

A ower Language
Nee s Power Tools

-:(r):-

0

Smart editor
with full language support

Support for C++03/C++ll,
Boost andlibc++,C++
templates and macros.

Code generation

and navigation

Generate menu,
Find context usages,
Go to Symbol, and more

GET A C++ DEVELOPMENT, :rOOL

THAT YOU DESERV

ReSharper C++ AppCode

Visual Studio Extension IDE for iOS

for C•• developers and OS X development

Start a free 30-day trial

jb.gg/cpp-accu

Find out more at www.qbssoftware.com

Reliable
refactorings

Rename, Extract Function
7 Constant/ Variable,
Change8ignature, & more

Profound

code analysis

On-the-f y, analysis
with Gluick-fixes & dozens
ofs mart checks

CLion

Cross-platform IDE

for C and C•• developers

QBS
SOFTWARE

December 2020 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Questions on the Form of Software
Lucian Radu Teodorescu considers whether the
difficulties in writing software are rooted in the
essence of development.

8 Building g++ from the
GCC Modules Branch
Roger Orr demonstrates how to get a compiler that
supports modules up and running.

10 Consuming the uk-covid19 API
Donald Hernik demonstrates how to wrangle data
out of the UK API.

13 What is the Strict Aliasing Rule and Why
Do We Care?
Strict aliasing is explained.

20 Afterwood
Chris Oldwood explains why he thinks Design
Patterns are still relevant.

OVERLOAD 160

December 2020

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 161 should be
submitted by 1st January 2021
and those for Overload 162 by
1st March 2021.

EDITORIAL FRANCES BUONTEMPO
Debt – My First Thirty Years
Reflecting on code often reveals gnarliness.
Frances Buontempo reminds herself about
all the tech debt she’s ever caused.
I still owe our readers an editorial, and know I have
accumulated a huge debt over the last several years.
Fortunately, you don’t seem to be charging me
interest, so there is hope. As soon as you charge
interest on a debt, it is possible for the debt to keep
growing and become impossible to pay back.

Charging interest, or at least excessive interest, is sometimes referred to
as usury. Anyone taking advantage like this is sometimes called a loan
shark. By lending money to someone who is desperate, needing food or
a way to pay rent, or similar, and then threatening them with violence if
they don’t repay causes debt, and despair, to spiral out of control. Not a
good place to be.

What’s this got to do with programming, you may ask? Almost nothing,
in one sense. And yet, tech debt is a term that gets banded around, so
perhaps it’s got everything to do with programming. Why do we describe
confusing, hard to maintain code as debt? We haven’t borrowed money
to cover it, so can’t be charged interest. We may have cut a corner or two,
in order to get something out the door quickly, leaving a problem to deal
with later. I say later, but it often turns out to be sooner. With untested
edge cases, things may blow up regularly. Without useful logging, you
can’t figure out what happened. If the so-called quick win, cut corner, or
tech debt, means people have to down tools and fix things on a regular
basis, you have in fact slowed everything down. Cutting corners is very
different to being in debt. Such short cuts are more like being in danger.

I recently described cutting corners as being like a Koch snowflake
[Wikipedia-1]. Now, to build this ‘snowflake’, you start with a triangle and
cut out the middle of each side replacing it with a smaller triangle, and
continue ad infinitum. This, in some sense, is the opposite of cutting
corners, since you add more corners each time, and tend towards
something 8/5 times the original area. Cutting corners in code does often
involve slapping extra bits in, copying and pasting code, wedging in a few
booleans and if/else code paths and the like. Such short cuts are more
like spare parts gaffer-taped on. Now, cutting corners comes from the idea
of trespassing across a farmer’s field, or driving on the wrong side of the
road at a bend, rather than sticking to the legal route. You could suggest
illegal practices aren’t necessarily wrong and there are some perfectly
legal cases where cutting corners makes life easier. If you smoke roll-ups,
cigarette papers with the corners cut are much easier to roll – letting you
tuck the paper in more easily. Or more seasonally, wrapping presents is
something of an art form. I recall my Father telling me once about some
way to calculate the smallest amount of wrapping paper needed, and

claiming some chocolate bar manufacturers had
saved a fortune using a similar idea. I was too
young to pay much attention at the time and

can’t recall the details now, but it involved

cutting corners. Computer graphics also cut corners, tending to rely on
representations made from a mesh of triangles, going in straight lines
rather than curves. This also means you can do the mathematics once for
several vertices and speed things up [Wikipedia-2]. Cutting corners can
be a good thing or a bad thing; it depends.

In contrast, cutting the mustard is always good. When mustard was grown
as a main crop, it “was cut by hand with scythes, in the same way as corn.
The crop could grow up to six feet high and this was very arduous work,
requiring extremely sharp tools. When blunt they ‘would not cut the
mustard’” [Guardian]. Maybe tech debt is like blunt tools? By leaving
behind software that’s hard to use or difficult to understand or change
you’ve made life difficult. Even a skilled coder won’t be able to be very
effective if armed with a blunt scythe.

Describing a dangerous or confusing system as debt seems odd. We
decided to get some new lighting in our house and the electrician ran a
safety test first. We were half expecting a can of worms, or some kind of
spaghetti wiring situation. Hooray for a way to test things before touching
anything live. I am pleased to report the house doesn’t need re-wiring and
the electrician’s insulated snips worked but we need to have some ‘tech
debt’ fixed before it is safe to get new lights installed. Without going into
too many details, let’s say words like ‘Why would anyone do this?’ and
‘That’s very confusing!’ and ‘Why would anyone connect the earth wire
to live?’ were banded about. Similar statements can end up as tech debt
Jiras, and the engineers being told the customer’s priority is new lights, so
these debt tickets will have to wait until later. As a customer, I want it to
be safe to change a light bulb, so please fix the dangerous stuff first. Just
saying. Letting engineers talk directly to customers is often the best way.
There are conventions for which coloured wire connects where for reasons:
to make the wiring safe for people to change, replace and extend in the
future without a huge wiring diagram and user manual. Describing cutting
corners and brazenly ignoring conventions as tech debt seems to miss the
point somewhat. Conventions and protocols often exist to keep us safe.

Now, not all coders regard themselves as engineers, and in fact some code
isn’t written for customers. Many of us have personal projects, and some
of us might be regarded as hobbyist programmers. I have frequently
sketched out a few lines of code in a new language I’m learning, knowing
full well it’s an untidy mess, or just for trying things out, like rough notes.
I am a beginner so haven’t discovered or understood the conventions
initially. Does that count as being tech debt? When I first started learning
Python, I sketched out lines of code in the repl, and became frustrated at
having to type them all over again when I revisited my noodling.
Frustration is like tech debt; I learnt to write my code in an actual file I
could then save, keep in version control and rerun at will. Amateurs may
not be professionals, but they can still cut the mustard. In fact, amateurs
code for the love of it. If you code for love rather than money, write in

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2020

EDITORIALFRANCES BUONTEMPO
and tell us. Try looking back over code you wrote a while ago, whether it
was for work or pleasure. You will see how you have changed your style
and notice better and perhaps safer ways of doing things. It’s not that you
left yourself a debt that you had to pay back to someone, with interest. It’s
more that you left your future self a puzzle to solve.

Barney Dellar recently blogged about Escape Rooms, [Dellar20]. A team
of people pay money to be locked in a room, and by finding clues and
solving puzzles might be able to find a key to get out of the room before
their time is up. Barney points out “The way we solve the puzzles now has
absolutely no effect on the difficulty of the next puzzles, or the puzzles that
we’ll face next time we do an Escape Room.” In contrast, when we write
software, we are creating potential future puzzles. “The faster we go today,
the higher the difficulty level will be tomorrow. But if, instead, we go slowly
and carefully today, then tomorrow’s puzzles will be easy. And easy puzzles
don't take long to solve. So we will move faster.” Perhaps instead of talking
about tech debt, we should talk about hard or easy puzzles. Imagine
reporting at your daily stand up that you’d created a puzzling mess that no
one could follow because it was quick, and it might not work. The tone is
different to saying you’ve got the code into prod and raised a tech debt
ticket to make it neater later.

Steve Freeman has previously used the analogy of unhedged call options
to explain tech debt [Linders14]. If you don’t know about investment
banking, Nat Pryce summarised this as “refactoring now is an investment
for the future / a hedge against the callable option I’ve ‘sold’ by writing bad
code”. This may not help, if you don’t know what a future, hedge or
callable option is. The blog explains in detail, but the high level idea is you
agree, for a fee, to sell someone something in the future of a fixed price.
The person buying this from you might not take up this option. Neither of
you know what the items will sell for at the future date, so this is a bet:
will the price got up or down? Without a ‘hedge’, or some way to ensure
you can get hold of the items for a known amount at the date in the future,
you could end up in a load of trouble. You will, of course, have the agreed
fee up front, but that may be peanuts compared to the amount you could
lose. The unhedged call option analogy, regards the fee or premium as a
quick win now, which is all very well if you never need to go near the code
again. If you do need to go back, you’ve left an unhedged risk. The trouble
with analogies is you need to know about the parallel in order to understand
the point being made. A simple way to put this (sorry for that finance pun)
is to talk about tech risk rather than tech debt.

Since I’ve brought economics into the equation, consider John Maynard
Keynes’ idea of the ‘animal spirit’, wherein economic decision are often
intuitive, emotional and irrational. Others claim the markets are ‘rational’,
the economy flows, and that twisting the right knobs and dials will have a
predictable outcome. Now, Keynes is saying confidence or lack of it can
drive or hamper economic growth.

Even apart from the instability due to speculation, there is the
instability due to the characteristic of human nature that a large
proportion of our positive activities depend on spontaneous
optimism rather than mathematical expectations… our decisions to
do something positive, the full consequences of which will be drawn
out over many days to come, can only be taken as the result of

animal spirits—a spontaneous urge to action rather than inaction,
and not as the outcome of a weighted average of quantitative
benefits multiplied by quantitative probabilities. [Wikipedia-3]

Some take the idea further, and talk about testosterone-fuelled macho
nonsense. Whether you think women can be ‘hero programmers’ or traders,
jumping in thoughtlessly and causing instability, or that oestrogen stops
such idiocy, unfounded optimism and instability cause trouble. Constrain
your animal spirits once in a while. Where does this leave tech debt?

Debt can be paid back at some point. The word covers up for some very
challenging financial situations many people find themselves in. Risk, on
the other hand, sounds more, well, risky or downright dangerous. Debt has
the idea of having borrowed something from someone for a bit, like an ‘I
owe you’ (IOU). The word comes from debere ‘to owe’ or ‘keep something
away from someone’, from de- ‘away’ (see de-) + habere ‘to have’
[Wikipedia-4]. What has been taken from whom in tech debt? Sharp tools?
Easy to solve puzzles in the future? Maybe. David Graeber’s book Debt,
the first 5000 years regards money as an IOU giving a way to formalize
debtors and creditors, and calls into question the idea that debts have to be
paid. ‘Says who?’, basically. Religious texts, well certainly the Old
Testament, decries usury and also instigates a Jubilee year “a trumpet-blast
of liberty” [Wikipedia-5]. Imagine a clean slate, with all your debts paid
off. Michael Feathers recently shared a metaphor for tech debt as running
a commercial kitchen, but only cooking, never cleaning anything. A health
inspector would shut you down. Software doesn’t have health inspectors,
but does still need cleaning up for (mental) health reasons. Go one, you
owe it to yourself. Tidy your house, fix your wiring, clean up once in a
while. Start afresh. Bring on a happy, healthy New
Year!

