
Composition and Decomposition
of Task Systems
Concurrency can be hard to get right, but
tasks can help.

Chepurni Multimethods for
Contemporary С++
Showcasing an approach that uses custom
type identification and introspection.

<script>
A different look at some well-known plays,
setting them in a programmer’s world.

April 2021 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Records: A New Way to Define Types
Steve Love explains how to use records (in
C# v9.0 and .Net 5.0) to define types in C#.

12 Composition and Decomposition
of Task Systems
Lucian Radu Teodorescu demonstrates how tasks
can help to get concurrency right.

17 Chepurni Multimethods for
Contemporary C++
Eugene Hutorny showcases an approach to
implementing multimethods using custom type
identification and introspection.

24 <script>
Teedy Deigh loses the plot a little.

OVERLOAD 162

April 2021

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Vincent
Maret on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 163 should be
submitted by 1st May 2021 and
those for Overload 164 by
1st July 2021.

https://unsplash.com/
https://unsplash.com/@vincmrt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@vincmrt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

EDITORIAL FRANCES BUONTEMPO
Keep up at the back
It’s hard to keep up in a changing world.
Frances Buontempo wonders how to deal
with the constant state of flux.
I am not keeping up, as evidenced by yet another lack
of editorial. Trying to keep on top of things can be a
challenge. I didn’t use my diary much last year. I’m
sure I’m not the only one. I don’t have one this year
and sometimes forget what the date is. That is not a
great way to be organized and prepare for conference

talks, write editorials and the rest. Aside from day to day troubles such as
knowing date or even day it is, keeping up, particularly in tech, is hard
work. I have recently strayed into a world of AWS, terraform and Java,
taking me well outside my usual world of C++, Python and C#. Learning
new languages and tools is tremendous fun, but trying to cram loads of
new things into my head sometimes leaves me feeling like my brain is full.
How do you keep up with new technology, language changes and the like?
I find ACCU very helpful, either being able to chuck an email at ACCU
general, or chat with other members. Sometimes someone can be
persuaded to write an article or give a talk, providing an executive
summary of the salient points to give you a leg up.

Learning a new language, programming or human can be difficult. If you
know one language well, this can cause confusion as you try to get your
head round a second language. A little bit of knowledge can be dangerous.
If words sound similar it’s tempting to guess meanings. Pronunciation can
have subtle differences. You need practice and help from a native speaker.
Throwing yourself into an unfamiliar culture requires acceptance of new
idioms, sentence orderings and much more besides. Translation is hard.
Some software vendors offer “international” versions of their products,
tending to mean non-English versions. Using the word international hints
at an old bias here! Nonetheless, one to one translations of words don’t
always fit on menus and picking a direct translation of a word, say “bullet”
when internationalizing a word processor may end up suggesting gunfire
rather than spherical symbols [Lepouras99]. Even if people speak the
same native language, different experience or roles can cause confusion.
A BA I work with regularly devolves into laughter when I mention strings.
He thinks of the Goon Show’s Great String Robberies [GoonShow],
whereas I am talking about a series of bytes containing some characters.
“Oh, dear, dear. Oh, dear, dear, dear, dear, oh, dear” as a character says
in that very sketch. I would tell him about words being numbers in my
universe, but he’s not ready for it yet. Different contexts change the
semantics of symbols and words in human communication.

The same goes for programming languages. If you start out knowing how
to write procedural code in C, there might be a temptation to write

procedural code in every language. Good luck with
that. The idea of a different context strays

beyond the syntax and semantics of the
language used. Code that behaves one way
on one operating system may behave

differently, or not even run on another. Line ending vary between
platforms. Endianness is a thing. How big is an integer? Some many
differences. Watch out for byte ordering marks when you try to open a
file on Linux that a Windows machine happily opened via Python code.
ProTip: set the encoding, once you have figured out what the encoding is.
Finding that out is another story. The OS is one thing, but the device itself
is another. I keep a blog [Buontempo]. I regularly get emails telling me
the links are too close together on a mobile and other related problems. I
recently discovered you can use developer tools to “toggle device” to see
just how bad it might be on various different mobile phones etc. If I find
the time I might try to sort this out. Maybe. First, I need to get my head
round AWS lambdas, and why they can sometimes be slow in surprising
ways. How do you find out what’s going on when the code hits the metal
when it’s not your metal? I am experiencing a paradigm shift, and doing
my best to keep up.

