overload

Diseconomies of Scale

Biggerisinottalwaysibetter\Welexplore
examplesithatidemonstratewhenismaller
istactuallyimereiproductives

Alyol 68 Retrospective s
?h@mmw@y@,%&:ﬂlllm@@ ﬂmm,@'l@@@l
modernniprogramminglanguages

Measuri @mﬂlmm
\Jmmaﬂ&lﬁﬂ&ﬂﬂlmﬂmm@%

Appropriateimetricsitoimeastreithroughput
I}]EMMHMM" atterns

Ap@‘ﬂ@m tolpublishidyhamic! gemplexida a§‘.

9\\ 1) yiclientshinea t. neadgafe én -

-\Fl " '\P

~In. c++] ,I’a

N Test1hg, code '_ '

\ e e
. ¥ \
- - 2 Y /

“m‘upnessslé el

fWe-lnvestlgate memory
7 d ,the appllcatlo (IeVeL.

4 / u)
. o T
i e N & / . of . - '3

T

Design: Pete Goodliffe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

@ 6 copies of C Vu a year

@ 6 copies of Overload a year

@ The ACCU handbook

@ Reduced rates at our acclaimed annual
developers' conference

@ Access to back issues of ACCU periodicals via
our web site

@ Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills

@ Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information

@ The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join

You can join the ACCU using
our online registration form.
Go to www.accu.org and
follow the instructions there.

Also available

You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site
for details.

OVERLOAD 148

December 2018
ISSN 1354-3172

Frances Buontempo
overload@accu.org

Andy Balaam
andybalaam @ artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson @gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero @ howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony @ justsoftwaresolutions.co.uk
Advertising enquiries

ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete @ goodliffe.net

All articles intended for publication in
Overload 149 should be submitted by
1st January 2019 and those for
Overload 150 by 1st March 2019.

The ACCU

The ACCU is an organisation of
programmers who care about

professionalism in programming. That is,

we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members — by
programmers, for programmers — and
have been contributed free of charge.

1 CONTENTS

Overload is a publication of the ACCU

For details of the ACCU, our publications and activities,
visit the ACCU wehsite: www.accu.org

4 Diseconomies of Scale

Allan Kelly considers why bigger isn’t
always better.

Daniele Pallastrelli presents the Flip Model to
publish dynamic, complex data to many clients
in a threadsafe manner.

10 Memory Management Patterns in
Business-Level Programs

Sergey Ignatchenko considers memory
management from an application level.

14 Compile-time Data Structures in C++17:
Part 3, Map of Values

Bronek Kozicki shows a compile time map of
values allows code to be tested more easily.

20 Algol 68 - A Retrospective

Daniel James reminds us just influential Algol 68
has been.

21 Measuring Throughput and the Impact of

Richard Reich and Wesley Maness investigate
suitable metrics to measure throughput.

32 Afterwood

Chris Oldwood reminds us to make
sympathetic changes.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

| Overload | 1

EDITORIAL =

Trends cycle in seasons. Frances Buontempo wonders
what programmers should on the lookout for.

I had a splendid week away in Yorkshire catching up

with some friends recently but all the fresh air gave me

a stinking cold, so I spent time trying to revive instead

of writing an editorial. Sorry, again. Prior to my week

away, | attended the Software Craftsmanship

Conference in London [SC18a]. Most of the talks are
on their YouTube channel [SC18b] so you can watch at your leisure. The
closing talk from Michael Feathers encouraged us to be creative and not
be unhappy at work. He talked through a few company models he’d seen,
focusing on new-ish start-ups, aiming to get stuff done that was interesting
and covering costs, rather than aiming to be the next big thing and make
a fortune. Michael was emphasising that programmers have an amazing
skill set and can do all kinds of creative and useful things, if they allow
themselves time to imagine.

Recently, we’ve seen a rise of hipster bars, artisan coffee shops and start-
ups or cottage industries, so the possibility of trying new small-scale
enterprises extends beyond programming. In many cases, these new
companies are reviving dying old towns and cities. With larger companies
closing, and high streets tending to ‘shut’, the so-called gig economy has
driven many people to find new ways of working. People are still willing
to pay for food and drink, creating an obvious marketplace for home-made
food or small batches of niche beer. Though jokes abound about food and
drink served in various strange ways, such as chips in mini frying baskets,
beer in a boot, or scrambled egg with a comb from a shoe [BlackBooks00],
while countless quips are made about avocados, this direction seems here
to stay for a while. While in Yorkshire, we dropped off for afternoon tea
in Hebden Bridge, a small market town that was invaded by hippies trying
to escape the rat-run in the 1960s. In many ways, the range of shops was
similar to hipster areas of London. The similarity between the old hippy
scene and the new hipster scene was striking. However, don’t forget the
hiring pro-tip: “Hippies are not the same as hipsters. | made this mistake
once and now have a frontend framework written in Fortran”
[@PHP_CEO14].

