

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

June 2019 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Do repeat Yourself
Lucian Radu Teodorescu investigates when the
DRY Principle does not hold.

8 On IT and… CO2 Footprints
Sergey Ignatchenko considers how we can
make an impact on IT’s carbon footprint.

10 Use UTF-16 Interfaces to Ship
Windows Code
Péter Ésik explains how using UTF-16 interfaces of
Windows avoids character encoding issues.

13 ACCU Conference 2019: Reports
Several attendees tell us what they learnt this year.

20Afterwood
Chris Oldwood shares his journey into learning to
write well.

OVERLOAD 151

June 2019

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 152 should be
submitted by 1st July 2019 and
those for Overload 153 by
1st September 2019.

EDITORIAL FRANCES BUONTEMPO
How Hard Can It Be?
Getting different parties to collaborate might
sound easy. Frances Buontempo explores
where problems and opportunities arise.
We’ve been considering a house move recently, so
I’ve been drowning in emails and forms and waiting
for the solicitors to keep us up to date with what’s
going on. This has distracted me from writing an
editorial, as you can imagine. They are sternly
refusing to provide any estimates on how long this

might take or what they are waiting on. I mean, how hard can it be? OK,
to be fair, when we ask a specific question we do get a specific answer,
sometimes to a different question. Sometimes, they have even given
approximate timelines, saying something like “Searches usually take two
weeks.” The estate agents have a different expectation of timelines,
warning us this can take much longer. All very confusing and stressful.
I’m surprised anyone ever manages to buy a house in the UK. So, as ever,
Overload is without an editorial. This did get me thinking though.
Managing a project involving programmers or solicitors is like herding
cats [Urban dictionary09], as the saying goes.

I can see some parallels between people with different perspectives or
motivation trying to collaborate on a project, be that a house-move,
writing software, or even a magazine or a book. I find it hard to give
estimates for software projects. It is hard. And I don’t always go deep into
gory tech details if someone asks what I’m working on at the moment. I
try to adapt my response to the person asking. You can talk about APIs
to some people or completed features to others. If you’re a team of people
working together, it’s even harder to come to an agreement and provide
a clear answer to a straight question. Larger teams can make this even
harder. I can’t imagine how Kevlin Henney managed to coordinate the 97
Things Every Programmer Should Know book [Henney10] – lots of
collaboration!

Instead of talking about people, how do we get code to collaborate? We
know collaborate means working together, so can we get different parts
code to work together? How hard can it be? It depends. Remote procedure
calls (RPCs) give one way to get code to work together. I haven’t used
this for a while, but have done my fair share of DCOM and similar. You
need to know a lot about the internal workings of the code you call, and
can make all sorts of mistakes. But it can work. Another in-tandem
approach, without getting as complicated as remote calls, involves trying
to get two different languages to work together. You can build several
languages into one product using something like Simplified Wrapper and
Interface Generator [SWIG] or other bindings, or manually prototype
function calls, making sure you find the equivalent of various types, or

use a lingua franca, often C. You still need to be very
careful about the size and endianness of

numbers. Strings are another story. Some
shared language and careful testing of
as sumpt ions i s a lways requ i red .

Alternatively, you can have several ‘products’ or programs, and get them
to talk via messages rather than function calls. That seems simpler. In
many ways, it is. You do need to spend time agreeing the syntax and
semantics messages. How might you deal with different versions of each
component? If you need to send new parameter, how do you approach
this? I’m getting ahead of myself, though. You can also start thinking
about network programming in general and various protocols. Would you
like to hear a UDP joke? I would tell you, but you probably won’t get it
[Hacker News]. Anyway, one program, in several languages solves some
problems. Two or more programs, in the same language, calling each
other’s functions is suitable for other situations. Two or more programs
communicating via messages give some flexibility, but also needs some
thought. Yet another way to get things working together is one program,
with several threads. You may have events and delegates, or locks around
shared data to orchestrate this. If you are not careful, you can get into
trouble. Many interviews immediately ask what a deadlock is when multi-
threaded code gets mentioned. I wonder if our solicitors have deadlocked
themselves somehow.

Back to collaboration. Orchestration “is the automated configuration,
coordination, and management of computer systems and software”
according to Wikipedia [Wikipedia-1]. This sounds somewhat like an
automated attempt at herding cats. An orchestra plays many instruments
together, possibly led by a conductor. The individual players can practise
alone, or in smaller groups, but make beautiful music when they come
together. This needs some background work and shared language, or at
least notation. People can manage to dance together without being
coordinated by herds of overseers. If a primary school teacher plays some
music, the young people will manage to dance in their own way. They can
be individually expressive while moving to the same beat. The idea of
timing, through a rhythm or a drum beat is a recurring theme. A rowing
team will be guided by a coxswain, in essence counting. It’s the London
marathon this Sunday. Some people may practise by trying to keep track
of their pace. I suspect there’s a similarity with the pace at which a team
works, in order to get a larger project to succeed. Or even some multi-
threaded code. How many problems are ‘fixed’ by changing the lengths
of sleeps, or other timeouts? Can two people work together if they don’t
speak the same language? I dimly recall a program on the television a
while ago, exploring how babies through to toddlers learn. One child, who
couldn’t yet talk, was encouraged to learn to beat out a drum beat on a
table top. He interacted with someone talking to him by responding with
various drum beats. Language has a rhythm, and he seemed to
instinctively grok that. Little in-roads into getting nearer TCP
communication, wherein you get some kind of feedback indicating the
message has been received and understood makes some kind of
difference.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | June 2019

EDITORIALFRANCES BUONTEMPO
Let’s expand this out and talk about learning in a programming context.
How can you tell if a mentee or apprentice is learning? Chris Oldwood
[Oldwood18] suggested counting how many of his jokes the mentee
laughed at. Seriously? Damn it. Janet. See what I did there? People who
have seen The Rocky Horror Picture Show, tend to immediately say ‘Janet’
after the phrase ‘Damn it’. Sometimes shared ‘secret’ knowledge comes
through. This is almost like a beat or tune or, dare I say it, a joke. You are
building a common language. If I say ‘Knock, knock’ many people know
to respond with ‘Who’s there?’ Is this really communicating? I suspect it
would be relatively straightforward to get a chat bot to at least start trying
to join in with certain jokes. This puts me in mind of an old children’s
game. Has anyone come across Consequences before [Wikipedia-2]? You
concertina a piece of paper, and fill out words answering questions one
each folder, and refolding so you don’t see what came before by filling in
blanks in a story:

Once upon a time, a [name an animal]

went to [name a place]…

and so on.

The stories are then read out and hilarity ensues. A variant involves
drawing a person, head, neck, torso, legs, and feet. Then you can just laugh
at the pictures afterwards, and not waste time reading a story. Does your
software project have consequences? Or at least get developed like
Consequences? Do you write code that needs to interface or integrate with
other teams’ code? You have probably heard of the Fizz Buzz

Write a program that prints the numbers from 1 to 100. But for multiples
of three print "Fizz" instead of the number and for the multiples of five
print "Buzz". For numbers which are multiples of both three and five print
"FizzBuzz". [Wiki]

Have you heard of ‘Evil Fizz Buzz’ [codemanship]? This is team work Fizz
Buzz, but

1. Split the team into groups.
2. Assign each part of FizzBuzz above to a pair. They can only work

on code for that part of the whole.
3. Task them to work together – but only coding/TDD-ing their

individual parts – to deliver a complete solution that produces the
desired output.

4. Give them about an hour. And stand back and enjoy the train wreck.

Try it one day. Figuring out how to get groups of people and software to
work together can be challenging.

I mentioned chat bots earlier. Let’s talk about the rise of the machines. How
can AI and humans collaborate? At the speakers’ dinner at the ACCU
conference this year, Echoborg [Echoborg] entertained us. The website
proclaims, ‘A funny and thought-provoking show that is created afresh
each time by the audience in conversation with an artificial intelligence.’
An actor voices the words of a chat bot. Members of the audience go up
and chat to the actor. Speech recognition software sends the words to the
chat bot, and the actor speaks back. You had to be there. What happens if
two Echoborgs chat? Apparently this happened by mistake once, and was
turned off forthwith. Could they collaborate and take over the world? What
would they do? A while ago some sensationalist headline hit the world:
‘Facebook shuts down chat bots after they invent their own language.’ The
theory is that the bots were tasked with trying to negotiate. The New
Scientist said:

One bot was taught to mimic the way people negotiated in English, but
it turned out to be a weak negotiator, and too willing to agree to
unfavourable terms. A second was tasked with maximising its score.
This bot was a much better negotiator but ended up using a nonsensical
language impossible for humans to understand. [Reynolds17].

In some ways, negotiation is a form of collaboration, and many industries
to end up inventing their own language. Programmers, musicians and
solicitors. Just saying!

Asking how to get humans and AI to collaborate possibly has a history that
pre-dates computers. Elements of Frankenstein pull on the idea of what
happens if people create a ‘living’ autonomous intelligence. That doesn’t

end well. I’ve seen a variety of tales about similar goings on. For example,
the adventures of a robot trekking across the US, called HitchBOT. One
British newspaper, who shall not be named, said “A friendly robot who was
hitchhiking its way across America as part of a scientific experiment has
been heartlessly attacked and beheaded just 300 miles into its journey.”
Informative journalism at its height, not. Wait! Friendly? What would an
unfriendly HitchBOT be like? A mash-up of Rutger Hauer in The Hitcher
[IMDb-1] and Rutger Hauer in Blade Runner [IMDb-2]?

OK, enough scary dystopian imaginings. How can you have a human in
the loop? Many automatic translation programs, in some ways a type of
AI to my mind, have relied on humans giving feedback, including better
translations. If you have a way to give feedback to a running algorithm
(think AI) then you can collaborate. I gave a workshop with Chris Simons
at this year’s conference, where we showed how Evolutionary
Programming can generate the code for Fizz Buzz. This begs the questions,
should you? The code generated was disgusting. But if we then gave
feedback, and nudged our fitness functions (think tests) a bit, we might end
up with improved code. Maybe code readability doesn’t matter if the
machine writes its own code and it does what’s required. No human need
ever look at the implementation. People who want code had better be good
at writing tests though. Or maybe we do need to learn to collaborate with
the machines. ‘Human in the loop’ learning is a trending topic in AI
research currently. Watch this space.

OK, so fill in a first sentence:
 [..]. How hard can it be?
Go.

Yep, OK, getting the number of dots in an ellipsis correct [Buontempo19].
Collaboration is difficult, frustrating, frequently involves making up
languages and communication protocols but can be
fun. It needn’t be a collusion or conspiracy, though AI,
software engineers and the legal profession can be
regarded that way. Teaming up to produce something
magical can be amazing. How hard can it be?

References
[Buontempo19] Frances Buontempo (2019) on Twitter, tweeted 27 April

2019: https://twitter.com/fbuontempo/status/1122074050946318341

[codemanship] ‘Evil FizzBuzz’ (or ‘So you think you’re a team?’), 2017,
http://codemanship.co.uk/parlezuml/blog/?postid=1494

[Echoborg] http://echoborg.com/

[Hacker News] https://news.ycombinator.com/item?id=8466276

[Henney10] Kevlin Henney (2010) 97 Things Every Programmer Should
Know, published by O’Reilly https://www.oreilly.com/library/view/
97-things-every/9780596809515/

[IMDb-1] The Hitcher (1986) https://www.imdb.com/title/tt0091209/

[IMDb-2] Blade Runner (1982) https://www.imdb.com/title/tt0083658/

[Oldwood18] Chris Oldwood (2018) ‘Are we nearly there yet?’ Overload
147, Oct 2018, https://accu.org/index.php/journals/2566

[Reynolds17] Matt Reynolds (2017) ‘Chatbots learn how to negotiate and
drive a hard bargain’, New Scientist, posted 14 June 2017 at
https://www.newscientist.com/article/mg23431304-300-chatbots-
learn-how-to-drive-a-hard-bargain/

[SWIG] http://www.swig.org/

[Urbandictionary09] ‘Herding cats’ (definition) at
https://www.urbandictionary.com/
define.php?term=herding%20cats

[Wiki] http://wiki.c2.com/?FizzBuzzTest

[Wikipedia-1] https://en.wikipedia.org/wiki/Orchestration_(computing)

[Wikipedia-2] https://en.wikipedia.org/wiki/Consequences_(game)
June 2019 | Overload | 3

https://en.wikipedia.org/wiki/Consequences_(game)
https://en.wikipedia.org/wiki/Orchestration_(computing)
http://wiki.c2.com/?FizzBuzzTest
https://www.urbandictionary.com/define.php?term=herding%20cats
http://www.swig.org/
https://www.newscientist.com/article/mg23431304-300-chatbots-learn-how-to-drive-a-hard-bargain/
https://accu.org/index.php/journals/2566
https://www.imdb.com/title/tt0083658/
https://www.imdb.com/title/tt0091209/
https://www.oreilly.com/library/view/97-things-every/9780596809515/
https://www.oreilly.com/library/view/97-things-every/9780596809515/
https://news.ycombinator.com/item?id=8466276
http://echoborg.com/
http://codemanship.co.uk/parlezuml/blog/?postid=1494
https://twitter.com/fbuontempo/status/1122074050946318341

FEATURE LUCIAN RADU TEODORESCU
Do Repeat Yourself
Software developers are well aware of the ‘DRY
Principle’. Lucian Radu Teodorescu investigates
when this common wisdom does not always hold.
f you are a software developer, chances are that you heard about the
DRY principle: “Don’t repeat yourself” [Hunt99]. Actually, chances are
that you’ve heard it multiple times; probably many, many times. If you

do a quick Internet search, you see that this phrase is repeated ad nauseam.
But how come a mantra that preaches no repetition is repeated – ironically
– so many times? Starting from this paradox, this article analyses why
sometimes repetition is vital for people and also useful for software
development.

