

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

October 2018 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 How to Write a Programming Language:
Part 3, The Evaluator
Andy Balaam continues writing a programming
language with the evaluator.

7 P1063 vs Coroutines TS:
Consensus on High-Level Semantics
Dmytro Ivanchykhin, Sergey Ignatchenko and
Maxim Blashchuk argue the case for coroutines TS.

10 Implementing the Spaceship Operator
for Optional
Barry Revzin explores the new operator
spaceship <=> for comparisons.

13 Compile-time Data Structures in C++17:
Part 2, Map of Types
Bronek Kozicki details an implementation of a
compile time map.

OVERLOAD 147

October 2018

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 148 should be submitted by
1st November 2018 and those for
Overload 149 by 1st January 2019.

EDITORIAL FRANCES BUONTEMPO
Are we nearly there yet?
Deciding if you are making progress can be
a challenge. Frances Buontempo considers
various metrics and their effects.
Summer is a time for holidays including road trips for
many, possibly with children screaming, “Are we
nearly there yet?” from the back of the car. We didn’t
get a chance to have a holiday but did go to a metal
festival, so I’ve been too busy discovering new music

to write an editorial. In fact, the deadline for this issue of Overload
sneaked up on me, so I haven’t even tried thinking about it. Trying to keep
a sense of how close targets or deadlines are is difficult. Even how long
it might take to get to a location is not straight forward. While being
physically close to your destination, the estimated time to arrival might
be surprisingly large if there is a huge traffic queue. So near, and yet so
far away.

‘Nearly’ is relative, of course. Topology, a branch of mathematics, defines
relationships in a very abstract way. Lisa Lippincott gave a keynote at the
ACCU conference this year, called ‘The shape of a program’
[Lippincott18]. She pulled on ideas from topology to talk about places and
meaningful areas, particularly in a codebase. Now, topology provides a
formal definition of points in a neighbourhood. Such points are close, in
some sense, but topology doesn’t have a metric or distance measure, so
‘close’ is very abstract here. The concept of belonging to a neighbourhood
depends on definition of an open set, which in turn has a complementary
closed set, which has nothing to do with being close/nearby. Furthermore,
sets can be both open and closed [Wikipedia-a]. This sounds counter-
intuitive. Some sets are neither open nor closed. How can this possibly be
useful? There is more to life than usefulness. I find topology mesmerising,
but it is useful. It gives an abstract way to think about closeness and
convergence. We could think more about convergence, but will have to
save that for another time. For now, think tending towards somewhere.
Where, exactly?

Defining ‘there’ is equally complicated. Some cultures or groups have an
initiation ceremony to mark a transition to adulthood, or full membership
status. Some professions require certified status. An event marks a
boundary between before and after. A novice takes a vow and becomes
an initiate. A trainee engineer passes exams and gains experience,
allowing certification. Not everything has a clear definition or
demarcation between in and out, open and closed, before and after. Even
success or fail. If you are developing a product, how can you be sure what
your customer needs? If you are learning a new subject, how do you know
when you really understand it? What about learning a new programming
language?

How do you prepare a talk, or proposal for a talk at a conference? How
do you write an editorial for that matter? You

need a topic or title. These might get chosen
up front, or come into focus as you knock a

few ideas around. Something similar

happens when you try to learn a new programming paradigm or language.
You need a topic, toy example or something to build. Once you decide,
you start somewhere, possibly in the middle. Trying to measure your
progress needs an idea of what ‘done’ means. For learning tasks or
anything with a deadline, done often means time’s up. You may not have
all the features you were dreaming of, but you have learnt or written
something. A time limit provides a clear definition of ‘there’. Other tasks,
such as tidying your bedroom, redecorating or documenting a system do
not immediately give a way to define ‘done’. Again, a time limit may
enforce this, or running out of money. Some tasks like this stop when you
run out of stamina. If you go swimming in a pool, you may plan to swim
for an hour, but discover you can only manage five lengths because you
are out of practice. You may not achieve your target, but at least you turned
up. Sometimes just getting started is good enough. Other tasks, like
building a Lego rocket or a robot have a clearly defined endpoint. All the
pieces are in the right place. In the case of the robot hiding behind my sofa,
the failure was due to missing parts. Not something you want to discover
when you’re right near the end of a twelve-hour build. That’s the reason
my Dad used to lay out and count pieces before self-assembling furniture,
or making jigsaws or models. He did try to fix things like clocks from time
to time. The universal rule there appears to be that a spare screw or two
is bound to materialise and can be safely stored in a tin, without affecting
the performance of the machine. Something similar seems to happen when
you refactor code, but you don’t keep the spare lines in a tin. Just delete
them and jog on.

Other tasks are longer running, and do need some kind of milestones to
check the project is on target, or at least heading in the right direction.
Some projects follow more traditional methods, forming detailed project
plans in the form of Gantt charts [Wikipedia-b], think rows of tasks and
columns of dates, showing who will do what, when. Other times, Kanban
boards [Wikipedia-c] are used, usually starting with a to-do, doing, done
column. In both cases, as time marches forward, things change.
Relabelling the weeks or months or even years on a Gantt chart might help
to provide new estimates of what’s left to be done before the final project
is complete. The Kanban board might sprout a few extra columns. A
project I worked on ended up with 17 columns. It was using a web
interface, rather than being post-it notes on a wall, and I had to scroll right
for quite a long way to get to the final column. And don’t get me started
on scroll bars that move as you try to scroll, having cached the length of
data then updating to discover more.

When tasks don’t form a neat linear progression, they often make
something like a tree structure, which isn’t easy to shape into a list or table
of rows and columns. I have never been a project manager so can’t claim
expertise in this area, but I do usually try to track if a project is moving
forward and keep a to-do list somewhere. I do this for personal projects
too, which does mean I have several lists scattered around the house. I

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2018

EDITORIALFRANCES BUONTEMPO
need a list of lists to help me find the list, which suggests a tree structure
yet again. As more items get added to the list, it becomes hard to estimate
how long it will take to finish a project. If you add things at a faster rate
than you complete things, you might start to feel as though you are going
backwards. This can be dis-heartening. Frequently, what started as a
straightforward collection of a few things to achieve over the next couple
of days might end up as a few months’ worth of research, experimentation
and learning. The original estimate failed to take on board all the details
that are required. We frequently under-estimate the effort required. George
W Bush once claimed people had misunderestimated him [BBC09]. This
suggests he thought you can make correct and incorrect underestimates.
Logically ridiculous, however, many projects do leave a time slot towards
the end for validation, deployment or testing, which are really code words
for unknown unknowns [Wikipedia-d]. The misunderestimation comes
from not allowing enough time to complete everything required, or
possibly being too ambitious.

Project planning usually involves aiming towards a final goal, such as
deploying some working software. Learning, whether via an academic
institution, or attempting to teach yourself, doesn’t always have a clear
final goal. A timetable for a term, series of lectures or a book with exercises
might give the impression of a linear progression from zero to master. A
final exam sets a deadline and time boxes the learning into a term or period
of time. Some employers may take people on as apprentices, perhaps
offering a twelve month training programme. How does the neophyte or
learner asses their progress? I was discussing this with Chris Oldwood
recently. He has a mentee who asked how to tell how much she had
improved. Chris suggested she noted how many of his jokes she laughed
at. If you’ve not had to chance to listen to Chris’ stand-up comedy routine,
you are missing out, though traces of it are out there, somewhere
[Oldwood15]. I suspect in a few cases, a groan rather than a laugh would
disambiguate a yellow belt from a Dan master, but I’m no expert. This
metric, which I shall refer to henceforth as ‘the Oldwood quota’, gives a
straightforward way to measure something. It’s not immediately clear
what. If Chris tells ten jokes and his mentee laughs at all of them, she gets
ten out of ten. Does this mean she’s wiser? As children learn about jokes,
they laugh, but you gain more insight when they try to re-tell the jokes.
The punchlines sometimes get told first. The words come out wrong.
Eventually the child starts to invent their own jokes, usually with varying
success. I suspect Chris will know his mentee has surpassed him when she
can make him laugh rather than vice versa. The conversation with Chris
was very interesting. I love his jokes and am sure he’s a great mentor. As
we talked, it struck me that general knowledge quizzes are a thing. You
can count how many answers people get correct. You can automate it,
using a multiple choice format. Precise and straightforward, as long as the
questions make sense and the answers are correct. Now, have you ever
heard of a general wisdom quiz? No. It would be very difficult to award
marks for this. As you are trying to learn a new subject, this is part of what
you are trying to measure. Multiple choice questions are easy to mark, but
do not show how much people understand. College exams are designed to
test pupil’s understanding, but this is very hard to do. An essay-based
subject may tend to have shorter questions, which are relatively quick to
think up, but the marking will take a long time. A more mathematical

subject may have longer questions in several parts, which can take a long
time to devise, trying to avoid questions from previous years where the
answers can be memorised, though the marking might be slightly quicker.
Assessing someone’s understanding isn’t easy. An exam result of 80%
would usually be a pass, in fact, possibly distinction. A rocket launch that
achieved 80% (I’m not sure how you would measure a percentage, perhaps
a fifth of it went into space) is more likely to be a fail.

