

December 2019 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Trip Reports: Meeting C++ 2019 and
Embedded C++ 2019
Svitlana Lubenska, Hans Vredeveld and
Benedikt Mandelkow give us a flavour of
what we may have missed.

9 Non-Recursive Compile Time Sort
Norman Wilson shows how C++14 features
make compile time sorting easier.

11 Quick Modular Calculations (Part 1)
Cassio Neri shows that compilers can improve
the way they optimise modular calculations.

16 Afterwood
Chris Oldwood asks if Get Carter would be
better named Acquire Carter.

OVERLOAD 154

December 2019

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 155 should be submitted
by 1st January 2020 and those for
Overload 156 by 1st March 2020.

EDITORIAL FRANCES BUONTEMPO
Inside-Out
Sometimes things appear to be inside out.
Frances Buontempo considers when a shift
of perspective can make things seem better.
Cutting to the chase, I haven’t written an editorial and
I suspect I have run out of excuses now. I have been
distracted by reading Jerusalem by Alan Moore
[Moore16]. This book pulls together a variety of
characters, including gods and daemons, and explores
ideas related to extra dimensions, directly referencing

Flatland [Abbott84], which some readers may be familiar with. It tries to
imagine what life in higher dimensions would be like, starting with the
perspective of two-dimensional beings. Such beings, living on the
equivalent of a piece of paper, have a limited view of their surroundings.
A three-dimensional being would have a very different view, being able
to see inside rooms from above. The flatlanders would have no concept
of above. By shifting perspective, the world looks very different.

Alan Moore also wrote the comic Watchmen [Moore], which was made
into a film and has recently been serialized for the television. From
memory, the comic has a long discussion near the beginning of super-hero
outfits. Cloaks are called out as a no-no. They are a health and safety
nightmare, both being a trip hazard and potentially getting stuck in fire-
escapes or other fixtures and fitting as the hero attempts to duck and dive
after whoever they pursue, or perhaps run from. I personally have never
understood why so many super-heroes wear their underpants on the outside
of their trousers. Inside-out, with no possible advantage, to my mind.
Finding a suitable outfit is often a headache for anyone. I am sure many
readers will join me in bemoaning a lack of pockets, having put valuable
possessions in a handbag. Some things are much safer in an inside pocket.

There are many conventions on placement, particularly of clothing,
though not limited to attire. Should you tuck your shirt in? Should a scarf
go over a coat or inside? What about code documentation? Should this be
inside the code as comments or along-side the code in document form?
Where do diagrams go? How do you explain your code in diagram form?
For physical objects, trying to represent three dimensions on a two-
dimensional surface throws up many challenges. At some scales, a plan
and elevation will provide enough information to indicate what goes
where. However, flat-pack furniture is often shown as so-called ‘exploded
diagrams’, attempting to show how the parts fit together, showing which
fixings go where inside. Sometimes a few words along with the diagram
help. So much for furniture. How many dimensions does a code-base
have? Can you really represent it on a flat surface? Various projections
of the earth onto maps exist. Each will distort the landmass in some way.
The Mercator projection gives the impression Greenland and Africa are

the same area. Getting the areas right can make all the
shapes wrong. What does a UML diagram do

to your code base? Does code have a surface
area? Who knows? I don’t.

Maps are often use to plan journeys. Trying to represent a landscape, road
network or pathways is a challenge. Unknown areas may just be marked
‘Here be dragons’. The same stands for codebases. When planning a walk,
it is useful to know just how steep the paths are. Many popular maps on
smart phones don’t show this. Other types of maps might. The Ordnance
Survey used to use physical marks to map out the height above sea-level
[OS-1], and does show contour lines joining points of equal height, and
therefore indicating the steepness of a path. Some of the markers have
subsided somewhat, meaning the data is no longer accurate. They now use
GPS and similar to get accurate measurements. If a marker stone is on top
of a hill, and a coal-mine underneath collapses, the marker might just end
up inside the hill, rather than on top. Edges and boundaries move over time.
Furthermore, tides rise and fall all the time, so averages are taken. You
should also clarify which sea-level. Newlyn in Cornwall, it turns out [OS-
2], has a stone pier sited on granite, so is probably more stable than some
other points around the UK. Finding the length of the coastline round a
country is difficult too. The result depends on the accuracy with which you
measure the edges, ignoring parts that may fall into the sea from time to
time. Any distance is always an approximation at a given scale. Tides and
edges are not the only things to move over time. Documentation can become
out of date or architecture diagrams go stale. Tests might start to fail.

Given we cannot find one best way to provide accurate distances,
diagrams, or pathways for many things, what are the options for finding
our way round a code base? Start somewhere in the middle, with a break
point in a function and see what hits it? Add some logging? Start at main,
or another boundary, and follow a path through? Draw a new diagram?
Attempt to understand existing diagrams? There are many options.
There’s no one best way. Learning to navigate code bases, geography,
meetings or indeed any situation is an important skill.

How do you navigate your way through a multi-track conference or
options for studying a course? Do the session titles indicate what’s really
involved? There may be an abstract somewhere, but without reading
through these properly in advance, you might just pick according to titles
or speakers. Perhaps that doesn’t matter for an hour’s talk as much as for
a long course. The ‘blurb’ presented to the outside world may or may not
be an accurate representation of what’s going on inside. So many
companies have a mission statement, taglines or slogans which might be
somewhere between meaningless or misinformation. The real thing?
Because you’re worth it. Just do it. I shouldn’t mock; hours of thought
have gone into these and the companies concerned are almost certainly
making money. ACCU adopted ‘Professionalism in programming’ a
while ago, and that has stuck. Though this means different things to
different people, it’s a good place to start. How do you describe ACCU
when you talk to people about us?

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2019

EDITORIALFRANCES BUONTEMPO
I often surprised by non-technical peoples’ mental models of how things
work. Someone once claimed their smart speaker only started listening in
on them after they said its name. I was going to ask how it heard its name
if it wasn’t listening, but suspected I wouldn’t get far with that line of
enquiry. Mind you, tech people often talk about a fabled hamster not
pedalling hard enough if machines slow down, or gremlins larking around,
or just say ‘Magic’ when asked how something works. On one level, we
do ourselves no favours, and on another it is very difficult to explain
something clearly and precisely to others who have no background
knowledge at all. Sometimes we use analogies, but they always fall down
in the end. They can be a good starting point for a discussion though.

Do your friends or family know what you do for a living, if you are in tech?
Many presume you can fix their home internet connection problems or
similar, though not all. If people don’t know what a program or an app is,
even when they use such things, how do you explain that you create these?
Even talking to other tech people working in different domains can be hard.
A GUI programmer will use different language to a backend developer.
When we say ‘agile’, what do we mean? When we say ‘test’, what do we
mean? If you claim to do TDD, do you write the tests first? Perhaps this is
about the ambiguity of language in addition to disparate experience.
Sometimes the best way to understand each other is to do something
together, rather than talk about it. If someone wants to know what a website
is, build one with them. If someone wants to know what an algorithm is,
work through one together on paper with a pencil. If someone wants to
know what stochastic calculus is, well, there are ways to give an overview,
but it takes a lot of thought to make complicated things simple to ‘outsiders’.

Throughout history, there have been many experts who have tried to
explain details of their specialist knowledge to the general public. Einstein
wrote many academic papers, but also wrote for a wider audience,
including his book Relativity: The Special and General Theory
[Einstein16]. He claimed:

The present book is intended, as far as possible, to give an exact
insight into the theory of Relativity to those readers who, from a
general scientific and philosophical point of view, are interested in
the theory, but who are not conversant with the mathematical
apparatus of theoretical physics.

Feynman also tried to popularize physics with books and talks
[Wikipedia-1]. Brian Cox is on a similar trajectory, with articles talking
of the Brian Cox effect [Manchester]. By explaining complicated things
with enthusiasm, he has inspired others to study physics. Some have
claimed relatively recently that people are sick of experts [Gove16], but I
don’t think that is true. I think most people like to have an idea of how
things work or new ways of looking at life, the universe and everything.
They may need an Einstein, Feynman or Cox to explain it. Or even Alan
Moore to put ideas into story or comic form, at least providing analogies
and parables to get the brain ticking.

Some experts are insiders who share secrets. Though this can be a bad
thing, for example stealing a company’s intellectual property, others are
whistleblowers. The UK government website [GOV.UK] describes it like
this:

You’re a whistleblower if you’re a worker and you report certain
types of wrongdoing. This will usually be something you’ve seen at
work – though not always.

The wrongdoing you disclose must be in the public interest. This
means it must affect others, for example the general public.

I’m not sure how precise this definition is, but the idea is to protect workers
who call out bad behaviour or practice. Wikipedia has a list of
whistleblowers [Wikipedia-2]. The earliest entries concern the military
and war crimes. Over time, the frequency of entries increases, and the
domains expand into spying, the pharmaceutical industry, banking and
then IT. Of course, the list is not definitive. Volkswagen isn’t on the list
[Reuters16]. Other computer systems have had problems too, and though
whistleblowing may not be involved, experts may have something to say
on the matter. The grounding of the Boeing 737 MAX planes was called
for by experts [Wikipedia-3]. Thank goodness for experts.

