 10 bits instead of former
64(!).

 switch to Euler-angle-based fixed-point representation for rotations
(with precision of each angle being 10 bits, or 0.3 degree)

we can easily reduce our traffic to:

 ((10+50)*6*1.25)+42 ~= 500 bytes / update

 500 bytes / update * 10 updates / second = 5 kBytes / second per
player

 5kBytes/second/player * 10K players/server = 50 Mbytes / second,
or 400 Mbit/second

While it is still quite a substantial number, it is roughly 36x smaller than
before, so at least our traffic costs went down quite a bit . Moreover,
while this is very difficult to account for in advance, rounded fixed-point
numbers are usually compressed significantly better than full-scaled
doubles, which will usually allow further reduction of the traffic.

Another case for back-of-the-envelope estimates in the context of
network programming is related to round-trip times (routinely
abbreviated as RTT). An example which I want to describe in this regard
is a rather long real-world story.

Once upon a time, there was a Really Big Company. And developers there
were tasked with developing a system so that companies around the globe
(in particular, from the US and Europe) can collaborate. And the guys
were tasked with doing it over CORBA as a Big Fat Business
Requirement (please don’t tell me that CORBA is actually an
implementation detail so it doesn’t belong in Business Requirements; of
course it is, but this kind of stuff does happen, especially in Really Big
Companies).

And CORBA of that time (which didn’t support the concept of passing
objects by value rather than by reference) had an ideology that you create
a remote object, and then you call a remote method to add an item to a
certain list in the remote object, and then you call a remote method to set
a field in the item of the remote object you just created, and so on. And
for several of the forms within the program – well, the number of fields
combined over various items has reached thousands(!); with CORBA, this
meant that when a user presses the ‘submit’ button, there will be
thousands of those remote calls.

The guys from the Really Big Company have built the system along the
lines above, and they even tested it in LAN. However, when they tried to
deploy it over the Atlantic (which was their primary use case), submitting
certain forms started to take up to 20 minutes(!), which was obviously
unacceptable. Sure, the system was fixed (by removing those roundtrips,
which required rewriting like a half of the system and took half a year or
so).

What matters, from our current perspective, is that if the guys had
performed a back-of-the-envelope estimate in advance, they would see
that:

 5,000 fields for all the items in a form, combined with CORBA’s ‘1
remote call per field’ approach, means 5,000 remote calls

 Each remote call incurs at least one round-trip

 Over the trans-Atlantic cable, each remote call takes at the very least
80 ms (the absolute theoretical limit imposed by the speed of light
in fibre is 56ms for NY-to-London); taking into account that the
program was intended to be used worldwide, we should expect a
round-trip time of 200ms at the very least.
February 2017 | Overload | 11

FEATURE SERGEY IGNATCHENKO
 Hence, in the worst-case, 5,000 remote calls would lead to 5,000
round-trips of 200ms each, which translates into a 1000-second
delay, or over 15 minutes.

Sure, in practice it was even worse than that – but even 15 minutes would
be bad enough to see that the whole model is not really feasible.
Realizing this in advance would save those guys (and that Really Big
Company) quite a bit of wasted effort – and quite a bit of embarrassment
too.

The importance of sanity checks
I am terribly sorry, but here your calculations are
wrong by EIGHT orders of magnitude, so I cannot

give you a credit for this lab.
~ overheard during my uni physics courses

One all-important precaution which needs to be done whenever you’re
trying to use back-of-the-envelope estimates (or actually, any kind of
calculations, but this is a subject for a separate discussion) is making
sanity checks. When you have your estimate, you at least need to try to
think whether it makes sense given your experience; however, if you’re
going to use the estimate to make any serious decisions, you should try to
get some other way to double-check your estimate. BTW, in quite a few
real-world scenarios, a back-of-the-envelope estimate can be double-
checked by another – independent(!) – back-of-the-envelope estimate.

Benchmarks vs back-of-the-envelope estimates
When trying to convince various people to do some back-of-the-envelope
estimates, I’ve often run into arguments such as ‘Hey, don’t even try this,
the only way to get anything meaningful is to try it and benchmark it
properly in the context of your specific task’.

I’m not going to argue with this statement, it is indeed a good advice – that
is, if trying and benchmarking is feasible. However, especially at the
earlier stages in development, trying certain things can be extremely
expensive; this is when back-of-the-envelope estimates come in really
handy.

Back-of-the-Envelope Estimates are not a replacement for
benchmarks; instead, they’re prerequisites to implementing systems
which can be used for benchmarking.

Conclusions
Summarizing all the anecdotal kinda-evidence above, I am comfortable to
state the following.

On the one hand, back-of-the-envelope calculations are all-important at
least at architectural stages of the project. In particular, they often enable
avoiding implementing things which cannot possibly fly for various
reasons – and on the other hand, allow avoidance of premature
optimizations which will never be important enough for
the task in hand.

On the other hand, back-of-the-
envelope
calculations are
just one of the
instruments
available, and,
unfortunately,
they’re not the most
reliable one .

Make sure to double-
check back-of-the-
envelope estimates, and
to test them, and to
benchmark things – as long
as it is feasible, that is.

References
[Acton] Mike Acton, ‘Data-Oriented Design and C++’, CppCon 2014,

https://www.youtube.com/watch?v=rX0ItVEVjHc

[Atwood] Jeff Atwood, How Good an Estimator Are You?,
https://blog.codinghorror.com/how-good-an-estimator-are-you/

[Loganberry04] David ‘Loganberry’, Frithaes! - an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[McConnell] Steve McConnell. Software Estimation: Demystifying the
Black Art (Developer Best Practices). https://www.amazon.com/
exec/obidos/ASIN/0735605351/codihorr-20

[NoBugs12] ‘No Bugs’ Hare, 640K 2256 Bytes of Memory is More than
Anyone Would Ever Need Get, Overload #112, 2012

[NoBugs13] ‘No Bugs’ Hare, Hard Upper Limit on Memory Latency,
Overload #116, 2013

[NoBugs16] ‘No Bugs' Hare, Infographics: Operation Costs in CPU
Clock Cycles, http://ithare.com/infographics-operation-costs-in-
cpu-clock-cycles/

[NoBugs16a] ‘No Bugs’ Hare, Gradual OLTP DB Development - from
Zero to 10 Billion Transactions per Year and Beyond,
http://ithare.com/gradual-oltp-db-development-from-zero-to-10-
billion-transactions-per-year-and-beyond/

[Smith] Reliability, Maintainability and Risk. Dr David J. Smith. ISBN
978-0080969022

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
12 | Overload | February 2017

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://blog.codinghorror.com/how-good-an-estimator-are-you/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
https://www.amazon.com/exec/obidos/ASIN/0735605351/codihorr-20
https://www.amazon.com/exec/obidos/ASIN/0735605351/codihorr-20
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/gradual-oltp-db-development-from-zero-to-10-billion-transactions-per-year-and-beyond/

FEATURESILAS S. BROWN
Multiprocessing and
Clusters in Python
Multiprocessing is possible in Python.
Silas S. Brown shows us various ways.
t’s surprisingly easy to use more than one CPU core in Python. You
can’t do it with straightforward threads, since the C implementation of
Python has a Global Interpreter Lock (GIL) which means there can

only ever be one thread performing active calculations at any one time, so
threads in Python are generally useful only for waiting on I/O, handling
GUIs and servers and such, not actually processing in parallel when you
have multiple CPU cores. (The Java implementation has no GIL and
really can run on multiple cores in parallel, but I’m assuming you have an
existing Python project and want to stick with the C implementation.) But
there are now ways of multiprocessing in standard C Python, and they’re
not too difficult, even to add in to legacy Python code.

Python 3.2 introduced the concurrent.futures module as standard
[Python], and there’s a backport for Python 2.7 which can usually be
installed on Unix or GNU/Linux via sudo pip install futures (in
Debian or Ubuntu you might need sudo apt-get install python-
pip first; on a Mac try sudo easy_install pip). One nice thing
about this module is it’s quite straightforward to roll your own ‘dummy
version’ for when parallelism is not available: see Listing 1.

This gives you an object cal led executor which supports
submit(function, arguments) returning an object that will, when
asked for its result() later, give you either the result of the calculation
or the exception raised by it, as appropriate. (Java programmers should
recognise these semantics.) The executor object also has a
map(function, iterables) which works like the built-in map().
If you’re on a multi-core machine and the real concurrent.futures
is available in its Python installation, then some of the work will be done
asynchronously on other CPU cores in between the calls to submit()
and result(), so you can parallelise programs simply by looking for
situations where independent calculations can be started ahead of when
their results are needed, or even just by parallelising a few calls to map()
as long as your map functions are not so trivial that the overhead of
parallelising them would outweigh any benefit. But if your script is run on
an older machine with no concurrent.futures available, it will fall
back to the ‘dummy’ code which simply runs the function sequentially

when its result is called for. (And if that result turns out not to be required
after all and is not asked for, then the function won’t run. So if parallelism
is not available then at least you can benefit from lazy evaluation. But this
applies only if your algorithm involves speculative computations i.e. ones
you start before knowing if you’ll really need them.)

I like the idea of ‘if it’s there, use it; if not, do without’: it means users of
my scripts don’t have to make sure concurrent.futures is available
in their Python installation. If they don’t have whatever it takes to install
it, they’ll simply get the sequential version of my script rather than an
ImportError (ImportErrors in your scripts can be bad PR). Note
I ’m no t spe c i f i ca l l y c a t ch ing ImportError a ro un d the
concurrent.futures import, because it’s also possible for this
import to succeed but still fail to make ProcessPoolExecutor
available. This can be seen by reading __init__.py in the source code
of concurrent.futures: if ProcessPoolExecutor cannot be
loaded, then the module will just give you ThreadPoolExecutor. But
there’s no point using ThreadPoolExecutor for multiprocessing,
because ThreadPoolExecutor is subject to the GIL, so we want to
verify that ProcessPoolExecutor is available before going ahead.

