

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

August 2018 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Cache-Line Aware Data Structures
Wesley Maness and Richard Reich demonstrate
with a producer–consumer queue.

8 miso: Micro Signal/Slot Implementation
Deák Ferenc presents a new implementation of
the Observer pattern.

14 (Re)Actor Allocation at 15 CPU Cycles
Sergey Ignatchenko, Dmytro Ivanchykhin and
Marcos Bracco pare malloc/free to a minimum.

20 How to Write a Programming Language:
Part 2, The Parser
Andy Balaam continues his series on writing a
programming language.

23 Compile-time Data Structures in C++17:
Part 1, Set of Types
Bronek Kozicki details an implementation of a
compile time data structure.

28 Afterwood
Chris Oldwood considers what it means to have
nothing.

OVERLOAD 146

August 2018

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 147 should be submitted by
1st September 2018 and those for
Overload 148 by 1st November 2018.

EDITORIAL FRANCES BUONTEMPO
Should I Lead by Example?
Stuck on a problem? Frances Buontempo
considers where to turn to for inspiration.
I started to clear my desk and found a cue card with
the words “Lead by example” written on it, which
distracted me from writing an editorial. This card is
from Seb Rose’s closing keynote ‘Learning to Walk
again’ at this year’s ACCU conference [Rose18]. The
idea was to write down something you had learnt from

the conference on a card and give the card, along with contact details, to
someone so they could later remind you what you wrote. I failed to comply
with the instructions precisely, since I still have my own card, but it did
jog my memory, though not enough to recall what had taught me this. It
could have been Arne Mertz’s ‘Code review’ session [Mertz18]. You
cannot expect to get away with telling others how they can improve their
code if you don’t follow your own suggestions. As a mentor, I encouraged
new programmers to add unit tests to their code and put it all in version
control, but frequently noticed I had strategic scripts with no tests at all
and some not even in version control. For shame! Lead by example. Of
course, it’s not just unit tests. I complain when others don’t keep a diary,
but don’t always write appointments in my own diary. Far too much ‘Do
as I say, not as I do.’
OK, what does lead by example mean? In one sense, leading by example
contrasts with trying to bully people into doing things your way. How do
you persuade people to adopt your approach? I was recently asked this at
an interview. If faced with a task that might take a day, and two possible
implementations, it’s surely worth knocking together both alternatives
rather than spending three days arguing over which is best? You do not
always need to make everyone go along with one idea. Sometimes it
matters, sometimes it doesn’t. Tempers can get frayed if people don’t see
things your way, and I value working software over proving my idea is
the best. A recent blog post [DestroyAllSoftware] broke down a response
from Linus Tovarlds on union aliasing. Tovarlds’ language was
inflammatory and unkind. The blog post showed an alternative way of
making the same points without being so hateful. You can disagree with
people without resorting to bullying by telling them they are brain-dead
or worse. I can recall many time when I’ve categorically told someone
they were stupid and didn’t know what they were doing. I believe I have
stopped doing this now. Pull me up if you notice me being a bully. Taking
the lead by bullying others into submission is not a good idea. What are
the alternatives?
To encourage the adoption of a new approach to a problem, instead of
arguing or laying down the law, you may be able to knock together a

prototype showing the alternative works. Sometimes
the better tech wins, so giving people

alternatives allowing them to try out your
new ideas can be more persuasive than
banning older tool-chains or similar. If

you want to change an API, try adding new functions and gradually
deprecating the older ones as people stop using them. The strangle vine
pattern or strangle applicator [Fowler04] describes ways to ensure a new
approach strangles or kills off the old way, drawing an analogy with
strangle vines, which grow over other plants. It contrasts with a complete
re-write allowing new approaches to live side by side with old approaches,
at least for a while. This probably doesn’t count as leadership per se, but
does give alternative paths. More suggest by alternatives than lead by
example, though it incorporates the nub of the idea: have a demonstration
or example to make your point.
Any prototype is certainly an example, though whether this counts as
leading is another matter. In the sense of pioneering, or going out in front,
it surely does? Sometimes attempting to trail-blaze leaves you more a lone
lunatic in no-mans’ land than a leader. You need a level of self-confidence
to be able to demonstrate an idea or working example without wanting to
hide under a blanket or behind a sofa. I hope we manage to encourage
Overload writers, even if we don’t always agree with everything that gets
written. That’s ok. Thank you for sharing your ideas with us. An article
is often an example, sometimes a novel idea even, which can lead readers
to try new things, learn or even write in to disagree. That’s ok too.
However, an article as a way of leading by example is probably not what
my cue card meant.
What did I mean? I am not sure. It sounds like sensible advice, but I am
unclear what it really means, as is often the case with slightly trite phrases.
Furthermore, it begs the question: should I lead by example? Perhaps this
is straying near Betteridge’s law of headlines: ‘Any headline that ends in
a question mark can be answered by the word no’. [Wikipedia-1]. When
used in a headline, a question is often sensationalist, in order to drum up
an audience, something I suspect my title is unlikely to achieve. One
website [BetteridgeLaw] has examples filling over two thousand pages. I
can’t vouch for the veracity of any of those, though many are hilarious.
‘Does Bill Gates still know what computer users want?’ and so on. I’ll
leave you to explore.
You may not aspire to be a leader, but can find yourself out in front from
time to time. I sometimes walk quicker than others, finding myself ahead
when walking with friends or family to an unfamiliar location, having just
said, ‘I’ll follow you.’ It is difficult to follow if you are in front. Perhaps
you find yourself reluctantly in front, being the first person to try to make
a new technology work, or resurrect some old code no one knows how to
build. Bad luck. In that situation, you are unlikely to have examples to
follow. You can make sure you put the code in version control, add some
kind of tests or at least ways of spotting regressions. You can add a make
file, or other build script, once you have figured out how to build the code.
A short readme file is a good idea too. Even if it says little more than ‘type

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com
2 | Overload | August 2018

EDITORIALFRANCES BUONTEMPO
make then run_tests’. In a sense, this is leading by example because
you have improved the situation, just quietly in the background, without
needing long meetings to decide what approaches to take. You might need
these too, but at least the fundamental parts are in place and you have
recorded what you spent time discovering in a simple and clear format.
Perhaps that’s all I meant. Instead of moaning about the state of the world,
or the project, or codebase, step up and make the changes needed. This
might need to be in a non-invasive way, so people can still email
themselves files, write word documents and have meetings if they want
to. Meanwhile the code builds and runs. And crashes. But that’s another
story.
This nuance is leading in the sense of forging ahead and getting stuff done.
It’s not leadership in the sense of an authoritarian head of state or someone
guiding or conducting a process, team or project. A leader can also be a
front page news splash or similar. Something at the front, in your face,
trying to stir up discussion. An editorial of sorts. The etymology of the
ending -ship might trace to the Dutch for cut or hack [Etymology], I
presume along the lines of essence of something rather than thrown
together or a newspaper hack. Such a pen for hire is not to be confused
with relatively recent phone hacking scandals by News International
[Wikipedia-2]. In a sense, the hack makes a path through something or in
a direction. Any example gives a hint of how to do something or the
direction to take. An entrepreneur or pioneer may take a lead, one dealing
with the enterprisey requirements to form a business, the other possible
being more like a lone ranger going off in front, perhaps a alone. Do such
people lead by example? They lead. The best team leads I have ever
worked with lead from behind. They were happy to take a back seat and
enable the developers. The Harvard Business Review attributes this to
Nelson Mandela [Hill04], equating a leader with a shepherd who “stays
behind the flock, letting the most nimble go out ahead, whereupon the
others follow, not realizing that all along they are being directed from
behind.”
Are there leaders, whether team leads at work or from other realms, you
admire? I suspect each of us can think of at least one person who seems to
have a knack of getting things done in an effective manner. I have a few
people I bring to mind when I get stuck on various problems. For
mathematics, I often wonder what my Dad would have done. For some
coding problems, I wonder what specific coders I know would do. I won’t
name and embarrass anyone, but I’ve met many such people through the
ACCU. The meme, ‘What would [insert name here] do?’ has run for a long
time. As with many memes or inspirational sayings, the question is a
cliché. Commonplace sayings become clichés because they capture a heart
of a common idea or experience, which rings true for many people. They
can give an accurate encapsulation of an idea, or an example to put out in
front. I have caught myself a few times thinking a project is going badly
wrong and rather than asking ‘What would XXX do?’ I start asking myself
what do I want to do. What would I do, if I were leading this project? What
would I do if this were a personal project? That’s why I have managed to

sneak in a make file and a way to run some regression tests on my current
project. I’m not suggesting you use me as a fine example of how to solve
any problems. I am asking if you have some self-belief. If you’re suffering
from a confidence nose-dive, be kind to yourself. Remind yourself what
you are good at, or at least enjoy. Spending time listening to people you
admire, reading what they’ve written; articles, code or blogs. Or stories.
At least get to a point where you can reflect on the bigger picture and get
what you think clear. That might be no more than deciding you are stuck
and haven’t got a clue what to do.
If you’re not sure how to tackle a problem, do consider asking yourself
what XXX would do. Not necessarily Vin Deisel.1 Find an example to lead
you through your problem. I think I have now devolved into giving myself
advice or suggestions using a few suspiciously platitudinous phrases.
Thanks for listening. I may have intended to lead by example, but now
wonder if perhaps I should re-word my cue card to say “Hack by cliché.”
Whichever you think is most appropriate, take a moment to ask yourself,
what would Linus do? What would Bjarne do? What should I do? Be the
person you want to be. Don’t be mean. Lead by
example, or hack by cliché.

References
[BetteridgeLaw] http://betteridgeslaw.com/
[DestroyAllSoftware] ‘A case study in not being a jerk

in open source’ (2018) https://www.destroyallsoftware.com/blog/
2018/a-case-study-in-not-being-a-jerk-in-open-source

[Etymology] -ship in the Online Etymology Dictionary at
https://www.etymonline.com/word/-
ship?ref=etymonline_crossreference

[Fowler04] Martin Fowler (2004) ‘Strangler Application’, at:
https://www.martinfowler.com/bliki/StranglerApplication.html

[Hill04] Linda Hill (2010) ‘Leading from Behind’ in the Harvard
Business Review, https://hbr.org/2010/05/leading-from-behind

[Mertz18] Arne Mertz (2018) ‘Code Reviews – Why, what and how’
https://isocpp.org/blog/2018/01/code-reviews-why-what-and-how-
arne-mertz (not recorded at the ACCU conference)

[Rose18] Seb Rose (2018) ‘Software development – learning to walk
again’ from the ACCU18 conference, available at
 https://www.youtube.com/watch?v=iFwm-_04rLg

[Wikipedia-1] ‘Betteridge's law of headlines’, https://en.wikipedia.org/
wiki/Betteridge%27s_law_of_headlines

[Wikipedia-2] ‘News International phone hacking scandal’, at
https://en.wikipedia.org/wiki/
News_International_phone_hacking_scandal

1. The film xXx staring Vin Diesel was released in 2002
(https://www.imdb.com/title/tt0295701/)
August 2018 | Overload | 3

https://www.imdb.com/title/tt0295701/
https://en.wikipedia.org/wiki/News_International_phone_hacking_scandal
https://en.wikipedia.org/wiki/Betteridge%27s_law_of_headlines
https://en.wikipedia.org/wiki/Betteridge%27s_law_of_headlines
https://www.youtube.com/watch?v=iFwm-_04rLg
https://www.youtube.com/watch?v=iFwm-_04rLg
https://isocpp.org/blog/2018/01/code-reviews-why-what-and-how-arne-mertz
https://isocpp.org/blog/2018/01/code-reviews-why-what-and-how-arne-mertz
https://hbr.org/2010/05/leading-from-behind
https://www.destroyallsoftware.com/blog/2018/a-case-study-in-not-being-a-jerk-in-open-source
https://www.destroyallsoftware.com/blog/2018/a-case-study-in-not-being-a-jerk-in-open-source
https://www.etymonline.com/word/-ship?ref=etymonline_crossreference
http://betteridgeslaw.com/
https://www.martinfowler.com/bliki/StranglerApplication.html

FEATURE WESLEY MANESS & RICHARD REICH
Cache-Line Aware Data
Structures
Structuring your program to consider memory can improve
performance. Wesley Maness and Richard Reich
demonstrate this with a producer–consumer queue.
n this paper, we explore cache-line friendly data structures, in particular
queues built with atomics that will be used in multi-threaded
environments. We will illustrate our topic with a real-world use case that

is not cache-line aware, measure, incorporate our suggestions, measure
again, and finally review our results. Before we get into the nuts and bolts
of our data structures, we need to define a few terms followed with some
examples. For those readers who are not familiar with the topics of NUMA
and CPU cache, we highly recommend reviewing them (at [Wikipedia-1]
and [Wikipedia-2]).

Jitter
Jitter can be defined as the variance of time around operations that can
arguably have constant time expectations.
A few examples to better illustrate are:
 The wall clock on a system in which each ‘tick’ of the highest-

precision unit has some variance. Back in 2012, we measured the
wall clock on the best server we had at the time. It was accurate
down to 1 microsecond. However, we had jitter of ±1.5
microseconds. Consider that the clock’s accuracy increases over
longer time periods, but each tick jittered.

 When we are linearly accessing memory in a system, each access
may take a constant time until you hit a page fault. That page fault
can introduce delay. In this case, we have a constant time operation
that ends up having predictable jitter.

 Sparsely accessing an array can have many cache misses as well as
cache hits. Depending on the location and layout of the memory,
what should be constant will be different depending on:
 Is the memory in the same NUMA node? [Tsang17]
 Is the memory located in the cache?
 Which cache is the memory located in? (L3, L2, L1)
 Is the memory in the current cache line?
 Is the memory contended with another CPU socket/core?

Many of the above are just examples which are not investigated in the
scope of the paper and many can also be mitigated by using prefetching.

Cache line
The cache line is the smallest unit of RAM the CPU can load to perform
operations. On the Intel CPU, this is 64 bytes, or 8 pointers in a 64-bit
operating system. If at least one of the cores is writing, then cache
coherency causes the cache line to be synchronized between the cores as
each write forces a synchronization between the cores. Many cores reading
from the same cache line causes no performance issues if there is no writing
to that same cache line.