Some companies willingly share their source code. Free and open source
software, FOSS, is a term many of us are familiar with. As AI becomes
all the rage, I increasingly see open source code and online platforms
offering tools to help people develop solutions quickly. You can pick up
a model and tweak the parameters to see if you can improve its
performance, even if you don’t have a clue what a GAN or CNN is, or what
reinforcement learning is. Who needs experts when you can twiddle knobs,
change numbers and generally hit things with a hammer until they appear
to work? To be fair, some initiatives started as a way of making sure
proprietary AI setups don’t inadvertently invent some SciFi nightmare like
The Terminator’s Skynet. For example, OpenAI [OpenAI] has a charter,
which starts:

OpenAI’s mission is to ensure that artificial general intelligence
(AGI)—by which we mean highly autonomous systems that
outperform humans at most economically valuable work—benefits
all of humanity.

Other organisations are also looking out for us. The Future of Humanity
institute [FHI] claims to ‘bring the tools of mathematics, philosophy and
social sciences to bear on big-picture questions about humanity and its
prospects’. They include a governance of AI section, keeping an eye on
where the tech is going, including governments and industry leaders. Since
we don’t know what AI is really capable of, predicting what might happen
is hard, but bringing together experts to discuss matters seems like a good
idea. Experts from different areas will have different perspectives on what
is happening and what might come to pass.

Despite my lack of editorial, I hope looking in a different direction, getting
a new perspective, or listening to experts might help
me, or a reader or two. If you happen to be an expert in
something, or even just get the hang of it, do write it up
for someone else to read. This might fire you with new
ideas, better ways of explaining yourself and new
things to discover. Happy thinking.

References
[Abbott84] Edwin A Abbot Flatland: A romance in many dimensions

Seeley & Co 1884.

[Einstein16] Albert Einstein Relativity: The Special and General Theory
First published Dec 1916.

[FHI] Future of Humanity Institute: https://www.fhi.ox.ac.uk/

[GOV.UK] ‘Whistleblowing for employees’: https://www.gov.uk/
whistleblowing

[Gove16] Michael Gove in an interview with Faisal Islam, Sky News,
3 June 2016: https://en.wikiquote.org/wiki/Michael_Gove

[Manchester] ‘The Brian Cox effect’ rejuvenates physics in Britain:
https://www.physics.manchester.ac.uk/research/impact/the-brian-
cox-effect/

[Moore] Watchmen, Alan Moore, DC Comics, 1986–1987

[Moore16] Alan Moore (2016) Jerusalem, Knockabout, Sept 2016

[OpenAI] OpenAI Charter: https://openai.com/charter/

[OS-1] Ordnance Survey (blog): https://www.ordnancesurvey.co.uk/
blog/2018/05/25-years-since-last-benchmark/

[OS-2] Ordnance Survey (blog): https://www.ordnancesurvey.co.uk/
blog/2011/08/how-do-you-measure-sea-level/

[Reuters16] ‘Fired employee says Volkswagen deleted documents about
emissions tests’, published in The Guardian:
 https://www.theguardian.com/business/2016/mar/14/volkwagen-
whistleblower-deleted-documents-emissions-tests

[Wikipedia-1] Richard Feynman: https://en.wikipedia.org/wiki/
Richard_Feynman

[Wikipedia-2] List of whistleblowers: https://en.wikipedia.org/wiki/
List_of_whistleblowers

[Wikipedia-3] Boeing 737 groundings: https://en.wikipedia.org/wiki/
Boeing_737_MAX_groundings#Experts
December 2019 | Overload | 3

https://www.fhi.ox.ac.uk/
https://en.wikiquote.org/wiki/Michael_Gove
https://openai.com/charter/
https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/List_of_whistleblowers
https://en.wikipedia.org/wiki/List_of_whistleblowers
https://www.theguardian.com/business/2016/mar/14/volkwagen-whistleblower-deleted-documents-emissions-tests
https://www.theguardian.com/business/2016/mar/14/volkwagen-whistleblower-deleted-documents-emissions-tests
https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings#Experts
https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings#Experts
https://www.physics.manchester.ac.uk/research/impact/the-brian-cox-effect/

FEATURE SVITLANA LUBENSKA, HANS VREDEVELD & BENEDIKT MANDELKOW
Trip Reports: Meeting C++ 2019
and Embedded C++ 2019
Deciding which conferences to attend is difficult, and we can’t go
to them all. Svitlana Lubenska, Hans Vredeveld and Benedikt
Mandelkow give us a flavour of what we may have missed.
From Svitlana Lubenska
t was my 4th Meeting C++ [Meeting C++] conference and I liked it the
most. In this report, I will try to explain why and encourage you to watch
the videos once they are available and, of course, to go to this conference

next year!

As always, the conference takes place in Berlin, in the beautiful Vienna
House Andels Hotel, and lasts 3 days.

During these days, I literally did not leave the hotel, because every day was
filled with so many interesting things!

The first day had so many interesting speakers so that it was really hard
for me to decide where to go. I will list the talks I finally attended, but I
am going to watch the recordings [MeetingC++] of others too.

 The opening keynote by Howard Hinnant about <chrono> [chrono]
was just great! As I have recently worked with this library, I have
now learned better ways of using it and tomorrow am going to
refactor my code . Howard not only listed the existing and new
(coming in C++20) features but also explained the philosophy of
design, making it clear why they implemented certain features. He
also gave cool advice to people who want to design their own library
(although not necessarily: I think I can apply them even if I write just
one class). Howard kindly shared his slides [Hinnant19].

 The first talk was the one I was really looking forward to attending
– ‘10 Techniques to Understand Existing Code’ by Jonathan
Boccara. Let me first talk about the speaker. I first heard his name
while I was on maternity leave. Although it was year when I had a
break from my profession so I could focus on my family, I did want
to follow what was happening in the C++ world, so I was listening
to cppcast [CppCast] where I heard an interview with Jonathan
which was super interesting. I started to read his blog fluentcpp.com
and also watched videos on youtube. When I got back to work, I
continued following his posts, used a lot of his tips while coding and
still think his explanation of tag dispatching technique is the best .

I was also super happy when Jonathan published his book and so, of
course, I could not miss his talk at conference!

The talk was interesting and helpful; I especially liked the tip about
using call stacks .

 Daniela Engert talked about the famous modules: once they are
there, go to see how to use them .

 I went to listen to Hana Dusíková with her ‘Compile Time Regular
Expressions with Deterministic Finite Automaton’ talk because I
had heard so much about her and missed the talk about Hana’s
library last year. I am a big fan of regular expressions (in Perl
mostly, as I am in love with scripting languages), so… what can I
say, I was really impressed! You will also be impressed if you check
the slides [Dusíková19].

 I could not miss the talk ‘C++20: The small things’ by Timur
Doumler because I just love the examples he usually gives. I was not
disappointed .

As always, the first day was finished with the Quiz! It was the first time I
participated; of course, failing to solve a lot of tasks… but it was SO
MUCH FUN! Please always try it out when you at a conference; the best
part is that you are with people you have never worked with but after the
quiz it is like you have known them for ages . Last year, I was so inspired
that I created a similar event for my colleagues, not as evil but still…
15 minutes that felt like the best team building ever .

The second day was even better! Because:

 It started with an inspiring keynote by Frances Buontempo. You
have to watch it! So many questions to think about. I recently read a
book by Andreas Weigend [Weigend17] (not exactly about AI)
which raised similar ideas in my head, so this talk was really
important to me.

 Arne Mertz talked about code smells. I liked that the talk was built
on real code examples where he asked the auditorium to find the
smells. I think you should show this talk to junior programmers
straight away when they join your team. You know, just in case .

 Pavel Novikov talked about asynchronous C++ programming, on a
pretty advanced level. I particularly liked his examples on tasks (and
puppies).

 Phil Nash is still obsessed with error handling in C++. I recommend
watching his previous talk first [Nash18]. Basically, this time he was
considering different proposals related to this and showing how the
code would look. I personally am quite happy with system_error
even with the problems Phil listed, but it was interesting to see what
can be improved and why.

 Guy Davidson gave his talk ‘Teaching Analytic Geometry to C++’,
as always with so much positive energy. Now with a geometry
library, I am sure C++ will shine .