The interface to the ‘dummy’ object is actually quite a far cry from that of
the real thing. With the real concurrent.futures, you can’t pass lambda or
locally-defined functions to submit() or map(), but the dummy object
lets you get away with doing this. Also, the real concurrent.futures
has extra functionality, such as add_done_callback and polling for
completion status, and does not run a function twice if you call its
result() twice. All of this can be worked around by writing a more
complex dummy object, but if all you’re going to do anyway is call
submit() and result() then there’s not a lot of point making the
fallback that complicated: if a few lines of script are supposed to be a
‘poor man’s’ fallback for a large library, then we don’t want to make the
substitute so big and complicated that we almost might as well bundle the
library itself into our script. Just make sure to test your code at least once
with the real concurrent.futures to make sure you haven’t
accidentally tried to give it a lambda function or something (the dummy
object won’t pick up on this error). You can of course insert print
statements into the code to tell you which branch it’s using, to make sure
you’re testing the right one; you may even want to leave something in
there for the production version (i.e. ‘this script should run faster if you
install futures’).

Oversized data
From this point on, I’ll assume the real concurrent.futures is
present on the system and you are doing real multiprocessing.

You don’t have to worry about causing too many context switches if too
many tasks are launched at once, since ProcessPoolExecutor

I

Listing 1

try:
 import concurrent.futures
 executor = \
 concurrent.futures.ProcessPoolExecutor()
except:
 class DummyExecutor:
 def submit(self, fn, *args, **kwargs):
 class Future:
 def result(self,*_):
 return fn(*args,**kwargs)
 return Future()
 def map(self, func, *iterables, **kwargs):
 for n in map(func,*iterables): yield n
 executor = DummyExecutor()

Silas S. Brown is a partially-sighted Computer Science post-doc
in Cambridge who currently works in part-time assistant tuition. He
has been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
February 2017 | Overload | 13

FEATURE SILAS S. BROWN
defaults to queuing up tasks when all CPU cores are already occupied
with them. But you might sometimes be worried about what kind of data
you are passing in to each task, since serialisation overheads could be a
serious slow-down if it has to be large.

If you’re on Unix, Python’s underlying ‘multiprocessing’ module will
start the new processes with fork(), which means they each get a copy
of the parent process’s memory (with copy-on-write semantics if
supported by the kernel, so that no copying occurs until a memory-page
is actually changed). That means your functions can read module-level
global variables that have been set up at runtime before the parallel work
started (just don’t try to change these during the parallel work, unless you
want to cope with such changes affecting some future calculations but not
others depending on which CPU or process ID happens to run what).
fork() does, however, mean you’d better be careful if you’re also using
threads in the same program, such as for a GUI; there are ways of working
around this, but I’d suggest concentrating on making a command-line tool
and let somebody else wrap it in a GUI in a different process if they must.

But you can’t rely on having fork() if your script might be run on
Windows, nor if you might eventually use multiple machines in a cluster
using mpi4py.futures (more on this below), SCOOP [SCOOP], or a
similar tool that gives you the same API as concurrent.futures. In
these cases, it’s likely that your script will be separately imported on each
core, so it had better not run unless __name__ == "__main__". You
can set up a few module-level variables when that happens; the
subprocesses should still have the same sys.argv and os.environ if
that’s any help. However, you probably won’t want to repeat a long
precalculation when doing this.

Since most multiprocessing environments, even across multiple machines
in a cluster, assume a shared filesystem, one fairly portable way of sharing
such large precalculated data is to do it via the filesystem, as in Listing 2.
To avoid the obvious race condition, this must be done before initialising
the parallelism.

Listing 2 can detect the case where fork() has been used and the data
does not need to be read back from the filesystem, although without
further low-level inspection it won’t be able to detect when it can avoid
writing it to the filesystem at all (but that might not be an issue if you want
to write it anyway). There are other ways of passing data to non-
fork()ed subprocesses without using the filesystem, but they involve
going at a lower level than concurrent.futures (you can’t get away with
simply passing the data into a special ‘initialiser’ function to be run on
each core, since the concurrent.futures API by itself offers no
guarantee that all cores in use will be reached with it).

MPI
Message Passing Interface (MPI) is a standard traditionally used on high-
performance computing (HPC) clusters, and you can access it from
Python using a number of libraries for interacting with one of the
underlying C implementations of MPI (typically MPICH or OpenMPI).
Now that we have concurrent.futures, it’s a good idea to look for
libraries supporting that API so we won’t have to write anything MPI-
specific (if it’s there, we can use it; if not, we can use something else).
mpi4py [MPI] plans to add an mpi4py.futures module in its version
2.1, but, at the time this article was written, version 2.1 was not yet a stable
release (and standard pip commands were fetching version 2.0), so if you
want to experiment with mpi4py.futures, you’ll have to download the
in-development version of mpi4py.

On a typical GNU/Linux box, you can do this as follows: become root
(sudo su), make the mpicc command available (on RedHat-based
systems that requires typing something like module add mpi/mpich-
x86_64 after installing MPICH, or equivalent after installing OpenMPI;
Debian/Ubuntu systems make it available by default when one of these
packages is installed), make sure the python-dev or python-devel package
is installed (apt-get install python-dev or yum install python-devel), and
then try:

 pip install https://bitbucket.org/mpi4py/mpi4py/
 get/master.tar.gz

At this point Listing 1 can be changed (after adding extra indentation to
each line) by putting Listing 3 before the beginning. Here, we check if we
are being run under MPI, and, if so, we use it; otherwise we drop back to
the previous Listing 1 behaviour (use concurrent.futures if
available, otherwise our ‘dummy’ object). A subtlety is that
mpi4py.futures will work only if it is run in a command like this:

 mpiexec -n 4 python -m mpi4py.futures script.py
 args...

and that in an MPI environment too (i.e. the above module add
command will need to have been run in the same shell, if appropriate).
Some versions of mpiexec also have options for forwarding standard
input and environment variables to processes, but not all do, so you’ll
probably have to arrange for the script to run without these. Also, any
script that uses sys.stdout.isatty() to determine whether or not
output is being redirected will need to be updated for running under MPI,
because MPI always redirects the output from the program’s point of view
even when it’s still being sent to the terminal.

If you want MPI to use other machines in a cluster, then how to do this
depends on your MPI version: it may involve extra setup steps before
starting your program, as is the case with mpd in older versions of
MPICH2 such as version 1.2. But in MPICH2 version 1.5 (the current
mpich2 package in Debian Jessie), and in MPICH 3.1 (Jessie’s current
mpich package), the default process manager is hydra and you simply
create a text file listing the host names (or IP addresses) of the cluster
machines, ensure they can all ssh into each other without password and
share the filesystem, and pass this text file to mpiexec using the -f
parameter or the HYDRA_HOST_FILE environment variable. (In
OpenMPI you use the --hostfile parameter.) Modern MPI
implementations are also able to checkpoint and restart processes in the
event of failure of one or more machines in the cluster; refer to each
implementation’s documentation for how to set this up.

If our script is run outside of MPI, then our detecting and handling of ‘no
MPI’ is a little subtle because mpi4py.futures (if installed) will still
successfully import , and i t wil l even let you instantiate an
MPIPoolExecutor(), but then will likely crash after you submit a job,
and catching that crash from your Python script is very awkward (normal
try/except won’t cut it). So we need to look at the command line to
check we’re being run in the right way for MPI first. But we can’t just
inspect sys.argv, because that will have been rewritten before control
is passed to our script, so we have to get the original command line from
the ps command. The ps parameters in Listing 3 were tested on both
GNU/Linux and Mac OS X, and if any system does not support them then
we should just fall back to the safety of not using MPI.

Listing 2

from cPickle import Pickler, Unpickler
if __name__ == "__main__":
 data = our_precalculation()
 Pickler(open('precalc','wb'),-1).dump(data)
else:
 try: data
 except NameError:
 data = Unpickler(open('precalc','rb')).load()

In OpenMPI, Listing 2 won’t work because

 __name__ == "__main__"

in all processes. The OpenMPI equivalent is

 os.environ['OMPI_COMM_WORLD_RANK'] == '0'
Additionally, in OpenMPI all processes will start running even before the
MPIPoolExecutor is instantiated, so you can’t rely on delaying that
until after the results of long initial calculations have been written to a file:
the subprocesses will either have to poll the file for being ready, or else
load it on-demand when they get the first task and cache it from there.

Addendum for OpenMPI
14 | Overload | February 2017

FEATURESILAS S. BROWN
A pattern for moving long-running functions
to other CPUs
If you have a function that normally runs quite quickly but can take a long
time on certain inputs, it might not pay to have every call run on a different
CPU, since in fast cases the overheads of doing so would outweigh the
savings. But it might be useful if the program could determine for itself
whether or not to run this particular call on a different CPU.

Since, in Python, any function can be turned into a generator by replacing
return x with yield x ; return (giving a generator that yields a
single item), the pattern shown in Listing 4 seems natural as a way to
refactor existing sequential code into multiprocessing. The part marked
‘first part of function goes here’ will be repeated on the other CPU, which
seems wasteful but could be faster than passing variables across if they are
large; it is assumed that this part of the function does what is necessary for
us to be able to figure out if the function is likely to take a long time, e.g.
if the first part of the function shows that we are now generating a LOT of
intermediate data (which is why we probably don’t want to pass it all
across once we’ve decided we’re better off running in the background).
The my_function_wrapped part is necessary because submit()
takes only functions not generators.

I’m not suggesting writing new programs like Listing 4, but it might be a
useful pattern for refactoring legacy sequential code.

Avoiding CPU overload
The above pattern for moving long-running functions to other CPUs
should work as-is on MPI, but with concurrent.futures it will result
in one too many processes, because ProcessPoolExecutor defaults
to running as many parallel processes as there are CPU cores, on the
assumption that the control program won’t need much CPU itself, an
assumption that is likely to break down when using this pattern. The
Linux and BSD kernels are of course perfectly capable of multiplexing a
load that’s greater than the number of available CPU cores, but it might

be more efficient to reduce the number of ‘slave’ processes by 1 to allow
the master to have a CPU to itself. This can be accomplished using code
like that in Listing 5.