Trends often go in cycles; any current fashion is frequently a reworking
of something that has gone before. Sometimes the economy drives
changes, as alluded to by the move to the cottage industry and small start-
ups in many places. We see trends and fashions in programming too.
Kevlin Henney talked about Algol 86 at SCL. He’s given variants of this
talk before, including once at last year’s ACCU conference. By
coincidence, this issue has an Algol68 retrospective. Furthermore, Russel

Winder recently commented on accu-general on old
trends and techniques coming to the fore
recently. For example, “Message passing
over channels (or queues) between
threads has to be The One True Way. Lots

2 | Overload | December 2018

of people have been banging on about this for 40+ years, but it has taken
40 years for all the shared memory multi-threading people to admit defeat
and come to their senses!” He also noted that despite different idioms
between programming languages, “most programming languages are
rapidly converging on a quasi-object, quasi-functional, with generics,
coroutines, threadpools and fibres model. Which, of course, indicates we
are due a new programming language revolution.” Many revolutions,
particularly in programming, are re-discoveries or re-vamps of older
ideas.

Despite the apparent convergence, different languages do have different
approaches. We all spot C-style code in places it doesn’t belong. I still
catch myself writing a for loop instead of a list comprehension in Python
once in a while. Old habits die hard. Shoe-horning techniques into the
wrong place is a recurring theme, with deep parallels to the craftsmanship
movement. If you have a hammer, as the saying goes, everything looks
like a nail. A true craftsperson will pick the right tools for the job. If they
are restoring an old finely made cabinet, they need to know the proprieties
of'the wood, varnish, nails, and so on, as well as the right tools to use. I’ve
noticed a few television programmes recently about antiques and furniture
restoration, perhaps as a result of some afternoon telly while recuperating.
An inappropriate restoration can devalue or even destroy an antique. It
takes skill to be able to fix something. Just slapping some sticky-backed
plastic or gaffer tape might hold parts in place, but spoils the look and feel,
and possibly functionality of the piece.

Restoring an existing code base has similar problems. If someone tries to
“fix” code in an unfamiliar codebase, they might make things worse. A true
craftsperson might be able to spot where something like an enterprise code
base doesn’t follow natural language idioms, and work with the ‘grain’
of that particular code base more easily than someone with less
experience. I could wax lyrical about the parallels between blacksmiths,
saddle makers, cabinet makers and metal workers, and writing and
maintaining code, but I’ll rein myself in. The analogies do work and in
both cases we are talking about a skill, which takes time to learn, and is
best learnt from a master. Books and online courses might get you started.
A YouTube video may show you how to fix an oven element or replace
a roof tile, but that’s many miles away from being a qualified electrician
or being able to re-thatch a cottage. There is also an expectation that
masters will be able to train apprentices. Can you mentor or teach
someone? Another point that emerged at SCL was you know you
understand something properly when you can explain it to someone else.
That’s why some many of us give talks, or write articles. If you haven’t
tried this yet, please do. The ACCU local groups can help and support you
and the editorial teams for both Overload and CVu can nurture and
encourage you if you want a helping hand.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about Al and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo @ gmail.com.

A craftsperson uses their hands. Always. Programmers use their hands too.
We type, sometimes we use a mouse. We draw diagrams, point (and
sometimes laugh) at the code, we press buttons. Many other skills involve
senses beyond just tactility. Metal and wood workers can hear the
difference between something working well or being about to break.
Attempts have been made to interpret and project code musically. We do
talk about code smells as well. Sometimes code feels right, other times it
seems more like the sticky-backed plastic hack. Can you explain what
kicks off either feeling? Have a think for a moment. This kind of craft or
skill is challenging to vocalise. I suspect it’s similar to trying to program
a grammar checker. I mention that because I can see green wiggly lines as
I type, where my word processing software is ‘trying to help’ and failing
to parse a few of my sentences correctly. Trying to be exact about language
is difficult. Trying to be exact about anything can be difficult. And yet, you
know when you’ve managed to communicate with someone. You know
when your mentee has ‘got it’; they then mentor someone else and you sit
back and know your work here is done. Last time I mentioned trying to
assess the progress of a mentee [Buontempo18]. I couldn’t find any precise
metrics, and now suspect that’s the way it goes with crafts.

As a final note on the craftsperson metaphor, consider the process of
making or restoring a thing, either code or something more physical. The
BBC’s recent ‘Made in Britain’ observed a skilled artisan or craftsperson
has a hand in the product from start to end. Some companies talk about
the software development lifecycle, expecting more senior devs to be able
to step beyond the differences between a for or while loop and talk about
how to build and release a product. A really skilled developer can also
revive and restore a product once it has been realised. This might include
bug fixing, as well as adding new features. I suspect there’s a similarity
between new features in code and up-cycling old furniture. I’ll leave the
reader to work out a quip about the trendy ‘distressed’ look, wherein an
old cupboard or chair is sandpapered to look even more beaten up, then
whitewashed and sold for a fortune, and a code based being distressed or
even distraught, or bugged, if you will.