Trying to shoe-horn a metric onto a space leads to all kinds of anomalies.
Sometimes introducing a metric to give league tables or performance
metrics leads to problems. As we know, measuring car exhaust emissions
caused a stir a while ago [Wikipedia-e]. This involved a claim of
deliberately measuring the wrong thing to ‘comply’ with the Clean Air Act.
Rather than deliberate misreporting, metrics can still have unintended
consequences. If a team is required to achieve 100% test coverage, then
deleting all the code is a sure-fire way to achieve this. Target hit, intention
missed. When the league tables for GCSEs (exams for 16-year-olds in the
UK) were introduced years ago, schools reported the percentage of pupils
who achieved a C or above, aged 16. Many schools allowed their pupils
to take exams a year early, allowing them to start on A levels or similar
sooner. I remember reading about one school where the pupils took all their
exams a year early, so despite being a popular school that was hard to get
into, they would have ended at the bottom of this table. Solution? Make
the pupils take the exam a year later. Ridiculous, in my opinion. However,
trying to get the metric changed would have been difficult. Some
programming teams using Agile measure the effort of a task in story points.
We know this is an attempt to avoid a one-to-one correspondence with time
estimates. I wonder whether these form a metric, in a mathematical sense.
I’ll leave that as an exercise for the reader.

Assessing progress is difficult, but important. Perhaps you have some
metrics you want to share with us? Write in. Or perhaps
you learn a smattering of new things by reading
Overload. Don’t forget to let authors know if you
enjoyed reading their articles.

References
[BBC09] ‘The ‘misunderestimated’ president’: http://news.bbc.co.uk/1/

hi/7809160.stm

[Lippincott18] ‘The shape of a program’: https://www.youtube.com/
watch?v=IP5akjPwqEA

[Oldwood15] http://chrisoldwood.blogspot.com/2015/04/the-daily-
stand-up.html

[Wikipedia-a] https://en.wikipedia.org/wiki/
Open_set#Open_and_closed_are_not_mutually_exclusive

[Wikipedia-b] https://en.wikipedia.org/wiki/Gantt_chart

[Wikipedia-c] https://en.wikipedia.org/wiki/Kanban_board

[Wikipedia-d] https://en.wikipedia.org/wiki/There_are_known_knowns

[Wikipedia-e] https://en.wikipedia.org/wiki/
Volkswagen_emissions_scandal
October 2018 | Overload | 3

http://news.bbc.co.uk/1/hi/7809160.stm
http://news.bbc.co.uk/1/hi/7809160.stm
https://www.youtube.com/watch?v=IP5akjPwqEA
https://www.youtube.com/watch?v=IP5akjPwqEA
http://chrisoldwood.blogspot.com/2015/04/the-daily-stand-up.html
http://chrisoldwood.blogspot.com/2015/04/the-daily-stand-up.html
https://en.wikipedia.org/wiki/Open_set#Open_and_closed_are_not_mutually_exclusive
https://en.wikipedia.org/wiki/Open_set#Open_and_closed_are_not_mutually_exclusive
https://en.wikipedia.org/wiki/Gantt_chart
https://en.wikipedia.org/wiki/Kanban_board
https://en.wikipedia.org/wiki/There_are_known_knowns
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal

FEATURE ANDY BALAAM
How to Write a Programming
Language: Part 3, The Evaluator
We’ve parsed our tokens: now we need turn them
into values. Andy Balaam continues writing a
programming language with the evaluator.
his is the third part of our series on writing a programming language.
In part one we broke up the code into chunks like numbers, strings
and symbols (lexing), and in part two we assembled those parts into

a tree structure (parsing). Now we are ready to start understanding and
evaluating the parts of
that tree structure to
p roduce va lues and
behaviour.

By the end of this article
you will have seen all the
most important parts of a
programming language,
and be ready to write
your own!

Recap – lexing and parsing
The lexer and parser take some text like this:

 print(x + 2);

and break it into parts, and then assemble it into a tree structure like this:

 ("call",
 ("symbol", "print"),
 [
 ("operation",
 "+",
 ("symbol", "x"),
 ("number", "2")
)
]
)

Cell is written in Python and uses Python tuples to hold all the structures
it represents. Each tuple contains a string representing its type as the first
element, and then other information in the other elements of the tuple.

So far, we have seen tuples representing tokens coming out of the lexer,
and tuples representing syntax trees coming out of the parser. This time
we will see more tuples, representing values that have been worked out by
the evaluator.

The evaluator calculates values
The evaluator starts at the
leaves of the syntax tree and
calculates the values of the
l e aves , t hen combines
together leaves and branches
until it ends up with a single

value. On the way it may have
produced some side effects such as
printing something out.

Scope
Before we look at how the evaluator works out values, we must look at
the idea of scope. Scope describes what names can be seen where in our
code. Cell, like almost all modern programming languages, uses ‘lexical’
scope, which means the values you can see are dictated by the position of
the code in the text on the screen.

So, for example, this snippet of Cell code:

 x = "World!";
 myfn = {
 x = "Hello,";
 print(x);
 };
 myfn();
 print(x);

prints:

 Hello,
 World

because the value of x inside the function myfn is set to "Hello," within
the function definition, but it reverts to "World!" in code that is outside
that block.

This more complicated example:

 outerfn = {
 x = 12;
 innerfn = {
 print(x);
 };
 innerfn;
 };

 thing = outerfn();
 thing();

prints "12" because the function innerfn carries the values it knows
about with it, meaning that when we call the function returned by
outerfn(), which is actually innerfn because that is what is returned
by outerfn when we call it, it runs the print(x) line and it still knows
what x is. Functions that are carrying their values with them are called
Closures, and the set of values that is passed around is called an
Environment. Environments are key to the way the evaluator works.

Environments
An environment is a namespace that holds
all the symbols that are defined in your
program. As illustrated here, each piece of
code operates inside a local environment
(such as the current function) but can also

T

Andy Balaam Andy is happy as long as he has a programming
language and a problem. He finds over time he has more and more
of each. You can find his open source projects at artificialworlds.net
or contact him on andybalaam@artificialworlds.net

Behaviour

Text

Lexer

Tokens

Parser

Syntax
Tree

Evaluator

BehaviourSyntax
Tree

Evaluator

print, ifjson_parser
my_function
4 | Overload | October 2018

FEATUREANDY BALAAM

Without an environment we can’t do anything
since we don’t know where to look up the

symbols that are being used in the code
access symbols from outer environments (such as an outer function) and
the global environment, that contains important symbols such as the if
function.

This structure is provided in Cell by a class called Env. It takes a parent
environment as a constructor argument, which it holds in self.parent.
To look up a name we call the get() method:

 class Env:
 # ...
 def get(self, name):
 if name in self.items:
 return self.items[name]
 elif self.parent is not None:
 return self.parent.get(name)
 else:
 return None

This method checks whether a symbol is defined locally, and if not, it asks
the parent environment. It gives up when it gets to the global environment,
which has None for its self.parent value.

Defining a symbol means calling set(), which is simpler:

 class Env:
 # ...
 def set(self, name, value):
 self.items[name] = value

So newly defined symbols are always defined in the local environment,
and don’t leak out into wider scopes.

The evaluator
Listing 1 shows the main logic of the evaluator. You can see the full code
at https://github.com/andybalaam/cell/blob/master/pycell/eval_.py, but
here we can see the main structure is very similar to the code we saw in
the previous two parts – a large if-elif block responding differently to
the various possible structures.

In the evaluator, the eval_expr() function takes in an expression to
evaluate, and the environment in which to work. Without an environment
we can’t do anything since we don’t know where to look up the symbols
that are being used in the code. The environment is an instance of the Env
class we saw earlier, and the expression is a Python tuple representing part
of a syntax tree.

The first part of the tuple tells us the type of syntax tree section we have.
We place this into a variable called typ, and use it in the if block.

Ordinary values
If we are evaluating a number, we use Python’s float() function to
convert the string form that was captured in the lexer token (as expr[1],
the second value in the tuple) into a Python number. This means we can
do arithmetic with it later if we need to, and illustrates the fact that the
evaluator is where the textual and structural forms of the code are
converted into ‘meaning’ such as finding actual numbers and looking up
the values of symbols.