Evaluation
The above methods were used to partially parallelise Annotator Generator
[Brown12] resulting in a 15% overall speed increase when using
concurrent.futures as compared to the unmodified code. This
could almost certainly be improved with more parallelisation (recall
Amdahl’s Law: the speedup is limited by the fraction of the program that
must be sequential). Only a fraction of a percent was saved by subtracting
1 from the number of CPUs to achieve a more even load.

Results using MPI were not so satisfactory. When running with 4
processes on a single quad-core machine using MPI, the program was
actually slowed down by 8% compared with running single-core, which
in turn was 6% slower than the unmodified code. I believe that 6%
represents the overhead of converting functions into generators, and could
be eliminated by duplicating and modifying the code for the single-core
case, but that would introduce a maintenance issue unless it could
somehow be automated. Given Annotator Generator’s desktop usage
scenario, the prevalence of multi-core CPUs on desktops, and the speedup
using concurrent.futures, it doesn’t seem very high-priority to
invest code complexity in saving that 6% in the single-core case. MPI’s
poor performance is more worrisome, but I later discovered it was due to
the system running low on RAM (and therefore being slowed down by
more page faults) while running four separate MPI processes:
concurrent.futures was able to share the data structures, but MPI
wasn’t (even though it could use shared memory for some message
passing). Once I reduced the size of the input, MPI was 14% faster than
the single-core case and concurrent.futures was 18% faster than
the single-core case. Perhaps MPI would perform better on a real cluster,
which I have not yet had an opportunity to test. A cluster of virtual
machines with OpenMPI ran 5% faster than the single-core case, but
because these machines were virtual and all running on the same actual
machine, I do not believe that result to be meaningful other than as a
demonstration that the underlying protocols were working. Still, I suspect
a greater deal of parallelisation is required to outweigh the overheads of
MPI beyond those of concurrent.futures. But as it can now use the same
API as concurrent.futures, not to mention SCOOP, it is now
possible to write for a single concurrency API and experiment to see
which framework gives the best speed improvement to your particular
application.

References
[Brown12] Silas S. Brown. Web Annotation with Modified-Yarowsky

and Other Algorithms. Overload issue 112 (December 2012) page 4.
The modified code is now at http://people.ds.cam.ac.uk/ssb22/
adjuster/annogen.html

[MPI] MPI for Python http://mpi4py.scipy.org/

[Python] Python library documentation https://docs.python.org/3/library/
concurrent.futures.html

[SCOOP] SCOOP (Scalable COncurrent Operations in Python)
http://scoop.readthedocs.io/

Listing 3

try:
 import os, commands
 commands.getoutput(
 "ps -p " + str(os.getpid()) + " -o args") \
 .index("-m mpi4py.futures") # ValueError
 # if not found
 import mpi4py.futures
 executor = mpi4py.futures.MPIPoolExecutor()
except:
 # etc (as Listing 1, extra indent)

Listing 4

def my_function(param, can_background = True):
 # first part of function goes here
 if (can_background and
 likely_to_take_a_long_time()):
 job = executor.submit(my_function_wrapped,
 param)
 yield "backgrounded"
 yield job.result() ; return
 # rest of function goes here
 # change all 'return x' to 'yield x ; return'

def my_function_wrapped(param):
 return my_function(param, False).next()

def caller():
 gen = my_function(param)
 result = gen.next()
 if result == "backgrounded":
 # Do something else for a while...
 result = gen.next() # get actual result

Listing 5

import multiprocessing
num_cpus = multiprocessing.cpu_count()
if num_cpus < 2:
 raise Exception("Not enough CPUs")
from concurrent.futures import \
 ProcessPoolExecutor
executor = ProcessPoolExecutor(num_cpus - 1)
February 2017 | Overload | 15

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
http://scoop.readthedocs.io/
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html
http://mpi4py.scipy.org/

FEATURE VIKTOR KIRILOV
doctest – the Lightest C++
Unit Testing Framework
C++ has many unit testing frameworks.
Viktor Kirilov introduces doctest.
octest is a fully open source light and feature-rich C++98 / C++11
single-header testing framework for unit tests and TDD. A complete
example with a self-registering test that compiles to an executable

looks like Listing 1.

And the output from that program is in Listing 2.

Note how a standard C++ operator for equality comparison is used –
doctest has one core assertion macro (it also has macros for less than,
equals, greater than...) – yet the full expression is decomposed and the left
and right values are logged. This is done with expression templates and
C++ trickery. Also the test case is automatically registered – you don’t
need to manually insert it to a list.

Doctest is modeled after Catch [Catch], which is currently the most
popular alternative for testing in C++ (along with googletest
[GoogleTest]) – check out the differences in the FAQ [Doctest-1].
Currently a few things which Catch has are missing but doctest aims to
eventually become a superset of Catch.

Motivation behind the framework: how it is different
doctest is inspired by the unittest {} functionality of the D programming
language and Python’s docstrings – tests can be considered a form of
documentation and should be able to reside near the production code
which they test (for example in the same source file a class is
implemented).

A few reasons you might want to do that:

 Testing internals that are not exposed through the public API and
headers of a module becomes easier.

 Lower barrier for writing tests. You don’t have to:

 make a separate source file

 include a bunch of stuff in it

 add it to the build system

 add it to source control

You can just write the tests for a class or a piece of functionality at the
bottom of its source file – or even header file!

 Faster iteration times – TDD becomes a lot easier.

 Tests in the production code stay in sync and can be thought of as
active documentation or up-to-date comments, showing how an API
is used.

The framework can still be used like any other even if the idea of writing
tests in the production code doesn’t appeal to you – but this is the biggest
power of the framework, and nothing else comes close to being so
practical in achieving this.

This isn’t possible (or at least practical) with any other testing framework
for C++: Catch [Catch], Boost.Test [Boost], UnitTest++ [UnitTest],
cpputest [CppUTest], googletest [GoogleTest] and many others
[Wikipedia]. Further details are provided below.

There are many other features [Doctest-2] and a lot more are planned in
the roadmap [Doctest-3].

What makes doctest different is that it is ultra light on compile times (by
orders of magnitude – further details are in the ‘Compile time
benchmarks’ section) and is unobtrusive.

d

Listing 1

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

int fact(int n) {
 return n <= 1 ? n : fact(n - 1) * n;
}

TEST_CASE("testing the factorial function") {
 CHECK(fact(0) == 1); // will fail
 CHECK(fact(1) == 1);
 CHECK(fact(2) == 2);
 CHECK(fact(10) == 3628800);
}

Viktor Kirilov With 4+ years of professional experience with C++
in the game and VFX industries, Viktor currently spends his time
writing open source software. His interests are the making of
games and game engines and also good practices in software
development – his profession is his hobby. Contact him at
vik.kirilov@gmail.com

Web Site: https://github.com/onqtam/doctest

Version tested: 1.1.3

System requirements: C++98 or newer

License & Pricing: MIT, free

Support: through the GitHub project page

About doctest

Listing 2

[doctest] doctest version is "1.1.3"
[doctest] run with "--help" for options
===
main.cpp(6)
testing the factorial function

main.cpp(7) FAILED!
 CHECK(fact(0) == 1)
with expansion:
 CHECK(0 == 1)

===
[doctest] test cases: 1 | 0 passed | 1 failed |
[doctest] assertions: 4 | 3 passed | 1 failed |
16 | Overload | February 2017

FEATUREVIKTOR KIRILOV

if doctest is included in 1000 source
files ... the overall build slowdown will

be only ~10 seconds
The key differences between it and the others are:

 Ultra light – below 10ms of compile time overhead for including the
header in a source file (compared to ~430ms for Catch); see the
‘Compile time benchmarks’ section

 The fastest possible assertion macros – 50 000 asserts can compile
for under 30 seconds (even under 10 sec)

 Offers a way to remove everything testing-related from the binary
with the DOCTEST_CONFIG_DISABLE identifier

 Doesn’t pollute the global namespace (everything is in the doctest
namespace) and doesn’t drag any headers with it

 Doesn’t produce any warnings even on the most aggressive warning
levels for MSVC / GCC / Clang

 -Weverything for Clang

 /W4 for MSVC

 -Wall -Wextra -pedantic and over 35 other flags not
included in these!

 Very portable and well tested C++98 – per commit tested on CI with
over 220 different builds with different compilers and
configurations (gcc 4.4-6.1/clang 3.4-3.9/MSVC 2008-2015, debug/
release, x86/x64, linux/windows/osx, valgrind, sanitizers...)

 Just one header and no external dependencies apart from the C / C++
standard library (which are used only in the test runner)

So if doctest is included in 1000 source files (globally in a big project) the
overall build slowdown will be only ~10 seconds. If Catch is used – this
would mean over 350 seconds just for including the header everywhere.

If you have 50 000 asserts spread across your project (which is quite a lot)
you should expect to see roughly 60–100 seconds of increased build time
if using the normal expression-decomposing asserts or 10–40 seconds if
you have used the fast form [Doctest-5] of the asserts.

These numbers pale in comparison to the build times of a 1000 source file
project. Further details are in the ‘Compile time benchmarks’ section.

You also won’t see any warnings or unnecessarily imported symbols from
doctest, nor will you see a valgrind or a sanitizer error caused by the
framework. It is truly transparent.

The main() entry point
As we saw in the example above, a main() entry point for the program
can be provided by the framework. If, however, you are writing the tests
in your production code you probably already have a main() function.
Listing 3 shows how doctest is used from a user main().

With this setup the following 3 scenarios are possible:

 running only the tests (with the --exit option)

 running only the user code (with the --no-run option)

 running both the tests and the user code

This must be possible if you are going to write the tests directly in the
production code.

Also this example shows how defaults and overrides can be set for
command line options.

N o t e t h a t t he DOCTEST_CONFIG_IMPLEMENT o r
DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN identifiers should be
defined before including the framework header – but only in one source
file – where the test runner will get implemented. Everywhere else just
include the header and write some tests. This is a common practice for
single-header libraries that need a part of them to be compiled in one
source file (in this case the test runner).

Removing everything testing-related from the binary
You might want to remove the tests from your production code when
building the release build that will be shipped to customers. The way this
is done using doctest is by defining the DOCTEST_CONFIG_DISABLE
preprocessor identifier in your whole project.