The last-but-not-least part was Lightning Talks. There were so many that
I cannot list them all but just mention my favourite – by Tina Ulbrich, ‘The
Life-Changing Magic of Tidying Up’ [Ulbrich19]. The idea was so simple

I

Benedikt Mandelkow is a 23-year-old CS student from Germany.
He has a Bc. CS from the RWTH Aachen and is now studying
computer graphics and image processing at Uni-Koblenz as a
Master CS student. He is interested in a wide range of
programming languages and the underlying technologies he uses.
You can contact him at benedikt.mandelkow@rwth-aachen.de

Svitlana Lubenska has a Masters degree in Applied Mathematics
and is working as a Senior Software Engineer at Brainlab (Munich,
Germany). You can contact her at s.lubenska@gmail.com

Hans Vredeveld started working in the software industry 20+
years ago as a system administrator. Via application
administration, he soon moved into software development, where
he was bitten by the C++ virus. Not wanting to be cured, he is
always searching for the next cool thing C++. He can be contacted
at accu@closingbrace.nl.
4 | Overload | December 2019

FEATURESVITLANA LUBENSKA, HANS VREDEVELD & BENEDIKT MANDELKOW

The code presented varies between crazy and
psychopathic, and stands for a lot of “what the...” and

fun. I only hope to never see such code in production.
and brilliant so that I could not help laughing. She applied ideas from a
home-cleaning philosophy to code writing. I read everything written by
Marie Kondo and I try to follow her advice at home, but it would never
have occurred to me to use these ideas in code. I think my mindset is
different now, and this simple move will bring even more joy to my work .

The third day opened with a talk by Jon Kalb where he talked about
‘Modern Template Techniques’. I found policy classes very interesting,
not being sure if I had heard of this technique before. So, I learned
something again .

 Fabio Fracassi talked about C++20 new features. The talk
intersected a bit with Timur’s talk but, in this case, the more
examples the better. I liked the talk a lot!

 The ‘Testing Legacy Code – Fuzzing for Better Input Data’ talk by
Tina Ulbrich and Niel Waldren was sooo good! I am going to check
libFuzzer as soon as I get to my computer!

 There were also secret Lightning Talks, my favourite was the one
done by Peter Sommerlad just because I loved the idea of having
‘The Rule of DesDeMovA’.

 Jens talked about burnout, which is supposed to be a sad topic… but
those beautiful photos… I don’t know what to say, you should see
them .

 It was time for the closing keynote by Walter E. Brown who actually
started the talk in German . He made us laugh but also think about
the cost of the mistakes programmers sometimes make. For me, it
was also important topic as I write medical software, so…

Yes, these three days were awesome! I still have a lot to catch up (talks I
did not attend), but I have already learned so much from people who are
so kind to share their knowledge and thoughts.

See you next year!

From Hans Vredeveld
We have a great C++ community that gives a lot, at least to me. Some time
ago, I was thinking about how I could give back something. I concluded
that writing for Overload would be a good way to start. But, what to write
about? An easy answer to this question is, write trip reports for events I
went to. So I wrote a trip report for Italian C++ earlier this year
[Vredeveld19]. Now it’s time for my second trip report. This time about
Meeting Embedded and Meeting C++, the second time I have visited these
conferences. It’s also the second time Meeting Embedded has been held.

Meeting Embedded
Meeting Embedded [MeetingEmbedded] is a one-day single-track
conference that is held the day before Meeting C++. This year it was on
November 13th. The day started with a short welcome by Jens Weller,
followed by a one-hour keynote, after which nine 30-minute talks
followed. After the keynote and after each third talk, there was a longer
break in which we could get some refreshments or have lunch. Between

the other talks, there was a 5-minute break to allow for one speaker to leave
the stage and the next to set up.

The keynote was delivered by Peter Sommerlad. In his talk he argued that
we should stop using C and start using modern C++ for embedded
development. Part of the problem is that vendors give examples
predominately in C and that these examples often constitute bad code. The
development cycle usually consists of quickly writing your code, so that
you get to the real thing: debugging. Peter then argued that a lot of the
problems found during debugging (or worse: only found in production) can
be circumvented by making proper use of modern C++. C++ gives us a
type system with deterministic object lifetime, compile time
programming, and a standard library, amongst others, that make many of
the problems with C go away like snow before the sun. Next, he went into
what it means to properly make use of modern C++, how many of the
problems that in C can be only found at runtime can be found at compile
time in C++. If you want to convince your colleagues to start using C++
instead of C for embedded, watch the keynote on YouTube for some
inspiration when it becomes available.

Many of the talks that followed were also on the subject of writing better
code. Maciek Gajdzica looked at different design and development
methods, also touching on the subject of better languages than C for
embedded development. In particular, he went into the C4 model for
visualizing software architecture [C4]. Paul Targosz taught us how we
could make our code more robust by using const/constexpr/
consteval, by putting configuration in files instead of littering it
throughout our code, and by using a policy-based class design. Nikola Jelić
told about how he created a library for physical units modelled after the
chrono library and how this improved his code. Frank Mertens went into
different ways of doing heap management and the impact they have on
fragmentation. Pawel Wisniewski compared different ways of
implementing call backs and listed the pros and cons of each way. Daniel
Penning explained that generic programming allows us to reuse more code.
In particular, he explained that a lot is already available through the
algorithms in the standard library and that it will even get better with
concepts in C++20. A lot of the things that these speakers talked about were
things I already knew, but forgot about. Sometimes they also presented a
fresh point of view that I hadn’t thought of before.

In my professional life I have to deal with people that think that the only
viable language for low level programming is C. Although I’m not a low
level developer, I try to convince them that C++ is a better alternative. Now
I learned that there is even another alternative: Rust. Jonathan Pallant went
into how he used Rust on Nordic Semiconductor’s nRF9160 [Nordic] and
made the system more secure and use less power. James Munns presented
a Rust library for serialization and deserialization: Serde [Serde], and how
Serde makes serialization and deserialization easy.

A real gem for me was Diego Rodriguez-Losada and Brennan Ashton’s
talk about Yocto [Yocto]. Yocto is a system for creating your own
embedded Linux distribution. Diego and Brennan first gave an
introduction of what Yocto is. Then they went into using Conan [Conan]
with Yocto, and into uploading images to your embedded device. One of
December 2019 | Overload | 5

FEATURE SVITLANA LUBENSKA, HANS VREDEVELD & BENEDIKT
the things I run into regularly is that building a new Linux image with
Yocto takes several hours. Using Conan makes it possible to build the
applications beforehand and store them in a location from where they can
be retrieved during integration. This will reduce the build time
significantly and make it feasible to create an image multiple times a day.

Meeting C++ Day 1
The first day of Meeting C++ [MeetingC++], November 14th, started with
the welcome message by Jens Weller, soon to be followed by Howard
Hinnant’s keynote. Howard described the new things that <chrono>
[chrono] gets with C++20, calendars and formatting. An important part of
the keynote was explaining why <chrono> was designed as it is. Of course,
that was to be expected when the keynote’s title is ‘Design Rationale for
<chrono>’. Some old and many new types were reviewed; duration,
time_point, year, month, day, time_zone, zoned_time and
different kinds of clocks (and I still missed some). A recurring theme in
the presentation was what operations and implicit conversions are allowed.
E.g. converting from duration<int, hours> to duration<int,
seconds> is implicit as no information is lost, while the reverse
conversion is only possible with an explicit duration_cast as precision
is lost (4000 seconds is 1 hour, losing 400 seconds in the process). Also,
many of the usual operations on integral and floating point values don’t
make sense for types in <chrono>. For example, subtracting two
time_points results in a duration, but adding two time_points results
in a compile error as it doesn’t make sense and isn’t implemented. I could
go on describing what Howard said. Instead I advise you to watch the
presentation on YouTube as soon as it becomes available. Not only will
you learn a lot about <chrono>, but also about designing a library in
general.

After the keynote, we had a lunch break with plenty of excellent food for
everybody. In the afternoon, there were four sessions of one-hour talks,
with a 30-minute coffee break between the second and third session and
15-minute breaks between the others. I went to Jonathan Boccara’s ‘10
Techniques to Understand Existing Code’, Dawid Zalewski’s ‘Lambdas
– the old, the new and the tricky’, Bryce Adelstein Lelbach’s ‘The C++20
Synchronization Library’ and Ivan Cukic’s ‘Compile-time type
transformation’. Four interesting talks worth going to.

The day ended with the evening program that consisted of the pizza-pasta
buffet, the Conan C++ quiz and socializing. The Conan C++ quiz, very
well presented by Diego, is a quiz where the participants work together in
groups of six, and they have to guess/deduce what the output is of small
C++ programs. The code presented varies between crazy and
psychopathic, and stands for a lot of “what the...” and fun. I only hope to
never see such code in production. I would fire the person that wrote that
(or find myself another place to work if that’s impossible).

Meeting C++ Day 2
The day started with Frances Buontempo’s keynote ‘Can AI replace
programmers?’ Frances explained what AI is, went back and forth between
yes and no in answering the question. She concluded that AI can replace
programmers using genetic programming, but that it takes an awful lot of
time. Finally, she also noted the AI effect: as soon as AI solves a problem,
the problem is no longer part of AI.