If we find a string, we have very little to do, since the value of a string looks
identical to its form as a lexer token – i.e. it is a tuple of two values, the
first of which is "string" and the second is the contents of that string.

Next we deal with a special case – there is a special type of value in Cell
that is called None – we inject this value into the global environment with
the name None, and the Python tuple to represent its value is ("none",)
i.e. a tuple with just one value in it to represent a special none type. In Cell,
None is used to describe a missing or empty value. If we find a None value
like this, we simply return a similar None value from eval_expr.

The next type of syntax tree we handle is "operation" – this represents
an arithmetic operation like "+" or "*". We call a dedicated function
_operation() to deal with this, which is shown in listing 2.

The _operation() function takes in an expression and environment just
like eval_expr, and it looks at expr[1] to find out what kind of
operation is being asked for. As we saw in the previous article, this was
populated by the parser and can be "+", "-", "*" or "/". In each case,
we evaluate the expressions on the left and right of the operator and place
them into variables arg1 and arg2, and then combine them together using

Listing 1

def eval_expr(expr, env):
 typ = expr[0]
 if typ == "number":
 return ("number", float(expr[1]))
 elif typ == "string":
 return ("string", expr[1])
 elif typ == "none":
 return ("none",)
 elif typ == "operation":
 return _operation(expr, env)
 elif typ == "symbol":
 name = expr[1]
 ret = env.get(name)
 if ret is None:
 raise Exception(
 "Unknown symbol '%s'." % name)
 else:
 return ret
 elif typ == "assignment":
 var_name = expr[1][1]
 val = eval_expr(expr[2], env)
 env.set(var_name, val)
 return val
 elif typ == "call":
 return _function_call(expr, env)
 elif typ == "function":
 return ("function", expr[1], expr[2],
 Env(env))
 else:
 raise Exception(
 "Unknown expression type: " + str(expr))
October 2018 | Overload | 5

https://github.com/andybalaam/cell/blob/master/pycell/eval_.py

FEATURE ANDY BALAAM
the appropriate Python arithmetic operator. If the rules of arithmetic in Cell
were different from those in Python, this is where we would see the
difference. Similarly, if we chose to use some other class to represent
numbers, we would have seen that being used when we found a "number"
type, instead of the float() function. In fact, because Cell is designed
to be simple to implement, we choose to use Python’s float type and built-
in arithmetic for all the numeric operations.

Back in the main code (listing 1) we see the next type is "symbol". This
means we found a symbol like my_function in the code, or a built-in
symbol like print or if. To evaluate it, we simply look it up in the
environment using Env’s get() method that we saw earlier. If we can’t
find it, we throw an exception, producing a crude error message for the
user.

Similarly, if the type is "assignment", we have found code like "x =
3", and we use the environment’s set() method to store the value inside
the symbol we were given. We make sure to evaluate the value before
storing it, by calling eval_expr() again. In this case, and in other cases,
we call eval_expr from inside eval_expr. This is called recursion, and
makes perfect sense if you don’t think about it too much, or, alternatively,
if you think about it a lot.

Functions
The last two types to deal with both concern functions. First, "call"
means we are looking at a function call, something like "my_fn(3)". We
deal with this in a separate function called _function_call, shown in
listing 3.

The _function_call function (did I mention that writing a
programming language can get confusing when you start writing functions
about functions, or variables containing variables?) evaluates the function
object that is being called and checks its type.

The type will be either "function" or "native". The "function"
type means that this is a normal function written in Cell. In order to run it,
we check we have been given the right number of arguments, and then
create a temporary environment based on the environment carried around
by the function itself (recall the discussion of scope and closures earlier).
Next it puts the argument values into that environment using the names
provided in the function definition, and then calls eval_list. It is not
shown here, but eval_list just evaluates each line of the function one
by one. It actually ignores the values of all those lines except the last one,
which it uses as the function’s return value.

A "native" type is a function that is not written in Cell, but instead is
provided as part of Cell’s implementation. This means the function is
written in Python (because Cell is written in Python). In this case, fn[1]
is a Python function. We check the number of arguments again, and call
the function, passing in the environment and the arguments. Python
functions that provide native Cell functions actually take one more
argument in Python than you see in Cell, because the first argument is the
environment in which to run. We don’t create a sub-environment in which
to run in this case, because native functions can do all kinds of magic, like
modifying the environment in which they are running. Writing these

functions is slightly odd because the arguments passed in are tuples
representing Cell values, rather than simple Python types, and any symbols
etc. need to be looked up in the environment provided.

Back in listing 1, the last type we deal with is "function". So far we’ve
only dealt with calling functions, but this is about the definition of a
function – in Cell that means code inside curly braces. In fact, most of the
hard work of defining the function has been done by the parser, which
made us a list of argument names and expressions that make up the body
of the function. All we need to do in the evaluator is wrap all that up with
a new Env object that is the environment passed around with the function.
This means if we return a function definition from another function, it can
still access the variables it could see when it was defined because its
environment (and the parent environments) are held with it. We rely on
Python’s object references to make sure the values we are interested in are
still available when we use them.

The else part of listing 1 throws an exception because we have found a
syntax tree that we don’t recognise (in the famous last words of all
programmers, this should never happen) and we are done.

Side effects
With all this discussion of finding values, it seems strange to say that most
programming languages, including Cell, actually do nothing with the
values they find. In order to make a useful program, the programmer must
use the values to produce ‘side effects’ – things that make something
happen in the world outside the program. In Cell, we have a native function
called "print" that prints out values we have calculated. Most other
languages have lots of available side effects such as creating and
modifying files, displaying windows, and making sounds.

Summary
We’ve completed our journey: this time we saw how to take a syntax tree
and turn it into meaningful values. When we combine this with being able
to break code into separate chunks (lexing) and building those chunks into
a syntax tree (parsing), we’ve covered all the basic building blocks needed
to write an interpreter. Are you ready to design your own language?

You can find all the code for Cell at https://github.com/andybalaam/cell,
and I would to hear from you if you have made your own language – let
me know through GitHub or Twitter on @andybalaam or in the fediverse
on andybalaam@mastodon.social, and check out a video series about Cell
on my YouTube page at https://www.youtube.com/user/ajbalaam.

Listing 2

def _operation(expr, env):
 arg1 = eval_expr(expr[2], env)
 arg2 = eval_expr(expr[3], env)
 if expr[1] == "+":
 return ("number", arg1[1] + arg2[1])
 elif expr[1] == "-":
 return ("number", arg1[1] - arg2[1])
 elif expr[1] == "*":
 return ("number", arg1[1] * arg2[1])
 elif expr[1] == "/":
 return ("number", arg1[1] / arg2[1])
 else:
 raise Exception(
 "Unknown operation: " + expr[1])

Listing 3

def _function_call(expr, env):
 fn = eval_expr(expr[1], env)
 args =
 list((eval_expr(a, env) for a in expr[2]))
 if fn[0] == "function":
 params = fn[1]
 fail_if_wrong_number_of_args(expr[1],
 params, args)
 body = fn[2]
 fn_env = fn[3]
 new_env = Env(fn_env)
 for p, a in zip(params, args):
 new_env.set(p[1], a)
 return eval_list(body, new_env)
 elif fn[0] == "native":
 py_fn = fn[1]
 params = inspect.getargspec(py_fn).args
 fail_if_wrong_number_of_args(expr[1],
 params[1:], args)
 return fn[1](env, *args)
 else:
 raise Exception(
 "Attempted to call something that is not a
function: %s" % str(fn)
)
6 | Overload | October 2018

https://www.youtube.com/user/ajbalaam
https://github.com/andybalaam/cell

FEATUREDMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK
P1063 vs Coroutines TS: Consensus
on High-Level Semantics
Dmytro Ivanchykhin, Sergey Ignatchenko and
Maxim Blashchuk argue that we need coroutines
TS now to improve-based-on-experience later.
Disclaimer: This article takes for granted that readers understand what
coroutines are about. If this concept is unfamiliar to you (hey, we’re
speaking about standard proposals here!) make sure to take a look at
[Nishanov15] and [McNellis16].

Disclaimer #2: Just to avoid any doubt, this article is not written with the
help of some magical oracle or other source of infinite wisdom; rather, this
article (just as any other article for that matter) merely represents an
opinion of its authors (which may or may not coincide with the opinion of
the Overload editor). In addition, this article is neither sanctioned nor
sponsored by any government, WG21, or other official body.

uite recently, we have learned that newly appeared [P1063R0]1 and
its ‘Core Coroutines’ proposal has led to controversy, which got in
the way of voting Coroutines TS [N4760] (a.k.a. Gor-routines) into

C++20. As big fans of coroutines in general and asynchronous processing
in particular, we became worried about this development, so we took a look
at this situation from the point of view of an app-level developer (and
occasional architect). In other words, we do not really care about
implementation details and compiler complexities – instead, we care about
stuff such as readability, performance, backward compatibility and code
maintenance costs; and of course, another extremely important
consideration is when we’ll be able to start using those exciting new C++
features (without standardization we’re not really able to use any feature
on a massive scale as the associated risks are just too high).