The name of the game
Software development is a knowledge acquisition process [Henney19].
It’s not enough to write code for machines to understand; we need also
people to be able to understand it and reason about it. It’s mostly a social
activity. It’s not enough for the actual co-workers to understand your code,
future co-workers also need to understand the code. Furthermore, if you
understand your code now, you may not be able to do it 6 months in the
future – that’s how volatile is the understanding of the code.

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand

~ Martin Fowler

The main bottleneck of software development is the understanding
capacity of programmers. If, following Kevlin Henney, we rename the
term code into codified knowledge [Henney19], then the fundamental
problem is arranging this knowledge in such a way that it allows easy
acquisition by humans and easy reasoning on it.

There are many aspects of organizing this knowledge, but for the purpose
of this article, we are concerned only about the use of repetition.

Other forms of knowledge representations
Let us take verbal communication as the primary form of interacting with
knowledge. First, there is the actual verbal communication, then there is
the non-verbal one. The non-verbal communication often repeats the
verbal communication; it’s used most of the time to strengthen the message
expressed through words.

Looking at the language itself, we find that it’s highly redundant. Some
very common examples of redundancy in English include: plural and
gender concordance, the third person singular -s, subject-predicate
inversion (in the presence of an interrogative word), etc. It seems that
humans are better equipped to understand messages with a lot of
redundancy. If people find that processing natural language is easier in the
presence of redundancy, why would we want to remove redundancy from
the software that people are supposed to read?

Let’s go further in our analysis of repetition in discourse. Within rhetoric,
repetition is an important strategy for producing emphasis, clarity,
amplification or emotional effect. It can be of letters/syllables/sounds,
words, clauses or ideas. For example, one can see a lot of repetition in the
following speech:

We shall not flag or fail. We shall go on to the end. We shall fight in
France, we shall fight on the seas and oceans, we shall fight with
growing confidence and growing strength in the air, we shall defend
our island, whatever the cost may be, we shall fight on the beaches,
we shall fight on the landing grounds, we shall fight in the fields and
in the streets, we shall fight in the hills. We shall never surrender.

~ Winston Churchill

One can say that the text is just a big repetition of the same idea. How would
a DRY fan ‘refactor’ this text? Probably something like the following:

There are a few things we shall do: go on to the end, fight – in France,
on the seas, in the air (with growing confidence and growing strength),
beaches, landing grounds, fields, streets, hills – go to the end, defend
our island (whatever the cost may be); but never surrender, flag or fail.
~ DRY enthusiast

And, because refactoring is an iterative process, after a few shake-ups of
the text, we would arrive at:

We shall fight and never surrender. ~ DRY enthusiast

For fun, and for the sake of repetition, let’s have 3 more examples:

O Romeo, Romeo! Wherefore art thou Romeo?
~ William Shakespeare

Becomes:

Hey, Romeo! Wherefore art thou?

And:

I am so happy. I got love, I got work, I got money, friends, and time.
And you alive and be home soon. ~ Alice Walker

Becomes:

I’ve got happiness, love, work, money, friends, time, you alive;
reaching home soon.

And finally:

Happy families are all alike; every unhappy family is unhappy in its
own way. ~ Leo Tolstoy

Becomes:

Happy families are all alike; the others not.

And, because the last quote was from Anna Karenina, I would like to
stress one more point. How would an author construct such a complex
novel if it didn’t have repetition? How can one construct characters
without repeating types of behaviors? How can one distinguish between
main characters and other characters without repeating the names of the
main characters more? Imagine every name in Anna Karenina written
only once, every detail about the world that Tolstoy created appearing
only once.

I

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. In his spare time, he is working
on his own programming language and he is improving his Chuck
Norris debugging skills: staring at the code until all the bugs flee in
horror. You can contact him at lucteo@lucteo.ro
4 | Overload | June 2019

FEATURELUCIAN RADU TEODORESCU
Ignoring its aesthetic value, we can always think of a novel as a knowledge
source, and thus similar in some ways with our code. When writing a novel,
the author typically wants the readers to understand and remember, if not
all, at least some key aspects of the novel. That is exactly what software
authors aim for.

In fiction repetition is useful in:

 emphasising what’s important

 keeping certain aspects fresh in the reader’s memory

 simplifying reading.

The same benefits can apply to repetition in code. Religiously eliminating
repetition would remove these benefits as well, making the code harder to
read.

Memory and learning
Tell the audience what you’re going to say, say it;

then tell them what you’ve said
~ Dale Carnegie

Repetition plays a key role in how our memory works. Both in terms of
acquiring new memories and using those memories. And this is extremely
important if we want to improve our knowledge acquisition process.

Psychologists and neuroscientists differentiate between long-term
memory and short-term memory [Foster09]. For the purpose of this article,
we could consider working memory to be a synonym for short-term
memory. This long-term and short-term memory would correspond to
external storage and CPU registers, in computing parlance.

Since ancient times the best method to acquire knowledge in the long-term
memory is rehearsal:

Repetition is the mother of all learning
~ Ancient proverb

Not only does it provide means to remember facts, but repetition also plays
an important role in what’s important and what’s not. This is how we teach
our children; we repeat a lot the facts the child needs to learn, and we repeat
more often the more important facts.

Just like with CPU registers, the most important thing about working
memory is that it is very limited. Early models claimed 7 different things
(plus or minus 2); recent studies claim that without any grouping tricks,
the memory is generally limited to 4 different things. [Mastin]

The other problem with short-term memory is that it easily decays (in the
order of seconds). To keep things in short-term memory (e.g., in focus),
we need to constantly repeat those things. [Mastin]

Let’s take an example. Let’s assume that we are exploring a new codebase
and we have 100 functions of equal importance. We need to find 3
functions that match the given criteria. Without any form of grouping, or
repeating what’s essential, we would iterate over the space of functions
trying to capture the needed functions. But, the problem is that after a few
functions visited, our memory is filled with unimportant stuff. We
constantly defocus, and our search procedure is hard. If the important
information is repeated just enough, and/or if we have some sort of
grouping, it would be much easier for us to find what we are looking for.

When repetition is preferable
The reader must have repeatedly seen the downsides of repetition, so
repeating them here would not be beneficial (pun intended). Instead, we
are shall enumerate some of the benefits of repetition:

 Emphasizes important aspects of the code. Indeed, if the readers
of the code see that a certain principle/pattern/design choice is
applied several times, they can easily reach the conclusion that the
principle/pattern/design choice is important. Conversely, if an
important decision is not repeated at all, but there are other
constructs/patterns repeated, then the importance of the decision can
easily slip past the reader.

 Ease the learning. Repetition is the mother of all learning.

 Create coherency. If all items in a group have completely different
characteristics, then the group is not coherent at all. To make a group
coherent is to give all the elements in a group a certain characteristic.
That is, to repeat the characteristic.

 Keeps abstractions at the same level. Refactoring techniques that
aim to avoid repetition often make the new abstractions operate at
different levels; this is typically bad for reading the code. If we want
to keep the code at the same abstraction level, sometimes we need to
duplicate some code.

 Efficiency. Sometimes, to achieve maximum efficiency, certain
(low-level) code snippets need to be duplicated.

In the following subsections, we offer examples of when repetition applied
in programming is good. However, as all design choices have both pros
and cons, we also briefly indicate how not to apply the advice over-
zealously.

Repetition and code documentation
Code documentation is essentially repetition. It repeats (to a certain
degree) what the code is saying, but in a manner that is more
understandable by people. We all agree that code documentation is good,
therefore, a form of repetition is good.

Then, we have repetition inside the documentation itself. For example, if
we have an important architectural decision that we want the readers of
the documentation to keep in mind, we should repeat it each time it
provides insight into why certain things are designed in a certain way.

People should use repetition inside code documentation to highlight
what’s important.

However… don’t overdo it. Avoid documenting things that frequently
change. Avoid repeating ad nauseam decisions that are not important.

Repetition in style
It’s often a good idea to have a consistent style. But a consistent style can
only be produced by repeating the same stylistic elements, so repetition is
essential to a consistent style.

Style can apply to a variety of things: from formatting the code, to the way
architectural decisions are made. All of them are important, but I would
argue that the latter part is more important than the first one. There are only
a few things that can damage understandability more than having a set of
incoherent decisions. To come back to the ‘codified knowledge’
interpretation, having inconsistent knowledge is very harmful.

However… don’t overdo it. I’ve seen a lot of time spent in minor
formatting style debates. Stylistic unity is good, but that doesn’t mean that
we have to burn a developer at the stake when they add spaces in the wrong
place. Don’t be dogmatic on this; use tools like clang-format to take
the burden off developers.

Repetition in naming
Let’s assume that one is writing code for a system based on the Model-
View-Controller pattern. Naming all the model classes with the ‘Model’
suffix, all the view classes with the ‘View’ suffix and all the Controller
classes with the ‘Controller’ suffix is generally a good idea. It provides
coherence within the 3 groups of classes, and it makes it easier for readers
to understand the code. Just by looking at the name of such a class, the
reader can have a basic understanding of what the class does, without
looking at the details.

Indeed, psychologies would label this naming repetition as a mnemonic
system – a learning technique that aids information retention or retrieval
in human memory.

However… don’t overdo it. If mnemonics are good, it doesn’t mean that
we should heavily use identifier naming conventions all over the place.
Form should never outlive content. For example, Hungarian notation is
heavily criticized in modern software literature. [Martin09]
June 2019 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU
Don’t complicate algorithms to avoid repetition
At the function level, we often don’t encounter pure repetition. Two
functions that look very similar can have slight differences. If two
functions are 90% the same, we cannot avoid repetition by simply reusing
the code. We have to carefully separate the commonalities from the
differences.

The main problem is the common part is too often interleaved with
specifics of the two functions we want to collapse. How would we create
a common function that can behave differently between the two cases?
Often, we add parameters to the common function and pepper its body with
if statements. And often the common function becomes more
complicated than any of the original functions.

As I’m writing these lines, I can almost hear the Clean Code [Martin09]
fans screaming in my ear: you should create new abstraction classes that
implement different policies and pass them to your function. This may
work in some cases, but my experience so far is that is seldom a better
choice. Two problems with this approach are that we increase the overall
complexity of the code (each new abstraction increases complexity) and
that it makes the functions hard to follow (the reader may have to jump
between different abstractions). But most of the time, a bigger problem
arises: to make it work properly, one needs to mix different abstraction
level (see the following subsection); this increases a lot the overall
complexity.

Abstractions are best to be created as a result of the design process, not as
a by-product of eliminating duplication.

There are a lot of cases in which two functions that are 90% identical
should be kept separate. It’s just easier to understand them independently.
If you really want people to read them together, you can add a comment
explaining that they are linked, and they do almost the same thing.

Take for example the two functions from Listing 1; it’s a scoped down
example, but it should be enough to prove our point. The only difference
between the two functions is the else break; line. How would one unify
the two functions without creating additional if clauses and without
adding parameters that reflect implementation details? Would the code be
more readable?

Similar ideas can also be found (and better presented) in [tef18] and
[Metz16]. I think this entire section can be reduced to the following two
quotes:

The problem with always using an abstraction is that you’re
pre-emptively guessing which parts of the codebase need to

change together. “Don’t Repeat Yourself” will lead to a rigid,
tightly coupled mess of code. Repeating yourself is the best

way to discover which abstractions, if any, you actually need.
~ tef

Duplication is far cheaper than the wrong abstraction
~ Sandi Metz

However… don’t overdo it. Sometimes you can shift the abstractions in
such a way in which you can eliminate the duplication; analyze each
situation separately and don’t religiously decide to duplicate code or avoid
duplication.