References
[Dellar20] ‘Creating our own puzzles’, 30 October

2020:
https://barneydellar.blogspot.com/2020/10/creating-our-own-
puzzles.html

[Guardian] Semantic enigmas: ‘What is the origin of the phrase “doesn’t
cut the mustard”?’: https://www.theguardian.com/notesandqueries/
query/0,5753,-2242,00.html

[Linders14] Ben Linders (2014) ‘Is Unhedged Call Options a Better
Metaphor for Bad Code?’, posted 24 December 2014 on InfoQ:
 https://www.infoq.com/news/2014/12/call-options-bad-code/

[Wikipedia-1] Koch snowflakes: https://en.wikipedia.org/wiki/
Koch_snowflake

[Wikipedia-2] Triangle mesh: https://en.wikipedia.org/wiki/
Triangle_mesh

[Wikipedia-3] Animal spirits (Keynes): https://en.wikipedia.org/wiki/
Animal_spirits_(Keynes)

[Wikipedia-4] Debt: https://en.wikipedia.org/wiki/Debt

[Wikipedia-5] Jubilee (biblical): https://en.wikipedia.org/wiki/
Jubilee_(biblical)
December 2020 | Overload | 3

https://www.theguardian.com/notesandqueries/query/0,5753,-2242,00.html
https://www.theguardian.com/notesandqueries/query/0,5753,-2242,00.html
https://barneydellar.blogspot.com/2020/10/creating-our-own-puzzles.html
https://www.infoq.com/news/2014/12/call-options-bad-code/
https://en.wikipedia.org/wiki/Koch_snowflake
https://en.wikipedia.org/wiki/Koch_snowflake
https://en.wikipedia.org/wiki/Triangle_mesh
https://en.wikipedia.org/wiki/Triangle_mesh
https://en.wikipedia.org/wiki/Animal_spirits_(Keynes)
https://en.wikipedia.org/wiki/Animal_spirits_(Keynes)
https://en.wikipedia.org/wiki/Debt
https://en.wikipedia.org/wiki/Jubilee_(biblical)
https://en.wikipedia.org/wiki/Jubilee_(biblical)

FEATURE LUCIAN RADU TEODORESCU
Questions on the
Form of Software
Writing software can be difficult. Lucian
Teodorescu considers whether these difficulties
are rooted in the essence of development.
is ending. Australian bushfires, Covid-19 pandemic
outbreak, Black Lives Matter protests, Beirut
explosion, US West Coast wildfires, and a lot of other

catastrophic events. Quite a year! At the end of the year, and the beginning
of the new year, it’s often the time for more reflection, and less action. In
this spirit, I will put on hold my intent of writing another article on
threading; with all these disasters, the least thing we need is yet another
article showing how disastrous are the usual approaches on threading.

Instead, I’ll try a reflective, more philosophical article. We will start from
Brook’s ‘No Silver Bullet’ article [Brooks86, Brooks95], discuss the
essentialist and metaphysical views expressed by the article and consider
some questions that may arise from them. I do not have an answer for any
of these questions; providing such an answer would probably be one of the
biggest advances in Software Engineering. As a software engineer
passionate about understanding the essence of things, it is natural for me
to ponder over these questions, even if the answers seem far away.

Starting point: essential and accidental software
properties
I would argue that ‘No Silver Bullet’ [Brooks86, Brooks95] is one of the
most fundamental articles written in software engineering. It defines the
main problems in software engineering, and simultaneously it defines the
limits of the field. To prove its point, Brooks makes a metaphysical inquiry
in software engineering.

The main conclusion of the article is:

There is no single development, in either technology or
management technique, which by itself promises even one order-
of-magnitude improvement within a decade in productivity, in
reliability, in simplicity.

This statement was first made in 1986, and 9 years later Brooks confirms
that it was a true prediction1. Although there were some claims that the
prediction is not true2, there is no generally accepted position that there is
a silver bullet in software engineering from the time that Brooks predicted
this.

For the present article, the method through which Brooks arrived at this
conclusion is far more important than the conclusion itself. Let’s outline
his reasoning.

Brooks starts from looking at the difficulties of software engineering.
Following Aristotle, he divides them into essential and accidental

difficulties3. We have complexity, conformity, changeability and
invisibility as essential difficulties; all the other difficulties (tooling, use
of high-level languages, processes, etc.) are accidental.

Here is, for example, a famous passage from the article [Brooks86,
Brooks96]:

Software entities are more complex for their size than perhaps any
other human construct, because no two parts are alike (at least
above the statement level). If they are, we make the two similar parts
into one, a subroutine, open or closed.

After having a discussion on these four essential difficulties of software,
Brooks argues that, due to their nature, one cannot find any single method
to considerably improve on these difficulties. He goes over great lengths
and show that all the major promises of software engineering attack
accidental difficulties and not essential ones4.

The point that Brooks makes is that if most of the promises are related to
accidental difficulties, while the essential difficulties are predominant5,
then there is no way for a promise to deliver more than 10 in terms of
productivity, reliability or simplicity. Even if we were to completely
eliminate accidental difficulties, we will not be able to achieve one order-
of-magnitude improvement.

Like Sisyphus, software engineers are cursed forever to have to struggle
with complexity, conformity, changeability. There is no silver bullet and
no spell to set them free.

Background

Essentialism in Brooks, essentialism in a software
Merriam-Webster [MW] defines essentialism as:

: a philosophical theory ascribing ultimate reality to essence
embodied in a thing perceptible to the senses

: the practice of regarding something (such as a presumed human
trait) as having innate existence or universal validity rather than as
being a social, ideological, or intellectual construct

Reading No Silver Bullet one cannot only but remark the strong
essentialism present in the article. That is, Brooks believes that there is an
idea or a form of software engineering activities, that is more than just a
generalisation of the practices seen so far. The laws of the Universe are
made in a way that software engineering is essentially difficult.

1. See the ‘“No Silver Bullet” Refired’ chapter in The Mythcal Man-Month.
Essays on Software Engineering, Anniverary Edition [Brooks95].

2. For a more recent claim, please see Yes silver bullet by Mark Seemann
[Seemann19].

2020

3. The distinction between essential and accidental plays an important
role in Topics [Aristotle84a] to make the distinction between the
definition of a thing and a property of a thing, and in Metaphysics
[Aristotle84b] to analyse the essence of being.

4. Interestingly enough, Object-Orientation is among the promises that
Brooks analyses and finds that it cannot achieve much; this happens
before OOP became mainstream.

5. Brooks actually clarifies this better in the follow-up ‘“No Silver Bullet”
Refired’ chapter of the 1995 edition of The Mythical Man-Month book
[Brooks95]; he believes that until that date most pressing accidental
difficulties are solved, and that the ratio between accidental and
essential difficulties cannot be greater than 9 to 1.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. In his spare time, he is
working on his own programming language and he is improving his
Chuck Norris debugging skills: staring at the code until all the bugs
flee in horror. You can contact him at lucteo@lucteo.ro
4 | Overload | December 2020

FEATURELUCIAN RADU TEODORESCU

for any particular software problem … we
have essential difficulties of the software …

and then we have accidental difficulties
I’m going to take this idea further and apply it to actual software. That is,
for any particular software problem that needs to be solved, we have
essential difficulties of the software (e.g., there is an essential complexity
of the software), and then we have accidental difficulties involved in
making that software (e.g., the software took more time to develop, the
design is not ideal, we have technical debt, etc.)

Even though Brooks never said this, based on the essentialism emanated
from his article, I can perfectly picture him saying:

Within every software there is a simpler software striving to be free.

In this paradigm, every software has an essence, and that would be the ideal
software, or the Form of the software. Now, software is typically more
complex that it needs to be, it has conformity problems (i.e., bugs), but also
changeability and invisibility issues; that is, essentially is less ideal. We
call such a software a less-ideal software. In addition to that, software
typically has many accidental issues (e.g., tooling-related issues) – this is
the real-life software. Figure 1 tries to graphically show these three types
of software, by adding deformity to an ideal form (circle).

Philosophical views of essentialism
Before going forward with our questions on the Form of software, we need
to take a very short trip through some philosophical views of essentialism.
We’ll briefly present the metaphysical views of Plato, Aristotle and
Ockham6. Although Brooks explicitly mentions Aristotle, we will start
from Plato, Aristotle’s teacher.

Plato (429?-347 B.C.) is one of the greatest philosophers in the western
world, often named the founder of western philosophy [Kenny10]7. Due
to the large variety of topics approached by Plato, Alfred North Whitehead
noted [Whitehead78]:

the safest general characterization of the European philosophical
tradition is that it consists of a series of footnotes to Plato

Plato’s most important contribution to philosophy is the theory of Forms,
which is exactly what we are interested in for our article. According to
Plato, the reality consists of Forms (or Ideas) which are outside our
material world. The material world consists in shadows (or copies) of these

abstract Forms. Our senses cannot interact with the world of Forms but
only with these shadows. The Forms are eternal and unchanging, while the
things in our material world are always changing. For example, all the
humans in the world are just shadows of a Human Form; similarly, all the
good things in the world are just shadows of the Goodness Form; there are
Forms for shortness, justice, redness, humanness, etc. This view about the
existence of Forms in an ideal, abstract world is called Platonic realism.

So far, we have used the term Forms in the context in which we meant
abstract ideas; this was done on purpose, to refer to these Platonic Forms,
the most extreme form of idealism.

Aristotle (384–322 B.C.) was a student of Plato at the Academy. If Plato
is credited for founding western philosophy, Aristotle is often credited as
being the first scientist, with the systematic way that he approached all the
branches of knowledge. He is widely accepted as the inventor of logic and
of the deductive reasoning. [Kenny10]

Aristotle was Plato’s first true critic. He exposed a very detailed critique
of the theory of Forms, arguing its inability for expressing change and its
inability for explaining how the Forms are related with the real-world.
Aristotle replaced Plato’s extreme idealism, with a moderate realism;
universal properties exist, but only in as much as they exist in our world.

Being able to distinguish between accidental and essential properties of
objects is paramount to being able to identify universal properties in the
world. Having a human-like body is an essential property that makes
Socrates a human, but the colour of his skin is just an accidental property
of Socrates. Also, Aristotle bases a lot of his metaphysics on the notions
of potentiality and actuality; with time the set of humans change, and we
can also think of the potential humans and apply the same reasoning to
them.

Both Plato and Aristotle argued that there are universal concepts like
Human (either in an ideal world or in the material world). There are,
however, philosophical views that deny the existence of these universals.
Probably the best known theory is the Nominalism theory of William of
Ockham (1287–1347)8.

Ockham argues that no universal exists outside our mind; everything in
the world is singular. That is, there is no concept of Human in this world,
or any other world that somehow influences our world. The world contains
only human instances, and nothing more; the Human concept is just
present in our minds.

Let’s transpose these three theories in software engineering:

1. Plato would argue that there is a Form of Software Engineering in a
parallel universe, and all instances of software engineering in our
world are imperfect copy of that Form.

2. Aristotle would argue that there is a universal called Software
Engineering that can be analysed by properly looking at its essential
properties (and ignore accidental properties).

6. In Latin, Ockham is spelled Occam.
7. Plato also created the Academy, which is considered the first higher

learning institution in the western world.

