

April 2020 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Pass the Parcel
Steve Love explores some advanced features of
Python’s module and package system.

10 Quick Modular Calculations (Part 3)
Cassio Neri presents a new algorithm that also
works for 64-bit systems.

14 Deconstructing Inheritance
Lucian Radu Teodorescu considers
inheritance and its alternatives.

19 Using Compile Time Maps for Sorting
Norman Wilson shows us how.

22 Profiting from the Folly of Others
Alastair Harrison learns about accessing private
members of C++ classes.

28It’s About Time
Mike Crowe looks at ways to avoid problems
when a system clock changes.

31 A Day in the Life of a Full-Stack Developer
Teedy Deigh shares a day in her life as a full
stack developer.

OVERLOAD 156

April 2020

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 157 should be submitted
by 1st May 2020 and those for
Overload 158 by 1st July 2020.

EDITORIAL FRANCES BUONTEMPO
R.E.S.P.E.C.T.
Respect can mean many different
things. Frances Buontempo
muses on its myriad meanings.
Respect to our writers. We’ve had so many
submissions for this issue, I have spent all my time
reading through them instead of planning an editorial.
Good work people! I also had to stay in the office late
for two nights running in order to help with a release,
which obviously used even more of my time. I bet

several of you manage to release your code during office hours. Perhaps
you should write in and tell us how. Anyway, this adds to my excuse for
not writing an editorial. On the plus note, one of the business people said
thank you on a slack channel when we were finally done. Never under
estimate the power of saying thanks. Years ago, in another company, one
of the senior devs always said thank you at the end of the day, which
seemed a bit odd on the face of it. I’d turned up to work, and mostly done
what I was told. Why a word of thanks after that? It turns out, it made me
feel appreciated and keener to work harder. Or talk to him when I had ideas
of how to make things better, quicker, leaner, meaner. You know. Saying
thank you is a small act of kindness that can make a big difference. Respect
Keith. If you’re reading this.

Who do you respect? Do you have a favourite writer or speaker? Or band
or composer? I’ll bet there’s someone. What makes you respect them?
Consistent quality performance? Ability to adapt and react to an audience
or situation? Who would you choose to partner with you on a late night
release? Why? We recently got a new team member. He’s a rubber duck,
called Quackson. He’s the best listener ever. I don’t know how he manages
to sit still and say nothing while others rant and rail at him. I find it very
hard to do that. I tend to say, “Hang on, that can’t be right.” Or, “I don’t
understand.” That sort of thing. I have much to learn from the duck. The
colleague who brought in Quackson had never heard of rubber duck
debugging [RubberDuck] before, but spontaneously started telling the
duck what he was up to. It’s a bit like an imaginary friend you tell your
woes to, explaining what you are up to and why, and what you need help
with. Then,

At some point you will tell the duck what you are doing next and
then realise that that is not, in fact, what you are actually doing. The
duck will sit there serenely, happy in the knowledge that it has
helped you on your way.

Sometimes you give people grudging respect. My editor of choice is
Vim. At the expense of fuelling an editor war, a colleague some years
ago used Emacs. Watching him find entries in logs and reformat text was
a wonder to behold. I know how to exit Emacs, which is good enough
for me; however, seeing a man who could drive his tool of choice so well
commanded immediate respect. Good work, Moshe.

Respect usually revolves around interactions
between people. Respect can take the form
of being mindful of other’s needs. Don’t

stand in front of the white board and talk

to it, if you expect a room of people to hear you. If someone in the meeting
is deaf or partially sighted, you need to be even more thoughtful about the
layout of the physical space and the format taken. Bigger font sizes.
Making sure the person speaking can be seen, if someone needs to lip read.
If people are dialled-in to a meeting, make sure they get a chance to speak
as well. Don’t speak over people. I’m sure you can draw up your own list.
Alternatively, avoid the problem completely and never have a meeting.

Many organisations have a hierarchy, no matter how flat they claim it to
be. This often carries an implicit assumption that more important people
will automatically be obeyed no matter what. Respect the badge. Respect
your elders and betters. This sometimes means blind obedience. In some
situations, there isn’t time to argue and no harm will come from doing
something now and dealing with any fallout later. In other situations,
much harm can happen. A classic, often quoted, example is the so-called
‘Charge of the Light Brigade’. During the Crimean War, in 1854, Lord
Cardigan led the light cavalry, armed with swords, against Russian forces,
armed with guns. Due to a miscommunication, they were sent straight up
against the artillery and most ended up dead or injured. [Wikipedia-1].

Respecting those in authority, your elders, or even your parents is not the
same as doing exactly what they ask. On another late night release, many
years ago, a senior manager said he thought you shouldn’t call fabs
directly as it could be slow. A team mate thereby halted proceedings and
tried to make us go through the code and swap out the calls for a hand-
crafted piece of code. I eye-balled the disassembler with another co-
worker and could see it was one floating point instruction. Now, I believe
the absolute floating point function may have been slower than hand
crafted versions once upon a time, but things change. While respecting
what the manager said, we showed him the compilation to a single
instruction. He was horrified that we’d even considered holding up the
release to hack around the code at midnight. Not the charge of the light
brigade, but… Try talking to senior people once in a while, and checking
what they say. You might get home earlier. Respect is not the same as
mindless obedience.

Respect and obedience, though often conflated, are not the same thing.
The root of ‘respect’ is ‘re’ for ‘back’, and ‘specere’ for ‘to look at’, giving
a similar word ‘regard’, re+gard, or ‘back’ plus ‘guard’ or ‘watch’. You
should have watched Moshe driving Emacs, though! Perhaps respect has
something to do with looking and seeing. Not just glancing and vaguely
guessing what’s going on, but actually looking and paying attention.
James 1:23-24 says:

Anyone who listens to the word but does not do what it says is like
someone who looks at his face in a mirror and, after looking at
himself, goes away and immediately forgets what he looks like.

Do you remember what you look like? Perhaps. Look, carefully; watch,
in detail; act, respecting the people and situation you observe.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2020

EDITORIALFRANCES BUONTEMPO
Respect isn’t always about people. Given coding guidelines, you can either
respect them, perhaps automatically enforcing them, or you can subvert or
blatantly disobey from time to time. If you code in C++ and request a
function to be inlined, does the compile respect your wishes? Inline is a
request, and therefore might not be respected.

No matter how you designate a function as inline, it is a request that
the compiler is allowed to ignore: the compiler might inline-expand
some, all, or none of the places where you call a function designated
as inline. (Don’t get discouraged if that seems hopelessly vague.
The flexibility of the above is actually a huge advantage: it lets the
compiler treat large functions differently from small ones, plus it lets
the compiler generate code that is easy to debug if you select the
right compiler options.) [CPP]

I wonder what the ‘right’ compiler options are? Have an experiment and
report back. It’s not just inline. Introduced in C++11, _Alignas is also
a keyword in C11, where alignas is a preprocessor macro. [CPPref]. Aside
from this potential clash, the request for alignment may not be respected.
Over-alignment (asking for a bigger number) may not be respected
[Stackoverflow]. Some may say alignas is always respected for a
reasonable use, i.e. no more than max_align_t. If surprising things
happen in your code, it might be down to your misunderstanding.
Optimisations can uncover data races and similar undefined behaviour
(UB). Nasal demons may result [Maudel13].

One of the responsibilities is to learn and understand the contract
between yourself and the compiler. If you break the contract, then
anything can, and will, happen.

I’ve never witnessed demons flying from someone’s face, but have been
confused by UB once in a while. You should respect the tools you are
using, and take time to learn them. There will always be more to learn, but
that’s what makes programming fun. If you get stuck, ask for help. The
accu-general mailing list is a good place to turn to.

Enough of your compiler not respecting your requests, or you not
respecting stated boundaries or requirements. Sometimes, respect is meant
in a sense of perspective, or looking in a certain direction. This fits well
with the sense of looking back. We talk of velocity changing with respect
to time in physics, of the derivative of y with respect to x in calculus. It
crops up so often, you tend to see WTR as short hand. It is important to
clarify when ambiguity is present. If a function has several variables,
talking of its derivative might be unclear. In computer science, the
complexity of a function can be with respect to execution time or memory
usage. This respect aims to give precision and clarity. These are
fundamentally important for clear communication. I suspect most blazing
rows in meetings happen when communication has broken down. Finding
ways to reword ideas and suggestions can bring about revelatory changes
in perspective and attitude.

I mentioned hierarchies earlier. Sometimes you may find yourself in a
minion-type role. If you have to pass a code review before being allowed
to commit code, this may feel like a subordinate position. However, code
reviews can be an enabler. I recently had a great code review. We
refactored my changes together and ended up with much clearer, and neater
code. The reviewer encouraged me to fly in the face of some anti-patterns
that were starting to emerge in the code base. We made everything feel

better, just for a small corner of the code. We had fun. Not all code reviews
work like this. Sometimes someone demands a specific code style or
approach, and seems to be nit-picking for the sake of it. Nits should be
picked, but a mixture of kindness and encouragement goes a long way. Pair
programming can be contentious too. Todd Sedano gave a workshop at
Agile 2019, entitled ‘Considerate Pair Programming’ [Sedano19]. An
important point he raised was “adjusting for any power imbalances”. There
will always be expertise imbalances, but real experts are usually good at
working with other people, apart from the occasional diva moment. We
all have our off-days. I encouraged the student on our team to review my
code a while ago. He was surprised, since he saw himself as too
inexperienced to comment on my code. I reassured him that he could at
least tell me if he could follow the code. Power imbalance levelled. If you
do code reviews or pair programming, are they conducted with respect?
Find out what it means, to you at least.

Lean software development talks of empowering the team [Wikipedia-2].
Wikipedia emphasises managers empowering rather than telling workers
how to do their own job. We are told, “Respecting people and
acknowledging their work is one way to empower the team.” The idea is an
empowered team gets things done. The article also mentions trust; “trust
them to get the work done”. In some senses, trust and respect are similar.
You might claim respect is earned. If someone manages to do something
amazing or useful, or consistently manages to simplify a difficult problem,
or steer a meeting to clear action points, they will earn respect for their
particular talent. If a new manager is parachuted in, they may well be
treated with suspicion until they prove themselves. You could say until
they earned your respect, or trust. This is orthogonal to being thoughtful,
considerate and kind, which could also be described as respect. If things
are going wrong, don’t forget Hanlon’s razor – “Never attribute to malice
that which is adequately explained by stupidity.” But my
corollary is, “Don’t call people stupid.” Some actions
are daft, and everyone has their off-days. It’s OK to
refuse to obey orders, and question things. But strive
to be kind. Let’s help each other. And keep writing
articles.

References
[CPP] https://isocpp.org/wiki/faq/inline-functions

[CPPref] https://en.cppreference.com/w/cpp/language/alignas

[Maudel13] Olve Maudel ‘Demons may fly out of your nose’,
Overload 115, https://accu.org/index.php/journals/1857

[RubberDuck] https://rubberduckdebugging.com/

[Sedano19] https://agile2019.sched.com/event/OD03/considerate-pair-
programming-an-interactive-workshop-todd-sedano

[Stackoverflow] https://stackoverflow.com/questions/35365624/alignas-
keyword-not-respected

[Wikipedia-1] https://en.wikipedia.org/wiki/
Charge_of_the_Light_Brigade

[Wikipedia-2] https://en.wikipedia.org/wiki/
Lean_software_development#Empower_the_team
April 2020 | Overload | 3

https://isocpp.org/wiki/faq/inline-functions
https://en.cppreference.com/w/cpp/language/alignas
https://accu.org/index.php/journals/1857
https://rubberduckdebugging.com/
https://agile2019.sched.com/event/OD03/considerate-pair-programming-an-interactive-workshop-todd-sedano
https://agile2019.sched.com/event/OD03/considerate-pair-programming-an-interactive-workshop-todd-sedano
https://stackoverflow.com/questions/35365624/alignas-keyword-not-respected
https://stackoverflow.com/questions/35365624/alignas-keyword-not-respected
https://en.wikipedia.org/wiki/Charge_of_the_Light_Brigade
https://en.wikipedia.org/wiki/Charge_of_the_Light_Brigade
https://en.wikipedia.org/wiki/Lean_software_development#Empower_the_team
https://en.wikipedia.org/wiki/Lean_software_development#Empower_the_team

FEATURE STEVE LOVE
Pass the Parcel
Python’s module and package system
has many features. Steve Love explores
some more advanced ones.
his is the second instalment, following on from the introduction to
Python modules [Love20]. In that article, we looked at how to create
your own modules, a little on how to split your program into modules

to make sharing of the code easier, and how to structure packages to make
testing them easier. In this article, we will take a more detailed look at
making the packages you create easier to import and use. We will explore
more ways to share your packages with others, and some ways of ensuring
you can always have a dependable environment in which your code runs.

A little more on the import statement
In the previous article, we described a simple package with code to take
input in one structured format, e.g. JSON or CSV, and turn it into another
format, perhaps performing simple transformations on the way.

Listing 1 shows the basic usage of the code in our own package
textfilters. For the sake of keeping the package contents tidy, we
created some sub-packages so that the code to perform transformations
was separate from the main package, and the tests for the package were
all in one place, also separate. The package structure we ended up with is
shown below.

 <project root>/
 |__ main.py
 |__ textfilters/
 |__ __init__.py
 |__ csv.py
 |__ json.py
 |__ transformers/
 |__ __init__.py
 |__ change.py
 |__ choose.py
 |__ tests/
 |__ __init__.py
 |__ test_filters.py
 |__ test_change.py
 |__ test_choose.py

This structure explains the two import statements in Listing 1: the first such
import brings in the main filters for taking (in this case) CSV input and
turning it into JSON output. The second import is pulling a single function
– change_keys – from a module called change. This module is in a
package named transformers, which is a sub-package of the
textfilters package.

As we mentioned in the previous article [Love20], there are a few ways
we could arrange the import statements, with alterations to the usage. The
portion of the import line after the import statement effectively defines
the namespace, so that first import line could be:

 import textfilters.csv

And the corresponding use of the csv object would become:

 data = textfilters.csv.input(sys.stdin)

This demonstrates why namespaces are so important. Python already has
a built-in module named csv (which our package’s csv module uses), and
it’s not unimaginable that you would want to import both of those.
Explicitly fully naming the textfilters.csv module allows Python’s
csv module to also be used alongside it.

Python provides a shortcut to import all the names from a module.
Consider the following:

 from textfilters.csv import *
 data = input(sys.stdin)

The import statement here requests that all the names from the
textfilters.csv module are imported into the current namespace. On
the face of it, this seems great – we get to use the input function
unadorned! However, there are pitfalls to this approach. Programming is
more than a typing exercise, and names matter.

Whilst that import * directive did indeed bring the name of the function
we wanted into the current scope, it also brought in every other name
exported by the csv module (we will return to what ‘exported’ means
later). This may, or may not be what you intended. To see why it’s
important, create a file called namespace.py with the code below (a cut-
down version of the textfilters.csv contents).

 import csv
 def input(data):
 return list(csv.DictReader(data))

Now run a Python interpreter session in the same directory, and try the
following:

 >>> csv = '1,2,3'
 >>> csv
 '1,2,3'
 >>> from namespace import *
 >>> csv
 <module `csv` from `...`>

Here, we’re creating a variable called csv, and assigning it a value.
Importing * from the namespace module then over-writes that value. I’m

T

Listing 1

from textfilters import csv, json
from textfilters.transformers.change import
change_keys
import sys
if __name__ == '__main__':
 def key_toupper(k):
 return k.upper()
 data = csv.input(sys.stdin)
 result = [change_keys(row, key_toupper)
 for row in data]
 print(json.output(result, sort_keys=True,
 indent=2))

Steve Love is an independent developer constantly searching for new
ways to be more productive without endangering his inherent laziness.
He can be contacted at steve@arventech.com
4 | Overload | April 2020

FEATURESTEVE LOVE

while you can be disciplined and always avoid
the use of import *, you can’t very well impose

that on everyone who might use your package
sure you can guess why, but to make this completely clear, when the
namespace module invokes import csv, it’s bringing the name csv
into its scope as an exported name along with the name input. When you
import the namespace module, any exported names are brought into your
scope, over-writing your own variable names where they clash.

Of course, while you can be disciplined and always avoid the use of
import *, you can’t very well impose that on everyone who might use
your package. There are ways of helping to prevent your users from
shooting themselves in their own feet.

Private names
Not all names are imported when you use the from module import
* form. Python has a convention for making names private to a module
(or indeed, a class – the mechanism is the same) by prefixing it with an
underscore. Consider the code in Listing 2.

The import statement allows you to alter the names of things you import,
and by renaming csv as _csv, we make that name private to the module.
If a user of this module now invokes from textfilters.csv import
*, those names are not brought into scope. Note how this affects the usage
within the module’s code. You can still explicitly request private names
when you import from a module, because in Python, private doesn’t mean
really private, it just means you have to try a little harder to get access to it.

Define a public API
You can also limit the set of names brought into local scope when using
from module import * by defining a module-level list of strings called
__all__. If this value exists when from module import * is
encountered, it is taken to mean ‘this is the list of all public names in the
module’. It’s just a list of the names from the module you wish to be public.
In the instance of the code in Listing 2, this would be defined as:

 __all__ = ['input', 'output']

Adding this line to textfilters/csv.py will change the behaviour of
import * for everyone so that only the names you defined will get
imported.