Avoid mixing different abstraction levels
Two functions that do the same thing should not be combined if they
operate at different abstraction levels or they belong to unrelated modules.
It adds a great burden on the developer who needs to keep changing the
context to properly understand the code.

For example, summing numbers and summing back accounts are two
completely different things; one should not combine the functions that
perform the summation.

Let us take another example that created a lot of heat in the last couple of
months. [Aras18] [Niebler18]. We aim to print the first N Pythagorean
triples (computed in a naive way). A simple C-style solution to this
problem is presented in Listing 2. It uses an imperative, plain C-style with
one abstraction level.

With the C++20 ranges feature, Eric Niebler proposes the implementation
from Listing 3 (comments stripped out), arguing for more genericity
[Niebler18].

I believe that all readers would consider the latter code much harder to
read. There are multiple reasons why this second version is more
complex, but one of them is too much change in the abstraction level.
Let’s analyze this.

The code in Listing 3 mixes imperative style (see return statements),
with functional style (see piping operator), with more mathematical
abstractions (Semiregular, iota), range-specific abstractions
(transform, join, take), range building blocks abstractions
(view_interface) a n d C + + i n - d e p t h a b s t r a c t i o n s
(IndirectUnaryInvocable, concepts, move semantics). Too many
abstraction levels. If you saw a view::transform, a view::join
and a view::take in the same code, it would be fine, even if you type
more: all the abstractions are at the same level; but don’t mix the levels
too much.

A common side effect of using multiple abstraction levels in the same code
is the need for more code to bridge between the abstractions. Having too
much plumbing code is a good indication that there are multiple abstraction
levels involved. And overall, this will make the understanding of the code
much harder.

Besides understandability costs, the ranges solution also have pretty high
compilation-time costs as Aras points out [Aras18].

Related to this, overuse of generics in the name of eliminating duplicates
can lead to major pain points. I had the misfortune to see a lot of cases in
which templates are used in the name of genericity, and eliminating

Listing 1

template <class II, class OI, class UOp, class P>
OI transform_if(II first1, II last1, OI result,
UOp op, P pred) {
 while (first1 != last1) {
 if (pred(*first1)) {
 *result = op(*first1);
 ++result;
 }
 ++first1;
 }
 return result;
}

template <class II, class OI, class UOp, class P>
OI transform_while(II first1, II last1, OI result,
UOp op, P pred) {
 while (first1 != last1) {
 if (pred(*first1)) {
 *result = op(*first1);
 ++result;
 }
 else break;
 ++first1;
 }
 return result;
}

Listing 2

int i = 0;
for (int z = 1; ; ++z)
 for (int x = 1; x <= z; ++x)
 for (int y = x; y <= z; ++y)
 if (x*x + y*y == z*z) {
 printf("%d, %d, %d\n", x, y, z);
 if (++i == n)
 return;
 }
6 | Overload | June 2019

FEATURELUCIAN RADU TEODORESCU
duplicates, but if you would just write the code without templates, with all
the duplication, it would be far smaller than the code with templates.

However… don’t overdo it. Taking the advice in this section too
dogmatically would prevent you from creating any abstraction or very little
abstraction. Of course, software without good abstraction is bad software.

Repeating the data
Repetition can happen at the code level, but also on the data level. There
are cases in which repeating the data leads to a cleaner design and/or
improved efficiency.

Such is the case with multithreaded code. Instead of having multiple
threads accessing the same data source, with the possibility of data-races

and with mutexes (read bottleneck instead of mutex), it’s sometimes much
simpler to duplicate the data. If each thread would have a copy of the data,
then there would be no race conditions when accessing the data, and no
need to protect the data access. In this case, synchronizing the data between
thread can be done by sending messages from one thread to another (which
typically involves other data copies).

Another case in which data repetition is used is for pure performance
reasons. Cache locality is typically important for performance critical
code, and cache locality often involves data copies. The classical example
is improving the reads from external memory: one can often cache it in
memory, and then, based on the algorithm, cache it in L2, L1 and CPU
registers. Read duplicate it instead of cache it.

However… don’t overdo it. Of course, both of the cases described here
should not be applied blindly. One should typically have a good design/
measurements before applying the techniques described here.

Conclusions
Andrew Hunt justifies the DRY principle mainly by the need to avoid
maintenance work [Hunt99]. But we agreed that writing and maintaining
code is not the most important part of a programmer’s job; instead, reading,
understanding and reasoning about the code is far more important. And
repetition can help with this. Therefore, the DRY principle is not as
justified as one would believe. And, again, ironically, it should not be
repeated as often.

The purpose of this article was not to convince the reader of how bad the
DRY principle is; in general, this can be a good principle. The goal was
to draw attention to the fact that applying the principle doctrinally can be
harmful. The reader, who is or aspires to be a virtuous programmer, needs
to balance the pros and cons when applying this principle. Therefore, it
gives me great pleasure to end with Aristotle’s golden rule:

Virtue is the golden mean between two vices,
the one of excess and the other of deficiency.

~ Aristotle

References
[Aras18] Aras Pranckevi?ius (2018), ‘Modern’ C++ Lamentations,

http://aras-p.info/blog/2018/12/28/Modern-C-Lamentations/

[Foster09] Jonathan K. Foster (2009), Memory: A Very Short
Introduction, Oxford University Press

[Henney19] Kevlin Henney (2019) ‘What do you mean?’, ACCU
Conference 2019, https://www.youtube.com/
watch?v=ndnvOElnyUg

[Hunt99] Andrew Hunt and David Thomas (1999), The Pragmatic
Programmer: From Journeyman to Master, Addison-Wesley
Professional

[Martin09] Robert C. Martin ed. (2009), Clean Code: A Handbook of
Agile Software Craftsmanship, Pearson Education

[Mastin] Luke Mastin, ‘Short-term (working) memory’,
http://www.human-memory.net/types_short.html

[Metz16] Sandi Metz (2016), ‘The wrong abstraction’,
https://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction

[Niebler18] Eric Niebler (2018), ‘Standard Ranges’,
http://ericniebler.com/2018/12/05/standard-ranges/

[tef18] tef (2018), ‘Repeat yourself, do more than one thing, and rewrite
everything’, https://programmingisterrible.com/post/
176657481103/repeat-yourself-do-more-than-one-thing-and

Listing 3

template<Semiregular T>
struct maybe_view : view_interface<maybe_view<T>>
{
 maybe_view() = default;
 maybe_view(T t) : data_(std::move(t)) {
 }
 T const *begin() const noexcept {
 return data_ ? &*data_ : nullptr;
 }
 T const *end() const noexcept {
 return data_ ? &*data_ + 1 : nullptr;
 }
private:
 optional<T> data_{};
};

inline constexpr auto for_each = []<Range R,
 Iterator I = iterator_t<R>,
 IndirectUnaryInvocable<I> Fun>(R&& r,
 Fun fun) requires
 Range<indirect_result_t<Fun, I>> {
 return std::forward<R>(r)
 | view::transform(std::move(fun))
 | view::join;
 };

inline constexpr auto yield_if =
 []<Semiregular T>(bool b, T x) {
 return b ? maybe_view{std::move(x)}
 : maybe_view<T>{};
 };

using view::iota;
auto triples =
 for_each(iota(1), [](int z) {
 return for_each(iota(1, z+1), [=](int x) {
 return for_each(iota(x, z+1), [=](int y) {
 return yield_if(x*x + y*y == z*z,
 make_tuple(x, y, z));
 });
 });
 });

for(auto triple : triples | view::take(10)) {
 cout << '('
 << get<0>(triple) << ','
 << get<1>(triple) << ','
 << get<2>(triple) << ')' << '\n';
}

June 2019 | Overload | 7

http://aras-p.info/blog/2018/12/28/Modern-C-Lamentations/
http://www.human-memory.net/types_short.html
https://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction
http://ericniebler.com/2018/12/05/standard-ranges/
https://programmingisterrible.com/post/176657481103/repeat-yourself-do-more-than-one-thing-and
https://programmingisterrible.com/post/176657481103/repeat-yourself-do-more-than-one-thing-and
https://www.youtube.com/watch?v=ndnvOElnyUg
https://www.youtube.com/watch?v=ndnvOElnyUg

FEATURE SERGEY IGNATCHENKO
On IT and... CO2 Footprints
Recent headlines declare a climate emergency.
Sergey Ignatchenko considers how we can make
an impact on IT’s carbon footprint.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented an exact translation. In addition,
the translator and Overload expressly disclaim all responsibility from any
action or inaction resulting from reading this article.

Disclaimer #2: all the numbers within this article are calculated ‘on the
back-of-an-envelope’ (see, for example, [NoBugs17] for discussion),
and are at best accurate within an order of magnitude; still, even being
accurate within an order of magnitude is good enough for our current
purposes.

hese days, I happen to know quite a few fellow programmers who are
bicycling to work; what’s interesting, however, is that most of them
are not doing it for fun, but instead are arguing that it is a Good

Thing™ to save on their CO2 footprint. I’ve heard this line of argument
soooo many times (if you’re not familiar with it, take a look, say, at
[Handy18]), that I decided to make some back-of-an-envelope calculations
to see whether we as software developers can save a bit more than that.
BTW, even if you happen to believe that global warming has nothing to
do with CO2, only a few will disagree (I hope) that burning non-renewable
resources for nothing is a Bad Thing™.

In [Handy18], it is mentioned that over 16 years the author saved 3 metric
tons of CO2 by bicycling to the office instead of driving; that’s saving
about 190 kilos of CO2 per year. Now, let’s see what IT-related changes
can do in terms of saving the world (from global warming, that is).

Let’s consider a few real-world examples.

Example 1: Game with 100K simultaneous players
For the purposes of our first example, let’s assume that you happen to work
on a PC-based game with 100,000K simultaneous players, which uses
about 100W when it is running. Now, if you can come up with a trick which
saves mere 1% of this power, it means that you’ll be saving 1W×100,000=
100kW of power at each and every moment, which translates into
2,400 kWh per day, or 876,000 kWh per year. Now, we can use
[CarbonFootprint] to translate this into CO2 and discover that one such
optimization will save a whopping 270 tons of CO2 per year(!) – that will
cover 1,400 people (such as those in [Handy18]) bicycling to the office
and back.

How we can save that 1% of power is a different story. Just as one
example, often much more than that can be saved in practice by switching
to V-sync by default (that is, in the absence of G-sync/Freesync). I

certainly don’t want to start a war on which is better for the end-user –
screen tearing without V-sync or lag without it (especially because the
answer is very game-specific) – but whenever you’re in doubt, V-sync
can be preferred by default as being more environmentally friendly.

Example 2: Multithreaded video codec with 1M active
install base
Now, let’s assume you’re writing a video codec, and you’re really good at
it, so you have 1 million people actively using your codec, with each of
these people using it 10% of the time, and while they’re using it, it eats
100W of power.

Also, let’s assume that your codec uses fine-grained multithreading, and
that when it uses 4 CPU cores – it gets a 2× wall-clock speed-up compared
to running on a single core. But this means that in multithreaded mode
(which you enabled by default, of course), it takes 4× the power of a single
core, multiplied by 0.5×of the time needed to perform the task. This means
that overall power consumption will increase by about 4×0.5=2× (in fact,
usually a bit less due to interplay with other components, but not by much).
In other words, in multithreaded mode only the power of 2 CPU cores is
actually used to produce something useful, and anything the other 2 CPUs
do goes towards paying for synchronization overheads. This means that
you’re wasting about 50% of that 100W of power per box – that’s about
50W wasted per box!

Now, if you rewrite your codec so that it separates jobs between threads
on a per-keyframe basis (which means that there is no interaction between
the data in different threads, hence there is almost zero thread sync and
almost zero overhead), you can get most of that 50W back; let’s assume
you’ve got 40W back. With your user base, this translates into 100,000
simultaneous users×40W=4MW. That’s 40× more than that of our 1st
example – and translates into savings equivalent to those of 56,000 people
bicycling per year(!!).

Example 3: Single R-R op within Linux scheduler
In our 3rd example, let’s assume that you’ve noticed how to save one
single R-R operation within Linux scheduler. Now, let’s assume that
Linux is running on a billion devices (which is a rather conservative
estimate, if we take into account all Androids and all IoT stuff), and that
the appropriate part of the scheduler is run every 10ms. This means that
you’ll be saving one R-R operation on 1× 109 devices × (1sec/
10ms)=1×1011 times every second. Assuming that an R-R operation
takes one CPU cycle, this will very roughly correspond to running a
hundred 1GHz CPU cores all the time – and assuming that each of these
cores will eat 30W (that’s accounting for associated power consumption
in memory etc.), this means that you’ve got savings of 3kW (or 42 people
bicycling instead of driving each and every day). That’s just for saving
one single R-R operation(!!).