App-level point of view
From our app-level point of view we can say that all code-using coroutines
we can think of, in most of real-world projects will fall into two separate
categories:

 code which uses co_await2. Let’s call this code end-programmer
code (mimicking end-user-related terminology). This code will be
interspersed with business logic. It will change very frequently, and
will be spread all over the code base; as a result, any change to the
semantics of co_await will be crazily expensive at app-level, and
most likely such a change won’t be feasible.

 code which enables using co_await (for Coroutines TS, it is all the
await_*() stuff; for Core Coroutines, it is overloaded operator
[<-] etc.). Let’s call this code infrastructure app-level code. For all
the use cases we can think of for serious projects, this code is going
to be confined to some kind of framework/glue/... layer. Moreover,
this layer usually doesn’t contain business logic and tends to be quite
limited in size, with changes to this layer being quite rare. In fact, a
similar point of view is articulated in [P1063R0]: “authors of
wrapper libraries... we expect those to be relatively rare”.

Coroutines TS vs P1063: end-programmer example
Let’s take the very same piece of code and see how it can be written under
both proposals.

Coroutines TS a.k.a. Gor-routines
future<int> count_bytes(Connection& connection) {
 int bytes_read = 0;
 vector<char> buffer(1024);

 while(!connection.done()) {
 bytes_read +=
 co_await connection.Read(buffer.data(),
 buffer.size());
 }
 co_return bytes_read;
}

P1063R0 a.k.a. "Core Coroutines"
 auto count_bytes(Connection& connection) =>
 make_future<int>([&connection] do {
 int bytes_read = 0;
 vector<char> buffer(1024);

 while(!connection.done()) {
 bytes_read +=
 [<-]connection.Read(buffer.data(),
 buffer.size());
 }
 return bytes_read;
});

End-programmer semantics: exactly the same for
Coroutines TS and Core Coroutines
Following from the ‘App-level point of view’ section above, the most
important (and utterly unchangeable later) portion of any coroutines
proposal is the semantics of co_await (or whatever other syntax it may
have). Historically, there have been several significantly different
semantics of await (for example, in a relatively recent [P0114R0], it was
argued not to require a marker for a suspend point – which, BTW, was
argued later to be a Bad Thing™ for app-level [NoBugs17]).

1. Based on [P0973R0], with two of the three authors being the same.
2. Or operator [<-], it doesn’t really matter.

Q

Dmytro Ivanchykhin has 10+ years of development experience,
and has a strong mathematical background (in the past, he taught
maths at NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com

Sergey Ignatchenko has 15+ years of industry experience,
including being a co-architect of a stock exchange, and the sole
architect of a game with 400K simultaneous players. He currently
holds the position of Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

Maxim Blashchuk Maxim Blashchuk has substantial development
experience, most of it with embedded programming. Recently he
joined a team performing research on low-level C++ libraries providing
properties such as determinism and memory safety.
October 2018 | Overload | 7

FEATURE DMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK
However, if we take a look at currently competing proposals (Coroutines
TS and P1063), we’ll see (to the best of our understanding) that

the semantics of co_await and the proposed operator [<-], at
least at the point where co_await/[<-] is used by end-
programmer code, is exactly the same.

Not only is the flow interrupted (with the possibility of being resumed) in
the very same manner for both proposals, but also all properties that are
observable from the business-logic level (such as enforcing calls around
async call to be asynchronous) are the same too.

As noted above, such consensus on high-level semantics (compared to
co_await) wasn’t the case for earlier proposals such as [P0114R0], but
is the case for [P1063R0].

On end-programmer syntax
While the semantics of the proposals are exactly the same, there are a few
high-level syntactic differences between P1063 and ‘Coroutines TS’:

 Replacement of co_await with an identically used but differently
named operator [<-]. Not that it really matters for our current
discussion, but we have to mention that we have our doubts about an
argument from [P1063R0] that the “co_await keyword is an overt
manifestation of the TS’s preference for the asynchronous use case”.

We feel that, even when we’re writing generators, we can consider
what is happening at that point as ‘awaiting’ something external to
our code flow to happen (even if it is another generator). Indeed,
with co_await (or [<-]) we’re interrupting the program flow –
but why? To await something external to our program flow to
happen (whether it is an async event, another generator, or whatever
else). In addition, the concept of unwrapping is guaranteed to be
alien to the vast majority of app-level developers (even more so for
existing C++ app-level developers). That being said, we are quite
indifferent to the choice between co_await and [<-].

 Explicit designation of coroutines (vs implicit one in Coroutines TS,
where being coroutine is derived from co_await or co_return
being used). In general, there are arguments to have app-level code
explicitly documented, but this is still a very minor issue. OTOH,
the way it is done in P1063 is very verbose (that’s even after they’re
relying on a yet another pending proposal – and modifying it further
(!) – to make syntax more palatable) and we feel that it is at odds
with the all-important “direct expression of ideas” principle which
was laid out in [Stroustrup04].

 Lambda-like syntax in P1063 vs traditional function syntax in
Coroutines TS. Again, it doesn’t matter too much for the purposes
of our current discussion, but we have to say that lambda-like syntax
(a) is more error-prone (keeping all those brackets matching is yet
another thing to care about while programming), and (b) as lambda
syntax differs significantly from usual function syntax, we feel that
it undermines the time-honoured understanding of subroutines
being “special cases of more general program components, called
coroutines” [Knuth].

 Replacement of co_return with return. TBH, this is the least of
our syntactic concerns (not that other syntactic concerns are
significant); we explicitly do not care about it. Either way is
perfectly fine with us and we have no idea why it is so important for
the authors of [P1063R0].

However, the most important property of all the syntactic differences is

As the differences are purely syntactical, nothing prevents us from
either (a) choosing whatever syntax is preferred right now, without
delaying the whole thing for N years, and/or (b) adding syntactic
alternatives later

Customization points: mostly an implementation
detail that can be changed later
In fact, what we have already discussed above is only a minor part of the
differences between Coroutines TS and P1063; however, all the remaining
differences we’re aware of are either (a) about optimizations (which we’ll

discuss a bit later), or (b) about so-called ‘customization points’ in P1063-
speak, or, from our current perspective, are about what we decided to call
‘app-level infrastructure code’. Let’s take a closer look at those
customization points and app-level infrastructure code.

As for app-level infrastructure code, the most important properties are:

1. it is hidden from the view of the end-user programmer
2. it is rarely changed
3. and it is small.

(BTW, as it was already noted above, P1063 itself has indications which
agree with this point of view.)

As a direct result of item #1 above, from the end-user programmer point
of view,

customization points/app-level infrastructure code are nothing but
implementation details

Moreover, from #2 and #3 it follows that costs of rewriting such code – if
such a need will ever arise – will be small; this opens us a door to change
them later if/when it is demonstrated that such a change is necessary.

Performance and allocations
Another set of objections to Coroutines TS laid out in P1063 is about
performance and lack of normative control over allocations. This one is
simple – P1063 itself acknowledges that all their performance/allocation
concerns can be addressed by extending Coroutines TS later: “These all
appear to be pure extensions, so they could be done post-C++20 if need
be.” As a result, we don’t really care about performance issues now, as
optimizations (most of them already existing) can be made normative later.

This is without mentioning that the whole argument along the lines of “we
don’t want allocations” becomes more and more moot as soon as we take
into account that modern single-threaded allocators can perform
malloc()+ free() pairs in as little as 15 CPU cycles [Ignatchenko18];
with this cost being comparable to the cost of a single branch mis-
prediction(!), efforts related to eliminating allocations become more and
more of a ‘yet another optimization’ rather than ‘a thing we should care
about a lot’.

Analysis: coroutines TS CAN be voted in, even if P1063
is right on every point
Now, we’re done with the preliminaries and can proceed to the point of
this article. Let’s assume for the moment that ISO committee and the
industry follow this path:

 WG21 has a short discussion on syntax for Coroutines TS (or makes
a joint proposal in this regard). Our own preferences in this regard
were outlined above, but TBH we will accept any kind of syntax to
get coroutines into C++20 (that is, as long as end-programmer
semantics remains the same).

 WG21 votes Coroutines TS into C++20.

 In a few years, everybody and their dog are using Coroutines TS.