What have we learned?

 Using import * imports all the public names from a module.

 You can rename imported things in the import statement.

 Prefixing names with an underscore makes them ‘private’, so
import * does not import them.

 As the author of a module, you can also limit the names that *
imports by defining a value for the special __all__ list.

 As the user of a module, avoid using import *, as it can bring in
unexpected names that may hide names in your code.

Package initialization
In the previous instalment [Love20], we explored how packages are a
special kind of Python module which can have sub-modules – some of
which may also be packages. Python identifies a package by the existence
of a file named __init__.py. What we didn’t mention was that this file
gets ‘run’ by the Python interpreter when the package is imported, in much
the same way that the top-level code of a simple module is run when
imported.

This file can contain any Python code you like, but it’s useful for bringing
sub-module names into a narrower scope. Consider again the directory
layout of our package:

 |__ textfilters/
 |__ __init__.py
 |__ csv.py
 |__ json.py
 |__ transformers/
 |__ __init__.py
 |__ change.py
 |__ choose.py

Functions inside the change.py sub-module of the sub-package
transformers need a full-qualification when they’re imported:

 from textfilters.transformers.change import
 change_keys

This is a bit unwieldy, but arises from the physical separation of the
change module from the choose module. That physical separation helps
us as the package author to structure the code for ease of maintenance, but
imposes some unnecessary complexity on the users of our package.
Listing 3 (overleaf) shows how I’d prefer to present the API to users.

I’ve already mentioned there is more to programming than typing, but there
is more to this than reducing key-presses. Your public API needn’t be
constrained by the physical structure of the code, and how you choose to
lay out your package needn’t be limited by how you wish your users to
use it. We can take advantage of the fact that Python, by default, exports
all public names from a module – including the modules it imports.

In order to achieve my desired result, a couple of changes are required. The
first is to the transformers/__init__.py file:

 from .change import change_keys
Listing 2

import csv as _stdcsv
from io import StringIO as _StringIO

def input(data):
 parser = _stdcsv.DictReader(data)
 return list(parser)
...

When you import code from a module, take advantage of the namespace
mechanism to ensure your own names don’t get hijacked by imported
ones, and to minimize the risk of hiding other names, such as built-in
modules. Prefer explicitly qualified names.

Explicit is better than implicit
April 2020 | Overload | 5

FEATURE STEVE LOVE

A common mistake is to presume that
importing a package causes Python to go
and find all of its sub-modules and import
the published names from them all
This br ings the name change_keys in to the scope of the
transformers namespace, and removes the need for users to explicitly
name the intermediate change module name.

The second alteration is to the top-level package __init__.py.

 from . import transformers as reshape

This renames the namespace of transformers to be reshape.
Naturally, you could just rename the transformers folder, but one
reason you might not want to do that could be if you already have a version
‘in the wild’, but you’d like new users to have a new API, while still
supporting existing users on the ‘old’ API.

We can streamline the API even further. A common pattern when using
complex modules is to import the whole package and have access to its
contents, as in Listing 4.

As things stand, however, this will not work. You’ll get an error:

 AttributeError: module 'textfilters' has no
 attribute 'csv'.

A common mistake is to presume that importing a package causes Python
to go and find all of its sub-modules and import the published names from
them all. Such behaviour could be quite expensive! This is why the
__init__.py file is so important – it is how a package defines all of its
published names. In order to achieve what we want in Listing 4, we just
need to bring the names csv and json into the package scope, using the
top-level package’s __init__.py:

 from . import transformers as reshape
 from . import csv, json

A similar mistake is to presume that from textfilters import *
would cause Python to automatically load all the sub-modules. For the
same reason as above, it does not. Not even the top-level modules (csv
and json). The documented behaviour is that this imports the
textfilters package, but in our case, textfilters is ‘just’ a
directory. It does, however, run the textfilters/__init__.py. and
import any published names that result from that.

As with simple modules, packages also recognise the special __all__
value as a list of strings naming the sub-modules to import. It’s crucial to
note, however, that using __all__ isn’t transitive. Suppose you have the
following:

 In textfilters/__init__.py:
 __all__ = ['transformers']

 In textfilters/transformers/__init__.py:
__all__ = ['change', 'choose']

If you invoke from textfilters import *, it will import the
transformers sub-package, but the sub-packages defined by the
__all__ value in transformers/__init__.py will not be loaded.
You would also need to invoke from textfilters.transformers
import * to also bring those names.

You can’t use the top-level __all__ value to import sub-packages, either.
For example, the following will not work:

 textfilters/__init__.py
__all__ = ['transformers',
 'transformers.change']

The consequence of this is that defining the public API for a package is
best done by importing or defining the names you want in __init__.py.
It’s not necessary to also specify __all__, since importing * from a
package won’t bring any unexpected names into scope, as it might with a
simple module.

What have we learned?

 A package’s __init__.py file gets run when it’s imported, and
this file can contain Python code.

 You can use the __init__.py to alter the public API of your
package.

 Importing * from a package does not automatically bring in any of
the public names, only what is defined in the __init__.py.

Creating an installable package
Sharing a package directly by copying the package directory, or even
better, including it in a shared version control system, is sufficient in most
cases. There can be benefits to having a cleaner separation between
application and library code, however. One example might be that a
package is used across multiple applications. In such a case, it is wasteful
and error-prone to have the package sources duplicated in different

Listing 3

from textfilters import csv, json
from textfilters import reshape
import sys
if __name__ == '__main__':
 def key_toupper(k):
 return k.upper()
 data = csv.input(sys.stdin)
 result = [reshape.change_keys(row,
 key_toupper) for row in data]
 print(json.output(result, sort_keys=True,
 indent=2))

Listing 4

import textfilters as tf
import sys
if __name__ == '__main__':
 def key_toupper(k):
 return k.upper()
 data = tf.csv.input(sys.stdin)
 result = [tf.reshape.change_keys(row,
 key_toupper) for row in data]
 print(tf.json.output(result, sort_keys=True,
 indent=2))
6 | Overload | April 2020

FEATURESTEVE LOVE
repositories. It makes more sense to have the shared code separately
version-controlled in its own shared repository.

Most modern version control systems have the facility to build a working
copy from multiple repositories, so this shouldn’t present a problem.
However, you can avoid the need for that by creating your own installable
package. If you’ve used Python for anything more sophisticated than
simple scripts, you’ll almost certainly have come across pip: the standard
Python package installer1. In this section we’ll explore how to create a
package that can be installed using pip.

The very simplest installable package just needs a file named setup.py,
located in the parent directory of the package itself (i.e. in the same
directory as main.py in the example). Listing 5 shows the bare minimum
contents.

The name and version properties are used to create the file name of the
package. The version number here follows the recommended practice that
is based on Semantic Versioning (see [PEP440] and [SemVer]). The pre-
release specifier (.dev1 in this case) departs from the Semantic Version
spec, and is the format understood by pip, which – when installing from
a shared package repository like PyPI – ignores pre-releases unless
they’re explicitly requested.

The last line uses a tool which automatically detects and includes any sub-
packages (directories containing __init__.py). The packages property
is merely a list of package and module names to be included, so you could
explicitly name them:

 packages = ['textfilters',
 'textfilters.transformers']

This invocation would exclude the tests sub-package, which might be
what you intend. Note that sub-packages have to be explicitly named. If
you have a l a rge package wi th severa l sub-packages , the
find_packages() utility is much more convenient. Note also that the
file main.py will not be included. In our case, that’s intentional, because
it’s not inside a package.

There are many more parameters accepted by the setup() function; we’ll
examine a few of the common ones here, but a complete description, along
with recommendations on version numbering schemes, and restrictions on
things like the name property, can be found in the Python Packaging
Guide [PPG]. Many of those properties are used by the Python Package
Index, PyPI.

For now, we have the bare essentials needed to create an installable
package. To build it, run this command within the directory containing
setup.py:

 python setup.py bdist_wheel

This invocation creates a ‘binary distribution’, also known in Python
circles as a wheel (see [PEP427] for all the gory details). If all went well2,
you will see a couple of new directories: build and dist, and the dist
folder should have your installable package in it, named TextFilters-
0.0.0.dev1-py3-none-any.whl . You can create ‘source
distributions’, too, if the package is pure Python code, but it doesn’t have
any real benefit over a wheel format package.

The components of the file name are partly taken from the name and
version parameters given to the setup() function in setup.py (refer
back to Listing 5). The last 3 parts identify the targeted Python language
version (py3), the ABI (none, in this case) and the required platform

(which we didn’t specify, and so is any). You can control these with other
parameters to the setup() function, but for our purposes, the code in the
package is indeed intended for Python 3, and is pure Python code, with no
ABI or platform requirements, so the defaults are appropriate.

The file itself is just a normal Zip file with a .whl extension, so you can
examine the contents for yourself (I find 7-zip especially useful).

Before we install our shiny new package, however, we should talk about
segregation.

Partitioning and separation
Python comes with a rich standard library of tools, some of which our
example package is using – csv and json. You can also install 3rd party
modules, and our package is using pytest. In [Love20], we looked at how
Python locates modules when they’re imported. As a reminder, here is the
basic Python algorithm for finding modules:

1. The directory containing the script being invoked, or an empty
string to indicate the current working directory in the case where
Python is invoked with no script – i.e. interactively.

2. The contents of the environment variable PYTHONPATH. You can
alter this to change how modules are located when they’re imported.

3. System defined search paths for built-in modules.
4. The root of the site module.

It’s number 4 we’re interested in now – the site module.

When you install a 3rd party package (such as pytest), it is installed into
a directory named site-packages, which is a well-known location for
the Python interpreter (the location may differ, depending on your
platform). Whilst it is obviously convenient to have all the packages you
want in one place, easily available for use in your Python programs, it can
easily become cluttered. In particular, you might not want (or be able) to
install the packages you create to the global site location, especially when
they’re in early development.

One way to handle this might be to have multiple installations of Python,
but this is wasteful unless you genuinely need multiple versions of Python
available. A more light-weight way of handling it is to take advantage of
Python’s virtual environments. These are a fully-featured Python
environment, but cut back to the bare minimum needed. They don’t contain
the 3rd party modules installed in the global Python install location (but
you can choose to give a virtual environment access to those libraries)
except for a few necessities – including the pip installer module. The
important thing is that a virtual environment is entirely independent of all
other virtual environments, with its own site-packages location.

The implication of this is that you can create Python virtual environments
with different libraries for different needs. This is useful now as a way of
quarantining our custom package so that it doesn’t interfere with either the
installed Python instance, or anyone else’s virtual environments. You
should consider creating your environment somewhere outside of your
code folders, maybe by putting the code beneath a new directory (named
something like src, for example), and using the parent to hold the new
environment.

 python -m venv localpy

On some platforms you may be prompted to install a package for venv to
work, for example on my Ubuntu-based Mint distribution, I had to install
python3-venv.

This creates a new Python environment in a directory named localpy as
a child of the current directory. You can choose wherever you like for it.
If all’s gone to plan, you should now have a directory structure like this:

 <project root>/
 |__src/
 |__main.py
 |__setup.py
 |__textfilters/
 |__ ...
 |__localpy/
 |__ ...

1. pip comes as part of the Python install for versions later than 3.4
2. You may need to install the wheel package from PyPI.

Listing 5

from setuptools import setup, find_packages

setup(
 name = 'TextFilters',
 version = '0.0.0.dev1',
 packages = find_packages(),
)

April 2020 | Overload | 7

FEATURE STEVE LOVE
The structure of the environment will differ, depending on your platform,
but will contain Python itself (on Windows, in localpy/Scripts, on
*nix it’s in localpy/bin), along with pip to install more libraries, and
a script named activate.

The activate script ensures that the virtual environment’s Python and
pip are at the front of the current session’s path. It’s not necessary to
always activate a virtual environment, however: you can invoke the Python
interpreter by fully-qualifying the directory name, and it will ‘just work’.
This extends to using pip to install packages.

 Windows

 .\localpy\Scripts\pip.exe install [package
 name]

 Mint (Ubuntu)

 ./localpy/bin/pip install [package name]

Python internally keeps track of where to find the platform-independent
and platform-dependent files it needs in order to run, and where to find
installed libraries. These are:

 sys.prefix
 sys.exec_prefix

When a virtual environment is in use (either by activation, or by running
the Python program), these values will point to the respective locations
within the virtual environment. When no virtual environment is in use,
these values point to the locations of the respective Python installation
locations. Furthermore, when a virtual environment is in use, two more
values can be used to find the location of the Python install from which
the virtual environment was created:

 sys.base_prefix
 sys.base_exec_prefix

These values enable the virtual environment to operate independently of
the main Python installation(s), as well as any other virtual environments.
You can find much more detailed information on how these things work
in [venv] and [site], but for our purposes, all that remains is to install our
local package into the independent environment. It’s as simple as (on
Windows):

 .\localpy\Scripts\pip install
 src\dist\TextFilters-0.0.0.dev1-py3-none-any.whl

If you now run a Python session using the virtual environment’s Python,
you can import the textfilters package, and see from where it was
imported:

 >>> import textfilters
 >>> textfilters
 <module 'textfilters' from
 '\\path\\to\\localpy\\lib\\site-packages\\
 textfilters__init__.py'>

(This will look slightly different on non-Windows platforms, but the idea
is the same).

What have we learned?

 You can create your own installable package to make sharing code
even easier.

 Python wheels are zip-files.

 The site module is where Python looks for installed packages for use
in code.

 Python virtual environments are a powerful way of segregating
requirements with its own, independent site module.

It depends
Sometimes, a package you create will require other packages to be
installed. In the case of our package, it can be used without anything other
than Python’s standard libraries, but it does have some tests. Whilst they
don’t depend exclusively on pytest, which is the testing package we used
in [Love20] (other frameworks are available, such as Nose2 [Nose2],
which would also work just fine), we can use it to explore another feature
of package creation.

In the setup.py file we created for our package, we can indicate that our
package requires other libraries. In this case, we can tell the setup tools
that the package pytest should also be installed when our package is
installed.

Listing 6 shows a change to setup.py with the addition of a parameter
to the setup() function named install_requires. This is a list of
packages, which in this case has only one item, but you can specify as many
as you need here.

Now re-create the package, and re-install it with an upgrade:

 localpy\scripts\python src\setup.py bdist_wheel
 localpy\scripts\pip install --upgrade
 dist\TextFilters-0.0.0.dev1-py3-none-any.whl

You will see that pytest, along with its requirements, is also
automatically installed.

Sometimes you need a particular version of a dependent package, or
perhaps you’ve tested on a particular stable release, and wish to constrain
the versions of your dependencies. This is also specified in setup.py3:

 install_requires = ['pytest>=5.0'],

You can also depend on specific versions of Python itself in the setup.py
parameters. In the case of our package, we may well want to ensure our
users are on Python v3 or above. There are many reasons to do this, but
chief among them is that the code in a package depends on some feature
that was introduced in a specific Python release.

 python_requires = '>=3',

There is much more you can specify, and describe, about your package in
the setup.py file, but you can find a wealth of documentation on that in
the Python packaging guide ([dist]). We do need to revisit one aspect we’ve
already looked at briefly – the version number.

As we’ve already seen, the version number specified in setup.py gets
used to generate the file name of the resulting package wheel. In our
example, we marked the version with a trailing .dev1, which marks the
package as a pre-release – specifically, still in development – which is used
by pip when performing upgrades.

Given a package with a version number indicating it’s stable (e.g. 0.0.1),
and a later version that’s marked as a pre-release (e.g. 0.1.0a1), when
performing an upgrade, pip will by default give you the latest applicable
stable release, which in this case is 0.0.1. You can explicitly request that
pre-releases are considered by passing the --pre argument to pip on the
command line, or by specifically requesting a pre-release version.

Whilst we’re in development mode, and installing specific locally-created
wheels, this isn’t an issue for our package, of course, but it does make a
difference for the dependent packages in the install_requires list.

I t a lso makes a dif ference in a f i le that’s normal ly named
requirements.txt (but needn’t be, necessarily), which is a file you

3. Setting an upper limit on the version is possible too, but be careful of
that. If you tie down your requirements too tightly, it might make your
package unusable.

Listing 6

from setuptools import setup, find_packages

setup(
 name = 'TextFilters',
 version = '0.0.0.dev1',
 packages = find_packages(),
 install_requires = ['pytest'],
)

Knowing the full set of dependent packages, right down to individual
versions, makes sharing an application code base easier. Allowing
different versions of libraries within a team can lead to very difficult-to-
track errors.

Know your dependencies
8 | Overload | April 2020

FEATURESTEVE LOVE
can use alongside a virtual environment to have pip install a whole
collection of packages. This is a useful technique for specifying the library
contents of a virtual environment, with needed packages at specific
versions. It’s common to want this to ensure, for example, that different
developers on a team have identical environments; if one person is
developing against version 1 of some package, and someone else is using
version 2, chaos is bound to ensue! The requirements file provides a
way of creating a coherent environment that the whole team can use.