T

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including being a co-architect of a stock exchange, and the sole
architect of a game with 400K simultaneous players. He currently
holds the position of Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

We usually print purely technical articles in Overload, but hope that this
article on a broader subject is still of interest to our readership.
8 | Overload | June 2019

FEATURESERGEY IGNATCHENKO
Example 4: Better screen blanking defaults
Now, let’s move from considering pure programming into other computer-
related things. For the purposes of our 4th example, let’s assume that you
have the ability to change the default screen blanking time on a desktop
system from 30 minutes down to 10 minutes, with a billion such systems
working all over the world. Let’s further assume that 80% of the users don’t
change defaults, that the chances that after 10 minutes a user is still staring
at the monitor are 10%, that screen blanking fires three times a day, and
that the monitor uses 20W when it is not blanked.

Then, this simple change in defaults will result in savings of (30-10
minutes)×0.8×0.9×109 users×20W×5times/day = ⅓×3 hour/day ×14W
× 109 = 0.014kWh/day × 109 ~= 5×109 kWh/year, or 1,500,000 tons of
CO2 per year, which is equivalent to eight million people changing from
a car to a bicycle for getting to/from the office.

NB: BTW, if you change just your own 100% screen saver into screen
blanking, you’d save about 60 kilos of CO2 per year – which is ⅓ of the
savings from bicycling [Handy18]; not a bad gain from such a non-effort.

Example 5: Giving up on cryptocurrency speculations
Each time you’re making your Bitcoin ‘investment’ (actually, most of the
time it is pure speculation – see [WallStreetMojo] for the difference
between the two) transaction – think how much CO2 waste it creates.

The whole Bitcoin industry is estimated to use a whopping 22 terawatt-
hours per year [Economist] – that’s 2.2×1010kWh per year, equivalent to
35 million people bicycling to their offices – which is about the population
of the whole of California (and about ⅓ of the workforce in the whole US).

In other words,

if we all simply give up on Bitcoins (which have a mostly speculative
and dark-market value – their use for other purposes such as
processing real-world non-dark transactions still hasn’t really
started) – this would result in CO2 savings comparable to the whole
of California bicycling instead of driving(!!).

By trying to speculate on Bitcoin (Ethereal, whatever else), we’re not only
gambling our hard-earned savings, but are also drastically increasing our
CO2 footprint. Moreover, this seems
to be the very nature of cryptocurrencies

because all of them rely on so-called Proof of
Work (even the cryptocurrencies billed as ‘without

Proof of Work’ still need it at least for ‘initial
distribution’ [Bentov]).

As there are about 300,000 confirmed Bitcoin transactions per day,
we can conservatively say that if you’re making one such transaction per

day, you become responsible for 1/300,000 of those 22 TWh/year.
Actually, as long as you’re losing in this gamble – as the vast majority of
individual investors do – you’re producing more than that share because
you’re feeding the pool where more transactions happen. That’s
73,000kWh/year, or 22.4 tons of CO2 per year, or 120 people bicycling(!!).
Or, looking at it from a different angle – making just three Bitcoin
transactions per year is enough to offset you bicycling all the year(!!!).

Yes, instead of bicycling to the office every day, just give up on three
Bitcoin transactions per year – you will get the same CO2 reduction.

Conclusion
Sure, bicycling does reduce CO2 footprint. However, in IT there are lots
of ways to save even more (often much more) than by bicycling; it can be
as simple as optimizing your own program so it uses less power,
readjusting screen your saver, or even giving up on just three Bitcoin
transactions per year(!).

Bibliography
[Bentov] Iddo Bentov, Ariel Gabizon and Alex Mizrahi (no date)

‘Cryptocurrencies without Proof of Work’, available at:
https://fc16.ifca.ai/bitcoin/papers/BGM16.pdf

[CarbonFootprint] Carbon Calculator, available at:
https://www.carbonfootprint.com/calculator.aspx

[Economist] ‘Why bitcoin uses so much energy’, in The Economist
explains, published 9 July 2018 at https://www.economist.com/the-
economist-explains/2018/07/09/why-bitcoin-uses-so-much-energy

[Handy18] Susan Handy, ‘Want to save tons of greenhouse gases? Bike
it.’, in Science & Climate, published 6 September 2018, available at:
https://climatechange.ucdavis.edu/what-can-i-do/want-to-save-tons-
of-greenhouse-gases-bike-it/

[Loganberry04] David ‘Loganberry’, Frithaes! - ‘An Introduction to
Colloquial Lapine!’, available at
http://bitsnbobstones.watershipdown.org/lapine/overview.html

[NoBugs17] ‘No Bugs’ Hare (2017) ‘The Importance of Back-of-
Envelope Estimates’, Overload 137, available at: https://accu.org/
index.php/journals/2341

[WallStreetMojo] ‘Differences Between Investment and Speculation’ in
WallStreetMojo, available at: https://www.wallstreetmojo.com/
investment-vs-speculation/
June 2019 | Overload | 9

https://fc16.ifca.ai/bitcoin/papers/BGM16.pdf
http://bitsnbobstones.watershipdown.org/lapine/overview.html
https://www.carbonfootprint.com/calculator.aspx
https://www.economist.com/the-economist-explains/2018/07/09/why-bitcoin-uses-so-much-energy
https://www.economist.com/the-economist-explains/2018/07/09/why-bitcoin-uses-so-much-energy
https://accu.org/index.php/journals/2341
https://accu.org/index.php/journals/2341
https://www.wallstreetmojo.com/investment-vs-speculation/
https://www.wallstreetmojo.com/investment-vs-speculation/
https://climatechange.ucdavis.edu/what-can-i-do/want-to-save-tons-of-greenhouse-gases-bike-it/

FEATURE PÉTER ÉSIK
Use UTF-16 Interfaces to
Ship Windows Code
Character encoding can cause problems. Péter Ésik
explains why UTF-16 interfaces help on Windows.
isting 1 is a small program that takes a file path as a parameter, and
queries its size. Even though stat is a POSIX function, it happens to
be available on Windows as well, so this small program works on both

POSIX platforms and Windows. Or does it? Let’s try it out with two test
files. For test.txt, it correctly reports the file’s size. For Hello,
мир.txt, however, the stat call fails (on my machine), even though the
file clearly exists (see Figure 1). Why is that?

The ‘ANSI’ vs. UTF-16 story in five minutes (or less)
Back in the day, character encodings were quite rudimentary. The first
encoding widely adopted by computer systems was ASCII [Wikipedia-1]
(a 7-bit encoding) , capable of encoding the English alphabet and some
other characters (numbers, mathematical symbols, control characters,
etc.). Of course, the obvious need arose to encode more characters as users
expected computers to speak their language, to type their native letters in
e-mails, etc. 8-bit encodings provided a partial solution: code points 0–127
were the same as ASCII (for compatibility), while extra characters were
encoded in the range 128–255.1 Those extra 128 code points were not
enough to encode all letters of all languages at once, so character mappings
were applied, most commonly known as code pages.

This means that a character or a string that’s encoded like this has no
meaning in itself, you need to know what code page to interpret it with (this
is somewhat analogous with files and their extensions). For example, code
point 0x8A means ä (lowercase a with an umlaut) if you interpret it using
the Macintosh Central European encoding [Wikipedia-2], but encodes Š
(uppercase S with caron) if you use the Windows-1252 [Wikipedia-3]
(Latin alphabet) code page.

This approach has two obvious problems: first, it’s easy to get encodings
wrong (for instance, .txt files have no header, so you simply can’t store
the code page used), resulting in so-called mojibake [Wikipedia-4].
Second, you can’t mix and match characters with different encodings
easily. For example, if you wanted to encode the string "Шнурки means
cipőfűző" (with Windows code pages), you would have to encode
"Шнурки" with code page 1251 (Windows Cyrillic) [Wikipedia-5], "
means " with a code page of your choice (as it contains ASCII characters
only), and "cipőfűző" with code page 1250 (Windows Central European)
[Wikipedia-6]. To correctly decode and display this string later, you would
have to store which code pages were used for which parts, making string
handling inefficient and extremely complex.

Because of problems like these, encodings were desired that could
represent ‘all’ characters at once. One of these emerging encodings was
UCS-2 (by the Unicode working group), which used 16-bit wide code units
and code points. Windows adopted UCS-2 quite early, Windows NT 3.1
(the very first OS of the NT series, released in 1993) and its file system,
NTFS, used it internally. Even though the 32-bit Windows API debuted
with NT 3.1 as brand new, support for 8-bit encodings was still necessary.2

As UCS-2 used 16-bit code units, and the C language does not support
function overloading, Microsoft introduced two versions of every API
function that had to work with strings (either directly or indirectly): a UCS-
2 version, with a W suffix (‘wide’, working with wchar_t strings), and
one for 8-bit code paged strings, with an A suffix (‘ANSI’3, working with
char strings).

1. There are some languages with much more symbols than 128 or 255
(Japanese, Chinese, etc.), which led to the invention of DBCS/MBCS
character sets. I’m not mentioning them here for simplicity.

L

Figure 1

2. One major reason for this was (other than UCS-2 not being widespread
at the time) that the consumer line of Windows OSes (95, 98, etc.) had
very limited support for UCS-2, but applications targeting Win32 had to
run on both lines of Windows.

3. Technically, it’s not correct to call these functions ‘ANSI’ versions, as
none of the supported code pages are ANSI standards. This term has
historical roots, as the first Windows code page (1252) was based on
an ANSI draft. On recent versions of Windows 10, the ACP can be set
to UTF-8. Therefore, it’s best to think about ‘ANSI code pages’ as ‘some
encoding that’s not UTF-16’.

Péter Ésik Péter has been working as a C++ software developer for 5
years. He has a knack for everything low level, including (but not limited
to) OS internals, assembly, and post-mortem crash analysis. His blog
can be found at http://peteronprogramming.wordpress.com, and he
can be contacted at peter.esik@gmail.com

Listing 1

#include <iostream>
#include <sys/stat.h>

int main (int /*argc*/, char* argv[])
{
 struct stat fileInfo;
 if (stat (argv[1], &fileInfo) == 0) {
 std::cout << "The file's size is: "
 << fileInfo.st_size << " bytes\n";
 } else {
 std::cout << "Unable to stat file (maybe it
 doesn't exist?)\n";
 }
}

10 | Overload | June 2019

FEATUREPÉTER ÉSIK

The problem is that there might be
characters in the UTF-16 command line

that have no representation in the
currently active code page
The A functions act as mere wrappers, usually4 they just convert the string
parameters and forward the call to the corresponding W version. So for
example, there is no such function as MessageBox, there is only
MessageBoxA, and MessageBoxW. Depending on the strings you have,
you need to call the appropriate version of the two.5

Which code page is used to interpret strings in the A family of functions?
Is there a code page parameter passed? No, they use a system-wide setting
ca l l ed t he a c t i v e c od e p ag e , l oc a t e d i n t he r eg i s t ry a t
HKLM\SYSTEM\CurrentControlSet\Control\Nls\CodePage\ACP. This
value is decided based on your region you choose at installation time, but
can also be changed later in the Control Panel.

Eventually, UCS-2 evolved into UTF-16, and starting with Windows
2000, the OS had support for it. Since UCS-2 is fully compatible with UTF-
16, programs didn’t need to be rewritten or even recompiled.

Back to the test program
Armed with this knowledge, it’s easy to see why the small test program
doesn’t work for certain files. This is what happens:

1. The program is started (with whatever parameters).
2. Very early in the startup phase, Windows converts the (native) UTF-

16 command line to an ‘ANSI’ string using the active code page, and
stores it in a global variable.

3. Because regular main was used (with ‘narrow’, char parameters)
in this application, early in the startup phase the CRT queries the
command line with GetCommandLineA (this just returns the global
that was set up by the previous step), converts it into an array, and
passes it down to main.

The problem is that there might be characters in the UTF-16 command line
that have no representation in the currently active code page. For example,
my computer’s locale is set to Hungarian, therefore my ACP is 1250
(Windows Central European) [Wikipedia-6]. Cyrillic characters such as м,
и, and р have no representation in this encoding, so when the UTF-16 to
‘ANSI’ conversion is performed, these characters are replaced with
question marks (see Figure 2).6 When stat is called with the string
"D:\temp\temp\Hello, ???.txt" (which by the way involves an
‘ANSI’ to UTF-16 conversion internally), of course it fails, because there
is no file named Hello, ???.txt in that directory.

cURL
It’s not that hard to bump into applications or libraries suffering from these
problems. cURL, for example, is one of them. Now don’t get me wrong,
I’m in no way saying that it’s a badly written piece of software, quite the
contrary. It’s a battle-tested, popular open source project with a long
history and a plethora of users. Actually, I think this is what makes it a
perfect example: even if your code is spot on, this aspect of shipping to
Windows is very easy to overlook.