In the afternoon, there were again four sessions of one-hour talks. I went
to John Lakos’s ‘Value Propositon: Allocator-Aware Software’, Jonathan
Müller’s ‘Using C++20’s Three-way Comparison <=>’, Phil Nash’s ‘The
Dawn of a New Error’ and Arvid Gerstmann’s ‘Multithreading 101:
Concurrency Primitives From Scratch’. In his talk, John went from the past
to the present to the possible future. He described how memory
management with the C++11 allocators is difficult to use, how C++17’s
polymorphic allocators and associated types make this much easier and
how it could even be made more easy with the BB20V library that is
currently under development at Bloomberg. Jonathan discussed that when
you overload one of the operators == or != for a custom type, you should
also overload the other, and that when you overload one of the operators
<, <=, >= or > for a custom type, you should overload all of them. Next,
he explained what C++20’s operator<=> is and that it is enough to

overload this operator and ==. The other operators are implicitly
implemented. Phil discussed new types, and a related extension of the
language, for error handling that hopefully will make it into C++23. The
main motivation for these types is to have better error handling than the
C-style return values, including in situations where exceptions cannot be
used. Arvid started with the low-level building blocks of multithreading.
He described what a spinlock is and how it can be written. Next he taught
us what a futex is. He implemented it first for Linux (with the system call
‘futex’) and for Windows. Then he went on to implement it with code that
would work on any platform that has modern C++. For this implementation
he used std::condition_variables. To the end of his talk he took
just a few minutes to implement a condition variable using a futex (that
was implemented with a condition variable; yes, he was aware of that).

In the evening there was food again in the form of a pizza-pasta buffet,
and there was time for socializing. And, most importantly, there were the
lightning talks. As always, it is fun to see what people come up with to
talk about for only five minutes. With 19 lightning talks, the second half
of the evening was well packed.

Meeting C++ Day 3
On the third day, the schedule was reversed. First we had the sessions with
the talks and then the keynote. This time there were only three sessions of
one-hour talks, not four. In Jon Kalb’s ‘Modern Template Techniques’, I
learned some things about type traits, tag dispatch, policy classes, perfect
forwarding, and that infinity == 12. Deniz Bahadir’s ‘Oh No! More
Modern Cmake’ left off where his 2018 talk ‘More Modern CMake –
Working with CMake 3.12 and later’ ended. He clearly described the
difference between PRIVATE, INTERFACE and PUBLIC. He explained
what object libraries are and how to use them, and he gave several
recommendations for using Cmake. The last regular talk I went to was Bart
Verhagen’s ‘Designing costless abstractions’. He compared a few std-
types from modern C++ to their old (C-style) counterparts (e.g.
std::unique_ptr to raw pointers) and how these C++ types are an
abstraction without any cost. I had expected that he would go a bit more
into how to design those abstractions, or why they were designed as they
are. Unfortunately for me that meant that this was the least interesting talk
of the conference.

Instead of the fourth session, Jens gave an update about Meeting C++, both
the platform and the conference. He also gave some indication when the
videos will be uploaded to YouTube [MeetingC++]. Expect the lightning
talks first, then the keynotes and, after Christmas and New Year, the
regular talks. Then he went on to something for which there was time
planned, but that was not on the schedule: the secret lightning talks. They
will be on YouTube too, so you may wonder what is so secret about them?
(Answer: that you don’t know about them when you read the schedule.)

Finally it was time for the closing keynote by Walter E. Brown. I had seen
a couple of Walter’s talks on YouTube and one live at C++ on Sea, so I
know that he is a good speaker and I had high expectations for his keynote.
He exceeded my expectations by a large margin. He managed to put a lot
of humour (I had to wipe away tears on more than one occasion) in his
presentation, while keeping it serious at the same time. Watch it when Jens
uploads it to YouTube!

From Benedikt Mandelkow
Hello,

I’m Benedikt Mandelkow, a CS student from Germany.

During my time as a Bachelor student, I had the opportunity of meeting
Jonathan Müller [Müller], which in turn meant that I got interested in cpp.

In a casual conversation with him, the idea came up that I could apply for
a student ticket for meetingcpp and, as you might have guessed, that is
exactly what happened. I had been to Berlin before and really liked the city,
so after I had received the acknowledgment that I was one of the randomly
selected students, it was an easy call for me to book my ticket.

On the first evening before the conference, we went to grab some food and
even though my trains were very unreliable, I managed to arrive just in time
at a restaurant. Coincidentally, I had already spent my time on the train
6 | Overload | December 2019

FEATURESVITLANA LUBENSKA, HANS VREDEVELD & BENEDIKT MANDELKOW
with a group of developers who were also heading to Berlin for different
reasons.

My first conversation was with another student who had attended multiple
cpp conferences already, and who briefed me to focus on the conversation
in between the talks instead of on just the talks themselves, which proved
to be really good advice.

After a few minutes, my next surprise was that I was sitting not far from
Arvid Gerstmann, someone I had so far only known from twitter
[Gerstmann]. We exchanged a few words regarding an experimental
programming language [AEXPL] he is working on and we continued to
have very good conversations over the course of the event.

Seeing many people that I had so far only known from videos or blog posts
was really nice, but the important thing for me was that the atmosphere I
encountered was not elitist but everyone I tried to talk to was very
approachable.

I had hoped for this to be the case, but I think without actually attending
a conference, it’s hard to believe as it definitely seemed a bit unreal to me
as well. Surely there are still ways to improve on this. When I tell people
about my experience, they are really surprised, which indicates that there
are many people who have reasons that keep them away from possibly
joining the community.

The main focus of the conference is, of course, not the well-known people
but the vast majority of attendees who work for a wide range of companies.
The good news was that it was easy to talk to them as well because when
I was standing next to some people I had never seen before, it never took
long for one of them to ask me a question or for me to take an opportunity
and make a remark. After that, conversations were really easy.

The focus was never on recruitment or testing other people’s knowledge
but much more sharing opinions, understanding and stories.

The excellent food surely also contributed to a relaxed atmosphere because
this allowed everyone to just focus on the event instead of competing for
the last desert.

I will briefly describe some talks I watched but won’t detail everything
because the talks will be all available online and it’s more about the
personal interactions than the talks themselves.

The first talk was from Howard Hinnant about his work on chrono. While
some people I talked to argued that it was unusual in the sense that it was
rather specific and not a general design talk, I found it to be helpful as it
actually provided direct benefits that one can use in practice to write better
code in specific cases.

One benefit of attending talks in person vs watching the videos was that I
was more focused, which allowed me to follow the talk about ‘The C++20
Synchronisation Library’ from Bryce Lelbach and the Spaceship operator
from Jonathan Müller much more completely, whereas on my own I get
distracted more quickly sometimes. (I knew both talks from previous
recordings.)

I made the very conscious decision to sit through an hour-long explanation
of std::midpoint, which turned out to be a really good one because I liked
the problem statement and the approach and care which was taken to
address it.

Additionally, I was really interested in seeing the person (Marshall Clow
[Clow]) who programs the standard library implementation I use most of
the time.

The most important talk for me was ‘Modern Template Techniques’,
which was in a perfect spot in the morning where I was still able to actually
digest the content. I also had talked to Jon Kalb the evening before, which
really made a difference while experiencing the talk, much more personal.

By accident I now know about SFINAE, which was something I had
previously explicitly excluded from ever learning because it just seemed
way too complicated to spend time on.

But then Jon Kalb tricked me because he explained it on one slide without
mentioning the name and when I then realized what I had just learned I
was both embarrassed because I had learned something I never wanted to

but also relieved because it was actually not as bad as I had thought (famous
last words).

The final talk from Walter Brown was very entertaining and had many
interesting arguments and the sentiment that struck with me was that we
are a profession and should strive to produce more reliable software and
take responsibility for our work.

On the other hand, without some messiness and with too much
perfectionism, we would not have the world wide web as it is because
things would move that much more slowly but I think it is still very
valuable to take a strong stance like Walter Brown at times because it’s
just, as always, a trade-off and thus discussion about it is valuable.

Finally, I want to thank meetingcpp for offering student tickets, which
made it possible for me to attend, all the attendees for the atmosphere and
Jonathan Müller for being very patient with me at all times [Brown18].