The simplest way to create the requirements file is to have pip itself create
one:

 localpy\scripts\pip freeze > requirements.txt

The requirements file should contain something similar to this (truncated
here for brevity):

 ...
 pytest==5.4.1
 six==1.14.0
 TextFilters==0.0.0.dev1
 ...

Here, the file requires a specific version of each installed package. You can
modify the version numbers if you need versions after a particular one, or
within a range of versions, for example. Note that our own package,
TextFilters, is explicitly naming the pre-release version. Suppose we
had been working on the package for a while, and had a few releases
available in our dist directory:

 TextFilters-0.0.0.dev1-py3-none-any.whl
 TextFilters-0.0.1-py3-none-any.whl
 TextFilters-0.0.2.dev1-py3-none-any.whl
 TextFilters-0.0.2a1-py3-none-any.whl
 TextFilters-0.0.3a1-py3-none-any.whl

We have stable 0.0.1 and 0.0.2 versions, but only a pre-release for
0.0.3. Our requirements.txt file might have this line:

 TextFilters>=0.0.1

We might create our virtual environment from scratch as follows:

 python -m venv localpy
 localpy\scripts\pip install -r requirements.txt
 -f src\dist

Here, the -r parameter to pip instructs it to read the list of packages to
install from the indicated file. By default, pip looks on PyPI [PyPI] for
packages, but we haven’t published our package there yet, so the -f
parameter tells pip to find packages in the specified location (which
might, for example, be a file share available to the team), and look in PyPI
for packages not found there.

This would result in our new environment having version 0.0.2 of our
TextFilters package, because it’s the latest stable version available. If we
had also added the parameter --pre to the pip command line, the latest
pre-release version – 0.0.3a1 – would have been installed.

What have we learned?

 An installable package can explicitly define other packages upon
which it depends.

 The pip installer makes sophisticated use of the version numbers
exposed by a package to determine how to install requirements.

 You can easily create a canned fully-working virtual environment
by using a library requirements file.

A wider audience
In this article we’ve explored in more detail the idea of Python
‘namespaces’, and how you can take advantage of package initialization
to make using your package easier for your users. We’ve looked at some
of the pitfalls of wild-card imports, and highlighted the benefits of creating
a public API for your modules that might not match its physical structure.
We also explored virtual environments, and how to create and install your
own package ‘wheels’, and looked at why this segregation is important.
Finally we looked at package dependencies, and how to manage them in
concert with virtual environments and the pip installer.

Taken all together, these things will help you structure your packages so
they can be shared easily, and your users will find your packages easier to
install and use as a result.

There is more you can do with your own packages. For example, in the
previous article we looked at the pytest unit-testing framework, and in
this article we’ve looked at Python’s venv. Both of these are installable
modules that can be run, e.g.:

 python -m venv

This is achieved by adding another special file to the package:
__main__.py, which is executed when the package is run in this way4.

The ultimate sharing of packages with the wider community means
publishing it to the Python Package Index ([PyPI]). There is excellent
documentation on this in the Python packaging guide ([PPG]). Taking this
extra step involves some extra responsibility, of course, in maintaining and
documenting your package.

These things – and more! – I leave for you to discover.

References
[Love20] Steve Love (2020) ‘The path of least resistance’ in Overload

155, February 2020, https://accu.org/index.php/journals/2749

[Nose2] Nose2: https://docs.nose2.io/en/latest/

[PEP440] ‘Python Version Identification and Dependency Specification’,
https://www.python.org/dev/peps/pep-0440/

[PEP427] ‘The Wheel Binary Package Format’ (PEP 427),
https://www.python.org/dev/peps/pep-0427/

[PPG] The Python packaging guide, ‘Packaging and distributing projects’
at https://packaging.python.org/guides/distributing-packages-using-
setuptools/

[PyPI] The Python Package Index, https://pypi.org/

[SemVer] ‘Semantic Versioning Scheme Specification’,
https://semver.org/

[site] Python Documentation – Site specific configuration hook,
https://docs.python.org/3/library/site.html

[venv] Python Documentation – Creation of virtual environements,
https://docs.python.org/3/library/venv.html

Other resources
‘Packaging a Python library’, https://blog.ionelmc.ro/2014/05/25/python-

packaging/#the-structure

4. I wanted to explore this a bit more in the example package, but was
defeated by the fact I’d (deliberately) used names that clashed with
built-in Python modules. Another example of why not to do that!
April 2020 | Overload | 9

https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://accu.org/index.php/journals/2749
https://www.python.org/dev/peps/pep-0427/
https://docs.nose2.io/en/latest/
https://www.python.org/dev/peps/pep-0440/
https://packaging.python.org/guides/distributing-packages-using-setuptools/
https://packaging.python.org/guides/distributing-packages-using-setuptools/
https://pypi.org/
https://semver.org/
https://docs.python.org/3/library/site.html
https://docs.python.org/3/library/venv.html

FEATURE CASSIO NERI
Quick Modular Calculations
(Part 3)
This article concludes the 3-part series. Cassio Neri presents
a new algorithm that also works for 64-bit operands.
he first two instalments of this series [Neri19] and [Neri20] showed
three algorithms, minverse, mshift and mcomp, for evaluating
expressions of the form n % d ⋚ r, where d is known by the

compiler and ⋚ denotes any of ==, !=, <, <=, > or >=. While minverse is
restricted to expressions where ⋚ is either == or !=, mshift and mcomp are
not. However, the last two must perform intermediate calculations in
domains larger than their input. Specifically, for 32-bit data, computations
are done in 64-bit registers. What if the input is already large? Will we still
need it when it is 64? Yes, but these algorithms will not send you a
Valentine, birthday greetings or bottle of wine. This article presents
another algorithm that overcomes this limitation. I shall refer to it as
new_algo since, to the best of my knowledge, it is original.1

All algorithms, including new_algo, are implemented in [qmodular]. Recall
once again that the intention is not to ‘beat’ the compiler but, on the contrary,
to help it. The hope is that compiler writers will consider incorporating these
algorithms into their products for the benefit of all programmers. As I
reported in [Neri19], minverse has been implemented by GCC since version
9.1 but the implementation falls back to a less efficient algorithm for certain
values of r. Clang 9.0 also uses minverse (only when r == 0 but its trunk
version extends the usage for all other remainders). (See [Godbolt].) Other
major compilers do not implement minverse and none implements any of
the other algorithms presented in this series.

Recall and warm up
Figure 12 graphs the time taken by different algorithms to check whether
each element of an array of 65,536 uniformly distributed unsigned 64-bit
dividends in the interval [0, 106] leaves a remainder less than 5 when
divided by 7. As usual, built_in corresponds to n % 7 < 5 as emitted by
the compiler. (As a motivational note, when n is the number of days since
a certain Monday, n % 7 < 5 is a check for weekdays.) Bars labelled
mshift and mcomp correspond to algorithms covered in [Neri20]. Finally,
new_algo is the subject of this article.

Observe that some previously seen algorithms are absent from Figure 1.
As explained, minverse cannot be used with < and efficient
implementations of mshift_promoted and mcomp_promoted for 64-bit
inputs require full hardware support for 128-bit calculations, which is not
provided by x86_64 CPUs.

Recall that mshift and mcomp have preconditions and yield wrong results
when n is above a certain threshold. Therefore, although very fast, the lack
of generality forces the compiler to discard them.

The time taken to scan the array of dividends is used as unit of time. All
measurements encompass this time. They are3 3.70 for built_in, 1.78 for
mshift, 1.66 for mcomp and 2.46 for new_algo. Subtracting the scanning
time and taking results relatively to built_in’s yields 0.78 / 2.70 ≈ 0.29 for
mshift, 0.66 / 2.70 ≈ 0.24 for mcomp and 1.46 / 2.70 ≈ 0.54 for new_algo.

These numbers, however, depend on the divisor. Listing 1 contrasts the
code generated by GCC 8.2.1 with -O3 for built_in and new_algo.

Finally, recall that we are interested in modular expressions where the
divisor is a compile time constant and the dividend is a runtime
variable. The value compared to the remainder can be either. They
all have the same unsigned integer type which implements modulus
2w arithmetic. (Typically, w = 32 or w = 64.) We focus on GCC 8.2.1 for
the x86_64 target but some ideas might also apply to other platforms.

The new_algo
The fractional part of n / d corresponds to the remainder of the division.
Indeed, Euclidean division states that any integer n can be uniquely written
as n = q ∙ d + r, where q and r are integers with 0 ≤ r < d. Dividing this
equality by d gives that q and r / d are, respectively, the integer and
fractional parts of n / d. Hence, knowing the fractional part of n / d, or an
approximation of it, is enough to identify r. Since d is known by the
compiler, an approximation M of 1 / d is precomputed at compile time and
only the cheaper multiplication n ∙ M is performed at runtime. The
multiplication has the effect of increasing the error and when n is large
enough the result is unreliable to allow the identification of r.

The last paragraph’s arguments supported the works of mshift and mcomp
[Neri20] and they equally support new_algo. The novelty is that this
algorithm, rather than accepting the approximation error until the result
becomes unreliable, takes steps to reduce the error. As a consequence, the
algorithm’s applicability is extended. As usual in this series, we shall
present new_algo’s main ideas by means of examples. (Deeper

T

Cassio Neri has a PhD in Applied Mathematics from Université de
Paris Dauphine. He worked as a lecturer in Mathematics before
moving to the financial industry. He can be contacted at
cassio.neri@gmail.com.

Figure 1

1. I would be grateful if a well-informed reader could point me towards a
previous work on the same algorithm.

2. Powered by quick-bench.com. For readers who are C++ programmers
and do not know this site, I strongly recommend checking it out. In
addition, I politely ask all readers to consider contributing to the site to
keep it running. (Disclaimer: apart from being a regular user and donor,
I have no other affiliation with this site.)

3. YMMV, reported numbers were obtained by a single run in quick-
bench.com using GCC 8.2 with -O3 and -std=c++17 [QuickBench]. I do
not know details about the platform it runs on, especially, the processor.
10 | Overload | April 2020

FEATURECASSIO NERI

The hope is that compiler writers will consider
incorporating these algorithms into their

products for the benefit of all programmers
mathematical proofs of correctness can be seen in [qmodular] and
references therein.)

Although a rigorous proof is out of scope, the fundamental idea behind
new_algo’s error reduction has elementary school level4: the periodicity
of decimal expansions of rational numbers. For example, 1 / 3 = 0.333…
and the sequence of 3s goes on indefinitely. Also, 1 / 7 = 0.142857… and
142857 repeats over and over. Some readers might object and point to
terminating expansions like 1 / 2 = 0.5 or, even more obvious, 1 / 1 = 1.
Nevertheless, a terminating expansion can be identified with a periodic one
by appending an infinity of trailing 0s. For instance, 0.5 = 0.5000… and
1 = 1.000…. Furthermore, a terminating expansion is also identified with
yet another periodic representation ending in 9s. Indeed, recall (or try to
convince yourself) that 0.5 = 0.4999… and 1 = 0.999…. More generally,
periodicity occurs for any base and, in particular, in binary expansions. For
instance, 1 / 7 = (0.001001...)2 with repeating 001 built_in.

Reality kicks in again to remind us that CPUs have finite precision. In
practice n, d and r are 32 or 64 bits long but, for ease of exposition, we
assume the number of bits is w = 10. Hence, truncation at the 10th bit after
the binary point yields 1 / 7 ≈ (0.0010010010)2. Keeping the example of
the previous section in mind, we set d = 7 and the approximation M =
(0.0010010010)2 of 1 / 7.

Table 1 contrasts, for all n {0, …, 8}, the binary expansions of n / 7 and
n ∙ M. Bits are grouped in triples to highlight the period. Observe that for
n ≤ 7, multiplication by 1 / 7 and by M can be done separately on each triple,
since the result of one group does not spill to its left. (Take notice that the
2nd column shows n / 7 = (0.111111…)2 which is the binary analogon of
1 = 0.999…. This exemplifies the relevance for new_algo of the periodic
representation of terminating expansions.)

The row for n = 8 is the first where the fractional parts of n / 7 and n ∙ M,
up to the 9th bit, differ. (The relevant triple of bits is emphasised.) To
understand the origin of this difference, we observe that this row can be
obtained from the one for n = 1 by multiplication by 8 or, equivalently, by
left shift by 3. The 2nd column illustrates infinite precision and the
periodicity ensures that any triple of bits after the binary point has a replica
on its right which is also left-shifted. This contrasts to the 3rd column,
where the bits feeding the left shift at the rightmost position are 0s. Having
realised that there is an error coming from the right, we shall see how
new_algo reduces it.

The previous paragraph pointed out a discrepancy between the fractional
parts of n / 7 and n ∙ M for n = 8. Observe now the disparity between the
integral parts. It turns out the two divergences compensate each other and
by uniting the two parts we can correct the error of division.

Figure 2 illustrates the steps of the process (grey 0-bits are included for
clarity) as applied to n = 8: right shift the integer part of n ∙ M by 9 bits
and add the result to n ∙ M. Comparing the outcome with 8 / 7 (shown in
Table 1) we realise it is much closer than the original value 8 ∙ M is.

The procedure is very effective in making the fractional parts of the result
for n = 8 identical to that for n = 1, that is, (0.001 001 001 0)2.

The fact that multiplication by n = 8 is equivalent to left shift by 3 bits
makes clear that the quantity on the left of the binary point is the exact
amount required to correct the error on the right. For other values of n, this
property might be more difficult to see but it still holds. For instance,
consider n = 15, which is the next dividend with remainder 1. Then n ∙ M4. I cannot help myself from highlighting the beauty of this simplicity.

Table 1

n (n /7)2 (n ∙ M)2

0 0. 000 000 000 000 ... 0. 000 000 000 0 ...

1 0. 001 001 001 001 ... 0. 001 001 001 0 ...

2 0. 010 010 010 010 ... 0. 010 010 010 0 ...

3 0. 011 011 011 011 ... 0. 011 011 011 0 ...

4 0. 100 100 100 100 ... 0. 100 100 100 0 ...

5 0. 101 101 101 101 ... 0. 101 101 101 0 ...

6 0. 110 110 110 110 ... 0. 110 110 110 0 ...

7 0. 111 111 111 111 ... 0. 111 111 111 0 ...

8 1. 001 001 001 001 ... 1. 001 001 000 0 ...

Listing 1

built_in
 0: movabs $0x2492492492492493,%rdx
 a: mov %rdi,%rax
 d: mul %rdx
 10: mov %rdi,%rax
 13: sub %rdx,%rax
 16: shr %rax
 19: add %rax,%rdx
 1c: shr $0x2,%rdx
 20: lea 0x0(,%rdx,8),%rax
 28: sub %rdx,%rax
 2b: sub %rax,%rdi
 2e: cmp $0x4,%rdi
 32: setbe %al
 35: retq

new_algo
 0: movabs $0x2492492492492492,%rcx
 a: mov %rdi,%rax
 d: mul %rcx
 10: add %rcx,%rax
 13: lea (%rax,%rdx,2),%rdx
 17: movabs $0xb6db6db6db6db6da,%rax
 21: cmp %rax,%rdx
 24: setbe %al
 27: retq
April 2020 | Overload | 11

FEATURE CASSIO NERI
= (10. 001 000 111 0)2 and the correction process in shown in Figure 3.
Again, the result’s fractional part matches the one obtained for n = 8.
Therefore, the outcomes of the correction for n = 1, n = 8 and n = 15 have
all the same fractional part.

Unfortunately, the process is not so good for all n. Indeed, for n = 519 we
have n ∙ M = (1 001 001. 111 111 111 0)2 and Figure 4 shows that the
fractional part of the outcome is off by deficiency when compared to the
one obtained for n = 1. The disparity appears at the 9th bit (emphasised)
and thus, the error is still small. By proximity, the result suggests that the
remainder is 1, which is correct.

It is worth noticing that n = 519 is not the smallest value for which the
correction attempt does not zero the error out. Indeed, the row for n = 7 of
Table 1 shows that the integer part of n ∙ M is 0 and thus, the correction
attempt does not provoke any change to the fractional part of n ∙ M =
(0. 111 111 111 0)2. Moreover, the outcome is quite far from the one for
n = 0. This sounds like a showstopper, given that proximity is the key to
recognise remainders and it has failed to hold here. Fortunately, this is
more an annoyance than a real issue.

Important points to retain follow. As n takes increasing values with the
same remainder r > 0, the fractional part of the outcome f(n) starts, for n
= r, at f(r) = r ∙ M and, at each stage, it either stays the same or decreases
by a tiny amount. As long as f(n) does not fall enough to reach f(r - 1), we
are sure the remainder is r. Furthermore, when r is large enough, f(n) does
not change at all, that is, f(n) = r ∙ M for all n with remainder r in the range
of interest.

Therefore, for n in a certain range, the remainder of n divided by d is r if,
and only if, (r - 1) ∙ M < f(n) ≤ r ∙ M or, equivalently, r ∙ M < f(n) + M ≤ (r
+ 1) ∙ M. The analysis of the case r = 0 is a bit trickier but the same result
holds. It also follows that the remainder of n divided by d is less than r if,
and only if, 0 < f(n) + M ≤ r ∙ M.