For file IO, cURL uses standard C functions (such as fopen). This means
that for example, if you want your request’s result written into an output
file, it will fail if the file’s path contains characters not representable with
the system’s current ‘ANSI’ code page.

Another example is IDN (internationalized domain name) handling. cURL
does support IDNs, but let’s see what happens if I try it out using the
standalone command line version (see Figure 3).

 Even though magyarország.icom.museum exists, and its string form
is perfectly representable with my machine’s ACP (1250), cURL fails with
an error. Looking at the source code quickly reveals the culprit:

 cURL needs to convert the IDN to so-called Punycode
[Wikipedia-7] before issuing the request.

 It does so with IdnToAscii [WindowsDev], but this function
expects a UTF-16 input string.

 Even though the original string (which originates from the command
line parameter) is an ‘ANSI’ string, conversion to UTF-16 is
attempted assuming it’s UTF-8. This makes the conversion fail, and
thus cURL aborts with an error message.

cURL developers are aware of this category of problems: it’s listed on their
known bugs page [curl].

4. One exception I know of is OutputDebugString, where the ‘ANSI’
version is the native one (OutputDebugStringW will convert to
‘ANSI’ and call OutputDebugStringA)

5. It’s possible to create programs that can be compiled to support either
the W or A interfaces without source changes, using predefined macros
[Microsoft18]. Nowadays, however, that’s highly irrelevant. If you are
writing programs that target modern Windows versions (only NT), there
is almost absolutely no reason to use A interfaces.

6. The exact mappings are defined in .nls files located in the System32
directory.

Figure 2

Figure 3
June 2019 | Overload | 11

FEATURE PÉTER ÉSIK

some people think that … using
char strings and ‘ANSI’ interfaces
on Windows is ‘good enough’
Solution
The solution is in the title of this article: use UTF-16 (native) interfaces
on Windows. That is:

 Instead of regular main, use wmain as an entry point, which has
wchar_t string arguments.

 Always use the wide version of runtime functions (_wfopen_s
over plain fopen, wcslen instead of strlen, etc.).

 If you need to call Win32 functions directly, never use the ‘ANSI’
version with the A suffix, use their UTF-16 counterparts (ending
with W).

While this sounds great on paper, there is a catch. You can only use these
functions on Windows, as:

 Some of the widechar runtime functions are Windows-only (such as
_wfopen).

 The size and semantics of wchar_t are implementation defined.
While on Windows it’s a 2-byte type representing a UTF-16 code
unit, on POSIX systems it’s usually 4 bytes in size, embodying a
UTF-32 code unit.

One possible solution is to utilize typedefs and macros. See Listing 2.

This simple technique can go a long way (it can be done somewhat more
elegantly, but you get the idea), unless you need to exchange strings
between different platforms (over the network, serialization, etc.).

Closing thoughts
I know some people think that the problem presented in this article is
marginal, and using char strings and ‘ANSI’ interfaces on Windows is
‘good enough’. Keep in mind though that in commercial environments the
following situation is not that rare:

 Company X outsources work to company Y, but they reside in
different parts of the world.

 Therefore, the computers of company Y have a different ACP from
those of company X.

 It’s very likely that the outsourced work involves using strings in
company X’s locale, which will be problematic on Windows, if the
software(s) used for doing said work misbehaves in this situation.

Don’t be surprised if a potential client of yours turns down a license
purchase because of problems like this.

References
[curl] ‘Known Bugs’, curl: https://curl.haxx.se/docs/

knownbugs.html#can_t_handle_Unicode_arguments_i

[Microsoft18] ‘Working with strings’, published on 31 May 2018 at
https://docs.microsoft.com/en-gb/windows/desktop/LearnWin32/
working-with-strings

[Wikipedia-1] ASCII: https://en.wikipedia.org/wiki/ASCII

[Wikipedia-2] Macintosh Central European Encoding:
https://en.wikipedia.org/wiki/
Macintosh_Central_European_encoding

[Wikipedia-3] Windows -1252 code page: https://en.wikipedia.org/wiki/
Windows-1252

[Wikipedia-4] Mojibake: https://en.wikipedia.org/wiki/Mojibake

[Wikipedia-5] Windows-1251: https://en.wikipedia.org/wiki/Windows-
1251

[Wikipedia-6] Windows-1250: https://en.wikipedia.org/wiki/Windows-
1250

[Wikipedia-7] Punycode: https://en.wikipedia.org/wiki/Punycode

[WindowsDev] IdnToAscii function, Windows Dev Center:
https://docs.microsoft.com/en-gb/windows/desktop/api/winnls/nf-
winnls-idntoascii

Listing 2

#ifdef _WIN32

using nchar = wchar_t;
using nstring = std::wstring;

#define NSTRLITERAL(str) L##str
#define nfopen _wfopen
/* ... */

#else

using nchar = char;
using nstring = std::string;

#define NSTRLITERAL(str) str
#define nfopen fopen
/* ... */

#endif // #ifdef _WIN32
12 | Overload | June 2019

https://curl.haxx.se/docs/knownbugs.html#can_t_handle_Unicode_arguments_i
https://curl.haxx.se/docs/knownbugs.html#can_t_handle_Unicode_arguments_i
https://en.wikipedia.org/wiki/Windows-1252
https://en.wikipedia.org/wiki/Windows-1252
https://en.wikipedia.org/wiki/Mojibake
https://en.wikipedia.org/wiki/Windows-1251
https://en.wikipedia.org/wiki/Windows-1251
https://en.wikipedia.org/wiki/Windows-1250
https://en.wikipedia.org/wiki/Windows-1250
https://en.wikipedia.org/wiki/Punycode
https://docs.microsoft.com/en-gb/windows/desktop/api/winnls/nf-winnls-idntoascii
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Macintosh_Central_European_encoding
https://docs.microsoft.com/en-gb/windows/desktop/LearnWin32/working-with-strings

FEATUREVARIOUS AUTHORS
ACCU Conference 2019: Reports
ACCU holds an annual conference.
Several attendees tell us what they
learnt there this year.
From Felix Petriconi
hat a great week has just passed. I attended the ACCU conference
in Bristol, UK for the fifth time. On my flight back, I started to
make these notes. I am still overwhelmed by all the information

and the impressions.

For me, the conference started one day before the actual sessions. I
attended one of the offered one day tutorial workshops. My choice was the
‘Introduction to Rust’ workshop by Katharina Fey. She clearly described
the differences from other languages like C++, so the introduction was
quite easy. Piece by piece, she guided us through our first programming
tasks. From that day, I received a good overview of the language, and the
advantages of the extreme strong type system and its focus on value
semantics.

The Agile Bath & Bristol User Group again held their meeting in the
evening at the conference’s location, and Giovanni Asproni [Asproni19]
talked about ‘One Team, Two Teams, Many Teams: Scaling Up Done
Right’. It was an excellent talk where he emphasized that scaling up teams
only works in a limited way and that problems that already exist in a single
team are increased disproportionately when more teams work on the same
project. It would be great if more project manager or other leads in
companies could know this too.

For the very first time, we had a small intro video five minutes just before
the conference. Dom Davis [Davis19] created an usual boot sequence,
including a funny animation by Dylan Beattie of Eric Holscher’s Pac-Man
rule and the schedule of the day. After a welcome from the Chair, Russel
Winder, the conference was opened by Angela Sasse, formerly a professor
at the Department of Computer Science, University College London, UK
and now of Human-Centric Security at the Ruhr-University Bochum,
Germany. In her keynote, she emphasized the importance of the need to
communicate between the security department of an organization and the
users of the IT infrastructure. If users are not convinced by the importance
of certain security measures, they will bend the rules as much as possible
to make them work in their environment. As well, I learned that there are
already organizations out there that offer – beside intrusion or hacking
tools – first-class full support with help desks etc. for their ‘customers’.

The first regular session that I attended was given by Vittorio Romeo on
higher-order functions. He gave an overview of higher-order functions that
already exist in the C++ language in this very well structured talk. In the
second half, he explained the concept of a function_ref that he is
currently proposing for the C++ standard. This is a construct for
referencing functions and function objects, similar to string_view for
character sequences.

Unfortunately, I could not attend any session after lunch even they were
all very interesting, because I had to go to my own. Here I spoke about the
enormous number of traps that one can step into when one uses low-level
synchronization primitives likes atomics, mutex etc. and that high-level
abstractions take away most of the pain. At this point I want to thank John
Lakos for the engaged discussion within the session. This is the way that
I wish more sessions would be, because the word ‘conference’ comes from
Latin ‘conferre’, to compile, to discuss, to debate, to confer.

The last session of the first day that I attended was given by Patricia Aas
about the ‘Anatomy of an Exploit’. The given example was based on
exploits that were ten or more years old because of the time limit of 90
minutes for the session. She described very clearly the way of thinking that
is necessary to understand how exploits work. I very much liked her
illustration of ‘Programming the Weird Machine’. Here one leaves the
intended state machine of a program via the vulnerability and goes into a
new, weird state machine.

W

Felix Petriconi Felix studied electrical engineering and has been
a programmer since 1993. He is a programmer and development
manager at the MeVis Medical Solutions AG in Bremen, Germany,
where he develops radiological medical devices. A regular speaker
at the C++ user group in Bremen and a member of the ACCU’s
conference committee, he can be contacted at felix@petriconi.net

Stefan Turalski Stefan is a software developer who, contrary to
common sense and fond memories of working for a software
house, still makes bits flow between various financial institutions.
Incurable optimist, mechanical sympathiser, who believes it’s
possible to learn to play piano, Clojure, Haskell or even C++ one
day, hence takes it easy coding in C#.

Ori Ben-Shir Ori is currently a C++ software engineer at
SentinelOne. Learning the Rust programming language, and
documenting the experience in his blog, ‘Afternoon Rusting’.
Passionate about programming languages, exploring their
implementation and how language authors shape the way we code
with their design choices. Follow @oribenshir on Tweeter or
contact at oribenshir@gmail.com

Mathieu Ropert Mathieu has worked in various areas, ranging
from kernel programming to web development, financial software,
databases and videogames. His current favourite subject is
package management, and he thinks the lack of it has been holding
back C++ for years now. Contact him via Twitter: @MatRopert

Anthony Williams Anthony is the author of C++ Concurrency in
Action. As well as working on multi-threading libraries, he develops
custom software for clients, and does training and consultancy.
Despite frequent forays into other languages, he keeps returning to
C++. He is a keen practitioner of TDD, and likes solving tricky
problems. Contact him at anthony@justsoftwaresolutions.co.uk.

Abstracts for most of the sessions are available at:
https://conference.accu.org/2019/sessions.html

Recordings of the sessions are available on the ACCU Conference
YouTube channel at: https://www.youtube.com/channel/
UCJhay24LTpO1s4bIZxuIqKw

Visit https://conference.accu.org for details of other conferences
planned for 2019 and 2020.
June 2019 | Overload | 13

https://conference.accu.org/2019/sessions.html
https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw
https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw
https://conference.accu.org

FEATURE VARIOUS AUTHORS

Conference after conference, I feel more a
part of a family that cares for each other.
Each year is a reunion
The first day closed with a set of very entertaining and informative
lightning talks hosted by Chris Oldwood and assembled by CB Bailey. At
this point, many thanks again for their work assembling the presentations
between the sessions. I especially recall Dom Davis’ one, ‘Where is Kevlin
Henney’.

After an hour of 5-minute presentations, all attendees could discuss their
first impressions during the welcome reception sponsored by mosaic.

The second day was opened with a keynote by Herb Sutter in which he
presented a proposal for the C++ Standard. This proposal has the purpose
of removing one of the biggest hurdles that many C++ users have to using
the complete feature set – including exceptions – by extending the
language with the keyword throws (throw was marked as deprecated
with C++11 and its functionality better expressed with noexcept). The
central idea is to use the existing return channel of a function for two
different purposes: like a union, either for the regular return value or, in
case of an error, for a std::error_code, or everything similar to
boost.outcome that has become available with the recent release 1.70.
As two years ago, when Herb presented his Meta Class proposal, this was
a great and very successful session.

Before lunch I attended Timur Doumler’s talk about a low-level audio
interface that he and a group of contributors are currently proposing for
the C++ Standard. Before he went into the technical details, he gave a very
good introduction to buffers, channels, sampling rate etc. The extension
to the standard will provide a unique interface for audio devices over
different platforms. It will remove the diversity of the approaches currently
needed to bring audio signals into or out of the machine. From my point
of view, it looks both very promising and like it could go into the one of
the next versions of the standard.

After lunch, Ahto Truu gave a good introduction into hash trees and
possible use cases of them in his presentation.

