overload |

2019 £4

" Bxpressive code makes life easier.”

~ We demonstrate fluent pipelines for
data collections. in' C++

J —~
[. Sy .- __‘_r‘_r“"-\u —
BULTO Praiselt —~_
o |.‘ \\\ ‘-h. f a‘-
. W\ \ ' T .

A simplgﬁ;,c;'oggé{—based alterfiat
] to natuin@'l_'_%_lﬁnfguage BDD \\

L¥

£ i ~
- 11 ;‘{.'_C 0 [J

& NEVRON e

Nevron Data Visualisation
and Ul Controls

The leading data visualisation and Ul components for
desktop and server applications since 1998.

Presentation 2D and 3D
T . Hardware Accelerate
Bulllt mIMaps . Charts Real Time Charts Rendering N
Projections Text Processing Organization

Diagrams

Iiin,

m_ T _

M ith ESRI g
1 aps :VI o Automatic Graph
mpor Scientific Charts Financial Charts GHlveRcliE Layouts

solutions available for

Microsoft

ASPnet ‘ am WPF ‘ 2R WinForms ‘ E)SharePoint‘ ga.losgerver‘QXamarin

View all of our Nevron products at www.gbssoftware.com/nevron

Key partners include:

Agisoft ©AsPOSE aarassian QY UMR @ srowserstack 'z Devex

@mbarcadero €PHex-Rays (nte 2 B icrosoft qpmﬁ

Software

W Sketch Pt swarteear SIPARX TE|erlk ‘ think-cell” Visual @ Paradigm

Plus many more on www.gbssoftware.com/developer

For your latest software needs, contact our team on:
SI:IFT

% 0208733 7100 sales@qbs.co.uk

OVERLOAD 153

Octoher 2019
ISSN 1354-3172

Frances Buontempo
overload @accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpelainen
mikael.kilpelainen @ kolumbus.fi

Steve Love
steve @arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero @howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw @gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete @ goodliffe.net

All articles intended for publication

in Overload 154 should be

submitted by 1st November 2019

and those for Overload 155 by
1st January 2020.

The ACCU

The ACCU is an organisation of
programmers who care about

1 CONTENTS

Overload is a publication of the AGCU
For details of the AGCU, our publications
and activities, visit the ACCU wehsite:
www.accu.org

4 Scenarios Using Gustom DSLs

Liz Keogh demonstrates an alternative to natural
language BDD.

Lucian Teodorescu considers a recent
OOP claim.

10 1 Gome Here Not to Bury Delphi,
But to Praise It

Patrick Martin remembers why he used to
use Delphi.

19 G++ Pipes

Jonathan Boccara demonstrates fluent
pipelines for collections in C++.

20Afterwood

Chris Oldwood trades programming for politics.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.

professionalism in programming. That is, On request we will withdraw all references to a specific trade mark and its owner.
we care about writing good code, and

about writing it in a good way. We are By default, the copyright of all material published by ACCU is the exclusive property of the author.

dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and

have been contributed free of charge.

By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

| Overload | 1

EDITORIAL =

Forecasting the future is difficult. Frances Buontempo
has a foreboding sense that a lack of impartially makes

things even harder.

Predicting whether or not Overload will have an

editorial while I am the editor is easy. I attended the

Agile 2019 conference this year, co-chairing the Dev

Practices and Craft track with Seb Rose [Agile]. This

long trip, just for a few days, has increased my carbon

footprint and decreased the time I had to think of an
editorial. This means, yet again [haven’t written one. Y our prediction was
correct: Overload is editorial-free yet again.

How do you make a prediction? Listing all the possible outcomes and
assigning a probability to each gives a sense of the likelihood of a specific
outcome. This approach has two problems: listing the outcomes and
getting accurate probabilities. There are several formal approaches, such
as Bayes, for working out these probabilities. In one sense the probability
represents the uncertainty of a given event. Uncertainty can come in two
flavours: epistemological, or due to lack of knowledge, and aleatory, or
due to inherent randomness (see ‘Bayesian statistics’ [Spiegelhalter09]
for more background]. If you sure you are uncertain, are you sure how
uncertain you are? In other words, how do you decide how accurate these
probabilities are? Some experiments can help, but you may not be able to
try something a statistically valid number of times first. Furthermore, how
do you predict how likely something is that has never happened before?
Tough question to answer, but people try to do this. If you have no
empirical data (what other types of data are there?), how can you guess
how often something might happen? One approach is a forecasting model
[Gelman98]. This requires a model, obviously. This might fit known
cases, but I still find it difficult to accept forecasts around previously
unseen events. | do understand the maths, but it all seems inherently odd.

Physics models, though often inspired by data, often take the form of a
closed-form formula, rather like a function, taking inputs and returning a
single output, rather than several outputs with confidence intervals.
Sometimes models have been calibrated to data at some point, to find
parameters, such as acceleration due to gravity. Some models are based
on a combination of other known models. If all the forces acting on a body
can be calculated, the total force can be deduced. In other domains, the
idea of a straight summation breaks down. For example, if two chemicals
have a known toxicity, the level of harm cannot be worked out by adding
the two numbers. They may interact, and be less toxic overall, or even
worse in conjunction. Going back to physics, though the motion of two
bodies, such as the sun and a planet can be calculated, the three-body
problem [Wikipedia] says that there is no closed-form solution for finding
the motion of three, or more, objects, given their starting velocity and
positions. Numerical methods are required
instead. Or as I put it, “left a bit, right as bit”
until you get something close enough to an
answer. For some definition of close.