Cache awareness
Cache awareness really comes down to structuring your memory layout
(memory model) of your program and its data structures. Careful
consideration of what memory goes where can significantly improve the
performance of the resulting machine code that must be verified by
measuring.
For example, if we look at the Intel core i7 [Levinthal09] we can see its
specifications are: L1 is 4 CPU cycles, L2 is 11 CPU cycles and L3 is 30-
40 CPU cycles. Main memory can range from 200-350 CPU cycles on a
3GHz system. Crossing NUMA nodes incurs even more penalties. Code
that sparsely accesses memory incurring many cache misses can spend
95% of the time doing nothing!

Motivation
In previous sections, we hinted as to why we would want to be cache aware,
but here we will explain in a bit more detail, and then consider the benefits
of potential future hardware progression and its impact.
From a multi-threading perspective, we need to be sure that data that are
independently accessed by different threads are not shared over a cache
line. Doing so will cause all reading threads to stall while the dirty cache
line is synchronized across all cores. This is compounded if one or more
of the threads exists on a different NUMA node.
The most direct benefit of fully independent data between threads not
sharing cache lines is linear scalability. Some of the most obvious costs are:
 Increased code complexity due to increased complexity of the

memory model.
 If each thread is accessing small amounts of data, some of the space

in each cache line may not be utilized.
 Because of the above, we may need more memory to force

alignment. If memory is limited, this could require special
consideration.

 Perhaps there are multiple copies of the same data in various
locations resulting in less efficient usage of memory.

Each socket is being packed with more and more cores, and FPGA
integration into Intel CPUs is on the horizon (as this is written) [Intel]
[Patrizio17]. This will effectively model memory to separate memory
access at the cache-line level (to avoid false sharing [Bolosky93]).
Furthermore, it will have a greater impact as cores and specialized
hardware compete for resources.

I

Wesley Maness has been programming C++ for over 15 years,
beginning with missile defense in Washington, D.C. and most
recently for various hedge funds in New York City. He has been a
member of the C++ Standards Committee and SG14 since 2015.
He enjoys golf, table tennis, and writing in his spare time and can
be reached at wesley.maness@aya.yale.edu.

Richard Reich has 25 years of experience in software engineering
ranging from digital image processing/image recognition in the 90s
to low latency protocol development over CAN bus in early 2000s.
Beginning in 2006, he entered the financial industry and since has
developed seven low latency trading platforms and related
systems. He can be reached at richard@rdrtech.com
4 | Overload | August 2018

FEATUREWESLEY MANESS & RICHARD REICH

we need to be sure that data that are
independently accessed by different

threads are not shared over a cache line
Next, we will demonstrate the necessity of cache-line awareness with a
modern-day use case that would benefit nicely from such consideration.

Common use case
There exist situations in technology where we find ourselves having to set
up and use a shared environment with many agents performing various
coordinating tasks. In this use case, we will be given a machine in which
we have a single multi-producer multi-consumer queue (MPMC) instance
shared amongst a set of producers and consumers. The producers, we can
assume, are clients which are running some computations and generating
work, or some partial work. Hence each client would be running a different
set of computations and each of those publishing their resulting work items
to the MPMC for later consumption. Each consumer would be responsible
for taking the work off the queue, perhaps performing some post-checks,
or validation of the work on an item in the queue then dispatching that work
out to some client who will need to process or make some determination.
Each consumer and producer would run in their own thread and potentially
could be pinned to any CPU. Depending on what is required, it’s quite
reasonable that the number of producers and consumers would need to
scale up or down as clients and or workloads are running (some can go on
and off line driven by various external events). The most critical
measurement we would want to consider here would be the time it takes
to produce or push a work item on the queue and for the work item to be
removed from the queue. We consider other types of measurements as well
later.

Running the benchmark
To enforce that we are not aligning the data, we use the alignas specifier
for our data. The struct that we will be using is shown in Listing 1. We
will store the number of cycles in the struct along with some other data
fields. How we store these is shown in Listing 2 (not shown is the
GetTravelStore method which is the same as GetStore). We used
the boost::lockfree::queue for our testing the aligned section and
we modify their implementation to disable alignment (not shown) for our
baseline numbers.

In establishing our baseline number, we will consider various scenarios or
ratios of numbers of producers to consumers. Currently we only display
results for the ratio 2:2. Each consumer and each producer will spin in a
busy loop to minimize overall cycles required to publish and or consume
data. The code for producer and consumer is shown in Listing 3. The total

Listing 1

struct Benchmark

{

 uint64_t cycles{0};

 uint32_t serial{0};

};

template <typename Bench, int X>

struct Alignment

{

 alignas(X) Bench cb;

 Bench& get() { return cb; }

};
Listing 2

std::unique_ptr<uint64_t>

 GetStore (uint64_t iter)

{

 thread_local uint64_t* store{nullptr};

 if (store == nullptr)

 store = new uint64_t[iter];

 return std::unique_ptr<uint64_t>(store);

}

Listing 3

template <typename T, typename Q>

void producer(Q* q, uint32_t iterations)

{

 auto store = Thread::GetStore(iterations);

 while (Thread::g_pstart.load() == false) {}

 T d;

 d.get().serial = 0;

 int result = 0;

 for (uint32_t j = 0; j < 2; ++j) // warm up
 for (uint32_t i = 0; i < iterations; ++i)

 {

 ++d.get().serial;

 do { d.get().cycles = getcc_b(); }

 while (!q->push(d));

 store.get()[i] =

 getcc_e() - d.get().cycles;

 // busy work to throttle production
 // to eliminiate "stuffed" queue
 //* No noticable effect
 for (uint32_t k = 0; k<1000; ++k)

 {

 result += k+i;

 }

 // */
 }

 ++result;

 std::stringstream push;

 genStats(iterations, store, "1 Push", push);

 std::lock_guard<std::mutex>

 lock(Thread::g_cout_lock);

 std::cout << result << std::endl;

 Thread::g_output.emplace(push.str());

}

August 2018 | Overload | 5

FEATURE WESLEY MANESS & RICHARD REICH
number of items produced in each scenario will be scaled to the number
of consumers. In these examples, we will use the standard atomics (as part
of the MPMC queue) in C++ and spin on their values to identify when data
is available. The producers and consumers are constructed in the run
method shown in Listing 4.

Finally, for our benchmark without cache-
line awareness, we put all of this together:
run<Alignment<

 Benchmark

 , alignof(Benchmark)>

 , boost::lockfree::bad_queue>

 (producers, consumers);

We will pin each thread created to its very
own CPU to reduce overall variance on
measurements. This is done in the method
setAffinity mentioned in the code
examples but not shown. You can find more
information about thread affinity on the
Linux man pages [Kerrisk]. We will measure
push, pop, and total queue traversal time (pop
end time – push start time) along with various
other metrics. These results are shown in
Figure 1. All measurements are in cycles
(using RDTSCP and CPUID instructions)
using the recommended guidelines from Intel

Listing 3 (cont’d)

template <typename T, typename Q>

void consumer(Q* q, uint32_t iterations)

{

 auto store = Thread::GetStore(iterations);

 auto travel_store =

 Thread::GetTravelStore(iterations);

 while (Thread::g_cstart.load() == false) {}

 T d;

 uint64_t start;

 uint64_t end;

 for (uint32_t j = 0; j < 2; ++j) // warm up
 for (uint32_t i = 0; i < iterations; ++i)

 {

 do { start = getcc_b(); }

 while (!q->pop(d));

 end = getcc_e();

 travel_store.get()[i] =

 end - d.get().cycles;

 store.get()[i] = end - start;

 }

 std::stringstream trvl, pop;

 genStats(iterations,

 travel_store,

 "3 Travel",

 trvl);

 genStats(iterations,

 store,

 "2 Pop",

 pop);

 std::lock_guard<std::mutex>

 lock(Thread::g_cout_lock);

 Thread::g_output.emplace(pop.str());

 Thread::g_output.emplace(trvl.str());

}

Listing 4

template<typename T,template<class...>typename Q>

void run (int producers, int consumers)

{

 std::cout << "Alignment of T "

 << alignof(T)

 << std::endl;

 std::vector<std::unique_ptr<std::thread>>

 threads;

 threads.reserve(producers+consumers);

 Q<T> q(128);

 // need to make this a command line option
 // and do proper balancing between
 // consumers and producers
 uint32_t iterations = 10000000;

 for (int i = 0; i < producers; ++i)

 {

 threads.push_back(

 std::make_unique<std::thread>

 (producer<T,Q<T>>

 , &q

 , iterations));

 // adjust for physical cpu/core layout
 setAffinity(*threads.rbegin(), i*2);

 }

 for (int i = 0; i < consumers; ++i)

 {

 threads.push_back(

 std::make_unique<std::thread>

 (consumer<T,Q<T>>

 , &q

 , iterations));

 // adjust for physical cpu/core layout
 setAffinity(*threads.rbegin(), 4+(i*2));

 }

 Thread::g_cstart.store(true);

 usleep(500000);

 Thread::g_pstart.store(true);

 for (auto& i : threads)

 {

 i->join();

 }

 for (auto& i : Thread::g_output)

 {

 std::cout << i << std::endl;

 }

}

Figure 1
6 | Overload | August 2018

FEATUREWESLEY MANESS & RICHARD REICH
[Paoloni10]. These measurements are computed inside the functions
getcc_b and getcc_e (not shown).

Applying cache-line awareness to our example
Now that we have identified how we are going to take advantage of cache-
line awareness in our queue, we will re-run our previous tests with the
changes we just applied. We will now enable cache-line awareness by
using the alignas specifier for our data. The code used here is:
 run<Alignment<

 Benchmark, 64>

 , boost::lockfree::queue>

 (producers, consumers);

We will run through the same scenarios as we saw in Figure 1. These
results are shown in Figure 2.
Note: If the measurements are not clear in Figure 2, the max measurements
for Push, Pop, and Traversal are observed as 22977, 20221, and 18102
respectively.

Analysis
Comparing where we started and where we ended up, there are several
items of considerable mention. The first is that the distribution of the
percentiles for Figure 1 clearly show fat tail properties mostly noticeably
in the traversal measurements. Another quite fascinating point is that the
90th and 99th percentiles of all measurements dropped considerably in all
operations. Push went from 518 cycles to 431 and 715 cycles to 575 for
90th and 99th percentiles. Pop, not necessarily as impressive as Push, went
from 414 cycles to 370 and 623 cycles to 500 cycles respectfully. Traversal
was even more impressive going from 810236 cycles to 12307 and
8497191 cycles to 15571 for 90th and 99th percentiles respectively.

Conclusion and future direction
There are many items we didn’t address in this paper. For example, we did
not discuss the data throughput through the queue as a function of cache-
line awareness changes. We could have also considered measuring
different scenarios and the ratios of producers to consumers. It is important
to note that the problem addressed in this paper is just one instance of a
group of problems collectively known as flow control problems. These
problems exist in many domains, and are quite common in some aspects
of financial technology, but have relevancy in many others. We mention
the points above to illustrate different ways in which this problem can be
expanded upon and perhaps further analysis may be continued.

Finally, as we were writing this paper, running measurements of various
scenarios, the results were in many ways quite interesting and often
initially appeared to be counter-intuitive, but after carefully examining the
assembly and measuring the performance more closely the results made
more sense. We can’t stress enough how important it is to measure your
applications and the tools used to measure those applications.

Notes
Boost 1.63.0 and GCC 5.4.0 were used. For a complete package of the code
used in this article and that which is referenced and not shown, please
contact the authors directly. All measurements were the average of 1000
runs of 1e6 iterations for 2 consumers and 2 producer threads. Intel i7-
3610QM CPU 2.30GHz 4 cores per socket for 8 cores total was used to
produce all measurements discussed in the paper. Operating system used
was Linux ll 4.12.5-gentoo.

References
[Bolosky93] William Bolosky and Michael Scott (1993) ‘False Sharing

and its Effect on Shared Memory Performance’, originally published
in Proceedings of the USENIX SEDMS IV Conference Sept 22–23
1993, available at http://static.usenix.org/publications/library/
proceedings/sedms4/full_papers/bolosky.txt

[Intel] ‘The Power of FPGAS’ available at
https://www.intel.com/content/www/us/en/fpga/solutions.html

[Kerrisk] Michael Kerrisk (maintainer), Linux man pages online,
 http://man7.org/linux/man-pages/man3/
pthread_setaffinity_np.3.html

[Levinthal09] David Levinthal PhD (2009) ‘Performance Analyis Guide
for Intel® Core™ i7 Processor and Intel® Xeon™ 5500 processors’
at https://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf

[Paoloni10] Gabriele Paolone (2010) How to Benchmark Code Execution
Times on Intel IA-32 and IA-64 Instruction Set Architectures,
published by Intel Corporation, https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-
code-execution-paper.pdf

[Patrizio17] Andy Patrizio (2017) ‘Intel plans hybrid CPU-FPGA chips’,
posted 5 October 2017 at https://www.networkworld.com/article/
3230929/data-center/intel-unveils-hybrid-cpu-fpga-plans.html

[Tsang17] Stanley Tsang (2017) ‘Real-Time NUMA Node Performance
Analysis Using Intel Performance
Monitor’ at
http://www.acceleware.com/blog/
real-time-NUMA-node-
performance-analysis-using-intel-
performance-counter-monitor

[Wikipedia-1] ‘CPU cache’
at https://en.wikipedia.org/wiki/
CPU_cache

[Wikipedia-2] ‘Non-uniform memory
access’ at https://en.wikipedia.org/
wiki/Non-uniform_memory_access

Figure 2
August 2018 | Overload | 7

http://static.usenix.org/publications/library/proceedings/sedms4/full_papers/bolosky.txt
http://static.usenix.org/publications/library/proceedings/sedms4/full_papers/bolosky.txt
https://www.intel.com/content/www/us/en/fpga/solutions.html
http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.networkworld.com/article/3230929/data-center/intel-unveils-hybrid-cpu-fpga-plans.html
https://www.networkworld.com/article/3230929/data-center/intel-unveils-hybrid-cpu-fpga-plans.html
http://www.acceleware.com/blog/real-time-NUMA-node-performance-analysis-using-intel-performance-counter-monitor
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Non-uniform_memory_access

FEATURE DEÁK FERENC
miso: Micro Signal/Slot
Implementation
The Observer pattern has many existing
implementations. Deák Ferenc presents a new
implementation using modern C++ techniques.
iso is short for micro signals and slots and, as the name suggests,
it is an implementation of the wel-known language construct
largely popularized by Qt: The signals and slots mechanism

[Wikipedia]. As the Wikipedia article suggests, the signal-slot construct
is a short, concise and pain-free implementation of the Observer pattern,
ie. it provides the possibility for objects (called observers) to be recipients
of automatic notifications from objects (called subjects) upon a change of
state, or any other event worthy of notification.