Now, let’s consider all the possible scenarios with regards to the merits of
P1063 in this context (keeping in mind its claims about being more generic
than Gor-routines):

 If by the end of the day (and as Gor currently argues), P1063 won’t
be able to provide any significant improvements (that is, over an
improved-over-time Coroutines TS), accepting Coroutines TS was
the right thing; end of discussion.

 If P1063 happens to be perfect as promised, it should be possible to
rewrite the current implementation of Coroutines TS (including the
code providing for await_suspend() etc.) in P1063 style. This
means that: (a) at end-programmer level, there will be exactly zero
changes; (b) at the level of the app-level infrastructure code: (b1) for
the time being, we’ll have Coroutines TS (good enough for us), and
(b2) when P1063 is standard-ready (in the very best case C++26(!)),
we’ll have both ways of describing things (NB: unless demonstrated
to be superior in performance, we’re sure that lots of developers –
ourselves included – will still prefer the Coroutines TS way).
8 | Overload | October 2018

FEATUREDMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK
 If P1063 happens to be not as perfect as promised but still better than
Coroutines TS, it might be impossible to rewrite the current
implementation of Coroutines TS in the P1063 style. This will mean
that: (a) at end-programmer level, there are still exactly zero
changes; (b) at the level of the app-level infrastructure code: (b1) for
the time being, we’ll have Coroutines TS, and (b2) when P1063 is
standard-ready, we’ll have two separate ways of describing things.
This might mean – when the project benefits from it – that a very
small portion of the project code (from experience, 2–5%) may need
to be rewritten; taking into account that for the vast majority of
projects (90+% being a conservative estimate) Coroutines TS are
expected to be ‘good enough’, we’re speaking about 0.2–0.5% of all
the code using Coroutines-TS being rewritten. We are confident that
it is not too much of a price for having Coroutines TS at least 6 years
earlier (and note that this 0.2–0.5% rewrite happens only IF P1063
is better than Coroutines TS but is not as perfect as promised).

 If some other way to implement customization (even better than
P1063) arises meanwhile: (a) at end-programmer level, there are
still exactly zero changes; (b) at the level of the app-level
infrastructure code: (b1) for the time being, we’ll have Coroutines
TS, and (b2) when some-other-way is standard-ready, we’ll have
one or two separate ways of describing things. However, along the
lines above, our estimate is that – even in the worst case – only 0.2–
0.5% of the code using the Coroutines TS will have to be rewritten.

In other words:

In each and every conceivable scenario, including the one where
P1063 is right with each and every significant claim they’re making,
voting in Coroutines TS is The Right Thing To Do™.

Voting Coroutines TS into C++20 will provide two all-important benefits:

 in the industry, we’ll be able to use goodies of coroutines right now
(and not 6+ years later)

 even more importantly, while we’re using it – we’ll see more real-
world use cases, and will be able to criticize current
implementation not from purely abstract point of view, but
based on the needs of the real world.

In a sense, what we have is a situation similar to prima facie hearing in the
criminal law of some countries; in such hearings, even if all the evidence
presented by the prosecution, is taken at face value, but the defendant is
still not guilty, there is no need to argue about the merits of the evidence,
and the decision can be made in favour of the defendant without
conducting a full hearing. Such cases are admittedly rare, but in our case
of P1063-vs-Coroutines-TS, it is possible because of two major
observations:

 when considering 99+% of the relevant code, the semantics of the
Coroutines TS and P1063 is exactly the same. In other words, we
have consensus on end-programmer semantics.

 And from the point of view of the all-important end-programmer,
anything else can be seen as an implementation detail, and
Coroutines TS sets the abstraction boundary for customization
points to be very close to the end-user programmer, preventing app-
level programmers from implementing it themselves. This, in turn,
allows specifying this layer later (which is essentially what P1063
tries to do). In other words, we’re going in the direction from being
under-specified to over-specified (which, unlike the other way
around, is perfectly feasible).

Or, trying to approach the same thing from a different perspective: we
clearly feel that current Coroutines TS does represent ‘gradual expansion’
without degenerating into ‘opportunistic hacking’ as defined in [P0976]
by Bjarne Stroustrup.

Gradual expansion, relying on feedback, is my ideal. Better an
incomplete design than a poor/clumsy/bloated ‘complete solution’.

And FWIW, ‘relying on feedback’ is not really possible until co_await
makes it into the standard one way or another; it means that the merits of
voting in Coroutine TS right now go far beyond our simple desire to
start using it ASAP: it is also important to ensure that the end-product

(the C++ standard) is the best one possible. Indeed, if some over-
specified stuff makes it into the standard, it will be next to impossible to
replace it later – and right now we just don’t have sufficient information
to say which way is the best one; in this sense, the approach taken by
Coroutines TS (to hide as much as possible beyond the implementation
boundary, or – in other words – ‘to under-specify rather than over-specify’)
is a Good Thing™; combined with an as-early-as-possible acceptance of
Coroutines TS into the standard, this allow to get that all-important
feedback Bjarne refers to in [P0976].

Conclusion
We hope that we have made a case for ‘voting for Coroutines TS right now
regardless of the merits of the finer points of P1063’ (that is, points going
beyond two major observations listed above):

 we’ll be able to use coroutines at end-programmer level (where
consensus already exists) right away

 as for customization points, even if P1063 is The Way To Go(tm) –
it can be added later when (if) this becomes apparent. In addition,
while we’re using coroutines in the wild, we’ll become much more
knowledgeable about real-world use cases – and the ways that
Coroutines TS needs to be improved (who knows, maybe a more-
straightforward model to express ‘customization points’ arises as we
learn more about coroutines from deploying Coroutines TS – and
current Coroutines TS has abstraction boundaries which leave room
for different ways of specifying ‘customization points’).

In other words, we hope we have demonstrated that voting in Coroutines
TS is The Right Thing To Do™ without criticizing P1063 itself.

Phew. We rest our case.

References
[Ignatchenko18] (Re)Actor Allocation At 15 CPU Cycles, Sergey

Ignatchenko, Dmytro Ivanchykhin, Marcos Bracco, Overload #142,
https://accu.org/index.php/journals/2533

[Knuth] The Art of Computer Programming, Donald Knuth, Vol. I
[McNellis16] Introduction to C++ Coroutines, James McNellis,

CppCon2016, https://www.youtube.com/watch?v=ZTqHjjm86Bw
[Nishanov15] C++ Coroutines – a negative overhead abstraction, Gor

Nishanov, CppCon2015, https://www.youtube.com/
watch?v=_fu0gx-xseY

[N4760] Working Draft, C++ Extensions for Coroutines, Gor Nishanov,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
n4760.pdf

[NoBugs17] Eight Ways to Handle Non-Blocking Returns in Message-
Passing Programs, ‘No Bugs’ Hare, http://ithare.com/eight-ways-to-
handle-non-blocking-returns-in-message-passing-programs-with-
script/3/, CppCon17

[P0114R0] Resumable Expressions, http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2015/p0114r0.pdf

[P0973R0] Coroutines TS Use Cases and Design Issues, Geoff Romer,
James Dennett, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2018/p0973r0.pdf

[P0976] The Evils of Paradigms Or Beware of one-solution-fits-all
thinking, Bjarne Stroustrup, http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2018/p0976r0.pdf

[P1063R0] Core Coroutines, Geoff Romer, James Dennett, Chandler
Carruth, http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/
p1063r0.pdf

[Stroustrup04] Speaking C++ as Native (Multi-paradigm Programming in
Standard C++), Bjarne Stroustrup, http://ewh.ieee.org/r5/
central_texas/austin_cs/presentations/2004.02.25.pdf
October 2018 | Overload | 9

https://accu.org/index.php/journals/2533
https://accu.org/index.php/journals/2533
https://www.youtube.com/watch?v=_fu0gx-xseY
https://www.youtube.com/watch?v=_fu0gx-xseY
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4760.pdf
http://ithare.com/eight-ways-to-handle-non-blocking-returns-in-message-passing-programs-with-script/3/
http://ithare.com/eight-ways-to-handle-non-blocking-returns-in-message-passing-programs-with-script/3/
http://ithare.com/eight-ways-to-handle-non-blocking-returns-in-message-passing-programs-with-script/3/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0114r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0114r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0973r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0973r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0976r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0976r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1063r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1063r0.pdf
http://ewh.ieee.org/r5/central_texas/austin_cs/presentations/2004.02.25.pdf
http://ewh.ieee.org/r5/central_texas/austin_cs/presentations/2004.02.25.pdf

FEATURE BARRY REVZIN
Implementing the Spaceship
Operator for Optional
Comparison operators can get complicated. Barry Revzin
explores how the new operator <=> helps.
n November 2017, the C++ Standards Commit tee added
operator<=>, known as the spaceship operator [P0515], to the
working draft for what will eventually become C++20. This is an

exciting new language feature for two reasons: it allows you to write one
function to do all your comparisons where you used to have to write six,
and it also allows you to write zero functions – just declare the operator
as defaulted and the compiler will do all the work for you! Exciting times.