The effect that identifier has on the TEST_CASE macro for example is the
following – it gets turned into an anonymous template that never gets
instantiated:

 #define TEST_CASE(name) \
 template <typename T> \
 static inline void ANONYMOUS(ANON_FUNC_)()

This means that all test cases are trimmed out of the resulting binary –
even in Debug mode! The linker doesn’t ever see the anonymous test case
functions because they are never instantiated.

The ANONYMOUS() macro is used to get unique identifiers each time it’s
called – it uses the __COUNTER__ preprocessor macro which returns an

Listing 3

#define DOCTEST_CONFIG_IMPLEMENT
#include "doctest.h"

int main(int argc, char** argv) {
 doctest::Context ctx;
 // default - stop after 5 failed asserts
 ctx.setOption("abort-after", 5);
 // apply command line - argc / argv
 ctx.applyCommandLine(argc, argv);
 // override - don't break in the debugger
 ctx.setOption("no-breaks", true);
 // run test cases unless with --no-run
 int res = ctx.run();
 // query flags (and --exit) rely on this
 if(ctx.shouldExit())
 // propagate the result of the tests
 return res;
 // your code goes here
 return res; // + your_program_res
}

February 2017 | Overload | 17

FEATURE VIKTOR KIRILOV

The execution model resembles a DFS traversal –
each time starting from the start of the test case
and traversing the ‘tree’ until a leaf node is
reached (one that hasn’t been traversed yet)
integer with 1 greater than the last time each time it gets used. For
example:

 int ANONYMOUS(ANON_VAR_); // int ANON_VAR_5;
 int ANONYMOUS(ANON_VAR_); // int ANON_VAR_6;

Subcases: the easiest way to share setup / teardown
code between test cases
Suppose you want to open a file in a few test cases and read from it. If you
don’t want to copy/paste the same setup code a few times you might use
the Subcases mechanism of doctest (see Listing 4).

The following text will be printed:

 opening the file
 seeking
 closing... (by the destructor)
 opening the file
 reading
 closing... (by the destructor)

As you can see the test case was entered twice – and each time a different
subcase was entered. Subcases can also be infinitely nested. The
execution model resembles a DFS traversal – each time starting from the
start of the test case and traversing the ‘tree’ until a leaf node is reached
(one that hasn’t been traversed yet) – then the test case is exited by
popping the stack of entered nested subcases.

Examples of how to embed tests in production code
If shipping libraries with tests, it is a good idea to add a tag in your test
case names (like this: TEST_CASE("[the_lib] testing foo")) so
the user can easily filter them out with

 --test-case-exclude=*[the_lib]*

if he wishes to.

 If you are shipping a header-only library there are mainly 2 options:

1. You could surround your tests with an ifdef to check if
doctest is included before your headers like Listing 5.

2. You could use a preprocessor identifier (like
FACT_WITH_TESTS) to conditionally use the tests like
Listing 6.

In both of these cases the user of the header-only library will have to
implement the test runner of the framework somewhere in his
executable/shared object.

 If you are developing an end product and not a library for
developers, then you can just mix code and tests and implement the

Listing 4

TEST_CASE("testing file stuff") {
 printf("opening the file\n");
 std::ifstream is ("test.txt",
 std::ifstream::binary);

 SUBCASE("seeking in file") {
 printf("seeking\n");
 // is.seekg()
 }
 SUBCASE("reading from file") {
 printf("reading\n");
 // is.read()
 }
 printf("closing... (by the destructor)\n");
}

Listing 5

// fact.h
#pragma once

inline int fact(int n) {
 return n <= 1 ? n : fact(n - 1) * n;
}

#ifdef DOCTEST_LIBRARY_INCLUDED
TEST_CASE("[fact] testing the factorial function")
{
 CHECK(fact(0) == 1); // will fail
 CHECK(fact(1) == 1);
 CHECK(fact(2) == 2);
 CHECK(fact(10) == 3628800);
}
#endif // DOCTEST_LIBRARY_INCLUDED

Listing 6

// fact.h
#pragma once

inline int fact(int n) {
 return n <= 1 ? n : fact(n - 1) * n;
}

#ifdef FACT_WITH_TESTS

#include "doctest.h"

TEST_CASE("[fact] testing the factorial function")
{
 CHECK(fact(0) == 1); // will fail
 CHECK(fact(1) == 1);
 CHECK(fact(2) == 2);
 CHECK(fact(10) == 3628800);
}
#endif // FACT_WITH_TESTS
18 | Overload | February 2017

FEATUREVIKTOR KIRILOV
test runner like described in the section ‘The main() entry point’.
You could define the DOCTEST_CONFIG_DISABLE preprocessor
identifier in the Release config so no tests are shipped to the
customer.

 If you are developing a library which is not header-only, you could
again write tests in your headers like shown above, and you could
also make use of the DOCTEST_CONFIG_DISABLE identifier to
optionally remove the tests from the source files when shipping it –
or figure out a custom scheme like the use of a preprocessor
identifier to optionally ship the tests - MY_LIB_WITH_TESTS.

Compile time benchmarks
So there are 3 types of compile time benchmarks that are relevant for
doctest:

 cost of including the header

 cost of assertion macros

 how much the build times drop when all tests are removed with the
DOCTEST_CONFIG_DISABLE identifier

In summary:

 Including the doctest header costs around 10ms compared to 250–
460ms of Catch – so doctest is 25–50 times lighter

 50 000 asserts compile for roughly 60 seconds, which is around 25%
faster than Catch

 50 000 asserts can compile for as low as 30 seconds (or even 10) if
alternative assert macros [Doctest-5] are used (for power users)

 50 000 asserts spread in 500 test cases just vanish when disabled
with DOCTEST_CONFIG_DISABLE – all of it takes less than 2
seconds!

The lightness of the header was achieved by forward declaring everything
and not including anything in the main part of the header. There are
includes in the test runner implementation part of the header but that
resides in only one translation unit – where the library gets implemented
(by defining the DOCTEST_CONFIG_IMPLEMENT preprocessor
identifier before including it).

Regarding the cost of asserts – note that this is for trivial asserts
comparing 2 integers – if you need to construct more complex objects and
have more setup code for your test cases then there will be an additional
amount of time spent compiling. This depends very much on what is being

tested. A user of doctest provides a real world example of this in his article
[Wicht].

In the benchmarks page [Doctest-4] of the project documentation you can
see the setup and more details for the benchmarks.

Conclusion
The doctest framework is really easy to get started with and is fully
transparent and unintrusive. Including it and writing tests will be
unnoticeable both in terms of compile times and integration (warnings,
build system, etc). Using it will speed up your development process as
much as possible – no other framework is so easy to use!

Note that Catch 2 is on its way (not public yet), and when it is released
there will be a new set of benchmarks.

The development of doctest is supported with donations.

References
[Boost] http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/

index.html

[Catch] https://github.com/philsquared/Catch

[CppUTest] https://github.com/cpputest/cpputest

[Doctest-1] https://github.com/onqtam/doctest/blob/master/doc/
markdown/faq.md#how-is-doctest-different-from-catch

[Doctest-2] https://github.com/onqtam/doctest/blob/master/doc/
markdown/features.md

[Doctest-3] https://github.com/onqtam/doctest/blob/master/doc/
markdown/roadmap.md

[Doctest-4] https://github.com/onqtam/doctest/blob/master/doc/
markdown/benchmarks.md

[Doctest-5] https://github.com/onqtam/doctest/blob/master/doc/
markdown/assertions.md#fast-asserts

[GoogleTest] https://github.com/google/googletest

[UnitTest] https://github.com/unittest-cpp/unittest-cpp

[Wikipedia]
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
#C.2B.2B

[Wicht] http://baptiste-wicht.com/posts/2016/09/blazing-fast-unit-test-
compilation-with-doctest-11.html

And the winners are...
In the last Overload we invited our readers to vote for their favourite articles of 2016 in CVu,
which is our sibling magazine for members, and in Overload.

For Overload, in joint first place we have:

Jonathan Wakely for C++ Antipatterns
Steve Love for A Lifetime in Python

For CVu, we have one clear winner:

Silas S. Brown for Why Floats are Never Equal

Thank you to everyone who took time to vote, and for those who wrote. We can’t offer a prize to these winners, just the
mention here. A number of other writers got a vote – so be assured if you wrote for us someone probably thoroughly
enjoyed what you had to say. Keep up the good work.

The article titles above link to the articles if you are reading this as a PDF. Overload articles are publicly available, but
you must be a member (and logged in) to access the CVu ones. If you’re not a member yet, why not join?
February 2017 | Overload | 19

http://baptiste-wicht.com/posts/2016/09/blazing-fast-unit-test-compilation-with-doctest-11.html
http://baptiste-wicht.com/posts/2016/09/blazing-fast-unit-test-compilation-with-doctest-11.html
https://github.com/google/googletest
https://github.com/unittest-cpp/unittest-cpp
https://en.wikipedia.org/wiki/List_of_unit_testing_
frameworks#C.2B.2B
http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/index.html
https://github.com/philsquared/Catch
https://github.com/cpputest/cpputest
https://github.com/onqtam/doctest/blob/master/doc/markdown/faq.md#how-is-doctest-different-from-catch
https://github.com/onqtam/doctest/blob/master/doc/markdown/faq.md#how-is-doctest-different-from-catch
https://github.com/onqtam/doctest/blob/master/doc/markdown/features.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/features.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/roadmap.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/roadmap.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/benchmarks.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/benchmarks.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/assertions.md#fast-asserts
https://github.com/onqtam/doctest/blob/master/doc/markdown/assertions.md#fast-asserts
https://accu.org/index.php/journals/2271
https://accu.org/index.php/journals/2250
https://accu.org/index.php/journals/2281

FEATURE ROBERT RAMEY
Correct Integer Operations with
Minimal Runtime Penalties
Results of C++ integer operations are not guaranteed to
be arithmetically correct. Robert Ramey introduces a
library to enforce correct behaviour.
his library is intended as a drop-in replacement for all built-in integer
types in any program which must:

 be demonstrably and verifiably correct.

 detect every user error such as input, assignment, etc.

 be efficient as possible subject to the constraints above.