In addition to furniture/code, restoration, revival and repurposing, we
briefly touched on seasonal fashions reoccurring, meaning many
revolutions are just that. What goes around comes around. Coroutines,
functional programming, Algol68 or similar, roll back into view regularly.
Ideas revolve. I have observed some fashions tend to pop up every other
generation. Parents hate tattoos, so the rebellious teenagers start to love
them, only to discover Grandma was a painted lady displaying her fine
covering of art work at fairs and fashion shows years ago. I wonder if
programming paradigms and languages do likewise. The youth don’t know
the new trendy stuff happened before and yet Grandad can tell them all
about it. Perhaps we could spot some patterns and make predictions about
the future. For sure, the next revolution will not be televised, but stream
live on some app that doesn’t exist yet, no doubt. When Overload had
proper editorials, Rik Parkin suggested ‘The Computing Revolution Will
Be Televised (Again)’ [Parkin12], noting that 30 years ago we had to plug
our first computers into the TV. Raspberry Pi anyone? He ends by saying,
“Nostalgia has never been more cutting edge.”

By looking into the history of a discipline, we can find trends and try to
see where things are heading. I tried to find a definitive list of
breakthroughs in computing, though this strays into the realms of opinions
all too easily. I did find a time line [Aaronson14] Scott Aaronson, a
quantum computing expert, compiled for MIT’s 150th anniversary. He
lists when the top 150 innovations happened (I know that’s more than 150
— I checked).

1 EDITORIAL

engineers managing to build a machine capable of increasingly precise and
complicated movements. Games and viruses also get a mention. I don’t
think any patterns were obvious, so don’t have any predictions of what to
look out for next year. As I read the blog, I realised I am not up to date
with cutting edge mathematical research, though I do keep my eyes open
for trends in machine learning. An area I know little about is quantum
computing. I did learn one thing from the blog headline: “Quantum
computers would not solve hard search problems instantaneously by simply
trying all the possible solutions at once.” If anyone would care to write a
slightly longer summary for Overload, you know what to do.

Now, Scott mentions viruses. In my attempt to track down old trends that
are being revived, I did a random walk through the C2 wiki and fell across
the ‘“Worse Is better’ page [C2]. Part way down, C is described as a virus.
This caught my attention. This comes from a paper by Richard Gabriel,
where he describes early Unix and C as examples of the ‘Worse is better’
school of design [Gabriel94]. This principle prioritises simplicity over
correctness. He says it means,
that implementation simplicity has highest priority, which means Unix
and C are easy to port on such machines. Therefore, one expects that
if the 50% functionality Unix and C support is satisfactory, they will start
to appear everywhere. And they have, haven’t they? Unix and C are
the ultimate computer viruses. [my emphasis]
He notes that the virus must be “basically good” in order to spread or gain
traction. Once the programming language or approach is prevalent, people
will then spend time ironing out some of the flaws. He finally concludes
C is the wrong language for Al software. It appears that Python is gaining
traction here, though I suspect Richard was suggesting Lisp is the right tool
for the job.

If we use a compiled language, like C, we make things (or cmake them or
use scons). Even if we use an interpreted language, we are still being
creative. | have no idea where this will go next, but the journey is
interesting. We are creative and have lots to offer. If

you don’t feel like part of the next revolution, take a

restorative, and allow yourself time to revive. Cheers

and Happy Christmas (assuming you are reading this

just after it hits the decks). Or failing that, Happy New

year. Viva la revolution!

References

[@PHP_CEO14] https://twitter.com/php_ceo/status/
475056653285736448?1ang=en

[Aaronson14] Scott Aaronson, ‘Timeline of computer science’ (updated
2014) at https://www.scottaaronson.com/blog/?p=524

[BlackBooks00] Episode 3 of series 1 of Grapes of Wrath, broadcast in
the UK on Channel 4 from 2000-2004: https://en.wikiquote.org/
wiki/Black Books#The Grapes of Wrath (1.3)

[Buontempo18] Frances Buontempo, 2018, ‘Are we nearly there yet?’ in
Overload 147, October 2018

[C2] ‘Worse is better’ at http://wiki.c2.com/?WorselsBetter

[Gabriel94] ‘Lisp: Good News, Bad News, How to Win Big’ Richard P

Gabriel, 1994: from https://www.dreamsongs.com/Files/
LispGoodNewsBadNews.pdf

[Parkin12] Ric Parkin (2012) ‘The Computing Revolution Will Be
Televised (Again)’ in Overload 108, April 2012
https://accu.org/index.php/journals/1933

1;:;:3 1600s | 1700s | 1800s | 1900s | 1910s | 1920s | 1930s | 1940s | 1950s | 1960s | 1970s | 1980s | 1990s | 2000s
2 3 2 7 1 0 2 16 20 29 23 15 19 9

Things appear to have tailed off, with a slight uptick when the internet hit
the streets. So much of the history entwines with the history of
mathematics, and has occasional outburst of skilled craftspeople or

[SC18a] Software Craftsmanship London http://sc-london.com/

[SC18b] Software Craftsmanship conference: https://www.youtube.com/
playlist?list=PLGS1QE37I5ISWmOrmE7UkgEmZq6Spg9z7

December 2018 | Overload | 3

https://twitter.com/php_ceo/status/475056653285736448?lang=en
https://twitter.com/php_ceo/status/475056653285736448?lang=en
https://www.scottaaronson.com/blog/?p=524
https://en.wikiquote.org/wiki/Black_Books#The_Grapes_of_Wrath_(1.3)
https://en.wikiquote.org/wiki/Black_Books#The_Grapes_of_Wrath_(1.3)
http://wiki.c2.com/?WorseIsBetter
https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://accu.org/index.php/journals/1933
http://sc-london.com/
https://www.youtube.com/playlist?list=PLGS1QE37I5lSWm0rmE7UkgEmZq6Spg9z7
https://www.youtube.com/playlist?list=PLGS1QE37I5lSWm0rmE7UkgEmZq6Spg9z7

FEATURE »

Bigger is not always better. Allan Kelly considers

when smaller is more productive.

ithout really thinking about it, you are not only familiar with the

idea of economies of scale: you expect economies of scale. Much

of our market economy operates on the assumption that when you
buy or spend more you get more per unit of spending. The assumption of
economies of scale is not confined to free-market economies: the same
assumption underlies much Communist-era planning.