I hosted a ‘C++ Pub Quiz’ as one of the last sessions on that day. It was
held in the hotel bar with free beverages sponsored by the conference
headline sponsor, Bloomberg. Many thanks again! The nearly 80 attendees
had to figure out or guess what eleven pieces of code would print to the
console. The format was developed by Olve Maudal several years ago and
he allowed me to continue it. Never before have so many nice terms like
‘twisted mind’, ‘sadist’ and similar been said to me :-). But that was fine,
I deserved probably it.

The day ended again with a set of entertaining and instructive lightning
talks.

Friday, the third day of the conference, was opened with a keynote by Paul
Grenyer. He gave an historic overview of how he and a group of supporters
were able to create an active developer community in Norfolk that even
today has its own developer conference, nor(DEV):con.

After lunch I listened to Dom Davis’ entertaining and informative parable
of creating a presentation with graphics that needed to be done by an
external contractor. The parallels to a software development process were
obvious and intended.

After lunch, I attended a set of 20 minutes presentations.

At the end of the day, I listened to Niall Douglas on ‘Elsewhere Memory’.
He led the audience through an expert-level set of proposals to change the
C++ Memory Model in a way that e.g. shared memory is regularly
supported by the C++ Standard. Today this works ‘by accident’ because
of the individual machine assumptions of the compiler and the underlying
hardware. It is a pity that this would be Niall’s last presentation at ACCU
for a long time, but his engagement on the C++ Standard’s committee
consumes most of his spare time.

After a final set of lightning talks, the conference dinner was served. Here
we had again the rule that all the speakers had to enter the room first and
distribute themselves among the tables with at least one seat empty
between them. This meant that the non-speakers, who came in afterwards,
sat between two speakers. Such nice conversations could emerge. After
each course, the non-speakers had to switch places to give themselves the
opportunity of sitting beside a different speaker and having a chat. After
the desert, we were entertained by Echoborg [Echoborg], when several
members of the audience had to try to make contact with an artificial
intelligence by talking to it. The first approaches e.g. by trying the Voight-
Kampff test (from the film Blade Runner) on the AI or by just repeating
everything the AI has just said were very entertaining but not very
successful. Later, with different strategies, we managed to ‘re-program’
the AI’s core routines, which ended the 90-minute session. It was really
an intelligent entertaining evening.

On the last day, the conference did not start with a keynote, but with regular
sessions. For me, it was Kevlin Henney asking ‘What do You Mean?’. He
explained, in an excellent way, why meaning is so important in all aspects
of software!

After lunch, I attended two 40-minute sessions by James Cain and Dom
Davis. To both, again our thanks that they stepped into the gap on very
short notice after a speaker could not give his presentation. James
introduced an open source project that he is working on. It offers a virtual
file system running in Windows user mode. It is something that I want to
look into when my time permits. Dom later gave a live-programmed
introduction to the Go language.

After Russel, the Conference Chair, expressed his thanks to Archer-Yates,
the organizers of the conference, all the speakers, the sponsors and all
attendees, Kate Gregory gave her closing keynote. She made it clear to us
that code is emotional and that we really should take care about how we
keep our code clean and how we name things.

Conference after conference, I feel more a part of a family that cares for
each other. Each year is a reunion. Summing up, this year it made it clearer
for me that the sessions make up about 50% of the conference. The other
50% is the direct interaction between the other attendees. While discussing
problems of my domain and listening to problems of other domains, I
learned so much that I am already looking forward to ACCU 2020!

Disclaimer: I want to add that I am somewhat biased, because I am a
member of the conference committee and I am the Deputy Chair for 2020.
14 | Overload | June 2019

FEATUREVARIOUS AUTHORS

A chance to learn, equally, from people on the
forefront of software development, those fighting
daily fires in mature code-bases and the few with

incompatible views who always open up your mind
From Stefan Turalski
This year’s ACCU 2019 conference was my first ACCU gathering since
the conference moved to Bristol. I had really missed the unique vibe and
the opportunity to grow through thought-provoking conversations. A
chance to learn, equally, from people on the forefront of software
development, those who are fighting daily fires in mature code-bases and
those few with incompatible views who always open up your mind.
Therefore, when an opportunity arose to leave the office for a few days of
‘training’, I knew instantly where I must be headed. It actually helped that
ACCU publishes its sessions, as having watched these dutifully for the last
couple years, I could easily secure sign-off. (Un-)Surprisingly, I haven’t
got much of a problem convincing higher-ups that ACCU is still the best
place to: catch-up on recent developments in C++ (obviously), identify the
maturity of alternatives (with Swift and Rust under scrutiny this year),
discover new tools (or things I’d never expect are possible with tools I’ve
used for years) and learn; learn tons!

Now, as the dust settles and ACCU 2019 is a thing of past, I can only report
that I was evidently correct. Seeing so many familiar faces around, I felt
at home almost instantly. By the second day, I’d fulfilled my goals and –
with my mind blown – I can safely spend another year catching-up. It was
bliss.

Going into details, by now I’ve got a chance to re-watch some of the
sessions and I think I can recommend a few for your attention. Let me start
from these I’d say are ‘must’:

 Herb Sutter on ‘De-fragmenting C++: Making exceptions more
affordable and usable’, with Herb stirring up some debates with a
few ideas that are captured in P0709 R2 [Sutter18]. As far as I know,
it’s the first time Herb has presented this argument. If you find time
to watch just one talk, I guess it would be this one. It’s a must if you
want to know in which direction the discussion about error-handling
in C++ is headed. For a pragmatic approach and a healthy, balanced
view on the subject, I’d definitely recommend Phil Nash’s ‘The
Dawn of A New Error’.

 Stephen Kelly on ‘Extending clang-tidy in the Present and in the
Future’. Stephen is the person who contributes to CMake and now
clang-tidy, clang-query; I watched ‘Refactor your codebase with
Clang tooling’ from code::dive, but I probably wasn’t paying
enough attention. I recommend it for anyone who has never heard
about clang-tidy and clang-query. It’s amazing what can be done
with these tools.

 Greg Law on ‘More GDB wizardry and 8 other essential Linux
application debugging tools’, which I missed during the conference
(as I went for Anthony Williams’ talk on callbacks). Watching it
now, I can only say that Greg’s talks are getting better and better,
and as far as I know Greg is the gdb guru (god?). By the way, Greg
started up undo.io. Sadly not open-source, but clearly a great tool for
recording what your system is/was doing. Chatting with some
Microsoft guys, it seems they are trying to provide something
similar [Microsoft], but that’s behind a VS Enterprise licence and it

still doesn’t work nowhere near as smoothly. Regardless, if you ever
run gdb, you need to see Greg’s session.

As always there were a few talks that are worth checking out to keep up
to date and learn how others are solving theirs problems. In this category
I’d put:

 Björn Fahller on ‘Programming with Contracts in C++20’, as there
is a version available from the new-comer conference Cpp on Sea.
During ACCU 2019, I was sitting in the next room (where the talk
on C++ package management concluded with a recommendation of
conan for dependencies management). However, the noise next door
was so inspiring that I’ve watched Björn’s talk, twice. I’d say it’s
definitely worth the time put into it: it’s about contracts after all.

 Arne Mertz on ‘Clean(er) Code for Large Scale Legacy
Applications’ was one of the talks that I missed (as I’ve seen a year-
old version from Meeting C++ and I went to an entertaining, as
always, talk by Kevlin Henney instead). Corridor chats
recommended it to me and indeed it’s definitely worth a watch,
especially if you are looking for ideas to curb a code-base getting a
little out-of-hand.

 John Lakos on ‘Allocator-Aware (AA) Software’, which I’d say
watch at ×2 speed, go have a drink, watch again… actually no, this
talk is one of the most approachable of the John Lakos presentations
I’ve seen so far. Allocators are coming to C++, so I guess there is no
excuse for ignoring the subject.

 Follow that up with Vittorio Romeo on ‘Higher-order functions and
function_ref,’, which I’ve seen recorded at C++ on Sea, and
which works perfectly in tandem with Ivan Čukić on ‘Ranges for
distributed and asynchronous systems’. Ivan wrote Functional
Programming in C++ and clearly demonstrated a set of rather
interesting pattern(s). Such code styles, applied together with
approach outlined by Vittorio, might leave you with a rather
particular, functional?, style of C++: you were warned.

There are also the talks which you would probably see because these
belong to your area of interest. Here I’d put

 Hubert Matthews on ‘Optimising a small real-world C++
application’, which I’ve seen recorded at NDC. ACCU 2019
received a slightly improved version (and questions were, of course,
on much higher level). On the subject of questions, one could easily
justify going for the ACCU conference just for the Q&A. These are
always brilliant!

 Felix Petriconi (taking over the organisation of the ACCU
conference from Russel) on ‘An Adventure in Race Conditions’,
talking about concurrency [Parent] and executors, handling of
std::future etc

 Patricia Aas’ interesting talk on ‘The Anatomy of an Exploit’.

I’m sure you would find something for yourself in this category among the
overwhelming number of ACCU 2019 talks published on YouTube only
a few weeks post-conference.
June 2019 | Overload | 15

FEATURE VARIOUS AUTHORS

I’m in love with the concept of technical talks. I
find them to be the most effective learning
method for me. The opportunity to meet a lot of
tech enthusiasts is both fun and enriching
Finally, there are the best talks, the esoteric ones, like:

 Simon Brand and Peter Bindels on ‘Hello World from Scratch’,
which you know you won’t find useful, until you do (it’s just a crazy
talk about all that happens before the hello world is actually printed).

 Alisdair Meredith on ‘How C++20 Can Simplify std::tuple’,
which – as far as I’m aware – Alisdair presents at every C++
Standard revision to demonstrate why things are changing and
what’s possible.

 Jim Hague on ‘It’s DNS, Jim, but not as we know it’, which
introduced me to the changing world of DNS. Here, please make
sure you know what DNS over HTTPS is. It’s all going to be very
confusing when browsers switch to it.

 Last (but definitely not least), I recall Roger Orr on his adventures
in ‘Windows Native API’.

I’m sure that everyone who has picked up this edition of Overload is more
than capable of building their own list of best-picks from ACCU 2019. I’m
looking forward to lively discussions in YouTube comments – hopefully
until ACCU 2020! Happy watching.

From Ori Ben-Shir
First published on Ori’s blog ‘Afternoon Rusting’ on 20 April 2019:
https://oribenshir.github.io/afternoon_rusting/blog/ACCU-Summary

I attended this year’s ACCU conference, and I am very eager to share my
impression of the conference. ACCU is an annual conference located in
the lovely city of Bristol. The conference is mostly dedicated to C++
developers. While C++ developers are the focus, the conference is not
limited to C++ material, and it includes talks for various topics and even
some other programming languages. Yes, there was a Rust talk and even
a workshop this year.

It was the first time I had attended a big conference. And I must admit it
was a great pleasure! I’m in love with the concept of technical talks. I find
them to be the most effective learning method for me. The opportunity to
meet a lot of tech enthusiasts is both fun and enriching. Wrapping it all
with a vacation in such a lovely city such as Bristol is immensely
satisfying. If you have the opportunity, I encourage you to attend this
conference next year. I also think the organizers did a great job. I genuinely
like the extra social session. The pub quiz, for instance, was perfect, though
some of the code samples from it were as far from perfect as possible.

I have a lot to say about the content itself. I tend to believe I have more to
say than you want to read. So let’s focus on some of the talks I think are
most relevant:

C++ ranges and functional programming
The first session I want to discuss is about ranges in C++. Ivan Čukić gave
an incredible talk. He demonstrated some splendid functional
programming with C++. Ranges are actually quite simple. It is a struct
containing an iterator and a sentinel value which mark where the iteration
should stop. As a concept, we can already use it today, although it is
planned to be a part of the standard library in C++ 20. While the idea is

simple, it provides us with the capability to implement a very complex
functional system, which was very enjoyable to see. I was impressed with
the pipeline he demonstrated, and how flexible it is. It can support both
async and sync programming. Even more impressive, he managed to
introduce a process or even a machine boundary in the middle of the
pipeline. A point I’m still not sure about yet is how simple it is to create
an entirely lazy iterator. Meaning, we want to pay the price of computation
only when the pipeline is actually being executed, and not during its
declaration.

C++ error handling
The second talk by Herb Sutter. He discussed a new proposal for error
handling. Today C++ error handling is painful, there aren’t any real best
practices, and the community is greatly divided by various methods, which
does not play nicely with each other. Making it one of the reason it is so
hard to integrate libraries in C++. This issue alone is one of the major
reasons I wanted to investigate Rust. The talk has shown a new suggestion
Herb is working on making exception useful. I enjoyed hearing the exact
points that bother me so much about C++ error handling today:

1. Lack of conformity: Some use exception, some use types (similar to
Rust ‘Error’ Type), and many still use plain old integer with error
code (and out parameters for the real output blah!).