2 | Overload | October 2019

Not all prediction systems are based on statistics or models. Decision trees
fall under the umbrella term machine learning. They give classifications
of new data based on summaries of training data, in the form of flow charts
or list of rules. Something like

If Utility module updated on a Monday then build broken all week.

In order to find the tree or rules, some decision trees use entropy, which
is formally an Information Theory idea. At a high level, it measures the
chaos present in a system. If you toss a fair coin, you would expect it to
be heads about half the times, and tails the remaining times. This is higher
entropy, or more chaos, and making it hard to predict what the next toss
will be. In contrast, if an unfair coin always comes down heads, every
single time, it is much easier to predict accurately what will happen. Less
chaos means you can compress this down very easily. In the first case, of
a fair coin, writing a function to predict what happens next is harder and
needs more lines of code. In the second case, the function need only return
“Heads” each time. In a sense, this is still based on counting possible
outcomes, but is taking a different perspective. I recently wrote a short
blog post about decision trees [Buontempo19a]. At the expense of
repeating myself, armed with rows of data, each with features and a
category —either yes/no, heads/tails or one of many classes —you can build
a classifier, which will tell you which category new data falls into. There
are various ways to decide how to split up the data, including entropy.
Regardless of the method, each algorithm follows the same overall
process. Start with a root node then

1. Ifall the data at a node is in the same category (or almost all in the
same category) form a leaf node.

2. For a non-leaf node, pick a feature, according to your chosen
method.

3. Split the data at this node, some to the left branch, and some to the
other branch (or branches) depending on the value of the chosen
feature.

4. Continue until each node is a leaf node.

This is a bit like a sorting algorithm: in quick sort, you choose a pivot value
and split the data down one branch or the other, until you have single
points at nodes. Here we don’t choose a pivot value but features. For
example, is the coin heads or tails? The way to pick a feature can be based
on statistics, information theory or even at random. At each step, you want
to know if all the items in one category tend to have the same value or
range of values of a feature. Once you are done you have a tree (or flow
chart) you can apply to new data. Each way to split has various pros and
cons. You can even build several trees. A random forest will build lots of
trees and they vote on the class of new, unseen data. You could build your
own voting system, using a variety of tree induction techniques. This
might avoid some specific problems, like over-fitting from some

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about Al and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo @ gmail.com.

techniques. Decision trees can be used to spot what features problematic
scenarios have in common. Maybe all your bug reports end up with a fix
in the same module. That might not be immediately clear until you analyse
the data. If you want to know what certain things have in common, a
decision tree is worth a try. My Genetic Algorithms and Machine Learning
for Programmers book [Buontempo19b] has a chapter on building a
decision tree from scratch if you want some details, but there are plenty of
frameworks out there that will automatically build one for you. You may
not be able to predict the future with your tree, and your machine may learn
nothing, as is often the case in Machine Learning, however, you may spot
something of interest.

Every classifier, be that a decision tree or not, has a set of possible
outcomes, classes or categories. In various disciplines, including machine
learning, the possible outcomes are described as a “search space”. These
can be more generally useful than for classifiers. When we moved house,
we kept our cat shut in for a bit, so he could get the hang of his new home
first, before exploring the great outdoors. He explored by trying a corridor
and then returning to his starting point. Then he went a bit further, but
always went back to the starting point. Each iteration added a small new
part of his search space. In this case, the constant returning to the base
station wasn’t a bias, it was sensible. In a fit of laziness, we bought a
Roomba, robot vacuum cleaner. This uses a similar algorithm. It has a base
station, which it tends to stick near initially, gradually adding paths round
the room, often making its way round the outside edges, just like our cat.
I wonder if we could use the cat to sweep the floor. Nah, bad idea. I think
I can see a few potential problems with that. This exploration of
possibilities, though not predicting the future, includes an element of
premonition. “Going forwards here means hitting a wall.” Does learning
mean you think you know what outcome is likely, given an initial set of
conditions and a specific choice? Maybe. What do you think learning
means? That’s quite a big thing to think about.

Now, a spatial search brings various extra ways to make predictions.
Sometimes you can guess where something might be, like mugs in a
kitchen. There are often within reaching distance of a kettle. A
combination of logic and expectations can be used to make an initial guess.
I wonder if we tend to apply the same heuristics when dealing with code.
Which header is std: : vector in? What about std: :map? Easy. What
about std: : less? That’s another matter.

Predictions are often driven by some kind of bias. Why would you look in
the fridge for dishwasher tablets? Because the light comes on when you
open the door, so it’s easier to see. Sense does not always prevail. More
sensibly, if you plan a journey and hate public transport, you are more
likely to consider driving, cycling, getting a taxi or walking over some
other modes of transport. I wonder if all the recent Al research into self-
driving cars is somewhat biased. I have maintained for a long time that Star
Trek’s transport technology would be far better. I presume this might be
less polluting. It certainly wouldn’t need upkeep of roads. And I don’t
recall any episodes where transporter accidents involve innocent
pedestrians or cyclists. Not to say transporter accidents are unheard of. I
just maintain someone, somewhere, has a predilection for cars and that is
driving, pun intended, the research into modes of transport in the wrong
direction.