To finish this section, a very important limitation of new_algo must be
mentioned: it is not available for all divisors. Indeed, it is easy to see that,
for the correction to work, at least one full period must fit in 10 bits but,
as it turns out, the period of 1 / 13 in binary has length 12. Therefore,
new_algo cannot be used for d = 13 in our idealised CPU. In a real 64-bit
machine the smallest divisor with this issue is d = 67. (The period of 1 /
67 has length 66.)

Towards an implementation
The presentation so far has evolved around the idea of splitting numbers
into their integer and fractional parts. We shall see now how to turn this
idea into a working implementation based on unsigned integers values
only. Again, for ease of exposition, we assume that these numbers and CPU
registers are 10-bits long.

The algorithm’s first step is calculating n ∙ M where n is an integer and M
has 10 bits after the binary point. To bring the product to the realm of
integers, the multiplicand M is substituted by M ∙ 210. To keep the notation
simple, the latter quantity is still denoted M. Hence, in our example we set
M = (0010010010)2.

Another practical issue remains. Now n and M are 10 bits long and thus,
the product n ∙ M has up to 20 bits. How can a 10-bit CPU calculate such
number? In the real world, the question is how can a x86_64 CPU compute
the 128-bit product of two 64-bit operands? The mul instruction (see
Listing 1) does exactly that, by splitting the 128-bit product into its 64-bit
higher and lower parts and storing them in registers rdx and rax,
respectively. Coming back to our exposition, we assume that our
imaginary 10-bit CPU provides a similar mul instruction.

Notwithstanding the change in the definition of M, figures 2, 3 and 4, still
illustrate the correction with little differences. Previously, the small dot
symbolised the binary point but now it separates the higher and lower parts.
To correctly align the bits of the higher part to those of the lower one, the
former should be left shifted by k = 1. Finally, we were originally interested
in the fractional part of the outcome but now it is the lower part that we
care about. In particular, the addition does not need to be carried over to
the higher part, it can be performed in modulus 210 arithmetic.

Putting all pieces together, a C++ implementation of new_algo to evaluate
n % d < r looks like this:

 bool has_remainder_less(uint_t n, uint_t r) {
 auto [high, low] = mul(M, n);
 uint_t f = low + (high << k);
 return f + M <= r * M;
 }

where mul(M, n) returns a pair of uint_t with the higher and lower
parts of M * n. The last line is the condition 0 < f(n) + M ≤ r ∙ M in
simplified form since it can be shown that 0 < f(n) always holds.

For readers accustomed to x86_64 assembly, it should not be difficult to
recognise the C++ code above in Listing 1. (With compile time constants
M = 0x2492492492492492, k = 1 and r * M = 5 * M =
0xb6db6db6db6db6da).

A naïve implementation of new_algo for n % d == r follows:

 bool has_remainder(uint_t n, uint_t r) {
 auto [high, low] = mul(M, n);
 uint_t f = low + (high << k);
 uint_t fpM = f + M;
 return r * M < fpM && fpM <= (r + 1) * M;
 }

The last line comes from r ∙ M < f(n) + M ≤ (r + 1) ∙ M. This code contains
many inefficiencies (e.g., the branch implied by &&) and is shown for
exposition only. A faster implementation is provided in [qmodular].
Depending on a number of factors, many optimisations are possible. For
instance, for small values of k, the addition and left shift in the second line
can be combined in a single lea instruction. (See Listing 1.) Also, as we
have seen, for larger values of r the only condition to be tested is f(n) = r
∙ M. The important point here is that new_algo’s final form depends on
several aspects that have a visible impact on the performance, as we shall
see in the next section.

Performance analysis
As in the warm up, all measurements shown in this section concern the
evaluation of modular expressions for 65,536 uniformly distributed
unsigned 64-bit dividends in the interval [0, 106]. Charts show divisors on
the x-axis and time measurements, in nanoseconds, on the y-axis. Timings
are adjusted to account for the time of array scanning.

Figure 2

. 00 0 1 0 0 1 0 0 00 0 0 0 0 0 0 0 10

. 0 0 1 0 0 1 0 0 1 00 0 0 0 0 0 0 0 10

.+ 00 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 10

Figure 3

. 00 0 1 0 0 0 1 1 10 0 0 0 0 0 0 1 00

. 0 0 1 0 0 1 0 0 1 00 0 0 0 0 0 0 1 00

.+ 00 0 0 0 0 0 0 00 00 0 0 0 0 0 0 1 00

Figure 4

. 01 1 1 1 1 1 1 1 10 0 1 0 0 1 0 0 10

. 0 0 1 0 0 1 0 0 0 00 0 1 0 0 1 0 1 00

.+ 00 0 0 0 0 0 0 00 00 0 1 0 0 1 0 0 10
12 | Overload | April 2020

FEATURECASSIO NERI
For clarity, we restrict divisors to [1, 50] which suffices to spot trends.
(Results for divisors up to 1,000 are available in [qmodular].) In addition, we
filter out divisors that are powers of two since the bitwise trick (see
[Warren13]) is undoubtedly the best algorithm for them. The timings were
obtained with the help of Google Benchmark [Google] running on an AMD
Ryzen 7 1800X Eight-Core Processor @ 3600Mhz; caches: L1 Data 32K
(x8), L1 Instruction 64K (x8), L2 Unified 512K (x8), L3 Unified 8192K (x2).

Figure 5 concerns the evaluation of n % d == 0. Readers might already
be familiar with minverse’s zigzag and its great performance. Although
mcomp and mshift are even faster and have a pretty regular performance
across divisors (a good feature on its own), recall they are not available
for all values of n. They are shown here for the sake of completeness but
in practice a compiler cannot use them. Looking at new_algo, we observe
that its performance changes considerably across divisors depending on
the availability of different micro-optimisations. Actually, new_algo is not
very performant here and given the limitations of mcomp and mshift, we
conclude that minverse is the best option.

Figure 6 shows the evaluation of n % d == 1. Due to mshift’s and
mcomp’s limitation, they have now been excluded from this picture. The
situation changed considerably with respect to the previous case. Indeed,
new_algo beats the built_in algorithm for all divisors shown and for a
handful of them (e.g., d = 14) it even beats minverse.

Finally, Figure 7 considers the expression n % d > 1. Recall that minverse
cannot evaluate this expression. It is fair to say that new_algo beats the
built_in algorithm for most of the divisors shown in the picture.

Conclusion
We presented a new algorithm, designated here as new_algo, for the
evaluation of certain modular expressions. It overcomes limitations of
other algorithms previously seen in this series [Neri19] and [Neri20].
Specifically, minverse cannot be used for expressions like n % d < r
and mshift and mcomp cannot be efficiently implemented in 64-bit CPUs.
Alas, the new_algo has its own limitation: it is not available for all divisors.

Like mshift and mcomp, new_algo operates on an approximation of n / d.
which contains an error that increases with the numerator. Contrarily to
the others, new_algo performs steps to delay the error growth by using the
periodicity of binary expansions of rational numbers. In essence, errors on
the right side of the truncated expansion can be corrected using bits
appearing on the left.

Performance analysis shows that, in some cases, new_algo can be faster
than others. However, it is worth mentioning that no algorithm seen in this
series beats all others in all circumstances. Therefore, a compiler aiming
to emit the most efficient code for modular expressions needs to implement
all these algorithms and carefully pick the one that is best for the particular
case in hand. Amongst other aspects, this decision must consider the value
of the divisor, the type of the expression (e.g., n % d == r as opposed
to n % d > r), the size of operands (32 versus 64 bits). A particularly
interesting point about new_algo is that to emit efficient code just for this
one algorithm, the compiler (writer) has already to deal with many choices
of micro-optimisations.

This article brings this series to an end but more research is needed. To
compiler writers: “I don’t know why you say goodbye, I say hello.”

Acknowledgements
I am deeply thankful to Fabio Fernandes for the incredible advice he provided
during the research phase of this project. I am equally grateful to Lorenz
Schneider and the Overload team for helping improve the manuscript.

References
[Godbolt] https://godbolt.org/z/xsMLeP

[Google] https://github.com/google/benchmark

[Neri19] Cassio Neri, ‘Quick Modular Calculations (Part 1)’, Overload
154, pages 11–15, December 2019.

[Neri20] Cassio Neri, ‘Quick Modular Calculations (Part 2)’, Overload
155, pages 14–17, January 2020.

[QuickBench] http://quick-bench.com/
oF3Bm1mHz3_pbSuLHV4NdqY1edw

[qmodular] https://github.com/cassioneri/qmodular

[Warren13] Henry S. Warren, Jr., Hacker’s Delight, Second Edition,
Addison Wesley, 2013.

Figure 5

Figure 6

Figure 7
April 2020 | Overload | 13

https://godbolt.org/z/xsMLeP
https://github.com/google/benchmark
http://quick-bench.com/ oF3Bm1mHz3_pbSuLHV4NdqY1edw
http://quick-bench.com/ oF3Bm1mHz3_pbSuLHV4NdqY1edw
https://github.com/cassioneri/qmodular

FEATURE LUCIAN RADU TEODORESCU
Deconstructing Inheritance
Inheritance can be overused. Lucian
Radu Teodorescu considers how it
can go wrong and the alternatives.
fter glancing at the title, the reader might accuse me of trying to
destroy inheritance; probably by arguing that it should be replaced
by some other mechanism. But that is not the case; that is not my

intent. According to Merriam-Webster [MW], deconstruction is defined
as:

: a philosophical or critical method which asserts that meanings,
metaphysical constructs, and hierarchical oppositions (as between key
terms in a philosophical or literary work) are always rendered unstable
by their dependence on ultimately arbitrary signifiers

: the analytic examination of something (such as a theory) often in order
to reveal its inadequacy

My intent here is to reveal inheritance’s actual meanings versus the
meanings that most Object-Oriented programmers will infuse it with; to
show hidden oppositions in its structure, to show that some signifiers are
somehow arbitrary, and finally to reveal inner inadequacies. The main
point is to test the limits of inheritance, and how far we can go until our
beliefs about inheritance break.

One of the main topics of the article will be the relation between inheritance
and the is-a relationship, and how this connects to the principle of
correspondence (the common design belief that modelling OOP software
should maintain a correspondence to the real-world that the software
somehow models). Another important topic that is frequently referred to
in this article is the Liskov Substitution Principle (LSP) [Liskov94]
[Liskov88].

These two topics are a crucial point in analysing inheritance. They both
define what inheritance is, but also subversively work against it, creating
this amorphous concept that encompasses both good and bad.

Some simple problems are hard
Let’s look at a very simple OOP modelling problem: we want to model
the Rectangle and the Square concepts in software. For our problem, we
are only interested in dimensions. As the two concepts are closely related
in the real-world, we want to relate them with an inheritance in our
software. There are 2 main options:

 make Rectangle inherit from Square

 make Square inherit from Rectangle

Let us analyse both options.

Rectangle is-a Square
First thing: this is mathematically incorrect. In the real-world, the is-a
relationship is revered. But, let’s ignore this for a moment. Let’s look at
the code in Listing 1, which is modelling Rectangle is-a Square.

Not only is the mathematical relation broken, but the interface of the
Rectangle class is polluted by concerns that it doesn’t have (size is
confusing for Rectangle). Moreover, we can easily find an example (see
Listing 2) in which this breaks the LSP test (if you change the type, does
the code still functions well?).

Passing a Rectangle object to the increaseArea function will make
the code break. This variant is definitely not right. Let’s try the other one.

Square is-a Rectangle
Let’s look at the code in Listing 3 (overleaf).

Mathematically, this seems to be correct. And the interface of Square is
not necessarily polluted with the unneeded stuff (the inherited methods can
be hidden). Let’s now try to see if it passes the LSP test (see Listing 4).

Similarly to the previous test, if we assume that r is a veritable rectangle,
doubling the width will double the area. But, if r is a square, then the area
will increase by 4 times.

A

Listing 1

class Square {
 int size;
public:
 virtual int getSize() const { return size; }
 virtual void setSize(int x) { size = x; }
 virtual int getArea() const {
 return size*size; }
};
class Rectangle: public Square {
 int width;
public:
 virtual int getWidth() const { return width; }
 virtual int getHeight() const {
 return Square::getSize(); }
 virtual void setSize(int x) {
 Square::setSize(x); width = x; }
 virtual void setWidth(int x) { width = x; }
 virtual void setHeight(int x) {
 Square::setSize(x); }
 virtual int getArea() const {
 return width*getSize(); }
};

Listing 2

void increaseArea(Square& square) {
 auto oldArea = square.getArea();
 square.setSize(square.getSize() * 2);
 auto newArea = square.getArea();
 assert(newArea == 4 * oldArea);
}

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. As hobbies, he is working on his
own programming language and he is improving his Chuck Norris
debugging skills: staring at the code until all the bugs flee in horror. You
can contact him at lucteo@lucteo.ro
14 | Overload | April 2020

FEATURELUCIAN RADU TEODORESCU

Even though we have a good insight into what
the real-word concepts mean when we place

them into code, the metaphor breaks
Another problem is with the existence of the setWidth and setHeight
functions of the base class. No matter how we override them in the derived
class, the existence of these setters will make possible clients of
Rectangle break. If we ignore to override them, it’s easy to see that a
call to any of these will break the invariants of Square. If we throw
exceptions, we may break Rectangle clients that used to work ok. If we
change both the width and the height when one setter is called, then we
can find examples similar to Listing 4. There is no reasonable override to
these methods that cannot be proven to be wrong with the help of LSP.

More discussion
The previous examples showed us that, if we want to force the
mathematical relationship between area and the sizes of the square/
rectangle, no matter how we do the inheritance, we cannot do it right.

One good observation that will allow us to fix things is to remove the
setters; make objects of those two classes immutable. Something similar
to the code in Listing 5.

This code doesn’t break LSP as, once created, the objects cannot be made
to break their invariants. However, then the main question that arises is
what are actually gaining from the inheritance anyway? We occupy more
memory for the Square objects, and we make a few functions virtual, that
most probably are not used. The only thing that is reused is the area()

method, which, mostly by coincidence, did not need rewritten. Adding
inheritance here does not help us.

Let’s look at what others are saying about this problem:

The truth is that Squares and Rectangles, even immutable Squares and
Rectangles, ought not be associated by inheritance – Robert C. Martin

The class Square is not a square, it is a program that represents a
square. The class Rectangle is not a rectangle, it is a program that
represents a rectangle. […] The fact that a square is a rectangle does
not mean that their representatives share the ISA relationship. – Robert
C. Martin

ISA is useful when trying to model real world relations to make class
hierarchies intuitive, but classes are metaphors, and metaphors, if
extended too far will break – Bjørn Konestabo

One cannot use inheritance to model a very simple mathematical problem.
Even though we have a good insight into what the real-word concepts mean
when we place them into code, the metaphor breaks. Inheritance doesn’t
work the way the is-a relationship works in mathematics.

Concepts, is-a and inheritance
The previous sections showed us that inheritance cannot always properly
model the is-a relationships from the real-world. Let’s look at some more
cases in which the analogy with the real-world breaks.

Let’s think of modelling an elevator system. Besides the elevator car,
motor or doors, we have a lot of buttons. We have buttons on each floor
(up/down), we have buttons inside the elevator, both for floors and for
cancelling or alerting. We can model the system as shown in Figure 1
(overleaf). But we can also model it with Figure 2.

Or, we can simply model everything with just one Button class
(Figure 3).

To be honest, I would probably go for the last option, but that doesn’t
matter too much for this discussion.

Listing 3

class Rectangle {
 int width, height;
public:
 virtual int getWidth() const { return width; }
 virtual int getHeight() const { return height; }
 virtual void setWidth(int x) { width = x; }
 virtual void setHeight(int x) { height = x; }
 virtual int getArea() const {
 return width*height; }
};
class Square: public Rectangle {
public:
 virtual int getSize() const {
 return Rectangle::getWidth(); }
 virtual void setSize(int x) {
 Rectangle::setWidth(x);
 Rectangle::setHeight(x); }
};

Listing 4

void increaseAreaNew(Rectangle& r) {
 auto oldArea = r.getArea();
 r.setWidth(r.getWidth() * 2);
 auto newArea = r.getArea();
 assert(newArea == 2 * oldArea);
}

Listing 5

class Rectangle {
protected:
 const int width, height;
public:
 Rectangle(int w, int h) : width(w), height(h) {}
 virtual int getWidth() const { return width; }
 virtual int getHeight() const { return height; }
 virtual int getArea() const {
 return width*height; }
};
class Square: public Rectangle {
public:
 Square(int s) : Rectangle(s, s) {}
 virtual int getSize() const {
 return Rectangle::getWidth(); }
};
April 2020 | Overload | 15

FEATURE LUCIAN RADU TEODORESCU

each time we look at inheritance, instead of
thinking about is-a relationships, we should
think of behaves-like-a relationships
If we carefully look at the various methods (and others can easily be
found), we realise that the Button concept is probably the only real-world
concept. Things like TravelButton, InsideButton, and FloorButton are
concepts invented in software modelling, and then somehow look real.
Nobody thinks of an inside-button concept in the real world. Yes, we
sometimes distinguish between buttons that are inside the lift car and the
ones that are fixed to the floors, but that’s a property of the objects
themselves; inside-button and outside-button are not strong enough to be
concepts by themselves.