Ideal Real-life

Figure 1

8. The famous Occam’s razor is most of the time attributed to Ockham;
the principle says that “entities should not be multiplied without
necessity”, and sometimes it’s paraphrased as “the simplest
explanation is most likely the right one”.
December 2020 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU

All the improvements we can hope for in software
engineering will then come from our ability to
improve how our mind looks at these problems
3. Ockham would argue that there is no such thing as software
engineering; there are just many activities that have nothing truly in
common, and it is only in our minds that we call them software
engineering.

Brooks seems to share the same views as Aristotle.

With these three views covered, we are now finally ready to reach the
questions, the essentials of this article.

Q1: Does a Form of a software exist?
Let us take as an example a text editor software (with a known set of
requirements). We call this TextEditorSw. The question then becomes
whether a Form of TextEditorSw exists, and how real is this.

According to the three philosophical views, we have three potential
answers:

1. Yes, there is a Form of TextEditorSw in an ideal world, and all our
real instances of text editors are just imperfect copies of it.

2. Yes, there is a universal for TextEditorSw, which is present (at least
in potentiality) in this world; we just have to enumerate the essential
characteristics of this universal to better understand it.

3. No, there is no such universal; everything is in our head.

If the answer is one of the first two, then there is an ‘essence’ of
TextEditorSw. Furthermore, it probably makes sense to assume that this
‘essence’ will be the least complex, the one that is the most possible
conformant, with no changeability and no visibility issues. That is, the
software would be perfect.

If we can identify the perfect software (at least for a particular type of
software), then that would be the Holy Grail of software engineering.
Trying to understand this perfect software, and the means that we need to
take to reach it would be the most important activities of software
engineering.

If we would have a clear proof (or at least a strong enough argument) that
this perfect software exists, I can imagine a lot of research being founded
to get us closer to this perfect software. We can probably start developing
a method/program to dramatically improve software engineering, similar
to Hilbert’s program in mathematics9. This ultimately would lead us to the
silver bullet of software engineering.

If the answer is yes with an extreme idealist form (Plato’s theory of Forms)
it means that the perfect software is somewhere inaccessible to us, but we
can get near it by pure reasoning. One can, theoretically, just by thinking,
arrive close enough to the Form of the perfect software. In the process it
might uncover other Forms of what a good software means, and thus, we
can improve our software engineering practices.

If we take an Aristotelian view, then the perfect software might exist in
the real world (albeit it can be hard to define); if it does not actually exist,
then it is certainly possible for it to exist. We can certainly use empirical

inquiries to find out more about the properties of the software, and thus to
continuously improve our software engineering practices. This time, the
attack on software engineering difficulties must be targeting only essential
difficulties.

On the other hand, if we believe that a nominalism view would be more
appropriate, and we conclude that the third answer is the right one, then
we would be hopeless in trying to identify what good software engineering
means. All our systematic approaches in improving software engineering
will inevitably fail. We can never know what makes a software a good
software; we just have different instances of software, and all the
generalisations are just in our head. All the improvements we can hope for
in software engineering will then come from our ability to improve how
our mind looks at these problems.

Note that there are multiple other nuances between these three possible
answers. I’m just trying to lay out the main answers according to the main
theories related to the presence of universals.

Q2: How close can we get to the Form of a software?
Provided that we exclude the nominalist view, and we have enough
confidence that there is a (almost) perfect Form of the software (either in
this world or outside it), can we go near it? Or, lowering the bar a bit, can
we go to something like 10% close to it?

Now, for the sake of argument, let’s assume that if we get close enough to
that software, we get 90% of the benefits of having a perfect software, and
we just have something like 10% of difficulties. If that would be the case,
then, this again would probably count as the silver bullet. We eliminated
most of the complaints that Brooks had on why software engineering is
difficult.

More than that, we have a model to study on what the almost-perfect
software would look like. If we know how an almost-perfect TextEditorSw
would look like, then we can probably generalise this knowledge to other
types of text editors. And, then, even further, to other types of software
products.

Continuing this line of thought we would probably end up with a
systematic way of ensuring that we ‘properly’ build software, that ensures
that we get very close to ideal software.

It is almost like we gain the same level of trust that bridge building has
from structural engineering. Software engineering would not be such a
costly activity anymore, as we would know how to get around most of the
difficulties. We can probably also automate it in a large proportion (i.e.,
robots writing code).

This question is far too important to be left unanswered, or at least to be
left without any attempts to be answered.

Q3: Do we have a way to measure the distance to the Form of a
software?
This questions is mainly a continuation of the previous question. We
assume that there is a Form of software, and we may or may not know how
to get to it.

9. Hilbert proposed a program to ensure the existence of a method to
prove all propositions in mathematics [Wikipedia]; Göedel showed later
that such a program is unattainable.
6 | Overload | December 2020

FEATURELUCIAN RADU TEODORESCU
In the best case we can have a test that would give us a numeric distance
between a particular software and its ideal form. But, if that is not possible,
a test that would tell them whether the two are close enough is also a
significant addition to our toolset. This would be similar to the inability of
finding a numeric measurement to indicate the ‘distance’ between an
object and a chair, but we can easily test if the given object is a chair or not.

If we would have a numeric measurement, then arriving to (or close to)
the ideal form of a software is relatively easy. If we don’t have a systematic
way, then we can apply some form of learning (similar to how we do it in
Machine Learning) to arrive close to the ideal Form.

If we would only have a binary test, then we can approach this problem
the brute-force way. Doing this enough times, for different types of
problems, would probably lead us to some conclusions, and thus we can
learn by repeated experience how to design the perfect software (I’m
assuming that there are some universal laws that can be approximated, and
the perfect software is not just subjected to randomness).

Thus, if we have such a measurement, we can empirically derive an
algorithm to get our software to the perfect state, and, moreover, we can
hope that we can learn the best way to do this for all software problems.

Q4: Can we distinguish between accidental and essential
complexity?
One thing that puzzles me in Brooks’s description is that it is not apparent
what essential complexity is. On one hand, Brooks puts complexity as a
whole as an essential difficulty to software engineering, but then he goes
on and argues that the use of higher-level programming languages are just
covering for accidental difficulties.

Let us consider an algorithm over a collection of data that can be written
in 10 lines of a high-level programming language (either OO or
functional). Let’s assume that this algorithm does some sorting, some
mapping and some filtering, etc. If we were to translate this into assembly
it would probably far too big for a person to understand it in a day, not to
mention writing it. So, there are at least a couple of orders of magnitude
between the time spent in understanding the high-level code and
understanding the assembly one (not to mention that assembly can be
considered high-level compared to the processes that happen at the
hardware level). Do we really think that understanding assembly is just
accidental difficulty? Probably not.

On the other hand, one can write the same problem in multiple ways using
a high-level language. And most of the variants are having roughly the
same complexity. For example, breaking a private 10 lines of code function
into two separate function is most probably not changing the complexity
of the solution. This surely cannot be considered as being essential traits
for the software.

So then, what is essential, and what is accidental? Although we do have
the tools to properly make this distinction, I don’t think we know how to
do it.

If we would answer this question, then probably we could easily derive
reasoning that would tell us what a good software is, and what is not.

Q5: Is technical debt an essential difficulty?
Most often when software developers discuss difficulties in their day to
day work, the phrase technical debt pops up. Symptoms of technical debt
include: large number of bugs in a particular area, ad hoc design, difficulty
of changing the software, lack of or inappropriate documentation, lack of
testing, etc.

There are cases in which technical debt can be a good thing for the project
lifetime (i.e., for proof-of-concepts, for features that need to make a
deadline, for delaying some effort that are not sure that are really needed,
etc.), but most of the time technical debt is considered a bad thing; thus a
difficulty in the sense we are discussing here.

The main question that arises then is whether technical debt is an essential
difficulty or not.

On one hand, one can argue that it is one of the major sources of complexity
in a project, and as complexity is an essential difficulty of software
engineering, so technical debt is an essential difficulty. On the other hand,
if some technical debt can be good for the project, then it cannot be an
essential difficulty.

But maybe, technical debt is somewhere in the middle. Sometimes, over
certain limits it is an essential difficulty, and sometimes, when kept under
control, it is not an essential difficulty (either an accidental difficulty or a
good thing).

If we can find out the limits after which technical debt is an essential
difficulty, then maybe we can put processes in place to prevent it from
crossing those limits.

It’s essential to understand essential difficulties (pun intended).

Final words
In our post-modern world, people are always looking for solutions to
problems. Sometimes we even invent solutions to problems that we never
had. But, if it is said that asking questions is more important than answering
them, perhaps the best solutions can be found only after trying hard to ask
the right set of questions.

This is my attempt to ask some questions that I feel are important for the
field of software engineering. Maybe they cannot be properly answered,
maybe they are not the most important questions that we have to ask, but
it’s clear that they gravitate around the essence of software engineering (if
there is an essence to it).

I argue that answering any of these questions will be a significant step
forward in software engineering. Probably it would be the mythical silver
bullet. But, if it’s not, it would most likely lead to alleviating some
difficulties in our field.

If these cannot be properly answered, a good answer approximation would
probably still advance the fundamental research in software engineering.

If that doesn’t happen either, then I hope at least I was able to detract the
reader from this cruel reality, and make them enjoy this short detour in
philosophising about software engineering.

References
[Aristotle84a] Aristotle, ‘Topics’ in The Complete Works of Aristotle,

Volume 1: The Revised Oxford Translation (vol 1), edited by
Jonathan Barnes, Princeton University Press, 1984

[Aristotle84b] Aristotle, ‘Metaphysics’ in The Complete Works of
Aristotle, Volume 2: The Revised Oxford Translation, edited by
Jonathan Barnes, Princeton University Press, 1984

[Brooks86] Frederick P. Brooks Jr., ‘No Silver Bullet – Essence and
Accidents of Software Engineering’, Proceedings of the IFIP Tenth
World Computing Conference, edited by H.-J. Kugler, 1986

[Brooks95] Frederick P. Brooks Jr., The Mythical Man-Month
(anniversary ed.), Addison-Wesley Longman Publishing, 1995

[Kenny10] Anthony Kenny, A New History of Western Philosophy In
Four Parts, Clarendon Press, Oxford, 2010

[MW] Merriam-Webster, ‘essentialism’, accessed Oct 2020,
https://www.merriam-webster.com/dictionary/essentialism

[Seemann19] Mark Seemann, ‘Yes silver bullet’, 2019,
https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/

[Wikipedia] Wikipedia The Free Encyclopedia, Hilbert’s program,
accessed Oct 2020, https://en.wikipedia.org/wiki/
Hilbert%27s_program

[Whitehead78] Alfred North Whitehead, Process and Reality, New York:
The Free Press, 1978.
December 2020 | Overload | 7

https://www.merriam-webster.com/dictionary/essentialism
https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/
https://en.wikipedia.org/wiki/Hilbert%27s_program
https://en.wikipedia.org/wiki/Hilbert%27s_program

FEATURE ROGER ORR
Building g++ From the
GCC Modules Branch
Using the WSL to build the g++ modules branch.
Roger Orr demonstrates how to get a compiler
that supports modules up and running.
he last issue of Overload contained Nathan Sidwell’s article ‘C++
Modules: A Brief Tour’ where he provided some short examples of
C++20 modules in action. The ‘Implementation’ box in the article

showed the status of four compilers, including Nathan’s own branch of
gcc. In the conclusion of the article he wrote: “Unfortunately, for GCC one
must use Godbolt, which is awkward for the more advanced use, or build
one’s own compiler, which is a steep cliff to climb for most users."

I thought a worked example of building g++ from the modules branch from
scratch might be helpful for people who are keen to experiment further
with gcc’s implementation of C++ modules but are intimidated by the
thought of building the compiler for the first time.

