

February 2018 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 A Wider Vision of Software Development
Charles Tolman brings his Organising Principles
series to a close.

6 An MWSR Queue with Minimalist Locking
Sergey Ignatchenko describes his
implementation of a multiple writer single reader
queue.

10 Testing: Choose the Right Level
Andy Balaam considers levels to keep your
focus test just right.

13 CTAD – What Is This New Acronym All About?
Roger Orr elucidates the class template
argument deduction C++17 feature.

16 C++ With Meta-classes
Francis Glassborow compares meta-classes to
developments of C++ in the 1990s.

18 Practical Scale Testing
Arun Saha scrutinises methods for testing and
scalability.

21 Functional Error-handling with Optional and
Expected
Simon Brand shows us how to deal with
disappointments using C++17’s optional

20 Afterwood
Chris Oldwood recounts his attempts to write a
calendar in an interview.

OVERLOAD 143

January 2018
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design
Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 144 should be submitted by
1st March 2018 and those for
Overload 145 by 1st May 2018.

EDITORIAL FRANCES BUONTEMPO
Hapaxes, Singletons and
Anomalies
Programmers can be odd. Frances Buontempo
celebrates many manifold peculiarities.
Having failed to write an editorial to date, I wondered
if I could manage to revisit my attempts at natural
language processing. As ever, this distraction has led
me astray and I have not written an editorial. As yet,
I still cannot manage to automatically generate
anything that is worth reading. Previously I searched

for common words [Buontempo12], and discovered we have often had
‘test’ referred to in articles. It would be interesting to rerun this, and see
if we have a new theme emerging. Write in if you get round to this.
An interesting alternative to discovering common words or phrases is
hunting unique words, or hapaxes. Wikipedia [Wikipedia-a] describes a
Hapax legomenon as a word which only appears once in a piece of text,
or body of author’s works. Sometimes this is mis-ascribed as a word only
used by a particular author. I’m not sure if there a term for that. Made-up?
A hapax is a word the author only uses once. By extension, you may have
dis legomena, which occur only twice. The designation doesn’t appear to
scale beyond two.
Stepping beyond word analysis, programming has many examples of
things that are singular. The first idea that springs to mind is the singleton
pattern. Many attempts to enforce only one instantiation of an object
using variants on this pattern lead to convoluted and hard to follow code.
Rants happen in online forums or round the water cooler. Many readers
will have their own war stories to tell, I am sure. A hapax in literature will
tend to come about naturally, perhaps indicating a writing style or the
subject matter. I would hazard a guess that a specific unique word is
infrequently singled out and used deliberately just once in a written work.
In contrast, the singleton pattern is used frequently. Indeed, the idea of a
programming pattern implies frequent use. If a problem workaround or
neat trick only comes into play in one set of circumstances, it is not a
pattern. Patterns, by their very nature, repeat. The internet [etymonline]
suggests an etymology from the word patron ‘something serving as a
model’, tracing use of a pattern as a model for dressing making by Jane
Austin in the eighteenth century. Software patterns don’t help us make
dresses, but do help us talk about contexts and situations more abstractly.
Names give us power. Isis finds out the Egyptian sun god’s true name
[Wikipedia-b], Ra, by a trick and thereby gains power to put her son on
the throne. In the fairy tale Rumpelstiltskin, the girl is freed from a
promise when she discovers the imp’s true name. Why does Viktor
Frankenstein never name his creature? Perhaps he abandons his creation,
running away rather than naming it. Perhaps, naming it would be some

claim of power over it, which he knew he did not
have. A recent book [Shelley17] explores

this, and many other issues raised by the
story. Names matter, however, enough of
patterns, patrons and names.

The patronus, of course, is an entirely different matter. This advanced
magic spell from Harry Potter [Pottermore] is the only known defence
against Dementors. It appears to act as a form of guardian angel. In the
Harry Potter mythos, these are unique to people: each has their very own,
often taking on an animal form. Straying into mythology of guardian
spirits and animal totems will take us far, far away from programming!
Do you have a single thing you turn to for help? Do you have something
to ward off Dementors? Hold that thought for now. We’ve considered
single words, names and lack of names. Let’s think about counting.
Many algorithms have more than one implementation. How many ways
are there to sort a list? Can you order this list of ways to sort a list, in
terms of time or memory efficiency? How many ways can you invert a
matrix? Perhaps you would use a numerical library instead. Which one
though? In order to count or enumerate anything you need an idea of
equality or at least comparison. To claim something is singular, you need
to show it is unlike anything else. For a hapax, you need to stem words.
Would matriarch and matriarchy count as one word? Though they are not
identically equal, natural language processing tends to trim or stem
words, lopping off endings a plurals to get to the essence of a word. Your
context will drive your choice or implementation of equality or
comparison. As for enumeration or counting, you should see how
difficult it is to define numbers. My final year dissertation for my
undergraduate degree was entitled, ‘What’s a number?’ I am still not
sure. You can attempt to answer this question by building on set theory,
adding an element to a set to make it one bigger, thereby neatly
attempting to avoid the need to define one. Or even add. Two sets are
identical if you can put them in one-to-one correspondence, which put
simply means constructing a function which maps from one to the other.
Of course, that very sentence uses the words one and two, when we
haven’t even managed to define one yet, let alone two. Words are
difficult. Numbers are impossible? Magic? Useful? You decide.
A hapax or a singleton might strive to be, or accidentally be, unique. An
observation of such an item can be informative. An observation of several
somewhat anomalous items can also be informative. Many data mining
or machine learning toolkits have outlier detection capabilities. Any
observation of something that appears slightly odd, unusual, or out of
place can be intriguing. Understanding what is usual or normal is one
thing, but finding a curiosity is quite another. If something out of the
ordinary happens, can you calculate the odds of this occurring? With an
a priori distribution, for example half heads and half tails for a fair coin
toss, you can mathematically calculate just how surprised you should be
by a run of ten heads in a row. For other situations, you have no expected
distribution up front. You can use evidence to attempt to work out an
underlying statistical distribution, but past performance is no guarantee

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2018

EDITORIALFRANCES BUONTEMPO
of future performance. You need to try and see if experiments match your
predictions.
You can drop the attempt to fit data statistically, and try some machine
learning techniques. Many of these don’t require rigorous mathematics to
draw conclusions. This leads to derision from tormentors, disparaging
machine learning as curve fitting. Quora [Quora] has a short discussion on
this subject. Fitting a curve to data can be interesting. In fact, if you chuck
out outliers you can get a better curve. Or at least a smoother one, with
fewer kinks and a far simpler equation. How do you decide which points
to ignore? Sometimes a decision is made up front. LIBOR, the London
intrabank offered rate, averages the rate banks are offered when they want
to borrow money. The data submitted covers a few currencies over several
time periods. This is used to calculate a benchmark of the interest rate on
loans. The top and bottom quartiles are discarded, so the figures are based
on the middle numbers. Why? Possibly an assumption that the extremes
were anomalies or even lies. It is very hard to find out now, because most
online resources concerning LIBOR point to the various fixing scandals
[for example, Wikipedia-c]. The London Review of Books wrote an
interesting overview, in the midst of the financial crash in 2008 [LRB].
The process might involve an email of the numbers, mid-morning, but
could be followed up with a phone call if the email didn’t arrive or the
numbers looked wrong. Very hi-tech! There are two significant points
here. First, the data was based on what bankers claimed they could borrow
money at. Since the various scandals, there have been moves towards
using actual transactions to find a benchmark. Using actual data rather
than hearsay can give you different outcomes. Second, the extremes: the
top and bottom quarter of the numbers are ditched, on the grounds they
are or could be outliers.
If you have data with a Normal distribution, you can work out how likely
a value is. If your data has a mean of zero and variance of one, a reading
of 0.1 is reasonable. A reading of 100.1 is less likely. Much less likely.
That, of course, doesn’t mean it’s wrong. You can’t reject something on
the grounds it’s a bit of a surprise. Sometimes you can establish a reason
for the unexpected observations. Perhaps you have a measuring
instrument that needs recalibrating. Sometimes you might find your
assumption of a normal distribution was incorrect. Sometimes you might
need to introduce a hierarchical model, essentially introducing if-then-
else to deal with some specific circumstances. Nassim Taleb has written
about surprising events that have major impacts. He calls these Black
Swan events. He states three criteria for such events:

1. They are a surprise
2. They have a major impact
3. Once it’s happened, various theories are concocted to show it was

bound to happen and you can predict when it will happen again
Taleb described these as “stemming from the use of degenerate
metaprobability” [Wikipedia-d]. We are driven to explain something,
assuming the world follows predictable patterns that make sense. Taleb
emphasises that some events are unprecedented, and therefore cannot be
reasoned about.
Some one-off events have catastrophic effects. In contrast, some
outcomes may be surprising, but good. If you just happen to notice a
config change which explains why your production system is broken, you
might be able to fix things quickly. How likely were you to spot the
problem? It depends. It might be unlikely, especially if the config was for
a different system entirely, but for some spaghetti entanglement reasons
it had a knock-on effect. I’m sure you have your own examples. A
miracle? The philosopher, David Hume attempted to define a miracle in
An Enquiry Concerning Human Understanding (originally published

1748, and republished many times since). He defined a miracle as a
violation of a law of nature, by the intervention of a Deity. He regarded
this definition as a way to stop “all kinds of superstitious delusion”
[Wikipedia-e]. The thinking goes that a miracle must be a singular event,
and so weight of evidence shows any witness of such an event is
unreliable. Critics suggest he has got his maths wrong. I’ll leave you to
decide whether miracles are possible. Whatever conclusions you draw,
some events are ordinary while some are extraordinary.
As a programmer, you are extraordinary. I struggled to find reliable data
to back this up. Computerworld [Computerworld13] claimed in 2013
there were about 18.2 million developers worldwide. Of seven billion or
so people, that’s not many. It’s not clear how you count programmers. By
profession? Incidentally making spreadsheets from time to time? CAD
designers? Teenagers teaching themselves to code, alone at home?
Stackoverflow runs a survey annually to investigate developer
demographics [Stackoverflow17]. However many there are, it seems most
have at least 20 years’ experience, are white and are male. If you are
black, female or new to programming you are extraordinary. Nonbinary,
genderfluid, genderqueer, trans, agender, etc. programmers are
extraordinary too. If you are a white male programming with twenty or
more years’ experience, you are also extraordinary. Being described as an
anomaly or outlier sounds negative. Who wants to be normal though?
Everyone is unique. That’s a good thing. If you are derided for being a
geek, fear not. If you are frequently told, “Normal people don’t do that”,
remember you are extraordinary. Find some like-minded people to chat to
or work with, or join an organisation of like-minded programmers such as
the ACCU, and enjoy yourself. If you then end up feeling like a fraud
because everyone around you has more experience than you, or seems to
know more details than you, don’t let the imposter
syndrome take over. Even if you don’t believe in
magic, or miracles or guardian angels, find a way to
say “Expecto Pratronum!” at the Dementors trying to
undermine you.

References
[Buontempo12] Overload 110, Aug 2012, ‘Allow me to introduce

myself’, https://accu.org/index.php/journals/1904
[Computerworld13] https://www.computerworld.com/article/2483690/

it-careers/india-to-overtake-u-s--on-number-of-developers-by-
2017.html

[etymonline] https://www.etymonline.com/word/pattern
[LRB] https://www.lrb.co.uk/v30/n18/donald-mackenzie/whats-in-a-

number
[Pottermore] https://www.pottermore.com/features/what-is-a-patronus
[Quora] https://www.quora.com/Is-Machine-Learning-just-glorified-

curve-fitting
[Shelley17] Frankenstein: Annotated for Scientists, Engineers, and

Creators of All Kinds, Shelley, Guston, Finn, Robert, Robinson. June
2017, MIT Press.

[Stackoverflow17] https://insights.stackoverflow.com/survey/2017
[Wikipedia-a] https://en.wikipedia.org/wiki/Hapax_legomenon
[Wikipedia-b] https://en.wikipedia.org/wiki/True_name]
[Wikipedia-c] https://en.wikipedia.org/wiki/Libor
[Wikipedia-d] https://en.wikipedia.org/wiki/Black_swan_theory
[Wikipedia-e] https://en.wikipedia.org/wiki/Of_Miracles
February 2018 | Overload | 3

https://accu.org/index.php/journals/1904
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.etymonline.com/word/pattern
https://www.lrb.co.uk/v30/n18/donald-mackenzie/whats-in-a-number
https://www.lrb.co.uk/v30/n18/donald-mackenzie/whats-in-a-number
https://www.pottermore.com/features/what-is-a-patronus
https://www.quora.com/Is-Machine-Learning-just-glorified-curve-fitting
https://www.quora.com/Is-Machine-Learning-just-glorified-curve-fitting
https://insights.stackoverflow.com/survey/2017
https://en.wikipedia.org/wiki/Hapax_legomenon
https://en.wikipedia.org/wiki/True_name]
https://en.wikipedia.org/wiki/Libor
https://en.wikipedia.org/wiki/Black_swan_theory
https://en.wikipedia.org/wiki/Of_Miracles

FEATURE CHARLES TOLMAN
A Wider Vision of Software
Development
Is code a hopeful arrangement of bytes? Charles Tolman
brings his Organising Principles series to a close.
n this concluding article, I will explore the idea of the ‘Organising
Principle’ further, relating it to the patterns work of Christopher
Alexander and, given the relevance of perceiving such principles to

software development, I suggest how we can improve our perception of
such principles.
Be aware that it is possible that trying to explain the idea of an Organising
Principle more clearly is a fool’s errand since its reality cannot be fixed.
As I mentioned in the previous article, If you fix it: You Haven’t Got It.
It is a far more experiential (or phenomenological) concept.
However, Organising Principles have a number of characteristics. They:
 Embody a living wholeness.
 Have a high degree of ambiguity.
 Are never static.
 Lie behind the Parts of a Whole.