I love Al and find its twists and turn through history fascinating. Trying
to predict where it will move in the futures is very difficult. As with much
research, it is partially driven by those who fund the work, which is turn
might be biased towards return on investment rather than usefulness or
some kind of inherent value, whatever that means. Other technological
innovations are, frankly, more disquieting. Recent stories of facial
recognition in use at King’s Cross station in London have causes questions
and possible GDPR related issues. It seems the company responsible,
Argent, claims the system will ‘ensure public safety’ [BBC]. I have
questions. If it recognises faces, does it have a database of faces of people

1 EDITORIAL

who should be arrested on sight? I would imagine if you tracked
individuals’ paths through the station, you may spot bottlenecks and bad
signage and be able to improve the situation; however, this would not
require saving people faces. Indeed, this immediately made me think of a
variety of sci-fi stories, including Face Off and Minority Report. This
possibly tells you more about my background and point of view than the
event itself. Here’s a conjecture:

Your predictions tell me more about your history and bias than they

do about the future.

Many physics models are based on odd theological or Weltanschauung
(world-view) assumptions. How many colours are there in a rainbow? An
English rainbow has seven, apparently because Newton regarded seven as
amystically significant number. Other cultures have different counts of the
colours. Pythagoras refused to believe in irrational numbers, resisting
them. He also felt circles were significant, so planets had to be spheres,
and orbits had to be spherical. The starting assumptions colour the final
models. Climate-change deniers are also working on a set of assumptions
and biases. How to notice a bias, or predilection, underpinning a model or
prediction is a hard question. Sometimes the predictions are close enough
or the model seems to work, which might allow incorrect, or at least suspect
starting points to slip through. Question your own assumptions when you
next make a prediction. What point of view are you operating from? What
does the world look like through someone else’s eyes?

One final question. Why are you trying to make a decision anyway?
Frequently, predictions are made in order to aid decision making. For
example, guessing if it will rain will help me decide if I will need an
umbrella. Figuring out what could possibly go wrong can help prepare for
the worst. However, an impending sense of doom can lead to self-fulfilling
prophecies. Can you predict the future without influencing it? Thinking
through what might happen can be useful, though. Being accurate isn’t the
most important thing. Don’t forget:

A completely predictable future is already the past.
~ Alan Watts

What does matter is being aware of possible outcomes,
probable contributing factors, and recognizing your
assumptions. Bias in, bias out. A sense of wonder and
enquiry in, endless possibilities and hope out.

References
[Agile] Agile 19 conference: https://www.agilealliance.org/agile2019/

[BBC] ‘Data regulator probes King’s Cross facial recognition tech’,
posted 15 August 2019 at https://www.bbc.co.uk/news/technology-
49357759

[Buontempo19a] Frances Buontempo (2019) ‘Decision trees for feature
selection’, posted on http://buontempoconsulting.blogspot.com/
2019/07/decision-trees-for-feature-selection.html

[Buontempo19b] Frances Buontempo (2019) ‘Genetic Algorithms and
Machine Learning for Programmers’, https://pragprog.com/book/
fbmach/genetic-algorithms-and-machine-learning-for-programmers

[Gelman98] Andrew Gelman, Gary King, and John Boscardin (1998)
‘Estimating the Probability of Events that Have Never Occurred:
When Is Your Vote Decisive?’ Journal of the American Statistical
Association, 93 pp1-9. Accessed via https://gking.harvard.edu/files/
gking/files/estimatprob.pdf

[Spiegelhalter09] David Spiegelhalter and Kenneth Rice (2009)
‘Bayesian Statistics’, published on Scholarpedia, available from:
http://www.scholarpedia.org/article/Bayesian_statistics

[Wikipedia] Three-body problem: https://en.wikipedia.org/wiki/Three-
body problem

October 2019 | Overload | 3

https://www.agilealliance.org/agile2019/
http://www.scholarpedia.org/article/Bayesian_statistics
https://gking.harvard.edu/files/gking/files/estimatprob.pdf
https://gking.harvard.edu/files/gking/files/estimatprob.pdf
https://en.wikipedia.org/wiki/Three-body_problem
https://en.wikipedia.org/wiki/Three-body_problem
http://buontempoconsulting.blogspot.com/2019/07/decision-trees-for-feature-selection.html
http://buontempoconsulting.blogspot.com/2019/07/decision-trees-for-feature-selection.html
https://www.bbc.co.uk/news/technology-49357759
https://www.bbc.co.uk/news/technology-49357759

FEATURE »

Natural-language BDD can be hard to maintain. Liz Keogh
demonstrates a simple code-based alternative.

ne of my clients recently asked me how often I use Cucumber or
JBehave in my own projects. Hardly ever, is the answer, so [want to
show you what I do instead.

The English-language Gherkin syntax is hard to refactor. The tools form
another layer of abstraction and maintenance on top of your usual code.
There’s a learning curve that comes with them that can be a bit tricky. The
only reason to use the tools is because you want to collaborate with non-
technical stakeholders. If nobody outside your team is reading your
scenarios after automation, then you don’t need them.