Reasoning
So, you may ask, why another signal/slot implementation? Since we
already have the granddaddy of them all, the Qt signal/slot implementation
which, as presented in [Qt4SigSlot], is a very powerful mechanism
invented just for this purpose and which was even further enhanced with
Qt5’s new syntax for signals and slots [Qt5SigSlot].
Or we have the boost signal libraries [BoostSigSlot], which are another
excellent implementation of the same mechanism for the users of the boost
library.
And we also have other less well-known signal/slot implementations, such
as Sarah Thompsons’ signal and slot library [sigslot-1] or the VDK signals
and slots written in C++ 11 [VDK], GNOME’s own libsigc++ [libsigc++],
the nano signal slot [nanosigslot], Patrick Hogans’ Signals [Hogan] or
several fresher ones from github ([nod] [sigcxx] [sigslot-2] [cpp-signal])
or the more hidden ones, which I was not able to discover even with
Google’s powerful search algorithm.
All these excellent pieces of software were written specifically for this
purpose, and they all serve the needs of software developers wanting to
use the signals and slots mechanism without too much hassle.
And on the other side, the Observer pattern is a very widely adopted and
successful pattern which has also been widely studied in various articles,
including Overload’s own ones, such as Phil Bass’s articles in Overload 52
and 53: ‘Implementing the Observer Pattern’ [Bass02] or Pete Goodliffe’s
articles in Overload 37, 38 and 41 (‘Experiences of Implementing the
Observer Design Pattern’) [Goodliffe00] – both excellent articles which
were not backed up by the power of C++11’s syntax and standard library
at the time … due to the fact they were written in the first years of this
century – but also Alan Griffiths’ article from 2014 (‘Designing Observers
in C++11’) [Griffiths14], which lifted this pattern into the modern age
using C++11 constructs.
So with a good reason, you may ask why…
But please bear with me … the implementation of this mechanism seemed
to be such an interesting and highly challenging research project that I
could not resist it. I wanted to use the elegance of the constructs introduced

with C++11 to avoid as much as possible the syntactical annoyances that
I found in various signal/slot projects, which were bound to old-style C++
syntax, and I also wanted to keep this implementation short and concise.
Hence, this header-only micro library appeared, and in the spirit of keeping
it simple, it is under 150 lines, but still tries to offer the full functionality
one would expect from a usable signal/slot library.
This article not only provides a good overview of the usage of and
operations permitted by this tiny library, but also presents a few interesting
C++11 techniques I have stumbled upon while implementing the library
that I considered to be of sufficient calibre to be worth mentioning here.

The library itself
miso, being a single header library, is very easy to use. You just have to
include the header file into your project and you’re good to go: #include
<miso.h> and from this point on you have access to the namespace
miso, which contains all the relevant declarations that you need to use it.
Later in this article, we present all the important details of this namespace.
The library was written with portability and standard conformance in
mind, and it is compilable for both Linux and Windows; it just needs a
C++11 capable compiler.

Signals, slots, here and there
The notion of a slot is sort of uniform between all signal-slot libraries: It
must be something that can be called. Regardless whether it’s a function,
a functor, a lambda or some anomalous monstrosity returned by
std::bind and placed into a std::function… at the end: It must be
a callable. With or without parameters. Since this is what happens when
you emit a signal: a ‘slot’ is called.
However, there is no real consensus regarding the very nature of signals.
Qt adopted the most familiar, clear and easy to understand syntax of all
the signatures:
 signals:

 void signalToBeEmitted(float floatParameter,

 int intParameter);

Simple, and clean, just like a the definition of a member function, with a
unique signature, representing the parameters this signal can pass to the
slots when it is emited. And the Qt meta object compiler takes care of it,
by implementing the required supporting background operations (ie: the
connection from the signal to actually calling the slot function), thus
removing the burden from the programmer who can concentrate on
implementing the actual functionality of the program.
The other big player in platform independent C++ library solutions, boost,
on the other end has chosen a somewhat more complex approach to
defining the same signal:
 boost::signals2::signal<void (float, int)> sig;

This way of defining a signal feels very similar to the declaration of a
function packed in a templated signal declaration and, because what it
means is widely understood, it was adopted not only by [VDK],

m

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at FARA (Trondheim, Norway) as a system programmer, and in his
free time, by exploring the hidden corners of the C++ language in
search for new quests. fritzone@gmail.com
8 | Overload | August 2018

FEATUREDEÁK FERENC

I have found including a function signature in
the declaration of my signal not to work, so I

went for the simplest syntax that was able to
express the desired type of my signal
[neosigslot] and [nanosigslot] but also by nod, sigcxx, sigslot (the one from
github) and cpp-signal. This syntax has the advantage of not requiring an
extra step in the compilation phase (like moc of Qt) since it is already
syntactically correct C++ which the compiler can handle without too much
hassle. This declaration also has the side effect that unless like Qt’s signal
declaration, we have a tangible C++ variable which possibly is a class with
methods and properties we can act upon.

Signals in miso
The signal definition of miso uses the following syntax in order to declare
the same signal:
 signal<float, int> float_int_sig;

Achieving the simplicity of Qt’s signal syntax seemed to not to be possible
without using an extra step in the compilation phase (I am thinking of the
convenience offered by moc) and personally I have found including a
function signature in the declaration of my signal not to work, so I went
for the simplest syntax that was able to express the desired type of my
signal (such as a signal, having a float and an int parameter) and with
the supporting help of the variadic templates introduced in C++11 this
seemed to be the ideal combination. This syntax is also used by the library
presented in [Hogan], with the difference being the name of the class and
the fact that, in [Hogan], you need to specify a different class name based
on the number of parameters.
So, from the above we see that a signal in the miso framework will be an
object, constructed from a templated class which handles a various number
of types. A signal which carries no extra information in the form of
parameters must be declared as:
 signal<> void_signal;

The design decision to not have to explicitly specify the void signal as a
template specialization (ie: signal<void>) has its advantages, both
from the users’ point of view, and also the library’s internal design gained
a bit of ruggedness from it.

A tiny application
The easiest way to introduce a new library is to present a small and simple
example which showcases the basic usage of the library, so Listing 1 is
the “Hello world” equivalent of miso.
After skipping the mandatory inclusions, let’s analyze the important
pieces:

Firstly, we declare a class (for now with the struct keyword to keep the
code short and uncluttered): struct a_class. In the miso framework
the signals belong to classes: it is not possible to have a signal living outside
of an enclosing entity. This sort of resonates on the same frequency as Qt’s
signal and slot mechanism; however, the boost signals are more
independent and are not required to be bound to a class.
As mentioned above, the miso signals are to be bound to a class so now is
t h e p e r f ec t t i m e t o de c l a r e t h e signal ob j e c t i t s e l f :
miso::signal<const char*> m_s;. All the miso types live in the
miso namespace in order to avoid global namespace pollution; however,
this does not stop you from using the namespace as per your needs. The
signal we have declared is expected to come with a parameter, which is of
type const char*.
The next line in the class is a plain method, which has just one role: to emit
the signal. This is done with the intriguing line: emit m_s("Hello
from a class");. After spending several years with Qt, it just feel so
natural to emit a signal and since I wanted to keep the essence of the
library close to already existing constructs to ease the transition, the emit
was born. emit will be dissected later in the article to understand how it
works.
The global method void a_function(const char* msg) is the slot
which is connected to this signal. It does not do very much; it only prints
the message it receives from the signal to stdout, but for demonstration
purposes this is acceptable.
And now we have reached to the main method of the application, which
creates an object of type a_class and connects its signal: a.m_s to the
global function a_function. And, last but not least, the say_hello

Listing 1

#include "miso.h"

#include <iostream>

struct a_class

{

 miso::signal<const char*> m_s;

 void say_hello()

 {

 emit m_s("Hello from a class");

 }

};

void a_function(const char* msg)

{

 std::cout << msg << std::endl;

}

int main()

{

 a_class a;

 miso::connect(a.m_s, a_function);

 a.say_hello();

}

For those who haven’t had the chance to work with Qt’s signals and slots,
a small note: Qt has a handy tool, called moc (Meta-Object Compiler)
which handles the C++ extensions of the Qt framework, such as signals
and slots among other more handy helping features. The moc tool parses
a header file containing Qt extensions and generates a C++ source file,
which must be included in the compilation in order to get the desired Qt
functionality working [QtMoc].

Qt signals and slots
August 2018 | Overload | 9

FEATURE DEÁK FERENC

the compiler will take care that slots with
matching signatures to the ones the
signal requires are actually available
method of the class is called, which in its turn will emit the signal. Upon
emitting, the mechanism hidden in the library will kick in and the
a_function will be called. There is support in the library to obtain the
object which emitted the signal the current slot is handling by calling the
miso::sender method; however, this is not presented in this short
example.
This was a short example, now it is time to break down the application into
tiny pieces, and start examining it.

The miso namespace
There are the following interesting elements in the miso namespace

1. The signal class
2. The connect and the sender methods
3. The macro definition for emit. Although this is not namespace

dependent, it just felt right to place it there.
There is also another namespace, called internal with the intention that
this is not to be used by the end-users.
Due to these being interconnected, I will present them one by one;
however, be prepared for several jumps between various components, and
since the namespace level entities use the internals very heavily it will be
necessary to dig into them too.

The signal class
The class responsible for creating signals has the following declaration:
 template <class... Args> class signal final

My intention was to keep the signal objects final, in order to have a clean
interface and easy implementation; however, this does not stop you from
removing the final and providing good implementation for use cases for
signal derived classes.
Since the class is a template class, nothing stops you from creating signals
for your own data types and using them properly in the emit and the
receiving slot declaration.
A short overview of the public members is as follows: The default
constructor and destructors are marked default, we just let the compiler
do its default work.
The following two methods are connect and disconnect, and as their
name suggest these will connect (or disconnect) the signal to (from) a slot.
Right now the following entities can be used as slots:

A function
The function must be declared with parameters corresponding to the
parameters of the signal, and these parameters are not restricted only to
basic C++ types. Using std::function values also works, and so do
the static methods of various classes (see Listing 2).
The example in Listing 2 will call b_function twice, which will print
‘Hello from the Other class method’ twice because it is connected twice
to the same signal.

A lambda expression
The lambda expression can either be coming from an auto l = []()
{...} expression, or simply be written as a parameter to the connect
method. Again, correct matching of lambda parameters is required. So, an
example for the above source code would be:
 miso::connect(a.m_s, [](other_class b) {

 b.method(); });

A functor
A function object allows the instantiation of a functor class to be invoked
in a manner similar to functions by providing an overload to operator
(). So, in order to use a functor as a slot we can have the code in Listing 3.
As a side note, if there is more than one overload of operator() it is
possible to connect more than one signals to the same functor, each being
handled by its own operator(). And since this is an over-templated
solution, the compiler will take care that slots with matching signatures to
the ones the signal requires are actually available, otherwise it will
spectacularly fail with a long list of cryptic messages.

Connect internals
In the signal class,connect and disconnect are implemented both
using internal::connect_i, by calling it as shown in Listing 4,
where the T&& f is just the slot where we want this signal to reach upon

Listing 2

struct other_class {

 void method() const {

 std::cout

 << "Hello from the Other class method";

 }

};

struct a_class {

 miso::signal<other_class> m_s;

 void say_hello() {

 emit m_s(other_class());

 }

};

void b_function(other_class oc) {

 oc.method();

}

int main() {

 a_class a;

 std::function<void (other_class)> f

 = b_function;

 miso::connect(a.m_s, f);

 miso::connect(a.m_s, b_function);

 a.say_hello();

}

10 | Overload | August 2018

FEATUREDEÁK FERENC

I consider this piece of code to be one of the
small wonders of the powers of modern C++
emitting, and active decides whether this signal is active or not
(disconnect calls the same function with active = false).
The parameters to the internal function follow by using forward on the f
parameter to the current function, then slot_holders which is a local
variable of type:
 std::vector<internal::common_slot_base*>

 slot_holders;

And finally, active to tell the framework whether this signal is active or
not (ie: should be called upon emit or not).
Since common_slot_base has appeared now, here is a definition for it:
 struct common_slot_base {

 virtual ~common_slot_base() = default;

 };

so, basically it is just an interface to be used by all the different kinds of
signals as a means of calling their corresponding slots. An immediate usage
of it is in the signal class:
 struct slot_holder_base :

 public internal::common_slot_base {

 virtual void run_slots(Args... args) = 0;

 };

with further specialization following in Listing 5.
Reading the last method, it is obvious that the main action happens here,
i.e. the actual call of a slot as per the corresponding signal takes place in
these lines.
A bit more investigation of this structure gives us the declaration of FT
being an std::function which at compile time identifies its return type
from the template parameter of the slot_holder class (T which is
supposed to be a ‘Callable’) which is fed into the std::result_of of
the <type_traits> header having the parameters Args... of the
signal class that this slot_holder resides in, combined again with the
Args... of the signal to obtain a fully understandable expression. Just a
clarification, FT stands for Function Type. And last but not least about this
construct: Personally, I consider this piece of code to be one of the small
wonders of the powers of modern C++... (read: even after writing it, and
knowing that it’s syntactically correct and valid code, in my weaker
moments I still wonder that it compiles...)
Since in this s tructure we have introduced a new structure
(func_and_bool), here is its definition:
 template<typename FT>

 struct func_and_bool final {

 std::shared_ptr<FT> ft;

 bool active;

 void *addr;

 };

which roughly holds the lowest level of a slot, i.e.: a function object,
whether it is active or not, and its address, thus revealing that at the lowest
level all slots are decaying into an std::function (the one which was
declared in the type name FT of the struct slot_holder).
Now, that we have covered the necessary structures and functions of a
signal, it is time to look at the actual function from the internals, which
performs the real connect (see Listing 6).
So, dissecting it into bits we can observe the following:

Listing 3

struct functor {

 void operator()(int aa) {

 std::cout << "functor class's int slot:"

 << aa << std::endl;

 }

};

struct a_class {

 miso::signal<int> m_s;

 void say_hello() {

 emit m_s(42);

 }

};

int main() {

 a_class a;

 functor f;

 miso::connect(a.m_s, f);

 a.say_hello();

}

Listing 4

template<class T>

void connect(T&& f, bool active = true) {

 internal::connect_i<T,

 typename slot_holder<T>::FT, slot_holder<T>>

 (std::forward<T>(f), slot_holders, active);

}

Listing 5

template<class T>

struct slot_holder : public slot_holder_base {

 using FT = std::function<typename

 std::result_of<T(Args...)>::type(Args...)>;

 using slot_vec_type =

 std::vector<internal::func_and_bool<FT>>;

 slot_vec_type slots;

 void run_slots(Args... args) override

 {

 std::for_each(slots.begin(), slots.end(),

 [&](internal::func_and_bool<FT>& s)

 { if (s.active) (*(s.ft.get()))(args...); }

);

 }

};
August 2018 | Overload | 11

FEATURE DEÁK FERENC

we check whether the newly created
object is in the slot holder already (by
comparing its physical address to those
already in the container)
 The type of the static SHT sh; local variable came in via the
template parameters, and for our case it will have the structure
slot_holder declared in the signal class. Now, this sh (slot
holder, for the uninitiated) variable will be common for all the
connect_i functions sharing a common prototype (hence, the
static). For the perverse among you, SHT stands for Slot Holder
Type; don’t you dare start thinking of anything else. There is just
one small drawback to using this static variable: miso in its current
incarnation is not thread safe (so if someone is feeling tempted to fix
this issue … feel free to make a pull request on github or depending
on time and resources, the author might fix it).