Without dwelling too much on the semantics of the concept concept, we
observe a discrepancy between concepts inspired between real-life
(concepts as building blocks of thoughts) and concepts that are generated

through our design process (concepts as sets, that can always be divided
into smaller sets). If we want to stick to the classes that should be inspired
by real-world concepts, we should probably abandon the second type of
concepts.

And now we’ve reached the fun part: what does ‘is-a’ mean? What does
it take for a concept to be another concept? Too bad for us that metaphysics
has not been able to figure out the answer to this issue in the last 2000+
years. While we wait for the philosophers to figure this out, we can safely
assume at least that we cannot say A is-a B if A and B belong to different
species. And, in our case, we just argued that InsideButton and Button
belong to different species: one in an artificially constructed concept and
one is a real-world inspired concept. That means that is improper to say
that InsideButton is-a Button (at least, not while considering Button as a
real-world concept).

A far more useful relation would be the behaves-like-a relationship. We
can safely say that InsideButton behaves-like-a Button, even if the two
concepts come from different worlds (e.g., a dolphin can behave like a fish
even if it’s not a fish). Moreover, from a software perspective, we are only
interested in the behaves-like-a relationship, and we can leave the is-a to
metaphysics. When I say D behaves-like-a B, what I mean is that D inherits
all the properties of B, that I can use D in all the places that I would use
B. But this is exactly what the Liskov Substitution Principle says.

So, in other words, each time we look at inheritance, instead of thinking
about is-a relationships, we should think of behaves-like-a relationships,
and then immediately think of LSP.

If my digression into semiotics and metaphysics left the users too
confused, maybe a quote would do better [Sutter04]:

The “is-a” description of public inheritance is misunderstood when
people use it to draw irrelevant real-world analogies: A square “is-a”
rectangle (mathematically) but a Square is not a Rectangle
(behaviorally). Consequently, instead of “is-a,” we prefer to say “works-
like-a” (or, if you prefer, “usable-as-a”) to make the description less
prone to misunderstanding.

To prove my point, this quote was taken from the chapter named ‘Public
inheritance is substitutability. Inherit, not to reuse, but to be reused’. Public
inheritance is substitutability. q.e.d.

On the fine details of LSP
Formally, LSP states the following [Liskov94]:

Subtype requirement: Let ?(x) be a property provable about objects x
of type T. Then ?(y) should be true for objects y of type S where S is a
subtype of T.

The informal principle goes the following way [Liskov88] (see also
[ObjectMentor03]):

If for each object o1 of type S there is an object o2 of type T such that
for all programs P defined in terms of T, the behavior of P is unchanged
when o1 is substituted for o2 then S is a subtype of T.

It basically defines what a subtyping relation should be, and by extension,
it describes what successful inheritance should be.

Figure 1

Button

TravelButtonTravelButton RescueButtoneButtoncue StopButton

FloorButtonFloorButton ElevatorButton

Figure2

Button

InsideButton FloorButton

RescueButtoncueButton StopButtontonStopButt GotoFloorButtonorButton UpButtonUpButton DownButton

Figure 3

Button

ButtonAppearance appearance
Functor command
16 | Overload | April 2020

FEATURELUCIAN RADU TEODORESCU

Inheritance was supposed to be an
abstraction feature, one that reduces

the complexity of the software
Now, if we assume a strict interpretation of the formal principle, we can
argue that polymorphism cannot happen under subtyping, rendering
inheritance useless.

Let us quickly sketch a proof. Let’s say that we have classes D and B, D
being a subtype of B. Then we have a method m, implemented as m1 in B
and as m2 in D, using a different implementation. In this case we can define
the provable property ϕ(x) as being ϕ(x) = x.m() has-exactly-the-same-
behaviour-as m1. It is clear that this property holds for any object of type
B, but it does not hold for objects of type D. The only way to make LSP
work for such properties is to make the methods have identical behaviour,
so, therefore, to eliminate polymorphism. q.e.d.

The reader might accuse us of exaggerating the matter by artificially
constructing counterexamples; something that cannot happen in practice.
But if we consider our statement in the context of the Open/Closed
Principle, then we can easily imagine how this is not exaggerating. After
all, with the types under the incidence of inheritance can be a closed
system, and we should be able to extend this system with functionality that
contains our counterexample. And this is not just a theoretical problem.
Myself, I’ve encountered violations of LSP built on the same pattern as
our proof above multiple times (of course, unintentional).

At this point, some readers might still argue that we should probably not
be applying the LSP principle so strictly. We should only consider the
properties relevant to the program in question. That is, if we want to make
D derive from B, we should consider all the ‘practical’ properties
associated with D and B. This idea is similar to the one that Sutter and
Alexandrescu argue in their ‘Public inheritance is substitutability. Inherit,
not to reuse, but to be reused’ recommendation; they argue that creating
inheritance should be the focus on the external code that may be able to
use this inheritance relationship.

But there is a great danger if we go in this direction. Inheritance was
supposed to be an abstraction feature, one that reduces the complexity of
the software – instead of looking at a large number of classes, we should
look at fewer classes. But instead, LSP forces us to consider all the visible
properties of the code, for all the users of the classes. It’s an anti-abstraction
feature.

Let’s take an example. In the previous section, the method to compute the
area of a rectangle or a square is a relatively good abstraction. It decouples
the implementation details (in this case very simple) from the code that
utilises it. We can easily document it and explain it to other engineers. But,
suddenly, if we add inheritance to any of these classes, we need to also
consider how this method can be used by the callers, coupling it to a
possibly large number of implementations. If we are not careful and
capture the usage patterns, we might end up with examples that break LSP,
and thus render the program invalid.

So, theoretically, LSP cannot be formally applied, and if we are using our
practical sense to apply it, we may be creating a larger problem for us to
solve. To paraphrase a programmer’s joke: we have one problem to solve;
let’s try to throw in inheritance to solve it – now we have two problems to
solve, and one of them is hard to solve.

LSP and invariants
Let’s now analyse how LSP applies from a different point of view: that of
maintaining invariants. The base class has some invariants. The main
question would be for a derived class on how it can change the behaviour
of the objects while maintaining the same invariants – after all, invariants
are visible properties, and LSP dictates that they should not change.

One can think of invariants as predicates that can be applied to objects.
Whenever the predicate returns false for an object, the invariant doesn’t
hold. Moreover, it can be chained as a conjunctive form giving a series of
conditions C1, C2, …, Cn. The predicate holds if all the conditions are true.
Can we add or remove conditions in the derived classes? Let’s look at both
cases. Let’s assume that the invariant of the base class is IB=C1C2C3.

First, let’s consider that case in which the derived class removes a
constraint, let’s say C3. The invariant for the derived class will be
ID=C1C2. Now, all the D objects that properly satisfy ID, but do not
satisfy C3, will not satisfy IB. LSP will not apply to those objects. Thus,
removing constraints in derived classes will break LSP.

In the other case, when we add constraints, things appear to work well.
Mathematically we can easily prove that the invariants of the base class
are met for the derived objects: IDIB.

But this works well only when all the invariants are known upfront. And,
most of the time, as software is in its essence just complexity [Brooks95],
not all invariants are known upfront – there are a lot of implicit
assumptions. Let’s say that IB=C1C2C3 and ID=C1C2C3C4, and
that C4 never applies to any object of B. In such cases, a user can
accidentally assume that C4 never happens. This becomes an accidental
assumption in B’s invariant: IB=C1C2C3C4. If this happens, then
again LSP is broken.

So, to make LSP work, we have to survey all user code to check for hidden
assumptions, before we can derive from B; both when trying to keep the
same or when adding new constraints to the invariant of the derived class.

Inheritance and composition
We can start with Robert C. Martin’s quote to set the basis for the
discussion in this section:

A pox on the ISA relationship. It’s been misleading and damaging for
decades. Inheritance is not ISA. Inheritance is the redeclaration of
functions and variables in a sub-scope. No more. No less.

Well, the content misses one big point: inheritance also adds subtyping
(allowing us to implicitly convert derived-class objects into base-class
objects); which in turn can be used to implement polymorphism. But the
rest is true.

If inheritance is just a redeclaration of functions and variables, then we can
easily transform it into composition. Instead of making D derive from B,
we can make D contain a B.

Therefore, if subtyping is not needed, it’s better to just use composition
instead of inheritance as we don’t have to deal with the complications
introduced by subtyping.
April 2020 | Overload | 17

FEATURE LUCIAN RADU TEODORESCU
The same conclusion reaches Sutter and Alexandrescu in their C++ coding
standards: 101 rules, guidelines, and best practices book [Sutter]; see the
section called ‘Prefer composition to inheritance’. I won’t repeat the
arguments, as the idea is relatively straightforward.

Inheritance is stronger than friendship
Sutter and Alexandrescu argue that inheritance is almost as strong as
friendship (same section of [Sutter]). My opinion is that we should move
forward and argue that inheritance is even stronger than friendship.

Making an analogy with real-life, one’s children are closer than one’s
friends. The children can be friends, but in general, are more than that. Yes,
children, especially young ones, may not have access to all the information
their parent shares with friends but may dramatically alter the life of the
parent.

The analogy works with classes. Yes, derived classes may not access all
the fields of the base class, but they can seriously affect the space of the
invariants. Future development in the derived classes may involve
changing the invariants in the base class, and therefore affecting all the
other derived classes, and all their users.

Friendship can affect private data, the internals of the class. But, if
encapsulation is done right, this will not change the public interface of the
class, and therefore the behaviour of the clients. Like any abstraction,
class-level encapsulation restrains the impact of a change. In contrast, an
inheritance that changes the invariants (directly or indirectly) is a public
change, and it affects all the clients of the class.

To exemplify the impact of inheritance, let’s look at Figure 4. Let’s assume
that the AirplaneUser needs a change to the flying behaviour. This
affects the Airplane class, which changes the invariants of
FlyingThing, which, in turn, affects Duck and finally DuckUser. In
effect, the AirplaneUser and DuckUser classes are indirectly coupled.

This is stronger than friendship. Friendship may change your internal state,
but if it’s not done particularly badly, it tends not to break your invariants,
and your users are isolated from the change.

Looking only at the difference between protected and private access is
missing the larger impact of inheritance. However, if we look at the bigger

picture, if we consider LSP and the example above, we can conclude that
inheritance implies more coupling than friendship.

Conclusions
In this article, we have tried to cast a critical perspective on inheritance,
as one of the most used (or abused) features of OOP. The intent of this
critical perspective was not to prove that inheritance should not be used at
all, but rather to test its limits. What becomes apparent is that this is not a
feature that should be abused, and great care needs to be taken when adding
new inheritance to a software system, not to break existing code. In other
words, we don’t have local guarantees when adding inheritance.

We started with a classic problem of Rectangle and Square, and have
shown that inheritance doesn’t quite make sense in code, even though a
square is a rectangle in mathematics. We explored the meaning of the is-
a relationship and its relation to the real-world; after all, a common strategy
in OOP modelling is to use real-world analogies. We concluded that this
analogy works only to a point. Inheritance is not is-a. Furthermore, the
term is-a can be confusing (unless we solve a large part of metaphysics).
A slightly more appropriate way to think of inheritance is to think of it as
a behaves-like-a relationship; i.e., what LSP preaches.

Moving forward, we showed that LSP is hard to apply. If we want to be
strictly formal, we cannot apply it. In practice, we can, however, apply it,
but not as easily as we may think. We cannot have local reasoning (looking
just at the base class and the derived code). We need to look at all the user
code and all the implicit assumptions that this code makes. Depending on
the software, there may be semantic leaks towards all parts of the code;
yes, that may be a badly structured code, but there is no clear algorithm
that indicates whether we have such semantic leaks. As much as we would
like to put boundaries to the implications of inheritance and LSP, it seems
that we can’t.

We also briefly argued that whenever possible composition should be
preferred to inheritance. And, to add one more negative aspect to
inheritance, we’ve argued that inheritance is a stronger relationship than
friendship, relation widely considered harmful.

And, as we are enumerating some negative aspects of inheritance, we
should mention the presentation called Inheritance Is The Base Class of
Evil, by Sean Parent [Parent13] – the name is too good not to be mentioned.

But again, the purpose of our deconstruction is not to show that inheritance
should not be used. The main idea is to better know its limits, to find its
weak points, and to find its internal inadequacies; when it can be applied,
and where it can generate problems. There are cases in which inheritance
is, at least useful, if not more. But this can be the topic of another article.

References
[Brooks95] Frederick P. Brooks Jr. (1995), The Mythical Man-Month:

Essays on Software Engineering, 20th Anniversary Edition,
Addison-Wesley

[Liskov88] Barbara H. Liskov (1988), Data Abstraction and Hierarchy

[Liskov94] Barbara H. Liskov, Jeannette M. Wing (1994), A behavioral
notion of subtyping, ACM Transactions on Programming Languages
and Systems

[MW] Merriam-Webster (2020), Definition of ‘deconstruction’,
https://www.merriam-webster.com/dictionary/deconstruction

[ObjectMentor03] Object Mentor (2003), ‘The Liskov Substitution
Principle’, https://web.archive.org/web/20030403055009/http://
www.objectmentor.com:80/resources/articles/lsp.pdf

[Parent13] Searn Parent (2013), ‘Inheritance Is The Base Class of Evil’,
GoingNative 2013, https://channel9.msdn.com/Events/GoingNative/
2013/Inheritance-Is-The-Base-Class-of-Evil

[Sutter04] Herb Sutter, Andrei Alexandrescu (2004), C++ coding
standards: 101 rules, guidelines, and best practices, Addison-
Wesley Professional

Figure 4

FlyingThing

flyingParams

fly()
engineStart()
prepareLanding()
checkWings()
lotsOfFlyingLogic()

Duck

display()
fly()
quark()
swim()

p
c
l

prepareLanding()
checkWings()
otsOfFlyingLogic()

Duck

display()
fly()fly()
quark()
swim()

Airplane

fly()
engineStart()
prepareLanding()
checkWings()

DuckUserDuckUseAirplaneUser
18 | Overload | April 2020

FEATURENORMAN WILSON
Using Compile Time Maps
for Sorting
Compile time sorting can be interesting.
Norman Wilson shows how to sort a map.
n the previous article I described a way of doing compile time sorting.
One of the questions that came out of this was why would anyone want
to do that? The first answer is just for fun, it’s just pretty for its own sake,

and I think we as programmers ought to be able to appreciate that even if
there is no practical use. To put it another way, quoting Albert Einstein,
what use is a newborn baby? Secondly, the sorting algorithm illustrates
some techniques that can be applied more generally to solve other
problems – really it’s just playing with parameter pack expansion. Last but
not least, there are real reasons why you’d want to sort at compile time and
in this article I’m going to show you one.

Firstly though I’m going to show another little trick, apply it to create yet
another compile time sorting algorithm and then use that to solve a
practical problem.

A simple compile time map
Look at the following bit of code.

 template<typename... Members>
 struct Map: Members... {};

If we instantiate Map with a pack of types, (assuming we can derive from
all of the types) we end up with a type that is a composition of these.
Furthermore we also know we can implicitly cast from the composed type
to any of its bases. So given:

 struct A {}; struct B {}; struct C {};
 auto abc = Map<A, B, C>{};

Then I can select the A base of abc like this:

 inline decltype(auto) getA(const A& a)
 { return a; }
 const A& a = getA(abc);

And similarly for the other bases. Nothing particularly radical about that,
but what if our bases look like this?

 #include <cstddef>

 template<std::size_t key, typename Value>
 struct Pair { using type = Value; };

Now we can write a generalised get.

 template<std::size_t key, typename Value>
 inline constexpr decltype(auto)
 get(const Pair<key, Value>& result)
 { return result; }

The crucial thing is that type deduction now comes into play. So given:

 using ABCMap = Map<Pair<0, A>, Pair<1, B>,
 Pair<2, C> >;
 ABCMap abcMap;

I can write:

 #include <utility>
 #include <type_traits>

 const auto& x = get<1>(abcMap);

We have constrained key and, since our keys are unique, when the
compiler tries to deduce Value there is only one possible solution,
abcMap must be cast to const Pair<1, B>&. The expression is
unambiguous and x ends up referencing the appropriate base of abcMap.

 static_assert(std::is_same_v<std::decay_t
 <decltype(x)>, Pair<1, B> >,
 "get() pulls out the corresponding base.");

We can translate this back to the world of types with this slightly ugly
incantation:

 template<typename M, std::size_t key>
 using Get = typename std::decay_t<
 decltype(get<key>(std::declval<M>()))>::type;
 static_assert(std::is_same_v<Get<ABCMap, 2>, C>,
 "Get works too.");

So we have a very simple way of mapping from integers to types. The key
doesn’t have to be a non-type and it doesn’t have to be an int, but it does
have to be a compile time construct. There are other ways of making
compile time maps but I quite like this one as it’s simple, and uses the basic
rules of C++ that we all (should) understand. This map type is obviously
very similar to std::tuple – but we’ll come back to that later. The order
we declare the pairs in the mapping is not important. We could have said:

 using ABCMap2 = Map<Pair<2, C>, Pair<1, B>,
 Pair<0, A> >;

Type deduction will still produce the same result – another MacGuffin.

Another way to sort
If we can rank each element of a set, then sorting is just forming a mapping
from rank to element. In other words a sorted sequence allows us to access
the elements by rank. Let’s express that in code.