There may still be other reasons you want the tools. They’ll be more
readable than the code I’'m about to show you. Dynamic languages are
harder to refactor anyway; [work primarily with static typing. Maybe you
want to take advantage of hooks for your build pipeline. Maybe you
already know and feel comfortable with the tools. Maybe you just really
want to learn the technique. That’s OK. But you don’t need them.

So here’s a simple alternative.

Have some conversations, and write down the
examples

I like it when the developers do this, and get feedback on their
understanding. Writing it in semi-formal Gherkin syntax is pretty useful
for helping spot missing contexts and outcomes. All the usual goodness
of Three Amigos conversations still applies.

Find a capahility, and the thing that implements it

Your application or system probably has a number of things that it enables
people or other systems to do. We’re going to be using a noun that matches
those things as a way of starting our DSL. Here are some examples:

® Buying things > the basket

B Making trades > a trade

B Commenting on an article > a comment / the comments
B Doing banking - the account

You may find the language is a bit stilted here (I did say the English was
clearer!) but that’s a trade-off for the ease of getting started with this. You
might find other things which make more sense to you; it’s sometimes
possible to use verbs for instance.

m Searching for a car > I search

Liz Keogh is a Lean and Agile consultant based in London. She is a
well-known blogger and international speaker, a core member of the
BDD community and a passionate advocate of the Cynefin framework
and its ability to change mindsets. She has a strong technical
background with 20 years’ experience in delivering value and coaching
others to deliver, from small start-ups to global enterprises. Most of her
work now focuses on Lean, Agile and organizational transformations,
and the use of transparency, positive language, well-formed outcomes
and safe-to-fail experiments in making change innovative, easy and
fun. Contact her on tiwtter at @lunivore

4 | Overload | October 2019

You’ll get the idea in a moment. Each of these is going to be the stem of
a bit of code.

Start with comments in the code

Sometimes I like to just start with my scenario written in comments in the
code. For each step, think about whether the step has already happened, is
the thing that triggers some interesting behaviour, or is the outcome of that
behaviour. Add Given, When or Then as appropriate:

// Given an article on Climate Change

// When I post a comment "This is a really
// conservative forecast."

// Then it should appear beneath the article.

Add the Given, When or Then to your stem, and...
B Given the basket...

B When the trade...

B When a comment...

B When a search...

B Then the account...
construct your steps!

Now we’re in code.

GivenAnArticle() .on("Climate Change")
GivenTheBasket () .contains ("Pack of Grey Towels")

WhenTheTrade () .isCreated()
.withCounterparty ("Evil Corp")
.forPrice (150.35, "USD")

.andSubmitted()
WhenISearch () .For ("Blue Ford Fiesta")

ThenTheAccount () . shouldHaveBalance (15.00, "GBP")

You can see that trading one is using a builder pattern; each step returns
the trade being constructed for further changes, until it’s submitted. I
sometimes like to use boring, valid defaults in my builder so that these
steps only call out the really interesting bits.

I normally suggest that a “When’ should be in active voice; that is, it should
show who did it. If that’s important, add the actor.
WhenTheTrade () .isCreated ()

.andSubmittedBy ("Andy Admin")
or

WhenTheTrade () .isCreated ()
.by ("Andy Admin")

.andSubmitted()

public class Scenario

{
private readonly SudoqueSteps _sudoqueSteps;
private readonly CellSteps _cellSteps;
private readonly HelpSteps _helpSteps;

private World _world;

protected Scenario()

{
_world = new World();
_sudoqueSteps = new SudoqueSteps (_world) ;
_cellsteps = new CellSteps(_world) ;
_helpSteps = new HelpSteps(_world) ;

}

protected CellSteps WhenISelectACell{ get
{ return _cellSteps; }}

protected CellSteps ThenTheCell{ get
{ return _cellSteps; }}

protected SudoqueSteps GivenSudoque{ get
{ return _sudoqueSteps; }}

/.

protected HelpSteps WhenIAskForHelp { get
{ return _helpSteps; } }

protected HelpSteps ThenTheHintText { get
{ return _helpSteps; } }

Listing 1

Active voice would normally look more like:
When ("Andy Admin") .createsATrade ()

.andSubmitsIt()
But now our ‘When’ is ambiguous; we can’t tell which kind of capability
we’re about to use, so it makes it really, really hard to maintain. It’s OK
to use passive voice for DSLs.
As I construct these, I delete the comments.

Sometimes I like to just put all the detailed automation in which makes
the steps run, then remove the duplication by refactoring into these steps.
(Sometimes it’s enough just to just leave it with detailed automation, too,
but at least leave the comments in!)

Pass the steps through to Page Objects; use the World for state

You’ll probably find you need to share state between the different steps. I
normally create a “World’ object, accessible from the whole scenario.

Each of the stems you created will correspond to one or more page objects.
I like to keep those separate, so my steps in the DSL don’t do anything
more than just call through to that object and return it.