At some stage in our education — even if you never studied economics or
operational research — you will have assimilated the idea that if Henry Ford
builds a million identical black cars and sells a million cars, then each car
will cost less than if Henry Ford manufactures one car, sells one car, builds
another very similar car, sells that car, and continues in the same way
another 999,998 times.

The net result is that Henry Ford produces cars more cheaply and sells more
cars more cheaply so buyers benefit. This is economies of scale.

The idea and history of mass production and economies of scale are
intertwined. I’m not discussing mass production here, I’m talking
economies of scale, diseconomies of scale and software development.

Milk is cheaper in large cartons

That economies of scale exist is common sense: every day one experiences
situations in which buying more of something is cheaper per unit than
buying less. For example, you expect that in your local supermarket buying
one large carton of milk — say four pints — will be cheaper than buying four
one-pint cartons.

Milk is cheapest
in BIG cartons

VITAMIN D ADDED
And small cartons
of software GRADE A
; reduce risk HOMOGENIZED
Software IIS PASTEURIZED
cheapest in
lots of small

cartons
NET X2 FL OZ {407 846 mL

Allan Kelly helps companies large and small enhance their agile
processes and boost their digital products. Past clients include:
Virgin Atlantic, Qualcomm, The Bank of England, Reed Elsevier
and many small innovative companies you've never heard of. He
invented Value Poker, Time-Value Profiles and Retrospective
Dialogue Sheets. A popular keynote speaker he is the author of
Dear Customer, the truth about IT and books including Project
Myopia, Continuous Digital, Xanpan and Business Patterns for
Software Developers. His blog is at https://
www.allankellyassociates.co.uk/blog/ and on twitter he is
@allankellynet.

4 | Overload | December 2018

So ingrained is this idea that it is newsworthy when shops charge more per
unit for larger packs complaints are made. In April 2015, The Guardian
newspaper in London ran this story headlined ‘UK supermarkets dupe
shoppers out of hundreds of millions’ about multi-buys which were more
expensive per item than buying the items individually.

Economies of scale are often cited as the reason for corporate mergers.
Buying more allows buyers to extract price concessions from suppliers.
Manufacturing more allows the cost per unit to be reduced, and such
savings can be passed on to buyers if they buy more. Purchasing
departments expect economies of scale.

I am not for one minute arguing that economies of scale do not exist: in
some industries economies of scale are very real. Milk production and
retail are examples. It is reasonable to assume such economies exist in most
mass-manufacturing domains, and they are clearly present in marketing
and branding.

But — and this is a big ‘but’...
Software development does not have economies of scale

In all sorts of ways, software development has diseconomies of scale. If
software development was sold by the pint, then a four-pint carton of
software would not just cost four times the price of a one-pint carton, it
would cost far more.

Once software is built, there are massive economies of scale in reselling
(and reusing) the same software and services built on it. Producing the first
piece of software has massive marginal costs; producing the second
identical copy has a cost so close to zero it is unmeasurable — Ctrl-C,
Ctrl-V.

Diseconomies abound in the world of software development. Once
development is complete, once the marginal costs of one copy are paid,
then economies of scale dominate, because marginal cost is as close to zero
as to make no difference.

Software development diseconomies of scale have been observed for some
years. Cost estimation models like COCOMO actually include an
adjustment for diseconomies of scale. But the implications of
diseconomies are rarely factored into management thinking — rather,
economies-of-scale thinking prevails.

Small development teams frequently outperform large teams: five people
working as a tight team will be far more productive per person than a team
of 50, or even 15. Academic studies have come to similar findings.

The more lines of code a piece of software has, the more difficult it is to
add an enhancement or fix a bug. Putting a fix into a system with a million
lines of code can easily be more than ten times harder than fixing a system
with 100,000 lines.

Experience of Kanban style work in progress limits shows that doing less
at any one time gets more done overall.

Studies show that projects that set out to be big have far higher costs and
lower productivity per deliverable unit than small systems.

ALLAN KELLY m FEATURE

Testing is another area where diseconomies of scale play out. Testing a
piece of software with two changes requires more tests, time and money
than the sum of testing each change in isolation.

When two changes are tested together the combination of both changes
needs to be tested as well. As more changes are added and more tests are
needed, there is a combinatorial explosion in the number of test cases
required, and thus a greater than proportional change in the time and money
needed to undertake the tests. But testing departments regularly lump
multiple changes together for testing in an effort to exploit economies of
scale. In attempting to exploit non-existent economies of scale, testing
departments increase costs, risks and time needed.