Learning new technology affects many people, not just programmers.
Many people use smart phone or have a laptop who don’t have a clue
what’s happening inside, which is fine. I recall struggling with keyboards
and the “mouse” on a laptop the first time I tried to use one. You should
see what happened when I try to use a touch screen for the first time –
long finger nails complicate matters. The switch to online banking has
upset some people. This forced new way of transacting, with little choice
where local bank branches have shut, can cause upset. When people can’t
understand a new procedure that had become a simple task due to
familiarity previously, they can feel and even become excluded. “It was
simpler in the olden days” goes the cry. Truth be told, it probably wasn’t;
you learnt some new-fangled things way back when, forget the other stuff
that was way more complicated and your memory is selective.
Nonetheless, many people struggle with change. In my experience, many
techy people have a life-long love of learning, so may tend to embrace
change. This does sometimes leave us as IT support for family and
neighbours, which can be a time consuming role. I personally love
learning some new things. Happy to try new programming languages, find
new ways of testing, make algorithms quicker and easier to understand.
Bring it on. But, move the buttons in a new version of a word processor,
IDE or similar and I might start muttering very loudly. Hide the buttons
in a ribbons and make me find how to make the button appear, and I’ll go
back to my editor of choice and leave your new “improved” software
closed for weeks. Give me a website with stealth scroll bars, those that
only appear if I get my mouse in the right place, and I’ll be tempted to
curl from a prompt. As stated, I like learning some new things and I suspect
I’m not alone in this. Other changes are annoying. I’ll get used to it, then
they’ll move my buttons, again.

Some things will never change, right? Like University Challenge on
television on a Monday night in the UK, so I can have a quiet night in and

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2021

EDITORIALFRANCES BUONTEMPO
focus on something other than failing to write an editorial. It has been
running since the sixties, though has suffered a long hiatus in the 1980s
being revived in 1995 [Wikipedia]. The quiz show is open to students
representing a university and, in the case of Oxford or Cambridge, a specific
college. Despite mumblings of elitism, due to these special rules for
“Oxbridge” and that they frequently win, I still enjoy watching and trying
to answer the questions. Recently I have noticed I can’t answer many
questions on scientists or mathematicians. Why? I learnt the names mainly
via the theorems and theories I studied and by reading some history of
science books many years ago. Back then, most of the names I learnt were
of white men, tending to live in Europe or the USA. University Challenge
has started an annoying habit of asking about women. I can’t name many
female mathematicians or scientists. Why? Because I was only taught about
the guys. I love that the students seem to know many of the answers. I hope
teaching has changed to be more inclusive. I clearly need to keep up, by
expanding my horizons a bit, and updating my inaccurate, biased view of
history. From now on, if anything seems to only involve white guys, I am
going to do a bit of digging, and find out whether this is really the case. If
it is, I will ask what can be done about it. I realise Overload has an
international audience and the white guy syndrome is not a universal plague.
Some cultures remember great females or know their BAME superstars.

Does not knowing the women involved in STEM make me sexist? No.
Would assuming a women can’t be involved in STEM be sexist? Maybe.
I have sometimes assumed women won’t be involved in the deep technical
stuff, based on my personal experience. I am often the only women on a
team. If I meet another woman, I am often initially surprised if she can code
in C++ or similar. I then notice my assumptions and move on to be
delighted. I bet I am not the only one. In fact, I know I’m not. Recently
Steve gave a talk about Records, having written the article for this issue
of Overload (thanks Steve!). When we both joined the online Meetup, an
organizer asked if I was a tester, as though me being able to code hadn’t
occurred to him. I understand and make a mistaken assumption as well far
too often. Note to self: a better question is always, “What do you do?” You
can hide your bias that way, and have a quiet word with yourself later. Your
previous experience is no indicator of future performance. Your previous
experience is your previous experience. Your future experience can and
will be different. Everything changes eventually. Even you. Or me.