Listing 1 is an example of my scenario object for a Sudoku solver.

n FEATURE

[TestFixture]
public class PlayerCanSetUpAPuzzle Scenario
{

[Test]

public void APlayerCanSetUpAPuzzle ()

{

GivenSudoque.IsRunning() ;
WhenISelectACell.At (3, 4) .AndToggle(l);
ThenSudoque. ShouldLookLike (
..." + NL +

NL
NL
NL
NL
NL
NL
NL
NL

2
B
I I T i I A

+ + + + + + + + A+ +

2
E

Listing 2

It does get quite long, but it’s pretty easy to maintain because it doesn’t
do anything else; all the complexity is in those underlying steps.

And Listing 2 shows how I use it. Full scenarios are available at https://
github.com/lunivore/sudoque/tree/master/Sudoque.Scenarios.

This one was written in plain old NUnit with C#. I’ve done this with JUnit
and Java, and with JUnit and Kotlin. The examples here are only from toy
projects, but I’ve used this technique on several real ones.

There are lots of tools out there which help you to construct these kind of
DSLs; but I've found they also come with their own learning curve,
constraints, maintainability issues etc.. This is a pretty easy thing to do; |
don’t think it needs anything more complicated than I’ve put here.

It’s also very easy to refactor overly-detailed, imperative scenarios, of the

kind created by lots of teams who didn’t know about the conversations,
into this form.

It's easy to move to the BDD tools if you need them

With your Page Objects already in place, it’s pretty quick to get something
like Cucumber up and running and make the step definitions call through
to the page objects exactly as you were before, with just a little bit of
refactoring of method names.

It’s a lot harder to move from Cucumber and regex to a DSL.

Chris Matts once had some great wisdom. “If you don’t know which
technology to choose, pick the one that’s easy to change. Ifit’s wrong, you
can change it.”

This is the one that’s easy to change, so I tend to start with this. And
sometimes it doesn’t need to change. B

This article was first published on Liz Keogh’s blog:
https://lizkeogh.com/2019/08/27/scenarios-using-custom-dsls/.

October 2019 | Overload | 5

https://github.com/lunivore/sudoque/tree/master/Sudoque.Scenarios
https://github.com/lunivore/sudoque/tree/master/Sudoque.Scenarios
https://lizkeogh.com/2019/08/27/scenarios-using-custom-dsls/

FEATURE »

People tend to love or hate Object Oriented
Programming. Lucian Teodorescu considers

a recent OOP claim.

the ‘disaster’ that OOP has become, compared to its promise. The

article received quite a bit of attention, both on Medium and on
Twitter. As the article was rather more ideologic than argumentative, the
reactions ranged from very positive to very negative. One particular
reaction that caught my attention was from Grady Booch [Booch19].

% Grady Booch @
LY EGrady Boock

With respect to the author, there is virtually nothing in this
article with which | agree.

n recent article from Ilya Suzdalnitski [Suzdalnitskil9] complained of

llya, I'd be happy to share with you stories of multitudes of
real world systems for which object-orientation was
essential.

Object-Oriented Programming — The Trillion Dollar Disaster

Besides being from Grady Booch (a prominent figure in the OOP world),
the thing that most caught my eye was the “multitudes of real world
systems for which object-orientation was essential” statement. As yet, |
have not seen any compelling examples making OOP necessary.
Moreover, I believe that such examples do not exist, and the present article
is an attempt to show why.

It is far from my intent to pick on some wording that Booch used (in some
less-formal context). What I would like to argue against is the common
belief that Object-Oriented Programming is the ‘true’ way of writing any
software system.

But, by all means, if somebody has such a list of examples of real-world
projects in which OOP was/is essential, please share it with me. And, for
that matter, of any programming paradigm. Any argumentative
explanation of the form ‘software X essentially needs programming
paradigm Y’ would most likely advance our studies on software
engineering.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. As hobbies, he is working on
his own programming language and he is improving his Chuck
Norris debugging skills: staring at the code until all the bugs flee in
horror. You can contact him at lucteo @lucteo.ro

6 | Overload | October 2019

The meaning of ‘essential

In the context of the tweet, we can distinguish three possible meanings for
the ‘essential’ word:

B as in Brooks’ division between essential and accidental [Brooks95]
—1i.e., there are software systems in which their essential complexity
somehow mandates OOP (see below)

B with the meaning of ‘necessary’—i.e., the software system cannot be
built without it

® with the meaning of ‘it’s much easier with’ — i.e., building the
software system is much easier with OOP; it can be built without
OOP but with much higher costs

Let’s analyze how OOP can be (or not be) essential in a software system
from all three perspectives.

Brooks' essential

Brooks makes the following division:
[...]to see what rate of progress we can expect in software technology,
let us examine its difficulties. Following Aristotle, | divide them into
essence — the difficulties inherent in the nature of the software —and
accidents — those difficulties that today attend its production but that
are not inherent.

He then immediately goes to say:
The essence of a software entity is a construct of interlocking
concepts: data sets, relationships among data items, algorithms, and
invocations of functions. This essence is abstract, in that the
conceptual construct is the same under many different
representations. It is nonetheless highly precise and richly detailed.

And then he describes what he believes is the irreducible essence of
modern software systems: complexity, conformity (to existing interfaces),
changeability and invisibility.
Nothing in what Brooks calls essential is fundamentally attacked by OOP.
Furthermore, Brooks has a small section on Object-oriented programming,
in which he states that OOP attacks accidental difficulties:
Nevertheless, such advances can do no more than to remove all the
accidental difficulties from the expression of the design. The
complexity of the design itself is essential; and such attacks make no
change whatever in that.