 The next step is to create a func_and_bool object with the type
of the FT we discussed in the slot_holder class, and we check
whether the newly created object is in the slot holder already (by
comparing its physical address to those already in the container). If
yes, we set its activeness state to the one required in the parameter,

but since we don’t want to add it again, we also flip a boolean flag
for later usage.

 The next step is updating the incoming parameter sholders in
order to append the local sh object. This is where the magic happens
since this parameter is the same that is declared in the signal class,
and since slot_holder<T> is a common_slot_base

specialization we successfully managed to gather all the slots
regardless of their parameters, this type of signal class is connected
to into one common entity we can operate on.

With these covered we have successfully surveyed the mechanisms behind
the connection of a slot to a specific signal, so we can jump to the next
stage of our library, namely, emitting a signal.

Emitting a signal
The syntax, as seen from the tiny example application provided, is:
 emit signalname(param1, param2, ...);

By digging further in the header file, we find that emit basically is:
 #define emit \

 miso::internal::emitter\

 <std::remove_pointer<decltype(this)>\

 ::type>(*this) <<

(Yes, that is a << operator at the end of the line)
So , a s im p l e emit w i l l c r ea t e i n i t s t u rn a t emp or a ry
miso::internal::emitter object, which is a helper class like
Listing 7, whose role is to keep track of the current object that emitted the
signal. I’m confident that the logic for this is covered in the nice self-

Listing 6

template<class T, class FT, class SHT>

void connect_i(T &&f,

 std::vector<common_slot_base *> &sholders,

 bool active = true)

{

 static SHT sh;

 func_and_bool<FT> fb{

 std::make_shared<FT>(std::forward<T>(f)),

 active, reinterpret_cast<void *>(&f)

 };

 bool already_in = false;

 std::for_each(sh.slots.begin(), sh.slots.end(),

 [&](func_and_bool<FT> &s)

 {

 if (s.addr == fb.addr)

 {

 s.active = active;

 already_in = true;

 }

 }

);

 if (!already_in)

 {

 sh.slots.emplace_back(fb);

 }

 if (std::find(sholders.begin(),

 sholders.end(),

 static_cast<common_slot_base *>(&sh)) ==

 sholders.end())

 {

 sholders.push_back(&sh);

 }

}

Listing 7

template<class T>

struct emitter final {

 explicit emitter(const T &emtr) {

 sender_objs.push(&emtr);

 minstance = this;

 }

 ~emitter() {

 sender_objs.pop();

 minstance = nullptr;

 }

 static T *sender() {

 return const_cast<T *>(sender_objs.top());

 }

 static emitter<T> *instance() {

 return minstance;

 }

private:

 static std::stack<const T *> sender_objs;

 static emitter<T> *minstance;

};
12 | Overload | August 2018

FEATUREDEÁK FERENC
explanatory code above, so let’s just give an example of how can we
retrieve the sender of the current signal (see Listing 8).
So, in the slot, we just simply call:
 a_class* ap = miso::sender<a_class>();

and this gives us the type of the class that has emitted the signal resulting
in us being in the current slot. Be aware, that if we are not handling the
slot class due to an emit from a signal, and we call the miso::sender
we will get a std::runtime_error exception.

The internals of calling the signal handler
If you wonder about the << operator in the macro definition of emit,
please note the signal class has a very complex friend declaration, in the
form of:
 template<class T, class... Brgs> friend

 internal::emitter<T> && internal::operator

 << (internal::emitter<T> &&e,

 signal<Brgs...> &s);

which looks like:
 template<class T, class... Args>

 emitter<T> &&operator

 <<(internal::emitter<T> &&e,

 signal<Args...> &s) {

 s.delayed_dispatch();

 return std::forward<internal::emitter<T>>(e);

 }

To make the syntax possible, please also note the following in the signal
class:
 std::tuple<Args...> call_args;

 signal<Args...>& operator()(Args... args) {

 call_args = std::tuple<Args...>(args...);

 return *this;

 }

(so, the signal class in its turn is also a functor :)) otherwise the required
syntax for emit wouldn’t have been possible. The call_args member
is nothing more than the calling arguments for emitting the signal
populated by this operator().
Now we can see that the temporary emitter object created above will
call the overloaded << operator with the signal (which in its turn has
already consumed the input parameters via the operator() call) , and
in there the delayed_dispatch method of the signal is called.

When it comes to delayed dispatch, [Stackoverflow] shows us how to
unpack a tuple holding various values of various types to a function with
matching parameter types. This is necessary in order to have a perfect
match between the values the signal’s call arguments were populated with
and the slots that are supposed to get the same values.
When the delayed dispatch method runs, it in turn calls run_slots from
the slot holders vector (which, if you remember, were populated in the
connect step).

The future
With this lengthy overview, I am confident, that everyone needing to use
a lightweight signal-slot library has at least one more choice to select from,
making the decision even harder. At the same time, I’m hoping that this
article has shed some light into how to use this library. Whether it is a good
choice for your team or not that depends entirely on you.

The library
You can find the implementation of the library in miso.h (released under
MIT license) at https://github.com/fritzone/miso
Also, please note: For now, this is far from a fully fledged signal-slot
library, offering the power and functionality you would expect from Qt or
Boost. Depending on time and resources, I would be happy to add features
you request (or even approve your pull request in case you consider it worth
fixing a few bugs here and there, or adding a new nice to have item to it)
but till then kindly treat it lightly.

References
[Bass02] Phil Bass (2002) ‘Implementing the Observer Pattern in C++’ in

Overload 52, https://accu.org/var/uploads/journals/overload52-
FINAL.pdf, and Overload 53, https://accu.org/var/uploads/journals/
overload53-FINAL.pdf

[BoostSigSlot] http://www.boost.org/doc/libs/1_61_0/doc/html/
signals2.html

[cpp-signal] https://github.com/Montellese/cpp-signal
[Goodliffe00] Pete Goodliffe (2000) ‘Experiences of Implementing the

Observer Design Pattern’ in Overload 37, https://accu.org/
index.php/journals/488, Overload 38, https://accu.org/index.php/
journals/481, and Overload 41, https://accu.org/index.php/journals/
464

[Griffiths14] Alan Griffiths (2014) ‘Designing Observers in C++11’ in
Overload 124, https://accu.org/var/uploads/journals/
Overload124.pdf#page=5

[Hogan] https://github.com/pbhogan/Signals
[libsigc++] http://libsigc.sourceforge.net/
[nanosigslot] https://github.com/NoAvailableAlias/nano-signal-slot
[neosigslot] http://i42.co.uk/stuff/neosigslot.htm
[nod] https://github.com/fr00b0/nod
[Qt4SigSlot] C++ GUI Programming with Qt 4 by Jasmin Blanchette &

Mark Summerfield, ISBN-13: 978-0131872493
[Qt5SigSlot] http://doc.qt.io/qt-5/signalsandslots.html
[QtMoc] http://doc.qt.io/qt-5/moc.html
[sigcxx] https://github.com/zhanggyb/sigcxx
[sigslot-1] sigslot, a signals and slots library written by Sarah Thompson,

http://sigslot.sourceforge.net
[sigslot-2] https://github.com/supergrover/sigslot
[Stackoverflow] http://stackoverflow.com/questions/7858817/

unpacking-a-tuple-to-call-a-matching-function-pointer
[VDK] vdk-signals at http://vdksoft.github.io/signals/index.html
[Wikipedia] https://en.wikipedia.org/wiki/Signals_and_slots

Listing 8

struct a_class {

 miso::signal<int> m_s;

 void say_hello() {

 emit m_s(42);

 }

 int x = 45;

};

struct functor {

 void operator()(int aa) {

 std::cout << "functor class's int slot:"

 << aa << std::endl;

 a_class* ap = miso::sender<a_class>();

 std::cout << "x in emitter class:" << ap->x

 << std::endl;

 }

};

int main() {

 a_class a;

 functor f;

 miso::connect(a.m_s, f);

 a.say_hello();

}

August 2018 | Overload | 13

https://accu.org/var/uploads/journals/overload52-FINAL.pdf
https://accu.org/var/uploads/journals/overload52-FINAL.pdf
https://accu.org/var/uploads/journals/overload53-FINAL.pdf
https://accu.org/var/uploads/journals/overload53-FINAL.pdf
http://www.boost.org/doc/libs/1_61_0/doc/html/signals2.html
http://www.boost.org/doc/libs/1_61_0/doc/html/signals2.html
https://github.com/Montellese/cpp-signal
https://accu.org/index.php/journals/488
https://accu.org/index.php/journals/488
https://accu.org/index.php/journals/481
https://accu.org/index.php/journals/481
https://accu.org/index.php/journals/464
https://accu.org/index.php/journals/464
https://accu.org/var/uploads/journals/Overload124.pdf#page=5
https://accu.org/var/uploads/journals/Overload124.pdf#page=5
https://github.com/pbhogan/Signals
http://libsigc.sourceforge.net/
https://github.com/NoAvailableAlias/nano-signal-slot
http://i42.co.uk/stuff/neosigslot.htm
https://github.com/fr00b0/nod
http://doc.qt.io/qt-5/signalsandslots.html
http://doc.qt.io/qt-5/moc.html
https://github.com/zhanggyb/sigcxx
http://sigslot.sourceforge.net
https://github.com/supergrover/sigslot
http://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer
http://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer
http://vdksoft.github.io/signals/index.html
https://en.wikipedia.org/wiki/Signals_and_slots
https://github.com/fritzone/miso

FEATURE SERGEY IGNATCHENKO, DMYTRO IVANCHYKHIN & MARCOS BRACCO
(Re)Actor Allocation at
15 CPU Cycles
(Re)Actor serialisation requires an allocator. Sergey
Ignatchenko, Dmytro Ivanchykhin and Marcos
Bracco pare malloc/free down to 15 CPU cycles.

Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translation diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented an exact translation. In addition,
the translator and Overload expressly disclaim all responsibility from
any action or inaction resulting from reading this article.

Task definition
ome time ago, in our (Re)Actor-based project, we found ourselves
with a need to serialize the state of our (Re)Actor. We eventually
found that app-level serialization (such as described in

[Ignatchenko16]) is cumbersome to implement, so we decided to explore
the possibility of serializing a (Re)Actor state at allocator level. In other
words, we would like to have all the data of our (Re)Actor residing within
a well-known set of CPU/OS pages, and then we’d be able to serialize it
page by page (it doesn’t require app-level support, and is Damn Fast™;
dealing with ASLR when deserializing at page level is a different story,
which we hope to discuss at some point later).
However, to serialize the state of our (Re)Actor at allocator level, we
basically had to write our own allocator. The main requirements for such
an allocator were that:
 We need a separate allocator for each of (Re)Actors running in the

same process
 At the same time, we want our app-level (Re)Actors to be able to use

simple new and delete interfaces, without specifying allocators
explicitly

 We need each of our allocators to reside in a well-defined set of CPU
pages (those pages obtained from the OS via mmap()/
VirtualAllocEx())
This will facilitate serialization (including stuff such as Copy on
Write in the future).

 We do NOT need our allocator to be multi-threaded. In the
(Re)Actor model, all accesses from within (Re)Actor belong to one

single thread (or at least ‘as if’ they are one single thread), which
means that we don’t need to spend time on thread sync, not even on
atomic accesses.
The only exception is when we need to send a message to another
(Re)Actor. In this case, we MAY need thread-safe memory but, in
comparison with intra-(Re)Actor allocations, this is a very rare
occurrence – so we can either use standard malloc() for this
purpose or write our own message-oriented allocator. The latter will
have very different requirements and therefore very different
optimizations from the intra-(Re)Actor allocator discussed in this
article.

Actually, when we realized that we only needed to consider single-
threaded code was when we thought, ‘Hey! This can be a good way to
improve performance compared to industry-leading generic allocators’.
Admittedly, it took more effort than we expected, but finally we have
achieved results which we think are interesting enough to share.

What our allocator is NOT
By the very definition of our task, our allocator does not aim to be a drop-
in replacement for existing allocators (at least, not for all programs). Use
of our allocator is restricted to those environments where all accesses to a
certain allocator are guaranteed to be single-threaded; two prominent
examples of such scenarios are message-passing architectures (such as
Erlang) and (Re)Actors a.k.a. Actors a.k.a. Reactors a.k.a. ad hoc FSMs
a.k.a. Event-Driven Programs.
In other words, we did not really manage to outperform the mallocs we
refer to below; what we managed to do was to find a (very practical and
very important) subset of use cases (specifically message passing and
(Re)Actors), and write a highly optimized allocator specifically for them.
That being said, while writing it, we did use a few interesting tricks
(discussed below), so some of our ideas might be usable for regular
allocators too.
On the other hand, as soon as you’re within (Re)Actor, our allocator does
not require additional programming effort from the app-level; this gives
it an advantage over manually managed allocation strategies such as used
by Boost::Pool (not forgetting that, if necessary, you can still use
Boost::Pool over our allocator).