Problem
Arithmetic operations in C/C++ are NOT guaranteed to yield a correct
mathematical result. This feature is inherited from the early days of C.
The behavior of int, unsigned int and others were designed to map
closely to the underlying hardware. Computer hardware implements these
types as a fixed number of bits. When the result of arithmetic operations
exceeds this number of bits, the result will not be arithmetically correct.
The following is just one example of where this causes problems:

 int f(int x, int y){
 // this returns an invalid result for some
 // legal values of x and y !
 return x + y;
 }

It is incumbent on the C/C++ programmer to guarantee that this behavior
does not result in incorrect or unexpected operation of the program. There
are no language facilities which implement such a guarantee. A
programmer needs to examine each expression individually to know that
his program will not return an invalid result.There are a number of ways
to do this. In the above instance, INT32-C seems to recommend the
following approach:

 int f(int x, int y){
 if (((y > 0) && (x > (INT_MAX - y)))
 || ((y < 0) && (x < (INT_MIN - y)))) {
 /* Handle error */
 }
 return x + y;
 }

This will indeed trap the error. However, it would be tedious and
laborious for a programmer to alter his code to do so. Altering code in this
way for all arithmetic operations would likely render the code unreadable
and add another source of potential programming errors. This approach is
clearly not functional when the expression is even a little more complex
as is shown in the following example.

 int f(int x, int y, int z){
 // this returns an invalid result for some
 // legal values of x and y !
 return x + y * z;
 }

This example addresses only the problem of undefined/erroneous
behavior related to overflow of the addition operation as applied to the
type int. Similar problems occur with other built-in integer types such as
unsigned, long, etc. And it also applies to other operations such as
subtraction, multiplication etc. C/C++ often automatically and silently
converts some integer types to others in the course of implementing
binary operations and similar problems occur in this case as well. Since
the problems and their solution are similar, we’ll confine the current
discussion to just this example.

Solution
This library implements special versions of int, unsigned, etc. which
behave exactly like the original ones except that the results of these
operations are guaranteed to be either arithmetically correct or invoke an
error. Using this library, the above example would be rendered as:

 #include <boost/safe_numeric/safe_integer.hpp>
 using namespace boost::numeric;
 safe<int> f(safe<int> x, safe<int> y){
 return x + y; // throw exception if correct
 // result cannot be returned
 }

L ibrary code in th i s document res ides in the name space
boost::numeric. This name space has generally been eliminated from
text, code and examples in order to improve readability of the text.

The addition expression is checked at runtime or (if possible) at compile
time to trap any possible errors resulting in incorrect arithmetic behavior.
This will permit one to write arithmetic expressions that cannot produce
an erroneous result. Instead, one and only one of the following is
guaranteed to occur.

 the expression will yield the correct mathematical result

 the expression will emit a compilation error.

 the expression will invoke a runtime exception.

In other words, the library absolutely guarantees that no arithmetic
expression will yield incorrect results.

How it works
The library implements special versions of int, unsigned, etc. named
safe<int>, safe<unsigned int>, etc. These behave exactly like
the underlying types except that expressions using these types fulfill the
above guarantee. These types are meant to be ‘drop-in’ replacements for
the built-in types they are meant to replace. So things which are legal –
such as assignment of a signed to an unsigned value – are not trapped
at compile time, as they are legal C/C++ code. Instead, they are checked
at runtime to trap the case where this (legal) operation would lead to an
arithmetically incorrect result.

Note that the library addresses arithmetical errors generated by
straightforward C/C++ expressions. Some of these arithmetic errors are
defined as conforming to the C/C++ standards while others are not. So

T

Robert Ramey Robert is a freelance C++ developer living in Santa
Barbara, California. He is author of the Boost Serialization Library
and an active member of the Boost community. He is also frequent
speaker at C++ conferences. ramey@rrsd.com
20 | Overload | February 2017

FEATUREROBERT RAMEY

Facilities particular to C++14 are employed to
minimize any runtime overhead. In many cases

there is no runtime overhead at all.
characterizing this library as addressing undefined behavior of C/C++
numeric expressions would be misleading.

Facilities particular to C++14 are employed to minimize any runtime
overhead. In many cases there is no runtime overhead at all. In other
cases, a program using the library can be slightly altered to achieve the
above guarantee without any runtime overhead.

Additional features
Operation of safe types is determined by template parameters which
specify a pair of policy classes which specify the behavior for type
promotion and error handling. In addition to the usage serving as a drop-
in replacement for standard integer types, users of the library can:

 Select or define an exception policy class to specify handling of
exceptions.

 throw exception on runtime, trap at compile time.

 trap at compiler time all operations which might fail at runtime.

 specify custom functions which should be called at runtime

 Select or define a promotion policy class to alter the C/C++ type
promotion rules. This can be used to

 use C/C++ native type promotion rules so that, except for
throwing/trapping of exceptions on operations resulting in
incorrect arithmetic behavior, programs will operate identically
when using/not using safe types.

 replace C/C++ native promotion rules with ones which are
arithmetically equivalent but minimize the need for runtime
checking of arithmetic results.

 replace C/C++ native promotion rules with ones which emulate
other machine architectures. This is designed to permit the
testing of C/C++ code destined to be run on another machine on
one’s development platform. Such a situation often occurs while
developing code for embedded systems.

 Enforce of other program requirements using ranged integer types.
The library includes the types safe_range<Min, Max> and
safe_literal<N>. These types can be used to improve program
correctness and performance.

Requirements
This library is composed entirely of C++ Headers. It requires a compiler
compatible with the C++14 standard.

The following Boost Libraries must be installed in order to use this library

 MPL

 Integer

 Config

 Concept Checking

 Tribool

 Enable_if

The Safe Numerics library is delivered with an exhaustive suite of test
programs. Users who choose to run this test suite will also need to install
the Boost.Preprocessor library.

Scope
This library currently applies only to built-in integer types. Analogous
issues arise for floating point types but they are not currently addressed by
this version of the library. User or library defined types such as arbitrary
precision integers can also have this problem. Extension of this library to
these other types is not currently under development but may be addressed
in the future. This is one reason why the library name is ‘safe numeric’
rather than ‘safe integer’ library.

Eliminating runtime penalty
Up until now, we’ve focused on detecting when incorrect results are
produced and handling these occurrences either by throwing an exception
or invoking some designated function. We’ve achieved our goal of
detecting and handling arithmetically incorrect behavior – but at what
cost. It is a fact that many C++ programmers will find this trade-off
unacceptable. So the question arises as to how we might minimize or
eliminate this runtime penalty.

The first step is to determine what parts of a program might invoke
exceptions. Listing 1 is similar to previous examples but uses a special
exception policy: trap_exception.

Now, any expression which might fail at runtime is flagged with a
compile time error. There is no longer any need for try/catch blocks.
Since this program does not compile, the library absolutely guarantees
that no arithmetic expression will yield incorrect results. This is our

Listing 1

#include <iostream>
#include "../include/safe_integer.hpp"
#include "../include/exception.hpp"
 // include exception policies

using safe_t = boost::numeric::safe<
int,
boost::numeric::native,
boost::numeric::trap_exception
 // note use of "trap_exception" policy!
>;

int main(int argc, const char * argv[]){
std::cout << "example 81:\n";
safe_t x(INT_MAX);
safe_t y(2);
safe_t z = x + y; // will fail to compile !
return 0;
}

February 2017 | Overload | 21

FEATURE ROBERT RAMEY

In short, given a binary operation, we silently
promote the types of the operands to a wider
result type so the result cannot overflow
original goal. Now all we need to do is make the program work. There are
a couple of ways to do this.

Using automatic type promotion
The C++ standard describes how binary operations on different integer
types are handled. Here is a simplified version of the rules:

 promote any operand smaller than int to an int or unsigned
int.

 if the signed operand is larger than the signed one, the result will be
signed, otherwise the result will be unsigned.

 expand the smaller operand to the size of the larger one

So the result of the sum of two integer types may result in another integer
type. If the values are large, the result can exceed the size that the resulting
integer type can hold. This is what we call ‘overflow’. The C/C++
standard characterises this as undefined behavior and leaves to compiler
implementors the decision as to how such a situation will be handled.
Usually, this means just truncating the result to fit into the result type –
which sometimes will make the result arithmetically incorrect. However,
depending on the compiler, compile time switch settings, such a case may
result in some sort of run time exception.

The complete signature for a safe integer type is:

 template <
 class T, // underlying integer type
 class P = native, // type promotion policy class
 class E = throw_exception
 // error handling policy class
 >
 safe;

The promotion rules implemented in the default native type promotion
policy are consistent with those of standard C++. Up until now, we’ve
focused on detecting when this happens and invoking an interrupt or other
kind of error handler.

But now we look at another option. Using the automatic type
promotion policy, we can change the rules of C++ arithmetic for safe
types to something like the following:

 For any C++ numeric type, we know from
std::numeric_limits what the maximum and minimum
values that a variable can be – this defines a closed interval.

 For any binary operation on these types, we can calculate the
interval of the result at compile time.

 From this interval we can select a new type which can be guaranteed
to hold the result and use this for the calculation. This is more or less
equivalent to the following code:

 int x, y;
 int z = x + y // which could overflow
 int x, y;
 long z = (long)x + (long)y;
 // which can never overflow

One could do this by editing this code manually, but such a task
would be tedious, error prone, and leave the resulting code hard to
read and verify. Using the automatic type promotion policy will
achieve the equivalent result without these problems.

 Since the result type is guaranteed to hold the result, there is no need
to check for errors – they can’t happen!!! The usage of the
trap_exception exception policy enforces this guarantee.

 Since there can be no errors, there is no need for try/catch blocks.

 The only runtime error checking we need to do is when safe values
are initialized or assigned from values which are ‘too large’. These
are infrequent occurrences which generally have little or no impact
on program running time. And many times, one can make small
adjustments in selecting the types in order to eliminate all runtime
penalties.