In the “No Silver Bullet” Refired’ chapter [Brooks95], Brooks remarks
that, after 9 years since the original claims, OOP has grown slower than
people would believe.

Ok, so clearly OOP is not essential for any software system in the way
Brooks describes ‘essential’.

‘Essential’ as ‘necessary’

Let us assume Booch intended to say “multitudes of real world systems for
which object-orientation was necessary”, with the meaning that the
software could not be technically written without OOP. Similar to saying
that the complexity of a sorting algorithm is essentially O(nlogn) — that is,

in the general case, the order of magnitude for the number of comparisons
cannot be less than nlogn.

But that cannot be the case. Any software system that can be built using
one programming language/paradigm can be built using another language
or paradigm. After all, all the programming languages and, by extension,
all programming paradigms are Turing-complete (any programming
paradigm can be used to implement Turing-computable functions).

‘Essential’ as a form of simplicity

In the last meaning that we explore, we assume that Booch wanted to say
“multitudes of real world systems for which object-orientation makes the
problem much easier to solve”. This is starting to sound a bit more
plausible.

A statement like “Project X can be solved by team Y with OOP simpler
than it can be solved in any other programming paradigm” is a fair
statement. I think most of the readers will agree with it.

But, we must argue that we cannot generalize it for all the teams. OOP is
not necessarily the simplest way to write (reasonably complex) software.
For example, consider people like Joe Armstrong (creator of Erlang, who
sadly died this year) [Seibel09], [Armstrong], Linus Torvalds (who
expresses so colorfully his dislike of C++/OOP) [Torvalds04,07]], Simon
Peyton Jones (designer for Haskell) or Rob Pike (designer for Go). Would
they consider that OOP is the easiest method to write software? Definitely
not.

Different people and different teams will have different proficiency levels
with different technologies/paradigms. Out of all the factors that affect the
proficiency of an individual/team, probably education is the most
important one. If the industry highly esteems OOP programmers, if most
of the formal education encourages people to believe that OOP is the most
important programming paradigm, and if most of the software literature
teaches OOP, then, of course, people will start to be proficient in OOP,
and become biased towards OOP. (It is hard to generalize, but my personal
opinion is that OOP is still highly promoted, probably more than it merits.)

The fact that people are biased towards using OOP doesn’t make OOP
essentially simpler than other programming paradigms. It’s probably just
confirmation bias. People with hammers see nails all around, which
strengthens their belief that the hammer is the best tool.

With all these said, we can conclude that even within this interpretation,
OOP is not essential in building software systems.

Let us now analyze the problem from a different perspective; let us try to
answer the following question: Is there some OOP feature that is not
present in other programming paradigms and that would help the
programmers better tame the complexity?

We will analyze the major features of OOP to answer this question. When
I'say OOP, I’'m mainly thinking of languages like C++, Java, and C#. I will
often contrast them with non-OOP languages like C and with functional
languages (Haskell, ML)

n FEATURE

Ohjects and classes on top of imperative programming

OOP is an imperative paradigm. Nothing new here. It has classes and
objects, but those aren’t necessarily something new.

Classes, in the absence of encapsulation, are just data structures. Similar
to C structs; similar to product types in functional paradigms. Objects are
instances of these classes — in other words, values. There is nothing new
that OOP adds here to help in dealing with complexity.

Please note that OOP has a convention that classes, i.e., data structures,
should correspond to things in the real world. I find this a bit disturbing,
but that is not the issue here. There is nothing that prevents other paradigms
from adopting similar conventions.

Things like class variables are just syntactic sugar. There is nothing here
that essentially helps in fighting complexity.

Encapsulation is the concept that binds together the data and the functions
that manipulate that data. As opposed to traditional imperative
programming, OOP puts functions inside classes, and calls them methods.
But, a method is nothing more than a function that takes the object as a
(hidden) parameter. Everything is syntactic sugar.

Nothing prevents a C programmer from placing all the functions that
operate on the data near the struct definition. Ignoring the access rights of
methods and attributes, this convention produces similar results. With any
programming language that supports some sort of package constructs, one
can easily emulate encapsulation. Signatures and structures in ML
(functional language) [Harper00] behave very similar to encapsulation in
OOP.

Again, nothing that cannot be done with simple conventions; at best,
improvements that OOP adds here would fall into fighting accidental
difficulties.

Now, let me be clear about one point. In general, encapsulation can be seen
from two different perspectives:

B asyntactic perspective, on how OOP languages recommend placing
data and functions together

B a modeling perspective, a way of thinking about programs, that
tends to put data and the operations on the data together

The argument here was at the syntactic level. OOP languages add syntactic
sugar to easily allow programmers to group data and functions.

The most important part of the encapsulation comes with modeling
perspective. That is a form of decomposition that can actually help fight
complexity (see below in the ‘“What is truly essential?’ section). But again,
nothing can prevent a C or an ML programmer from using this way of
thinking about problems. So, even though this modeling technique is
typically associated with OOP, other non-OOP languages can use it.

Preventing the programmer from accessing some variables/functions can
hardly be called an essential improvement for software engineering. If one

October 2019 | Overload | 7

FEATURE »

essential complexity

needs help in hiding that information, one can always rely on packaging
systems, on conventions (like the leading underscore in Python) or even
code documentation.