Major design decisions
When we started development of our allocator (which we named
iibmalloc, available at [Github]), we needed to make a few significant
decisions.
First, we needed to decide how to achieve multiple allocators per process,
preferably without specifying an allocator at app-level explicitly. We
decided to handle it via TLS (thread_local in modern C++). Very
briefly:
 By task definition, our allocator is single-threaded.

This allows us to speak in terms of the ‘function which is currently
executed within the current thread’.

S

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko,
Dmytro Ivanchykhin and Marcos Bracco using the classic dictionary
collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including being a co-architect of a stock exchange, and the sole
architect of a game with 400K simultaneous players. He currently
holds the position of Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

Dmytro Ivanchykhin has 10+ years of development experience,
and has a strong mathematical background (in the past, he taught
maths at NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com

Marcos Bracco has a degree in electronics engineering from UNLP
in Argentina and 15 years of software development experience.
Marcos can be contacted at marcosbracco@gmail.com
14 | Overload | August 2018

FEATURESERGEY IGNATCHENKO, DMYTRO IVANCHYKHIN & MARCOS BRACCO
 Moreover, at any point in time, we can say which allocator is
currently used by the app level (it is the allocator which belongs to
the currently running (Re)Actor).
Even if there are multiple (Re)Actors per thread, this still stands.

 Hence, a thread_local allocator will do the job:
 For a single (Re)Actor per thread, we can have a per-thread

allocator (this is the model we were testing for the purposes of
this article).

 For multiple (Re)Actors per thread, our Infrastructure Code
(which runs threads, instantiates (Re)Actors, and calls
Reactor::react()) can easily put a pointer to the allocator
of the current (Re)Actor right before calling the respective
Reactor::react().

 In addition, we found that the performance penalties of accessing
TLS (usually one indirection from a specially designated CPU
register into a highly-likely cached piece of memory) are not too
high even for our very time-critical code.

Second, we needed to decide whether we want to spend time keeping track
of whole pages becoming empty so we can release them. Based on the logic
discussed in [NoBugs18], we decided in favor of not spending any effort
on keeping track of allocation items as long as there is more than one such
item per CPU page.
Third, in particular based on [NoBugs16], we aimed to use as few memory
accesses as humanly possible. Indeed, on modern CPUs, register–register
operations (which take ~1 CPU cycle) are pretty much free compared to
memory accesses (which can go up to 100+ CPU cycles).

Implementation
We decided to split all our allocations into four groups depending on their
size:

 ‘small’ allocations – up to about one single CPU page.
We decided to handle them as ‘bucket allocators’ (a.k.a. ‘memory
pools’). Each page contains buckets of the same size; available
bucket sizes are some kind of exponent so that we can keep
overheads in check.
Whenever a new page for a specific bucket size is allocated, we
‘format’ it, creating a linked list of available items in the page, and
adding these items to the ‘bucket’, which is essentially a single-
linked list with all the free items of this size.

 ‘medium’ allocations – those taking just a few pages (currently – up
to 4 pages IIRC).
These are also handled as ‘bucket allocators’, but they may span
several CPU pages (we named these ‘multi-pages’). Note that for
‘medium’ allocations, all the allocation items are page-aligned.

 ‘large’ allocations – those which are already too large for buckets,
but which are still too small to request from the OS directly as a
single range (doing so would create too many virtual memory areas
a.k.a. VMAs, and may result in running out of available VMA space
– which is manifested by ENOMEM returned by mmap() even if there
is still lots of both of address space and physical RAM). Currently,
‘large’ allocations go up to about a few hundred kilobytes in size.
‘large’ allocations are currently handled as good ol’ Knuth-like first-
fit allocators working at page level (i.e. granularity of allocations is
one page), and with some further relatively minor optimizations.
‘Large’ allocations are not aligned at page boundaries (though, of
course, they’re still aligned at 8-byte boundaries).

 ‘very large’ allocations – those allocations which are large enough
to feed them to the OS directly. Currently, they start at about a few
hundred kilobytes.
Like ‘large’ allocations, ‘very large’ allocations are not aligned on
page boundaries.
August 2018 | Overload | 15

FEATURE SERGEY IGNATCHENKO, DMYTRO IVANCHYKHIN & MARCOS BRACCO

It was when we faced the problem of how
to do deallocation efficiently that we got
into the really interesting stuff
‘very large’ allocations are the only kind of allocations which can be
returned back to the OS.

Optimizing allocation – calculating logarithms
Up to now, everything has been fairly obvious. Now, we can get to the
interesting part: specifically, what did we do to optimize our allocator?
First, let’s note that we spent most of our time optimizing ‘small’ and
‘medium’ allocations (on the basis that they’re by far the most popular
allocs in most apps, especially in (Re)Actor apps).
The first problem we faced when trying to optimize small/medium
allocations was that – given the allocation size, which comes in a call to
our malloc() – we need to calculate the bucket number. As our bucket
sizes are exponents, this means that effectively we had to calculate an
(integer) logarithm of the allocation size.
If we have bucket sizes of 8, 16, 32, 64, … – then calculating the integer
logarithm (more strictly, finding the greatest integer so that two raised to
that integer is less or equal to the allocation size) becomes a cinch. For
example, on x64 we can/should use a BSR instruction, which is extremely
fast. (How to ensure that our code generates a BSR is a different compiler-
dependent story but it can be done for all major compilers.) Once we have
our BSR, skipping some minor details, we can calculate bucket_number
= BSR(size-1)-2, or, in terms of bitwise arithmetic, the ordinal number
of the greatest bit set of (size-1) minus two.
However, having bucket sizes double at each step leads to significant
overheads, so we decided to go for a ‘half-exponent’ sequence of 8, [12
omitted due to alignment requirements], 16, 24, 32, 48, 64, … In this case,
the required logarithm to find our bucket size can still be calculated very
quickly along quite similar lines: it is a doubled ordinal number of a
greatest bit set of (size-1) plus second greatest bit of (size-1) minus five.
These are still register-only operations, are still branch-free, and are still
extremely fast. In fact, when we switched to ‘half-exponent’ buckets, we
found that – due to improved locality – the measured speed improved in
spite of the extra calculations added.

Optimizing deallocation – placing information in a
dereferenceable pointer?!

The key, the whole key, and nothing but the key, so help me Codd
~ unknown

Up to now, we have described nothing particularly interesting. It was when
we faced the problem of how to do deallocation efficiently that we got into
the really interesting stuff.
Whenever we get a free() call, all we have is a pointer, and nothing but
a pointer (for C++ delete). And from this single pointer we need to find:
(a) whether it is to a ‘small’, ‘medium’, ‘large’, or ‘very large’ allocated
block, and for small/medium blocks, we have to find (b) which of the
buckets it belongs to.

Take 1 – Header for each allocation item
The most obvious (and time-tested) way of handling it is to have an
allocated-item header preceding each allocation item, which contains all
the necessary information. This works, but requires 2 memory reads
(cached ones, but still taking 3 cycles or so each) and, even more
importantly, the item header cannot be less than 8 bytes (due to alignment
requirements), which means up to twice the overhead for smaller
allocation sizes (which also happen to be the most popular ones).
We tried this one, it did work – but we were sure it was possible to do it
better.

Take 2 – Dereferenceable pointers and bucket page
headers
For our next step, we had two thoughts:
 All large/very-large allocated items have values of

CPU_page_start+16 (this happens naturally as these items in our
implementation always start at page beginning, after a 16-byte
header). BTW, ‘16’ is not really a magic number, it is just the size
of a large/very-large item header.
We can also ensure that all small/medium pointers never start at
CPU_page_start+16. This is assured by the ‘bucket page
formatting’ routine, which, if it runs into such a size, simply skips
this one single item (note that it won’t happen for larger item sizes,
so the memory overhead due to such skipping is negligible).
This means that (assuming a 64-bit app and a 4K-page, but for other
page sizes the logic is very similar) an expression
((pointer_to_be_freed&0xFFF)==16) will give us an
answer to the question of whether we’re freeing a small/medium
alloc or a large/very-large alloc.
BTW, this means that we already achieved the supposedly-
impossible feat of effectively placing a tiny bit of information into a
dereferenceable pointer. In other words, having nothing but the
pointer itself (not even accessing the memory the pointer refers to),
we can reach conclusions about certain properties of the memory it
points to.

 And for small/medium allocs, we can exploit the fact that all of the
buckets within the same page are of the same size. This means that
if we place a header into each page (instead of placing it into each
allocated item), we’ll be able to reach it using
((page_header*)(pointer_to_be_freed&0xFFFFFFFFF

FFFF000)) – and get information about the bucket number out of
our page_header.

This approach worked, but while it reduced memory overhead, the cost of
the indirection to the page_header (which was less likely to be cached
than the allocation item header) was significant, so we observed minor
performance degradation.
16 | Overload | August 2018

FEATURESERGEY IGNATCHENKO, DMYTRO IVANCHYKHIN & MARCOS BRACCO
Take 3 - Storing the bucket number within a
dereferencable pointer
However, (fortunately) we didn’t give up - and came up with the following
schema, which effectively allows us to extract the bucket number from
each small/medium allocated pointer. It requires a bit of explanation.
Whenever we’re allocating a bunch of pages from the OS (via mmap()/
VirtualAllocEx()) – we can do it in the following manner:
 Let’s assume we have 16 buckets (this can be generalized for a

different number of buckets, even for non-power-of-2 ones, but let’s
be specific here).

 We’re reserving 16 pages, without committing them (yet). Sure, it
does waste a bit of address space – but at least for 64-bit programs
it is not really significant; and as we’re not committing, we do not
waste any RAM (well, except for an additional VMA, but a number
of VMAs have to be addressed separately anyway).
As for the wasting of address space, in the worst possible case such
a waste is 16x (it won’t happen in the real-world, but let’s assume
for the moment it did). And while 16x might look a lot, we can
observe that modern OSs running under x64 CPUs have 47-bit
address spaces; even with the 16x worst-case overhead, we still can
physically allocate 243 bytes of RAM, or 8 Terabytes of RAM –
which is still well beyond practical capabilities of any x64 box I’ve
ever heard of (as of this writing, even the largest TPC-E boxes which
cost $2 million, use ‘only’ 4T of RAM). If you ever have such a
beast at your disposal, we’ll still have to see whether it will need all
this memory within a single process. In any case, it is clear that this
waste won’t matter for the vast majority of currently existing
systems.

 Very basic maths guarantees us that among our reserved 16 pages,
there is always exactly one page for which the expression
page_start&0xF000 has the value 0x0000, and exactly one page
for which the expression page_start&0xF000 has the value
0x1000, and so on all the way up to 0xF000. In other words, while
we do not align our reserved page range, we still can rely on having
one page with each of 16 possible values of a certain pre-defined
expression over a page_start pointer(!).

 Now, we’re saying, that we need to allocate buckets for
bucket_number 7, so let’s pick the page which has the expression
page_start&0xF000 == 0x7000 (as noted above, such a page
always exists in our allocated range). Then commit and ‘format’ this
page to have buckets corresponding to bucket index == 7.

 Of course, whenever we need a page for a different bucket size, we
can (and should) still re-use those reserved-but-not-yet-committed
pages, committing memory for them and formatting them for the
sizes which follow from their page_start&0xF000.

After we’re done with this, we can say that:
For each and every ‘small’/‘medium’ pointer to be freed, the
expression ((pointer_to_be_freed>>12)&0xF) gives us the
bucket number.

This information can be extracted purely from the pointer, without any
indirections(!). In other words, by doing some magic we did manage to put
information about the bucket number into the pointer itself(!!).
In practice, it was a bit more complicated than that (to avoid creating too
many VMAs, we needed to reserve/commit pages in larger chunks – such
as 8M), but the principles stated above still stand in our implementation.
This approach happened to be the best one both performance-wise and
memory-overhead-wise.

How our deallocation works
To put all the pieces of our deallocation together, let’s see how our
deallocation routine works:
 We take the pointer to be freed (which is fed to us as a parameter of

a free() call), and use something along the lines of
((pointer_to_be_freed&0xFFF)==16) to find out if it was

small/medium alloc, or large/very-large one. NB: there is a branch
here, but large/very-large blocks happen rarely, so mispredictions
are rare.

 If it is a large/very-large item, we’re using a traditional header-
before-allocation-item. As this happens rarely, performance in this
branch is not too important (it is fast, but it doesn’t need to be Damn
Fast™).

 If it is a small/medium item, we calculate the bucket size using
((pointer_to_be_freed>>12)&0xF) and then simply add the
current pointer to be freed to the single-linked list of the free items
in this bucket.
This is the most time-critical path – and we got it in a very few
operations (maybe even close to ‘the-least-possible’). Bingo!

Test results
Of course, all the theorizing about ‘we have very few memory accesses’
is fine and dandy, but to map them into real world, we have to run some
benchmarks. So, after all the optimizations (those above and others, such
as forcing the most critical path – and only the most critical path – to be
inlined), we ran our own ‘simulating real-world loads’ test
[Ignatchenko18] and compared our iibmalloc with general-purpose
(multithreaded) allocators. We feel that the results we observed for our
iibmalloc were well-worth the trouble we took while developing it.
The testing is described in detail in [Ignatchenko18], with just a few
pointers here:
 We tried to simulate real-world loads, in particular:
 The distribution of allocation sizes is based on p~(1/sz) (where

p is the probability of getting allocations of size sz).
 The distribution of life times of allocated items is based on a

Pareto distribution.
 Each allocated item is written once and read once.

 All 3rd-party allocators are taken from the current Debian ‘stable’
distribution.

 Unless specified otherwise, we ran our tests with total allocation size
of 1.3G.
When running multiple threads, the total allocation size was split
among threads, so the total allocation size for the whole process
remained more or less the same.