In short, given a binary operation, we silently promote the types of the
operands to a wider result type so the result cannot overflow. This is a
fundamental departure from the C++ Standard behavior.

If the interval of the result cannot be guaranteed to fit in the largest type
that the machine can handle (usually 64 bits these days), the largest
available integer type with the correct result sign is used. So even with our
‘automatic’ type promotion scheme, it’s still possible to overflow. In this
case, and only this case, is runtime error checking code generated.
Depending on the application, it should be rare to generate error checking
code, and even more rare to actually invoke it. Any such instances are
detected at compile time by the trap_exception exception policy.

Listing 2 illustrates how to use automatic type promotion to eliminate all
runtime penalty. It produces the following output:

 example 82:
 x = <int>[-2147483648,2147483647] = 2147483647
 y = <int>[-2147483648,2147483647] = 2
 z = <long>[-4294967296,4294967294] = 2147483649

The output uses a custom output manipulator for safe types to display the
underlying type and its range as well as current value. Note that:

 the automatic type promotion policy has rendered the result of the
some of two integers as a long type.

 our program compiles without error – even when using the
trap_exception exception policy

 We do not need to use try/catch idiom to handle arithmetic errors
– we will have none.

 We only needed to change two lines of code to achieve our goal.

Using safe_range
Instead of relying on automatic type promotion, we can just create our
own types in such a way that we know they won’t overflow. In Listing 3,
we presume we know that the values we want to work with fall in the
range [-24,82]. So we ‘know’ the program will always result in a correct
result. But since we trust no one, and since the program could change and
22 | Overload | February 2017

FEATUREROBERT RAMEY

Instead of relying on automatic type promotion, we
can just create our own types in such a way that we

know they won’t overflow
the expressions be replaced with other ones, we’ll still use the
trap_exception exception policy to verify at compile time that what
we ‘know’ to be true is in fact true:

 safe_signed_range defines a type which is limited to the
indicated range. Out of range assignments will be detected at
compile time if possible (as in this case) or at run time if necessary.

 safe_signed_literal defines a constant with a specific value.
Defining constants in this way enables the library to correctly
anticipate the range of the results of arithmetic expressions.

 The usage of trap_exception will mean that any assignment to
z which could be outside the legal range will result in a compile time
error.

 So if this program compiles, it’s guaranteed to return a valid result.

This program produces the following run time output.

 example 83:
 x = <signed char>[10,10] = 10
 y = <signed char>[67,67] = 67
 z = <signed char>[-24,82] = 77

Mixing approaches
For purposes of exposition, we’ve divided the discussion of how to
eliminate runtime penalties by the different approaches available. A
realistic program would likely include all techniques mentioned above.
Consider Listing 4:

 As before, we define a safe_t to reflect our view of legal values
for this program. This uses automatic type promotion policy as

Listing 2

#include <iostream>
#include "../include/safe_integer.hpp"
#include "../include/exception.hpp"
#include "../include/automatic.hpp"
#include "safe_format.hpp"
 // prints out range and value of any type
using safe_t = boost::numeric::safe<
 int,
 boost::numeric::automatic,
 // note use of "automatic" policy!!!
 boost::numeric::trap_exception
>;

int main(int argc, const char * argv[]){
 std::cout << "example 82:\n";
 safe_t x(INT_MAX);
 safe_t y = 2;
 std::cout << "x = " << safe_format(x)
 << std::endl;
 std::cout << "y = " << safe_format(y)
 << std::endl;
 std::cout << "z = " << safe_format(x + y)
 << std::endl;
 return 0;
}

Listing 3

#include <iostream>
#include "../include/safe_range.hpp"
#include "../include/safe_literal.hpp"
#include "../include/exception.hpp"
#include "../include/native.hpp"
#include "safe_format.hpp"
 // prints out range and value of any type
using namespace boost::numeric;
 // for safe_literal

// create a type for holding small integers. We
// "know" that C++ type promotion rules will work
// such that addition will never overflow. If we
// change the program to break this, the usage
// of the trap_exception promotion policy will
// prevent compilation.
using safe_t = safe_signed_range<
 -24,
 82,
 native, // C++ type promotion rules work
 // OK for this example
 trap_exception // catch problems at compile time
>;

int main(int argc, const char * argv[]){
 std::cout << "example 83:\n";
 // the following would result in a compile time
 // error since the sum of x and y wouldn't be in
 // the legal range for z.
 // const safe_signed_literal<20> x;
 const safe_signed_literal<10> x; // no problem
 const safe_signed_literal<67> y;

 const safe_t z = x + y;
 std::cout << "x = " << safe_format(x)
 << std::endl;
 std::cout << "y = " << safe_format(y)
 << std::endl;
 std::cout << "z = " << safe_format(z)
 << std::endl;
 return 0;
}

February 2017 | Overload | 23

FEATURE ROBERT RAMEY

these types are guaranteed to contain legal
values and will throw an exception when this
guarantee is violated
well as trap_exception exception policy to enforce elimination
of runtime penalties.

 The function f accepts only arguments of type safe_t so there is
no need to check the input values. This performs the functionality of
programming by contract with no runtime cost.

 In addition, we define input_safe_t to be used when reading
variables from the program console. Clearly, these can only be
checked at runtime so they use the throw_exception policy.
When variables are read from the console they are checked for legal
values. We need no ad hoc code to do this, as these types are
guaranteed to contain legal values and will throw an exception when
this guarantee is violated. In other words, we automatically get
checking of input variables with no additional programming.

 On calling of the function f, arguments of type input_safe_t are
converted to values of type safe_t.

In this particular example, it can be determined at compile time that
construction of an instance of a safe_t from an input_safe_t
can never fail. Hence, no try/catch block is necessary. The usage
of the trap_exception policy for safe_t types guarantees this
to be true at compile time.

Here is the output from the program when values 12 and 32 are input from
the console:

 example 84:
 12 32
 x<signed char>[-24,82] = 12
 y<signed char>[-24,82] = 32
 z = <short>[-48,164] = 44
 (x + y) = <short>[-48,164] = 44
 (x - y) = <short>[-106,106] = -20
<short>[-48,164] = 44

Background
This library started out as a re-implementation of the facilities provided
by David LeBlanc’s SafeInt Library [http://safeint.codeplex.com]. I
found this library very well done in every way. My main usage was to run
unit tests for my embedded systems projects on my PC. Still, I had a few
issues.

 It was a lot of code in one header – 6400 lines. Very unwieldy to
understand, modify and maintain.

 I couldn’t find separate documentation other than that in the header
file.

 It didn’t use Boost conventions for naming.

 It required porting to different compilers.

 It had a very long license associated with it.

 I could find no test suite for the library.
Listing 4

#include <stdexcept>
#include <iostream>
#include "../include/safe_range.hpp"
#include "../include/automatic.hpp"
#include "../include/exception.hpp"

#include "safe_format.hpp"
 // prints out range and value of any type

using namespace boost::numeric;
using safe_t = safe_signed_range<
 -24,
 82,
 automatic,
 trap_exception
>;
// define variables use for input
using input_safe_t = safe_signed_range<
 -24,
 82,
 automatic,
 // we don't need automatic in this case
 throw_exception // these variables need to
>;

// function arguments can never be outside of
// limits
auto f(const safe_t & x, const safe_t & y){
 auto z = x + y; // we know that this cannot fail
 std::cout << "z = " << safe_format(z)
 << std::endl;
 std::cout << "(x + y) = " << safe_format(x + y)
 << std::endl;
 std::cout << "(x - y) = " << safe_format(x - y)
 << std::endl;
 return z;
}

int main(int argc, const char * argv[]){
 std::cout << "example 84:\n";
 input_safe_t x, y;
 try{
 std::cin >> x >> y; // read varibles,
 // maybe throw exception
 }

Listing 4 (cont’d)

 catch(const std::exception & e){
 // none of the above should trap.
 // Mark failure if they do
 std::cout << e.what() << std::endl;
 return 1;
24 | Overload | February 2017

http://safeint.codeplex.com

FEATUREROBERT RAMEY

If the range of the result type includes the range of
the result of the operation, no run time checking of

the result is necessary
This version addresses these issues. It exploits many facilities of C++14
and the Boost libraries to reduce the number of lines of source code to
approximately 4700.

Library internals
This library should compile and run correctly on any conforming C++14
compiler.

The Safe Numerics library is implemented in terms of some more
fundamental software components described here. It is not necessary to
know about these components to use the library. This information has
been included to help those who want to understand how the library works
so they can extend it, correct bugs in it, or understand its limitations.
These components are also interesting in their own right. For all these
reasons, they are described here. In general terms, the library works in the
following manner:

 All unary/binary expressions where one of the operands is a ‘safe’
type are overloaded. These overloads are declared and defined in the
header file safe_integer.hpp. SFINAE – ‘Substitution Failure
Is Not An Error’ – and std::enable_if are key features of C++
used to define these overloads in a correct manner.

 Each overloaded operation implements the following procedure at
compile time:

 Retrieve range of values for each operand of type T from both:
std::numeric_limits<T>::min()
std::numeric_limits<T>::max().

 Given the ranges of the operands, determine the range of the
result of the operation using interval arithmetic. This is
implemented in the interval.hpp header file using
constexpr facility of C++14.

 If the range of the result type includes the range of the result of
the operation, no run time checking of the result is necessary, so
the operation reduces to the original built-in C/C++ operation.

 Otherwise, the operation is implemented as a ‘checked integer
operation’ at run time. This operation returns a variant which
will contain either a correct result or an enum indicating why a
correct result could not be obtained. The variant object is
implemented in the header file checked_result.hpp and
the checked operations are implemented in checked.hpp.

 If a valid result has been obtained, it is passed to the caller.

 Otherwise, an exception is invoked.

Rationale and FAQ
1. Is this really necessary? If I’m writing the program with the requisite

care and competence, problems noted in the introduction will never
arise. Should they arise, they should be fixed ‘at the source’ and not
with a ‘band aid’ to cover up bad practice.
This surprised me when it was first raised. But some of the feedback
I’ve received makes me thing that it’s a widely held view. The best

answer is to consider the cases in the Tutorials and Motivating
Examples section of the library documentation.