People often claim that OOP is needed to have polymorphic behavior.
Nothing can be more false than that.

First, let us acknowledge the existence of multiple types of polymorphism:
subtype polymorphism (or inheritance based — the one advertised by
OOP), ad hoc polymorphism (i.e., overloading) and parametric
polymorphism (as used by functional programming languages, but also for
implementing generics/templates in some highly acclaimed OOP
languages). And, there is also duck-typing, a form of polymorphism
without static types.

There are no technical reasons to believe that subtype polymorphism is
superior to parametric polymorphism. On the contrary, I believe the
opposite; but I’1l leave that discussion for another time.

Also, the reader should consider that basic polymorphism can be
constructed in C with manual vtables. OOP languages just add syntactic
sugar on top of this.

As polymorphism is not unique to OOP, we also conclude that, with
respect to polymorphism, OOP cannot be essential in building software.

Inheritance

We have already discussed how subtype polymorphism present in OOP is
not essential to building software. Without the polymorphism aspect,
inheritance is drained out of substance. There are voices that claim that
inheritance is abused, and there are a lot of cases in which it can be replaced
by simple composition. For example, see item 34 (Prefer composition to
inheritance) from C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices [Sutter04] and the Inheritance Is The Base Class of Evil
presentation [Parent13].

Without polymorphism, inheritance is just syntactic sugar (one that can
cause harm if abused).

Dynamic dispatch

Although object-oriented languages provide an easy method of
implementing dynamic dispatch (e.g., virtual functions in C++), other
languages have different strategies. Languages like C provide function
pointers to handle this, while functional languages provide closures to
implement dynamic behavior. Essentially, a closure or a function pointer
is an interface with a single method, and any object-oriented interface can
be decomposed into smaller, one-function interfaces.

Yes, interfaces with multiple (virtual) functions can be slightly more
efficient in some contexts, but there is nothing game-changing in having
multiple functions per interface. In the worst case, the user can group
multiple one-function interfaces into one single data structure.

8 | Overload | October 2019

Again, OOP doesn’t provide a feature that is unique and cannot be matched
with a bit more syntactic verbosity; and we already established that is an
accidental difficulty, not an essential one.

There is no single OOP feature that would have significant importance in
fighting essential complexity, or in making programmer’s life much more
easier. They can be all summed up in the category of syntactic sugar.

Syntactical and modeling - an analogy

Most of the discussion about OOP features revolved around syntactical
aspects of OOP. The reader should be guessing by now that, following
Brooks, I have a strong position for dismissing syntactic features as solving
accidental difficulties, and not being essential to the development process.
Yes, it can make you write 10% faster code, but it is not essential.

There is a different story with the modeling perspective of OOP. We’ll
tackle this in the next section. But before that, I want to draw an analogy.

Let’s compare OOP with the traditional motor car (with internal
combustion). While there are a lot of cars out there, the cars are not
essential to locomotion. We can travel by plane, we can travel by boat, we
can travel by train, we can travel on a horse and even by foot.

Similar to the syntactical features of OOP languages, we can think of the
shape of the car. It is true that the cart alone doesn’t make the car; it just
adds marginal improvement to locomotion (faster speeds, better grip, etc.)

The modeling aspect of OOP is analogous to the internal combustion
engine of the car. The engine is what makes the car a car. But what it is
important here to notice is that there are alternatives to internal combustion
engines. We have fully-electric engines, we have hybrid-engines, we have
engines based on wind or even on solar power; and let’s not forget horses
and locomotion by foot.

The main point is that neither the cart nor the internal combustion engine
is essential for locomotion. And internal combustion engines, even though
they are most commonly seen on cars, can be present on other locomotion
machines.

In the previous sections we went over major OOP features. We concluded
that most of them are syntactic features. The modeling aspects that are
commonly found on OOP languages (encapsulation, polymorphism) can
be present in non-OOP languages. But are these OOP modeling techniques
essential?

Whatis truly essential?

Decomposition. The breaking down of a complex software system into
multiple parts that are easier to understand, to reason about and to maintain.
Only by decomposition can one hope to tame the complexity.

But beware, decomposition can fall into the same bias as discussed above.
We can say that a certain decomposition would make the software system
easier to understand for team X, but we cannot say that it will do for any
team/individual.

LUCIAN RADU TEODORESCU » FEATURE

In OOP, people usually follow the so-called object decomposition: we try
to break down the system around ‘things’ (as opposed to operations or
functions), which will become objects/classes. As these objects/classes
will hold state, this type of decomposition typically is a decomposition of
state: the state will be scattered (and shared) around all over the software.
This is typically a bottom-up approach. See also Booch method [Booch94]

By contrast, functional decomposition as found in functional languages
considers functions as basic building blocks. It is more focused on
decomposing data flows. The state is typically immutable and isolated (i.e.,
the inputs of a function are always distinct from the outputs of the same
function). The pipes and filters pattern typically employs a functional
decomposition. This type of decomposition mostly resembles top-down
decomposition.