As we can see (Figure 1), CPU-wise, we were able to outperform all the
allocators at least by 1.5x.
And from the point of view of memory overhead (Figure 2), our iibmalloc
has also performed well: its overhead was pretty much on par with the best
alloc we have seen overhead-wise (jemalloc) – while significantly
outperforming it CPU-wise.
Note that comparison of iibmalloc with other allocs is not a 100% ‘fair’
comparison: to get these performance gains, we had to give up on support
for multi-threading. However, whenever you can afford to keep the
Shared-Nothing model (=‘sharing by communicating instead of
communicating by sharing memory’), this allocator is likely to improve
the performance of malloc-heavy apps.
Another interesting observation can be seen in the graph in Figure 3, which
shows results of a different bunch of tests, changing the size of allocated
memory.
NB: Figure 3 is for a single thread, which as we seen above is the very best
case for tcmalloc; for larger number of threads, tcmalloc will start to lose
ground.
On the graph, we can see that when we’re restricting our allocated data set
to single-digit-megabytes (so everything is L3-cached and significant parts
are L2-cached), then the combined costs of a malloc()/free() pair for
our iibmalloc can be as little as 15 CPU clock cycles(!). For a malloc()/
free() pair, 15 CPU cycles is a pretty good result, which we expect to
be quite challenging to beat (though obviously we’ll be happy if somebody
August 2018 | Overload | 17

FEATURE SERGEY IGNATCHENKO, DMYTRO IVANCHYKHIN & MARCOS BRACCO
Figure 1

Figure 2
18 | Overload | August 2018

FEATURESERGEY IGNATCHENKO, DMYTRO IVANCHYKHIN & MARCOS BRACCO
does). On the other hand, as we have spent only a few man-months on our
allocator, there is likely quite a bit of room for further improvements.

Conclusions
We presented an allocator which exhibits significant performance gains by
giving up multi-threading. We did not really try to compete with other
allocators (we’re solving a different task, so it is like comparing apples and
oranges); however, we feel that we can confidently say that

For (Re)Actors and message-passing programs in general, it is
possible to have a significantly better-performing allocator than a
generic multi-threaded one.

As a potentially nice side-effect, we also demonstrated a few (hopefully
novel – at least we haven’t run into them before) techniques, such as storing
information in dereferenceable pointers, and these techniques might (or
might not) happened to be useful for writers of generic allocators too.

References
[Github] https://github.com/node-dot-cpp/iibmalloc
[Ignatchenko16] Sergey Ignatchenko and Dmytro Ivanchykhin (2016)

‘Ultra-fast Serialization of C++ Objects’, Overload #136
[Ignatchenko18] Sergey Ignatchenko, Dmytro Ivanchykhin, and Maxim

Blashchuk (2018) ‘Testing Memory Allocators: ptmalloc2 vs
tcmalloc vs hoard vs jemalloc While Trying to Simulate Real-World
Loads’, http://ithare.com/testing-memory-allocators-ptmalloc2-
tcmalloc-hoard-jemalloc-while-trying-to-simulate-real-world-loads/

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs16] ‘Operation Costs in CPU Clock Cycles’, ‘No Bugs’ Hare,
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

[NoBugs18] ‘The Curse of External Fragmentation: Relocate or Bust!’,
‘No Bugs’ Hare, http://ithare.com/the-curse-of-external-
fragmentation-relocate-or-bust/

Figure 3
August 2018 | Overload | 19

https://github.com/node-dot-cpp/iibmalloc
http://ithare.com/testing-memory-allocators-ptmalloc2-tcmalloc-hoard-jemalloc-while-trying-to-simulate-real-world-loads/
http://ithare.com/testing-memory-allocators-ptmalloc2-tcmalloc-hoard-jemalloc-while-trying-to-simulate-real-world-loads/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/the-curse-of-external-fragmentation-relocate-or-bust/
http://ithare.com/the-curse-of-external-fragmentation-relocate-or-bust/

FEATURE ANDY BALAAM
How to Write a Programming
Language: Part 2, The Parser
We’ve got our tokens: now we need to knit them
together into trees. Andy Balaam continues writing
a programming language with the parser.
n this series we are writing a programming language, which may sound
advanced, but is actually much easier than you might expect. Last time,
we wrote a lexer, which takes in a text characters (source code) and spits

out tokens, which are the raw chunks a program is made up of such as
numbers, strings and symbols.
This time, we will write the parser, which takes the tokens coming out of
the lexer and understands how they fit together, building structured objects
corresponding to meaningful parts of our program, such as creating a
variable or calling a function. These structured objects are called the syntax
tree.
Next time, we’ll work on the evaluator, which takes in the syntax tree and
does the things it says, executing the program. By the end of this series,
you will have seen all the most fundamental parts of an interpreter, and be
ready to build your own!

A bit more about Cell
Last time we saw that the language we are writing, Cell, is designed to be
simple to write, rather than being particularly easy to use. It also lacks a
lot of the error handling and other important features of a real language,
but it does allow us to do the normal things we do when programming:
make variables, define functions and perform logic and mathematical
operations.
One of the ways Cell is simpler than other languages is that things like if
and for that are normally special keywords in other languages are just
normal functions in Cell. This program demonstrates this idea for if:
 if(

 is_even(2),

 { print "Even!"; },

 { print "Odd."; }

);

In Cell, if is a function that takes three arguments: a condition, a function
to call if the condition is true, and another to call otherwise (the else part).
By passing functions as arguments, we avoid the need for a special
keyword to define logical structures like if and for. This makes our
parser simple, and it also means Cell programmers can write their own
functions similar to the if function, and have them be first-class citizens,
on a par to built-ins like if and for.
Because of the simplicity this allows, Cell’s parser only needs to recognise
a few simple structures.

Cell’s parser

Cell has four expression types:
 Assignment: x = 3
 Operations: 4 + y
 Function calls: sqrt(-1)
 Function definitions: {:(x, y) x + y;}

The parser’s job is to recognise from the tokens it sees which of these
expression types it is seeing, and build up a tree structure of the
expressions. For example, this code snippet:
 x = 3 + 4;

should be parsed to a tree structure something like this:
 Assignment:

 Symbol: x

 Value:

 Operation:

 Type: +

 Arguments:

 3

 4

In Cell, you can tell what kind of expression you are looking at from the
first two tokens. So in the example above, if we look at the first token ("x"
we can’t tell whether this is going to be an operation like x + 2, or an
assignment. Once we have the second token (=) we know we are dealing
with an assignment.
Once the parser has recognised we are dealing with an assignment, it can
treat everything on the right-hand side of the = as a new expression. This
new expression will be parsed and nested inside the tree structure of the
first one. That is how Operation ends up inside the Assignment
section above.
Cell is written in Python, and the tree structures built up by the parser are
Python tuples like ("operation", "+", 3, 4) or ("assignment", "x",
18).

I

Behaviour

Text

Lexer

Tokens

Parser

Syntax
Tree

Evaluator

Parser
Tokens

Syntax
Tree

Andy Balaam Andy is happy as long as he has a programming
language and a problem. He finds over time he has more and more
of each. You can find his open source projects at artificialworlds.net
or contact him on andybalaam@artificialworlds.net
20 | Overload | August 2018

FEATUREANDY BALAAM

the parser … takes the tokens coming out of the
lexer and understands how they fit together,

building structured objects corresponding to
meaningful parts of our program
They can be nested inside each other like this:
 ("assignment",

 "x",

 ("operation", "+", 3, 4)

)

which is the syntax tree representing the code x = 3 + 4.
Note: above we wrote "x", 3 and 4 but in the actual
syntax tree these will be full lexer tokens like
("symbol", "x") and ("number", "3").
Enough introduction – let’s get into the code.

The parse() function
Listing 1 shows the parse() function. Its job is to
c r e a t e a Parser ob j e c t a n d c a l l i t s
next_expression method repeatedly until we have
processed all the tokens coming from the lexer. It uses
the PeekableStream stream class that we saw in the
previous article to create a stream of tokens that we can
‘peek’ ahead into to see the next token that is coming.
When we create the Parser object, we pass two objects
in to its constructor: the stream of tokens, and ";",
which tells the parser when to stop. Here we end when
we hit a semi-colon because we are parsing whole
statements, and all statements in Cell end with a semi-
colon. Later we will make other Parser objects that
stop parsing when they hit other types of token like ","
and ")".

The Parser class
Listing 2 shows the constructor of Parser, which just
remembers the stream of tokens we are operating on and
stop_at, the token type that tells us we have finished.

Listing 3 shows the real heart of the parser – the next_expression
method of the Parser object. Similar to the lex() function we saw in
the previous article, the next_expression method is built around a big
if/elif block.
next_expression takes one argument, prev, that represents the
progress we have made parsing so far. Earlier we found that we only need
to see the first two tokens of an expression to know what type it is. By
passing the previous expression in to next_expression, we can use it,
along with the current token, to understand what kind of expression we
have. If we’re just starting to parse an expression, we pass in None as the
value for prev.
Several of the branches of next_expression call next_expression
from inside itself – this is because we are building up a nested tree of
expressions within expressions. Every time we look for a sub-expression
within an expression (for example the "3 + 4" part of "x = 3 + 4")
we call next_expression again, and use the return value as part of the
original expression we are constructing.
Before we enter the big if/elif block, next_expression has an
introductory section in which we get hold of the type and value of the next
token we are dealing with, and stop parsing if we have hit one of the
stop_at types. Since we were passed the expression so far in the prev
argument, when we hit a stop_at token, we can immediately return it.

Listing 1

def parse(tokens_iterator):

 parser = Parser(PeekableStream(tokens_iterator),

 ";")

 while parser.tokens.next is not None:

 p = parser.next_expression(None)

 if p is not None:

 yield p

 parser.tokens.move_next()

Listing 2

class Parser:

 def __init__(self, tokens, stop_at):

 self.tokens = tokens

 self.stop_at = stop_at

Listing 3

def next_expression(self, prev):

 self.fail_if_at_end(";")

 typ, value = self.tokens.next

 if typ in self.stop_at:

 return prev

 self.tokens.move_next()

 if typ in ("number", "string", "symbol") and prev is None:

 return self.next_expression((typ, value))

 elif typ == "operation":

 nxt = self.next_expression(None)

 return self.next_expression(("operation", value, prev, nxt))

 elif typ == "(":

 args = self.multiple_expressions(",", ")")

 return self.next_expression(("call", prev, args))

 elif typ == "{":

 params = self.parameters_list()

 body = self.multiple_expressions(";", "}")

 return self.next_expression(("function", params, body))

 elif typ == "=":

 if prev[0] != "symbol":

 raise Exception("You can only assign to a symbol.")

 nxt = self.next_expression(None)

 return self.next_expression(("assignment", prev, nxt))

 else:

 raise Exception("Unexpected token: " + str((typ, value)))
August 2018 | Overload | 21

FEATURE ANDY BALAAM
If we haven’t finished, we enter the if/elif block that checks the type
of the token we are processing and returns an expression of the right type.
First, we check what to do if we see a normal type (string, number or
symbol) and we have no previous expression (because prev is None).
This means we have only seen one token so far, so we can’t decide what
type of expression we are dealing with. To avoid making the decision yet,
we call ourselves recursively, using (typ, value) – the token we were
given – as the value for prev. This time we will have a non-None value
for prev (because we just passed it in), and so will be able to make a
decision about the expression we are parsing.
Next we check whether typ is "operation". If it is, we are nearly ready
to return an "operation" syntax tree. We have been given the left-hand
side of the operation as prev, we’ve just found the operation, so all we
need is the right-hand side to complete the expression. We call
next_expression one more time, passing in None as the previous
expression, because we want to find a separate expression to use at the
right-hand side, and put the answer into a variable called nxt. Now we
combine nxt with the information we already have, then return a tuple
representing the whole operation: ("operation", value, prev,
nxt). This is our syntax tree for this expression.
The next elif part checks for "(", which means we are calling a function.
The prev variable should already contain the name of the function, so we
just need to find the arguments we want to pass in. To find the arguments,
we call self.multiple_expressions, which is shown in listing 4.
Once we have the arguments, we can build a syntax tree of type "call"
and pass it on into another call to next_expression..
By calling next_expression again, we allow multiple function calls
to be stuck together, allowing us to write functions that return other
f u n c t i o n s a n d c a l l t h e m i m m e d i a t e l y . F o r e x a m p l e ,
divide_by(3)(12); might return 4, because divide_by(3) could
return a function that divides whatever you pass in by 3.
The multiple_expressions method parses several expressions
separated by tokens of the type we provided ("sep") and finishing when
we get to another token ("end"). In the example we have seen so far, the
separator was "," and the end token was ")" because we are looking for
the arguments being passed to a function.
The code of multiple_expressions itself creates a new instance of
the Parser class for every expression it looks for, telling it to stop when
it hits the separator or the end, and stops looking when it hits the end.
Switching back to the big if/elif block from listing 3, the last two
significant parts check for "{" and "=" tokens. "{" means we are defining

a function, so we use multiple_expressions again to find the
statements inside the function, and to find the names of the arguments, it
uses the parameters_list function, which is like a simplified version
of multiple_expressions that just looks for the names of the
arguments to the function (we skip it here for brevity).
The "=" sign means we are defining a variable, which is quite simple –
we just check that the previous token was a symbol, and then make an
"assignment" syntax tree with that symbol and whatever is on the right-
hand side.
If we get to the else part, we have encountered tokens in an order we can’t
recognise, and we raise an exception, which prints a (very unfriendly) error
for the user.
If you’ve managed to follow so far, you have seen all the interesting parts
of Cell’s parser – why not try adapting it or writing your own language
that works the way you want it to?

A note on operator precedence
If you were watching closely, you might have noticed one of the quirks of
Cell’s parser that makes it different from most similar-looking languages:
the order in which expressions are grouped when they contain multiple
terms.
Most languages follow rules inspired by mathematical expressions, so that
e.g. multiplications are grouped together before additions, meaning
"3*4+1" evaluates to 12.
Cell is different. Because we parse ‘everything else’ and use it as the right-
hand side in the operation, we group things on the right before things on
the left, and we treat all operators the same, so 3*4+1 evaluates to 15.
Cell works this way because it means have to write less code, but doing
things the more normal way would be perfectly possible – we simply need
to collect the full list of chained expressions before we start grouping them
according to some precedence rules.

Summary
Parsing is an odd programming task, because we want to handle it piece
by piece, but we sometimes need to soak up several tokens before we know
what we are dealing with, and we need to produce a nested structure as our
output. By using recursion (calling next_expression from inside
itself) we can get the nested structure almost for free.
The code we looked at here is more complicated than the lexer we saw in
the last article, but I think you’ll agree there is no magic here. The whole
of Cell’s parser is just 81 lines of code (including empty lines). You can
find it on Cell’s GitHub site [Balaam] along with more explanations
(including some videos).
While Cell’s parser does work for a real, working language (if a toy one),
it is a very simple example, and there is a huge amount you can learn about
different types of parser, as well as tools that automatically build the code
of a parser from some higher-level description of the language. A good
place to start is the Wikipedia page ‘Parsing’ [Wikipedia].
You can find the whole source code for Cell on Github [Balaam], along
with articles and videos explaining more about how it works.
Next time, we’ll get to the real point: we’ll look at the evaluator, which
takes in the nice structured syntax tree produced by the parser and actually
does things, turning our code into behaviour.