2. Can safe types be used as drop-in replacement for built-in types?
Almost. Replacing all built-in types with their safe counterparts should
result in a program that will compile and run as expected. In some
cases compile time errors will occur and adjustments to the source
code will be required. Typically these will result in code which is more
correct.

3. Why is Boost.Convert not used?
I couldn’t figure out how to use it from the documentation.

4. Why is the library named ‘safe ...’ rather than something like
‘checked ...’?
I used ‘safe’ in large part as this is what has been used by other similar
libraries. Maybe a better word might have been ‘correct’ but that would
raise similar concerns. I’m not inclined to change this. I’ve tried to make
it clear in the documentation what the problem that the library
addressed is.

5. Given that the library is called ‘numerics’, why is floating point
arithmetic not addressed?
Actually, I believe that this can/should be applied to any type T which
satisfies the type requirement ‘Numeric’ type as defined in the
documentation. So there should be specializations safe<float>
and re la ted t ypes as we l l as new types l i ke
safe<fixed_decimal> etc. But the current version of the library
only addresses integer types. Hopefully the library will evolve to match
the promise implied by its name.

6. Isn’t putting a defensive check just before any potential undefined
behavior often considered a bad practice?
By whom? Is leaving code which can produce incorrect results better?
Note that the documentation contains references to various sources
which recommend exactly this approach to mitigate the problems
created by this C/C++ behavior. See [Seacord].

7. It looks like the implementation presumes two’s complement
arithmetic at the hardware level. So this library is not portable,
correct? What about other hardware architectures?
As far as is known as of this writing, the library does not presume that
the underlying hardware is two’s complement. However, this has yet
to be verified in a rigorous way.

8. Why do you specialize numeric_limits for ‘safe’ types? Do you
need it?
safe<T> behaves like a ‘number’ just as int does. It has max, min,
etc Any code which uses numeric limits to test a type T should work
with safe<T>. safe<T> is a drop-in replacement for T so it has to
implement all the operations.

9. According to C/C++ standards, unsigned integers cannot overflow –
they are modular integers which ‘wrap around’. Yet the Safe
Numerics library detects and traps this behavior as errors. Why is
that?
The guiding purpose of the library is to trap incorrect arithmetic
behavior – not just undefined behavior. Although a savvy user may
understand and keep present in his mind that an unsigned integer is
February 2017 | Overload | 25

FEATURE ROBERT RAMEY

By doing range arithmetic at compiler-time, I
could skip runtime checking on many/most
integer operations
really a modular type, the plain reading of an arithmetic expression
conveys the idea that all operands are integers. Also in many cases,
unsigned integers are used in cases where modular arithmetic is not
intended, such as array indexes. Finally, the modulus for such an
integer would vary depending upon the machine architecture. For
these reasons, in the context of this library, an unsigned integer is
considered to a representation of a subset of integers. Note that this
decision is consistent with INT30-C, “Ensure that unsigned integer
operations do not wrap” in the CERT C Secure Coding Standard
[Seacord].

10. Why does the library require C++14?
The original version of the library used C++11. Feedback from
CPPCon, Boost Library Incubator [www.blincubator.com] and Boost
developer’s mailing list convinced me that I had to address the issue
of run-time penalty much more seriously. I resolved to eliminate or
minimize it. This led to more elaborate meta-programming. But this
wasn’t enough. It became apparent that the only way to really minimize
run-time penalty was to implement compile-time integer range
arithmetic – a pretty elaborate sub library. By doing range arithmetic
at compiler-time, I could skip runtime checking on many/most integer
operations. C++11 constexpr wasn’t quite enough to do the job. C++14
constexpr can do the job. The library currently relies very heavily on
C++14 constexpr. I think that those who delve into the library will be
very surprised at the extent that minor changes in user code can
produce guaranteed correct integer code with zero run-time penalty.

11. This is a C++ library, yet you refer to C/C++. Which is it?
C++ has evolved way beyond the original C language. But C++ is still
(mostly) compatible with C. So most C programs can be compiled with
a C++ compiler. The problems of incorrect arithmetic afflict both C and
C++. Suppose we have a legacy C program designed for some
embedded system.
 Replace all int declarations with int16_t and all long

declarations with int32_t.
 Create a file containing something like Listing 5 and include it at

the beginning of every source file.
 Compile tests on the desktop with a C++14 compiler and with the

macro TEST defined.
 Run the tests and change code to address any thrown exceptions.
This example illustrates how this library, implemented with C++14 can
be useful in the development of correct code for programs written in C.

Current status
The library is currently in the Boost Review Queue [http://
www.boost.org/community/review_schedule.html]. The proposal
submission can be found in the Boost Library Incubator [http://
blincubator.com/bi_library/safe-numerics/?gform_post_id=426]

 The library is currently limited to integers.

 Although care has been taken to make the library portable, it’s likely
that at least some parts of the implementation – particularly
checked arithmetic – depend upon two’s complement
representation of integers. Hence the library is probably not
currently portable to other architectures.

 Currently the library permits a safe<int> value to be
uninitialized. This supports the goal of ‘drop-in’ replacement of
C++/C built-in types with safe counter parts. On the other hand, this
breaks the ‘always valid’ guarantee.

 The library is not quite a ‘drop-in’ replacement for all built-in
integer types. In particular, C/C++ implements implicit conversions
and promotions between certain integer types which are not
captured by the operation overloads used to implement the library.
In practice these case are few and can be addressed with minor
changes to the user program to avoid these silent implicit
conversions.

Acknowledgements
This library would never have been created without inspiration,
collaboration and constructive criticism from multiple sources.

David LeBlanc

This library is inspired by David LeBlanc’s SafeInt Library [http://
safeint.codeplex.com]. I found this library very well done in every
way and useful in my embedded systems work. This motivated me
to take to the ‘next level’.

Listing 5

#ifdef TEST
// using C++ on test platform
#include <cstdint>
#include <safe_integer.hpp>
#include <cpp.hpp>
using pic16_promotion = boost::numeric::cpp<
 8, // char
 8, // short
 8, // int
 16, // long
 32 // long long
>;
// define safe types used desktop version of
// the program.
template <typename T>
 // T is char, int, etc data type
using safe_t = boost::numeric::safe<
 T,
 pic16_promotion,
 boost::numeric::throw_exception
 // use for compiling and running tests
>;
typedef safe_t<std::int16_t> int16_t;
typedef safe_t<std::int32_t> int32_t;
#else
/* using C on embedded platform */
typedef int int16_t;
typedef long int32_t;
#endif
26 | Overload | February 2017

www.blincubator.com
http://www.boost.org/community/review_schedule.html
http://www.boost.org/community/review_schedule.html
http://blincubator.com/bi_library/safe-numerics/?gform_post_id=426
http://blincubator.com/bi_library/safe-numerics/?gform_post_id=426
http://safeint.codeplex.com
http://safeint.codeplex.com

FEATUREROBERT RAMEY
Andrzej Krzemieński [https://akrzemi1.wordpress.com]

Andrzej Commented and reviewed the library as it was originally
posted on the Boost Library Incubator [www.blincubator.com]. The
the consequent back and forth motivated me to invest more effort in
developing documentation and examples to justify the utility,
indeed the necessity, for this library. He also noted many errors in
code, documentation, and tests. Without his interest and effort, I do
not believe the library would have progressed beyond its initial
stages.

Boost [www.boost.org]

As always, the Boost Developer’s mailing list has been the source of
many useful observations from potential users and constructive
criticism from very knowledgeable developers.

Bibliography
[coker] Zack Coker. Samir Hasan. Jeffrey Overbey. Munawar Hafiz.

Christian Kästner. Integers In C: An Open Invitation To Security
Attacks? [https://www.cs.cmu.edu/~ckaestne/pdf/csse14-01.pdf]
[http://www.cert.org/secure-coding/publications/books/secure-
coding-c-c-second-edition.cfm?]. JTC1/SC22/WG21 – The C++
Standards Committee – ISOCPP [http://www.open-std.org/jtc1/
sc22/wg21/]. January 15, 2012. Coker

[crowl1] Lawrence Crowl. C++ Binary Fixed-Point Arithmetic [http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html]
[http://www.cert.org/secure-coding/publications/books/secure-
coding-c-c-second-edition.cfm?]. JTC1/SC22/WG21 – The C++
Standards Committee – ISOCPP [http://www.open-std.org/jtc1/
sc22/wg21/]. January15, 2012. Crowl

[crowl2] Lawrence Crowl. Thorsten Ottosen. Proposal to add Contract
Programming to C++ [http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2006/n1962.html] [http://www.cert.org/secure-coding/
publications/books/securecoding-c-c-second-edition.cfm?]. WG21/
N1962 and J16/06-0032 – The C++ Standards Committee – ISOCPP
[http://www.open-std.org/jtc1/sc22/wg21/]. February 25, 2006.
Crowl & Ottosen

[dietz] Will Dietz. Peng Li. John Regehr. Vikram Adve. Understanding
Integer Overflow in C/C++ [http://www.cs.utah.edu/~regehr/papers/
overflow12.pdf]. Proceedings of the 34th International Conference
on Software Engineering (ICSE), Zurich, Switzerland [http://
dl.acm.org/citation.cfm?id=2337223&picked=prox]. June 2012.
Dietz

[garcia] J. Daniel Garcia. C++ language support for contract
programming [http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n4293.pdf] [http://www.cert.org/secure-coding/
publications/books/secure-coding-c-c-secondedition.cfm?]. WG21/
N4293 – The C++ Standards Committee – ISOCPP [http://
www.open-std.org/jtc1/sc22/wg21/]. December 23, 2014. Garcia

[katz] Omer Katz. SafeInt code proposal [http://www.cert.org/secure-
coding/publications/books/secure-coding-c-c-secondedition.cfm?].
Boost Developer’s List [https://groups.google.com/a/isocpp.org/
forum/?fromgroups#!forum/stdproposals]. Katz

[keaton] David Keaton, Thomas Plum, Robert C. Seacord, David
Svoboda, Alex Volkovitsky, and Timothy Wilson. As-if Infinitely
Ranged Integer Model [http://resources.sei.cmu.edu/asset_files/

TechnicalNote/2009_004_001_15074.pdf] [http://www.cert.org/
secure-coding/publications/books/secure-coding-c-c-second-
edition.cfm?] Software Engineering Institute [http://
www.sei.cmu.edu]. CMU/SEI-2009-TN-023.