I explicitly mention the separation of Whole and Parts here since it is a
key aspect of any competent approach to software design. For the
programmer this begs the question of how well he or she understands the
problem in terms of its wholeness and yet also sees how the parts need to
work therein.
Experienced people in a given domain will have a sense of the whole and
yet will be able to identify the risk points in the parts. They can
simultaneously see the whole picture and know the essence of what needs
to happen in the parts. This is what you pay for when you employ an
expert. For example, in the design example in the previous article, an
expert will know to check your allocation strategies and if they see out of
order allocations anywhere will be able to connect this to the failure of the
system as a whole.

Alexander & patterns revisited
At this point it is useful to look at some of Christopher Alexander’s ideas
[Wikipedia-a] about the perception of beauty that links to what I have
been saying about the idea of Cognitive Feeling.
Alexander started with defining a Pattern Language [PatternLanguage] to
help foster good architectural design – what he called Living Structure.
This metamorphosed into his masterwork, The Nature of Order
[NatureOfOrder] where he tried to get a better understanding of why we
find certain structures beautiful.
In the Nature of Order, Volume 1 Chapter 5, he identified the following
15 properties of Living Structure:

If we look at this solely as a list of items, it can be difficult to understand
how they may be useful in design, apart from using them as heuristic
guidelines. Though useful, if we consider them in the light of the dynamic
concept of the Organising Principle, they make a lot more sense.
A pointer to why this may be so is in Alexander’s use of the word: Living.
Livingness implies ambiguity, and therefore these 15 properties can also
be seen as Organising Principles. Thus when we try and fix them in order
to come to a better understanding, we will only be seeing one way of
looking at each principle and by definition will have come away from the
actual thing itself.
But can we better relate such principles to software development?

Requirements implicitly contain Organising
Principles
Embedded within a set of requirements is something that we need to find
and embody in our implementation. As with high-level schematics, there
is a high degree of ambiguity surrounding this ‘something’ and I can
usually hand wave to my heart’s content about structure and architecture,
but it also needs to be connected to the details of an actual implementation
as I tried to do in the previous article.
Generally requirements will implicitly, not explicitly, embody dynamic
specifications of what needs to happen. The conversations between users
and developers, properly managed, are a key activity. Much of my job
when I talk to any user is to try and understand:
 What they want to do.
 What I think can be built.
 How they can be brought together.

As a developer, I need to understand what core dynamic principles are
embedded in the requirements. By definition if you are doing a useful
piece of software the user won’t know what they actually need. They will
be able to talk about what they want, but that is most likely going to be
based on extrapolations from their present experience. Any conversation
between user and developer will generate new knowledge about future
experience, so my job as a developer is to help us both map out this area
of new knowledge and its attendant Organising Principles.

Architecture references the Organising Principle
If we take the point that an Organising Principle is not a fixed, discrete
idea then we can see that it is much like comparing a film of an activity

 Levels of scale Contrast

I Strong centres
 Boundaries
 Alternating repetitions
 Positive space
 Good shape
 Local symmetries
 Deep interlock and ambiguity

 Gradients
 Roughness
 Echoes
 The void
 Simplicity and inner calm
 Not-separateness

Charles Tolman earned a degree in Electronic Engineering in the
70s, and then moved into software; progressing through assembler to
Pascal, Eiffel and eventually C++. He’s now involved in large scale C++
development in the CAE domain. Having seen many silver bullets come
and go, his interest is in a wider vision of programmer development that
encompasses more than purely technical competence. You can
contact him at ct@acm.org
4 | Overload | February 2018

FEATURECHARLES TOLMAN
February 2018 | Overload | 5

with its reality. The film is just a set of discrete frames, but the reality is
continuous.
In the same way, the various possible architectures and implementations
are different views of a specific Organising Principle. This is difficult to
grasp and needs a far more mobile thinking than we normally use and is
the core of why good software development is so difficult. Certainly
design patterns have helped but we need to go further and understand that
the development of personal perception skills is more useful than coming
up with abstract lists. I believe this is why it can take 15 years to develop
such competence.

Code is the precipitate of the Organising Principle
If we manage to perceive this dynamic principle, referencing it by
designing a software architecture that we embody into a specific code
implementation, we are embarking on a process of precipitation. If we
don’t do this then – indeed – as the original title of my ACCU2016 talk
suggested, we only have a ‘Hopeful Arrangement of Bytes’ without any
coherent design.
Sometimes playing around with code from the ‘bottom up’ may be a valid
thing to do as a piece of ‘software research’ just to see how the code works
out and will be especially relevant if there is a blank sheet, or ‘green field’
site where you have to start somewhere. In this case you need to identify
the highest risk requirements and just implement some proof of concept
to check your understanding.
A point worth noting here is that it will not be ideal for a novice or
journeyman programmer to follow the example of an experienced one. Be
warned: It is possible that a master programmer can work at the keyboard
and seemingly design as they go, creating from internalized mature ideas.
Yet this is something that is definitely not recommended for
inexperienced developers. They will need to spend much more time
maturing and externalizing their ideas first before those ideas become part
of their ‘cognitive muscle memory’ from which they can work direct to
the keyboard. It is to be hoped that the experienced developer will realise
earlier when they need to step away from the keyboard.

Perceiving Organising Principles
The above comments are all very well but just how can we develop such
a ‘living and mobile’ thinking perception? Unfortunately as programmers
we are at a disadvantage.
We work in a domain where much of our thinking needs to be fixed into
a rule-based structure in order to imagine how a computer program will
function. This can have unwanted side effects of making it difficult to
think in a mobile, living way. Hence Ted Nelson’s [Wikipedia-b] rant in
his book Geek’s Bearing Gifts about techies only being able to think in
terms of hierarchies.
If we personally want to develop this other way of seeing, we need to
engage in some activities that foster such a mode of cognition. Perceiving
livingness, almost by definition, requires that we need to handle
ambiguity. This is what is required when we are working in the ‘gap’, or
whenever we are dealing with human situations. Logical thinking can
cope with known and static issues, but as programmers we need to be very
aware of the boundaries of our knowledge, more so than the lay person
due to the inherent fixity of the domain of computer programming.
My thesis is that in order to develop a mobile dynamic cognition that can
better perceive Organising Principles, we need to take up some artistic
pursuit in a disciplined and self-aware way since it is the artistic process
that can allow us to move outside the boundaries of what we already now.

Disciplined artistic process
In developing a balanced perception though an artistic approach, do
whatever appeals to you. For me I find painting and dance work well. An
example of how the artistic process parallels software development can be
seen in an early experience I had with painting.
The following image is a watercolour painting of my daughter done at an
early stage of my painting hobby (so please be gentle with any criticism!).

As one of my first forays into the painting world and
like the good novice artist I was, I decided to draw
the picture first, using a photograph as a reference.
It took me 4 hours!
The first effort took 2 hours. The next took 1 hour
and the last two each took half an hour. I had
intended the final result to be the basis for the final
painting. But being the worried novice that I was, all
too aware of my lack of experience, I decided to perform a ‘colour check’
painting freehand, away from the drawing, before doing the final version.
To my complete surprise this became the final painting I have shown here.
I found that afterwards when I tried to paint into the final drawing it did
not have the same life as the freehand painting.
This is an example of the difference between the ‘master’ freehand
approach as compared to the ‘journeyman’ drawn approach. Of course I
do not consider myself to be a master painter, but this example illustrates
the perceptual self-developmental dynamic inherent in the artistic
process.
We can also see here the need to do the foundational, ‘analytic’ work, in
this case the drawing; followed by the ‘gap’ of putting the drawing away
and using the developed freehand skill to come up with the ‘solution idea’.
A final, and slightly frivolous, example of an artistic pursuit is that of the
improvised dance form that is Argentine Tango, notable for the response
it elicited from John Lakos in my original talk where he asked me to teach
him some moves! I teach and dance Tango as a hobby and this particular
dance form is strongly founded on being far more conscious about the
primary human activity of walking, the signature movement in Tango.
(For those interested, see my post on dance as True Movement.
[Tolman16])
Here there is a need for structure, and a mobile process of interpretation
and improvisation, both founded on a disciplined form of the dance. It can
take years to learn how to ‘walk’ again but if followed in a disciplined
manner can lead to sublime experiences of artistic ‘Living Structure’ as
the ‘team’ of two people dance from a common centre of balance.

A wider vision
In conclusion, I hope I have conveyed the implicit yet substantial link
between art and technology. My wish is that it will enable us to widen our
vision of software development, and help us realise that we cannot
separate it from perceptual development, with its attendant need for a
balanced development of the Self.

References
[NatureOfOrder] https://www.natureoforder.com
[PatternLanguage] https://www.patternlanguage.com
[Tolman16] https://charlestolman.com/2016/07/18/tango-thoughts-true-

movement/
[Wikipedia-a] https://en.wikipedia.org/wiki/Christopher_Alexander
[Wikipedia-b] https://en.wikipedia.org/wiki/Ted_Nelson

The author giving John Lakos an impromptu Tango lesson
at ACCU2016. Photograph courtesy of Mogens Hansen.

https://charlestolman.com/2016/07/18/tango-thoughts-true-movement/
https://charlestolman.com/2016/07/18/tango-thoughts-true-movement/
https://en.wikipedia.org/wiki/Ted_Nelson
https://www.patternlanguage.com
https://www.natureoforder.com
https://en.wikipedia.org/wiki/Christopher_Alexander

FEATURE SERGEY IGNATCHENKO
An MWSR Queue with
Minimalist Locking
Multithreaded queues come in many flavours.
Sergey Ignatchenko describes his implementation
of a multiple writer single reader queue.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

n [NoBugs17], we discussed the theory behind using CAS (Re)Actors
to build multithreaded non-blocking primitives. A very brief recap:
 Whenever we want non-blocking processing, we have to use CAS

(Compare and Swap) operations
 The idea of CAS (Re)Actors is to treat a CAS block (up to 128 bits

in size on modern CPUs) as a state of the (Re)Actor; in other words,
all we’re doing within one specific (Re)Actor always fits into the
following pattern:
 We read the state
 We modify it if necessary
 We write it back

 In the context of CAS (Re)Actors, writing the state back is tricky: it
requires CAS operations, which can fail due to some other thread
interfering with us. If we fail, we simply drop the whole result and
start anew; actually, this is a very typical pattern in CAS-based
primitives. Another way to look at it is to consider it an incarnation
of optimistic concurrency control.

As was mentioned in [NoBugs17], the benefit provided by CAS
(Re)Actors is not about the sequence of CPU operations we’re issuing; in
theory, exactly the same thing can be produced without (Re)Actors at all.
The key benefit is about how we’re thinking about our multithreaded
primitive, which tends to provide significant benefits in the complexity
that we can handle. Today we’ll demonstrate a practical use of CAS
(Re)Actors using one very specific example.

The task at hand
In quite a few rather serious real-world interactive distributed systems
(such as stock exchanges and games), I found myself in need of a really
fast queue, which had to have to have the following characteristics:
 It should be an MWSR queue (allowing Multiple Writers, but only

a Single Reader).
 It should have flow control. In other words – if queue writers are

doing better than queue readers – the queue must not grow

infinitely. Instead, at some point (when the queue grows over a
certain pre-defined limit), our queue must start blocking writers.

 This means that our queue cannot possibly be 100% non-blocking.
However, it should only be blocking. In other words, unless the
queue is full, write should be non-blocking, and unless the queue is
empty, read should be non-blocking too. NB: as this is a
performance requirement, complying with it a mere 99.9% of the
time is good enough.

 As a side – but occasionally rather important – property, the queue
should be at least almost-fair. 100% fair queues (the ones which
guarantee first come, first served behaviour) are rather difficult to
achieve, but an almost-fair property (~=‘there won’t be too much
reordering in most of the scenarios’) is much easier to obtain. In
particular, if we’re speaking about re-orderings caused by CAS
failures (followed by an immediate retry along the lines of CAS
(Re)Actors), then in practice, in 99.(9)% of the cases, unfairness will
be limited to single-digit microseconds, which is OK for the vast
majority of the use cases out there. In fact, most of the time, usually
there are much more severe and unpredictable delays than those
single-digit microseconds caused by CAS reorderings, so overall
system behaviour will be pretty much indistinguishable from the
behaviour of a perfectly fair system.

As much as I was in need of such a queue, it turned out to be an extremely
difficult task, so that I wasn’t able to devise a system which avoids all the
races. I did try to do it three or four times, but each time I found myself
going into a vicious cycle of solving one race merely to create another
one, and going into this ‘robbing Peter to pay Paul’ mode until I realized
the futility of my efforts in that direction . It was even worse as I was
sure that a solution did exist – it is just that I wasn’t able to find it.