Getting started
The Gnu Compiler Collection (gcc) can be built on a very wide range of
systems. The overall process is much the same, but there will be various
differences depending on the exact target. One main difference between
systems is the mechanism you need to use to obtain the various pre-
requisites that building gcc requires.

I have no statistics on which operating systems the readership of Overload
use and so I have chosen to build the compiler on Windows 10 using
Ubuntu running in the ‘Windows Subsystem for Linux’. This should be
useful both to those with Windows machines and to those with Ubuntu
running natively.

Other alternatives on Windows are possible; you can for example build the
compiler using Cygwin.

On other Linux distributions the process will be similar, but the actual
commands used to download the other tools will depend on the package
management system they use. On Ubuntu the downloads can be performed
using APT (which in this context is the acronym for the ‘Advanced
Package Tool’ rather than for an ‘Advanced Persistent Threat’…!)

One of the things that makes building gcc quite painful, in my experience,
is that analysing any build errors is complicated by the number of lines of
output the build produces. In particular, I spent quite a bit of time when I
first built gcc tracking down missing dependencies since, especially as a
newcomer, the symptoms do not necessarily directly indicate the root
cause. For example, it is worth checking specifically for the string
‘missing’ early in the logs if you get a build failure to see if it may be caused
by a dependency you are lacking.

Installing WSL
If you have not previously installed this feature, it is quite straightforward
to get started with it, at least on moderately recent versions of Windows

10. Open the control panel, click on Programs and Features and in the
resulting dialog box, click on Turn Windows features on or off. Enable
Windows Subsystem for Linux and click Ok.

The computer needs to reboot to install the additional feature, and when
this has completed you should visit the Microsoft Store and select an
appropriate Linux installation: I simply selected Ubuntu which, at the time
of writing, installed version 20.04 LTS (Long Term Support). The length
of time this takes will depend on your download speed – it’s a touch under
500 Mb. After this has completed you should now have an ‘Ubuntu’ icon
in your start menu.

The first time you run this you will need to enter the username and
password for the primary account (which will be granted sudo
permissions, which you will need to install the prerequisites). I suggest the
first two commands you run are sudo apt update and sudo apt
upgrade which ensures your base operating system is up-to-date.

Note: the installation of WSL on earlier versions of Windows 10 required
enabling developer mode, which is not the case on the current release.
Additionally, there is now support for both ‘version 1’ and ‘version 2’ of
WSL. Interesting as this might be, it is orthogonal to the primary purpose
of this article, which is focussed on building the g++ compiler.

Getting dependencies
As mentioned above, the build of gcc makes use of a number of other tools,
some of which will be installed in the base Linux installation but some of
which may need to be installed manually.

Since in this case I am looking to build and use a branch of gcc, rather than
being a developer of gcc, I can save some time by avoiding the ‘bootstrap’
part of building gcc and use a mainstream version of gcc to compile the
modules branch.

For building gcc I needed to ensure the following components were
present:

bison, flex, git, g++, and make

On Ubuntu this can be achieved with one command:

 sudo apt install bison flex git g++ make

On some installations you also need to install m4 and perl, but they’re part
of the base install of Ubuntu. The build also uses makeinfo to create info
files for the compiler. I was not particularly interested in the info files, so
didn’t bother to install makeinfo, but if you do want those files then you
also need to install the texinfo package which provides makeinfo.

Checking a base build of g++
Once these dependencies are installed, you can test your setup by building
the main trunk of g++. Having had various issues building g++ on
Windows machines caused by the Windows default line ending (carriage
return and line feed), I err on the side of caution by specifying explicit
options to git to ensure that a single line feed is used.

The base build splits into two parts, firstly downloading the source files
and some other dependencies:

T

Roger Orr Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in Canary Wharf
and the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.co.uk
8 | Overload | December 2020

FEATUREROGER ORR

One of the things that makes building gcc
quite painful is that analysing any build

errors is complicated by the number of lines
of output the build produces
 mkdir ~/projects
 cd ~/projects
 git clone -c core.eoln=lf -c core.autocrlf=false\
 git://gcc.gnu.org/git/gcc.git
 cd gcc
 ./contrib/download_prerequisites

and then building the compiler:

 mkdir ../build
 cd ../build
 ../gcc-trunk/configure --disable-bootstrap
 --disable-multilib\
 --enable-languages=c++ --enable-threads=posix
 make -j 4

If all goes well this will (eventually!) build a version of the latest trunk code
for the g++ compiler.

A few notes on the build commands.

 It’s best to build in a directory outside the source tree: here I use a
sibling directory

 disable-bootstrap as this avoids ‘bootstrapping’ the build
process (by using a reasonably up-to-date g++ compiler to kickstart
the build) which makes the build significantly quicker

 disable-multilib as I only want the 64-bit compiler, without
this option I’ll get the 32-bit compiler too (and will also need some
additional prerequisites)

 enable-languages=c++ as I just want to try out the c++
modules support

 enable-threads=posix so I can use threads in my C++
programs

Building the modules branch
Once you have got this far, building the modules branch itself should be
relatively straightforward. When I originally built the modules branch after
the article was published, there was an additional prerequisite (zsh) and
you also needed to download and build the libcody library separately; but
this was recently included as a subproject in the modules branch and so
the build process is now simpler.

Simply check out the right branch:

 cd ../gcc
 git checkout devel/c++-modules

and then build and install this version

 mkdir ../build-modules
 cd ../build-modules
 ../gcc-modules/configure --disable-bootstrap
 --disable-multilib --enable-languages=c++
 --enable-threads=posix
 --prefix=/usr/share/gcc-modules
 make -j 4
 sudo make install

Note that I am providing a specific target directory for the installation with
--prefix as I don’t want the modules branch build to other builds of gcc
that I have installed. This does mean I will need to select this version
explicitly; for example by giving the full path to g++ or by pre-pending
the directory containing g++ to the PATH environment variable.

Kicking the tyres
Now we should be able to build the first example from Nathan’s article:

 cd ~/projects/example1
 export PATH=/usr/share/gcc-modules;%PATH%

 g++ -fmodules-ts -std=c++20 -c hello.cc
 g++ -fmodules-ts -std=c++20 -c main.cc
 g++ -o main main.o hello.o
 ./main
 Hello World

Success!

Updating the build
If you want to rebuild the compiler to pick up later changes to the modules
branch there are a couple of things to bear in mind.

Firstly, the ./contrib/download_prerequisites command adds
some directories and symlinks to the source tree. You don’t usually need
to run this again; but if the versions of the prerequisites change (as they
sometimes do) it is important to remove the old versions before running
the command. (My own scripts simply delete any existing artefacts and
unconditionally download each time I do a build of gcc.)

Secondly, I recommend deleting the contents of the build directory before
re-compiling. While in theory the timestamp-based dependency algorithm
used by make should handle changes smoothly, this has not always been
my actual experience and the resultant build issues took me longer to
resolve than any time saved by performing an incremental build.

So my instructions for a full refresh are:

 cd gcc-modules
 git pull --ff-only
 rm -f gmp* mpfr* mpc* isl*
 ./contrib/download_prerequisites
 rm rf ../build-modules

and then build and install as before.

Conclusion
Building gcc can seem difficult, but I hope this worked example
encourages some of you to try it for yourself and thereby be able to further
explore the gcc modules implementation that Nathan’s article made
reference to.
December 2020 | Overload | 9

FEATURE DONALD HERNIK
Consuming the uk-covid19 API
Covid-19 data is available in many
places. Donald Hernik demonstrates how
to wrangle data out of the UK API.
WARNING: This article is written in an unnecessarily cheerful tone (“Ah!
So you’re a waffle man!” [Red Dwarf] as an antidote to the subject matter
and the current state of the world. Stay safe, everybody.

Please note: This article was written in October 2020 and the
Developers’ Guide document referenced below has been updated
many times since.

Introduction
 don’t think I’ve seen so many charts in the press since the happy days
of the Brexit referendum or, perhaps, the Credit Crunch. Say what you
like about Coronavirus but if you like charts then this is a fantastic time

to be alive...

I am not a data scientist but I wondered – could I get the underlying data
and plot my own charts?

Good news, yes! But there were some problems along the way.

Public Health England (PHE) Data
Public Health England publish the UK Covid data and sites exist to view
the various charts [GOV.UK-1].

The data are also published via an endpoint:
https://api.coronavirus.data.gov.uk/v1/data

 There is a Developers’ Guide [GOV.UK-2] (henceforth referred to
as DG) for consuming this. The DG tells you how to structure
requests, what metrics are supported, error codes, etc.

 The list of metrics that can be requested is (as documented in the
DG) regularly updated so there may be more metrics to request next
week than this.

 Separately there is a wrapper SDK (uk-covid19) which simplifies
using the endpoint. There is separate documentation for this [PHE]
but reading the DG is still very useful.

The uk-covid19 SDK API
In summary:

 The SDK is provided for Python, JavaScript, and R.

 Requests are input as JSON.

 Response data can be extracted as JSON or XML.

 Without the SDK, requests can be made directly to the endpoint
above via e.g. the Python HTTP requests. The SDK libraries
wrapper useful behaviour such as processing multiple ‘pages’ of
data in the response. It also swallows some error cases – see below.

The Python implementation
I am not a Python developer (see also ‘data scientist’, above) having only
really used it for build scripts and log scrapers but this was an interesting
opportunity to learn something new, and Python has a well-earned
reputation for developing things quickly and simply.

The Python SDK requires Python 3.7+ so I installed Anaconda 3.8. The
SDK module is installed via PIP.

 pip install uk-covid19

Making requests
Please note that (through nobody’s fault) the formatting of the listings has
suffered slightly for publication. You’ll just have to trust me that it’s valid
Python.

WITHOUT using the API

Making a request without using the API is simple enough – see Listing 1
– however:

NOTE1: Quiz – does the get method get all of the pages of the
response? The API requests multiple pages in a loop until the
response is HTTPStatus.NO_CONTENT...

NOTE2: We can handle all the HTTP status codes, especially 204
(Success – no data).

WITH the uk-covid19 API

Making a request using the API is simple enough – see Listing 2 – however:

NOTE3: Can we detect that a 204 (Success – no data) response
happened? No. The API throws an exception only for HTTP error
codes >= 400.

API Pitfalls
Some problems that I encountered along the way.

The 204 response

As documented in the DG, HTTP response 204 is ‘Success – no data’ and
the response JSON looks like this.

 {'data': [], 'lastUpdate': '2020-10-30T15:31:25.0
 00000Z', 'length': 0, 'totalPages': 0}

Unfortunately, via the API, you can’t tell what the HTTP status code was
(unless it’s >= 400, in which case an exception is thrown).

Where is my data (part 1)?

Surely there is data for ‘Englund’? Why is my response empty?

If you e.g. misspell an areaName then the server responds with a "204
OK" response. The API swallows the status code so we can’t tell if there
is genuinely no data or a typo in our request.

This is why we, as good programmers, always validate our input.

I

Donald Hernik has a BSc in Information Systems and has been a
software developer for over twenty years, predominantly using
C++, and most recently in Financial Services. He is currently
looking for an interesting, fully remote, job. He can be contacted at
donaldhernik@hx1technology.co.uk
10 | Overload | December 2020

FEATUREDONALD HERNIK
Where is my data (part 2)?

There are multiple areaType values (briefly documented in the DG). I’ve
never worked in healthcare or the public sector (see also ‘Python
developer’ and ‘data scientist’, above) so some of these are new to me. The
non-obvious areaType values are:

 nhsRegion – how and why is this different to region (e.g.
‘Yorkshire and the Humber’)?