[leblanc1] David LeBlanc. Integer Handling with the C++ SafeInt Class
[https://msdn.microsoft.com/en-us/library/ms972705.aspx].
Microsoft Developer Network [https://www.cert.org]. January 7,
2004. LeBlanc

[leblanc2] David LeBlanc. SafeInt [https://safeint.codeplex.com].
CodePlex [https://www.cert.org]. Dec 3, 2014. LeBlanc

[lions] Jacques-Louis Lions. Ariane 501 Inquiry Board report [https://
en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report].
Wikisource [https://en.wikisource.org/wiki/Main_Page]. July 19,
1996. Lions

[matthews] Hubert Matthews. CheckedInt: A Policy-Based Range-
Checked Integer [https://accu.org/index.php/journals/324] .
Overload Journal #58 [https://accu.org/index.php]. December 2003.
Matthews

[mouawad] Jad Mouawad. F.A.A Orders Fix for Possible Power Loss in
Boeing 787 [http://www.nytimes.com/2015/05/01/business/faa-
orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0] [http:/
/www.cert.org/secure-coding/publications/books/secure-coding-c-c-
second-edition.cfm?]. New York Times. April 30, 2015.

[plakosh] Daniel Plakosh. Safe Integer Operations [https://
buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-
BSI.html]. U.S. Department of Homeland Security [https://
buildsecurityin.us-cert.gov]. May 10, 2013. Plakosh

[seacord1] Robert C. Seacord. Secure Coding in C and C++ [http://
www.cert.org/secure-coding/publications/books/securecoding-c-c-
second-edition.cfm?]. 2nd Edition. Addison-Wesley Professional.
April 12, 2013. 978-0321822130. Seacord

[seacord2] Robert C. Seacord. INT30-C. Ensure that operations on
unsigned integers do not wrap [https://www.securecoding.cert.org/
confluence/display/seccode/INT32-
C.+Ensure+that+operations+on+signed+integers+do+not+result+in
+overflow?showComments=false]. Software Engineering Institute,
Carnegie Mellon University [https://www.cert.org]. August 17,
2014. INT30-C

[seacord3] Robert C. Seacord. INT32-C. Ensure that operations on signed
integers do not result in overflow [https://
www.securecoding.cert.org/confluence/display/c/INT30-
C.+Ensure+that+unsigned+integer+operations+do+not+wrap].
Software Engineering Institute, Carnegie Mellon University [https://
www.cert.org]. August 17, 2014. INT32-C

[stroustrup] Bjarn Stroustrup. The C++ Programming Language Fourth
Edition. Addison-Wesley [http://www.open-std.org/jtc1/sc22/wg21/
] . Copyright © 2014 by Pearson Education, Inc. January 15, 2012.
Stroustrup

[forum] Forum Posts. C++ Binary Fixed-Point Arithmetic [http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html]
[http://www.cert.org/secure-coding/publications/books/secure-
coding-c-c-second-edition.cfm?]. ISO C++ Standard Future
Proposals [https://groups.google.com/a/isocpp.org/forum/
?fromgroups#!forum/std-proposals]. Forum
February 2017 | Overload | 27

www.blincubator.com
www.boost.org
https://akrzemi1.wordpress.com
https://www.cs.cmu.edu/~ckaestne/pdf/csse14-01.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
http://www.cert.org/secure-coding/publications/books/securecoding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/securecoding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://dl.acm.org/citation.cfm?id=2337223&picked=prox
http://dl.acm.org/citation.cfm?id=2337223&picked=prox
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4293.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4293.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/stdproposals
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/stdproposals
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15074.pdf
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15074.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.sei.cmu.edu
http://www.sei.cmu.edu
https://msdn.microsoft.com/en-us/library/ms972705.aspx
https://www.cert.org
https://safeint.codeplex.com
https://www.cert.org
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Main_Page
https://accu.org/index.php/journals/324
https://accu.org/index.php
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov
https://buildsecurityin.us-cert.gov
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.cert.org
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.cert.org
https://www.cert.org
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals

FEATURE CHRIS OLDWOOD
Afterwood
Trying to find a good candidate for a role
is hard. Chris Oldwood reminisces on
various factors that influence interviewers.
fter more than two decades as a programmer, you would think I’d
have got this whole screening and interviewing process licked, but
just when I think I’ve found the optimal solution, I once again find

another ‘edge case’ that blows my theory out of the water. The problem,
of course, with hiring people is that it involves human beings, and humans
are notoriously difficult to deal with because, well, they’re all different.

In my early years as a professional programmer, I suffered from an
arrogance which suggested that all the decent programmers in the world
probably had backgrounds in engineering rather than computer science.
Having studied electronic systems engineering at university myself
(though sucking badly at everything apart from the assembly
programming side due to my bedroom coder upbringing) I entered
professional programming with a good appreciation for the hardware
which was useful in the industry where I started out – PC graphics
applications.

Correlation, of course, does not imply causation and with such a small
data set to work from it’s not surprising I came to such a conclusion (I
suck at statistics too, it seems). I subconsciously fostered this view for
some years, which naturally biased my opinion of people whose CVs
crossed my path. I don’t remember discarding anyone solely based on that
criterion but I’m sure any candidate who reached the interview stage will
unknowingly have had yet another prejudice to overcome. Eventually I
got to work in a big team at a large company and mixed with all kinds of
people from different backgrounds, which helped dissipate that particular
notion.

However, there is just not enough time to interview every candidate face-
to-face that crosses your path and so you have to develop multiple
heuristics if you are ever to separate the proverbial ‘wheat from the chaff’.
Every time I think I’ve come up with a fairly solid heuristic, I invariably
end up working with special people that buck the trend and I once again
begin to feel discomfort in how many others of a similar calibre I may
have discarded because not enough of what I felt were the right boxes
were ticked.

For example, when hiring for senior roles, which is what I’ve mostly been
involved in, I would historically hope for them to show some kind of
interest in programming outside of their 9 to 5 job, especially when they
describe themselves as ‘passionate’ about the career. This does not have
to be anything as grandiose as leading a major open source project or
writing a column, but just something simple like regularly attending a
meetup, or reading a journal or blog. It turns out some people are really
good at keeping a sensible work/life balance. This doesn’t mean they
don’t help out when things go awry, but that they don’t unnecessarily
subscribe to a hero mentality.

Another heuristic I’ve tried on pre-screening phone calls is to get the
candidate to talk about their programming ‘war stories’. Any meetups or
conferences I’ve attended that result in a trip to the pub usually end up
with various people describing some of the bizarre code or production
incidents they’ve had to deal with in their past. There is almost a case of
one-upmanship going on as the night progresses and alcohol is consumed.
However, unless they are of our own making and we feel entirely
comfortable sharing our mishaps, these stories usually come at the
expense of someone else and therefore we may be behaving no better than
the archetypal builder who denigrates the work of others. Being asked to
do that with a prospective employer naturally makes some people
uncomfortable. Another idea scrapped.

It’s now been a decade since the classic Fizz Buzz programming exercise
entered the mainstream consciousness and yet I’m still amazed at the
number of overly complex solutions I’ve had to review from experienced
developers. Paradoxically, I’ve also rejected candidates based on this
simple programming problem only to discover they’ve been hired
because of other forces at play. I consider this a lucky escape and rejoice
that a sane hiring process has won out, but once again I feel uncomfortable
with the outcome of a screening process designed solely to weed out
highly undesirable candidates. I’ve found myself questioning over and
over again what signs I’d missed this time around. If the purpose is to hire
someone who can write simple code, what does it say when asking them
to do just that with a simple problem in their own time ends up going
awry? It seems some people really struggle to believe you when you say
you want a simple solution to a simple problem; they want to impress you,
to show you what they can really do.

My early experiences in the interviewing process (as hirer, not seeker)
were definitely predicated on a desire to find someone like myself. I don’t
believe this was in a narcissistic kind of way, but more borne out of the
need to find someone suitable using the minimal time out from normal
duties. Is it any wonder all the heuristics I came up with were really just
how I see myself? And then there is the need to feel that we must choose
the best candidate from those we have shortlisted as if we were out
shopping for a new car and wanted to be sure we had gotten the best deal
possible. Too many times a good candidate has gotten away because we
hoped that someone later would be even better. Hiring, just like
programming it seems, is also subject to the problems of ‘gold plating’.

So, when the next recruitment agent or HR person asks the inevitable
question ‘what should I be looking out for to identify the best candidates
for you?’ the best I can do is shrug my shoulders. Yes, I can provide some
useful heuristics that may help me prioritise candidates through the initial
screening process but ultimately it seems I still have to
fall back on the most subjective heuristic of all – gut
instinct.

A

28 | Overload | February 2017

Chris Oldwood Chris is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on
8-bit micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

FASTER APPLICATIONS OUTSIDE

CREATE FASTER CODE, FASTER
Reach new heights on Intel Xeon and
Intel Xeon Phi processors and coprocessors
with new standards-driven compilers,
award-winning libraries and
innovative analyzers.

To �nd out more about Intel products please contact us:

020 8733 7101 | enquiries@qbssoftware.com
www.qbssoftware.com/parallelstudio

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner.

Intel Parallel Studio XE Composer Edition
for Fortran Win Commercial Licence (SKU: 349062) £634⁹⁹

C

M

Y

CM

MY

CY

CMY

K

ACCUMagazine_Intel_Campaign_December_WORKINGON1.pdf 1 18/01/2017 12:33:06

	Overload137.pdf
	The Uncertainty Guidelines
	Mean Properties
	The Importance of Back-of- Envelope Estimates
	Multiprocessing and Clusters in Python
	doctest – the Lightest C++ Unit Testing Framework
	And the winners are...
	Correct Integer Operations with Minimal Runtime Penalties
	Afterwood