If a test should find a bug that needs to be fixed, finding the offending code
in a system that has fewer changes is far easier than finding and fixing a
bug when there are more changes to be considered.

Working on larger endeavors means waiting longer — and probably writing
more code —before you ask for feedback or user validation when compared
to smaller endeavors. As a result there is more that could be ‘wrong’, more
that users don’t like, more spent, more that needs changing and more to
complicate the task of applying fixes.

Advertise in C Vu & Overload

807 of readers make purchasing
decisions, or recommend products
for their organisations.

Reasonable rates. Flexible options.
Discounts available to corporate
members. b

Contact ads@accu.org for info.

identical cony close
to zero itis unmeasurable

Think diseconomies, think small

First of all you need to rewire your brain: almost everyone in the advanced
world has been brought up with economies of scale since school. You need
to start thinking diseconomies of scale.

Second, whenever faced with a problem where you feel the urge to ‘go
bigger’, run in the opposite direction: go smaller.

Third, take each and every opportunity to go small.

Fourth, get good at working ‘in the small’: optimize your processes, tools
and approaches to do lots of small things rather than a few big things.

Fifth — and this is the killer: know that most people don’t get this at all. In
fact, it’s worse, they assume bigger is better. B

This is an excerpt from Allan Kelly’s latest book, Continuous Digital,
which is now available on Amazon and in good bookshops.

Best Articles 2018

Vote for your favourite articles:
B Bestin CVu
B Best in Overload

Voting open now at:
https://www.surveymonkey.co.uk/r/THNP773J

December 2018 | Overload | 5

https://www.surveymonkey.co.uk/r/HNP773J

FEATURE »

Publishing dynamic, complex data to many clients in a
threadsafe manner is challenging. Daniele Pallastrelli
presents the Flip model pattern to overcome the challenges.

times in the past while working on applications for the diagnosis of
complex distributed systems. This solution worked well in several
contexts, and it’s still proving robust in many running systems.

In this article, I describe a design solution that I have adopted several

Although I know for sure it’s used by other developers, after some research
I could not find any reference to it in the literature, and this finally
convinced me to write about it.

After some thought, I decided to document it under the well-known form
of a Design Pattern as 1 believe that it’s still a convenient way to discuss
software design and architectural design (that — from my point of view —
remain fundamental topics in Software Engineering and should not be
neglected in favor of more mundane topics).

Furthermore, some young developers might not know the book Design
Patterns [Gof 1995] that made history, so I hope this article might fill a
gap and makes them curious about patterns and software design in general.

In the remainder of the article, I present the pattern following the classic
documentation format proposed in the original book (see the
‘documentation’ section in the Wikipedia article [Wikipedia] or — even
better — read the original book).

Pattern name and classification
Flip Model (behavioral).

The pattern allows multiple clients to read a complex data model that is
continuously updated by a unique producer, in a thread-safe fashion.

Model publisher, Pressman, Newsagent.

Motivation (forces)

Sometimes it’s necessary to decouple the usage of a complex data structure
from its source, in such a way that every actor can run at their own pace
without interfering with each other.

Consider, for example, an application that periodically retrieves
information from a large sensor network to perform some kind of statistical
elaboration on the collected data set and send alarms when some criteria
are met. The data collected from the sensor network is structured in a
complex lattice of objects resembling the ones you would find in the
physical world so that the elaboration modules can navigate the data in a

Daniele Pallastrelli has been programming and designing software
for the last 20+ years and he’ s passionate about it. A professional
software engineer, speaker, author, and runner, he is reluctant to
discuss himself in the third person but can be persuaded to do so from
time to time. In his spare time, Daniele writes papers and blog posts,
which, considering where you’re reading this, makes perfect sense. He
can be contacted via twitter at @ DPallastrelli

6 | Overload | December 2018

more natural way. The retrieval operation is a long, complex task,
involving several network protocols, that is completely uncorrelated from
the statistical analysis and alarms evaluation, and can possibly run in
separated threads. Moreover, data retrieval and its usage have different
timing (e.g., the sensor network is scanned every 5 minutes, while the
statistical elaboration is performed on request by a human operator on the
most recent collected dataset).

In this scenario, how can all the modules of the application work together
on the same data structure? How can all the clients use the most updated
data available in a consistent fashion? And how can the application get rid
of the old data when it is no longer needed?

The main idea of this pattern is to pass the sensor data structure from the
producer to the consumers by means of two shared pointers (in C++) or
two variables (in languages with garbage collection): one (named
£illing)holding the object structure currently retrieving the sensor data,
the other (named current) holding the most recent complete acquisition.

A class SensorNetwork decides when it’s time to start a new acquisition
and replaces current with £111ing when the acquisition is concluded.
When a client needs to perform some tasks on the data acquired, it contacts
SensorNetwork, which returns current (i.e., the most recent data
acquired). An object of class SensorAcquisition is kept alive and
unchanged during the whole time a client holds the smart pointer (and the
same is still valid in garbage collected languages).