Enter CAS (Re)Actors
After several attempts at it, writing this queue-with-flow-control became
a kind of personal obsession of mine, so there is no surprise that last year
I took another shot at it. And as by that time I was spending quite a bit of
time formalizing and generalizing my experiences with (Re)Actors, the
idea of CAS-size (Re)Actors fortunately came to my mind. Let’s see how
the CAS (Re)Actors did allow me to write that elusive MWSR queue with
flow-control (we have to be sketchy here, but the whole supposedly-
working implementation is available on Github [NoBugs18]).

I

OCC assumes that multiple transactions can frequently complete
without interfering with each other. While running, transactions
use data resources without acquiring locks on those resources.
Before committing, each transaction verifies that no other
transaction has modified the data it has read. [Wikipedia]

Optimistic Concurrency Control

Sergey Ignatchenko has 20+ years of industry experience,
including being an architect of a stock exchange, and the sole
architect of a game with hundreds of thousands of simultaneous
players. He currently writes for a software blog (http://ithare.com),
and translates from the Lapine language a 9-volume book series
‘Development and Deployment of Multiplayer Online Games’.
Sergey can be contacted at sergey.ignatchenko@ithare.com
6 | Overload | February 2018

FEATURESERGEY IGNATCHENKO

our locking primitives must unlock properly
regardless of potential races between a thread

being locked and unlock()
(Re)Actors
Let’s say that our queue is based on two CAS (Re)Actors ,
EntranceReactor and ExitReactor:
 The primary goal of EntranceReactor is to handle writers,

providing slots in the queue and instructing them to block when no
such slots are available.
EntranceReactor’s state consists of:
 firstIDToWrite – the first ID in the queue which is available

for writing. NB: we consider all IDs as non-wrappable because
(as was discussed in [NoBugs17]) it would take hundreds of
years to wrap-around a 64-bit counter). The position of the first
ID in the queue buffer can be calculated as a simple
ID%QueueSize.

 lastIDToWrite – the last ID which is available for writing (of
course, we do want to allow more than one concurrent write to
our fast-performing queue).

 lockedThreadCount – the number of writers which are
currently locked (because the queue is full).

In accordance with CAS (Re)Actor doctrine, all operations over
(Re)Actor are inherently atomic. For EntranceReactor, we
define the following atomic operations:
 allocateNextID() – allocates the next ID to the caller, and

indicates whether the caller should lock for a while.
 unlock() – indicates that the thread is unlocked.
 moveLastToWrite(lastW) – here we’re telling our

EntranceReactor that reader has already read everything up
to lastW, so that it can allow more writes.
moveLastToWrite() returns whether we should unlock one
or more writers (which is an expensive operation so we want to
avoid it as long as possible).

 Our second (Re)Actor is ExitReactor, which handles our only
reader; in particular, it maintains information about completed
writes, so it can tell when information is available for reading.
The state of ExitReactor consists of:
 firstIDToRead – the first ID which is not read yet.
 completedWritesMask – as there can be several concurrent

writes, they can finish in an arbitrary order, so we have to
account for them with a mask.

 readerIsLocked – a simple flag, with semantics similar to
lockedThreadCount (but as we have only one reader, a
simple boolean flag is sufficient here).

As for ExitReactor’s atomic operations, we define them as
follows:
 writeCompleted(ID) – indicates that the write of specific

ID is completed.

 startRead() – called by reader to start read, and either
returns an ID to read, or indicates that we should lock instead.

 readCompleted(ID) – indicates that the reader is done with
reading; as it usually frees some space in the buffer, it returns a
new ID where the write can be done.

For sizes of the fields, please refer to [NoBugs18]; however, it should be
noted that, under the CAS (Re)Actors paradigm, we can easily use bit
fields, so the only thing we care about is the combined bit size of the fields,
which shouldn’t exceed the magic number of 128 (that is, for modern x64
CPUs which support the CMPXCHG16B instruction – and that is pretty
much any Intel/AMD CPU produced over last 10 years or so).

On the ABA problem
As is well-known in MT programming, and was briefly discussed in
[NoBugs17], the so-called ABA problem is one of those things which can
easily kill the correctness of a multithreaded primitive. However, it seems
that our (Re)Actors are free from ABA-related issues; very briefly:
 As our IDs are monotonically increased and wraparound-free, all the

writes which update at least one of the IDs are free from ABA
problems (see also discussion on it in [NoBugs17]).

 The fields lockedThreadCount and readerIsLocked have
semantics with the property ‘it is only the current value which
matters, and no history is relevant’, which also means that their
updates are ABA-problem free.

 This leaves completedWritesMask as the only potentially ABA-
dangerous field. However, we can observe that if we consider the
tuple (firstIDToRead,completedWritesMask) and take into
account the logic behind these fields, this whole tuple is
monotonically increased and wraparound-free; this, in turn, means
that there is no potential for ABA problems here either <phew />.

Overall, from what I can see, our (Re)Actors are ABA-problem free; still,
as an ABA problem is one of those bugs which can sit there for ages
before manifesting itself, I would certainly appreciate somebody more
skilled than me having another look at it.

Locking primitives
In addition to (Re)Actors, we have two locking primitives, both built more
or less along the lines of Listing 1.
It is a rather simple (but quite interesting) primitive, with the idea being
that whenever some of our (Re)Actors return, we should lock. The
corresponding thread calls lockAndWait() and waits on a conditional
variable until some other thread calls unlock(). It is important to note
that our locking primitives must unlock properly regardless of potential
races between a thread being locked and unlock(). In other words, it
should work regardless of whether unlock() comes before or after the
thread scheduled to be locked reaches lockAndWait().
February 2018 | Overload | 7

FEATURE SERGEY IGNATCHENKO
Putting it all together
Having all four building blocks (two (Re)Actors and two locking
primitives), we can write our MWSRQueue (see Listing 2).
As we can see, after we have defined our (Re)Actors (including their
operations), the whole thing is fairly simple. Within our push()
function, we merely:
 request an ID from EntranceReactor (and lockAndWait() if

we’re told to do so)

 write to the slot which corresponds to the ID. Note that while we’re
actually writing, we’re not holding any locks, which is certainly a
Good Thing™ concurrency-wise.

 Inform ExitReactor that the write is completed (so reader can
start reading the ID we just wrote)

As for our pop() function, it is only marginally more complicated:
 We ask ExitReactor whether it is OK to read; if not, we’re

locking (and re-trying from scratch later)
 We read the data (again, at this point we’re not holding any kind of

locks(!)).
 We’re telling our ExitReactor that we’re done reading – and in

response it may want to inform EntranceReactor that there is
some room available. (This is implemented via a newLastW
variable, but actually corresponds to sending a message – containing
this one variable – from ExitReactor to EntranceReactor.)

That’s it! We’ve got our MWSRQueue, and with all the desired properties
too. In particular, it is an MWSR queue, it does provide flow control, it
locks only when it is necessary (on the queue being empty or full), and it
is almost-fair (as IDs are assigned in the very first call to the
allocateNextID(), the most unfairness which can possibly happen is
limited to CAS retries, which are never long in practice).
However, IMNSHO the most important property of the queue is that it
was observed to be easily debuggable. After I finished writing the code
(which is around 700 LoC of heavily-multithreaded code, and is next-to-
impossible to test until the whole thing is completed) and ran the
simplistic tests found in the /test/ folder within [NoBugs18], there
were, of course, bugs (like a dozen of them). And for multithreaded
programs in general, debugging is a well-known nightmare (in particular,
because (a) a bug manifests itself in a different place on different runs, and
(b) adding tracing can easily change things too much so the bug won’t

Listing 1

class LockedSingleThread {
private:
 int lockCount = 0;//MAY be both >0 and <0
 std::mutex mx;
 std::condition_variable cv;
public:
 void lockAndWait() {
 std::unique_lock<std::mutex> lock(mx);
 assert(lockCount == -1 || lockCount == 0);
 lockCount++;
 while (lockCount > 0) {
 cv.wait(lock);
 }
 }
 void unlock() {
 std::unique_lock<std::mutex> lock(mx);
 lockCount--;
 lock.unlock();
 cv.notify_one();
 }
};

Listing 2

template<class QueueItem>
class MWSRQueue {
 static constexpr size_t QueueSize = 64;

private:
 QueueItem items[QueueSize];
 MT_CAS entrance;
 MWSRQueueFC_helpers::LockedThreadsList
 lockedWriters;
 MT_CAS exit;
 MWSRQueueFC_helpers::LockedSingleThread
 lockedReader;

public:
 MWSRQueue();
 void push(QueueItem&& item) {
 EntranceReactorHandle ent(entrance);
 std::pair<bool, uint64_t> ok_id =
 ent.allocateNextID();
 if (ok_id.first) {
 lockedWriters.lockAndWait(ok_id.second);
 ent.unlock();
 }
 size_t idx = index(ok_id.second);
 items[idx] = std::move(item);
 ExitReactorHandle ex(exit);
 bool unlock =
 ex.writeCompleted(ok_id.second);
 if (unlock)
 lockedReader.unlock();
 }

Listing 2 (cont’d)

 QueueItem pop() {
 while (true) {
 ExitReactorHandle ex(exit);
 std::pair<size_t, uint64_t> sz_id =
 ex.startRead();
 size_t sz = sz_id.first;
 assert(sz <= QueueSize);
 if (!sz) {
 lockedReader.lockAndWait();
 // unlocking ex is done by
 // ex.writeCompleted()
 continue;//while(true)
 }
 uint64_t id = sz_id.second;
 size_t idx = index(id);
 QueueItem ret = std::move(items[idx]);
 uint64_t newLastW =
 ex.readCompleted(sz,id);
 EntranceReactorHandle ent(entrance);
 bool shouldUnlock =
 ent.moveLastToWrite(newLastW);
 if (shouldUnlock)
 lockedWriters.unlockAllUpTo(id +
 sz - 1 +QueueSize);
 return ret;
 } //while(true)
 }
private:
 size_t index(uint64_t i) {
 return i % QueueSize; //should be fast as
 // long as QueueSize is power of 2
 }
};
8 | Overload | February 2018

FEATURESERGEY IGNATCHENKO
manifest itself anymore (!)). However, this specific queue happened to be
debuggable very easily:

I was able to debug it within half a day.
I contend that anybody who has tried to debug multithreading programs
of comparable complexity will realize how fast half-a-day is for this kind
of not-so-trivial multithreading.

Maintainability
After it started to work, I ran some experiments, and found that with one
single writer, it performed great: with real 128-bit CAS, I measured an
upper bound performance of this queue at about 130 nanoseconds per
push()+pop() pair. However, with more than one writer, performance
was observed to degrade very severely (around 50(!)).
After thinking about it for a few hours, I realized that, actually, the code
used in the examples above can be improved a lot – in particular, we can
(and should) avoid going into thread-sync stuff on each and every call to
pop(). Indeed, as our queue can handle up to 64 slots at a time, we can
read all of them into some kind of a ‘read cache’ (with proper
synchronization), but then in subsequent calls to pop() we can easily
read all the cached values without any thread sync involved. This
optimization allowed me to improve performance in tests with two writers
by over 50 (so that performance with two writers became about the same
as performance with one single writer). BTW, if you want to see the code
with this ‘read cache’ optimization, it is a part of current implementation
in [NoBugs18].
However, my main point here is not about the performance of this
particular queue. What I want to emphasize is that:
 In spite of the queue being rather complicated, it was easy to reason

about it
 After I realized what I want to do, implementing the whole thing

(writing + debugging) took less than two hours(!). Once again, this
is extremely fast for writing/debugging a significant change for
reliably-working multithreaded programs.

Of course, a lot of further optimizations are possible for this queue (in
particular, I am thinking of introducing ‘write caches’ along the lines of
the ‘read cache’ above); still, even the current (not perfectly optimized)

version in [NoBugs18] seems to perform pretty well under close-to-real-
world usage patterns. On the other hand, please treat the code in
[NoBugs18] as highly experimental, and be sure to test it very thoroughly
before using it in any kind of production; multithreading bugs are sneaky,
and there is always a chance that one of them did manage to hide within,
in spite of all the reliability improvements provided by CAS (Re)Actors.

Conclusions
We have demonstrated how the real-world task of ‘creating an MWSR
queue with flow control and minimal locking’ can be implemented using
the concept of CAS (Re)Actors (which was discussed in detail in
[NoBugs17]).
In the process, it was also observed that

Not only do CAS (Re)Actors allow us to write multithreaded
programs very easily (by the standards of multithreaded programs,
that is), but also CAS (Re)Actor-based programs are easily
maintainable and easily optimizable.

As a nice side effect , we also wrote a practically-usable MWSR queue
with flow control and minimalistic locking, which can take as little as 120
nanoseconds per push()+pop() pair .

References
[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs17] ‘No Bugs’ Hare, CAS (Re)Actor for Non-Blocking
Multithreaded Primitives, Overload #142, December 2017

[NoBugs18] ‘No Bugs’ Hare, mtprimitives, https://github.com/ITHare/
mtprimitives/tree/master/src

[Wikipedia] Optimistic concurrency control (OCC)
https://en.wikipedia.org/wiki/Optimistic_concurrency_control

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague
February 2018 | Overload | 9

https://github.com/ITHare/mtprimitives/tree/master/src
https://github.com/ITHare/mtprimitives/tree/master/src
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATURE ANDY BALAAM
Testing: Choose the Right Level
Testing can be easy. Andy Balaam
considers levels to keep your focus
just right.
hen someone complains that their tests are not providing the
benefits that they were promised, or are more trouble than
they’re worth, some of us may be inclined to nod wisely and

muse that testing is a skill that must be learned.
Testing is a skill, bad tests are barely better than no tests at all, and
sometimes writing tests is painful.
But sometimes, testing is easy and good, and we feel productive and safe
in the knowledge that our code must be correct, because the tests specify
our requirements simply, and unambiguously.
This article will argue that the most important difference between tests
being a pain or a joy is the level at which we have chosen to write them.
We will begin by defining what we mean by a level, then cover how to
choose what level to test at, and the importance of testing at multiple
levels. Finally we will look at some examples of times the author has seen
the practical effects of the choice of level on the experience of testing
software.