Let’s start with a simple type:

 template<typename... Ts> struct TypeList {};

Primary definition. We require an index_sequence, some traits to
generalize how we do the sort and some types to sort.

 template<typename Index, typename Traits,
 typename... Ts> struct MapSortImpl;

Partially specialize to break out the index_sequence. The index pack
gives us 0..sizeof..(Ts) - 1. This corresponds to the position of each
T in Ts. We’ll need this throughout the following code and a shorthand to
use traits.

I

Norman Wilson has been coding since he was a spotty teenager
in the early 80s and learned C++ while at university. Since then
he’s spent most of his career in finance. When not staring at
template error messages, he rock climbs, makes music and helps
bring up three daughters. You can contact him at
norman.wilson+accu@gmail.com
April 2020 | Overload | 19

FEATURE NORMAN WILSON

To get a space-efficient layout, we should sort
our members by size, biggest to smallest.
Efficient layouts make better use of cache and
that makes code go faster.
 template<std::size_t... index, typename Traits,
 typename... Ts>
 struct MapSortImpl<std::index_sequence<index...>,
 Traits, Ts...>: Traits
 {

Note we’ve derived from Traits to make this easier.

 template<typename T>
 static constexpr auto value()
 { return Traits::template value<T>(); }
 using Traits::compare;

How do we find the rank of an element? Firstly we count up how many
other elements rank lower than it using the traits compare function.

We then consider equal ranking elements. We want a stable sort, so we
add on the count of the equal elements preceding this element in the list.
This keeps equal ranking elements in their existing order and ensures every
element has a well defined place.

In order to find the rank of element T which was at position pos in Ts, we
need the following function:

 template<typename T, std::size_t pos>
 static constexpr auto rankOf()
 {
 auto countOfTsWithLesserValue =
 (compare(value<Ts>(), value<T>()) +...);
 auto countOfEqualTsPrecedingInList =
 ((value<T>() == value<Ts>() && index < pos)
 +...);
 return countOfTsWithLesserValue +
 countOfEqualTsPrecedingInList;
 }

Now we can define the ranking as a mapping from rank to T for each T in Ts.

 using Ranking = Map<Pair<rankOf<Ts, index>(),
 Ts>...>;

Can you dig it? What I’m saying here is Ranking is a map whose keys
are the ranks (defined by rankOf()) of the corresponding Ts. In other
words, it’s a map from sorted position to type.

We can produce the sorted result by Getting from the ranking map in
sequence.

 static constexpr auto sort()
 { return TypeList<Get<Ranking, index>...>{}; }
 };

Finally some syntactic sugar.

 template<typename Traits, typename... Ts>
 inline constexpr auto mapSort(TypeList<Ts...>)
 {
 return
 MapSortImpl<std::index_sequence_for<Ts...>,
 Traits, Ts...>::sort();
 }

Does it work? See Listing 1.

What’s the point?
Consider:

 using T1 = std::tuple<bool, std::int16_t, char,
 std::int32_t, std::int64_t>;
 static_assert(sizeof(T1) == 24,
 "pathological case std::tuple pads");

 using T2 = std::tuple<std::int64_t, std::int32_t,
 std::int16_t, bool, char>;
 static_assert(sizeof(T2) == 16,
 "efficient layout sorts by size");

We all know that on most architectures types have an alignment. And we
ought to know that to get a space-efficient layout, we should sort our
members by size, biggest to smallest. Efficient layouts make better use of
cache and that makes code go faster.

In many cases where we define a std::tuple we can rearrange the
members by hand for efficiency, but sometime we might not be able to –
maybe the type is generated by TMP, or maybe we want future proof our
code against changes which affect the alignments. So can we come up with
something like a std::tuple but which automatically lays itself out
efficiently? Let’s try.

Firstly we’ll revisit the compile time map we started with, but with a little
tweak. Field now holds a value.

 template<std::size_t key, typename T>
 struct Field { T value; };

get() returns that value.

 template<std::size_t key, typename T>
 decltype(auto) get(const Field<key, T>& f)
 { return (f.value); }

Listing 1

 #include <functional>

 template<int i>
 using Int = std::integral_constant<int, i>;

 struct Traits {
 template<typename T>
 static constexpr auto value()
 { return T::value; }
 static constexpr std::less<> compare;
 };
 using In = TypeList<Int<42>, Int<7>, Int<13>,
 Int<7> >;
 using Out = decltype(mapSort<Traits>(In{}));
 static_assert(
 std::is_same_v< Out, TypeList<Int<7>, Int<7>,
 Int<13>, Int<42> > >, "mapSort works!");
20 | Overload | April 2020

FEATURENORMAN WILSON
We can actually reuse the Map template but the name no longer makes
sense so I’ll rename it.

 template<typename... Ts>
 using Tuple = Map<Ts...>;

To prove this works I define the contents of Listing 2.

So we’ve defined the very barest bones of a tuple template. I leave it to
the reader to flesh out the missing parts. The important difference from
std::tuple is that we explicitly associate a key with an element. The
keys could be given out of order and could be non-contiguous, but the
association between key and type is still maintained. So we can define a
tuple where the elements can be reordered to form a space efficient layout?
All we need to do now is sort the types by size. Listing 3 shows we do that.

Footnote: is it any good?
The sort I presented in the previous article – no. It’s actually astonishingly
bad. Never in all my time as a programmer have I burned so many clock
cycles on so simple a problem. So lets add another reason to why you’d
want to do a compile time sort – you can go and make a coffee while your
code is compiling.

What about mapSort? That’s actually much better but is still at least n2.
I’ve pulled down the code for skew_sort that comes from the Stack
Overflow thread [Stackoverflow] that started all this off to compare. The
graphs show this is radically faster than both, but blows the compiler’s
maximum template recursion depth for data sets larger that 1024. Clearly
the story is not over. Can we write a non-recursive sort in n log(n)? Will
it be any good? Find out next time.

Reference
[Stackoverflow] ‘C++ calculate and sort vector at compile time’,

available from https://stackoverflow.com/questions/32660523/c-
calculate-and-sort-vector-at-compile-time

Listing 2

template<std::size_t key, typename T,
 typename Tuple>
constexpr auto checkType(Tuple&& t)
{
 return
 std::is_same_v<std::decay_t
 <decltype(get<key>(t))>, T>;
}
auto boolShort = Tuple<Field<0, bool>, Field<1,
 std::int16_t> >{};
static_assert(checkType<0, bool>(boolShort),
 "pulls out bool");
static_assert(checkType<1,
 std::int16_t>(boolShort), "pulls out short");

Listing 3

// First we define an appropriate traits class.
struct EfficientLayoutTraits
{
 // We want to sort by size.
 template<typename T>
 static constexpr auto value()
 { return sizeof(T::value); }

 // Biggest first.
 static constexpr std::greater<> compare;
};

// A little helper that transforms a TypeList
// to a Tuple.
template<typename... Ts>
auto typeListToTuple(TypeList<Ts...>)
{ return Tuple<Ts...>{}; }

// Shorthand to expand index_sequence. This little
// function deserves an article in itself.
template<std::size_t... index, typename F>
auto applySequence(std::index_sequence<index...>,
 F&& f)
{
 return f(std::integral_constant<std::size_t,
 index>{}...);
}

// Given some Ts create a Tuple with efficient
// layout.
template<typename... Ts>
auto makeEfficientLayout()
{
 // Form a list of Fields containing Ts,
 // indexed by declaration order.
 auto unsortedFields = applySequence(
 std::index_sequence_for<Ts...>{},
 [](auto... index)
 { return TypeList<Field<index, Ts>...>{}; });
 // Sort it using our traits.
 auto sortedFields =
 mapSort<EfficientLayoutTraits>
 (unsortedFields);
 // Turn it into a Tuple.
 return typeListToTuple(sortedFields);
}
// Our previous pathological case.
auto efficientTuple =
 makeEfficientLayout<bool, std::int16_t,
 char, std::int32_t, std::int64_t>();

// Tuple elements have been reordered to use
// minimum space.
static_assert(sizeof(efficientTuple) ==
 16, "QED");
// But are accessed by original declaration order.
static_assert(checkType<0,
 bool>(efficientTuple));
static_assert(checkType<1,
 std::int16_t >(efficientTuple));
static_assert(checkType<2,
 char>(efficientTuple));
static_assert(checkType<3,
 std::int32_t >(efficientTuple));
static_assert(checkType<4,
 std::int64_t >(efficientTuple));

int main(){}
April 2020 | Overload | 21

FEATURE ALASTAIR HARRISON
Profiting from the Folly of Others
Code referred to as a hack can raise an eyebrow. Alastair Harrison
learns about accessing private members of C++ classes by
investigating a header called UninitializedMemoryHacks.h
always enjoy browsing through the source code of libraries written by
other people. With so many dark corners in C++ I often come across
new and interesting ideas. I’d like to share one such example from the

‘Folly’ library. Not because I think it illustrates best practice (it doesn’t!),
but because I learned something about C++ in the process of deciphering it.

Folly [GitHub] is a C++ library developed at Facebook and released under
the open-source Apache 2.0 licence. It contains useful algorithms,
vocabulary types and utility functions. Hidden amongst the main-stream
functionality are some utilities tailored towards the more unusual
situations that a C++ developer may find themselves in.

The code I’d like to focus on lives in a header with the ominous title of
UninitializedMemoryHacks.h. Its subtle use of loopholes and
language features is fascinating, despite its obviously questionable nature.

The file contains a collection of helper functions that do reprehensible
things in the name of performance. In particular, it provides a set of
over loaded func t ions in the folly:: namespace , named
resizeWithoutInitialization and whose purpose is to ‘resize
std::string or std::vector without constructing or initializing new
elements’.

It does what?
Normally when we call resize to increase the size of a std::vector,
the container first checks to see if the existing capacity is sufficient to hold
the requested number of elements. Even when the existing capacity is
sufficient, the implementation needs to do something with the newly added
elements. They each need to be constructed or initialized to ensure that they
are in a valid state. For trivial types such as int it’s actually OK to leave
the values uninitialized, as long as we don’t try to read them before we’ve
first written something to them. But std::vector always forces us to
pay the cost of initialization, even if we were intending to overwrite all of
the newly initialized elements straight after calling resize.

In contrast, when we call folly::resizeWithoutInitialization
on a std::vector with sufficient capacity, it simply reaches in to the
private implementation and moves the pointer representing the end of the
sequence. The memory for the new elements is left uninitialized, leaving
the caller responsible for that task.

The first time I looked at the implementation of this function, I was amazed
and alarmed to see it somehow bypassing the normal C++ access
restrictions to modify a private member variable of a standard library
component. I say ‘somehow’ because the precise mechanism was so
thoroughly obfuscated behind layers of macros, template trickery and
arcane member function pointer syntax that it might as well have been

magic. The baffling part was that it claimed to pull off this magic trick
without invoking any undefined behaviour. I had to know how this
worked!

I won’t dwell further on the specifics of how Folly meddles with the
internals of the standard containers. The interesting part is how it bypasses
the access control mechanisms of C++. Herb Sutter has a Guru of the Week
article [GotW] discussing three nefarious techniques for accessing private
members of a class, though none of them quite matches the applicability
of the method in the Folly library. The first two are illegal and the third
involves writing a sneaky member function specialization, which makes
it relevant only to classes that contain member function templates.

What’s interesting about the technique used in Folly is that it’s able to
freely access private members of any class, without any particular
structural requirements. It does this with a clever combination of
infrequently-used language features and a small loophole allowed by the
C++ standard.

The effect
Let’s take a simple class with a private member function:

 class Widget {
 private:
 void forbidden();
 };

Our aim is to write a free function called hijack which takes a reference
to a Widget as input and calls the Widget::forbidden() member
function on it. Assume that the Widget class is closed for modification
by us, so we can’t just change the private to public, or make hijack
a friend of Widget.

Obviously we can’t call the private member function directly:

 void hijack(Widget& w) {
 w.forbidden(); // ERROR!
 }

because the compiler will stop us:

 In function 'void hijack(Widget&)':
 error: 'void Widget::forbidden()' is private
 within this context
 | w.forbidden();
 | ^

Using techniques from the Folly library, we’ll build up a solution piece-
by-piece. This article covers the specific case of calling private member
functions, but the approach is equally applicable to accessing and mutating
private member variables in a class. The underlying techniques all work
in C++98, but some more modern features will be used to ease exposition.

A syntax refresher for pointers to member functions
We’ll be using pointers to member functions (PMFs) extensively, so it’s
worth revisiting their syntax before we dive in further. PMFs enable a

I

Alastair Harrison Alastair started out as a robotics researcher but
accidentally became a C++ build engineer because nobody else
wanted to do it. These days he appreciates the fact that his customers
are all in the same building as him and that they are apparently unfazed
by his eagerness to delete old code. He can be contacted at
aharrison24@gmail.com
22 | Overload | April 2020

FEATUREALASTAIR HARRISON

There’s a curious loophole in the C++
standard around the use of explicit

template instantiation which allows
us to refer to private class members
primitive form of polymorphism over methods in a class. For the sake of
exposition, let’s start with a hypothetical calculator class (Listing 1).

Arguably the easiest way to work with pointers to member functions is
through type aliases. The type alias is specific to a given class, but the
pointer can be bound to any member function in the class that matches the
signature. In the case of Calculator, both multiply and add take a
single float argument and return void, so we can use the same type alias
for both. It looks like this:

 using Operation = void (Calculator::*)(float);

We can then store the address of either multiply or add. But value
doesn’t match the signature, so its address cannot be assigned to an
Operation pointer.

 // OK
 Operation op1 = &Calculator::add;
 Operation op2 = &Calculator::multiply;

 // ERROR! Signature mismatch
 Operation op3 = &Calculator::value;

We’ll need to make a new alias to match the signature of value:

 using Getter = float (Calculator::*)() const;

 // OK - signature now matches
 Getter get = &Calculator::value;

A pointer to a member function isn’t very useful unless we know which
object instance we want to call it on. Here’s the syntax for calling members
of Calculator through their pointers:1

 Calculator calc{};
 (calc.*op1)(123.0f); // Calls add
 (calc.*op2)(10.0f); // Calls multiply

 // Prints 1230.0
 std::cout << (calc.*get)() << '\n';

One of the interesting things about pointers to member functions is that
they can be bound to private member functions. That’s the first piece of
the Folly puzzle.

Puzzle piece 1: Pointers to private member functions
can be called from any scope
Suppose the author of the Widget class had helpfully provided a means
to obtain a pointer to the Widget::forbidden() member function.
Once we have that pointer, we are able to call it from any scope where we
have a Widget available (Listing 2).

That’s useful to know, but most classes don’t offer to hand out pointers to
their private member functions. We need to find a sneakier way to get hold
of one from outside of the class scope.

There’s a curious loophole in the C++ standard around the use of explicit
template instantiation which allows us to refer to private class members.
That gives us the second piece of the Folly puzzle.

Puzzle piece 2: The explicit template instantiation
loophole
The C++17 standard contains the following paragraph (with the parts of
interest to us marked in bold):

17.7.2 (item 12)
The usual access checking rules do not apply to names used
to specify explicit instantiations. [Note: In particular, the template
arguments and names used in the function declarator (including
parameter types, return types and exception specifications) may be
private types or objects which would normally not be accessible
and the template may be a member template or member function
which would not normally be accessible.]1. C++17 introduced the std::invoke template, which gives a unified

syntax for working with callables.

Listing 1

class Calculator {
 float current_val = 0.f;
 public:
 void clear_value() { current_val = 0.f; };
 float value() const {
 return current_val;
 };

 void add(float x) { current_val += x; };
 void multiply(float x) { current_val *= x; };
};

Listing 2

class Widget {
 public:
 static auto forbidden_fun() {
 return &Widget::forbidden;
 }
 private:
 void forbidden();
};

void hijack(Widget& w) {
 using ForbiddenFun = void (Widget::*)();
 ForbiddenFun const forbidden_fun =
 Widget::forbidden_fun();

 // Calls a private member function on the Widget
 // instance passed in to the function.
 (w.*forbidden_fun)();
}

April 2020 | Overload | 23

FEATURE ALASTAIR HARRISON
To understand the reason behind this curiosity, we need to discuss the
explicit template instantiation mechanism for a moment.

Suppose we’ve got a Company class with an internal private member
function template, update_employee. Perhaps there is one particular
template argument, OnSiteEmployeePolicy which is expensive to
compile, but used regularly. We’d like to avoid the cost of instantiating
that version of the template in lots of translation units. We can achieve this
by explicitly instantiating the member template in just one translation unit
and marking it as extern everywhere else. See Listing 3 (company.h)
and Listing 4 (company.cpp).

Brushing aside the question of how someone ever snuck such an awkward
API design through code review, notice how the template instantiation
mechanism needs to allow a reference to a private member of Company
– Company::update_employee – in a context where we would not
normally be able to (i.e. outside the scope of the Company class). That’s
the reason for the exception in the C++ standard that allows for private
types to appear in explicit template instantiations.

It’s also the crucial loophole that Folly takes advantage of. We can’t relax
just yet, though. There’s still some work to be done.