What are the valid values? I haven’t had time to find out as I stuck
to obvious areaTypes – nation etc.

 utla v ltla – Upper Tier v Lower Tier Local Authorities.

Some values e.g. ‘Leeds’ are both a UTLA and an LTLA, and some
are not.

Suffolk (UTLA) for example is composed of ‘Babergh’, ‘Ipswich’,
‘South Suffolk’, ‘Mid Suffolk’, and ‘West Suffolk’ (each an LTLA).

If you mismatch a valid areaName and a valid areaType in your request
then you can get a 204. For example: e.g.

This makes sense, but more input validation required.

Where is my data (part 3)?

Occasionally, especially while coding on Saturdays, I encountered error
code 500 ‘An internal error occurred whilst processing your request, please
try again’ responses even for my perfectly crafted requests.

I tried again later – there was data.

Where is my data (part 4)?

As documented in the About the data guide [GOV.UK-3] there are sensible
caveats about data correctness and availability.

 Sometimes data is simply not available for all areas for a given date.
It is common (and by design) that for some requested metrics the
response value is None (data missing) which is different to a
response value of zero (data present, and zero).

 Sometimes data is retrospectively corrected/added so be careful if
you’re going to e.g. cache it by date. Data that is not there today for
day T-n might one day be added (or might not).

 The broader the areaType (e.g. nation) the more metrics are
populated.

For example, hospitalCases, covidOccupiedMVBeds,
maleCases, and femaleCases are populated for England (on
dates that values are available) but are never (to date) populated at
the LTLA or UTLA level.

 The only data consistently populated to date for UTLA and LTLA
areaTypes are various cases and death metrics (newCases…,
newDeaths…, cumDeaths…, etc). This may change in the future.

areaName areaType HTTP response status

Leeds ltla 200 – OK

Leeds utla 200 – OK

Suffolk ltla 204 – OK // No data

Suffolk utla 200 – OK

Listing 1

import requests

def main():
 """Get the Covid data via the endpoint"""
 try:
 area_name = 'suffolk'
 area_type = 'utla'
 url = 'https://api.coronavirus.data.gov.uk/v1/
data?'
 filters =
f'filters=areaType={area_type};areaName={area_name
}&'
 struc = 'structure={"date":"date",
 "newAdmissions":"newAdmissions",
 "cumAdmissions":"cumAdmissions",
 "newCasesByPublishDate":
 "newCasesByPublishDate:}'
 endpoint = url + filters + struc
 # NOTE 1: Does this get all of the data?
 # Or just the first page?
 response = requests.get(endpoint, 30)
 if response.status_code == 200:
 # OK
 data = response.json()
 print(data)
 else:
 if 204 == response.status_code:
 # NOTE 2: This explicitly warns if no
 # data is returned.
 print(f'WARNING: url [{url}], status_code
 [{response.status_code}], response
 [Success - no data]')
 else:
 print(f'ERROR: url [{url}], status_code
 [{response.status_code}], response
 [{response.text}]')
 except Exception as ex: # pylint:
 disable=broad-except
 print(f'Exception [{ex}]')
if __name__ == "__main__":
 main()

Listing 2

from uk_covid19 import Cov19API
def main():
 """Get the Covid data via the API"""
 try:
 area_name = 'suffolk'
 area_type = 'utla'

 # The location for which we want data.
 location_filter = [f'areaType={area_type}',
 f'areaName={area_name}']

 # The metric(s) to request. NOTE: More than in
 # the previous example, for variety.
 req_structure = {
 "date": "date",
 "areaCode": "areaCode",
 "newCasesByPublishDate":
"newCasesByPublishDate",
 "newCasesBySpecimenDate":
"newCasesBySpecimenDate",
 "newDeaths28DaysByDeathDate":
"newDeaths28DaysByDeathDate",
 "newDeaths28DaysByPublishDate":
"newDeaths28DaysByPublishDate"
 }

 # Request the data.
 # This gets all pages and we don't need to care
how.
 api = Cov19API(filters=location_filter,
structure=req_structure)
 # Get the data.
 # NOTE3: If a 204 (Success - no data) occurs
can we tell?
 data = api.get_json()
 print(data)
 except Exception as ex: # pylint: disable=broad-
except
 print(f'Exception [{ex}]')
if __name__ == "__main__":
 main()
December 2020 | Overload | 11

FEATURE DONALD HERNIK
 For cumulative metrics (e.g. cumAdmissions) the value is only
populated on dates it changes e.g. on date T cumAdmissions may
be 9999 and on date T+1 it may be None.

If you inspect the response JSON as you develop, you will spot this and
anticipate None values.

Processing the data

Data
Once your request is perfected, you’ll get some nice, shiny, data. This
example is from areaType=nation, areaName=England. Only one
date is shown here but there are multiple dates in the JSON and data back
to 2020-01-03. See Listing 3.

NOTE: The null values are a side effect of saving the data to file. In the
Python app they are None.

Plotting a chart
This article would be too long (“So you’re a waffle man!”) if I delved into
plotting charts. Suffice to say that I had a poke around on Stackoverflow

[Stackoverflow] and discovered matplotlib [Matplotlib]. One tutorial later
(I don’t remember which – sorry) and I churned out a chart of my own.
There was much rejoicing. Sadly, the chart showed that hospital
admissions and mechanical ventilated bed occupancy were increasing, so
the rejoicing was reined in somewhat.

Conclusion
 The uk-covid19 SDK is easy to use and the data can be used to plot

your own charts – mission accomplished!

 The data comes with documented caveats to which you should pay
close attention.

 Not all metrics are available for all areaTypes.

 Watch out for HTTP code 204 and other pitfalls.

References
[GOV.UK-1] Daily Summary: https://coronavirus-staging.data.gov.uk/

[GOV.UK-2] Developers’ Guide: https://coronavirus.data.gov.uk/
developers-guide

[GOV.UK-3] About the Data: https://coronavirus.data.gov.uk/about-data

[Matplotlib] https://matplotlib.org/3.1.1/index.html

[Red Dwarf] Talkie Toaster: https://reddwarf.fandom.com/wiki/
Talkie_Toaster

[PHE] Python SDK Guide: https://publichealthengland.github.io/
coronavirus-dashboardapi-python-sdk/pages/getting_started.html#

[Stackoverflow] Stackoverflow: https://stackoverflow.com/

Listing 3

{
 "date": "2020-10-29",
 "hospitalCases": 8681,
 "newAdmissions": null,
 "cumAdmissions": null,
 "covidOccupiedMVBeds": 803,
 "newCasesByPublishDate": 19740,
 "newCasesBySpecimenDate": 726,
 "cumDeaths28DaysByDeathDate": 40854,
 "newDeaths28DaysByDeathDate": 61,
 "cumDeaths28DaysByPublishDate": 40628,
 "newDeaths28DaysByPublishDate": 214
}

12 | Overload | December 2020

Figure 1

https://reddwarf.fandom.com/wiki/Talkie_Toaster
https://reddwarf.fandom.com/wiki/Talkie_Toaster
https://publichealthengland.github.io/coronavirus-dashboardapi-python-sdk/pages/getting_started.html#
https://publichealthengland.github.io/coronavirus-dashboardapi-python-sdk/pages/getting_started.html#
https://stackoverflow.com/
https://coronavirus.data.gov.uk/about-data
https://coronavirus.data.gov.uk/developers-guide
https://coronavirus.data.gov.uk/developers-guide
https://coronavirus-staging.data.gov.uk/
https://matplotlib.org/3.1.1/index.html

FEATUREANONYMOUS
What is the Strict Aliasing Rule
and Why Do We Care?
Type Punning, Undefined Behavior and Alignment, Oh My!
Strict aliasing is explained.
hat is strict aliasing? First we will describe what is aliasing and
then we can learn what being strict about it means.

In C and C++, aliasing has to do with what expression types we
are allowed to access stored values through. In both C and C++, the
standard specifies which expression types are allowed to alias which types.
The compiler and optimizer are allowed to assume we follow the aliasing
rules strictly, hence the term strict aliasing rule. If we attempt to access a
value using a type not allowed it is classified as undefined behavior (UB)
[CPP-1]. Once we have undefined behavior, all bets are off. The results of
our program are no longer reliable.

Unfortunately, with strict aliasing violations we will often obtain the
results we expect, leaving the possibility the a future version of a compiler
with a new optimization will break code we thought was valid. This is
undesirable and it is a worthwhile goal to understand the strict aliasing
rules and how to avoid violating them.

To understand more about why we care, we will discuss issues that come
up when violating strict aliasing rules, type punning since common
techniques used in type punning often violate strict aliasing rules and how
to type pun correctly, along with some possible help from C++20 to make
type punning simpler and less error prone. We will wrap up the discussion
by going over some methods for catching strict aliasing violations.

Preliminary examples
Let’s look at some examples, then we can talk about exactly what the
standard(s) say, examine some further examples and then see how to avoid
strict aliasing and catch violations we missed. Here is an example that
should not be surprising:

 int x = 10;
 int *ip = &x;

 std::cout << *ip << "\n";
 *ip = 12;
 std::cout << x << "\n";

We have an int* pointing to memory occupied by an int and this is a
valid aliasing. The optimizer must assume that assignments through ip
could update the value occupied by x. Listing 1 shows aliasing that leads
to undefined behavior.

In the function foo we take an int* and a float*, in this example we
call foo and set both parameters to point to the same memory location,
which in this example contains an int. Note, the reinterpret_cast
[CPP-2] is telling the compiler to treat the expression as if it had the type
specified by its template parameter. In this case, we are telling it to treat
the expression &x as if it had type float*. We may naively expect the
result of the second cout to be 0 but with optimization enabled using -O2
both gcc and clang produce the following result:

 0
 1

which may not be expected but is perfectly valid, since we have invoked
undefined behavior. A float can not validly alias an int object.

Therefore the optimizer can assume the constant 1 stored when
dereferencing i will be the return value since a store through f could not
validly affect an int object. Plugging the code in Compiler Explorer
shows this is exactly what is happening:

 foo(float*, int*): # @foo(float*, int*)
 mov dword ptr [rsi], 1
 mov dword ptr [rdi], 0
 mov eax, 1
 ret

The optimizer using Type-Based Alias Analysis (TBAA)1 assumes 1 will
be returned and directly moves the constant value into register eax which
carries the return value. TBAA uses the languages rules about what types
are allowed to alias to optimize loads and stores. In this case, TBAA knows
that a float can not alias an int and optimizes away the load of i.

Now, to the Rule-Book
What exactly does the standard say we are allowed and not allowed to do?
The standard language is not straightforward, so for each item I will try to
provide code examples that demonstrate the meaning.

What does the C11 standard say?
The C11 standard2 says the following in section 6.5 Expressions
paragraph 7:

An object shall have its stored value accessed only by an lvalue
expression3 that has one of the following types:88)

 a type compatible with the effective type of the object,

W

1. Type-Based Alias Analysis: https://www.drdobbs.com/cpp/type-based-
alias-analysis/184404273

2. Draft C11 standard is freely available: http://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1570.pdf

3. Understanding lvalues and rvalues in C and C++:
https://eli.thegreenplace.net/2011/12/15/understanding-lvalues-and-
rvalues-in-c-and-c

Anonymous An anonymous contribution.