What is a level?
Each test will run the code under test by calling it via an interface, and
may also insert test code via ‘seams’ [Feathers04]. Choosing a ‘level’ for
your tests simply means deciding what group of interfaces and seams you
will use to invoke the code under test.
Examples of test levels include:
 calling individual methods and checking return values
 constructing a few independent classes, calling methods on them,

and checking object state or return values
 instantiating a large group of classes backed by mocks and checking

the inputs and outputs via high-level method calls
 expressing tests as expected output when certain input is provided to

the executable under test
 exercising full running systems via external interfaces e.g. HTTP.

Note that several of the examples above concern object-oriented code, but
the idea of choosing a level applies to other coding styles too.

Choosing a level
Often the best way to choose a test level is to try and write some tests at
different levels and discover which test combines simplicity and power,
where by power we mean ability to express meaningful test cases.

Not too wide
The best level to test your code will not be too wide – your tests should
not be prone to failure because of the behaviour of uninteresting areas of

code. Uninteresting areas could simply be different components, or third-
party libraries or services.
You can tell tests are too wide when:
 there are many possible reasons why a test has failed
 it is hard to debug failures because lots of different systems need to

be observed
 tests run too slowly to give useful feedback.

When tests are too wide you should consider whether there are more
direct interfaces that may be used to exercise the code under test. An
important advantage of the practice of test-driven development [TDD] is
that it tends to lead us to build more such interfaces into our design.

Not too narrow
Tests should not be too narrow: the interesting and difficult parts of the
code must not be left out at test time. Where we are implementing some
pure logic it is often easy to write tests that cover that logic, but where we
are making use of an external component, and the most common problems
will be caused by misunderstandings of that component’s behaviour, it is
more difficult to write a wide enough test.
You can tell tests are too narrow when:
 production bugs are greeted with a chorus of “but the tests passed!”
 code that mocks external components contains encoded

assumptions about how those components work.

Not too much setup
Our tests often consist of ‘given’ (set-up), ‘when’ (doing something) and
‘then’ (assertions) phases. When the ‘given’ part is long, error-prone and
complex, we know we have chosen a level that requires too much setup.
A particularly troublesome variant of this situation is when we must
instantiate large numbers of interconnected mock classes just to create an
instance of a class under test. This causes problems when the code under
test changes, and tests fail because the mocks no longer express the true
behaviour of related classes. More description of how to avoid complex
mocks may be found in [Balaam].
Note that this item concerns the size of the code actually written within
the test code. If the runtime cost of setup code is high, that might indicate
a test that is too wide, but not one with too much setup in this sense.
You can tell tests have too much setup when:
 each test has a long, complex ‘given’ phase at the beginning
 it becomes necessary to write test fixture classes just to hold on to

all the state needed to start a test
 the tests are dependent on the details of multiple interconnected

mock classes.

Choose multiple levels
Normally, a single level of testing will not provide sufficient coverage of
the interesting parts of our code. It is almost always necessary to write

W

Andy Balaam is happy as long as he has a programming language
and a problem. He finds over time he has more and more of each.
You can find his many open source projects at artificialworlds.net
or contact him on andybalaam@artificialworlds.net
10 | Overload | February 2018

FEATUREANDY BALAAM
tests at the full-system level in order to have confidence that the system
works, but the full-system level is usually too wide to allow efficient
testing of all the details of behaviour.
Writing a few simple, real-world tests at the system level (ensuring build
and integration issues are discovered early), and large numbers of detailed
correctness tests at the code level (written as the code is written) can often
be sufficient. In more complex systems it often makes sense to write tests
of larger chunks of logic at an intermediate level, and here is where
choosing the right level can be tricky. The best level will allow writing
‘acceptance’ tests where we can express genuine customer requirements
as individual tests, and run those tests in a reasonable time, without
excluding the code that is most likely to contain bugs.

Examples
The following sections describe examples of real-world projects that
involved choosing a level at which to test, and an assessment of the
success of that choice.

Reporting metrics
In a high-availability messaging product written in Java that emitted a
large set of metrics for real-time monitoring, the team found that the
metrics repository was becoming overwhelmed, so we needed to reduce
the number of individual metrics being emitted.
Metrics reporting was provided by a third-party library which directly
makes HTTP requests in response to method calls, and provides an API
to filter the list of metrics emitted.
Testing the filtering logic we provided to the library was tricky because it
was highly interlinked with the behaviour of the library, and there was no
mechanism available to ask which metrics would be emitted, or provide a
mock HTTP client to track the outcome without actually making HTTP
requests.
We were left with a choice between unit testing the filtering logic,
accepting that the assertions we were making were making sweeping
assumptions about the library behaviour (too narrow), or testing the logic
in an environment that actually allowed and tracked the real HTTP
requests (too wide).
We eventually added assertions to a test within our full system test
environment that actually included the metrics repository as well as the
messaging component, checking that the repository had received only the
correct subset of metrics.
This seemed most unsatisfactory, and emphasises the importance of
Michael Feathers’ Golden Rule of API Design: “It’s not enough to write
tests for an API you develop – you have to write unit tests for code that
uses your API.” [Feathers07]. Ideally we would be able to provide the
filtering logic to the metrics library and ask it to list which metrics will be
emitted.

Command line tools
In a team maintaining a suite of auxiliary utility tools used on the
command line, we settled on a strategy of writing tests that invoked the
actual executable commands with pre-specified input and expected output.
The tools were written in a variety of technologies, and the tests were
written in Python, executing the commands using the subprocess module.
One of the design goals of these tools was to ensure each executable had
a simple, well-defined job so that tools could be combined in flexible
pipelines to handle unexpected scenarios.
The choice of using only system-level testing encouraged us to follow this
design, since our team of experienced TDD-ers were uncomfortable
writing too much code without a direct test, so they tended to break
complex code into multiple tools to allow coherent testing.
System level testing made it easy to test features that could easily be
overlooked such as command-line argument processing and formatting of
output.
We found this level to be ideal for testing this kind of tool, and rarely felt
concerned by the lack of a pure unit test layer. Sometimes when writing

Python code we wanted to write unit tests, but this was often addressed by
breaking complex code into multiple executables. When writing tools in
Bash and other less naturally testable environments, we felt liberated by
the fact that our test setup already made writing tests easy.
Most of the tools involved consumed standard input and emitted results to
standard output, but where they interfaced with external systems such as
the file system or the network, our approach made it hard to test. We
limited such tools to be as simple as possible and did not include them in
our test coverage, which was not ideal, but rarely caused problems in
practice.
Usually, testing only at the system level will cause tests to run too slowly
to be useful, but in this case our suite of hundreds of tools completed its
test run in under 10 seconds, which was good enough for our development
process.

Game logic
In a rabbit-focussed Android puzzle game [RabbitEscape] we needed to
test large numbers of scenarios in the game model, including interactions
between different rabbit behaviours and user actions (e.g. if I give a rabbit
the ‘climbing’ ability while it’s building a bridge, will it stop building?).
Since the game model operates in discrete time steps, using a coarse grid
of spacial positions, we chose to represent game states in ASCII art-style
text grids. This allows us to express tests of behaviour as sequences of text
‘pictures’ of the successive game states where e.g. a rabbit is represented
as an ‘r’ character, and a floor block is represented by ‘#’.
Writing tests of the game-model component at this level, encoded in this
way, has been remarkably successful. It is easy to read and understand old
tests, and turning a bug report into a failing unit test is a satisfying and
clear process.
The code base contains plenty of ‘normal’ unit tests, but where we need
to test the in-game behaviour we always turn to this method for its clarity
and ease of writing. There is some run-time overhead in parsing and
rendering text representations of the game state, but this has not caused us
a performance problem so far (hundreds of tests run in about 5 seconds).
One concern in this approach is that tests might become too wide – when
testing a single behaviour or bug we instantiate a whole game world
containing all the game logic, as well as the text parsing and rendering,
meaning our tests could fail for reasons irrelevant to the logic we want to
test. In practice, although tests do sometimes start failing unexpectedly,
more often than not this is because of an interaction we did not anticipate,
that we are glad to find out about, so the extra coverage of the tests
generally works to our advantage.
Compared with most test frameworks we have seen, this one is a joy to
work with: we are very happy with the way it works – almost no test feels
pointless, and newcomers can read and understand the tests very easily.

Object model
In a JavaScript object model representing domain objects for an
interactive charting application, we needed to implement logic to
synchronise changes between client and server.
We chose to test purely at the unit level, where we took ’unit’ to mean a
piece of functionality, rather than an object or module. Most test modules
contained multiple tests exercising the same 1–3 objects from the code
under test, exercising different usage of the same code. Each test
expressed a single idea, and each test module served as a specification for
that behaviour.
Writing the tests and code in this way was a pleasure, and the functionality
was well-covered and easy to understand, partly because of this approach.
One advantage of viewing units in this way is that it pushes towards better
design: if a test module began to involve more than about three objects,
we took this as a prompt to revisit the design and see whether the
behaviour could be implemented in a more coherent, simpler structure.
One result of choosing this level was that the interface between client and
server was not covered by these tests. Separately, we built tests that
instantiated a multi-language environment to test the client and server
February 2018 | Overload | 11

FEATURE ANDY BALAAM
interactions, effectively running a JavaScript interpreter within the server
platform. These tests were unreliable and failures were hard to understand
and debug.
In retrospect, our full system test environment (including a full web
browser and a server environment) might have been a more pragmatic
way to ensure the client-server communication worked, instead of trying
to cover it explicitly using headless tests. Certainly, separating the pure
logic into narrow tests that touched no file system or network resources
proved highly effective for giving us confidence in the logic, but did not
cover enough to provide full confidence in the system as a whole.

Web service
Working in a large, unfamiliar legacy Java code base for a set of web
APIs, we found an attempt had been made to test at a component level.
Most of the tests were JUnit methods that relied on a complex stack of
mock objects that, when correctly instantiated, replaced the code that
made external connections (e.g. TCP sockets, files) in the production
code.
Because the system’s observable behaviour consisted mostly of network
traffic, we knew we would need plenty of system-level tests to convince
ourselves that it was behaving correctly. However, the existing mock-
based tests were a perfect of example of testing at the wrong level: they
were not wide enough to cover the real-world behaviour (e.g. what
happens when we encounter a poorly-configured DNS server), but they
had all the down-sides of system-level tests: they were unreliable, timing-
dependent and slow, and depended on the system being in the correct
starting state to run correctly.
At the same time, creating new tests was slow and error-prone due to the
large number of mock classes needed, and tests often broke when the
assumptions encoded in the mock structure became invalid due to changes
in the code under test. Effectively we were testing the mocks more than
the interesting code.
Furthermore, many of the components in this system were tightly
integrated with other components, meaning it was difficult to be sure they
were working correctly without a true system test that ran lots of parts
simultaneously.
Our team replaced the heavily-mocked component tests one by one with
true system-level tests that instantiated different subsets of the full
production set-up inside repeatable Docker-based environments, and
exercised the system through its real network interfaces. Meanwhile, we
gradually increased the coverage of true unit-level testing by writing unit
tests whenever we changed the code. Within months, our test runs were
more reliable, tests were effective at finding real problems, and the failure
rate of the production software reduced.
By changing the level at which we were testing, from the complex Java
interfaces of the external components to the simple and relatively slow
changing external HTTP interfaces, we simplified the job of testing,
making it much clearer what the expected input and output were. Where
fake or mock services were needed, they were simple independent code
bases, or often could be implemented to provide hard-coded HTTP
responses, using the Python http.server module.
The Docker-based tests were slow – even slower than the old mock-based
tests – and they were not 100% reliable, but the significant improvement
in reliability, and the much better coverage of real-world scenarios, was
well worth the extra time. The far better comprehensiblity of the tests was
perhaps the key advantage longer term, as we worked to understand this
complex legacy system.

Tree merge
In a large C++ UI application, functionality existed to merge two existing
models based on a large set of rules for how to combine potentially
clashing hierarchical trees. Building up models in code was complex and
verbose, and deciding whether the produced model was actually correct
was difficult.

We took the decision to describe object models in a custom domain-
specific language (DSL). This allowed us to write tests that clearly
described the input and output conditions without the noise of boilerplate
code interfering. The DSL took only one line to describe each object in
the tree, meaning most of our tests became only one or two screens of
code, and the expected behaviour was clear.
Using a custom DSL has many potential disadvantages, such as the lack
of a debugger, but we had great success using one to describe object
models, perhaps because instantiating objects is a simple enough process
that it does not need to be stepped through line by line. We could have
taken the route of writing simple functions to create objects, and stayed
inside the main language, but the key advantage of the DSL in this case
was that test failures produced a clear diff (in the notation of the DSL)
showing what object model was expected and what was actually seen.
This made interpreting test failures so much simpler that we could write
in a test-driven development style, writing a test and using the failure to
drive changes in the code under test. This way of working was an order of
magnitude more productive than debugging individual assertion failures
which gave no overall picture of the difference between expected and
actual behaviour.
By changing the level of testing to a wider level (complete input and
expected output, instead of hand-coded variations on an input model and
expected features of the resulting output) we greatly simplified our tests
and made them much more useful. The use of a DSL was helpful, but less
important than the shift in testing level to one that naturally suited the
problem.