Puzzle piece 3: Passing a member-function pointer as
a non-type template parameter
In C++, template arguments are usually types, but there is some support for

non-type template parameters if they are of integral or pointer type.2

Conveniently enough, it’s perfectly legal to pass a pointer-to-member-
function as a template argument.3 Listing 5 is an example of what that
looks like.

The intermediate SpaceShipFun alias hampers the genericity of the
SpaceStation template, so we can move the type of the pointer-to-
member-function into the template arguments too (Listing 6).

We can take that a step further and have the compiler deduce the type of
the member function for us:

 SpaceStation<
 decltype(&SpaceShip::dock),
 &SpaceShip::dock
 > space_station{};

That relieves us of some of the burden of having to pass the member
function signature to the template. We’ll stick with this approach for the
rest of article as it’s what’s used in the Folly library, but it’s worth
mentioning that C++17’s template <auto> feature removes the need
for the first template parameter entirely.4

Passing a private pointer-to-member-function as a template
parameter
Let’s combine the explicit template instantiation loophole with the ability
to pass member function pointers as template parameters. The
HijackImpl struct receives a pointer to Widget::forbidden() as a
template parameter (see Listing 7).

Brilliant! We’ve instantiated a template that is able to reach in and call the
forbidden() member function on any Widget that we care to pass in.
So we just have to write the free function, hijack and we can go back to
watching cat videos on YouTube, right?

 void hijack(Widget& w) {
 HijackImpl<
 decltype(&Widget::forbidden),
 &Widget::forbidden
 >::apply(w);
 }

2. C++20 will significantly relax the restrictions on non-type template
parameters.

3. I imagine it’s staggeringly useful to someone.

Listing 3

class OnSiteEmployeePolicy {
 // ... contains daring and unfettered use of
 // ... hairy template meta-programming tricks.
};
class Company {
 private:
 template <typename EmployeePolicy>
 void update_employee(int employee_id) {
 // ...
 }
};
// Prevents implicit instantiation of a specific
// specialization.
extern template
Company::update_employee<OnSiteEmployeePolicy>;

Listing 4

#include "company.h"

// Explicit instantiation of the template only
// needs to happen in a single translation unit.
template
Company::update_employee<OnSiteEmployeePolicy>;

4. Readers lacking both a C++17 compiler and a certain amount of moral
fibre have probably already worked out how to use a macro to remove
the duplication in the template arguments.

Listing 5

class SpaceShip {
 public:
 void dock();
 // ...
};

// Member function alias that matches the
// signature of SpaceShip::dock()
using SpaceShipFun = void (SpaceShip::*)();

// spaceship_fun is a pointer-to-member-function
// value which is baked-in to the type of the
// SpaceStation template at compile time.
template <SpaceShipFun spaceship_fun>
class SpaceStation {
 // ...
};

// Instantiate a SpaceStation and pass in a
// pointer to member function statically as a
// template argument.
SpaceStation<&SpaceShip::dock> space_station{};

Listing 6

template <
 typename SpaceShipFun,
 SpaceShipFun spaceship_fun
>
class SpaceStation {
 // ...
};

// Now we must also pass the type of the pointer to
// member function when we instantiate the
// SpaceStation template.
SpaceStation<
 void (SpaceShip::*)(),
 &SpaceShip::dock
> space_station{};
24 | Overload | April 2020

FEATUREALASTAIR HARRISON
The only problem is that it doesn’t work. The compiler sees through our
ruse and raps us smartly on the knuckles:

 error: 'forbidden' is a private member of 'Widget'
 HijackImpl<decltype(&Widget::forbidden),
 &Widget::forbidden>::hijack(w);

The use of the HijackImpl template inside the hijack function is not
an explicit template instantiation. It’s just a ‘normal’ implicit instantiation.
So the loophole doesn’t apply. It’s time to phone a friend for help with
solving the next piece of the puzzle.

Puzzle piece 4: A friend comes to our aid
Because we’re not allowed to refer to Widget::forbidden inside our
hijack function, we must solve the conundrum of accessing the value of
the ForbiddenFun template parameter without making any direct
reference to the HijackImpl<...> template. This apparently
unreasonable requirement is easily solved with a shrewd application of the
friend keyword.

Let’s take another step back from the task in hand and look at some of the
different effects one can achieve when marking a free function as a friend
of a class. The behaviour depends on whether the class contains only a
declaration of the function (i.e. function signature only), or whether the
complete definition (including the function body) appears inside the class.

‘friend’ function declarations
Most C++ developers will be familiar with the pattern of placing a free
function declaration inside of a class definition and marking it as a
friend. The definition of the free-function still lives outside of the class,
but is now allowed to access private members of the class. (See Listing 8.)

If we could make hijack be a friend of Widget then the compiler
would allow us to refer to Widget::forbidden inside the hijack
function. Alas, this option is unavailable because the rules of our game
don’t allow us to modify Widget. Let’s try something else.

Inline ‘friend’ function definitions
It’s also possible to define a friend function inside a class (as opposed
to just declaring it there). This isn’t something seen as often in C++ code.
Probably because when we try to call the free function, the compiler is
unable to find it! (See Listing 9.) Here’s the compile error:

 error: 'frobnicate' was not declared in this scope
 | frobnicate();
 | ^

As before, frobnicate() is still a free function that lives in the global
namespace, but it behaves quite differently under name lookup now that
it is defined inside the Gadget class. A friend function defined inside
a class is sometimes known as a ‘hidden friend’ [JSS19] [Saks18]. Hidden
friends can only be found through Argument Dependent Lookup (ADL)
and ADL only works if one of the arguments to the function is of the
enclosing class type. In the above example frobnicate() takes no
arguments, so argument dependent lookup won’t happen. The result is that
frobnicate() can’t be called from anywhere. Not even from within
frobnicate() itself!

If we add a parameter of the enclosing class type to frobnicate() then
we’re able to call it via ADL (Listing 10, overleaf).

Making hidden friends visible
The hidden-friend ADL trick can be very useful; it’s an ideal tool when
writing operator overloads for user-defined types. But we’ll use a slightly
bigger hammer for our hijack function. There’s another way of allowing
the compiler to find hidden friends, and that is to put a declaration of the
function in the enclosing namespace (Listing 11).

This is exactly the opposite of the usual pattern of defining a free function
and then placing a friend declaration for it inside of a class. The new
behaviour is almost identical except for one critical difference: when the
enclosing class is a template, the free function has access to the template
parameters!

Listing 7

// The first template parameter is the type
// signature of the pointer-to-member-function.
// The second template parameter is the pointer
// itself.
template <
 typename ForbiddenFun,
 ForbiddenFun forbidden_fun
>
struct HijackImpl {
 static void apply(Widget& w) {
 // Calls a private method of Widget
 (w.*forbidden_fun)();
 }
};

// Explicit instantiation is allowed to refer to
// `Widget::forbidden` in a scope where it's not
// normally permissible.
template struct HijackImpl<
 decltype(&Widget::forbidden),
 &Widget::forbidden
>;

Listing 8

class Gadget {
 // Friend declaration gives `frobnicate` access
 // to Gadget's private members.
 friend void frobnicate();

 private:
 void internal() {
 // ...
 }
};

// Definition as a normal free function
void frobnicate() {
 Gadget g;
 // OK because `frobnicate()` is a friend of
 // `Gadget`.
 g.internal();
}

Listing 9

class Gadget {
 // Free function declared as a friend of Gadget
 friend void frobnicate() {
 Gadget g;
 g.internal(); // Still OK
 }

 private:
 void internal();
};

void do_something() {
 // NOT OK: Compiler can't find frobnicate()
 // during name lookup
 frobnicate();
}

April 2020 | Overload | 25

FEATURE ALASTAIR HARRISON
Using friends to pilfer template parameters
I trust you will be at least a little unsettled to discover that the program in
Listing 12 is valid.

What’s happening is that the observe() function is not defined until the
point at which the SpookyAction template is instantiated (by its use in
the main function). There is a single definition of the observe()
function, because there is a single instantiation of the SpookyAction
template. The really useful part is that the observe() function gains
access to the template parameter of the SpookyAction<42>
instantiation that caused it to be defined.

Of course things go wrong very quickly if we try to instantiate any more
versions of the SpookyAction template, as each one results in a
redefinition of the observe() function and an angry compiler.

Provided we use it carefully, we now have the last piece of our puzzle – a
way to access the template parameters of a class from a scope external to
that class.

Putting the puzzle pieces together
Let’s go back to our original Widget example, now that we’ve got all of
the pieces that we need to be able to reach in and call its private member
function, Widget::forbidden(). In summary:

1. We use the loophole in the explicit template instantiation rules to
allow us to refer to Widget::forbidden() from outside of the
Widget class.

2. We inject the address of Widget::forbidden() into our
HijackImpl class as a template parameter.

3. We define the hijack() function directly inside of HijackImpl
so that it can access the template parameter containing the address
of Widget::forbidden().

4. We mark hijack as a friend so that it becomes a free function
and we provide a declaration of hijack at namespace scope so that
it participates in name-lookup.

5. We can now invoke Widget::forbidden() on any Widget
instance through the member-function address that is exposed to the
hijack function.

The key parts of the mechanism are shown in Listing 13.

Dealing with multiple definitions of the friend function
There’s still one more issue to overcome.5 To avoid violating the One
Definition Rule, there must be one – and only one – explicit instantiation
of a template (with given template arguments) across all translation units.

Listing 10

class Gadget {
 friend void frobnicate(Gadget& gadget) {
 gadget.internal();
 }

 private:
 void internal();
};

void do_something(Gadget& gadget) {
 // OK: Compiler is now able to find the
 // definition of `frobnicate` inside Gadget
 // because ADL adds it to the candidate set for
 // name lookup.
 frobnicate(gadget);
}

Listing 11

class Gadget {
 // Definition stays inside the Gadget class
 friend void frobnicate() {
 Gadget g;
 g.internal();
 }

 private:
 void internal();
};

// An additional namespace-scope declaration makes
// the function available for normal name lookup.
void frobnicate();

void do_something() {
 // The compiler can now find the function
 frobnicate();
}

Listing 12

#include <iostream>

template <int N>
class SpookyAction {
 friend int observe() {
 return N;
 }
};

int observe();

int main() {
 SpookyAction<42>{};
 std::cout << observe() << '\n'; // Prints 42
} 5. If you choose to ignore the pitchfork-bearing members of the C++

standards committee currently approaching your front door with a polite
request that you stop doing this sort of thing at all.

Listing 13

// HijackImpl is the mechanism for injecting the
// private member function pointer into the
// hijack function.
template <
 typename ForbiddenFun,
 ForbiddenFun forbidden_fun
>
class HijackImpl {
 // Definition of free function inside the class
 // template to give it access to the
 // forbidden_fun template argument.
 // Marking hijack as a friend prevents it from
 // becoming a member function.
 friend void hijack(Widget& w) {
 (w.*forbidden_fun)();
 }
};
// Declaration in the enclosing namespace to make
// hijack available for name lookup.
void hijack(Widget& w);

// Explicit instantiation of HijackImpl template
// bypasses access controls in the Widget class.
template class
HijackImpl<
 decltype(&Widget::forbidden),
 &Widget::forbidden
>;
26 | Overload | April 2020

FEATUREALASTAIR HARRISON
Consider what happens when our HijackImpl class is put in a header
and is used in multiple translation units. The explicit instantiation of the
class template must live outside of that header, otherwise it will appear in
every translation unit that includes the header. We need to ensure that there
is just one explicit template instantiation in the whole program. What’s
more, the linker is not actually required to report duplicate instantiations
across multiple translation units, so it won’t even help us to avoid the
problem. That’s a recipe for a big maintenance headache.

The approach employed by the Folly library is to add an extra template
parameter to the HijackImpl class and use it to accept an empty ‘tag’
struct which is defined in an anonymous namespace.

The anonymous namespace ensures that the tag parameter is of a different
type in every translation unit. Every translation unit will therefore get its
own unique explicit instantiation of the HijackImpl class.

The final solution is short, but packs in a surprising amount of nuance. See
widget.h (Listing 14), widget_hijack.h (Listing 15) and main.cc
(Listing 16.)

Conclusion
Should you use this access-violation hack in production code? Almost
certainly not. Well, not unless you enjoy the excitement and explosive
unpredictability of maintaining extremely brittle code.

The C++ class member access rules are there to help authors of types to
enforce invariants. If you fool the compiler into mutating private class
members then you’re likely to be violating the class invariants, which risks
leaving the program in an invalid state. You’re also relying on intimate
knowledge of internal implementation details, for which the library author
is under no stability obligations.

Should you experiment with this access-violation technique outside of
production code? Absolutely! Learning how to subvert a system in a safe
environment is not only fun, but it helps to foster a deeper understanding
of that system. Untangling the machiavellian mechanisms in the Folly
library tested my knowledge of C++, requiring me to improve my
understanding of the language features I encountered along the way. It’s
almost as if someone had reached in to my brain’s internal implementation
and fiddled with its contents...

A note on the origins of the technique
The idea of using explicit template instantiation to bypass class access
rules pre-dates the Folly library by a few years. The first mention I can find
is from a 2010 blog post by Johannes Schaub [Schaub10], which describes
a method using initialization of static class members. At the time, there was
a discussion on the Boost mailing list about how the technique might prove
to be a useful addition to the Boost serialization library.

A year later, Schaub offered the dubiously tempting promise of ‘Safer
Nastiness’ in a follow-up blog post [Schaub11] in which he presented an
improved version of the code. This removed the need for static class
members and is much closer to what’s used today by the Folly library.

Acknowledgements
The author would like to thank Geoff Hester, Anthony Kirby and Kirsty
McNaught for advice on early drafts of this article and Balog Pal for very
patiently explaining some finer points of the one-definition rule.

References
[GitHub]: Facebook Folly on GitHub: https://github.com/facebook/folly

[GotW]: ‘Uses and Abuses of Access Rights at
http://www.gotw.ca/gotw/076.htm

[JSS19]: ‘The Power of Hidden Friends in C++’ posted 25 June 2019:
https://www.justsoftwaresolutions.co.uk/cplusplus/hidden-
friends.html

[Saks18]: Dan Saks ‘Making New Friends’ recorded at CPPCon 18,
available at: https://www.youtube.com/watch?v=POa_V15je8Y

[Schaub10]: Johannes Schaub ‘Access to private members. That’s easy!’,
posted 3 July 2010: http://bloglitb.blogspot.com/2010/07/access-to-
private-members-thats-easy.html

[Schaub11]: Johannes Schaub ‘Access to private members: Safer
nastiness’, posted 30 December 2011: http://bloglitb.blogspot.com/
2011/12/access-to-private-members-safer.html

Listing 14

#pragma once
#include <iostream>

class Widget {
 private:
 void forbidden() {
 std::cout << "Whoops...\n";
 }
};

Listing 15

#pragma once
#include "widget.h"

namespace {
// This is a *different* type in every translation
// unit because of the anonymous namespace.
struct TranslationUnitTag {};
}

void hijack(Widget& w);

template <
 typename Tag,
 typename ForbiddenFun,
 ForbiddenFun forbidden_fun
>
class HijackImpl {
 friend void hijack(Widget& w) {
 (w.*forbidden_fun)();
 }
};

// Every translation unit gets its own unique
// explicit instantiation because of the
// guaranteed-unique tag parameter.
template class HijackImpl<
 TranslationUnitTag,
 decltype(&Widget::forbidden),
 &Widget::forbidden
>;

Listing 16

#include "widget.h"
#include "widget_hijack.h"

int main() {
 Widget w;
 hijack(w); // Prints "Whoops..."
}

April 2020 | Overload | 27

https://github.com/facebook/folly
http://www.gotw.ca/gotw/076.htm
https://www.youtube.com/watch?v=POa_V15je8Y
http://bloglitb.blogspot.com/2010/07/access-to-private-members-thats-easy.html
http://bloglitb.blogspot.com/2010/07/access-to-private-members-thats-easy.html
http://bloglitb.blogspot.com/2011/12/access-to-private-members-safer.html
http://bloglitb.blogspot.com/2011/12/access-to-private-members-safer.html

FEATURE MIKE CROWE
It’s About Time
How easy is it to make code wait for a time period
before doing something? Mike Crowe looks at ways
to avoid problems when a system clock changes.
ost developers know how to implement a timeout so that an
operation can be attempted for a certain period of time before
stopping or giving up. Something like Listing 1.

Or, perhaps, in C++, as in Listing 2.

This pattern even works when efficiently blocking for something to happen
using a condition variable as in Listing 3.

In these examples, I’m using std::chrono::system_clock because
its is equivalent to std::chrono::high_resolution_clock in
libstdc++. You may want to check your standard library documentation to
determine which would be best for you.

But what happens if someone changes the system clock during the loop?
Not every device has a real-time clock to keep time when the device is off.
Even if a device does, it may not be particularly accurate. This could mean
that the system clock warps (jumps) by a few seconds or even a few
decades after a power cycle when the device does eventually find an
accurate time source, perhaps via NTP [Wikipedia-1], when it gains an
Internet connection. This can lead to strange hard-to-reproduce bug reports
f ro m t he f i e l d a n d u n ha pp y use r s . N o t e t h a t
std::chrono::system_clock is required to be Coordinated
Universal Time (UTC), which does not change due to daylight saving.
Time zones and daylight saving are a completely different subject, one that
is not well addressed in standard C++ until C++20 [Hinnant18].