References
[AEXPL] Arvid's EXperimental Programming Language:

https://github.com/aexpl/aexpl

[Brown18] Walter E. Brown ‘Thank You (I’m sorry that it’s taken me so
long to say it)’ presented at C++ Conference 2018, available at:
https://www.youtube.com/watch?v=L5daPjK00bo

[C4] ‘The C4 model for visualising software architecture’:
https://c4model.com/

[chrono] The chrono library: https://en.cppreference.com/w/cpp/chrono

[Clow] Marshall Clow: https://cppalliance.org/people/marshall.html

[Conan] Conan: https://conan.io/

[CppCast] A podcast for C++ developers: https://cppcast.com/

[Dusíková19] Hana Dusíková (2019) ‘Compile Time Regular
Expressions With Deterministic Finite Automaton’, presented at
Meeting C++ 2019, available at: https://www.compile-time.re/
meeting-cpp-2019/slides/#/

[Gerstmann] Arvid Gerstmann, twitter conversations: https://twitter.com/
ArvidGerstmann/status/1196002167167029249

[Hinnant19] Howard Hinnant (2019) ‘Design Rationale for the <chrono>
Library’, presented at Meeting C++ 2019, available at:
https://meetingcpp.com/mcpp/slides/2019/Hinnant.pdf

[MeetingC++] Meeting C++ website: https://meetingcpp.com/
YouTube channel: https://www.youtube.com/user/MeetingCPP/
videos

[MeetingEmbedded] Meeting Embedded 2019 website:
https://meetingembedded.com/2019/

[Müller] Jonathan Müller (blog): https://www.jonathanmueller.dev/

[Nash18] Phil Nash (2018) ‘Option(al) Is Not a Failure’, presented at
C++ Now 2018, available at: https://www.youtube.com/
watch?v=OsRty0KNDZ0

[Nordic] Nordic Semiconductors: nRF9160, available at:
https://www.nordicsemi.com/Products/Low-power-cellular-IoT/
nRF9160

[Serde] Serde framework: https://serde.rs/

[Ulbrich19] Tina Ulbrich ‘The Life-Changing Magic of Tidying Up’,
presented at Meeting C++ 2019, available at:
https://meetingcpp.com/mcpp/slides/2019/The%20Life-
Changing%20Magic%20of%20Tidying%20Up.pdf

[Vredeveld19] Hans Vredeveld (2019) ‘Trip Report: Italian C++ 2019’ in
Overload 152, August 2019, available at: https://accu.org/index.php/
journals/2681

[Weigend17] Andreas Weigend (2017) Data for the People: How to Make
Our Post-Privacy Economy Work for You, Basic Books, ISBN-13:
978-0465044696

[Yocto] Yocto project: https://www.yoctoproject.org/
December 2019 | Overload | 7

https://github.com/aexpl/aexpl
https://www.youtube.com/watch?v=L5daPjK00bo
https://c4model.com/
https://en.cppreference.com/w/cpp/chrono
https://cppalliance.org/people/marshall.html
https://conan.io/
https://cppcast.com/
https://www.compile-time.re/meeting-cpp-2019/slides/#/
https://www.compile-time.re/meeting-cpp-2019/slides/#/
https://twitter.com/ArvidGerstmann/status/1196002167167029249
https://twitter.com/ArvidGerstmann/status/1196002167167029249
https://meetingcpp.com/mcpp/slides/2019/Hinnant.pdf
https://www.youtube.com/user/MeetingCPP/videos
https://www.youtube.com/user/MeetingCPP/videos
https://meetingembedded.com/2019/
https://www.jonathanmueller.dev/
https://www.youtube.com/watch?v=OsRty0KNDZ0
https://www.youtube.com/watch?v=OsRty0KNDZ0
https://www.nordicsemi.com/Products/Low-power-cellular-IoT/nRF9160
https://serde.rs/
https://meetingcpp.com/mcpp/slides/2019/The%20Life-Changing%20Magic%20of%20Tidying%20Up.pdf
https://accu.org/index.php/journals/2681
https://accu.org/index.php/journals/2681
https://www.yoctoproject.org/

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

FEATURENORMAN WILSON
Non-Recursive
Compile Time Sort
Compile time sorting usually uses recursion. Norman Wilson
shows how C++14 features make this easier.
here was a time when compile time sorting was a holy grail for me.
It’s still quite a tricky piece of meta programming to pull off. When
I came up with this idea, I had a quick look around for prior art

including Stack Overflow where I first posted this code [Wilson]. The usual
approach involves a set of recursively defined meta functions. Since C++
1 1 i n t r o du c e d pa ra m e t e r p a c k s a n d C + + 1 4 a d de d
std::index_sequence to the library things have go a bit simpler. This
is a non-recursive compile time sort algorithm, which I think is much
simpler and easier to understand. I like to think of parameter pack
expansion as a way of saying ‘for each do this’. This algorithm depends
on thinking in these terms – thinking about how you can apply a series of
simple operations to all elements of a pack at once and end up with a sorted
sequence.

The problem
I ’m go in g to de f i ne a constexpr f u n c t i on t a k i ng a
std::integer_sequence and returning a sorted version of the
sequence. I’ve deliberately removed as many complications as possible in
order to make the technique clear. I leave it to the reader to generalise such
things as comparison function (for now, <), or the type of thing being
sorted (for now, just any integral types). The best way to explain is to walk
through the code so without further ado, here goes.

The code
Need these for index_sequence etc...

 #include <utility>
 #include <array>

The public interface takes a sequence and we will see that it returns a
sequence. Remember that this is meta programming and really it’s all about
the types rather than the values.

 template<typename Int, Int... values>
 constexpr auto
 sort(std::integer_sequence<Int, values...>);

The pretty interface hides an implementation. This is defined as a struct.
This is just syntactic sugar and saves us having to repeat some common
declarations.

 template<typename Values> struct SortImpl;

Our wrapper function passes on the sequence and calls the implementation
(see Listing 1).

Now the guts. We use partial specialisation to break out the sequences of
values and indices.

 template<typename Int, Int... values>
 struct SortImpl<std::integer_sequence<Int,
 values...> >
 {

Create an index corresponding to the positions in the sorted sequence and
call an implementation.

 static constexpr auto sort()
 {
 return sort(std::make_index_sequence
 <sizeof...(values)>{});
 }

A sorted sequence is one where the positions of the elements correspond
to the ranking of the elements’ values. By ranking, I mean the order defined
by the comparison function (in this case <). In other words, position 0 has
element with lowest value (rank 0), position 1 has element with rank 1,
etc. In general the ith position contains the ith ranking element. Here the
index parameter pack gives us all the values of i so we can write that in
C++ like this:

 template<std::size_t... index>
 static constexpr auto
 sort(std::index_sequence<index...>)
 {
 return std::integer_sequence<Int,
 ith<index>()...>{};
 }

The ith element is the value whose rank is i. We can find this by looking
at all the values and picking out the one with the correct rank. We have to
be a little bit careful though. Repeated values will lead to ties in ranking.
eg for the sequence [1, 2, 2, 3] the ranks are 1st, 2nd, 2nd, 4th. We can
compensate for this by taking into account the count of each value. In
Listing 2 (overleaf), I’m using a side effect within the pack expansion to
capture the result.

We can define the rank of an element by counting the number of other
elements of lesser value. Note if you we going to generalise the ordering
function this is where you would do it.

 template<Int x>
 static constexpr auto rankOf() {
 return ((x > values) +...); }

T

Listing 1

template<typename Int, Int... values>
constexpr auto sort(std::integer_sequence<Int,
 values...> sequence)
{
 return SortImpl<decltype(sequence)>::sort();
}

Norman Wilson has been coding since he was a spotty teenager
in the early 80s and learned C++ while at university. Since then
he’s spent most of his career in finance. When not staring at
template error messages, he rock climbs, makes music and helps
bring up three daughters. You can contact him at
norman.wilson+accu@gmail.com
December 2019 | Overload | 9

FEATURE NORMAN WILSON

A sorted sequence is one where the
positions of the elements correspond to
the ranking of the elements’ values.
The count is similar.

 template<Int x>
 static constexpr auto count() {
 return ((x == values) +...); }
 };

To show that it works, I’m defining equality for integer_sequences.
Two sequences with the same values are equal.

 template<typename Int, Int... values>
 constexpr auto operator==(
 std::integer_sequence<Int, values...>,
 std::integer_sequence<Int, values...>) {
 return true; }

Sequences with different values are unequal (see Listing 3).

As an extra check, this bit of code converts a sequence to an array.

 template<typename Int, Int... values>
 constexpr auto toArray(std::integer_sequence<Int,
 values...>)
 {
 return std::array<Int, sizeof...(values)>{
 values... };
 }

In godbolt [Godbolt], we can see the emitted code is sorted.

 auto x = toArray(sort(std::index_sequence<3, 2,
 1, 9, 42>{}));

Is this better than the equivalent recursive definition? I think it’s easier to
understand and it’s shorter. Is it quicker? Technically it would be n3 since
for each element we’re finding the ith which involves looking at the rank
of each element which requires comparing each element. But since each
of these calculations is a template instantiation, the compiler will cache
these intermediate values. I think it’s actually n2 but with lower overhead
than recursive techniques which are likely to be n log(n).