References
[Balaam] https://github.com/andybalaam/cell
[Wikipedia] ‘Parsing’, https://en.wikipedia.org/wiki/Parsing

Listing 4

def multiple_expressions(self, sep, end):

 ret = []

 self.fail_if_at_end(end)

 typ = self.tokens.next[0]

 if typ == end:

 self.tokens.move_next()

 else:

 arg_parser = Parser(self.tokens, (sep, end))

 while typ != end:

 p = arg_parser.next_expression(None)

 if p is not None:

 ret.append(p)

 typ = self.tokens.next[0]

 self.tokens.move_next()

 self.fail_if_at_end(end)

 return ret
22 | Overload | August 2018

https://en.wikipedia.org/wiki/Parsing
https://github.com/andybalaam/cell

FEATUREBRONEK KOZICKI
Compile-time Data Structures in
C++17: Part 1, Set of Types
Compile time data structures can speed things up at runtime.
Bronek Kozicki details an implementation of a compile time set.
he standard collection std::set is known to every C++
programmer. The runtime complexity of its find and insert
operations O(N ln N) is one of the reasons why it is often replaced

with std::unordered_set, which has amortised complexity of O(1).
But what if we had access to a similar data structure with a guaranteed
complexity of ‘O(0)’, that is one where no computation is performed
during runtime at all, and calls to member functions (such as insert or
find) are directly replaced, during the compilation, by the results of the
call? That also means that such data structure could be used inside compile-
time expressions, such as std::conditional or std::enable_if,
whose sample implementations are shown in Listing 1.

Of course, there must be a drawback to such a data structure: since we
expect the lookup operation to work during compilation, it follows that
such a set must also be fully populated during compilation. That might not
seem very useful in a small program; however, design concerns in large
programs often drive to more decoupling, where such ability might be
useful. For a trivial example, see the if constexpr expression in the
body of the Foo constructor in Listing 2.
The sample code in Listing 2 demonstrates another important point about
compile-time data structures: the ‘value’ looked for is a tag type (named
Bar in this example). Such types provide us with symbolic, unique names
without the need for a central repository (e.g. an enum type), hence
avoiding accidental coupling inside such a repository, while at the same
time minimising the risk of clashes if there is no such central location (e.g.
from extern const int or C-style #define). Examples of tag types

in the C++ standard include std::nothrow_t or types defined for
various overloads of std::unique_lock constructor.
What would be the interface of such a ‘set of types’ utility? One member
has already been presented above; it is the test template variable (NB,
(bool) cast is a workaround for a bug in MSVC 15.7, to be fixed in
version 15.8 and superfluous for other modern compilers). We also want
the ability to populate the set and compare it to other sets. But how can we
populate a compile-time construct? It is immutable, after all. The solution
is to apply the principles of functional programming – in the compile time.
That is, we can create a new container instance (or, in our case, a new
container type) as a copy of the existing container with the addition of a
new element. That sounds expensive, but let’s not forget that the set must
be filled during the compilation, which means that the runtime complexity
of such an operation is still going to be ‘O(0)’, at the cost of compilation
time. In other words, to populate our set we are going to use a pure function,
to be entirely evaluated during the compilation, which returns either a type
or an immutable value: a meta-function. As we will see, quite often meta-
functions are not functions at all – they can be immutable template values
or template types. A simplistic example is presented in Listing 3.
The implementation of test presented in Listing 3 is indeed simplistic
(we are going to improve it later). It is encapsulated as an implementation
detail struct contains (in the set_impl namespace), which is a
variadic template just like set, but dedicated to the calculation of the
value contains, with the help of standard type trait std::is_same_v
and two template specialisations, acting the role of a recursive meta-
function. Specialisation contains<T, L...> performs equality check
between U and T, while contains<> returns the terminating condition
‘not found’. Note how we used immutable template value template
<typename U> constexpr static bool value = ... to pass
the result of the nested meta-function to its caller. Such recursive calls are
a common pattern in functional programming because they work well with
immutable data. For the same reason, they work well with meta-functions,
and we will employ recursion often. However, in meta-programming, we

T

Listing 1

template <bool S, typename T, typename F> struct

 conditional;

template <typename T, typename F> struct

 conditional<true, T, F> { using type = T; };

template <typename T, typename F> struct

 conditional<false, T, F> { using type = F; };

template <bool S, typename T> struct enable_if {};

template <typename T> struct enable_if<true, T> {

 using type = T; };

Listing 2

struct Bar {};

struct Foo {

 int i = 0;

 template <typename Set> constexpr explicit

 Foo(Set) {

 if constexpr ((bool)Set::template test<Bar>)

 i += 1;

 }

};

Bronek Kozicki developed his lifelong programming habit at the
age of 13, teaching himself Z80 assembler to create special effects
on his dad’s ZX Spectrum. BASIC, Pascal, Lisp and a few other
languages followed, before he settled on C++ as his career choice.
In 2005, he moved from Poland to London, and promptly joined the
BSI C++ panel with a secret agenda: to make C++ more like Lisp,
but with more angle brackets. Contact him at brok@incorrekt.com

There is no such thing as ‘O(0)’, hence quotes. That is because in big-
O notation, we disregard the constant component, and the difference
between O(1) and ‘O(0)’ is only the constant component (equal to C, for
some unspecified fixed value C). In practice, the notion of big-O applies
only to runtime complexity, and, as explained on the left, we are seeking
to remove the runtime cost entirely. Hence our choice is to either
disregard the big-O notation as not applicable or use a dummy ‘O(0)’.

About O(0)
August 2018 | Overload | 23

FEATURE BRONEK KOZICKI
have always to remember to provide a terminating specialisation – which
is an equivalent of a recursion terminating execution branch in functional
programming.
The implementation of the insert meta-function is trivial, but sadly also
incorrect, as we will see below. That is because of two outstanding, and
so far ignored, properties of most sets, which are:
 Uniqueness of the elements.
 Constraints on the type of elements.

It is the presence of both which gives as a ‘set of something’. In
std::set, the first guarantee is provided by quietly ignoring duplicate
inserts, while the template parameter captures the later one. For our ‘set
of types’, we are going to follow the lead of std::set and ignore
duplicates. For the later guarantee we can, for the time being, apply some
hardcoded set of constraints. For example:
 Disallow qualifiers (const or volatile)
 Disallow reference types (lvalue or rvalue)
 Disallow pointer types

The proposed constraints do not impact the uses of our set where tag types
are passed directly, for example, hardcoded. If they are deduced, or coded
in a remote location, they only require additional use of std::decay_t
to remove qualifiers or reference. The constraint to disallow pointers is
meant to protect against user errors – either a typo or deduced type which

unexpectedly turns out to be a pointer. Additionally, since our elements
are types, we need to consider how to handle void. One useful solution
is to handle it as an element of an empty set – that is, a non-element. In
other words, we are going to use void as a placeholder for an element,
where no element is available (the similarity to the role of void in C and
C++ becomes obvious when ‘element’ is replaced by ‘type’).
Back to our code example, one can easily spot that the insert meta-
function is not doing anything to enforce uniqueness of added types.
Similarly, nothing is preventing the user from instantiating, e.g.
set<int, int>. These two problems aside, yet another limitation of our
set is that set<int, long> and set<long, int> are both distinct
types but they are one set (because the order of elements does not matter
to mathematical sets). There is probably no robust solution for the last
problem, but a workable compromise would be a unique member type
inside set to hold unique types, and creation of an is_same member
meta-function to test set equality with no regard to order. That might look
like Listing 4.

Listing 3

namespace set_impl {

 template <typename ... L> struct contains;

 template <> struct contains<> {

 template <typename>

 constexpr static bool value = false;

 };

 template <typename T, typename ... L> struct

 contains<T, L...> {

 template <typename U>

 constexpr static bool value =

 std::is_same_v<T, U> ||

 contains<L...>::template value<U>;

 };

}

template <typename ... L>

struct set {

 constexpr explicit set() = default;

 template <typename T>

 constexpr static bool test =

 set_impl::contains<L...>::template value<T>;

 template <typename T>

 using insert = set<T, L...>;

};

int main() {

 struct Fuz; struct Baz;

 constexpr static auto s1 =

 set<>::insert<Baz>::insert<Fuz>{};

 constexpr static auto s2 =

 decltype(s1)::insert<Bar>{};

 constexpr static Foo foo2{ s2 };

 std::cout << foo2.i << std::endl;

}

Listing 4

template <typename ... L> class set;

namespace set_impl {

 template <typename T> struct check {

 static_assert(std::is_same_v<T,

 std::decay_t<T>>);

 static_assert(not std::is_pointer_v<T>);

 using type = T;

 };

 template <typename ...L> struct contains_detail;

 template <typename U> struct

 contains_detail<U> {

 using type = typename check<U>::type;

 constexpr static bool value =

 std::is_void_v<type>;

 };

 template <typename U, typename T,

 typename ... L> struct

 contains_detail<U, T, L...> {

 using type = typename check<U>::type;

 using head = typename check<T>::type;

 constexpr static bool value =

 std::is_void_v<type>

 || std::is_same_v<type, head>

 || contains_detail<U, L...>::value;

 };

 template <typename ... L> struct insert_detail;

 template <typename T, typename ... L> struct

 insert_detail<T, set<L...>> {

 using head = typename check<T>::type;

 using type = set<head, L...>;

 };

 template <typename ... L> struct

 unchecked_list {};

 template <typename T> struct cracker_list;

 template <typename ... L> struct

 cracker_list<set<L...>> {

 using type = unchecked_list<L...>;

 };

 template <typename T> struct cracker;

 template <typename ... L> struct

 cracker<set<L...>> {

 using list = typename cracker_list<

 typename set<L...>::unique>::type;

 constexpr static size_t size =

 set<L...>::unique::size;

};

What if we wanted to store actual values, known at compilation time? There
are a few options:

 Implement a set of values separately, following the ideas presented here

 Store values wrapped into instances of std::integral_constant

 Assign unique, immutable values to tag types

Storing actual values
24 | Overload | August 2018

FEATUREBRONEK KOZICKI
The code may appear complex, but that is only because of the amount of
typing necessary in C++ to code each simple meta-function. In fact, it is
quite simple, although there are few things to note. Again we are delegating
the work required to individual meta-functions, and we also have a
unique type to build the unique set of types (this ensures that e.g.
set<int, int> will be recognised as having only one element since
repeated elements do not count). Inside this unique type we delegate
t a s k s t o i n d i v i d u a l m e t a - f u n c t i o n s insert_details ,
contains_details and intersect_details. The last one
calculates the size of the intersection of sets, which is required to test set
equality using a simple formula: sets are equal if they have equal size and
their intersection is equal to that size as well. We could reuse
instersect_details to implement two more useful checks
is_cross to check whether two sets share a non-empty intersection and
is_super to check whether one set is a subset of another (in reverse, since
our ‘superset’ will be on the left side and ‘subset’ on the right). In the first
case, we only need to know that the size of the set intersection is greater

than 0. In the latter, the size of the intersection will be equal to the size of
a subset. The opportunity for reuse of intersect_details is obvious,
and to do so we are going to introduce a higher order meta-function
compare, to replace unique::is_same. In functional programming, a
higher order function is a function which consumes (or produces, or both)
a function. In our case, a meta-function is a template (whereas types take
the role of values) which means that higher-order meta-function compare
is going to consume a template template parameter (yes, that is the word
‘template’ twice in a row) which encapsulates the meta-function to
perform the size comparison required. See Listing 5.

Listing 4 (cont’d)

 template <typename ... L> struct

 intersect_detail;

 template <typename ... T> struct

 intersect_detail<unchecked_list<>,

 unchecked_list<T...>> {

 constexpr static size_t size = 0;

 };

 template <typename V, typename ... L,

 typename ... T> struct

 intersect_detail<unchecked_list<V,L...>,

 unchecked_list<T...>> {

 constexpr static size_t size =

 intersect_detail<unchecked_list<L...>,

 unchecked_list<T...>>::size

 + (not std::is_void_v<V>

 && contains_detail<V, T...>::value);

 };

 template <typename ... L> struct unique;

 template <> struct unique<> {

 using type = set<>;

 constexpr static size_t size = 0;

 template <typename , size_t Size>

 constexpr static bool is_same = Size == 0;

 template <typename U>

 constexpr static bool test =

 contains_detail<U>::value;

 };

 template <typename T, typename ... L> struct

 unique<T, L...> {

 using type = typename std::conditional<

 contains_detail<T, L...>::value

 , typename unique<L...>::type

 , typename insert_detail<T,

 typename unique<L...>::type

 >::type

 >::type;

 constexpr static size_t size =

 contains_detail<T, L...>::value

 ? unique<L...>::size

 : unique<L...>::size + 1;

 template <typename U, size_t Size>

 constexpr static bool is_same =

 size == Size

 && size == intersect_detail<

 unchecked_list<T,L...>, U>::size;

 template <typename U>

 constexpr static bool test =

 contains_detail<U, T, L...>::value;

 };

}

Listing 4 (cont’d)

template <typename ... L>

class set {

 using impl = set_impl::unique<L...>;

public:

 constexpr explicit set() = default;

 using unique = typename impl::type;

 constexpr static size_t size = impl::size;

 constexpr static bool empty = size == 0;

 template <typename T>

 constexpr static bool is_same =

 impl::template is_same<typename set_impl

 ::cracker<T>::list, set_impl::cracker<T>

 ::size>;

 template <typename T>

 constexpr static bool test =

 impl::template test<T>;

 template <typename T>

 using insert =

 typename set_impl::unique<T, L...>::type;

};

Listing 5

namespace set_impl {

 template <size_t Mine, size_t Cross,

 size_t Theirs> struct is_cross {

 constexpr static bool value = Cross > 0;

 };

 template <size_t Mine, size_t Cross,

 size_t Theirs> struct is_super {

 constexpr static bool value =

 Cross == Theirs;

 };

 template <size_t Mine, size_t Cross,

 size_t Theirs> struct is_same {

 constexpr static bool value =

 Mine == Cross && Cross == Theirs;

 };

 template <typename ... L> struct unique;

 template <> struct unique<> {

 // ...
 template <template <size_t, size_t, size_t>

 typename How, typename U, size_t Size>

 constexpr static bool compare =

 How<0, 0, Size>::value;

 };

 template <typename T, typename ... L>

 struct unique<T, L...> {

 // ...
 template <template <size_t, size_t, size_t>

 typename How, typename U, size_t Size>

 constexpr static bool compare =

 How<size,

 intersect_detail<unchecked_list<T, L...>,

 U>::size, Size>::value;

 };

}

August 2018 | Overload | 25

FEATURE BRONEK KOZICKI
Right at the end, it is time to revisit the set of constraints imposed on types
stored in our set of types. As we have just seen, a template template
parameter can be used to implement a higher order (meta-) function, which
is an ideal way for the user to select their own set of constraints, and
perhaps even type transformations. The final program (Listing 6) makes
use of this ability.