Listing 1

int foo(float *f, int *i) {
 *i = 1;
 *f = 0.f;
 return *i;
}
int main() {
 int x = 0;
 std::cout << x << "\n"; // Expect 0
 x = foo(reinterpret_cast<float*>(&x), &x);
 std::cout << x << "\n"; // Expect 0?
}

December 2020 | Overload | 13

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://eli.thegreenplace.net/2011/12/15/understanding-lvalues-and-rvalues-in-c-and-c

FEATURE ANONYMOUS

In C and C++, aliasing has to do with what
expression types we are allowed to access
stored values through
 int x = 1;
 int *p = &x;
 printf("%d\n", *p); // *p gives us an lvalue
 // expression of type int which is compatible
 // with int

 a qualified version of a type compatible with the effective type of
the object,

 int x = 1;
 const int *p = &x;
 printf("%d\n", *p); // *p gives us an lvalue
 // expression of type const int which is
 // compatible with int

 a type that is the signed or unsigned type corresponding to the
effective type of the object,

 int x = 1;
 unsigned int *p = (unsigned int*)&x;
 printf("%u\n", *p); // *p gives us an lvalue
 // expression of type unsigned int which
 // corresponds to the effective type of the
 // object

Note: There is a gcc/clang extension4 that allows assigning
unsigned int* to int* even though they are not compatible
types.

 a type that is the signed or unsigned type corresponding to a
qualified version of the effective type of the object,

 int x = 1;
 const unsigned int *p =
 (const unsigned int*)&x;
 printf("%u\n", *p); // *p gives us an lvalue
 // expression of type const unsigned int which
 // is a unsigned type that corresponds with to
 // a qualified version of the effective type of
 // the object

 an aggregate or union type that includes one of the
aforementioned types among its members (including,
recursively, a member of a sub-aggregate or contained union), or

 struct foo {
 int x;
 };
 void foobar(struct foo *fp, int *ip);
 // struct foo is an aggregate that includes
 // int among its members so it can alias with
 // *ip
 foo f;
 foobar(&f, &f.x);

 a character type.

 int x = 65;
 char *p = (char *)&x;
 printf("%c\n", *p); // *p gives us an lvalue
 // expression of type char which is a
 // character type. The results are not
 // portable due to endianness issues.

What does the C++17 Draft Standard say
The C++17 draft standard5 in section [basic.lval] paragraph 11 says:

If a program attempts to access the stored value of an object through
a glvalue of other than one of the following types the behavior is
undefined:63 (11.1) — the dynamic type of the object,

 void *p = malloc(sizeof(int)); // We have
 // allocated storage but not started the
 // lifetime of an object
 int *ip = new (p) int{0}; // Placement new
 // changes the dynamic type of the object to int
 std::cout << *ip << "\n"; // *ip gives us a
 // glvalue expression of type int which matches
 // the dynamic type of the allocated object

(11.2) – a cv-qualified version of the dynamic type of the object,

 int x = 1;
 const int *cip = &x;
 std::cout << *cip << "\n"; // *cip gives us a
 // glvalue expression of type const int which
 // is a cv-qualified version of the dynamic
 // type of x

(11.3) – a type similar (as defined in 7.5) to the dynamic type of the
object,

 int *a[3];
 const int *const *p = a;
 const int *q = p[1]; // ok, read of 'int*'
 // through lvalue of similar type 'const int*'

(11.4) – a type that is the signed or unsigned type corresponding to
the dynamic type of the object,

 // Both si and ui are signed or unsigned
 // types corresponding to each others dynamic
 // types. We can see from this godbolt
 // https://godbolt.org/g/KowGXB) the
 // optimizer assumes aliasing.
 signed int foo(signed int &si,
 unsigned int &ui) {
 si = 1;
 ui = 2;
 return si;
 }

4. Why does gcc and clang allow assigning an unsigned int * to int * since
they are not compatible types, although they may alias
https://twitter.com/shafikyaghmour/status/957702383810658304 and
https://gcc.gnu.org/ml/gcc/2003-10/msg00184.html

5. Draft C++17 standard is freely available https://github.com/cplusplus/
draft/raw/master/papers/n4659.pdf
14 | Overload | December 2020

https://twitter.com/shafikyaghmour/status/957702383810658304
https://gcc.gnu.org/ml/gcc/2003-10/msg00184.html
https://github.com/cplusplus/draft/raw/master/papers/n4659.pdf
https://github.com/cplusplus/draft/raw/master/papers/n4659.pdf

FEATUREANONYMOUS

Sometimes we want to circumvent the type
system and interpret an object as a different

type … this is called type punning,
(11.5) – a type that is the signed or unsigned type corresponding to
a cv-qualified version of the dynamic type of the object,

 signed int foo(const signed int &si1,
 int &si2);
 // Hard to show this one assumes aliasing

(11.6) – an aggregate or union type that includes one of the
aforementioned types among its elements or non-static data
members (including, recursively, an element or non-static data
member of a sub-aggregate or contained union),

 struct foo {
 int x;
 };
 // Compiler Explorer example (https://
 // godbolt.org/g/z2wJTC) shows aliasing
 // assumption
 int foobar(foo &fp, int &ip) {
 fp.x = 1;
 ip = 2;
 return fp.x;
 }
 foo f;
 foobar(f, f.x);

(11.7) – a type that is a (possibly cv-qualified) base class type of
the dynamic type of the object,

 struct foo { int x ; };
 struct bar : public foo {};
 int foobar(foo &f, bar &b) {
 f.x = 1;
 b.x = 2;
 return f.x;
 }

(11.8) – a char, unsigned char, or std::byte type.

 int foo(std::byte &b, uint32_t &ui) {
 b = static_cast<std::byte>('a');
 ui = 0xFFFFFFFF;
 return std::to_integer<int>(b); // b gives
 // us a glvalue expression of type
 // std::byte which can alias an object of
 // type uint32_t
 }

Worth noting signed char is not included in the list above, this is a
notable difference from C which says a character type.

Subtle differences
So although we can see that C and C++ say similar things about aliasing
there are some differences that we should be aware of. C++ does not have
C’s concept of effective type [CPP-3] or compatible type [CCP-4] and C
does not have C++’s concept of dynamic type [CCP-5] or similar type.
Although both have lvalue and rvalue expressions, C++ also has glvalue,
prvalue and xvalue expressions6. These differences are mostly out of scope
for this article but one interesting example is how to create an object out

of malloc’d memory. In C we can set the effective type7, for example, by
writing to the memory through an lvalue or memcpy.8 (See Listing 2.)

Neither of these methods is sufficient in C++ which requires placement
new:

 float *fp = new (p) float{1.0f} ;
 // Dynamic type of *p is now float

Are int8_t and uint8_t char types?
Theoretically neither int8_t nor uint8_t have to be char types but
practically they are implemented that way. This is important because if they
are really char types then they also alias similar to char types. If you are
unaware of this it can lead to surprising performance impacts
[StackOverflow]. We can see that glibc typedefs int8_t [Github-1] and
uint8_t [Github-2] to signed char and unsigned char respectively.

This would be hard to change since for C++ it would be an ABI break. This
would change name mangling and would break any API using either of
those types in their interface.

What is type punning
We have gotten to this point and we may be wondering, why would we
want to alias? The answer typically is to type pun, often the methods used
violate strict aliasing rules.

Sometimes we want to circumvent the type system and interpret an object
as a different type. This is called type punning, to reinterpret a segment of
memory as another type. Type punning is useful for tasks that want access
to the underlying representation of an object to view, transport or
manipulate. Typical areas we find type punning being used are compilers,
serialization, networking code, etc…

Traditionally this has been accomplished by taking the address of the object,
casting it to a pointer of the type we want to reinterpret it as and then
accessing the value, or in other words by aliasing. For example, see Listing 3.

As we have seen earlier this is not a valid aliasing, so we are invoking
undefined behavior. But traditionally compilers did not take advantage of
strict aliasing rules and this type of code usually just worked, developers

6. ‘New’ Value Terminology which explains how glvalue, xvalue and
prvalue came about http://www.stroustrup.com/terminology.pdf

7. Effective types and aliasing https://gustedt.wordpress.com/2016/08/17/
effective-types-and-aliasing/

8. ‘constructing’ a trivially-copyable object with
memcpy https://stackoverflow.com/q/30114397/1708801

Listing 2

// The following is valid C but not valid C++
void *p = malloc(sizeof(float));
float f = 1.0f;
memcpy(p, &f, sizeof(float));
 // Effective type of *p is float in C or
float *fp = p;
*fp = 1.0f; // Effective type of *p is float in C
December 2020 | Overload | 15

memcpy https://stackoverflow.com/q/30114397/1708801
https://gustedt.wordpress.com/2016/08/17/effective-types-and-aliasing/
https://gustedt.wordpress.com/2016/08/17/effective-types-and-aliasing/
http://www.stroustrup.com/terminology.pdf

FEATURE ANONYMOUS
have unfortunately gotten used to doing things this way. A common
alternate method for type punning is through unions, which is valid in C
but undefined behavior in C++139 (see Listing 4).

This is not valid in C++ and some consider the purpose of unions to be
solely for implementing variant types and feel using unions for type
punning is an abuse.

How do we Type Pun correctly?
The standard blessed method for type punning in both C and C++ is
memcpy. This may seem a little heavy handed but the optimizer should
recognize the use of memcpy for type punning and optimize it away and
generate a register to register move. For example, if we know int64_t
is the same size as double:

 static_assert(sizeof(double) ==
 sizeof(int64_t));
 // C++17 does not require a message

we can use memcpy:

 void func1(double d) {
 std::int64_t n;
 std::memcpy(&n, &d, sizeof d);
 //...

At a sufficient optimization level, any decent modern compiler generates
identical code to the previously mentioned reinterpret_cast method
or union method for type punning. Examining the generated code we see
it uses just register mov.

Type punning arrays
But, what if we want to type pun an array of unsigned char into a series
of unsigned ints and then perform an operation on each unsigned
int value? We can use memcpy to pun the unsigned char array
into a temporary of type unsigned int. The optimizer will still manage
to see through the memcpy and optimize away both the temporary and the
copy and operate directly on the underlying data (Listing 5).

In the example, we take a char* p, assume it points to multiple chunks
of sizeof(unsigned int) data, we type pun each chunk of data as
an unsigned int, compute foo() on each chunk of type punned data
and sum it into result and return the final value.

The assembly for the body of the loop shows the optimizer reduces the
body into a direct access of the underlying unsigned char array as
an unsigned int, adding it directly into eax:

 add eax, dword ptr [rdi + rcx]

Listing 6 is the same code but using reinterpret_cast to type pun
(violates strict aliasing).

C++20 and bit_cast
In C++20 we may gain bit_cast10, which gives a simple and safe way
to type-pun as well as being usable in a constexpr context.

The following is an example of how to use bit_cast to type pun an
unsigned int to float:

 std::cout << bit_cast<float>(0x447a0000) << "\n";
 //assuming sizeof(float) == sizeof(unsigned int)

In the case where To and From types don’t have the same size, it requires
us to use an intermediate struct11. We will use a struct containing a
sizeof(unsigned int) character array (assumes 4 byte unsigned
int) to be the From type and unsigned int as the To type. (See
Listing 7.)

It is unfortunate that we need this intermediate type but that is the current
constraint of bit_cast.

What is the common initial sequence
The common initial sequence is defined in the draft standard [Standard-1,
para 22], which gives the following examples to demonstrate the concept:

 struct A { int a; char b; };
 struct B { const int b1; volatile char b2; };
 struct C { int c; unsigned : 0; char b; };
 struct D { int d; char b : 4; };
 struct E { unsigned int e; char b; };

The common initial sequence of A and B comprises all members of
either class.