References
[Godbolt] Matt Godbolt administers ‘Compiler Explorer’, and this article

and code can be found at: https://godbolt.org/z/BeMHZe

[Wilson] ‘C++ calculate and sort vector at compile time’, posted on
stackoverflow at https://stackoverflow.com/questions/32660523/c-
calculate-and-sort-vector-at-compile-time

Listing 3

template<typename Int, Int... values,
 Int... others>
constexpr auto operator==(
 std::integer_sequence<Int, values...>,
 std::integer_sequence<Int, others...>) {
 return false; }
static_assert(
 sort(std::index_sequence<3, 2, 1>{}) ==
 std::index_sequence<1, 2, 3>{});
static_assert(
 sort(std::index_sequence<3, 3, 1>{}) ==
 std::index_sequence<1, 3, 3>{});

Best Articles 2019
Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:

https://www.surveymonkey.co.uk/r/W82RR9Z

Listing 2

template<std::size_t i>
static constexpr auto ith()
{
 Int result{};
 (
 (i >= rankOf<values>() &&
 i < rankOf<values>() + count<values>() ?
 result = values : Int{}),...);
 return result;
}

The full text and code of this article are available on Github:
https://github.com/abwilson/compile_time_sort_article
10 | Overload | December 2019

https://stackoverflow.com/questions/32660523/c-calculate-and-sort-vector-at-compile-time
https://stackoverflow.com/questions/32660523/c-calculate-and-sort-vector-at-compile-time
https://www.surveymonkey.co.uk/r/W82RR9Z
https://godbolt.org/z/BeMHZe
https://github.com/abwilson/compile_time_sort_article

FEATURECASSIO NERI
Quick Modular Calculations (Part 1)
Compilers are good at optimising
modular calculations. Can we they do
better? Cassio Neri shows they can.
earching for ‘fast divisibility’ on Stack Overflow indicates that the
question of whether hand-written C/C++ code can be faster than
using the % operator fosters the curiosity of a few developers. Some

answers basically state “Don’t do it. Trust your compiler.” I could not
agree more with the principle. Compilers do a great job of optimising code
and programmers should favour clarity. Nevertheless, this series shows
ways to get improved performance when evaluating modular expressions.
The intention here is not to ‘beat’ the compiler. On the contrary, this series
is an open letter addressed to compiler writers presenting some algorithms
that, potentially, could be incorporated into their product for the benefit of
all programmers. Performance analysis shows that the alternatives
discussed in this series are often faster than built-in implementations. With
the exception of one algorithm which (to the best of my knowledge) is
original, the others are not. Indeed, they have been covered by the classic
Hacker’s Delight [Warren] for more than a couple of years. Nevertheless,
major compilers still do not implemented them.

Warm up
We start looking at an example of the improvement that can be achieved.
Figure 11 graphs the time it takes to check whether each element of an array
of 65536 uniformly distributed unsigned 32-bits dividends in the interval
[0, 1000000] leaves a remainder 3 when divided by 14.

This is performed by two in-line functions: the first one, labelled built_in,
contains a single return statement:

 return n % 14 == 3;

The one labelled minverse implements the modular inverse algorithm
(minverse for short) which is this article’s subject. Both measurements

include the time to scan the array of dividends without performing any
modular calculation. This time is also plotted against the label Noop and
it is used as unit of time. The times2 taken by minverse and the built-in
algorithms are, respectively, 2.74 and 3.70. Adjusted times (obtained by
subtracting the array scanning time) are then 2.74 - 1.00 = 1.74 and 3.70
- 1.00 = 2.70, which implies a ratio of 1.74 / 2.70 = 0.64. This represents
a respectable 36% performance improvement with respect to the built-in
algorithm. This ratio largely depends on the divisor, as will be made clear
later on in this article.

Listings 1 and 2 contrast the code generated by GCC 8.2.1 (optimisation
level at -O3) for the two algorithms. Although code size is not a perfect
indication of speed, these two aspects are highly correlated.

1. Powered by quick-bench.com [qb]. For readers who are C++
programmers and do not know this site, I strongly recommend to check
it out. In addition, I politely ask all readers to consider contributing to the
site to keep it running. (Disclaimer: apart from being a regular user and
donor, I have no other affiliation with this site.)

S

Figure 1

ratio (CPU time / Noop time)
Lower is faster

0.5

0

2.0

1.5

1.0

3.0

2.5

3.5

4.0

built_in<14> minverse<14> Noop

2. YMMV, reported numbers were obtained by a single run in quick-
bench.com using GCC 8.2 with -O3 and -std=c++17.

Listing 1

built_in
 0: 89 fa mov %edi,%edx
 2: b9 93 24 49 92 mov $0x92492493,%ecx
 7: d1 ea shr %edx
 9: 89 d0 mov %edx,%eax
 b: f7 e1 mul %ecx
 d: c1 ea 02 shr $0x2,%edx
 10: 6b d2 0e imul $0xe,%edx,%edx
 13: 29 d7 sub %edx,%edi
 15: 83 ff 03 cmp $0x3,%edi
 18: 0f 94 c0 sete %al
 1b: c3 retq

Listing 2

minverse
 0: 83 ef 03 sub $0x3,%edi
 3: 69 ff b7 6d db b6 imul $0xb6db6db7,%edi,%edi
 9: d1 cf ror %edi
 b: 81 ff 92 24 49 12 cmp $0x12492492,%edi
11: 0f 96 c0 setbe %al
14: c3 retq

Cassio Neri has a PhD in Applied Mathematics from Université de
Paris Dauphine. He worked as a lecturer in Mathematics before
moving to the financial industry. He can be contacted at
cassio.neri@gmail.com.
December 2019 | Overload | 11

FEATURE CASSIO NERI

the question of whether hand-written C/C++
code can be faster than using the % operator
fosters the curiosity of a few developers
Preliminaries
This series of articles concerns the evaluation of modular expressions
where the divisor is a compile time constant and the dividend is a
runtime variable. Dividend and divisor have the same unsigned
integer type.

The algorithms were implemented in a C++ library called qmodular
[qmodular], short for quick modular. They can be implemented in standard
C/C++ but qmodular uses a few GCC extensions including inline
assembly. Our discussion focuses on GCC 8.2.1 for an x86_64 target but
it is applicable to other compilers and architectures.

A fundamental reason for the currently built-in algorithm not being the
most performant is that often it needlessly calculates remainders. For
instance, n % d == m % d is, roughly speaking (more on this later),
equivalent to (n - m) % d == 0. In this approach, there is no need to
compute either n % d or m % d. However, the compiler evaluates both
and ends up doing two modular calculations rather than one.

The built-in algorithm
For any given divisor, the compiler selects the best algorithm it knows for
this particular value. Undoubtedly, the best case is where d is a power of
two and n % d is evaluated as n & (d – 1). This is a classic bitwise
trick [Warren]. For other divisors, n % d is evaluated by the equivalent
expression n - (n / d) * d. (Recall that / is integer division.) Hence,
n % d == r becomes n – (n / d) * d == r.

The most important and widely implemented optimisation replaces the
expensive division with a multiplication (instruction mul in Listing 1) by
a ‘magic’ number (the constant 0x92492493) and other cheap operations.
Additional more trivial micro-optimisations are also applied. Two
examples of such micro-optimisations follow.

When r is known to be zero at compile time, the subtraction is avoided
and the expression is evaluated as n == (n / d) * d.

As mentioned earlier, when evaluating n % d == m % d, the compiler
computes both remainders and, for each of them, performs a multiplication
by the ‘magic’ number. Rather than twice loading this number into a
register, this is done only once.

The modular inverse algorithm
This section covers the basics of the minverse algorithm by means of an
example. A more detailed exhibition, including a mathematical proof of
correctness, is provided in [qmodular]. We are interested in the case where
n, d and r are unsigned integer numbers usually of 32 or 64 bits. For easy
of exposition, we assume the number of bits is just 4 and hence, n ϵ Ω4 =
{0, …, 15}, which is a set small enough to allow manual inspection of all
possible dividends. For this example we set the divisor d = 6.

Any strictly positive integer is a product of a positive odd number and a
power of two. The algorithm starts by finding this decomposition for the
divisor. In our example, d = 6 = 3∙21 and we set h = 3 and k = 1 (the exponent
of 2). Since h is odd, by well known arithmetical results, there exists a
unique g ϵ Ω4 such that g∙h ≡ 1 (mod 24). Indeed, 11∙3 = 33 = 2∙24 + 1 and

thus g = 11. More generally, the modulus can be any power of two, 2w.
(Again, the cases of practical interest are w = 32 and w = 64 but here we
take w = 4.) Numbers g and h are said to be modular inverse (modulo 2w)
of one another and hence the algorithm’s name.

For any n ϵ Ωw = {0, …, 2w - 1}, let rorw(n, k) ϵ Ωw be obtained by rotating
the bits of n by k positions to the right. For instance, ror4(3, 2) = 12 since
3 = (0011)2 and 12 = (1100)2.

Given n ϵ Ωw, the algorithm proceeds with the calculation of rorw(g∙n, k).
Table 1 shows detailed steps to get ror4(11∙n, 1) for every n ϵ Ω4. (Rows
are ordered by the last column.) One can easily inspect two crucial
properties of the map n → rorw(g∙n, k): it is bijective and for multiples of
d it matches division by d, that is, rorw(g∙d∙i, k) = i. (See first three rows.)
This map has other interesting3 properties but the two cited here are enough
for the algorithm to work.