2. Too many errors: Today, too many of the errors in C++ are not
actual errors. Some errors should be caught by the compiler (e.g.,
out of boundary, lifetime issues), others should panic instead (failing
to allocate an int with the global allocator). Some of those issues
will be solved with the contract feature of C++.

3. Lack of visibility of exception: Neglecting all other problems with
exception (and there are many of them) exceptions suffers from a
severe lack of visibility. It is not always obvious what can go wrong
when integrating a new code. And it might be tough to handle all
(mostly invisible) error flows.

4. Performance – Exception today introduces performance penalty
(Even if not being used).

The second and third points integrate poorly together. A program in C++,
even in modern C++, suffers from an extreme number of hidden code path,
representing error states, which just shouldn’t be there. These code path
can’t be tested and usually are invisible to the programmer!

Herb’s suggestion was very interesting. I think it might actually work.
First, he wants us to be explicit when a function can throw, with the
throws keyword. Second, he wants to allow easy propagation of errors
with the try keyword. He also wants to improve the performance of
exceptions by making them statically allocated, and caught by value.
Seeing the full suggestions, it looks very similar to Rust error handling. I
assume that unlike Rust, the compiler won’t force us to handle the error
case. Due to backward compatibility, I don’t think it would be mandatory
to state if a function returns an error. The only hope is that those two
features will be integrated into static analyzers, like clang tidy. Which is
far from optimal, yet I think it can work, and finally allow a reasonable
error handling for C++.
16 | Overload | June 2019

https://oribenshir.github.io/afternoon_rusting/blog/ACCU-Summary

FEATUREVARIOUS AUTHORS

It feels like the community is more and more
open to breaking backward compatibility in

order to simplify C++ and increase its safety
Monotron
The last talk for this post, given by Jonathan Pallant. It was about Rust,
embedded Rust to be precise. The talk was about his monotron project, a
simple 1980’s home computer style application [Pallant]. It involved two
of my favorites topic: Rust and system programming. The talk started with
the state of embedded rust, evidently making considerable strides to
maturity. And it continues with his effort to add more and more features
to a very limited hardware. A small spoiler, the results are amazing. This
project is the ultimate proof of power for Rust. It demonstrates that Rust
can be as fast as the hardware it runs on allows it to be. The kind of property
any C++ developer looks when he considers an alternative programming
language.

On Rust & C++
I must admit this conference set me thinking about the interaction between
C++ and Rust. Yes, modern C++ is not news anymore, and I don’t believe
it emerged because of Rust. I do think some Rust ideas manage to trickle
into C++, yet I believe the actual impact on code abstraction itself is small.
But C++ is going through additional change, one of mentality. It seems
the community finally understands that, even with the right abstraction, a
1000-pages book of best practices just won’t do. We are human after all,
as the wonderful Kate Gregory reminded us. It feels like the community
is more and more open to breaking backward compatibility in order to
simplify C++ and increase its safety. And weirdly, I think it is managing
to find a way to break backward compatibility without breaking it. It seems
like a Turing complete compile-time abstraction, together with a
configurable compiler, is the answer. A very complicated answer to be
sure, yet one where the average developer doesn’t need to be aware of its
details. To sum it up, I have the feeling that the question: ‘Should I write
my new project in C++ or Rust?’, is becoming more and more relevant
every day. And the answer is getting more and more complex.

See the talks!
One last thing, the talks from the conference are uploaded to YouTube.
Strongly recommended!

From Mathieu Ropert
First published at https://mropert.github.io/2019/04/19/accu_2019/

This year I was ready. I had prepared a stock of jokes about Britain, its
food, its weather, the absence of good wine and the tumultuous relationship
with the EU. It was time for ACCU 2019.

This year’s edition of the ACCU conference was held from April 10th to
April 13th, in Bristol as always. I arrived a day earlier from Paris after a
short stop in France, which was supposed to offer a supply of good weather
and trips to a few winemakers in preparation for the harsh conditions of
Great Britain.

From the start, things went awry as I could only spare half an hour for a
visit to a winemaker in Vouvray who turned out to be quite forgettable,
not to mention the weather that was only barely keeping it together. Still,
I didn’t immediately notice that something was off, having spent the pasts

months enduring the cold winter of Sweden. It took a second flight from
Paris to Bristol to realize it: spring is there (although a couple of Bristol
locals apologized for the weather being unexpectedly non-terrible).

Many meetings
My arrival was pretty unremarkable. It was, of course, raining and people
still drove on the wrong side of the road. I had come across my former
colleague Jonathan Boccara (of Fluent C++ fame [Boccara]) while
waiting at my gate. We traded some war stories and he told me about his
book, which he would be showing at the conference. I haven’t had the time
to read it yet but I have already heard some positive feedback about it.

ACCU is, like most conferences, a good time for me to spend some time
face-to-face with friends from the C++ community living around the
world. It is sometimes said that there is more value in the discussions with
the people you meet at conferences than with the conference content, and
I would partly agree. Depending on the circumstances, I do feel like the
bulk of the value falls slightly one side or the other. At times there’s a
presentation that justifies the whole ticket in itself; sometimes I meet
someone and have a discussion that is as valuable to me as the sum of all
the talks I attend.

The other reason I often see so many familiar faces is that, in my opinion,
people don’t try to attend conferences nearly enough. After asking around
a bit, it does seem like I’m not the only one to have noticed that. Regardless
of the company, there will be a small minority who ask their manager to
be sent there, and a large majority who will never do so. I am not sure how
to explain it. Not feeling like it’s worth the time? Thinking it’s only for
some ‘elite’? Maybe simply too focused on the day-to-day job, on the next
deadline?

I don’t claim to have the answer, but I will certainly encourage anyone who
never asks to go to do so, and those who do to encourage their colleagues
to do the same. We are always happy to see new faces, meet new people
and buy them a drink at the conference bar at the end of the day.

Keynotes
As I mentioned in my trip report last year [Ropert18], I was a bit
disappointed by ACCU 2018’s opening keynote. This time was quite the
opposite. ACCU 2019 opened with M. Angela Sasse telling us about
security. The key takeaway was that the human, the user, will always be
the weak link regardless of the technology deployed. More importantly,
the fact that security is everyone’s business and not just the IT
department’s means it must offer a good UX else it will be badly used or
worked around. This was pointed out in the 90s and it still hold true today,
with sadly little progress to show for it.

The great Herb Sutter travelled from his Redmond office to England to tell
us about his vision for the future of error handling in C++. While I already
knew about his work on the matter (it was sent to SG14 for review a couple
months back), it was nice to have a refresher in front of the whole
conference. In short, the direction is toward better exceptions, with
bounded, predictable throw and catch times. No more need for dynamic
allocation. No extra cost when no exceptions occur (this is already mostly
June 2019 | Overload | 17

https://mropert.github.io/2019/04/19/accu_2019/

FEATURE VARIOUS AUTHORS
the case on x86_64) and a push for noexcept becoming the default unless
otherwise specified.

The closing keynote was given by none other than Kate Gregory, who
walked us through a nice lecture on code empathy, or how to read the
previous programmer’s emotions through existing code, trying to
understand what triggered those emotions and how to react when
confronted by them. I have a hunch that it will be a nice complement to
Jonathan’s book on how to deal with legacy code, as the two seem closely
related.

Talks
At the rate of there talks a day outside keynotes, there was a total of 12 I
could potentially attend during the conference. Subtract one because I had
to attend mine and perhaps another one where I was busy writing slides
and we get a rough estimate of about 10. While that number could make
for a nice clickbait section (‘10 ACCU talks you won’t believe I attended’),
I will stick to my boring routine of mentioning the ones I remember the
most. Also keep in mind that there were 5 tracks, meaning I saw roughly
17% of the conference content.

The two talks that made the biggest impression on me were Vittorio
Romeo’s ‘Higher-order functions and function_ref’ and Andreas
Weiss’ ‘Taming Dynamic Memory – An Introduction to Custom
Allocators’. The first one did a good job of explaining what higher-order
functions are and also the content and benefits of the function_ref
proposed addition to the C++ standard, all in one session. The second one
offered a good tour of custom allocators, how they work and when they
can be considered to replace the standard ones. Both presenters also had
to accomplish their tasks while fending off the many questions coming
from John Lakos, who sat on the first row each time (a victory he
congratulated them for at the end).

The next two talks that come to mind are Peter Bindel’s and Simon Brand’s
‘Hello world from scratch’, and Andy Balaam and CB Bailey’s ‘How does
git actually work?’. Both explained things we do every day by taking a very
simple use case (building a very simple program and committing some
changes to a VCS) and showing what happens under the hood. They also
both ran out of time before showing all they had planned because it turns
out abstraction is no myth: even our simplest tasks are actually fairly
complex when you look at how they are done. I think they both did a good
job of it and would gladly schedule both in a ‘how does XXX work’ track.
That is a good theme that I would suggest having at every conference.

Next up is Kevlin Henney’s ‘What do you mean?’. Kevlin is quite the
celebrity in Bristol and I really liked his talk at the previous conference.
While perhaps not as remarkable (I would have appreciated a clearer
outline to follow), this one was still quite interesting. The main point was
that meaning is derived from both what is said or written and the context
that surrounds it. The latter being subjective, it implies a bunch of
assumptions by both parties that, when not in line, lead to quite a
misunderstanding. The main obstacle to solving that problem is that
assumptions are, by definition, implicit and so can only be discovered
when proved wrong (‘Oh, but I assumed that…’). This of course brings us
back to the software craftsmanship practices of frequent iterative
deliveries and testing.

Finally I’d like to mention Christopher Di Bella’s ‘How to Teach C++ and
Influence a Generation’. Last year, Christopher started SG20, a study
group in the standard committee focused on education. Education and
teaching is an important subject to me, partly because of my own personal
experience of learning C++ in school, then learning another language also
called C++ around 5–10 years later. As you may guess, the first one was
more in the line of ‘C with classes’ while the second looked more like the
C++ we know and recommend today. To that end, the group has worked
on some guidelines on how to write teaching materials. They also run polls
to better understand how and when people learn C++. A good complement
to this talk would be Bjarne’s keynote at CppCon 2017 Learning and
Teaching Modern C++.

Lightning talks
One of the best things at ACCU is how the lightning talks sessions are
organized. They are simply done in the keynote room as the closing session
of each day. That way, most of the conference attends before going out for
beers or dinner. The programme is usually decided between the day before
and a couple hours before the session, meaning last minute entries are
definitely an option.

It’s a great opportunity to bring up a point you had in mind but couldn’t
get in as a talk, respond to a previous talk (or lightning talk) or simply raise
awareness in the community on a particular matter. For example, upon
arriving in Bristol on Tuesday I learnt that the great people from the Paris
meetup were planning to announce a new conference [CPPP]. I put a few
slides together, slipped in a joke or two about English food and Brexit, then
went up on stage on Wednesday to tell everyone about CPPP.

Of all the C++ conferences I go to, I think this formula works best and is
one of the reasons ACCU feels like a big family gathering. If you are a
conference organizer and have some lightning talk sessions, I strongly
suggest you consider this option. It might feel intimidating to step up on
stage in front the entire conference, but then again, I feel the familial
atmosphere helps in reducing the pressure.

Until next time
On Friday I gave my talk, ‘The State of Package Management in C++’.
Frequent readers of my blog will probably be familiar with the topic. I gave
a tour of package management in C++, why we want it and how far we’ve
come yet (spoiler warning: enough for you to try it). As you can see, the
ACCU has made a fantastic job of uploading the recording on YouTube
in less than a week.

But the greatest learning of all for me came after the conference, when I
discovered that airlines will now charge you £50 when boarding your plane
for bringing a laptop bag with your carry-on luggage. I used to do that all
the time, but today it appears you can be charged extra depending on the
mood. I suppose next time I will have to put my stuff in cargo .

Do not let that stop you from attending conferences though, I still hope to
see you there!

From Anthony Williams
First published on Anthony’s ‘Just Software Solutions’ blog on 22 April 2019
at https://www.justsoftwaresolutions.co.uk/news/accu-2019-report.html.

I attended ACCU 2019 a couple of weeks ago, where I was presenting my
session ‘Here’s my number; call me, maybe’. Callbacks in a multithreaded
world.

The conference proper started on Wednesday, after a day of pre-
conference workshops on the Tuesday, and continued until Saturday. I was
only there Wednesday to Friday.

Wednesday
I didn’t arrive until Wednesday lunchtime, so I missed the first keynote
and morning sessions. I did, however get to see Ivan Čukić presenting his
session on ‘Ranges for distributed and asynchronous systems’. This was
an interesting talk that covered similar ground to things I’ve thought about
before. It was good to see Ivan’s take, and think about how it differed to
mine. It was also good to see how modern C++ techniques can produce
simpler code than I had when I thought about this a few years ago. Ivan’s
approach is a clean design for pipelined tasks that allows implicit
parallelism.