The data acquisition (performed by SensorAcquisition) and its
reading (performed by the various clients: Statistics,
ThresholdMonitor and WebService) are possibly executed in
multiple threads. The safety of the code is ensured by the following
observations:

B aSensorAcquisition object can be modified only by the thread
of SensorNetwork, and never changed after it becomes public
(i.e., the smart-pointer current is substituted by £i11ing)

m the smart pointer exchange is protected by a mutex.

It is worth noting that here the mutex is required because
std: :shared_ptr provides a synchronization mechanism that
protects its control-block but not the shared_ptr instance. Thus, when
multiple threads access the same shared_ptr and any of those accesses
uses a non-const member function, you need to provide explicit
synchronization. Unfortunately, our code falls exactly under that case
since the method SensorNetwork: : ScanCompleted assigns the
shared_ptr to a new value.

However, if the presence of a mutex makes you feel back in the eighties,
please see the ‘Implementation’ section for some modern alternatives.

Figure 1 (overleaf) shows a typical Flip Model class structure.

Applicability
Use Flip Model when:

B You have a complex data structure slow to update.

Temperature Current
nn
* *

SensorAcquisition e oo
<<event>>+ScanCompleted [
+Scan() ez ===

+current +illing
PeriodicTimer <<shared>> <<shared>>
Sensorletwork

+GetlastMeasure(): shared_ptr<SensorAcquisition>

void SensorMetwork::OnTimerExpired()
{

filling = make_shared<SensorAcquisition=();

n FEATURE

B [ts clients must asynchronously read the most
updated data available in a consistent fashion.

B Older information must be discarded when is no
longer needed.

Figure 2 shows the structure.

Participants

B Snapshot (SensorAcquisition)

B Holds the whole set of data acquired by the
source.

B Performs a complete scan.

Possibly provides const function members to
query the acquisition.

B Possibly is a set of (heterogeneous) linked
objects (e.g., a list of Measure objects)

B Source (SensorNetwork)

filling->Scan();
b

B Periodically asks the source to perform a

void SensorNetwork::OnScanCompleted()
{

scoped_lock lock{mbd);

current = filling;

}

shared_ptr<SensorAcquisition> SensorNetwork::GetLastMeasure()

{
scoped_lock lock({mbe);
return current;

}
Snapshot
<<event=>+ScanCompleted .
+Scan()
filling -current
PeriodicTimer
<<shared>>| <<shared>>
Source

+GetLastSnapshot(): shared_ptr<Snapshot>

void Source::OnTimerExpired()

{
filling = make_shared<Snapshot=();
filling->Scan();

¥

Statistics |
new scan.
—— B Provides the latest complete scan to its
""""" clients.
B Client (WebService,
WebService

ThresholdMonitor, Statistics)

B Asks the Source for the latest Snapshot
available and uses it (in read-only mode).

Collahorations

B Periodically, Source creates a new Snapshot
instance, assigns it to the shared ptr filling,
and commands it to start the acquisition.

B When the acquisition is terminated, Source performs the
assignment current=£filling protected by a mutex. If no
clients were holding the previous current, the pointed
Snapshot is automatically destroyed (by the shared pointer).

B When a client needs the most updated Snapshot, it calls
Source: :GetLastSnapshot () that returns current.

Figure 3 (overleaf) shows the collaborations between a client, a source
and the snapshots it creates.

B Flip Model decouples the producer from the readers: the
producer can go on with the update of the data (slow) and each
reader gets each time the most updated version.

B Synchronization: producer and readers can run in different
threads.

m Flip Model grants the coherence of all the data structures that
are read in a given instant from a reader, without locking them
for a long time.

B Memory consumption to the bare minimum to ensure that every
reader has a coherent access to the most recent snapshot.

void Source::0OnScanCompleted()

{
scoped_lock lock{mbd);
current = filling;

}

shared_ptr<Snapshot> Source::GetLastSnapshot()

{
scoped_lock lock({mbe);
return current;

}

Figure 2

Client

Here are 8 issues to consider when implementing the Flip Model
pattern:

1. A new acquisition can be started periodically (as proposed in
the example) or continuously (immediately after the previous
one is completed). In the first case, the scan period must be
longer than the scan duration. Should the scan take longer, it is
automatically discarded as soon as the timer shoots again.

December 2018 | Overload | 7

FEATURE »

current to £filling. Within a
synchronous application, clients will run in
other threads.

In the second «case, the method
Snapshot: :Scan starts the acquisition

aClient : Client : PeriodicTimer : Source
OnTimerExpired() sl : Snapshot
' <<create>>
filling = s1; =|_'|
Scan() -
R
mtxlock();

current = filling;
mix.unlock();

OnTimerExpired()

L

operation and returns right away. When the
data structure is completed, an event
notification mechanism (e.g., events,
callbacks, signals) takes care to announce the
end of the operation to Source, that can
finally acquire the mutex before assigning
current to £illing. An asynchronous
application can be single-thread or multi-
thread.