Let Nr be the number of elements of Ωw that are equivalent to r (mod d)
and n = d∙i + r, with 0 ≤ i < Nr, be one of them. Then n - r = i∙d and we
obtain rorw(g∙(n - r), k) = i < Nr. Reciprocally, if n ϵ Ωw is not equivalent
to r (mod d), then n - r is not multiple of d and rorw(g∙(n - r), k) ≥ Nr.

3. More generally, for any r (not necessarily zero), numbers leaving
remainder r are strictly increasingly mapped into (disjoint) intervals. For
instance, 1, 7 and 13 leave remainder 1 and are mapped to {13, 14, 15},
whereas 4 and 10 leave remainder 4 and are mapped into {6, 7}.
Boundaries from shaded to unshaded rows mark remainder changes.

Table 1

n 11∙n (mod 24) (11∙n)2 (ror(11∙n, 1))2 ror(11∙n, 1)

0 0 0000 0000 0

6 2 0010 0001 1

12 4 0100 0010 2

2 6 0110 0011 3

8 8 1000 0100 4

14 10 1010 0101 5

4 12 1100 0110 6

10 14 1110 0111 7

3 1 0001 1000 8

9 3 0011 1001 9

15 5 0101 1010 10

5 7 0111 1011 11

11 9 1001 1100 12

1 11 1011 1101 13

7 13 1101 1110 14

13 15 1111 1111 15
12 | Overload | December 2019

FEATURECASSIO NERI

The most important and widely implemented
optimisation replaces the expensive division

with a multiplication by a ‘magic’ number
In our example d = 6. Take, for instance, r = 2 and note the numbers in Ω4
that leave this remainder when divided by d = 6, namely, 2, 8 and 14. From
this we get Nr = 3. Subtracting r = 2 from these three numbers yields 0, 6
and 12, respectively. They are mapped by n → rorw(g∙n, k) into 0, 1 and
2, which are exactly the elements of Ω4 smaller than Nr = 3.

In summary, given d = h∙2k, with h odd and 0 ≤ r < d, we have n ≡ r (mod
d), if and only if rorw(g∙(n – r), k) < Nr, where g is the modular inverse of
h (mod 2w) and Nr is the number of elements of {0, …, 2w - 1} that are
equivalent to r (mod d). Notice that g and k depend on d only and can be
computed at compile time. However, Nr depends on d and r. It can be
known at compile time provided that r is.

At this point, Listing 2 becomes much less cryptic as the code generated for

 unsigned k = 1, g = 0xb6db6db7, r = 3,
 N = 0x12492493;
 return ror(g * (n – r), k) <= N - 1;

The snippet above calls the function ror, defined in qmodular, which is
translated to the assembly instruction with the same name.

As in the built-in case, micro-optimisations can be applied. For instance,
when r == 0 the subtraction from n can be elided. The same holds for
the multiplication, when g == 1, and for ror, when k == 0. These
optimisations are performed by the compiler and we should not worry
about doing them ourselves. However, there is another trick that the
compiler cannot figure out by itself. It is based on a property of our map
that we have not yet used. To each divisor, there corresponds a special
remainder s ≠ 0 for which the subtraction can be eliminated provided the
comparison is reversed. More precisely, n ≡ s (mod d), if and only if
rorw(g∙n, k) ≥ 2w - Nr. For instance, in Table 1 we see the three numbers
leaving remainder 1, namely, 1, 7 and 13 are mapped, respectively, into
13, 14 and 15. Hence, the remainder is 1, if and only if the result is greater
than or equal to 13 = 16 - 3 = 2w - Nr.

For evaluation of n % d == m % d, we use the fact that n ≡ m (mod d),
if and only if n - m ≡ 0 (mod d). Because unsigned types implement modulo
2w arithmetic (not modulo d) extra care must be taken for the subtraction
not to underflow. Hence, we apply the test to either n - m or m - n depending
on whether n ≥ m or not, that is, n % d == m % d can be evaluated as
follows:

 ror(g * (n >= m ? n - m : m - n), k) < N;

In reality, digressing from the modular inverse algorithm, this last
reasoning equally applies to the built-in algorithm:

 (n >= m ? n - m : m - n) % d == 0;

This way, the compiler calculates just one remainder instead of two as we
have mentioned earlier. For the sake of completeness, the performance
analysis includes the expression above.

The unbounded case
An implicit assumption of the previous section is that remainders are
bounded, r < d, otherwise the modular inverse algorithm does not work.
Since this condition does not always hold, qmodular implements two

functions similar to those in Listing 3. The first one is as in the previous
section and assumes r < d. The second function tests the condition and
delegates the call to the first one.

When r is known at compile time the compiler can figure out by itself
whether r < d or not. In the affirmative case, the test is removed altogether
and the second function simply calls and returns the result of the first one.
Similarly, the negative case is reduced to return false.

Some readers might be thinking the & (bitwise and) in Listing 3 is a typo
and && (logical and) was intended. In reality, this is intentional. Due to
short circuiting, && yields a branch and performance suffers accordingly.
Since computations in modular_inverse_bounded are cheap, it is
much more efficient to carry them out rather then aborting evaluation when
the first condition is false.

Performance analysis
As in the warm up, all measurements shown in this section concern the
evaluation of modular expressions for 65536 uniformly distributed
unsigned 32-bits dividends in the interval [0, 1000000]. Remainders can
be either fixed at compile time or variable at runtime. Charts show divisors
are on the x-axis and time measurements, in nanoseconds, on the y-axis.
Timings are adjusted to account for the time of array scanning.

For clarity we restrict divisors to [1, 50] which suffices to spot trends.
(Results for divisors up to 1000 are available in [qmodular].) In addition,
we filter out divisors that are powers of two since the bitwise trick is
undoubtedly the best algorithm for them. The timings were obtained with
the help of Google Benchmark [Google] running on an AMD Ryzen 7
1800X Eight-Core Processor @ 3600Mhz; caches: L1 Data 32K (x8), L1
Instruction 64K (x8), L2 Unified 512K (x8), L3 Unified 8192K (x2).

Figure 2 concerns the evaluation of n % d == 0 and plots times taken
by the built-in and minverse algorithms. The latter is clearly faster than the
former. Minverse’s pretty regular zigzag is due to the microoptimisation
that removes ror, if and only if k = 0. That is, ror is used for all even
divisors and only for them.

Figure 3 covers n % d == r where r is variable and uniformly distributed
in [0, d). Despite the validity of precondition r < d, the compiler cannot
know this and the boundness check is kept in the assembly code. Compared

Listing 3

bool
modular_inverse_bounded(unsigned n, unsigned r)
{
 /* ... */
}

bool
modular_inverse_unbounded(unsigned n, unsigned r)
{
 return r < d & modular_inverse_bounded(n, r);
}

December 2019 | Overload | 13

FEATURE CASSIO NERI

For most divisors, the built-in algorithm is
faster than minverse … there are
exceptions, though
to the case of a fixed remainder, the built-in’s performance barely changes
whereas minverse becomes visibly slower. This is due to the computation
of Nr now being performed at runtime.

For most divisors the built-in algorithm is faster than minverse. There are
exceptions, though. Such divisors, up to 50, can be clearly seen in the chart
and are 7, 19, 21, 27, 31, 35, 37, 39 and 45. The blame lies in the ‘magic’
number. For these divisors, corresponding ‘magic’ numbers do not fit in
32-bits registers. Consequently, they are truncated and more instructions

are needed to correct the result. (I would like to point out to an interesting
work [ridiculous_fish] which suggests alternative ways of dealing with
such divisors. An idea very much worth exploring.)

Finally, Figure 4 considers the expression n % d == m % d where both
n and m are variable. As announced earlier, we also consider the variation
that uses the absolute difference of n and m:

 (n >= m ? n – m : m – n) % d == 0;

This variation is labelled built_in_distance. Comparing this to the plain
built-in algorithm we can see how effective this simple optimisation is.
Nevertheless, minverse is still the fastest (it also uses the trick above).

Good and bad news regarding GCC 9.1
Starting at version 9.1, GCC implements the modular inverse algorithm.
This welcome fact can be easily verified in [godbolt] by comparing the
code generated for the following snippet with the code shown in Listing 2:

 bool f(unsigned n) {
 return n % 14 == 3;
 }

With GCC 8.2 for a x86-64 machine we obtain the code in Listing 4, and
using GCC 9.1, we obtain the code in Listing 5.