The paper itself presents many examples of how to implement the
spaceship operator in various situations, but it left me with an unanswered
question about a particular case – so I set out trying to figure out. This post
is about the journey of how to implement operator<=> for
optional<T>. First, thanks to John Shaw for helping work through all
the issues with me. And second, the resulting solution may not be correct.
After all, I don’t even have a compiler to test it on. So if you think it’s
wrong, please let me know (and please post the correct answer in this self-
answered StackOverflow question [StackOverflow]).

First, the specs. optional<T> has three categories of comparisons, all
conditionally present based on the facilities of the relevant types:

 optional<T> compares to optional<U>, where valid (6
functions).

 optional<T> compares to U, where valid (12 functions). I’m
sceptical of this particular use-case, but this post is all about
implementing the spec.

 optional<T> compares to nullopt_t (12 functions). This case
is trivial to implement, since several of the operations are simply
constants (e.g. operator>=(optional<T>, nullopt_t) is
true). But, that’s still 12 trivial-to-implement functions.

In all cases, the semantics are that a disengaged optional is less than any
value, but all disengaged values are equal. The goal is to take advantage
of the new facilities that the spaceship operator provides us and reduce the
current load of 30 functions to just 3.

We’ll start with the optional on optional comparison. There are four
cases to consider: both on, left on only, right on only, and both off. That
leads us to our first approach (Listing 1).

The spaceship operator returns one of five different comparison
categories:

 strong_ordering

 weak_ordering

 partial_ordering

 strong_equality

 weak_equality

Each of these categories has defined named numeric values. In the paper,
the categories are presented in a way that indicates the direction in which
they implicitly convert in a really nice way, so I’m just going to copy that
image as Figure 1 (all credit to Herb Sutter).

Likewise, their table of values is shown in Table 1 on the next page.

Just carefully perusing this table, it’s obvious that our first implementation
is totally wrong. strong_ordering has numeric values for less, equal,
and greater… but the rest don’t! In fact, there is no single name that is
common to all 5. By implementing it the way we did, we’ve reduced
ourselves to only supporting strong orderings.

I

Listing 1

template <typename T>
class optional {
public:
 // from here on out, assuming that heading
 // exists ...

 template <typename U>
 constexpr auto operator<=>(
 optional<U> const& rhs) const
 -> decltype(**this <=> *rhs)
 {
 using R = decltype(**this <=> *rhs);
 if (has_value() && rhs.has_value()) {
 return **this <=> *rhs;
 } else if (has_value()) {
 return R::greater;
 } else if (rhs.has_value()) {
 return R::less;
 } else {
 return R::equal;
 }
 }
};

Figure 1

The comparison categories for the spaceship operator

Barry Revzin I’m a C++ developer for Jump Trading, member of
the C++ Standards Committee, also ‘Barry’ on StackOverflow. On
the side, I’m also an avid swimmer and do data analysis for
SwimSwam magazine. And take care of my adorable Westie and
life mascot, Hannah. You can reach me at barry.revzin@gmail.com
10 | Overload | October 2018

FEATUREBARRY REVZIN

The shapeship operator for bools
gives us a strong_ordering, which is

convertible to everything
So if we can’t actually name the numeric values, what do we do? How can
we possibly do the right thing?

Here, we can take advantage of a really important aspect of the comparison
categories: convertibility. Each type is convertible to all of its less strict
versions, and each value is convertible to its less strict equivalents.
strong_ordering::greater can become:

 weak_ordering::greater or

 partial_ordering::greater or

 strong_equality::nonequal or

 weak_equality::nonequivalent

And the way we can take advantage of this is to realize that we don’t really
have four cases, we have two: both on, and not that. Once we’re in the ‘not’
case, we don’t care about the values anymore, we only care about the bools.
And we already have a way to do a proper 3-way comparison: <=>! (See
Listing 2.)

The shapeship operator for bools gives us a strong_ordering, which
is convertible to everything. So that part is guaranteed to work and do the
right thing (I encourage you to work through the cases and verify that this
is indeed the case).

But this still isn’t quite right. The problem is actually <=> (thanks, Captain
Obvious?). You see, while a < b is allowed to fallback to a <=> b < 0,
the reverse is not true. a <=> b is not allowed to call anything else (besides

b <=> a). It either works, or it fails. By using the spaceship operator
directly on our values, we’re actually reducing ourselves to only those
modern types that support 3-way comparison. Which, so far, is no user-
defined types. Moreover, <=> doesn’t support mixed-integer comparisons,
so even for those types that come with built-in spaceship support (that’s a
fantastic phrase), we would effectively disallow comparing an
optional<int> to an optional<long>. So, this operator in this
particular context isn’t very useful.

So what are we to do? Re-implement 3-way comparison ourselves
manually? Nope, that’s what the library is for! Along with language
support for the spaceship operator, C++20 will also come with several
ha nd y l i b ra r y f u nc t i o n s an d t he r e l eva n t o n e fo r u s i s
std::compare_3way(). This one will do the fallback: it prefers <=>,
but if not will try the normal operators and is smart enough to know
whether to return strong_ordering or strong_equality. And it’s
SFINAE-friendly. Which means for our purposes, we can just drop-in
replace our too-constrained version with it (see Listing 3).

And I think we’re done.

Now that we’ve figured out how to do the optional-vs-optional
comparison, comparing against a value is straightforward. We follow the
same pattern for the value-comparison case, we just need to know what to
return in the case where the optional is disengaged. Semantically, we need
to indicate that the optional is less than the value. Again, we can just take
advantage that all the comparison category conversions just Do The Right
Thing and use strong_ordering::less (see Listing 4).

Table 1

Category
Numeric values Non-numeric

values-1 0 1

strong_ordering less equal greater

weak_ordering less equivalent greater

partial_ordering less equivalent greater unordered

strong_equality equal non-equal

weak_equality equivalent non-equivalent

Listing 2

template <typename U>
constexpr auto operator<=>(optional<U>
 const& rhs) const
 -> decltype(**this <=> *rhs)
{
 if (has_value() && rhs.has_value()) {
 return **this <=> *rhs;
 } else {
 return has_value() <=> rhs.has_value();
 }
}

Listing 3

template <typename U>
constexpr auto operator<=>(optional<U>
 const& rhs) const
 -> decltype(compare_3way(**this, *rhs))
{
 if (has_value() && rhs.has_value()) {
 return compare_3way(**this, *rhs);
 } else {
 return has_value() <=> rhs.has_value();
 }
}

Listing 4

template <typename U>
constexpr auto operator<=>(U const& rhs) const
 -> decltype(compare_3way(**this, rhs))
{
 if (has_value()) {
 return compare_3way(**this, rhs);
 } else {
 return strong_ordering::less;
 }
}

October 2018 | Overload | 11

FEATURE BARRY REVZIN
We just replaced 12 functions (that, while simple, are certainly non-trivial
to get right) with 10 lines of code. Mic drop.

All that’s left is the nullopt_t comparison, which is just a simple
comparison (Listing 5).

Putting it all together, and Listing 6 is what we end up with to cover all 30
std::optional<T> comparisons.

Not bad for 25 lines of code?

Let me just reiterate that I’m not sure if this is the right way to implement
these operators. But that’s the answer [StackOverflow] I’m sticking with
until somebody tells me I’m wrong (which, if I am, please do! We’re all
here to learn).

Needless to say, I’m very much looking forward to throwing out all my
other comparison operators. Just… gotta wait a few more years.