5. The pattern supports every concurrency
model: from the single thread (in a fully
asynchronous application) to the maximum
parallelization ~ possible ~ (when the

: <=Create>>
filling = s2; g

Scan()

52 : Snapshat acquisition has its own threads, as well as
= each client).
|_| When the acquisition and the usage of the

1 PerformSomeActivity()

acquire mix,
returns current
i.e., sl

: 4! GetlLastSnapshot()
SR R R R T

mix.lock();
current = filling;
mtx.unlock();

use s1 for some time =

OnTimerExpired()

<<(reate=>

k J

snapshots run in different threads, a
synchronization mechanism must be put in
place to protect the shared_ptr. While the
simplest solution is to add a mutex, starting
from C++11 you can use instead the
overload functions
std: :atomic_...<std::shared_ptr
> (and maybe from C++20
std::atomic_shared ptr). A point
worth noting here is that the implementation
of the atomic functions might not be lock-
&3 : Snapshot free (as a matter of fact, my tests with the
latest gce version show that they’re not): in

filling = s3;

I

u that case, the performances are likely worse

Doesn't use s1 anymore. 3 Scan()
Indirectly deletes it.

<<destroy==>

mix.lock();
current = filling;

¥

than the version using the mutex.

A better solution could be to use an atomic
int as akey to select the right shared ptr
(see the ‘Sample code’ section for more
details).

6. The objects composing Snapshot (usually a
huge complex data structure) are (possibly)

<<destroy>>
: I
| | 52 goes out of scope

mtx.unlock();

The pattern is described using C++, but it can be implemented as
well in languages with garbage collection. In C++,
std: :shared_ptr is necessary to ensure that a Snapshot is
deleted when no client is using it and Source has a more updated
snapshot ready. In a language with garbage collection, the collector
will take care of deleting old snapshots when they’re no longer used
(unfortunately this happens at some unspecified time, so there can
be many unused snapshots in memory).

The std: :shared ptr (or garbage collection) mechanism will
work correctly (i.e., old snapshots are deleted) only if clients use
Source: :GetLastSnapshot () every time they need a
snapshot.

Snapshot (and the application in general) can be synchronous or
asynchronous.

In the first case, the method Snapshot: :Scan is a blocking

function and the caller (i.e., Source) must wait until the data
structure is completed before acquiring the mutex and assigning

8 | Overload | December 2018

'|_| deleted and recreated at every scan cycle. It’s
4 possible to use a pool of objects instead (in
: this case shared_ptr must be replaced by
a reference counted pool object handler).

7. Please note that Snapshot (and the classes

it represents) is immutable. After its creation

and the scan is completed, the clients can only read it. When a new

snapshot is available, the old one is deleted, and the clients will read

the new one. This is a big advantage from the concurrency point of

view: multiple clients running in different threads can read the same
snapshot without locks.

8. Be aware of stupid classes! Snapshot (and the classes it
represents) should not be a passive container of data. Every class
should at least contribute to retrieve its own data, and one could also
consider whether to add methods and facilities to use the data.

Sample code
The C++ code shown in Listing 1 sketches the implementation of the Flip
Model classes described in the ‘Motivation’ section.

The code in Listing 1 uses a mutex for clarity. A lock free alternative is
shown in Listing 2.

class SensorAcquisition
{
public:
// interface for clients
const SomeComplexDataStructure& Data() const
{
//
}
// interface for SensorNetwork
template <typename Handler>
void Scan(Handler h) { /* ... */ }
}i
class SensorNetwork
{
public:
SensorNetwork ()
timer ([this] () { OnTimerExpired(); })
{
timer.Start (10s) ;
}
shared ptr<SensorAcquisition>
GetLastMeasure () const
{
lock_guard<mutex> lock (mtx) ;
return current;
}
private:
void OnTimerExpired()
{
filling = make_shared<SensorAcquisition>();
// start an async operation
filling->Scan([this] () { OnScanCompleted(); });
}
void OnScanCompleted()
{
lock_guard<mutex> lock (mtx) ;
current = filling;
}
PeriodicTimer timer;
shared ptr<SensorAcquisition> filling;
shared ptr<SensorAcquisition> current;
mutable mutex mtx; // protect "current"
}i
class Client

{
public:

Client (const SensorNetwork& sn) : sensors(sn) {}

// possibly runs in another thread
void DoSomeWork ()

{

auto measure = sensors.GetLastMeasure() ;
// do something with measure
//

}

private:
const SensorNetworké& sensors;

}i
Listing 1

Just in case you were wondering, you do need an atomic integer type here,
although only one thread is writing it (have a look at C++ memory model

[cppreference] to go down the rabbit hole).

Flip Model is used to retrieve the periodic diagnosis of network objects in
several applications I worked on. Unfortunately, I cannot reveal the details

given the usual confidentiality constraints that apply to these projects.

n FEATURE

class SensorNetwork
{
public:
SensorNetwork ()
timer([this] () { OnTimerExpired(); })
{
// just to be sure :-)
static_assert(current.is_always lock_ free,
"No lock free");
timer.Start(10s) ;
}
shared ptr<SensorAcquisition>
GetLastMeasure () const
{
assert (current < 2);
return measures|[current];
}
private:
void OnTimerExpired()
{
auto sa = make_shared<SensorAcquisition>();
// start an async operation
sa->Scan([this] () { OnScanCompleted(); }):
// filling = l-current
assert (current < 2);
measures[l-current] = sa;
}
void OnScanCompleted()
{
current.fetch xor(l); // current = l-current
}
PeriodicTimer timer;
std::array< shared ptr<SensorAcquisition>, 2>
measures;
atomic_uint current = 0; // filling = l-current

}i
Listing 2

B The pattern is somewhat similar to ‘Ping Pong Buffer’ (also known
as ‘Double Buffer’ [Nystrom14] in computer graphics), but Flip
Model allows multiple clients to read the state, each at its convenient
pace. Moreover, in Flip Model, there can be multiple data structures
simultaneously, while in ‘Ping Pong Buffer’/‘Double Buffer’ there
are always two buffers (one for writing and the other for reading).
Finally, in ‘Ping Pong Buffer’/*Double Buffer’, buffers are
swapped, while in Flip Model the data structures are passed from the
writer to the readers and eventually deleted.