A small difference between qmodular’s implementation described here
and GCC’s is worth mentioning because of its performance implications:
while qmodular computes g∙(n - r), GCC computes g∙n - g∙r. It would be
very costly to compute g∙r at runtime and, therefore, GCC only selects the
minverse algorithm when the remainder is a compile time constant. (Even
though and as we have seen, for some divisors minverse can beat the classic
built-in algorithm.) Second, when r is a compile time constant it appears
as an immediate value in the assembly code seen in Listing 2. In GCC’s

Figure 2

Figure 3

Figure 4
14 | Overload | December 2019

FEATURECASSIO NERI

This work is intended to help compiler
writers consider when they should use the

modular inverse algorithm
implementation we see g∙r instead. Now, for (not so) small divisors and
dividends (which is probably the most common case in practice), r is also
small but g∙r is large. As it turns out, there are limitations on 64-bit
immediate values which might force GCC’s implementation to use more
instructions and registers.

Unfortunately, there seems to be yet another other issue with GCC’s
implementation of minverse. For instance, for reasons unknown to me,
changing the remainder from 3 to 4 is enough for the generated assembly
to fall back to the old algorithm. Finally, regarding n % d == m % d,
GCC does not use minverse at all and, instead, it computes the two
remainders and compares them.

Conclusion
This article presents the modular inverse algorithm that can be used to
evaluate expressions n % d == r and n % d == m % d. This algorithm
is not new [Warren] but has not been widely implemented by compilers.
Version 9.1 of GCC does implement it but there is room for further
improvements. This work is intended to help compiler writers consider
when they should use the modular inverse algorithm rather than what they
currently use.

The greatest drawback regarding the minverse algorithm is that, to the best
of my knowledge, it can not be efficiently used for other types of
expressions like n % d < r or n % d ≤ r. These expressions and
alternative algorithms for their evaluations are covered in Part II and Part
III of this series.

Acknowledgements
I am deeply thankful to Fabio Fernandes for the incredible advice he
provided during the research phase of this project. I am equally grateful to
the Overload team for helping improve the manuscript.

References
[godbolt] https://godbolt.org/z/a7wr3U

[Google] https://github.com/google/benchmark

[qb] http://quick-bench.com/mhIaqB1ZvsBVROTGaO9opgx5ZTE

[qmodular] https://github.com/cassioneri/qmodular

[ridiculous_fish] ridiculous_fish, Labor of Division (Episode III): Faster
Unsigned Division by Constants, October 19th, 2011, available at:
http://ridiculousfish.com/blog/posts/labor-of-division-episode-
iii.html

[Warren] Henry S. Warren, Jr., Hacker's Delight, Second Edition,
Addison Wesley, 2013

Listing 4

movl %edi, %edx
movl $-1840700269, %ecx
shrl %edx
movl %edx, %eax
mull %ecx
shrl $2, %edx
imull $14, %edx, %edx
subl %edx, %edi
cmpl $3, %edi
sete %al
ret

Listing 5

imull $-1227133513, %edi, %edi
subl $613566757, %edi
rorl %edi
cmpl $306783378, %edi
setbe %al
ret
December 2019 | Overload | 15

https://godbolt.org/z/a7wr3U
https://github.com/google/benchmark
http://quick-bench.com/mhIaqB1ZvsBVROTGaO9opgx5ZTE
https://github.com/cassioneri/qmodular
http://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html

FEATURE CHRIS OLDWOOD
Afterwood
We are aware of the film Get Carter. Chris Oldwood
asks if it should be called Acquire Carter instead.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

here is a three-letter word commonly used as a prefix in
programming for naming functions and methods that has the
propensity to really irk me – get. It’s not alone in this as its partner

in crime – set – also has a similarly undesirable effect but features less
regularly and therefore avoids most of my ire. To me, the overuse of ‘get’
speaks volumes about the level of thought that commonly goes into its
selection, i.e. none. Hence I often wonder if the title of the classic 1970s
gangster movie Get Carter had suffered a similar affliction and whether
there are other choices to be made that would better convey the artists’
intent?

The most obvious starting point for this discussion would be to assume
that to ‘Get’ Jack Carter would be to make some kind of journey to where
he is situated. Maybe we only need to know his whereabouts and therefore
we merely need to Find Carter. Perhaps once his position is secured we
only intend to chat with him, a quiet word in his shell-like ear so to speak,
and if the journey is the focus of our story then we might prefer Locate
Carter instead. Gangsters in films have a habit of ending up in a ditch or
grave in the woods and therefore while Unearth Carter might be grittier
it could also give some of the game away to the audience before we’ve
even started, so perhaps we should settle for the less revealing Discover
Carter instead. (Let us put aside for a moment the words of George Box
and hope that this analogy, while wrong, like every other, is still at least
somewhat useful, somehow, at some point.)

What is more likely though is that it’s not enough to simply know where
he is; a gang’s head honcho probably needs to ‘interact’ with him in a
violent way, perhaps to extract information about his enemy’s intentions,
in which case we not only need to find him but bring him back too. This
naturally leads us to Fetch Carter. Jack is no doubt fairly suspicious of the
people he deals with and therefore it would do little good to try and
Request Carter without following up in person lest it be met with a
metaphorical 404 (one or two finger salute) or just time-out waiting for a
response (he’s done a runner). Pubs seem a particularly common
residence for gangsters so Extract Carter might convey more clearly the
level of force required to obtain his full attention.

Maybe though we’re thinking about the need for Jack Carter in the wrong
way; do we actually require the Jack Carter or will someone like Jack
Carter do instead? What if just need ‘a’ Jack Carter – someone who fulfils
the same role by having the same knowledge and skills, what if there was
a pool of Jack Carters, would it be enough to Acquire Carter and ‘go to
work’ on whoever we’ve been given in the hope that we’ll still get our
desired outcome?

This raises another interesting philosophical question about Jack Carter,
what if it’s not about needing him physically, but about comprehending
what makes him tick, what if ‘getting’ him really means Deconstruct
Carter or Read Carter? Michael Caine’s character is surely a product of

his actions and interactions with many people over his life; so what if the
emphasis in the title is on the ‘creation’ process, e.g. Allocate Carter?
This seems a little too raw and so I wonder whether he was a product of
his own destiny or moulded by circumstances outside his control; was
there a higher power attempting to Make Carter or Build Carter? But
people aren’t buildings formed according to a blueprint, they’re shaped
over time, carefully revealed like Michelangelo’s David, to wit we should
add Sculpt Carter to the ever growing list of far more expressive terms.

Realistically, though, it’s a 1970s gangster movie and that means there is
going to be plenty of ‘claret’ spilled as everyone ultimately meets a grisly
demise. Hence we find the most plausible variation of ‘get’ if we say the
film’s title in a classic deep London accent. In this sense to ‘get someone’
is to chase after them, on the premise that you’re going to do them a
serious amount of harm at the very least, while death is the more
inevitable outcome. In this sense, Kill Carter might be more
representative, if (once again) a little spoiler-ish. (I wonder if the working
title for Quentin Tarantino’s two-part volume staring Uma Thurman was
the more ambiguous Get Bill?) Gangsters don’t tend to do things by half;
they like to go over the top for dramatic effect, which would lead to the
more extensive Destroy Carter. (Such is the level of ambiguity here that
it’s interesting to note we’ve covered both birth and death using the same
word.)

Really though we’ve barely scratched the surface on this topic as we’ve
tried to fit in (albeit dubiously) within the confines of the genre in
question. If we move into the realms of science fiction we can easily see
a variety of plots that could give rise to a bunch of alternatives. What if
our aforementioned ‘Mr Big’ wanted to build an entire army of Jacks that
were at his beck-and-call to help build an Empire, we could look to Clone
Carter. Or maybe his raw intellect is all that’s desired to satisfy some
hare-brained AI project and Derive Carter is a modern-day tale of Dr
Frankenstein playing with neural nets and machine learning.

Okay, I’ll stop now with the flights of fancy and take George Box’s
observation a little more seriously. The title of a film is a hook, its
ambiguity is a selling point designed to draw you in and explore it. That’s
almost the opposite of what naming functions and methods is about – they
should provide you with a good indication of their purpose without you
needing to either read the documentation or worse, the implementation.
Granted it can be difficult to convey subtleties with only a single verb (or
handful of words) but the difference between finding and creating,
calculating and cloning, or reading and formatting is already pretty
substantial and gives the reader a fighting chance of understanding at an
abstract level what your big picture is. Remember: just
because it’s called code doesn’t mean it has to be
cryptic. Get it?

T

16 | Overload | December 2019

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

CODE
MAXIMIZED

Develop high performance parallel applications from
enterprise to cloud, and HPC to AI using Intel® Parallel
Studio XE. Deliver fast, scalable and reliable, parallel code.

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

from
£510

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101 | sales@qbs.co.uk | www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf 1 24/09/2018 17:31

	Overload154.pdf
	Inside-out
	Trip Reports: Meeting C++ 2019 and Embedded C++ 2019
	Best Articles 2019
	Non-Recursive Compile Time Sort
	Quick Modular Calculations (Part 1)
	Afterwood

	2009-07-01 Care About Code - online.pdf
	Slide 1