Bonus level
Here’s what I think a comparison operator would look like for
std::expected<T, E>. The semantics here are that the values and
errors compare against each other, if they’re the same. If they’re different
types, the value is considered greater than the error. Although, for the
purposes of this exercise, the specific semantics are less important than the

fact that we get consistent semantics. And I think the right way to
implement consistent semantics is as shown in Listing 7.

common_comparison_category is a library metafunction that gives
you the lowest common denominator between multiple comparison
categories (which hopefully is SFINAE-friendly, but I’m not sure). The
first if check handles the case where the value-ness differs between the two
expected objects. Once we get that out of the way, we know we’re in a
situation where either both are values (so, compare the values) or both are
errors (so, compare the errors). Just thinking of how much code you have
to write today to accomplish the same thing makes me sweat…

References
[P0515] ‘Consistent comparison’ (2017) http://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2017/p0515r3.pdf

[StackOverflow] ‘Implementing operator<=> for optional<T>’
https://stackoverflow.com/questions/47315539/implementing-
operator-for-optionalt

Listing 5

constexpr strong_ordering operator<=>(nullopt_t)
const
{
 return has_value() ? strong_ordering::greater
 : strong_ordering::equal;
}

Listing 6

template <typename T>
class optional {
public:
 // ...

 template <typename U>
 constexpr auto operator<=>(optional<U>
 const& rhs) const
 -> decltype(compare_3way(**this, *rhs))
 {
 if (has_value() && rhs.has_value()) {
 return compare_3way(**this, *rhs);
 } else {
 return has_value() <=> rhs.has_value();
 }
 }

 template <typename U>
 constexpr auto operator<=>(U const& rhs) const
 -> decltype(compare_3way(**this, rhs))
 {
 if (has_value()) {
 return compare_3way(**this, rhs);
 } else {
 return strong_ordering::less;
 }
 }

 constexpr strong_ordering
 operator<=>(nullopt_t) const
 {
 return has_value() ? strong_ordering::greater
 : strong_ordering::equal;
 }
};

Listing 7

template <typename T, typename E>
class expected {
public:
 // ...
 template <typename T2, typename E2>
 constexpr auto operator<=>(expected<T2, E2>
 const& rhs) const
 -> common_comparison_category_t<
 decltype(compare_3way(value(),
 rhs.value())),
 decltype(compare_3way(error(),
 rhs.error()))>
 {
 if (auto cmp = has_value() <=>
 rhs.has_value(); cmp != 0) {
 return cmp;
 }
 if (has_value()) {
 return compare_3way(value(), rhs.value());
 } else {
 return compare_3way(error(), rhs.error());
 }
 }
};
12 | Overload | October 2018

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf
https://stackoverflow.com/questions/47315539/implementing-operator-for-optionalt

FEATUREBRONEK KOZICKI
Compile-time Data Structures in
C++17: Part 2, Map of Types
Compile time type selection allows static polymorphsim.
Bronek Kozicki details an implementation of a compile time map.
n part one of the series, we were introduced to a ‘set of types’ – a
compile-time data structure where both insertions and lookups are
performed during the compilation, rather than in runtime, which gave

them ‘O(0)’ complexity. The useful functionality this enabled was a test
meta-function (technically, a template variable), returning true during
the compilation time if a given tag type was present in the set (and false
otherwise). The use case for such a data structure was perhaps not the most
convincing if constexpr or a parameter to std::enable_if and
std::conditional.

This part of the series starts with a more sophisticated scenario shown in
Listing 1.

As we can see, the class Foo is decoupled from any implementation of
IFuzzer, and yet it can instantiate it with the help of Map, which performs
the necessary mapping with the selector type Fuz, to find the
implementation type Fuzzer. The mapping of Fuz to Fuzzer is defined
in one place only, inside int main(), which means that we have
achieved ‘parametrisation from the above’ with static polymorphism.

The implementation of such a ‘map of types’ is the subject of this article.

What is a ‘selector type’? In a C++ standard library, a selector in
std::map<int, std::string> is some value of type int used to
select value in a map. In our case, a selector type is just a tag type but used

I

Listing 1

struct IFuzzer {
 virtual ~IFuzzer() = default;
 virtual std::string fuzz(std::string) const = 0;
};

struct Fuz {};

struct Foo {
 template <typename Map> Foo(Map) {
 if constexpr ((bool)Map::template test<Fuz>)
 fuzz = std::make_unique
 <typename Map::template type<Fuz>>();
 }
 std::unique_ptr<IFuzzer> fuzz;
};

struct Fuzzer : IFuzzer {
 std::string fuzz(std::string n) const override {
 return n + "-fuzz!"; }
};

int main() {
 constexpr static auto m1 = map<>{}
 .insert<Fuz, Fuzzer>();

 const Foo foo {m1};
 std::cout << foo.fuzz->fuzz("Hello")
 << std::endl;
}

There is no such thing as ‘O(0)’ time complexity of a function (hence the
quotes) because time complexity implies that some action will actually
be performed during program execution. Here we are asking the compiler
to perform all the actions required by the function (or more accurately, a
meta-function) during compilation itself, which allows us to use the result
as an input for further compilation.

A meta-function might be a function with a constexpr specifier, but
typically we will use either a template type (wrapped in a using type
alias if nested inside a template type) or a constexpr static variable
template (also nested inside a template type). In the former case, a result
of a meta-function is a type, and in the latter, it is a value.

A tag type is a type which is meant to be used as a name – it has no data
members and no useful member functions. The only purpose of objects
of such types is the deduction of their type. Examples in the C++ standard
library include std::nothrow_t or types defined for various
overloads of the std::unique_lock constructor.

A pure function is a function that has no side effects and, for any valid
and identical set of inputs, always produces the same output. For
example, any deterministic mathematical function is also a pure function.
A function which takes no input, but always produces the same result and
has no side-effect, is also a pure function. Sadly, mathematical functions
in the C++ standard library are not pure functions: to be compatible with
C, they are saddled with a side effect (manipulating the errno variable).
We can view many meta-functions as pure functions.

A limitation of meta-functions is that they do not have a stack in any
traditional sense (they have template instantiation depth instead), and
cannot manipulate variables. They can produce (immutable) variables or
types, which means that they can be used to implement recursive
algorithms. Such an implementation will be typically a template type,
where at least one specialisation implements the general algorithm, while
another specialisation implements the recursion terminating condition.
The compiler selects the required ‘execution path’ of the recursive
algorithm by means of template specialisation matching.

A higher order function is a function which consumes (or produces, or
both) a function. Since, in our case, a (meta)function is a template, we
can implement a h igher order (meta)funct ion consuming a
(meta)function, as a template consuming template parameter (or in other
words, a ‘template template parameter’). Since template types can
naturally output a template type, any meta-function which is a type can
trivially produce a meta-function.

Overview of part 1

Bronek Kozicki developed his lifelong programming habit at the
age of 13, teaching himself Z80 assembler to create special effects
on his dad’s ZX Spectrum. BASIC, Pascal, Lisp and a few other
languages followed, before he settled on C++ as his career choice.
In 2005, he moved from Poland to London, and promptly joined the
BSI C++ panel with a secret agenda: to make C++ more like Lisp,
but with more angle brackets. Contact him at brok@incorrekt.com
October 2018 | Overload | 13

FEATURE BRONEK KOZICKI

What should we do with an element
which is not there, but something is
mapped to it?
to select something (usually other than itself). Any type can be employed
as a selector with the help of overloading, but there are few points to note:

 The result of such performed selection will be the return type of the
selected overload. Keyword decltype can be used to deduce this
type.

 If we want to do something useful when a match is not found (rather
than fail the compilation), a template parameter can be used.

 The functions in the overload set do not need to be defined, as we
only care about the return type of the function found by overloading
(the actual function never gets called).

 The overload selection should be strengthened against accidental
overloading matches, e.g. by implicit type conversion.

 We should avoid instantiating objects of arbitrary types for
overloading parameters or return value.

The two last points may seem to contradict the use of overloading until we
realise that any type can be made a parameter of a simple ‘wrapper’
template type, and such a template can then be used instead, both for
function parameters and their result. An example of such a selection based
on type is presented below, in Listing 2.

The example in Listing 2 has an obvious limitation – selector and return
types are both tightly coupled, inside the declarations of overload set pair
functions. It does, however, demonstrate the principles. The type

template alias instantiates a wrapper class appropriate for the selector type
(for example, wrap<Fuz>) and then passes it to the overload set of pair
functions. The result of overloading is deduced by the decltype
keyword. Since that return type is also a wrapper template, we refer to its
type nested alias to unwrap the result type. In this example, we do not do
much with the selected type, using the compile-time static_assert
only to verify that it is, indeed, the type expected.

The limitation mentioned above can be overcome using the same means
as demonstrated in the previous article in the series – building the type of
the collection with an insert function, which will create a new type
containing both the newly inserted types, and (by means of inheritance)
the types of the original collection. The using keyword is used to inject
the pair and test overloads of the base types into the scope of the newly
created type. See Listing 3.

While the map of types presented here will suffice for the simple use case
presented at the start, it does not fulfil some implied requirements. These
are:

 Uniqueness of the selector elements

 Prohibit void as selector type

 Constraints on the type of selector or mapped types.

The first requirement sets the behaviour of our map when a duplicate
selector is being used to insert a new element. As opposed to a set of types,
we are not going to ignore duplicate elements quietly, but will fail the
compilation instead – this is to protect against accidentally hiding existing
elements in a map. Reusing a set of types discussed in the first part of the
series will help with this requirement, as we can static_assert that
the newly inserted selector type is not already present in the set of selectors.