Conclusion
When deciding how to test your code, it is important to consider what
level makes sense for the project. You should try to choose a level where
you can:

1. express your requirements simply.
2. run the important parts of the code (not mock them out).
3. easily interpret test failures.

You can tell tests are at the right level when:
 No test feels pointless – each test verifies some real part of the spec.
 There are no gaps where the really interesting stuff happens but

can’t be tested.
 It is easy to write the next test.

You can tell the level is wrong when:
 Tests consist of more setup than actual test code.
 Getting your mock working is harder than writing the real code.
 Tests are unreliable.
 The real interesting behaviour is not tested.
 Adding another similar test is hard.
 It takes too long to run your tests.

Often you will need two levels to cover specific code units and whole-
system behaviour. Large code bases may need more than two levels –
where this is needed, try to find a level that lets you view a component as
having clear inputs and outputs.

References
[Balaam] Balaam, A.J. (2015) ‘Mocks are Bad, Layers are Bad’ In F.

Buontempo, editor, Overload 127, pages 8–11.
[Feathers04] Feathers, M. (2004) Working Effectively with Legacy Code

Prentice Hall
[Feathers07] Feathers, M (2007) ‘API Design as if Unit Testing

Mattered’, presentation at SD West 2007 https://www.scribd.com/
document/60239205/As-if-Unit-Testing-Mattered

[RabbitEscape] Rabbit Escape, http://artificialworlds.net/rabbit-escape
[TDD] Beck, K.(2002) Test-Driven Development by Example, Addison

Wesley
12 | Overload | February 2018

http://artificialworlds.net/rabbit-escape
https://www.scribd.com/document/60239205/As-if-Unit-Testing-Mattered
https://www.scribd.com/document/60239205/As-if-Unit-Testing-Mattered

FEATUREROGER ORR
CTAD – What Is This New
Acronym All About?
What is class template argument deduction?
Roger Orr elucidates this new C++17 feature.
has now been shipped and the dust is settling.
There are a number of new features in the
language; one of the last to be added before the

final cut goes by the snappy acronym of CTAD. The full name is Class
Template Argument Deduction, which may not tell you a great deal more
than the acronym does.

Example with std::pair
When using class templates you’ve always had to provide the template
arguments even when their type was obvious from the use:

C++98 code
 void test(int id, std::string const &name)
 {
 std::pair<int, std::string> p(id, name);
 // ...
 }
I’ve put the types involved in bold to make the duplication clear. The
template arguments have to be provided although it’s pretty clear what
they are.
Things changed slightly with the introduction of auto in C++11; it
became possible to use the (pre-existing) helper function make_pair to
create the variable and so avoid duplication of the types:

C++11 code
 void test(int id, std::string const &name)
 {
 auto p{std::make_pair(id, name)};
 // ...
 }
However, this relies on the existence of the make_pair function
template so if you wished to provide a similar facility for your own class
template you had to ensure a helper function was available. It was simply
an idiom to enable using the language rules which do allow template
arguments to be deduced when calling function templates.
Class template argument deduction allows us to avoid duplicating type
names even when using the constructor syntax:

C++17 code using CTAD
 void test(int id, std::string const &name)
 {
 std::pair p(id, name);
 // ...
 }
The compiler detects that pair names a class template but no template
arguments are supplied and deduces the arguments from the types used in
the call of the constructor. (Hence the name of class template argument
deduction.)
Use of CTAD makes the class type of the variable p explicit. It removes
the need to define a helper function such as make_pair – and it is a better

technique as the use of a helper function relies on a naming convention to
specify the type to the reader of the code.
As the paper containing the wording [P0091R3] put it in the summary: “If
constructors could deduce their template arguments ‘like we expect from
other functions and methods,’ ...” This is pretty much what CTAD does.
Since CTAD is now a standard language feature it is available for any
existing class templates without any additional changes (see Listing 1).

Potential problems
First of all, note that the addition of CTAD to C++17 does not break any
existing code as it simply allows some formerly ill-formed code to
become valid.
However, before you race to your code-base and remove all explicit
specification of class template arguments on variable declarations, there
are a few corner cases that might be troublesome.
First of all, the deduction process will only work if there are constructors
for the target type that use the template arguments; the process cannot
magically guess the type from the arguments. So, for example, CTAD is
of no use for the following class as the template argument is not part of
the constructor signature:
 template <typename T>
 class collection
 {
 public:
 collection(std::size_t size);
 // ...
 };

C++17

Listing 1

// Existing C++ class
template <typename T>
struct point
{
 T x;
 T y;
};

int main()
{
 // New C++17 use
 point pt{0L,0L};
}

Roger Orr Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in Canary
Wharf and the City. He joined ACCU in 1999 and the BSI C++ panel
in 2002. He may be contacted at rogero@howzatt.demon.co.uk
February 2018 | Overload | 13

FEATURE ROGER ORR

The wording for class template argument
deduction includes the option of providing
explicit deduction guides
It can also be a problem when the constructor you desire to invoke uses
types derived from the template arguments as there is no way by default
to work ‘backwards’ to deduce the underlying template argument.
For example, if you wish to construct a vector from a pair of iterators
and hence invoke the constructor:
 template<class InputIterator>
 vector(InputIterator first, InputIterator last,
 const Allocator& = Allocator());
Doing this directly is problematic as the template argument type for the
target collection is implicit in the value_type of the supplied iterators.
(We’ll see below one work around.)
Secondly, if there are several constructors, the constructor you want may
not be the one that the deduction will
find. This may be a problem if you are
trying to use CTAD with classes that
were written before C++17 as designing
in usable constructors will not have been
necessary then. Even small details of the
way classes are written can render CTAD
inoperable.
Thirdly, in some cases, you do want to
use a helper function to create instances
of the class for other reasons. One
obvious example from the standard
library is std::make_shared. As
Scott Meyer’s Effective Modern C++
pu t s i t i n I t em 21 : “P re f e r
std::make_unique a nd
std::make_shared to direct use of new.”
Consider the following example:
 #include <memory>
 int main()
 {
 std::shared_ptr<int> p(new int(10));
 auto q{std::make_shared<int>(10)};
 std::shared_ptr r(new int(10)); // C++17
 }
The construction of p and r differ in whether the type is explicit or
deduced, but in both cases the shared pointer will need to allocate an
additional piece of data to manage the shared object. In the construction
of q, the target object and the associated management structure can be
created using a single allocation.

Helping choose the right constructor
The wording for class template argument deduction includes the option of
providing explicit deduction guides.
The syntax is similar to that of a function template, except as the
declaration is for a constructor-like entity there is no return type.

For example, as we saw above for the case of a vector, the language will
not deduce a template argument for the vector constructor taking a pair of
iterators. The deduction guide in Listing 2 was added to the standard
library [P0433R2]. Omitting the (defaulted) allocator argument for ease
of understanding we get Listing 3.
This instructs the compiler when it sees a constructor call taking a pair of
iterators, to construct a vector using the value_type of the iterator type,
such as:
 void foo(std::set<int> const &c)
 {
 std::vector v(c.begin(), c.end());
 // ...
and v will be deduced as std::vector<int>, as expected.

(Note that this is more restrictive than the range of options available using
the full syntax, as in this case the vector to be constructed can, in general,
be of any type that int can be converted to.)

Helping prevent inappropriate choices
There are times when you may with to prevent use of CTAD for a class,
for example when the constructor chosen is unlikely to be the one that the
user expected.
One way to remove the possibility of using class template argument
deduction is to change the constructor to take a type derived from the
template arguments (see Listing 4).
The compiler is not allowed to ‘work upstream’ and deduce a possible
value of T (i.e. int) that would make no_ctad_t<T> match the
supplied argument. This is the same rule that already applies to regular
template argument deduction on function calls.
(Note: Timur Doumler is proposing standardising a class similar to
no_ctad – this use case is one of the motivating examples)
A second way, detailed in [P0091R4], would be to extend the usage of
deleted functions ("=delete") to also allow for deleted deduction

Listing 2

 template<class InputIterator, class Allocator
 = allocator<typename iterator_traits<InputIterator>::value_type>>
vector(InputIterator, InputIterator, Allocator = Allocator())
-> vector<typename iterator_traits<InputIterator>::value_type,
 Allocator>;

Listing 3

template<class InputIterator>
vector(InputIterator, InputIterator)
-> vector<typename iterator_traits<InputIterator>::value_type>;
14 | Overload | February 2018

FEATUREROGER ORR

your ability to make use of class template
argument deduction in your code will depend on

which compilers your project is targetting
guides. This has not yet been adopted into the working paper, but approval
for this direction has been given by the Evolution working group.

Primary template and explicit specialisations
Class template argument deduction applies to the primary template. If an
explicit specialization of this template defines different constructors these
will not be found by CTAD. See Listing 5, for example.

Future directions
When CTAD was first proposed it was suggested that you could provide
some template arguments and deduce the others. This is not currently in
the working paper as it was felt safest to start with an ‘all or nothing’
approach where there are fewer opportunities for confusion or ambiguity
and to consider a future extension if one is provided.

Compiler support
CTAD is part of C++17 and so will eventually be provided by any
compiler offering support for the current C++ standard.
However, at the time of writing (end of 2017) not all the mainstream
compilers have yet released versions implementing this part of the
language.
So for example while both gcc 7.1 and clang 5.0 support the feature, the
latest version of MSVC does not [C++17 progress], nor does it appear that

Intel’s compiler does. The status may of course have changed by the time
you read this article.
So your ability to make use of class template argument deduction in your
code will depend on which compilers – and which version of those
compilers – your project is targetting.

Summary
Class template argument deduction does not let you write any new code
that you couldn’t already write, albeit with slightly more syntax.
However, the reduction in syntax does reduce the burden for the reader of
the code and also ensures that, since the target types are deduced, the code
automatically changes if the type of the supplied arguments change.
I consider CTAD a useful technique for reducing cognitive overhead and
improving readability.

References
[C++17 progress] https://blogs.msdn.microsoft.com/vcblog/2017/12/19/

c17-progress-in-vs-2017-15-5-and-15-6/
[P0091R3] http://wg21.link/p0091r3
[P0091R4] http://wg21.link/p0091r4
[P0433R2] http://wg21.link/p0433r2

Listing 4

template <typename T>
struct no_ctad { using type_t = T; };

template <typename T>
using no_ctad_t = typename no_ctad<T>::type_t;

template <typename T>
class test
{
public:
 test(no_ctad_t<T>);
};

int main()
{
 test t(1); // Error
}

Listing 5

template <typename T>
class myclass {};

template <>
class myclass<int>
{
public:
 myclass(int);
 // ...
};

int main()
{
 myclass m(1); // Error: primary template only
 // has a default ctor
}

February 2018 | Overload | 15

https://blogs.msdn.microsoft.com/vcblog/2017/12/19/c17-progress-in-vs-2017-15-5-and-15-6/
https://blogs.msdn.microsoft.com/vcblog/2017/12/19/c17-progress-in-vs-2017-15-5-and-15-6/
http://wg21.link/p0091r3
http://wg21.link/p0091r4
http://wg21.link/p0433r2

FEATURE FRANCIS GLASSBOROW
C++ with Meta-classes?
Meta-classes will allow us to detail class
requirements. Francis Glassborow compares
them to developments of C++ in the 1990s.
ack in the early 80s Bjarne Stroustrup produced an upgrade to C that
was originally called ‘C with classes’. Superficially it was nothing
special because it did not add anything that could not be done in C

by a sufficiently competent programmer. At that time some were brave
enough to call it a ‘better C’. C was in the early stages of being
standardised both by ANSI (the US Standards body) and by ISO. The US
Standard was published 1989 as ANSI C. A year later ISO effectively
adopted ANSI C with a bit of editorial work to get it into the form required
by ISO. The result was an international standard for C.
The C purists were not exactly on board with the idea that there could be
an improvement to their chosen language. Indeed, some still feel that C is
the best of breed and obstinately ignore the existence of C++. C still has
a place in the world of programming but I am unconvinced that it deserves
the time and effort that goes into evolving it. Modern optimisation
technology can make good use of the added expressiveness of C++ to
deliver small footprint, high performing executables from well written
C++ source code.
It is worth noting that for most of the 80s ‘C with Classes’ or C++ as it
came to be called was implemented via CFront. That was basically a
translator that converted raw C++ into C which could be compiled by any
suitable (effectively standard) C compiler. That allowed interested people
to use C++ on any platform that had a C compiler.
Most significantly, CFront demonstrated that the core of C++ was C-
based though additions such as templates (held with profound suspicion
by many programmers for at least a decade) moved it into a realm of its
own.
It took many years for writers and programmers to grasp that C++ was
very different from C and that the idioms of the language were
fundamentally different. Good C is largely not good C++. Unfortunately,
part of the legacy that C++ has to cope with is attempting to maintain a
compatible core that is also valid C. Those who program in both
languages are all too aware of how difficult this can be. Just take the
problem of implementing support for complex numbers. This is
reasonably straight-forward for C++, even to the extent of supporting
different levels of precision (float, double and long double). To do the
same thing in C required considerable contortions including adding core
support not only by adding new built-in types but added conversions to
allow complex numbers to interact with floating point types.
C++ can often add new types as library extensions without changes to the
core of the language. If you want quaternions or extended precision floats
or Dr Conway’s Surreal Numbers you, as an individual, can implement
them in C++ in a natural way including support for operators and
transparent support for mixing them with other arithmetic types.