But, just because these two dominate OOP and functional programming,
it doesn’t mean that there aren’t other types of decomposition. Here are
some decompositions that can make a lot of sense, but not get that much
attention: decomposition based on security levels, based on the distance
from the user (think of a web, layered architecture), based on the expertise
of different teams/individuals (Conway’s law [Conway68]), etc.

In practice, in one software project, typically more than one decomposition
appears. If one decomposition appeals to a group of people, it may not
appeal another group of people, at least not at first sight. For example, I
believe that a decomposition based on security levels is not something that
most of the readers will think of first; on the other hand, I believe there
will be other readers who apply it very frequently.

So, to come back to the previous analogy, there aren’t only internal
combustion engines. Fully-electric engines are starting to show a lot of
potential (can this be similar to functional programming?). Plus, there are
hybrid-engines which don’t seem too bad (I find this analogous to C with
encapsulation based on conventions). Let’s not forget about non
conventional engines, like wind-powered ones (to be associated with less
prominent programming paradigms).

Just like engines, the different types of decompositions have pros and cons.
Like there is no ‘essential” engine, there isn’t any programming paradigm
that is essential to solving a software problem.

We argue here that OOP is not essential for software systems. It can be
easier for certain teams/individuals, but we cannot generalize. The word
‘essential” cannot be used in this context with the meaning that Brooks
attributes to the word, and it cannot mean ‘necessary’. In limited contexts,
it can mean simpler; but this simpler is directly dependent on the people
for which it is simpler — there is no such thing as simpler for everyone.

To make sure we haven’t missed anything, we also looked at the problem
from a different perspective: trying to see if there are some features of OOP
that can promise simpler software. But almost all the important OOP
features are merely syntactic sugar; all OOP programs can be translated
into C with minimal effort.

The most important tool for solving software problems is decomposition.
But this is not particularly tied to a programming paradigm. As an industry,
we should probably be focusing more on different ways of decomposing
a complex software system rather than trying to religiously apply one
paradigm or another. There is nothing fundamental that would prevent a
programmer from applying good decomposition principles in C as
opposed to an OOP language.

But probably there are still readers that believe that C doesn’t allow high-
level abstractions. I would urge those readers to carefully analyze the
reasons for that belief. I am highly convinced that similar to the content
exposed in this article, the main reasons are:

m the language features that enable those high-level abstractions are
just syntactic sugar — accidental difficulties

m the reluctance of creating high-level abstractions in a language like
C comes from internal biases

To overcome the biases I recommend the readers to get exposed to multiple
decomposition methods and multiple programming paradigms. With that

in mind, I would also recommend the readers to go over Ilya’s post
[Suzdalnitskil9]; it may be ideologic, it might not have all the proper
arguments, but it offers a non-traditional perspective on software
construction.

OOP may be helping a lot of people to write good software. But claiming
essentialness of OOP is a bit too strong, in my opinion. B

References

[Armstrong] Joe Armstrong, ‘Why OO sucks’,
https://www.cs.otago.ac.nz/staffpriv/ok/Joe-Hates-OO.htm

[Booch19] Grady Booch (2019), Twitter reply to Ilya, https://twitter.com/
Grady Booch/status/11531769459510681617s=17

[Booch94] Grady Booch (1994), Object-oriented analysis and design
with applications, Addison-Wesley Professional

[Brooks95] Frederick P. Brooks Jr (1995), The Mythical Man-Month:
Essays on Software Engineering, Anniversary Edition (2nd Edition),
Addison-Wesley Professional

[Conway68] Melvin Conway (1968), ‘How Do Committees Invent?’
http://www.melconway.com/Home/pdf/committees.pdf

[Harper00] Robert Harper (2000), ‘Signatures and Structures’ in
Programming in Standard ML, https://www.cs.cmu.edu/~rwh/
introsml/modules/sigstruct.htm

[Parent13] Sean Parent (2013), ‘Inheritance Is The Base Class of Evil” at
GoingNative 2013, available from: https://www.youtube.com/
watch?v=blhUESuUFOA

[Seibel09] Peter Seibel (2009) ‘Joe Armstrong’ in Coders at Work:
Reflections on the Craft of Programming, Apress

[Sutter04] Herb Sutter, Andrei Alexandrescu (2004), C++ Coding
Standards: 101 Rules, Guidelines, and Best Practices, Addison-
Wesley Professional

[Suzdalnitskil9] Ilya Suzdalnitski (2019), ‘Object-Oriented
Programming — The Trillion Dollar Disaster’,
https://medium.com/better-programming/object-oriented-
programming-the-trillion-dollar-disaster-92a4b666¢7¢c7

[Torvalds04,07] Linus Torvalds (2004, 2007), Linus Torvalds on C++
(correspondence), http://harmful.cat-v.org/software/c++/linus

Advertise in C Vu & Overload

807 of readers make purchasing®
decisions, or recommend products
for their organisations.

- »

Reasonable rates. Flexible options.
Discounts available to corporate
members.)

Contact ads@accu.org for info.

October 2019 | Overload | 9

http://harmful.cat-v.org/software/c++/linus
https://medium.com/better-programming/object-oriented-programming-the-trillion-dollar-disaster-92a4b666c7c7
https://www.youtube.com/watch?v=bIhUE5uUFOA
https://www.youtube.com/watch?v=bIhUE5uUFOA
https://www.cs.cmu.edu/~rwh/introsml/modules/sigst