B Snapshot can/should be a ‘Fagade’ [Gof 95] for a complex data
structure.

B Source canuse a ‘Strategy’ [Gof 95] to change the policy of update
(e.g., periodic VS continuous).

References

[cppreference] http://en.cppreference.com/w/cpp/language/
memory model

[Gof 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
1995 Addison-Wesley.

[Nystrom14] Robert Nystrom (2014) ‘Double Buffer’ in Game
Programming Patterns, available from
http://gameprogrammingpatterns.com/double-buffer.html

[Wikipedia] ‘Software Design Pattern’, Documentation section:
http://en.wikipedia.org/wiki/

Software design pattern#Documentation

December 2018 | Overload | 9

http://en.wikipedia.org/wiki/Software_design_pattern#Documentation
http://gameprogrammingpatterns.com/double-buffer.html
http://en.cppreference.com/w/cpp/language/memory_model
http://en.cppreference.com/w/cpp/language/memory_model

FEATURE »

There are many memory management patterns. Sergey
|lgnatchenko considers these from an application level.

Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translation difficulties from Lapine (like those described in
[Loganberry04]) might have prevented an exact translation. In addition,
the translator and Overload expressly disclaim all responsibility from
any action or inaction resulting from reading this article.

ages old; the first discussion which puts together ‘memory
management’ and ‘design patterns’ (and which I was able to find) was
over 15 years ago, in [Douglass02] — and BTW is still very relevant.

n iscussions on ‘how we should manage memory in our programs’ are

Still, in spite of the topic being rather ancient, even in [Douglass02] the
discussion is a bit cluttered with details which are not directly relevant for
an app-level/business-level programmer (sure, pooling is nice — but 99%
of the time it should be an implementation detail hidden from business-
level programmer).

In this article, I will try to concentrate on the way memory management
is seen by an app-level (more specifically, business-level) developer; this
means that I am excluding not only OS kernel programmers, but also
developers who are implementing stuff such as lower-level libraries (in
other words, if your library is directly calling pol1 (), this whole thing is
not really about you). FWIW, the developers I am trying to represent now
are those who are writing business-level logic — more or less similar to the
logic which is targeted by programming languages such as C# and Java
(while certainly not all Java/C# code qualifies as ‘business-level’, most of
it certainly does).

A few properties of a typical business-level code:

m [t changes very often (more often than everything else in sight)

B More often than not, it is ‘glue’ code

® Development speed is of paramount importance (time to market
rulezzz)

B Making changes to existing code quickly (~=‘on a whim of some
guy in marketing department’) is even more important than
‘paramount’

B Raw performance of business-level code is usually not that

important (it is the way that it calls the pieces of code it glues
together which matters for overall performance)

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including being a co-architect of a stock exchange, and the sole
architect of a game with 400K simultaneous players. He currently
holds the position of Security Researcher. Sergey can be contacted at
sergey @ignatchenko.com

10 | Overload | December 2018

With this in mind, we can start discussing different memory
management patterns which are applicable at the business level. As
business-level programming has its own stuff to deal with and memory
management is rarely a business requirement, more precisely, we’ll be
speaking about memory management which we cannot avoid using even
at a business level.

It may be difficult to believe, but there are (ok, ‘were’) programming
languages that didn’t need memory management at all (or, more precisely,
with memory management so rudimentary that we can ignore it for our
purposes); one example of such a language is FORTRAN77 (though it was
expanded with allocatable data in FORTRAN90). Let’s call it Zero
Memory Management.

The idea behind Zero Memory Management is simple: as long as we say
that all the variables in our program behave ‘as if’ they’re on-stack
variables (and any references to them can only go downstream, i.e. from
caller to callee), we can easily prove that we don’t need any additional
memory management at all, and the program is guaranteed to be correct
memory-wise without any additional efforts. In other words:

the best way to avoid problems with pointers is to prohibit
them outright.

BTW, Zero Memory Management doesn’t prevent us from using heap; the
only thing I, as a business-level developer, care about is that all the
variables behave ‘as if” they’re on the stack. It means that things such as
std::string and std: :unique_ptr<> in C++ (as well as any
implementation which uses heap behind the scenes in a similar manner)
still qualify as Zero Memory Management (sic!).

In a sense, if we could restrict business-level programming to Zero
Memory Management, it would be a Holy Grail™ from the memory
management point of view: there would be no need to think about anything
memory-related — our programs would ‘just work’ memory-wise.
Unfortunately, for