The second requirement needs a short explanation. In the previous part,
we defined void as a placeholder for an element when no element is
available (an empty set, in other words). However, what should we do with
an element which is not there, but something is mapped to it? That makes
no sense, hence prohibition. Interestingly, if we employ test from the set
of types to enforce the first constraint, it will automatically apply this one
as well, because void is considered to be an element of every set
(including an empty one). Do we also want to prohibit a void mapped
element? Surprisingly, we do not have to – the map of types is perfectly
capable of returning a mapped void type, although specific user semantics
of a map instance might prohibit it.

This is where the last requirement comes in – it provides us with the
semantics of ‘a map of something mapped to something else’ (as opposed
to a ‘map of anything’). We are also going to extend the meaning of the
constraint to optionally perform transformation of types – this enables the
use case where, rather than prohibit e.g. reference types as selectors, the
user would rather apply std::decay_t on them. In the previous part,
we have already defined a similar constraint for a set of types. We could
reuse such a check for a map of types, but we need two (for the selector
type T and for the mapped type V). For example, see Listing 4.

Note, the PlainTypes constraint does not enforce a non-void selector
type – as explained above, the test to prohibit duplicate selector types

Listing 2

#include <type_traits>

template <typename T> struct wrap {
 constexpr explicit wrap() = default;
 using type = T;
};

struct Fuz {};
struct Baz {};
struct Bar {};

wrap<double> pair(wrap<Fuz>);
wrap<bool> pair(wrap<Baz>);
template<typename T> wrap<void> pair(wrap<T>);

template <typename T>
using type = typename
decltype(pair(wrap<T>{}))::type;

int main() {
 static_assert(std::is_same_v<type<Fuz>,
 double>);
 static_assert(std::is_same_v<type<Baz>, bool>);
 static_assert(std::is_void_v<type<Bar>>);
}

14 | Overload | October 2018

FEATUREBRONEK KOZICKI

the constraints are not independent
types – they have no other purpose

than to allow the customisation of
the semantics of our data structure
inside the implementation of the map will perform this role. On the other
hand, the check for non-void mapped type is implemented in the
PlainNotVoid constraint. This is because (as discussed above) this
constraint belongs to the domain where the map is used, rather than its
inherent limitation. We are passing two parameters to our map, just like
std::map requires two parameters. However, in our case the constraints
are not independent types – they have no other purpose than to allow the
customisation of the semantics of our data structure. This could be a good
reason to consider passing a set of both constraints as a single parameter,
but we are not going to pursue this path.

Since we are going to reuse ‘a set of types’, we might as well expose it in
place of the test meta-function. This avoids the duplication of the
functionality of both data structures. Note that because of the dependency
on set, Listing 5 requires the reader to copy a large part of Listing 6 from
the Part 1 [Kozicki18].

The techniques presented here can be also applied to create a
heterogeneous collection of values (as opposed to types), with compile
time insertion and extraction of data, for elements supporting such
operations (and runtime otherwise). Such collections will be the subject
of the next article in the series.

Reference
[Kozicki18] See Listing 6 from https://accu.org/index.php/journals/2531,

from the top until the declaration of ‘struct Baz’.

Listing 3

namespace map_impl {
 template<typename T> struct wrap {
 constexpr explicit wrap() = default;
 using type = T;
 };
 template<typename ...L> struct impl;
 template<> struct impl<> {
 constexpr explicit impl() = default;
 template <typename U>
 constexpr static void pair(wrap<U>) noexcept
 {}

 template <typename U>
 constexpr static bool test(wrap<U>) noexcept {
 return false; }
 };
 template<typename T, typename V, typename ...L>
 struct impl<T, V, L...> : impl<L...> {
 constexpr explicit impl() = default;

 using impl<L...>::pair;
 constexpr static auto pair(wrap<T>) noexcept {
 return wrap<V>(); }

 using impl<L...>::test;
 constexpr static bool test(wrap<T>) noexcept {
 return true; }
 };
}
template <typename ...L> class map {
 using impl = map_impl::impl<L...>;

public:
 constexpr map() = default;

 template <typename T, typename V> constexpr
 auto insert() const noexcept {
 using result = map<std::decay_t<T>,
 std::decay_t<V>, L...>;
 return result();
 }

 template <typename U>
 constexpr static bool test =
 impl::test(map_impl::wrap<U>());

 template <typename U>
 using type = typename
 decltype(impl::pair(map_impl::wrap<U>()))
 ::type;
};

Listing 4

template <typename T> struct PlainTypes {
 static_assert(std::is_same_v<T,
std::decay_t<T>>);
 static_assert(not std::is_pointer_v<T>);
 using type = T;
};

template <typename T> struct PlainNotVoid {
 static_assert(std::is_same_v<T,
 std::decay_t<T>>);
 static_assert(not std::is_void_v<T>);
 using type = T;
};

int main() {
 constexpr static auto m1 = map<PlainTypes,
 PlainNotVoid> {}
 .insert<Fuz, Fuzzer>();
October 2018 | Overload | 15

https://accu.org/index.php/journals/2531

FEATURE BRONEK KOZICKI
Listing 5

// copy the definition of set in Listing 6 from
// https://accu.org/index.php/journals/2531
// to here
namespace map_impl {
 template<typename T> struct wrap {
 constexpr explicit wrap() = default;
 using type = T;
 };

 template<template <typename> typename CheckT,
 template <typename> typename CheckV,
 typename ...L> struct impl;
 template<template <typename> typename CheckT,
 template <typename> typename CheckV> struct
 impl<CheckT, CheckV> {
 using selectors = set<CheckT>;
 constexpr explicit impl() = default;

 constexpr static void pair() noexcept;
 };

 template<template <typename> typename CheckT,
 template <typename> typename CheckV,
 typename T, typename V, typename ...L>
 struct impl<CheckT, CheckV, T, V, L...>
 : impl<CheckT, CheckV, L...> {
 using check = typename CheckV<V>::type;
 using base = impl<CheckT, CheckV, L...>;
 using selectors =
 typename base::selectors::template
insert<T>;
 static_assert(not base::selectors
 ::template test<T>);
 constexpr explicit impl() = default;

 using base::pair;
 constexpr static auto pair(wrap<T>) noexcept {
 return wrap<check>(); }
 };
}

template <template <typename> typename CheckT,
 template <typename> typename CheckV,
 typename ...L> class map {
 using impl = map_impl::impl<CheckT, CheckV,
 L...>;

public:
 constexpr map() = default;

 template <typename T, typename V> constexpr auto
 insert() const noexcept {
 using result = map<CheckT, CheckV, T, V,
 L...>;
 return result();
 }

Listing 5 (cont’d)

 using set = typename impl::selectors;
 template <typename U>
 using type = typename
 decltype(impl::pair(map_impl::wrap<U>()))
 ::type;
};

struct IFuzzer {
 virtual ~IFuzzer() = default;
 virtual std::string fuzz(std::string) const = 0;
};

struct Fuz {};

struct Foo {
 template <typename Map> Foo(Map) {
 if constexpr ((bool)Map::set::template
 test<Fuz>) {
 fuzz = std::make_unique<typename
 Map::template type<Fuz>>();
 }
 }

 std::unique_ptr<IFuzzer> fuzz;
};

struct Fuzzer : IFuzzer {
 std::string fuzz(std::string n) const override {
 return n + "-fuzz!"; }
};

template <typename T> struct PlainTypes {
 static_assert(std::is_same_v<T,
 std::decay_t<T>>);
 static_assert(not std::is_pointer_v<T>);
 using type = T;
};

template <typename T> struct PlainNotVoid {
 static_assert(std::is_same_v<T,
 std::decay_t<T>>);
 static_assert(not std::is_void_v<T>);
 using type = T;
};

int main() {
 constexpr static auto m1 = map<PlainTypes,
 PlainNotVoid> {}
 .insert<Fuz, Fuzzer>();

 const Foo foo {m1};
 if (foo.fuzz)
 std::cout << foo.fuzz->fuzz("Hello")
 << std::endl;
 else
 std::cout << "Sad Panda" << std::endl;
}

16 | Overload | October 2018

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

CODE
MAXIMIZED

Develop high performance parallel applications from
enterprise to cloud, and HPC to AI using Intel® Parallel
Studio XE. Deliver fast, scalable and reliable, parallel code.

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

from
£510

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101 | sales@qbs.co.uk | www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf 1 24/09/2018 17:31

	Are we nearly there yet?
	How to Write a Programming Language: Part 3, The Evaluator
	P1063 vs Coroutines TS: Consensus on High-Level Semantics
	Implementing the Spaceship Operator for Optional
	Compile-time Data Structures in C++17: Part 2, Map of Types
	2009-07-01 Care About Code - online.pdf
	Slide 1