The common initial sequence of A and C and of A and D comprises
the first member in each case.

The common initial sequence of A and E is empty.

9. Unions and memcpy and type punning: https://stackoverflow.com/q/
25664848/1708801

Listing 3

int x = 1 ;

// In C, not a valid aliasing
float *fp = (float*)&x ;

// In C++, not a valid aliasing
float *fp = reinterpret_cast<float*>(&x) ;

printf(“%f\n”, *fp) ;

Listing 4

union u1
{
 int n;
 float f;
};
union u1 u;
u.f = 1.0f;
printf("%d\n", u.n); // UB in C++ n is not the
 // active member

10. Revision two of the bit_cast<> proposal http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2017/p0476r2.html

11. How to use bit_cast to type pun a unsigned char array
https://gist.github.com/shafik/a956a17d00024b32b35634eeba1eb49e

Listing 5

// Simple operation just return the value back
int foo(unsigned int x) { return x ; }
// Assume len is a multiple of sizeof(unsigned
// int)
int bar(unsigned char *p, size_t len) {
 int result = 0;
 for(size_t index = 0; index < len;
 index += sizeof(unsigned int)) {
 unsigned int ui = 0;
 std::memcpy(&ui, &p[index],
 sizeof(unsigned int));
 result += foo(ui) ;
 }
 return result;
}

Listing 6

// Assume len is a multiple of sizeof(unsigned int)
int bar(unsigned char *p, size_t len) {
 int result = 0;
 for(size_t index = 0; index < len;
 index += sizeof(unsigned int)) {
 unsigned int ui = *reinterpret_cast
 <unsigned int*>(&p[index]);
 result += foo(ui);
 }
 return result;
}

16 | Overload | December 2020

https://stackoverflow.com/q/25664848/1708801
https://stackoverflow.com/q/25664848/1708801
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0476r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0476r2.html
https://gist.github.com/shafik/a956a17d00024b32b35634eeba1eb49e

FEATUREANONYMOUS
It says that we are allowed to read the non-static data member of the non-
active member if it is part of the common initial sequence of the structs
[Standard-1, para25]

 struct T1 { int a, b; };
 struct T2 { int c; double d; };
 union U { T1 t1; T2 t2; };
 int f() {
 U u = { { 1, 2 } }; // active member is t1
 return u.t2.c; // OK, as if u.t1.a were
 // nominated
 }

Note, this is not allowed in a constant expression context [Standard-2,
para 5.9]. So something like Listing 8 would be ok.

Note that this relies on unions [Standard-3 para 6.3]. This says if the
assignment is starting the lifetime of the proper type with limitations such
as using a built-in or a trivial assignment operator, the example in Listing
9 invokes undefined behavior.

There can be other tricky cases to watch out for (see Listing 10).

It is likely the common initial sequence rule was put in place to allow
discriminated union without having the discriminator outside the union
and therefore likely have padding between the discriminator and the union
itself, for example:

 union { struct { char kind; ... } a;
 struct { char kind; ... } b; ... };

So the common initial sequence rule would allow us to read the kind
discriminator regardless of which member was active.

Alignment
We have seen in previous examples that violating strict aliasing rules can
lead to stores being optimized away. Violating strict aliasing rules can also
lead to violations of alignment requirement. Both the C and C++ standard
state that objects have alignment requirements which restrict where
objects can be allocated (in memory) and therefore accessed.12 C11 section
6.2.8 Alignment of objects says:

Complete object types have alignment requirements which place
restrictions on the addresses at which objects of that type may be
allocated. An alignment is an implementation-defined integer value
representing the number of bytes between successive addresses
at which a given object can be allocated. An object type imposes
an alignment requirement on every object of that type: stricter
alignment can be requested using the _Alignas keyword.

Listing 7

struct uint_chars {
 unsigned char arr[sizeof(unsigned int)] = {} ;
 // Assume sizeof(unsigned int) == 4
 };
 // Assume len is a multiple of 4
 int bar(unsigned char *p, size_t len) {
 int result = 0;

 for(size_t index = 0;
 index < len; index += sizeof(unsigned int))
 {
 uint_chars f;
 std::memcpy(f.arr, &p[index],
 sizeof(unsigned int));
 unsigned int result =
 bit_cast<unsigned int>(f);
 result += foo(result);
 }
 return result;
}

Listing 8

union U {
 U(int x) : a{.x=x}{}
 struct { int x; } a;
 struct { int x; } b;
};

int f() {
 U u(10);
 u.b.x = 20; // change active member,
 // starts lifetime of b
 u.a.x = 20; // change active member again,
 // starts lifetime of a

 return u.b.x; // ok common initial sequence
}
int main() {
 int a = f();
}

12. Unaligned access:
https://en.wikipedia.org/wiki/Bus_error#Unaligned_access

Listing 9

union U {
 U(int x) : a{.x=x}{}
 struct {
 int x;
 auto &operator=(int r) {
 x = r ;
 return *this;
 }
 } a;
 struct {
 int x;
 auto &operator=(int r) {
 x = r ;
 return *this;
 }
 } b;
};
int f() {
 U u(10);

 u.b = 20; // Does not change the active member
 // assignment is not trivial
 // and UB b/c of store to out of
 // lifetime object
 u.a = 20; // Does not change the active member
 // assignment is not trivial
 // and UB b/c of store to out of
 // lifetime object

 return u.b.x; // still common initial sequence
 // but we have already invoked UB so not ok
}

Listing 10

union A {
 struct { int x, y; } a;
 struct { int x, y; } b;
};
int f() {
 A a = {.a = {}};
 a.b.x = 1; // Change active member,
 // starts lifetime of b, there is no
 // initialization of y
 return a.b.y; // UB
}

December 2020 | Overload | 17

https://en.wikipedia.org/wiki/Bus_error#Unaligned_access

FEATURE ANONYMOUS
The C++17 draft standard in section [basic.align] paragraph 1:

Object types have alignment requirements (6.7.1, 6.7.2) which place
restrictions on the addresses at which an object of that type may be
allocated. An alignment is an implementation-defined integer value
representing the number of bytes between successive addresses at
which a given object can be allocated. An object type imposes an
alignment requirement on every object of that type; stricter
alignment can be requested using the alignment specifier (10.6.2).

Both C99 and C11 are explicit that a conversion that results in a unaligned
pointer is undefined behavior, section 6.3.2.3 Pointers says:

A pointer to an object or incomplete type may be converted to a
pointer to a different object or incomplete type. If the resulting
pointer is not correctly aligned) for the pointed-to type, the behavior
is undefined. …

Although C++ is not as explicit, I believe this sentence from [basic.align]
paragraph 1 is sufficient:

…An object type imposes an alignment requirement on every object
of that type;…

An example
So let’s assume:

 alignof(char) and alignof(int) are 1 and 4 respectively

 sizeof(int) is 4

Then type punning an array of char of size 4 as an int violates strict
aliasing but may also violate alignment requirements if the array has an
alignment of 1 or 2 bytes.

 char arr[4] = { 0x0F, 0x0, 0x0, 0x00 };
 // Could be allocated on a 1 or 2 byte boundary
 int x = *reinterpret_cast<int*>(arr);
 // Undefined behavior we have an unaligned
 // pointer

Which could lead to reduced performance or a bus error13 in some
situations. Whereas using alignas to force the array to the same
alignment of int would prevent violating alignment requirements:

 alignas(alignof(int)) char arr[4] =
 { 0x0F, 0x0, 0x0, 0x00 };
 int x = *reinterpret_cast<int*>(arr);

Atomics
Another unexpected penalty to unaligned accesses is that it breaks atomics
on some architectures. Atomic stores may not appear atomic to other
threads on x86 if they are misaligned.14

Catching strict aliasing violations
We don’t have a lot of good tools for catching strict aliasing in C++, the
tools we have will catch some cases of strict aliasing violations and some
cases of misaligned loads and stores.

gcc using the flag -fstrict-aliasing and -Wstrict-aliasing15

can catch some cases although not without false positives/negatives. For
example the cases in Listing 1116 will generate a warning in gcc, although
it will not catch this additional case:

 int *p;
 p=&a;
 printf("%i\n",
 j = *(reinterpret_cast<short*>(p)));

Although clang allows these flags it apparently does not actually
implement the warnings.17

Another tool we have available to us is ASan18, which can catch
misaligned loads and stores. Although these are not directly strict aliasing
violations they are a common result of strict aliasing violations. For
example the following cases19 will generate runtime errors when built with
clang using -fsanitize=address:

 int *x = new int[2]; // 8 bytes: [0,7].
 int *u = (int*)((char*)x + 6); // regardless of
 // alignment of x this will not be an aligned
 // address
 *u = 1; // Access to range [6-9]
 printf("%d\n", *u); // Access to range [6-9]

The last tool I will recommend is C++ specific and not strictly a tool but
a coding practice, don’t allow C-style casts. Both gcc and clang will
produce a diagnostic for C-style casts using -Wold-style-cast. This
will force any undefined type puns to use reinterpret_cast, in
general reinterpret_cast should be a flag for closer code review. It
is also easier to search your code base for reinterpret_cast to
perform an audit.

For C we have all the tools already covered and we also have tis-
interpreter20, a static analyzer that exhaustively analyzes a program for a
large subset of the C language. Given a C verions of the earlier example
where using -fstrict-aliasing misses one case (Listing 12), tis-
interpeter is able to catch all three. The example in Listing 13 invokes tis-
kernal as tis-interpreter (output is edited for brevity).

Finally there is TySan21 [Finkel17] which is currently in development.
This sanitizer adds type checking information in a shadow memory
segment and checks accesses to see if they violate aliasing rules. The tool
potentially should be able to catch all aliasing violations but may have a
large run-time overhead.