Listing 5 (cont’d)

template <typename ... L>

class set {

 using impl = set_impl::unique<L...>;

public:

 // ...
 template <typename T>

 constexpr static bool is_same =

 impl::template compare<set_impl::is_same,

 typename set_impl::cracker<T>::list,

 set_impl::cracker<T>::size>;

 template <typename T>

 constexpr static bool is_cross =

 impl::template compare<set_impl::is_cross,

 typename set_impl::cracker<T>::list,

 set_impl::cracker<T>::size>;

 template <typename T>

 constexpr static bool is_super =

 impl::template compare<set_impl::is_super,

 typename set_impl::cracker<T>::list,

 set_impl::cracker<T>::size>;

};

Listing 6

#include <cstdio>

#include <utility>

#include <type_traits>

template <template <typename> typename Check,

typename ... L> class set;

namespace set_impl {

 template <template <typename> typename Check,

 typename ... L> struct contains_detail;

 template <template <typename> typename Check,

 typename U> struct contains_detail<Check, U> {

 using type = typename Check<U>::type;

 constexpr static bool value =

 std::is_void_v<type>;

 };

 template <template <typename> typename Check,

 typename U, typename T, typename ... L>

 struct contains_detail<Check, U, T, L...> {

 using type = typename Check<U>::type;

 using head = typename Check<T>::type;

 constexpr static bool value =

 std::is_void_v<type>

 || std::is_same_v<type, head>

 || contains_detail<Check, U, L...>::value;

 };

 template <template <typename> typename Check,

 typename ... L> struct insert_detail;

 template <template <typename> typename Check,

 typename T, typename ... L>

 struct insert_detail<Check, T, set<Check,

 L...>> {

 using head = typename Check<T>::type;

 using type = set<Check, head, L...>;

 };

 template <typename ... L> struct unchecked_list

 {};

Listing 6 (cont’d)

 template <typename T> struct cracker_list;

 template <template <typename> typename Check,

 typename ... L> struct cracker_list<set<Check,

 L...>> {

 using type = unchecked_list<L...>;

 };

 template <typename T> struct cracker;

 template <template <typename> typename Check,

 typename ... L> struct cracker<set<Check,

 L...>> {

 using list = typename

 cracker_list<typename set<Check,

 L...>::unique>::type;

 constexpr static size_t size = set<Check,

 L...>::unique::size;

 };

 template <typename T> struct dummy_check {

 using type = T;

 };

 template <typename ... L> struct

 intersect_detail;

 template <typename ... T> struct

 intersect_detail<unchecked_list<>,

 unchecked_list<T...>> {

 constexpr static size_t size = 0;

 };

 template <typename V, typename ... L,

 typename ... T> struct

 intersect_detail<unchecked_list<V, L...>,

 unchecked_list<T...>> {

 constexpr static size_t size =

 intersect_detail<unchecked_list<L...>,

 unchecked_list<T...>>::size +

 (not std::is_void_v<V>

 && contains_detail<dummy_check, V,

 T...>::value);

 };

 template <size_t Mine, size_t Cross,

 size_t Theirs> struct is_cross {

 constexpr static bool value = Cross > 0;

 };

 template <size_t Mine, size_t Cross,

 size_t Theirs> struct is_super {

 constexpr static bool value =

 Cross == Theirs;

 };

 template <size_t Mine, size_t Cross,

 size_t Theirs> struct is_same {

 constexpr static bool value = Mine == Cross

 && Cross == Theirs;

 };

 template <template <typename> typename Check,

 typename ... L> struct unique;

 template <template <typename> typename Check>

 struct unique<Check> {

 using type = set<Check>;

 constexpr static size_t size = 0;

 template <template <size_t, size_t, size_t>

 typename How, typename U, size_t Size>

 constexpr static bool compare =

 How<0, 0, Size>::value;

 template <typename U>

 constexpr static bool test =

 contains_detail<Check, U>::value;

 };
26 | Overload | August 2018

FEATUREBRONEK KOZICKI
Listing 6 (cont’d)

 template <template <typename> typename Check,

 typename T, typename ... L>

 struct unique<Check, T, L...> {

 using type = typename std::conditional<

 contains_detail<Check, T, L...>::value

 , typename unique<Check, L...>::type

 , typename insert_detail<Check, T,

 typename unique<Check, L...>::type>::type

 >::type;

 constexpr static size_t size =

 contains_detail<Check, T, L...>::value

 ? unique<Check, L...>::size

 : unique<Check, L...>::size + 1;

 template <template <size_t, size_t, size_t>

 typename How, typename U, size_t Size>

 constexpr static bool compare =

 How<size, intersect_detail

 <unchecked_list<T, L...>, U>::size,

 Size>::value;

 template <typename U>

 constexpr static bool test =

 contains_detail<Check, U, T, L...>::value;

 };

}

template <template <typename> typename Check,

 typename ... L>

class set {

 using impl = set_impl::unique<Check, L...>;

public:

 constexpr explicit set() = default;

 using unique = typename impl::type;

 constexpr static size_t size = impl::size;

 constexpr static bool empty = size == 0;

 template <typename T>

 constexpr static bool is_same =

 impl::template compare<set_impl::is_same,

 typename set_impl::cracker<T>::list,

 set_impl::cracker<T>::size>;

 template <typename T>

 constexpr static bool is_cross =

 impl::template compare<set_impl::is_cross,

 typename set_impl::cracker<T>::list,

 set_impl::cracker<T>::size>;

 template <typename T>

 constexpr static bool is_super =

 impl::template compare<set_impl::is_super,

 typename set_impl::cracker<T>::list,

 set_impl::cracker<T>::size>;

 template <typename T>

 constexpr static bool test =

 impl::template test<T>;

 template <typename T>

 using type =

 typename std::enable_if<(not std::is_void_v<T>

 && test<T>), typename Check<T>::type>::type;

 template <typename T>

 using insert = typename

 set_impl::unique<Check, T, L...>::type;

};

Listing 6 (cont’d)

struct Baz { Baz() = delete; };

struct Bar { Bar() = delete; };

struct Fuz { Fuz() = delete; };

struct Foo {

 int i = 0;

 template <typename Set> constexpr explicit

 Foo(Set) {

 if constexpr ((bool)Set::template test<Bar>)

 i += 1;

 }

};

template <typename T> struct PlainTypes {

 static_assert(std::is_same_v<T,

std::decay_t<T>>);

 static_assert(not std::is_pointer_v<T>);

 using type = T;

};

int main() {

 constexpr static set<PlainTypes> s0{};

 constexpr static auto s1 =

 decltype(s0)::insert<Baz>::insert<Fuz>{};

 constexpr static Foo foo1{s1};

 std::printf("foo1.i=%d\n", foo1.i);

 constexpr static auto s2 =

 decltype(s1)::insert<Bar>{};

 constexpr static Foo foo2{s2};

 std::printf("foo2.i=%d\n", foo2.i);

}

Presented programs should build without warnings under C++17
compliant compilers. The following have been tested:

 GCC 8.1

 Clang 6.0

 Visual Studio 2017 (compiler version 15.7)

A sample CMake file which works for all these compilers is presented
below:

cmake_minimum_required(VERSION 3.8)

project(metaset)

set(CMAKE_CXX_STANDARD 17)

if(MSVC)

 set(CMAKE_CXX_FLAGS

 "${CMAKE_CXX_FLAGS} /permissive-")

 set(CMAKE_CXX_FLAGS_DEBUG

 "${CMAKE_CXX_FLAGS_DEBUG} /D_DEBUG")

else()

 set(CMAKE_CXX_FLAGS

 "${CMAKE_CXX_FLAGS} -Wall -Wextra -Wpedantic")

 set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG")

 set(CMAKE_CXX_FLAGS_DEBUG "-O0 -g")

endif()

set(SOURCE_FILES main.cpp)

add_executable(${PROJECT_NAME} ${SOURCE_FILES})

Building the programs
August 2018 | Overload | 27

FEATURE CHRIS OLDWOOD
Afterwood
Much ado about nothing. Chris Oldwood considers
what we have when we have nothing.
here is a classic puzzle that goes:
The poor have it, the rich need it, and if you eat it you’ll die.
What is it?

If you haven’t come across this before and Google is out of reach because
you’re reading the printed edition going through a tunnel or an internet
blackspot, the answer is ‘nothing’. I think it would be fairly easy to come
up with a programming specific version of this particular puzzle as there
appears to be quite a few variants of ‘nothing’ in our world, many of
which seem to occupy a significant amount of our time due to their
cunning camouflaged outfits.
It probably seems strange to us now but once upon a time there was no
zero. Essentially you had something which was countable or you had
nothing. There were no negative numbers either and nothing preceded one
(no pun intended, for once). I recently read The Nothing that Is: A Natural
History of Zero and it got me thinking about the ways we represent
nothingness in programming and the problems it causes.
Zero is almost certainly our ‘go to choice’ for representing a lack of
something as it’s been with us since our early days of schooling and
support for integer values has also been around in programming pretty
much since the beginning too whether you’re using assembly or a high-
level language. Even most children could tell you numApples = 0
means you don’t have any apples.
Where it starts to go astray is when we have to squeeze the concept of
‘none’ into a domain that doesn’t really support it because you are no
longer representing countable things. A classic example here is
representing dates where day zero represents some epoch like 1st January
1970 or 1st January 1900 and negative values stretch backwards in time.
Here every value in the domain represents a valid value and so if we want
something to accommodate the notion of ‘no value’ we probably have to
re-purpose one or other end of the spectrum, e.g. INT_MIN or INT_MAX.
What about if we’re searching an array for some value or object and there
is nothing to be found? If our array starts at index 1 (e.g. Visual Basic) we
could use the value 0, but many languages have adopted the 0-based
approach and Stan Kelly-Bootle’s suggestion of using 0.5 has never really
received any uptake. For languages like Java and C# that are inherently
based on signed integers they can return any negative value for the ‘none
found’ answer. In C++ where unsigned integers are the preferred choice
we have no such luck and instead have concocted a magical value by the
name of npos for strings which (implementation-wise) sits within the
valid range of values but on the precipice such that you’d probably run out
of memory long before it could ever be a valid result.
Sadly the use of -1 (in either of its signed or unsigned guises) as both a
perfectly good response to a question and as a way of signalling an error
has only succeeded in muddying the waters further. The Windows API for
example uses the constants LB_ERR (and CB_ERR) in this way which
means you often stumble across code that initialises variables with it, e.g.
index = LB_ERR, because it allows us to exploit a duality of semantics
(‘no value, yet’ and ‘not found’) and write less code, irrespective of
whether it makes comprehending it any easier. (You might argue not

finding it is an error; either way you still have the same type representing
two different domains – index and error.)
With enumerated types we often walk right into the same trap with our
eyes wide open thinking we’re being clever by adding an explicit value
called None or Default (usually with a value of 0 in languages that zero-
initialise values and references for ‘safety’s sake’).
Of course when you’re forced to abuse the type system it will get its own
back. By masquerading two different result values within the normal
course of events you will trick the caller into believing it’s safe to simply
compose functions when in reality they’re just storing up a world of pain
in the form of an IndexOutOfBounds exception, access violation or, if
really unlucky, undefined behaviour and subsequent data corruption.
The NullPointerException, or ‘NPE’ as it is commonly referred to
in the Java world, is a blight on modern programming caused in part by
our use of programming languages which embrace the use of reference
types over value types meaning that all of our objects can potentially exist
or not exist. Unless the use is entirely local it can be difficult to reason
about any object’s existence and therefore null checks can easily
dominate a codebase in an act of overly defensive programming. The
introduction of the ?. operator in some languages might reduce the noise
but it’s just a case of treating the symptoms, not the disease.
This particular foe likes to disguise themselves by changing their name
too, but whether they be null, NULL, nullptr, nil, 0, end, -1, npos,
"", NaN, None, etc. we should be on our guard and be ready to banish
them to computing history or at the very least quarantine them.
But what can be done, surely we can’t undo the past? Well, maybe we can.
Over the years the awareness of the Optional (Option, Maybe, etc.) type
has grown so that it’s no longer just a niche technique used by Comp Sci
purists. The desire to right this wrong is so strong in some circles that
there is currently a preview of C# [Github] where reference types have
been given the Nullable makeover thereby allowing us to finally
consider deleting our own homebrew variants and deprecating our static
analysis annotations in favour of a kosher type annotation. Surprised?
One of Shakespeare’s most famous comedies is titled Much Ado About
Nothing. Given the amount of time we’ve lost over the years debugging
issues caused by our inability to express ‘nothing’ in a way that is obvious
to our fellow programmers I’d say it was no laughing matter. We need to
realise that failure can indeed be an option and that the type system should
be there to help us, nothing more nothing less.

Reference
[Github] https://github.com/dotnet/csharplang/wiki/Nullable-Reference-

Types-Preview

T

28 | Overload | August 2018

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

https://github.com/dotnet/csharplang/wiki/Nullable-Reference-Types-Preview
https://github.com/dotnet/csharplang/wiki/Nullable-Reference-Types-Preview

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	2009-07-01 Care About Code - online.pdf
	Slide 1

	Overload146-fnal.pdf
	Should I Lead by Example?
	Cache-Line Aware Data Structures
	miso: Micro Signal/Slot Implementation
	(Re)Actor Allocation at 15 CPU Cycles
	How to Write a Programming Language: Part 2, The Parser
	Compile-time Data Structures in C++17: Part 1, Set of Types
	Afterwood