These days C++ has added a great deal including support for concurrency
(hard because that field is littered with gotchas), support (initially via
Technical Specification) for modules, contracts, concepts etc. Each of
those additions has major impact for the programmer and makes heavy
demands on language designers and implementers.
All this developed from a single step forward aimed at making C more
expressive and usable. Classes are a powerful addition to C though the
idea is relatively simple and makes relatively little demand on design and
implementation. Of course, that is not true of the superstructures that have
been built on top of classes. Without classes, the provision of support for
generic programming via templates would have been the domain of a tiny
number of master programmers (yes, you can do generic programming in
C, but who would want the pain of doing so?). Templates enabled meta-
programming because the implementation of them made demands on
compilers that could easily support some aspects of meta-programming.
More recently C++ has added more direct support for meta-programming.
Who could have foreseen the long-term consequences of introducing
classes to C? Yet that step has produced the rich, vibrant living language
that is C++ today. There have been and are attempts to produce a
successor to C++. Some of these have some positive advantages (usually
as a result of not having to worry about C compatibility). Java and D both
have something to offer and yet seem, to me, to lack the vibrancy of C++.

It is time for something new
Almost everything that gets added to C++ increases the complexity either
for the programmer or for the implementer. Hopefully, most complexity
is for implementers but some things aimed at library designers can be
daunting for the application programmer when they look at the resulting
libraries (usually from curiosity but sometimes because a compilation
error message takes them into library source code.)
This has remained true until April of 2017 when Herb Sutter gave the
endnote to the ACCU Conference with the caveat that we would keep
quiet about it until he had had a chance to present the idea to WG21 later
in the year.
This new thing was ‘meta-classes’. Like classes, they do not appear to add
anything that cannot be achieved without them. However, to this writer,
they are just as much a game changer as were classes added to C.
Let me give you a very brief overview of the idea and then leave you with
some links that will allow you to get real information and discover that
you can already start exploring some aspects of their use.
First note that they rely on compile time reflection: another addition to
C++ that is fast coming down the line. Have a look at http://
j ack ieokay .com/2017 /04 /13 / r e f l ec t ion1 .h tml and h t tp s : / /
mee t ingcpp.com/blog/ i tems/ ref lec t ions-on- the- re f lec t ion-
proposals.html. Or search for C++ reflection.
It is clear that static reflection will be added to C++ and that compilers
(Clang, G++ and Visual C++) are already providing experimental support
for it. Be careful because whilst these are close to what will eventually be

B

Francis Glassborow Since retiring from teaching, Francis has
edited C Vu, founded the ACCU conference and represented BSI
at the C and C++ ISO committees. He is the author of two books:
You Can Do It! and You Can Program in C++.
16 | Overload | February 2018

FEATUREFRANCIS GLASSBOROW

A meta-class specifies a set of required functions to
the compiler, a set of prohibited functions and

defaults for functions that will be used if the
programmer does not provide a version
added to the C++ Standard you should be prepared to modify code using
reflection to conform to the eventual standard specification.
So what are C++ meta-classes? The idea is that we should be able to
specify what is required to produce a family of types. For example, a value
type has a need for specific functions which we currently have to provide
by hand. The compiler cannot assist us in either detecting that we have left
one out, nor in providing a suitable default. The problem is that unless you
can communicate that the class that you are writing is to implement a
value type the compiler cannot use reflection to determine if you have
implemented your intention. Nor can it provide suitable defaults.
A meta-class specifies a set of required functions to the compiler, a set of
prohibited functions and defaults for functions that will be used if the
programmer does not provide a version. Think of the way a class provides
defaults for copying (assignment and cloning), construction and
destruction. It wasn’t until we had =delete that we had an easy way to
prohibit copying, and default construction. Yes, you can do it but by tricks
and idioms (such as declaring and not defining a copy constructor to
inhibit cloning). Such things are error prone and lack transparency. If you
do not know the idiom for turning off copying you probably will be
confused by it.
Meta-classes will allow us to define what constitutes an object type, a
value type, an arithmetic type etc. They will enable the compiler to
generate a great deal of what we currently have to do by hand. If you wish
to see how much work we have to do to implement an arithmetic type

have a look at the implementation of a complex number. Yet much of that
is just boiler plate code. Perhaps the complexity of implementing std::pair
is even more surprising (shocking).
Like classes, meta-classes achieve very much more than a superficial
description suggests. Reflection is a useful tool but not a game changer in
itself.
I assume that the reader is not someone who wishes to bury their head in
the sand like the C programmers who wanted nothing to do with C++ and
so bifurcated K&R C into ISO C and ISO C++.
Some of the debates on Reddit begin to look very similar to some of the
comments made about C++ in the early 90s. Assuming that readers avoid
the knee-jerk reaction and want to know more before forming an opinion,
look on the web for C++ meta-classes. A good starting point is: https://
herbsutter.com/2017/07/26/metaclasses-thoughts-on-generative-c/. You
do not need to type that in, just search for ‘meta-classes in C++’.
When you have brought yourself up to date on meta-classes please start
thinking about ways they would help you. There is partial support for
meta-classes in Clang. You should be able to try out published examples
and experiment with your own ideas. I invite you to report on your
experiences both good and bad.
Have great coding experiences in 2018 and may all your bugs have six or
more legs.

And the winners are...
In the last Overload we invited our readers to vote for their favourite articles of 2017 in CVu,
which is our sibling magazine for members, and in Overload.

For CVu:
1st place: Sean Corfield for ‘I Can’t Think Fast Enough in a Coding Interview’

2nd place: Adam Tornhill for ‘Beyond Functional Programming: Manipulate Functions with the
J Language’

For Overload:
1st place: Simon Brand for ‘Initialization in C++ is Bonkers’

2nd place: Ralph McArdell for ‘C++11 (and beyond) Exception Support’ and
Katarzyna Macias for ‘A C++ developer sees Rustlang for the first time’

Thank you to everyone who took time to vote, and for those who wrote. We can’t offer a prize to these winners, just the
mention here. A number of other writers got a vote – so be assured if you wrote for us someone probably thoroughly
enjoyed what you had to say. Keep up the good work.

The article titles above link to the articles if you are reading this as a PDF. Overload articles are publicly available, but
you must be a member (and logged in) to access the CVu ones. If you’re not a member yet, why not join?
February 2018 | Overload | 17

https://herbsutter.com/2017/07/26/metaclasses-thoughts-on-generative-c/
https://herbsutter.com/2017/07/26/metaclasses-thoughts-on-generative-c/
https://accu.org/index.php/journals/2422
https://accu.org/index.php/journals/2405
https://accu.org/index.php/journals/2379
https://accu.org/index.php/journals/2371
https://accu.org/index.php/journals/2350
https://accu.org/index.php/journals/2350

FEATURE ARUN SAHA
Practical Scale Testing
Everyone wants scalable systems.
Arun Saha explores methods for
testing scalability.
calability is the ability of a system to handle a growing amount of
work or its potential to accommodate such growth. It characterizes
how resource utilization grows with increasing load [Wikipedia-a].

Scalability is not an ‘add-on’ item; it is a quality that determines the
lifetime value of the software. It may not be apparent on day one when the
focus is usually on the features, but it is very important for the eventual
growth. Therefore, from early on, it is important to test the software and
verify that the desired scalability properties are present.
What is a desired scalability property? Here is a textbook example.
Consider a system that sorts data. In Big-O notation, the time complexity
of a good sorting algorithm (for example, quicksort, merge sort, heapsort)
is O(N lg N) where is N is the number of items being sorted [Wikipedia-
b]. Thus, a desired scalability property of this system is that the time taken
to sort N items is O(N lg N), i.e., the time consumed is proportional to
N lg N. The only way this can be examined is by running inputs of
different sizes through the system [Orr14]. With sufficiently large input
size, each time the input size is doubled, the time taken is expected to be
doubled too. For example, with T1 = k lg k, and T2 = 2k lg (2k),
T2/T1 = 2k lg (2k) / k lg k = 2 + 2 / lg k ~= 2. If,
however, the system is using a sub-optimal sorting algorithm of time
complexity O(N2) (for example, bubble sort, insertion-sort) then the ratio
of the times taken would be quadrupled (since T2/T1 = (2k)2/k2 =
4). How many different sizes to run? See the discussion in ‘Test
procedure’, below.
The holy grail of scalability is linear scaling, i.e. the measured metric
changes linearly with the changed attribute. With linear scaling, if the
measurements are plotted on a graph, then they approximately form a
straight line.
Scalability testing is a type of non-functional testing; tests are only
conducted on systems that are proved functionally correct. In the example
of sorting system above, the time complexity tests are meaningful and
attempted only after it is verified that the system can correctly sort input
of different sizes including sufficiently large sizes.
There are two main motivations of scalability testing: (a) identify the
limits of the system; (b) verify that the system performs well up to the
previously identified limits or desired limits. It is important to identify the
goals precisely; for example, a system can support 1M users but it may not
be able to support 1M users together. In this case, an important thing to
know is, how many users can be supported simultaneously.
Usually, the scale tests are carried out as black box tests. In a broad sense,
it involves two kinds of tests and measurements: (1) customer-driven (or
deployment-driven) and (2) architecture-driven. The former involves
real-life situations although not necessarily everyday situations. For

example, can a system of cellular towers handle the load when 100K
people gather for a special event? The latter are internal-driven tests,
which keep loading the system and study its behavior. There is a
connection though; the numbers obtained from the architecture-driven
tests influence future deployments.
In this article, we present the key characteristics of successful and
practical scale testing at the system level. These characteristics can form
the basis of system or load tests. We will consider attribute selection,
metric selection, and the testing process. These considerations help
designing scalability tests for a system.
This article is not about microbenchmarking [StackOverflow] where a
‘small’ specific section of code (often a class or a function) is tested for
performance.

Identify scalability attributes to explore
A system usually has many different knobs and parameters that could be
scaled. Some of them are logical entities without any intrinsic limit, for
example, the number of users, while others are physical entities tied to
some limits, for example, hardware capacity and operating system
constraints. From another perspective, some parameters are exposed
externally (to the users of the software), such as maximum size of the
items to be sorted, while others are internal, for example, block size for
saving data.
As we saw above, gauging the scalability of a single attribute requires
running a specific test multiple times. Therefore, to make the best use of
available time, staff, and computing resources, it is important to identify
and prioritize the attributes whose scalability properties are to be
explored. For example, in a document management system, it may be
more important to have ‘search’ scalability (since search results are
needed instantly) than ‘remove’ scalability (since removal can be
performed asynchronously through batch jobs).
There is no point exploring the scalability properties of attributes that are
related, choose only those attributes that are independent of each other.
For example, the number of simultaneous users and the number of
(external) network connections are related (i.e. dependent); it may not
make sense to choose both of them as attributes.
The attributes together form a scale-space where each attribute is a
dimension and each combination of the attribute values is a point in that
space.

Identify a set of metrics for each attribute
Some general metrics that characterize system performance are, for
example, throughput, latency, CPU usage, memory usage, network usage,
disk usage.
Each kind of system has its own family of metrics. For example, in a
storage system, some commonly used metrics are sequential read IOPS
(input-output operations per second), sequential write IOPS, random read
IOPS, random write IOPS. In a system involving video, a common metric
is frames per second. A database system uses queries per second; a

S

Arun Saha Arun is a software engineer and works in different areas of
software-defined data centers including networking and storage
systems. Arun is passionate about building robust software
infrastructure, engineering high quality software, and improving
productivity. Arun holds a B.S. and Ph.D. in Computer Science and can
be reached at arunksaha@gmail.com.
18 | Overload | February 2018

FEATUREARUN SAHA

Scalability testing is a type of non-functional
testing; tests are only conducted on systems that

are proved functionally correct
networking system uses packets per second (for throughput) and time per
packet (for latency).
There are many other metrics capturing other aspects of a system, besides
performance. Examples include
 time to recover from a disk failure
 time to recover from a node failure
 time for traffic to converge after a network failure.

The recovery related tests and obtained metrics provide the expected time
to recover from a failure situation. They serve as a useful reference to the
customers and the operations community.
It is worth noting that certain metrics may be at odds, for example, the
design for optimal (i.e. maximum) throughput may not be the same as the
design for optimal (i.e. minimum) latency. Moreover, once the metrics are
chosen, the system architecture and design tend to optimize in favor of
them. Hence, it is essential to identify what is important to the customers.