How do we avoid this problem? When possible, just use relative timeouts.
Use std::condition_variable::wait_for rather than
std::condition_variable::wait_until. An absolute timeout is
like setting an alarm clock – if you change the time shown on the clock
then you affect how long it will be until the alarm sounds. A relative
timeout is like setting an egg timer, and leaving it alone – the time shown
on your clock does not affect how long it will be until the alarm sounds.

Unfortunately a relative timeout doesn’t work well for the examples above
because the timeout may cover multiple waits. It’s possible to recalculate
a relative timeout but that’s easy to get wrong and it risks the timeout being
extended unintentionally as small errors accumulate over many loops.

A better solution is to use a monotonic or steady clock that is immune to
the warping of the system clock. Such a clock is defined to keep running
at an approximately-consistent rate without warping either forwards or
backwards. If the machine has access to an accurate clock source, often
via NTP, the monotonic clock can be slewed slightly in order to try to keep
it running correctly relative to real time. Clock slewing means slowing
down or speeding up the clock by small amounts in order to keep time
accurately on average over a longer period of time.

On POSIX systems, this clock is known as CLOCK_MONOTONIC and the
current time can be retrieved using the clock_gettime POSIX function.
Unfortunately, the lack of 64-bit types back when this function was
invented means that the seconds and nanoseconds are stored separately in
a structure. Listing 4 (overleaf) uses a function to tell whether a specified
timeout has expired.

This gets more complex if the timeout is not a whole number of seconds
because extra housekeeping is required to ensure that the nanoseconds part
is kept within permitted bounds. If you find yourself needing to do this then
gnulib [GNU] provides helpful functions.

M

Mike Crowe Mike became a C++ and embedded Linux developer by
accident twenty-odd years ago and hasn’t managed to escape yet.
Working for small companies means that he gets to work on a wide
range of high and low-level software, as well as release processes and
build tools to stop him getting bored. He can be reached at
accu@mcrowe.com.

Listing 1

bool do_something_for_a_while(void)
{
 const time_t expire = time(NULL) + 5;
 while (time(NULL) < expire) {
 if (try_to_do_something())
 return true;
 }
 return false;
}

Listing 2

void do_something_for_a_while()
{
 using namespace std::chrono;
 auto const expire =
 system_clock::now() + seconds(5);
 while (system_clock::now() < expire) {
 if (try_to_do_something())
 return;
 }
 throw std::runtime_error("Timed out");
}

Listing 3

using namespace std;
void do_something_for_a_while(deque<int> &q,
 mutex &protect_q,
 condition_variable &q_changed)
{
 std::unique_lock<mutex> lock(protect_q);
 auto const expire = system_clock::now()
 + seconds(5);
 while (system_clock::now() < expire) {
 if (q_changed.wait_until(lock, expire,
 [&q] { return !q.empty(); }))
28 | Overload | April 2020

FEATUREMIKE CROWE

Time points measured against a
monotonic clock will usually not be

comparable between machines
libstdc++ and libc++ use CLOCK_MONOTONIC to implement C++
std::chrono::steady_clock, which provides a much easier way to
work with absolute timeouts. Using it is just a matter of changing
system_clock to steady_clock in Listing 2 to get Listing 5 and in
Listing 3 to get Listing 6.

The compiler’s type checking ensures that you can’t accidentally compare
time points from different clock sources against each other, making this
much safer than the C version, which must rely on the clock passed to
clock_gettime being consistent.

Both of these examples are now immune to system clock changes.

If you’re stuck using C++98 or C++03 then Boost [Boost] provides
boost::chrono . I t a l s o p ro v i d e s a p re c u r s o r nam e d
boost::posix_time, but that should probably be avoided for new
code.

Time points measured against a monotonic clock will usually not be
comparable between machines. On Linux, CLOCK_MONOTONIC is
actually the system uptime. In a distributed system, such as video playback
synchronised across multiple screens, you may have NTP or PTP
[Wikipedia-2] working hard to keep the system clock synchronised across
mul t ip le devices . In that case i t makes more sense to use
std::chrono::system_clock to agree a specific time to start
playback and to control the playback speed. I imagine that a similar
situation could occur in other distributed systems.

If we follow the advice above to use relative timeouts where we can and
CLOCK_MONOTONIC or std::chrono::steady_clock where we
can’t, then all will be lovely, right? Well, yes and no. Unfortunately,
current versions of GNU libstdc++ and Clang libc++ lack full support for
using std::chrono::steady_clock timeouts for thread-
synchronisation primitives and tend to convert silently back to
std::chrono::system_clock, which makes the timeouts subject to
misbehaviour when the system clock warps again (although in some cases
the window of opportunity can be very small due to the actual wait being
a relative one again.) They need to do this because POSIX doesn’t
currently provide suitable equivalents of the thread functions that are
capable of accepting CLOCK_MONOTONIC timeouts [Crowe18]. There are
new functions [AustinGroup] planned to address this. Glibc v2.30 and later
contain these new functions and various patches have already been
accepted for libstdc++ to use these functions in GCC 10 to fix the methods
on std::condition_variable , std::timed_mutex and
std::shared_timed_mutex that accept timeouts. Unfortunately
some of the patches [Crowe20] to fix std::future didn’t make it in
before the freeze, but they’ll hopefully be in GCC 11. I believe that similar
changes are making their way into Clang libc++ too. If you are stuck using

Listing 4

bool expired(const timespec *expire)
{
 struct timespec now;
 clock_gettime(CLOCK_MONOTONIC, &now);
 if (now.tv_sec < expire.tv_sec)
 return false;
 if (now.tv_sec > expire.tv_sec)
 return true;
 return now.tv_nsec > expire.tv_nsec;
}

bool do_something_for_a_while()
{
 struct timespec expire;
 clock_gettime(CLOCK_MONOTONIC, &expire);
 expire.tv_sec += 5;
 while (!expired(&expire)) {
 if (try_to_do_something())
 return true;
 }
 return false;
}

Listing 5

void do_something_for_a_while()
{
 using namespace std::chrono;
 auto const expire =
 steady_clock::now() + seconds(5);
 while (steady::now() < expire) {
 if (try_to_do_something())
 return;
 }
 throw std::runtime_error("Timed out");
}

Listing 6

using namespace std;
void do_something_for_a_while(deque<int> &q,
 mutex &protect_q,
 condition_variable &q_changed)
{
 std::unique_lock<mutex> lock(protect_q);
 auto const expire =
 steady_clock::now() + seconds(5);
 while (steady_clock::now() < expire) {
 if (q_changed.wait_until(lock, expire,
 [&q] { return !q.empty(); }))
 do_something(q);
 }
 throw std::runtime_error("Timed out");
}

April 2020 | Overload | 29

FEATURE MIKE CROWE

If you follow the advice … you will automatically
get the fixes when your code is compiled with
newer standard library versions
earlier versions then I believe that at least some of these problems are
resolved in the Boost equivalents of the standard library functions.

If you follow the advice above, then the situation will be slightly better than
if you’d used std::chrono::system_clock in your code right now
and you will automatically get the fixes when your code is compiled with
newer standard library versions. Many of the functions involved are inline
so the fixes require more than upgrading the shared library.

Summary
 Use relative timeouts to standard library functions when performing

a single operation.

 Use CLOCK_REALTIME or std::chrono::system_clock
when your times and timeout relate to time in the real world and you
want to react to someone warping the system clock. For example, a
calendar or public transport tracking application.

 Use CLOCK_MONOTONIC or std::chrono::steady_clock
when your times relate to elapsed time that should not change if
someone warps the system clock. For example, network timeouts
and refresh intervals.

 Use CLOCK_REALTIME and std::chrono::system_clock
when the devices involved are known to have their clocks
synchronised and you wish to share timestamps between those
devices.

 Keep your toolchain up to date (and apply patches if you can) to
ensure that you have the latest fixes. If you can’t then look at using
Boost instead.

Thanks
Thanks to members of the Austin Group, glibc and libstdc++ maintainers
for helping me to turn the scratching of one small i tch (in
std::condition_variable) into fixing this class of problems more
widely across POSIX and the C++ standard library. Thanks to the ACCU
Overload reviewers and Jean-Marc Beaufils for providing feedback.

References
[AustinGroup] Mike Crowe in Austin Group Defect Tracker:

https://www.austingroupbugs.net/view.php?id=1216

[Boost] https://www.boost.org

[Crowe18] Mike Crowe ‘The clock used for waiting on a condition
variable is a property of the wait, not the condition variable’, at:
http://randombitsofuselessinformation.blogspot.com/2018/10/the-
clock-used-for-waiting-on-condition.html

[Crowe20] Mike Crowe in GCC Bugzilla: https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=93542

[GNU] ‘Gnulib – The GNU Portability Library’ at:
https://www.gnu.org/software/gnulib/

[Hinnant18] Howard E. Hinnant and Tomasz Kaminski, ‘Extending
<chrono> to Calendars and Timezones’ posted 16 March 2018 at:
https://howardhinnant.github.io/date/d0355r7.html

[Wikipedia-1] ‘Network Time Protocol’ at: https://en.wikipedia.org/wiki/
Network_Time_Protocol

[Wikipedia-2] ‘Precision Time Protocol’: https://en.wikipedia.org/wiki/
Precision_Time_Protocol
30 | Overload | April 2020

https://www.austingroupbugs.net/view.php?id=1216
https://www.boost.org
http://randombitsofuselessinformation.blogspot.com/2018/10/the-clock-used-for-waiting-on-condition.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93542
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93542
https://www.gnu.org/software/gnulib/
https://howardhinnant.github.io/date/d0355r7.html
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol

FEATURETEEDY DEIGH
A Day in the Life of a
Full-Stack Developer
Many roles claim to be full stack. Teedy Deigh
shares a day in the life of a full stack developer.
06:00

Uh... what... Snooze

06:15

Snooze

06:30

Snooze

06:45

Falls out of bed

Why did I set my alarm for this time of night... morning... whatever...?

Oh yes. Full-stack development. Read and watched some stuff on it
yesterday. Couldn’t find anything of substance. Sure, a whole load of stuff
on web development – JavaScript, HTML, CSS and the occasional
database – but nothing on the rest of the stack and how to do it properly.

So, thought I’d better explore it for myself. Full stack, full day, full on!

07:03

OK, dragged a comb across my head, found my way downstairs, drank a
cup. Now I’ve looked up, I’ve noticed I’m late.

I said was going to get my head down and online by 06:30. Time for another
cup.

07:54

OK, someone on the internet was wrong, but I’ve fixed that now. Where
shall we start? Oh yeah, that JavaScript framework I was looking at
yesterday – Anglia? Nod? Mithrandir? Whatever. If we’re gonna code the
full stack properly, we’re going to need to write our own framework. Can’t
just go around reusing other people’s stacks – they don’t call it partial-stack
development, amiright?!

09:47

OK, that’s the first version of OverReact.JS pushed. No tests, no docs,
but still enough to show these so-called full-stack developers how it’s
done.

Let’s just try it out on a pet store example. No, that’s not very ethical...
mmm, OK, something else that’s enterprisey... FizzBuzz it is, then!

09:58

Hmm. Something’s not working. There’s a bug. Not sure what it could be.

10:58

OK, still don’t know what the problem is – and that’s after five cups of
coffee! Like looking for a needle and thread in a call stack. Bloody legacy
code.

Time for a rewrite – OverReact.JS2! Maybe this time I’ll write some
tests. Gonna need a testing framework.

12:03

Right, that only took three more coffees, but now the Jitters unit-test
framework is good to go.

Hmm... must be time for breakfast, then the OverReact rewrite.

12:29

Well, I must confess, I’m a little surprised that that person on the internet
is still wrong, especially after all the suggestions I offered!

Anyway. Onward to OverReact.JS2!

15:11

OK, that took a little longer than expected, but given what I can now see
are the glaring deficiencies of the first version, it’s important to account
for all possible use cases and make everything more configurable. I think
I once heard someone say that it was important to try to please all the people
all of the time... or something like that.

15:33

I don’t believe it! A bug. Again.

Hmm... perhaps I should have used my Jitters framework to write some
tests with?

Is it time for lunch? Must be time for lunch.

15:57

The plan was to write some tests, but I’ve changed my mind as that will
just slow me down, and I’m trying to be Agile™. ‘Responding to change
over following a plan’ is the mantra I’m following today.

The OverReact.JS2 code doesn’t look like it has any issues – in fact,
it looks quite happy from where I’m sitting: emoji identifiers FTW! I chose
an uncompromisingly minimal coding style that shuns the excesses of
commenting, indentation, long identifiers and clunky, procedural control
flow. So the problem can’t be there, right? Must be somewhere else on the
stack.

Perhaps the JavaScript engine is at fault?

18:12

Writing Veg.JooS, my new JavaScript engine, seems to be going well so
far, although I suspect that I might be looking at an all-nighter. That,
however, is not my main concern: my reliance on an existing C compiler,

Teedy Deigh plans to retire somewhere nice. It is said, however, that
no plan of battle survives contact with the enemy. In the meantime,
you’ll find her hoarding zeroes and ones and toilet paper.
April 2020 | Overload | 31

FEATURE TEEDY DEIGH

The plan was to write some tests, but I’ve
changed my mind as that will just slow me
down, and I’m trying to be Agile™
regardless of its long-standing open-source pedigree, may be a weak link
in my tool chain.

Rather than stand on the toes of giants, it may be wiser to write my own
compiler.

19:49

Occurs to me that it might be time for lunch... or something.

20:01

Well, this is turning into something of an odyssey, but I can’t believe I
overlooked an obvious step: I need to create a compiler compiler to save
time and trouble in future!

OK, back to food... and, can you believe it, that person on the internet is
still wrong?

20:15

The patterns I’m going to use to create YakShavR are clear in my head,
but there’s a couple of things I think I’m missing.

Ah yes, coffee’s what I’m missing!

20:59

It’s clear that what I’ve been missing is the right language. No, I don’t mean
“@#$%&!” – although there’s been plenty of that today – I mean for
implementing YakShavR. I started writing it in C but, you know, chickens
and eggs!

I’ve also decided that maybe C is not the right way to go for Veg.JooS. I
need a better systems programming language, something with less
historical baggage, unsullied by popularity and compromise. Think I might
call it ToldUSo, and will post a repo link to the person – now people! – on
the internet who is wrong.

Anyway, how to break the chicken-and-egg cycle? Lisp! Pure and simple,
and no need for tests as it’s already functional.

21:49

Two pomodoros later (minus the wasteful five-minute breaks) and I’ve got
the core Lisp eval function written out on my whiteboard. Or evil, looking
at the way I’ve written it – well, scribbled – which does highlight a bit of
a problem: I was going to code it up, but I’m not sure I can read it now.
Looks like it was written by a caffeinated spider.

Caffeine. Coffee. Yup, that’s the problem. Gonna need more of that if I’m
to crack this code.

22:41

OK, I think I’ve almost got it. Must be time for... a meal.

23:45

Perhaps, a little unbelievably, the people on the internet who are wrong
might actually be right. They pointed out that I don’t seem to be willing
to compromise. Damn straight! Uncompromising is my middle name
(albeit one I had to get changed by deed poll, as my parents originally chose
Davina).

Andrew Koenig observed that “People who brook no compromise in
programming languages should program in lambda calculus or machine
language.” I need to bootstrap the Lisp interpreter and the answer has been
staring me in the face. Time to get back to the metal.

01:23

More coffee. Things are going well.

02:11

More coffee. Things are not going well.

Working at this level is high RISC; I need to go high Church. Alonzo
Church, that is. Lambda calculus is the purest of the pure. It’s so pure that
it makes Haskell look like JavaScript. So pure, in fact, that it doesn’t even
have numbers – there are only lambdas. Using Church numeral encodings,
you define your own numbers.

This is perhaps the truest expression of the software craft movement: hand-
crafted, artisanal integers. There are no Booleans, so you make your own
truth. Mind-blowing. Want a list? You can define a pair, and then nominate
roles for each element – first blow your mind out in a car, second cdr be
used as the tail – and cons everything up from there.

02:56

Food? Coffee? Am I hungry? Am I thirsty? What am I doing? Who am I?

03:14

Definitely jitters – no, not the testing framework. Hallucinations?
Hallucinations.

04:53

Wuh! Must’ve dozed off. Went into a dream.

Progress so far: I’ve got zeroes and ones. Lots of them. Frolicking lambdas
ready to be crafted into a full stack.

Instead of FizzBuzz, I’m going to work on some more ambitious and
algorithmic: a highly configurable, reusable, general-purpose algorithm
that counts anything from sheep in a field, a semiring or a group, to holes
in Blackburn, Lancashire (even if they’re rather small).

Feeling a little strange. And I’m out of coffee.

06:00

Uh... what... Snooze
32 | Overload | April 2020

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

www.qbssoftware.com

	R.E.S.P.E.C.T.
	Pass the Parcel
	Quick Modular Calculations (Part 3)
	Deconstructing Inheritance
	Using Compile Time Maps for Sorting
	Profiting from the Folly of Others
	It’s About Time
	A Day in the Life of a Full-Stack Developer