13. A bug story: data alignment on x86 http://pzemtsov.github.io/2016/11/
06/bug-story-alignment-on-x86.html

14. Demonstrates torn loads for misaligned atomics https://gist.github.com/
michaeljclark/31fc67fe41d233a83e9ec8e3702398e8 and tweet
referencing this example https://twitter.com/corkmork/status/
944421528829009925

15. gcc documentation for -Wstrict-aliasing https://gcc.gnu.org/
onlinedocs/gcc/Warning-Options.html#index-Wstrict-aliasing

16. Stack Overflow questions examples came from
https://stackoverflow.com/q/25117826/1708801

17. Comments indicating clang does not implement -Wstrict
-aliasing https://github.com/llvm-mirror/clang/blob/master/test/
Misc/warning-flags-tree.c

18. ASan documentation https://clang.llvm.org/docs/AddressSanitizer.html
19. The unaligned access example take from the Address Sanitizer

Algorithm wiki https://github.com/google/sanitizers/wiki/
AddressSanitizerAlgorithm#unaligned-accesses

20. TrustInSoft tis-interpreter https://trust-in-soft.com/tis-interpreter/, strict
aliasing checks can be run by building tis-kernel https://github.com/
TrustInSoft/tis-kernel

21. TySan patches, clang: https://reviews.llvm.org/D32199 runtime:
https://reviews.llvm.org/D32197 llvm: https://reviews.llvm.org/D32198

Listing 11

int a = 1;
short j;
float f = 1.f; // Originally not initialized but
 // tis-kernel caught it was being accessed w/
 // an indeterminate value below
printf("%i\n", j =
 (reinterpret_cast<short>(&a)));
printf("%i\n", j =
 (reinterpret_cast<int>(&f)));

Listing 12

int a = 1;
short j;
float f = 1.0 ;

printf("%i\n", j = *((short*)&a));
printf("%i\n", j = *((int*)&f));

int *p;

p=&a;
printf("%i\n", j = *((short*)p));
18 | Overload | December 2020

http://pzemtsov.github.io/2016/11/06/bug-story-alignment-on-x86.html
http://pzemtsov.github.io/2016/11/06/bug-story-alignment-on-x86.html
https://gist.github.com/michaeljclark/31fc67fe41d233a83e9ec8e3702398e8
https://gist.github.com/michaeljclark/31fc67fe41d233a83e9ec8e3702398e8
https://twitter.com/corkmork/status/944421528829009925
https://twitter.com/corkmork/status/944421528829009925
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wstrict-aliasing
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wstrict-aliasing
https://stackoverflow.com/q/25117826/1708801
https://github.com/llvm-mirror/clang/blob/master/test/Misc/warning-flags-tree.c
https://github.com/llvm-mirror/clang/blob/master/test/Misc/warning-flags-tree.c
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#unaligned-accesses
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#unaligned-accesses
https://trust-in-soft.com/tis-interpreter/
https://github.com/TrustInSoft/tis-kernel
https://github.com/TrustInSoft/tis-kernel
https://reviews.llvm.org/D32199
https://reviews.llvm.org/D32197
https://reviews.llvm.org/D32198

FEATUREANONYMOUS
Conclusion
We have learned about aliasing rules in both C and C++, what it means
that the compiler expects that we follow these rules strictly and the
consequences of not doing so. We learned about some tools that will help
us catch some misuses of aliasing. We have seen a common use for type
aliasing is type punning and how to type pun correctly.

Optimizers are slowly getting better at type based aliasing analysis and
already break some code that relies on strict aliasing violations. We can
expect the optimizations will only get better and will break more code we
have been used to just working.

We have standard conformant methods for type punning and in release and
sometimes debug builds these methods should be cost free abstractions.
We have some tools for catching strict aliasing violations but for C++ they
will only catch a small fraction of the cases and for C with tis-interpreter
we should be able to catch most violations.

Thank you to those who provided feedback on this write-up: JF Bastien,
Christopher Di Bella, Pascal Cuoq, Matt P. Dziubinski, Patrice Roy,
Richard Smith and Ólafur Waage.

Of course in the end, all errors are the author’s.

References
[CPP-1] ‘Undefined behavior’ https://en.cppreference.com/w/cpp/

language/ub

[CPP-2] ‘reinterpret_cast conversion’ https://en.cppreference.com/w/
cpp/language/reinterpret_cast

[CPP-3] ‘Effective type’ https://en.cppreference.com/w/c/language/
object#Effective_type

[CCP-4] ‘Compatible types’ https://en.cppreference.com/w/c/language/
type#Compatible_types

[CCP-5] ‘Dynamic type’ https://en.cppreference.com/w/cpp/language/
type#Dynamic_type

[Finkel17] Hal Finkel (2017) ‘The Type Sanitizer: Free Yourself From
from -fn-strict-aliasing’, presentation at the LLVM Developers’
Meeting, available from https://www.youtube.com/
watch?v=vAXJeN7k32Y

[Github-1] int8_t: https://github.com/lattera/glibc/blob/master/sysdeps/
generic/stdint.h#L36

[Github-2] unint8_t: https://github.com/lattera/glibc/blob/master/
sysdeps/generic/stdint.h#L48

[StackOverflow] ‘Using this pointer causes strange deoptimization in hot
loop’ https://stackoverflow.com/questions/26295216/using-this-
pointer-causes-strange-deoptimization-in-hot-loop

[Standard-1] Draft standard, Classes: Class members: General,
paragraphs 22 (http://eel.is/c++draft/class.mem#general-22) and 25
(http://eel.is/c++draft/class.mem#general-25)

[Standard-2] Draft standard, Expressions: Constant expressions, para 5.9:
http://eel.is/c++draft/expr.const#5.9

[Standard-3] Draft standard, Classes: Unions: General, paragraph 6.3:
http://eel.is/c++draft/class.union#general-6.sentence-3

Listing 13

./bin/tis-kernel -sa example1.c

...
example1.c:9:[sa] warning: The pointer (short
 *)(& a) has type short *. It violates strict
 aliasing rules by accessing a cell with
 effective type int.
...
example1.c:10:[sa] warning: The pointer (int *)
 (& f) has type int *. It violates strict
 aliasing rules by accessing a cell with
 effective type float.
 Callstack: main
...
example1.c:15:[sa] warning: The pointer (short
 *)p has type short *. It violates strict
 aliasing rules by accessing a cell with
 effective type int.
December 2020 | Overload | 19

Best Articles 2020

Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:

https://www.surveymonkey.co.uk/r/MF8M9XM

http://eel.is/c++draft/class.union#general-6.sentence-3
http://eel.is/c++draft/expr.const#5.9
http://eel.is/c++draft/class.mem#general-25
http://eel.is/c++draft/class.mem#general-22
https://stackoverflow.com/questions/26295216/using-this-pointer-causes-strange-deoptimization-in-hot-loop
https://stackoverflow.com/questions/26295216/using-this-pointer-causes-strange-deoptimization-in-hot-loop
https://github.com/lattera/glibc/blob/master/sysdeps/generic/stdint.h#L48
https://github.com/lattera/glibc/blob/master/sysdeps/generic/stdint.h#L48
https://github.com/lattera/glibc/blob/master/sysdeps/generic/stdint.h#L36
https://github.com/lattera/glibc/blob/master/sysdeps/generic/stdint.h#L36
https://en.cppreference.com/w/cpp/language/ub
https://en.cppreference.com/w/cpp/language/ub
https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://en.cppreference.com/w/c/language/type#Compatible_types
https://en.cppreference.com/w/c/language/type#Compatible_types
https://en.cppreference.com/w/cpp/language/type#Dynamic_type
https://en.cppreference.com/w/cpp/language/type#Dynamic_type
https://www.youtube.com/watch?v=vAXJeN7k32Y
https://www.youtube.com/watch?v=vAXJeN7k32Y
https://gist.github.com/shafik/848ae25ee209f698763cffee272a58f8
https://www.surveymonkey.co.uk/r/MF8M9XM

FEATURE CHRIS OLDWOOD
Afterwood
Design Patterns emerged last century.
Chris Oldwood explains why he thinks
they are still relevant.
perennial question that crops up fairly regularly on social media
questions the value of design patterns. The clickbait-styled affairs
declare that design patterns and the similarly titled Gang of Four

(GoF) book have little relevance in today’s programming toolbox and
should simply be ignored as an anachronism. The more curious
programmer that seeks more substance may struggle to see past a
movement which superficially appears to have seen better days.

And who can blame them? If you’re a fresh-faced programmer who
comes across a book from 1994 with example C++ code that passes
around raw pointers coupled with 90’s style UML class diagrams of
inheritance hierarchies, wouldn’t you be somewhat concerned? The nail
in the coffin would probably be the number of patterns in the seminal GoF
book which evaporate once you consider C++ has supported lambda
functions for almost a decade now – functors are so last Millennium! Even
the Double-Checked Lock, should one be inclined to touch the pariah that
is Singleton, finally works by design.

Java, which didn’t exist at the time the book was written but was still
hugely popular during the rise of the movement, has even sprouted
lambda functions to remove the burden of a few recurring problems the
book addressed. While on the subject of Java, some of the aversion to
design patterns must lie with that unfortunate practice of naming classes
by chaining together the names of design patterns, as if trying to win at
‘Design Pattern Bingo’. I have personally been the recipient of code
which contained the monstrosity:

 public class UnitOfWorkXxxServiceFacadeDecorator

(In this instance, the entire class hierarchy was replaced by a couple of
succinctly named C# extension methods that wrapped a caller-provided
closure.)

So, are they right then? Are design patterns a waste of time – a solution to
a problem in a context where that context was the early ’90s and the
problem was simply poorly designed programming languages?

No, I don’t think so. The Gang of Four legacy is not some old-fashioned
C++ code and a bunch of UML diagrams with large class hierarchies; it’s
the ubiquitous language they created. The value was never in how they
realized the solution in code but in the vocabulary they chose for
describing the recurring problem they identified. By distilling the essence
into just a single word (or three), they have given us the power to
communicate complex ideas easily. Imagine how much longer a design
meeting would take if you had to keep saying ‘a one-to-many relationship
between objects so that when one object changes all its dependants are
notified and updated automatically’ instead of simply saying ‘observer’?

Even if some design patterns use terms that already had a fairly
established meaning, such as Proxy (GoF), Cache (POSA3), and Pool
(POSA3), the community has taken those ideas and given them a more

usable definition. Instead of leaving them to remain ambiguous, they have
given them clarity. As Dijkstra once said:

The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.

Each pattern does not exist in a vacuum. Together, it and other related
patterns form their own language that allows people to explore design
options in a specific problem space without getting dragged into the
implementation minutiae too soon. Once the foundation patterns in the
original GoF text and its ilk, such as the first volume of the Pattern
Oriented Software Architecture (POSA) series, had arrived further
catalogues appeared that focused on particular topics such as resource
management, concurrency, integration, etc. Both the POSA and Pattern
Languages of Program Design (PLoPD) series stretched to 5 volumes and
the annual PLoP conference continues today despite starting back in
1994. To paraphrase Mark Twain: any rumours of the patterns
community’s demise are greatly exaggerated.

Many of those early patterns are still relevant to today’s design
discussions because the vocabulary is still with us. The aforementioned
‘observer’ might have matured over the years and more closely resembles
its sibling – Multicast, introduced in the follow-up book Pattern Hatching
– but it’s still there at the heart of any event driven system. The terms
Adapter, Facade, Factory, and Proxy had a life before the GoF and
naturally continue to live on, albeit with a more refined definition.
Iterators are a fundamental part of C++, Java, and C#, and Decorators
became a key idiom in Python. Decorators in Python are considered far
less rigid than the GoF definition, more akin to Aspect Oriented
Programming, but that might be because the AOP term post-dates the
Decorator pattern; either way, there are big similarities in the metaphor,
and that aids communication. One pattern that definitely seems to have
gained in popularity over the years is Builder (coupled with fluent
interfaces), no doubt due to the rise of automated testing where non-trivial
object graphs created in tests need the salient details to remain prominent

Patterns aside, the GoF book still has plenty to say. Section 1.6 alone
contains a useful summary of many of the core ideas behind object-
orientation including what is probably one of the most significant
programming axioms – program to an interface, not an implementation

The Conclusion chapter in Design Patterns starts by saying “It’s possible
to argue this book hasn’t accomplished much.” I think it’s fair to say that
25 years later you would be hard pushed to agree with this statement.
While the example code is dated and the ubiquity of closures in modern
programming languages have consigned some of the solutions to the
history books, the vocabulary appears to be timeless. Their concise
lexicon is the real legacy of the Gang of Four, and I for one
thank them for helping me spend less time in meetings
and having more productive design conversations.

A

20 | Overload | October 2020

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the lounge below his bedroom. With no
Godmanchester duck race to commentate on this year, he’s been even more easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

www.qbssoftware.com

	Debt – My First Thirty Years
	Questions on the Form of Software
	Building g++ From the GCC Modules Branch
	Consuming the uk-covid19 API
	What is the Strict Aliasing Rule and Why Do We Care?
	Best Articles 2020
	Afterwood