Test procedure
Scalability exploration is NOT about running a test once under the
maximum scale. Rather, it is a study of the system by running the test for
multiple iterations, each time with a different combination of attribute
values. Without multiple iterations, we can know how the system behaves
at a specific load point, but we cannot know how the system behaves with
an increase (or decrease) of load – the whole point of scalability.
It is usually not possible to obtain measurements for all possible values of
an attribute in a continuous sense. So, the desired range of an attribute is
broken down into multiple probe points and the test is conducted to obtain
measurements for each one of them.
As an example, the sorting system mentioned above may have only two
attributes, the number of input items and the size of individual items, and
only one metric, the time consumed. Each iteration can run with a
different value of the attribute tuple (#items, item-size), exploring
different points in the scale-space. In order to explore scalability
properties up to 1M items and 256-byte items, one possibility is to design
the iterations as follows: 10 probe points for #items (100K, 200K, … 1M)
and 3 probe points for item-size (8B, 64B, and 256B). This way, the
number of iterations necessary is 10x3 = 30. In general, the number of
iterations necessary is the product of the number of probe points of each
attribute. The combinations are the cross product of the probe points. The
results of such a test design can be organized as shown in Table 1
Depending on the time necessary to run the test, it is possible to run
multiple repetitions of a specific iteration and take their mean value as the
representative. Other statistical attributes such as median and variance can
be considered as well [Winder17]. This provides more confidence in the
observed metrics values.
If multiple attribute values are changed from one iteration to the next, then
it is difficult to reason which attribute is responsible for the change in the
metrics values. So, ideally, change one attribute at a time from one
iteration to the next. However, if that makes the number of iterations too

large to be practical, then some additional strategies may be considered,
for example, reduce the number of probe points or increase iterations only
in those areas where there are sudden jumps in observed metrics values.
Preserve history: If the software running the system is undergoing
change, then the scale characteristics may change from one version to
another. Hence, it is important to save the results on a per-test per-version
basis and track if the characteristics change from one version to the next
or over a series of versions. If things become worse in one version, then it
is usually necessary and useful to compare with the results from the most
recent previous version that is available.
The idea is that the (continuous) build machinery and the scale testing
machinery proceeds independently. The scale test pipeline usually picks
up a build, run all the scale tests, reports the results, and then goes to pick
up the next build. By that time, it is possible that multiple builds have been
done and that is okay. Thus, there may not be data available for all builds.
If however, there is a need, it is possible to go back, pick up any build such
as one that was earlier skipped and run the test on it. Table 2 contains an
example of how the test data can be saved.
Since the attributes and the metrics are likely to be different, each test
needs a different schema for its table. The test metrics form a time-series
on how a particular metric performed over time. Thanks to the
preservation, the performance degradation in Build 120 is easily
identified. From the history, it can also be concluded that the degradation
happened sometime after Build 111. To find out further whether the
regression happened in one build or over a sequence of builds, the
intermediate builds need to be tested; a binary search pattern may be used.

Table 1

Test
Input Id

Attributes Metrics

No. of entries Item size in bytes Time consumed in ms
1 100000 8

2 200000 8

… …

10 1000000 8

11 100000 64

12 200000 64

… …

20 1000000 64

21 100000 256

22 200000 256

23 200000 256

… …

30 1000000 256
February 2018 | Overload | 19

FEATURE ARUN SAHA

Scalability exploration is NOT
about running a test once under
the maximum scale
Lifecycle of a test
A test goes through multiple stages. First, the test is designed. The design
involves choosing the input trigger, the output to verify, the attribute set,
and the metric set. The design is reviewed by the appropriate stakeholders.
Second, the test is run manually. This is a proof of concept to verify that
the test design is okay. Third, test software is written to run the test
automatically. This involves invoking commands to configure the testbed,
load the test software, set up monitoring for the metrics, trigger the input,
collect the output, verify if the actual output matches with the expected
output, collecting the logs, and report the results. At this point, the test is
ready to be activated. It can be used by humans running scale tests as well
as the scale test harness where scale tests are invoked automatically.
Scale testing is mostly performed along with the software development,
after unit testing, integration testing, and system testing. During the
development cycle, the organization can run the scale tests on as many
testbeds that are available and as frequently as things permit. The purpose
and the nature of data collection are different after the product is released
(i.e. in production) and is not covered in this article. The performance
numbers obtained from the scale tests on the final released version of the
software are (selectively) published externally and saved as a benchmark
for later software versions.

Conclusion
Scalability testing is a broad subject and this article merely scratches the
surface. It does not cover related topics such as micro-benchmarking,

vertical scaling (scale up) vs. horizontal scaling (scale out). The article
explains different aspects of managing scalability tests: designing the test
(identifying the relevant attributes and metrics), planning the number of
iterations and the attribute combinations to use in each iteration,
performing the test by running those iterations, saving the results, verify
expected scalability properties, and identify regressions.

Acknowledgements
Many thanks to the Overload reviewers and the editor Frances
Buontempo for their suggestions that have helped improve this article.

References
[Orr14] Roger Orr, Overload #124 (December 2014) ‘Order Notation in

Practice’ https://accu.org/index.php/journals/2043
[StackOverflow] StackOverflow, ‘What is microbenchmarking?’

https://stackoverflow.com/questions/2842695/what-is-
microbenchmarking

[Wikipedia-a] Scalability Testing https://en.wikipedia.org/wiki/
Scalability_testing

[Wikipedia-b] Sorting algorithm https://en.wikipedia.org/wiki/
Sorting_algorithm

[Winder17] Russel Winder, Overload #141 (October 2017) ‘Marking
Benches’ https://accu.org/index.php/journals/2427

Table 2

Test Input Id Attribute Tuple
(#items, item-size) Build version Date Testbed Id Metrics

(time consumed in ms)
10 (1M, 8B) 108 Jan 2, 2018 42 5

10 (1M, 8B) 111 Jan 3, 2018 42 5

10 (1M, 8B) 120 Jan 9, 2018 42 7

The opinions expressed in this article are solely the author’s –
not author’s employers’.
20 | Overload | February 2018

https://en.wikipedia.org/wiki/Scalability_testing
https://en.wikipedia.org/wiki/Scalability_testing
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://stackoverflow.com/questions/2842695/what-is-microbenchmarking
https://accu.org/index.php/journals/2427
https://accu.org/index.php/journals/2043

FEATURESIMON BRAND
Functional Error-Handling with
Optional and Expected
Exceptions should be exceptional. Simon Brand shows modern
alternatives from the standard library and ways to improve them.
n software, things can go wrong. Sometimes we might expect them to
go wrong. Sometimes it’s a surprise. In most cases we want to build in
some way of handling these misfortunes. Let’s call them

disappointments [Crowl15]. I’m going to exhibit how to use
std::optional and the proposed std::expected to handle
disappointments, and show how the types can be extended with concepts
from functional programming to make the handling concise and
expressive.
One way to express and handle disappointments is exceptions:
 void foo() {
 try {
 do_thing();
 }
 catch (...) {
 //oh no
 handle_error();
 }
 }
There are a myriad of discussions, resources, rants, tirades, debates about
the value of except ions [Douglas17] [Halder16] [Kirk15]
[MusingMortoray12] [Stackoverflow], and I will not repeat them here.
Suffice to say that there are cases in which exceptions are not the best tool
for the job. For the sake of being uncontroversial, I’ll take the example of
disappointments which are expected within reasonable use of an API.
The internet loves cats. The hypothetical you and I are involved in the
business of producing the cutest images of cats the world has ever seen.
We have produced a high-quality C++ library geared towards this sole
aim, and we want it to be at the bleeding edge of modern C++.
A common operation in feline cutification programs is to locate cats in a
given image. How should we express this in our API? One option is
exceptions:
 // Throws no_cat_found if a cat is not found.
 image_view find_cat (image_view img);
This function takes a view of an image and returns a smaller view which
contains the first cat it finds. If it does not find a cat, then it throws an
exception. If we’re going to be giving this function a million images, half
of which do not contain cats, then that’s a lot of exceptions being thrown.
In fact, we’re pretty much using exceptions for control flow at that point,
which is A Bad Thing™ [Stroustrup18].
What we really want to express is a function which either returns a cat if
it finds one, or it returns nothing. Enter std::optional.
 std::optional<image_view> find_cat
 (image_view img);
std::optional was introduced in C++17 [cppreference] for
representing a value which may or may not be present. It is intended to be
a vocabulary type – i.e. the canonical choice for expressing some concept
in your code. The difference between this signature and the last is
powerful; we’ve moved the description of what happens on an error from
the documentation into the type system. Now it’s impossible for the user

to forget to read the docs, because the compiler is reading them for us, and
you can be sure that it’ll shout at you if you use the type incorrectly.
The most common operations on a std::optional are shown in
Listing 1.
Now we’re ready to use our find_cat function along with some other
friends from our library to make embarrassingly adorable pictures of cats
(see Listing 2).
Well this is… okay. The user is made to explicitly handle what happens
in case of an error, so they can’t forget about it, which is good. But there
are two issues with this:

I

Listing 1

std::optional<image_view> full_view = my_view;
std::optional<image_view> empty_view;
std::optional<image_view> another_empty_view
 = std::nullopt;
full_view.has_value(); //true
empty_view.has_value(); //false
if (full_view) { this_works(); }
my_view = full_view.value();
my_view = *full_view;
my_view = empty_view.value(); //throws
bad_optional_access
my_view = *empty_view; //undefined behaviour

Listing 2

std::optional<image_view> get_cute_cat
(image_view img) {
 auto cropped = find_cat(img);
 if (!cropped) {
 return std::nullopt;
 }
 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return std::nullopt;
 }
 auto with_sparkles =
 make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return std::nullopt;
 }
 return
 add_rainbow(make_smaller(*with_sparkles));
}

Simon Brand Simon is a GPGPU toolchain developer at Codeplay
Software in Edinburgh. He turns into a metaprogramming fiend
every full moon, when he can be found bringing compilers to their
knees with template errors and writing posts for his blog at
blog.tartanllama.xyz. Contact Simon at simonrbrand@gmail.com
February 2018 | Overload | 21

FEATURE SIMON BRAND
1. There’s no information about why the operations failed.
2. There’s too much noise; error handling dominates the logic of the

code.
I’ll address these two points in turn.

Why did something fail?
std::optional is great for expressing that some operation produced
no value, but it gives us no information to help us understand why this
occurred; we’re left to use whatever context we have available, or (God
forbid) output parameters. What we want is a type which either contains
a value, or contains some information about why the value isn’t there.
This is called std::expected.
Now don’t go rushing off to cppreference to find out about
std::expected; you won’t find it there yet, because it’s currently a
standards proposal [P0323r3] rather than a part of C++ proper. However,
its interface follows std::optional pretty closely, so you already
understand most of it. Listing 3 shows the most common operations.
With std::expected our code might look like Listing 4.
Now when we call get_cute_cat and don’t get a lovely image back,
we have some useful information to report to the user as to why we got
into this situation.

Noisy error handling
Unfortunately, with both the std::optional and std::expected
versions, there’s still a lot of noise. This is a disappointing solution to
handling disappointments. It’s also the limit of what C++17’s
std::optional and the most recent proposed std::expected give us.
What we really want is a way to express the operations we want to carry
out while pushing the disappointment handling off to the side. As is
becoming increasingly trendy in the world of C++, we’ll look to the world

of functional programming for help. In this case, the help comes in the
form of what I’ll call map and and_then.
If we have some std::optional and we want to carry out some
operation on it if and only if there’s a value stored, then we can use map:
 widget do_thing (const widget&);
 std::optional<widget> result =
 maybe_get_widget().map(do_thing);
 auto result = maybe_get_widget().map(do_thing);
 //or with auto
This code is roughly equivalent to:
 widget do_thing (const widget&);
 auto opt_widget = maybe_get_widget();
 if (opt_widget) {
 widget result = do_thing(*opt_widget);
 }
If we want to carry out some operation which could itself fail then we can
use and_then:
 std::optional<widget> maybe_do_thing
 (const widget&);
 std::optional<widget> result =
 maybe_get_widget().and_then(maybe_do_thing);
 auto result =
 maybe_get_widget().and_then(maybe_do_thing);
 //or with auto
This code is roughly equivalent to:
 std::optional<widget> maybe_do_thing
 (const widget&);
 auto opt_widget = maybe_get_widget();
 if (opt_widget) {
 std::optional<widget> result =
 maybe_do_thing(*opt_widget);
 }
and_then and map for expected acts in much the same way an for
optional: if there is an expected value then the given function will be
called with that value, otherwise the stored unexpected value will be
returned. Additionally, we could add a map_error function which
allows mapping functions over unexpected values.
The real power of these functions comes when we begin to chain
operations together. Let’s look at that original get_cute_cat
implementation again in Listing 2.
With map and and_then, our code transforms into this:
 tl::optional<image_view> get_cute_cat
 (image_view img) {
 return crop_to_cat(img)
 .and_then(add_bow_tie)
 .and_then(make_eyes_sparkle)
 .map(make_smaller)
 .map(add_rainbow);
 }
With these two functions we’ve successfully pushed the error handling off
to the side, allowing us to express a series of operations which may fail
without interrupting the flow of logic to test an optional. For more
discussion about this code and the equivalent exception-based code, I’d
recommend reading Vittorio Romeo’s ‘Why choose sum types over
exceptions?’ article [Romeo17].

Listing 3

std::expected<image_view,error_code> full_view =
 my_view;
std::expected<image_view,error_code> empty_view =
 std::unexpected(that_is_a_dog);
full_view.has_value(); //true
empty_view.has_value(); //false
if (full_view) { this_works(); }
my_view = full_view.value();
my_view = *full_view;
my_view = empty_view.value(); //throws
bad_expected_access
my_view = *empty_view; //undefined behaviour
auto code = empty_view.error();
auto oh_no = full_view.error(); //undefined
 //behaviour

Listing 4

std::expected<image_view, error_code>
 get_cute_cat (image_view img) {
 auto cropped = find_cat(img);p
 if (!cropped) {
 return no_cat_found;
 }
 auto with_tie = add_bow_tie(*cropped);
 if (!with_tie) {
 return cannot_see_neck;
 }
 auto with_sparkles =
 make_eyes_sparkle(*with_tie);
 if (!with_sparkles) {
 return cat_has_eyes_shut;
 }
 return
 add_rainbow(make_smaller(*with_sparkles));
}

As C++ programmers, we’re constantly finding new ways to leverage the
power of the language to make expressive libraries, thus improving the
quali ty of the code we write day to day. Let ’s apply this to
std::optional and std::expected. They deserve it.