After the break, I went to Gail Ollis’s presentation and workshop on
‘Helping Developers to Help Each Other’. Gail shared some of her
research into how developers feel about various aspects of software
development, from the behaviour of others to the code that they write. She
then got us to try one of the exercises she talked about in small groups. By
picking developer behaviours from the cards she provided to each group,
and telling stories about how that behaviour has affected us, either
positively or negatively, we can share our experiences, and learn from each
other.
18 | Overload | June 2019

https://www.justsoftwaresolutions.co.uk/news/accu-2019-report.html

FEATUREVARIOUS AUTHORS
Thursday
First up on Thursday was Herb Sutter’s keynote: ‘De-fragmenting C++:
Making exceptions more affordable and usable’. Herb was eloquent, as
always, talking about his idea for making exceptions in C++ lower cost,
so that they can be used in all projects: a significant number of projects
currently ban exceptions from at least some of their code. I think this is a
worthwhile aim, and hope to see something like Herb’s ideas get accepted
for C++ in a future standard.

Next up was my session, ‘Here’s my number; call me, maybe. Callbacks
in a multithreaded world’. It was well attended, with interesting questions
from the audience. My slides are available [Williams19] and the video is
available on youtube. Several people came up to me later in the conference
to say that they had enjoyed my talk, and that they thought it would be
useful for them in their work, which pleased me no end: this is what I
always hope to achieve from my presentations.

Thursday lunchtime was taken up with book signings. I was one of four
authors of recently published programming books set up in the
conservatory area of the hotel to sell copies of our books, and sign books
for people. I sold plenty, and signed more, which was great.

Kate Gregory’s talk on ‘What Do We Mean When We Say Nothing At
All?’ was after lunch. She discussed the various places in C++ where we
can choose to specify something (such as const, virtual, or
explicit), but we don’t have to. Can we interpret meaning from the lack
of an annotation? If your codebase uses override everywhere, except in one
place, is that an accidental omission, or is it a flag to say ‘this isn’t actually
an override of the base class function’? Is it a good or bad idea to omit the
names of unused parameters? There was a lot to think about with this talk,
but the key takeaway for me is ‘Consistency is Key’: if you are consistent
in your use of optional annotations, then deviation from your usual pattern
can convey meaning to the reader, whereas if you are inconsistent then the
reader cannot infer anything.

The final session I attended on Thursday was the ‘C++ Pub Quiz’, which
was hosted by Felix Petriconi. The presented code was intended to confuse,
and elicit exclamations of ‘WTF!’, and succeeded on both counts.
However, it was fun as ever, helped by the free drinks, and the fact that
my team ‘Ungarian Notation’ were the eventual winners.

Friday
Friday was the last day of the conference for me (though there the
conference had another full day on Saturday). It started with Paul
Grenyer’s keynote on the trials and tribulations of trying to form a
‘community’ for developers in Norwich, with meet-ups and conferences.
Paul managed to be entertaining, but having followed Paul’s blog for a few
years, there wasn’t anything that was new to me.

‘Interactive C++: Meet Jupyter / Cling – The data scientist’s geeky
younger sibling’ was the next session I attended, presented by Neil
Horlock. This was an interesting session about cling, a C++ interpreter,
complete with a REPL, and how this can be combined with Jupyter
notebooks to create a wiki with embedded code that you can edit and run.
Support for various libraries allows to write code to plot graphs and maps
and things, and have the graphs appear right there in the web page
immediately. This is an incredibly powerful tool, and I had discussions
with people afterwards about how this could be used both as an educational
tool, and for ‘live’ documentation and customer-facing tests: ‘here is
sample code, try it out right now’ is an incredibly powerful thing to be able
to say.

After lunch I went to see Andreas Weis talk about ‘Taming Dynamic
Memory – An Introduction to Custom Allocators’. This was a good
introduction to various simple allocators, along with how and why you
might use them in your C++ code. With John Lakos in the front row,

Andreas had to field many questions. I had hoped for more depth, but I
thought the material was well-paced, and so there wouldn’t have been time;
that would have been quite a different presentation, and less of an
‘introduction’.

The final session I attended was ‘Elsewhere Memory’ by Niall Douglas.
Niall talked about the C++ object model, and how that can cause
difficulties for code that wants to serialize the binary representation of
objects to disk, or over the network, or wants to directly share memory with
another process. Niall is working on a standardization proposal which
would allow creating objects ‘fully formed’ from a binary representation,
without running a constructor, and would allow terminating the lifetime
of an object without running its destructor. This is a difficult area as it
interacts with compilers’ alias analysis and the normal deterministic
lifetime rules. However, this is an area where people currently do have
‘working’ code that violates the strict lifetime rules of the standard, so it
would be good to have a way of making such code standards-conforming.

Between the sessions
The sessions at a conference at ACCU are great, and I always enjoy
attending them, and often learn things. However, you can often watch these
on Youtube later. One of the best parts of physically attending a conference
is the discussions had in person before and after the sessions. It is always
great to chat to people in person who you primarily converse with via
email, and it is exciting to meet new people.

The conference tries to encourage attendees to be open to new people
joining discussions with the ‘Pacman rule’ – don’t form a closed circle
when having a discussion, but leave a space for someone to join. This
seemed to work well in practice.

I always have a great time at ACCU conferences, and this one was no
different.

References
[Asproni19] Giovanni Asproni, ‘One Team, Two Teams, Many Teams:

Scaling Up Done Right’, https://www.meetup.com/Agile-Bath-
Bristol/events/260202604/

[Boccara] Jonathan Boccara, Fluent {C++}, https://www.fluentcpp.com/

[CPPP] CPPP Conference, 15 June 2019, Paris: https://cppp.fr/

[Davis19] ‘The Pac-Man Rule’: https://conference.accu.org/
pacman_rule.html

[Echoborg] Echoborg: http://www.echoborg.com/

[Microsoft] ‘Introducing Time Travel Debugging for Visual Studio
Enterprise 2019’, https://devblogs.microsoft.com/visualstudio/
introducing-time-travel-debugging-for-visual-studio-enterprise-
2019/

[Pallant] Jonathan Pallant, ‘Monotron’, https://github.com/thejpster/
monotron

[Parent] Sean Parent, Foster Brereton and Felix Petriconi (date unknown),
‘Concurrency’ on the stlab website: http://stlab.cc/libraries/
concurrency/

[Ropert18] Mathieu Ropert, ‘ACCU 2018 trip report’, posted 20 Apr
2018 at https://mropert.github.io/2018/04/20/accu_2018/

[Sutter18] Herb Sutter, ‘Zero-overhead deterministic exceptions:
Throwing values’, P0709 R2, http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2018/p0709r2.pdf

[Williams19] Anthony Williams, ‘Here’s my number; call me, maybe.
Callbacks in a multithreaded world’ (slides),
https://www.justsoftwaresolutions.co.uk/files/
heres_my_number.pdf

Although different to the type of article we normally publish in
Overload, we hope you have found these reviews of the ACCU 2019
Conference interesting.
June 2019 | Overload | 19

https://mropert.github.io/2018/04/20/accu_2018/
https://www.meetup.com/Agile-Bath-Bristol/events/260202604/
https://www.meetup.com/Agile-Bath-Bristol/events/260202604/
https://devblogs.microsoft.com/visualstudio/introducing-time-travel-debugging-for-visual-studio-enterprise-2019/
https://devblogs.microsoft.com/visualstudio/introducing-time-travel-debugging-for-visual-studio-enterprise-2019/
https://github.com/thejpster/monotron
https://github.com/thejpster/monotron
http://stlab.cc/libraries/concurrency/
http://stlab.cc/libraries/concurrency/
https://www.justsoftwaresolutions.co.uk/files/heres_my_number.pdf
https://www.fluentcpp.com/
https://cppp.fr/
http://www.echoborg.com/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0709r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0709r2.pdf
https://conference.accu.org/pacman_rule.html
https://conference.accu.org/pacman_rule.html

FEATURE CHRIS OLDWOOD
Afterwood
There are parallels between writing and
programming. Chris Oldwood shares his
journey into learning to write well.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

en years ago today (as I write) I created a blog and published my first
post. It was to be the start of a new chapter in my career as a
programmer, spurred on by my fairly recent introduction to the

world of ACCU which itself came about through lamenting the demise of
the major printed programming journals on the company’s chat tool.

My decision to begin writing was not an easy one, though. For a start, my
English exam results as a teenager were somewhat abysmal; so bad, in
fact, the exam board wouldn’t even give me a grade (a ‘U’ for those
familiar with the ’80s English school system)! I eventually passed my
English Language exam, but not without a struggle. I thought developing
software would have little to do with ‘proper’ writing and so it wouldn’t
matter in the long run; I couldn’t have been more wrong.

Aside from the act of writing itself, which I had accidentally started to do
anyway through some lengthy diatribes dressed up as emails about the
state of the architecture and codebase I was working on at the time, the
other major concern I had was around originality. What was I going to
write about? If there was something I had learned from all my time spent
reading up to that point, it was that so much had already been said, what
could I possibly say that was new? In particular I’d only really worked in
‘the Enterprise’ which is hardly a breeding ground for cool and exciting
new inventions in the world of software. If that wasn’t enough,
StackOverflow had recently taken off and was fast becoming a major
source of knowledge that looked to be the nail in the coffin for many
shorter topics which seemed to be a nice way to ease oneself into the
writing process.

What I came to discover was that neither of these concerns were really
anything that I should have been quite so worried about. Writing, much
like programming, is something which you can only get better at by doing.
What had made those emails particularly hard to write was getting the
tone right so that they framed the problems in a light that was positive
rather than simply sounding like an empty rant. I wanted the problems to
be acknowledged and to inspire my team to think about how we could
improve matters going forward. Consequently, I found myself continually
reading back what I’d read, and then re-writing bits, again and again until
I felt I had finally expressed myself in a way that I hoped was somewhat
inspirational. I don’t know why it took me so long to recognize that what
I was already doing with code – continually reviewing and refactoring to
best express the solution – was perfectly normal when writing prose too.
And naturally as I got better I found myself triangulating towards a piece
I became happy with much sooner and therefore the experience became
more enjoyable as a result.

It’s probably no surprise that the more you do of both – programming and
writing – the more interesting parallels you discover between them

because, after all they’re both about languages with rules where ambiguity
can have unfortunate effects. As such, I’ve found an unexpected feedback
loop developing, where my interest in programming languages has
generated an interest in natural languages too, where for a long time there
was only really disdain. This in turn has generated a degree of confidence
that has caused me to consider being more adventurous in my writing
style.

Looking at the subject from the content perspective, what I’ve found is
that originality is essentially a moot point because as an industry we seem
to spend a considerable amount of time rediscovering ideas and concepts
from the past. In part I suspect that is because there is still a considerable
gap between the theory and practice of programming due to the
imperfections and limitations of the tools we use. Hence there is a
continual need to bridge the theoretical and practical worlds by framing
the discussion in the context of different toolsets and problem domains as
this helps the message to get though to different people. Coupled with the
imperfections and limitations in our writing, this means any given topic
can, and must, be said in a number of different voices to help others relate
to what we are saying. Just as one size does not fit all, neither does one
explanation, which is exemplified by the number of people who have
attempted to explain what a Monad is.

There is also a heavy bias in the industry to focus on what the ‘cool kids’
are doing in places like Silicon Valley despite the fact that the large
majority of jobbing programmers are not involved in greenfield work.
While it is useful and interesting to know what new stuff looms on the
horizon, I also want to know how some this can be applied under the tight
constraints of the aging brownfield codebases which my day job entails.
A lack of knowledge sharing from those in older establishments is less
surprising when you understand what constraints they apply around
protecting intellectual property despite the fact that what many of them
are producing is anything but rocket science. As such, I’ve become happy
to help populate the body of technical literature which helps document the
experiences of how one person has tried to apply their ever growing tree
of knowledge to what might be considered by some to be the less
glamorous world of the maintenance programmer.

My decision to start recording my observations and practice using the
written word has undoubtedly been fulfilling. At the very least, I have
been able to refer back to my own notes when the same issue turns up
again, but occasionally I have also been fortunate
enough to learn that other people have benefited too,
and that alone still makes it all worthwhile.

T

20 | Overload | June 2019

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

CODE
MAXIMIZED

Develop high performance parallel applications from
enterprise to cloud, and HPC to AI using Intel® Parallel
Studio XE. Deliver fast, scalable and reliable, parallel code.

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

from
£510

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101 | sales@qbs.co.uk | www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf 1 24/09/2018 17:31

	How Hard Can It Be?
	Do Repeat Yourself
	On IT and... CO2 Footprints
	Use UTF-16 Interfaces to Ship Windows Code
	ACCU Conference 2019: Reports
	Afterwood