How do we keep up as things change? First, notice the change. If it’s a
moved button then give up (if you’re like me). If it’s more important, take
time to learn. Read. Listen. Try new things. Don’t be afraid. If you feel
like you are falling behind, in terms of new technology or language features
or anything tech, find someone to help you out. However young or old you
feel, ACCU is here to help. Get in touch, write for us, join us: ask us
anything. I’d love to see the study groups revived. These are open to ACCU
members, and previously tended to work through a tech book, trying out
coding exercises. Sharing together with others is a great way to learn.
Learning isn’t a race. You don’t need to come out top of class, or win
University Challenge. Slow and steady is fine. I frequently feel as though
I struggle to understand new things when I compare myself to others. I have
a deep sense of whether or not I have truly grokked a new idea or concept.
This means I will often be muttering “But I don’t get it” while others are

forging ahead, possibly missing some subtleties that are confusing me
silly. I need to remind myself about the hare and tortoise having a race in
one of Aesop’s fables. A hare can run fast. A tortoise cannot. And yet, the
tortoise wins, because the hare, confident in his abilities, has a nap during
their race. As the Old Testament book Ecclesiastes says, “The race is not
to the swift.” Do beware going down a rabbit hole though. Sometimes you
need to time box a task and give up if you are being slower than a tortoise.

Change brings new things but sometimes takes away the old. That can be
hard to deal with. I have chucked out VHS videos because I can’t play them.
I left a tape player behind when I moved once. I regret this. So many demo
tapes from so many friends’ bands. But, you do need to let go sometimes.
I had the honour of remotely attending Russel Winder’s funeral remotely
in March. Many ACCU people joined in too. Allow me to quote some lyrics
from Fix You by Coldplay, a track used during the funeral:

Tears stream down your face

When you lose something you cannot replace

Change can be difficult. Russel will be sorely missed. He has left ripples
on the internet, and many articles, including several in this very magazine.
Despite my earlier complaints about a variety of annoying aspects of
technology, the internet allowed me to join in. Technology can be an
enabler. During the pandemic, Grayson Perry made a television
programme called “Grayson’s Art Club” [ArtClub]. The second series
started recently. He’s been encouraging people to submit art on a different
theme each week, embracing people without formal training. I have found
this delightful and encouraging. One stand out moment, was a young
woman who had submitted a picture drawn on a tablet of some sort. She
has restricted movement, I forget the specifics, making holding a pen or
paintbrush impossible. Her submission had been drawn by moving her
eyes and the technology translating that into brush strokes and lines. She
said it gave her control and freedom, in a way that
nothing else in her life did. Let’s attempt to embrace
change, celebrate the freedom great tech can bring and
try to make sure no one gets left behind. Help everyone
at the back keep up.

References
[ArtClub] Grayson’s Art Club: https://www.channel4.com/programmes/

graysons-art-club

[Buontempo] Buontempo Consulting (Fran’s blog):
 https://buontempoconsulting.blogspot.com/

[GoonShow] The Goon Show: ‘String Robberies’: https://
www.bbc.co.uk/programmes/b007jpkr

[Lepouras99] Lepouras, Giorgos and Weir, George R. S.: “It’s Not Greek
to Me: Terminology and the Second Language Problem”, 1999,
SIGCHI Bulletin, Association for Computing Machinery, 31.2
https://dl.acm.org/doi/pdf/10.1145/329657.329664

[Wikipedia] University Challenge: https://en.wikipedia.org/wiki/
University_Challenge
April 2021 | Overload | 3

https://en.wikipedia.org/wiki/University_Challenge
https://en.wikipedia.org/wiki/University_Challenge
https://buontempoconsulting.blogspot.com/
https://www.channel4.com/programmes/graysons-art-club
https://www.channel4.com/programmes/graysons-art-club
https://www.bbc.co.uk/programmes/b007jpkr
https://www.bbc.co.uk/programmes/b007jpkr
https://dl.acm.org/doi/pdf/10.1145/329657.329664

FEATURE STEVE LOVE
Amongst Our Weaponry
Records in C# v9.0 and .Net 5.0. Steve Love
explains a new way to define types in C#.
he release of .Net 5.0 in November 2020 was a major upgrade,
bringing .Net Core and .Net Framework together under a single
banner with a number of improvements, updates, and fixes. The

release also represents an update to the C# language, and .Net 5.0 brings
C# to version 9.0. One of the flagship features of C# v9.0 is the record,
a new way to create user-defined types.