With these two functions, we’ve successfully pushed the error handling
off to the side, allowing us to express a series of operations which may
fail without interrupting the flow of logic to test an optional.

Improvements upon improvements
22 | Overload | February 2018

FEATURESIMON BRAND
A theoretical aside
I didn’t make up map and and_then off the top of my head; other
languages have had equivalent features for a long time, and the theoretical
concepts are common subjects in Category Theory [Milewski14].
I won’t attempt to explain all the relevant concepts in this post, as others
have done it far better than I could. The basic idea is that map comes from
the concept of a functor, and and_then comes from monads. These two
functions are called fmap and >>= (bind) in Haskell. The best description
of these concepts which I have read is ‘Functors, Applicatives’ And
Monads In Pictures’ by Aditya Bhargava [Bhargava13]. Give it a read if
you’d like to learn more about these ideas.

A note on overload sets
One use-case which is annoyingly verbose is passing overloaded
functions to map or and_then. For example:
 int foo (int);
 tl::optional<int> o;
 o.map(foo);
The above code works fine. But as soon as we add another overload to
foo:
 int foo (int);
 int foo (double);
 tl::optional<int> o;
 o.map(foo);
then it fails to compile, complaining that template arguments couldn’t be
inferred.
One solution for this is to use a generic lambda:
 tl::optional<int> o;
 o.map([](auto x){return foo(x);});
Another is a LIFT macro:
 #define FWD(...) \
 std::forward<decltype(__VA_ARGS__)>(__VA_ARGS__)
 #define LIFT(f) [](auto&&... xs) \
 noexcept(noexcept(f(FWD(xs)...))) -> \
 decltype(f(FWD(xs)...)) \
 { return f(FWD(xs)...); }
 tl::optional<int> o;
 o.map(LIFT(foo));
Personally I hope to see overload set lifting get into the standard so that
we don’t need to bother with the above solutions.

Current status
Maybe I’ve persuaded you that these extensions to std::optional and
std::expected are useful and you would like to use them in your code.
Fortunately I have written implementations of both with the extensions
shown in this post, among others. tl::optional [GH1] and
tl::expected [GH2] are on GitHub as single-header libraries under
the CC0 [CC] license, so they should be easy to integrate with projects
new and old.
As far as the standard goes, there are a few avenues being entertained for
adding this functionality. I have a proposal [P0798r0] to extend
std::optional with new member functions. Vicente Escribá has a
proposal [P0650r1] for a generalised monadic interface for C++. Niall
Douglas’ operator try() paper [P0779r0] suggests an analogue to
Rust’s try! macro [Rust] for removing some of the boilerplate associated
with this style of programming. It turns out that you can use coroutines
[GH3] for doing this stuff, although my gut feeling puts this more to the

‘abuse’ end of the spectrum. I’d also be interested in evaluating how
Ranges [N4685] could be leveraged for these goals.
Ultimately I don’t care how we achieve this as a community so long as we
have some standardised solution available. As C++ programmers we’re
constantly finding new ways to leverage the power of the language to
make expressive libraries, thus improving the quality of the code we write
day to day. Let’s apply this to std::optional and std::expected.
They deserve it.

References
[Bhargava13] http://adit.io/posts/2013-04-17-

functors,_applicatives,_and_monads_in_pictures.html
[CC] https://creativecommons.org/share-your-work/public-domain/cc0/
[cppreference] http://en.cppreference.com/w/cpp/utility/optional
[Crowl15] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

p0157r0.html
[Douglas17] Niall Douglas (2017) ‘Mongrel Monads, Dirty, Dirty, Dirty’,

ACCU 2017: https://www.youtube.com/watch?v=XVofgKH-uu4
[GH1] https://github.com/TartanLlama/optional
[GH2] https://github.com/TartanLlama/expected
[GH3] https://github.com/toby-allsopp/coroutine_monad
[Halder16] Deb Haldar (2016) ‘Top 15 C++ Exception handling mistakes

and how to avoid them’ http://www.acodersjourney.com/2016/08/
top-15-c-exception-handling-mistakes-avoid/

[Kirk15] Shane Kirk (2015) ‘C++ Exceptions: The Good, The Bad, And
The Ugly’ http://www.shanekirk.com/2015/06/c-exceptions-the-
good-the-bad-and-the-ugly/

[Milewski14] Bartosz Milewski (2014) https://bartoszmilewski.com/
2014/10/28/category-theory-for-programmers-the-preface/

[MusingMortoray12] ‘Everything wrong with exceptions’ (2012)
https://mortoray.com/2012/04/02/everything-wrong-with-
exceptions/

[N4685] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
n4685.pdf

[P0323r3] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0323r3.pdf

[P0650r1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0650r1.pdf

[P0779r0] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0779r0.pdf

[P0798r0] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0798r0.html

[Romeo17] Vittorio Romeo (2017) ‘Why choose sum types over
exceptions?’ https://vittorioromeo.info/index/blog/
adts_over_exceptions.html

[Rust] https://doc.rust-lang.org/1.9.0/std/macro.try!.html
[Stackoverflow] ‘Why is exception handling bad?’

(https://stackoverflow.com/questions/1736146/why-is-exception-
handling-bad) and ‘Are Exceptions in C++ really slow’
(https://stackoverflow.com/questions/13835817/are-exceptions-in-
c-really-slow)

[Stroustrup18] Bjarne Stroustrup and Herb Sutter (eds)
https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#e3-use-exceptions-for-error-handling-only
February 2018 | Overload | 23

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://creativecommons.org/share-your-work/public-domain/cc0/
http://en.cppreference.com/w/cpp/utility/optional
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0157r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0157r0.html
https://www.youtube.com/watch?v=XVofgKH-uu4
https://github.com/TartanLlama/optional
https://github.com/TartanLlama/expected
https://github.com/toby-allsopp/coroutine_monad
http://www.acodersjourney.com/2016/08/top-15-c-exception-handling-mistakes-avoid/
http://www.acodersjourney.com/2016/08/top-15-c-exception-handling-mistakes-avoid/
http://www.shanekirk.com/2015/06/c-exceptions-the-good-the-bad-and-the-ugly/
http://www.shanekirk.com/2015/06/c-exceptions-the-good-the-bad-and-the-ugly/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://mortoray.com/2012/04/02/everything-wrong-with-exceptions/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4685.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4685.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0650r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0650r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0779r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0779r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html
https://vittorioromeo.info/index/blog/adts_over_exceptions.html
https://vittorioromeo.info/index/blog/adts_over_exceptions.html
https://doc.rust-lang.org/1.9.0/std/macro.try!.html
https://stackoverflow.com/questions/1736146/why-is-exception-handling-bad
https://stackoverflow.com/questions/1736146/why-is-exception-handling-bad
https://stackoverflow.com/questions/13835817/are-exceptions-in-c-really-slow
https://stackoverflow.com/questions/13835817/are-exceptions-in-c-really-slow
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e3-use-exceptions-for-error-handling-only

FEATURE CHRIS OLDWOOD
Afterwood
Can you code on paper in an interview? Chris
Oldwood recounts his attempts to write a calendar.
 he interviewer slid a pencil and a sheet of A4 paper over in my
direction and said “I’d like you to write a little bit of code to print a
calendar.” I thought to myself “that doesn’t seem too hard”.

This wasn’t the very start of the interview, there were a few pleasantries
exchanged before cutting to the chase. In that opening introduction, I
quickly learned that my interviewer did not work in my department or
even my programming language of choice. His personal preference was
for Java but given that this was a brand new team with only a project
manager who hadn’t written a line of code in years, he was drafted in from
another team to fill the void. I let out a disguised sigh of relief as I realised
I wasn’t going to get quizzed about obscure C++ trivia.
I quickly doodled a picture of a calendar in the corner of the paper just to
clarify what kind of thing he might be after, and he muttered in agreement.
I then traced over the doodle again, which is odd, because I never doodle
in my log book. All of a sudden I became aware of the situation I was in
– a job interview. I tried to focus, thinking to myself “I just need to write
a function to draw a calendar; that should be pretty easy. He doesn’t even
know C++ so it’s not a language test; he just wants to see me write some
simple code.”
The room began to feel small. Being a typical corporate meeting room the
décor was noticeably drab, this wasn’t the place you’d ever consider
bringing a customer; so it can be palmed off onto a bunch of IT people.
The lack of a whiteboard also suggested this was no place for
collaboration, which was odd, because so much of what is wrong in
software development is down to a distinct lack of this very exercise.
Once again my mind wandered from the task at hand as I begin to consider
whether this omen was foreboding.
More time passed and I’ve still written no code. This can’t be looking too
promising now so I make a light hearted attempt to cover my tracks by
suggesting it’s really weird writing code with a pen and pencil. Which of
course it is.
I break the impasse by just writing a boilerplate function signature void
printCalender() and then add a couple of braces. I immediately
realise adding the closing brace was stupid, how can you insert code on a
piece of paper? Once more I make light heart of the situation by
commenting on how used to a text editor I’ve become. He agrees. I ask
him to pass the ‘delete key’, by pointing at the rubber just out of reach,
and he obliges.
I need to get a grip. I tell myself to stop making small-talk and get on with
the task at hand.
Finally I seem to be able to concentrate. My sketch of the calendar
suggests a 2D structure so I start writing a pair of loops, one from one to
seven for the days of the week and another for up to 5 weeks. As I
mentally walk through the output I realise it’s just a stream and so I only
need one loop and some modulo arithmetic. I apply the ‘delete key’
liberally once again and focus on the single loop approach. Only now I
can’t see what it looks like as my mind has raced ahead to realising I have
no idea what date type I’m going to use, such as for working out which

day of the week the 1st of the month is, or how many days the month has,
or if it’s a leap year, or …
My vacant expression and another period of extended inactivity has come
to the interviewer’s notice and once more I’m on the back foot. This time
I bemoan that lack of a decent date/time class in C++ and waffle on about
Boost, time_t and OLE date/times. He sympathises but, probably
unintentionally, only makes things worse by pointing out how much you
get out of the box in Java. This time I joke about the lack of access to Stack
Overflow, or the internet in general for assistance.
It’s now dawned on me that I didn’t start with a failing test! Test-first
development is still fairly new to me at this point due to being knee deep
in legacy code for years, but I want him to know that it’s something I
would normally do. I fire off a throwaway comment and try to gauge his
response but fail to detect if TDD is his natural way of life or not and
therefore have to let it go.
I realise I’ve just blamed the test process, again! Where is the Singularity
to swallow me up and put an end to this nightmare...?
Time’s up! The page contains some faint scribbles and I try my best to
elucidate my thought process, in particular how my gut says it’s just a
simple loop and some modulo arithmetic and I apologise for failing to get
anything remotely readable down on paper in time.
He thanks me for my time and slips me a small piece of paper with his
email address on it and, almost as a passing gesture suggests I could
always contact him later with the answer. I know he’s just being polite
though.
I trudge home, annoyed at how badly I’ve done. Similarly, I lament to the
agent about my inability to write such a simple piece of code. Naturally
he’s supportive but it makes little difference to my self-deprecating mood.
The evening slowly passes and my thoughts turn to the piece of paper with
his email address on it. I start to ponder “was it a genuine lifeline, or just
an act of consolation? Is he merely offering me closure or a second chance
to redeem myself?”
I fire up my computer and start bashing out some code. I decide I’m not
just going to answer the question, but I’m also going to do it both ways –
the two loop approach I fumbled towards, but also the single loop,
streaming approach I knew was possible. And I was going to do both
using a test-first approach for good measure!
At about 10 pm I zipped up both sets of code and mailed them off. I was
happy that even if he didn’t read the email I knew that I could have done
it given a normal working environment.
The following morning I took the kids to school and just got on with my
life knowing there were other jobs out there and that I’d have my day soon
enough. Then the phone rang, it was the agent, “I don’t know what you
did but they want to see you again right away!”

T

24 | Overload | February 2018

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

pre-conference tutorials 2018.4.10
www.accu.org/conference

Great conference
with fantastic
speakers and
amazing subjects.
I enjoyed it
thoroughly.”
ACCU 2017 Delegate

CONFIRMED
KEYNOTE
SPEAKERS

SEB ROSE

LISA LIPPINC
O

TT

FOR FURTHER INFORMATION AND TO REGISTER,
PLEASE VISIT https://conference.accu.org/

“

BRISTOL
MARRIOTT
HOTEL
CITY
CENTRE

2018.4.11-14

G
EN

 A
SH

LE
Y

HADI HA
RIRI

5
parallel
streams

60+
speakers

4
days

400+
attendees

	Overload 143.pdf
	Hapaxes, Singletons and Anomalies
	A Wider Vision of Software Development
	An MWSR Queue with Minimalist Locking
	Testing: Choose the Right Level
	CTAD – What Is This New Acronym All About?
	C++ with Meta-classes?
	Practical Scale Testing
	Functional Error-Handling with Optional and Expected
	Afterwood