C# has supported classes and structs since it was introduced in the early
2000s, and the general concept of user-defined types goes back to the
1960s. A reasonable question to ask, then, is why does C# need a new way
to create user-defined types?

In this article we’ll look at what records are useful for, and how to use them
in our own code. We’ll contrast them with classes and structs, the other
main ways of creating user-defined types in C#, with some common use-
cases and examples. We will also look at some of the performance
characteristics of records at a high level.

Let’s begin with some examples of their main features.

What is a record?
Records are a light-weight way to define a type that has value semantics
for the purposes of comparing two variables for equality. Here is the full
definition of a simple record type:

 public record Point(int X, int Y);

The Point type defined here is almost as simple as it could be. The record
definition itself hides the fact that a Point has two int properties named
X and Y, and a constructor taking two int parameters to initialize those
property values. The syntax shown here is known as Positional Record.
The X and Y parameters in the record declaration correspond to properties
of the same name and type in the Point record. How we create an instance
of a Point and access its properties will be familiar to any C# developer:

 var coord = new Point(2, 3);
 Assert.That(coord.X, Is.EqualTo(2));
 Assert.That(coord.Y, Is.EqualTo(3));

Those generated properties have no set accessors, so Point is
immutable. Once we’ve created an instance of Point, its value can never
be changed. This is in keeping with the common recommendation to make
all value types, and value-like types, immutable. Some familiar examples
include string, which is a class but has value-like semantics, and
System.DateTime, which is a struct.

Equality
When we compare two record instances to determine if they’re equal, their
values are compared. For two Point variables, this means that both the
X and Y properties match. This is similar behaviour to comparing two struct
instances, but differs from most class types. We use reference variables to

manipulate class instances on the heap. Two references compare equal if
they refer to the same instance in memory.

The following code shows two Point values being compared for equality
in different ways. Firstly, they’re compared using == which gives a value-
based comparison. Next, they’re compared using ReferenceEquals, a
method defined on the object base class that returns true if two
variables refer to the same instance. Note that deliberately performing a
reference comparison gives a different result from a direct equality check:

 public record Point(int X, int Y);
 var coord = new Point(2, 3);
 var copy = new Point(2, 3);
 Assert.That(coord == copy, Is.True);
 Assert.That(ReferenceEquals(coord, copy),
 Is.False);

Two instances of the Point record compare equal if all of their respective
properties compare equal, irrespective of whether they refer to the same
object in memory. This is a defining characteristic of value types. More
generally, two record instances compare equal if they are the same type
and all their properties also compare equal.

Copying
Records are in fact reference types. They are allocated on the heap, are
subject to garbage collection, and under normal circumstances are copied
by reference. If we assign one Point variable to another, as shown below,
we have two references to the same Point instance:

 var coord = new Point(2, 3);
 var copy = coord;
 Assert.That(ReferenceEquals(coord, copy),
 Is.True);

There are times when we need to copy a value, but change only some of
its properties. Records have an associated feature called non-destructive
mutation which allows us to create a new instance from an existing one,
but with some altered properties. When we assign one record variable to
another, we can add a with clause to the assignment, as shown here:

 var coord = new Point(2, 3);
 var copy = coord with { Y = 30 };

In this example, copy is an independent instance of Point. It’s a copy of
the original coord record, except that it has a different value for the Y
property. The X property of copy is taken from the corresponding X
property of coord, and is unchanged in copy. Again, we can confirm this
with a few tests:

 Assert.That(coord.Y, Is.EqualTo(3));
 Assert.That(copy.Y, Is.EqualTo(30));
 Assert.That(coord.X, Is.EqualTo(copy.X));
 Assert.That(ReferenceEquals(coord, copy),
 Is.False);

Since there are only two properties in this example, the benefit of using
the with syntax in this way isn’t immediately obvious. For records with
several properties, however, this approach may be significantly more

T

Steve Love has been a professional programmer for over 20 years
and is still finding new ways to be lazy. He can be contacted at
steve@arventech.com
4 | Overload | April 2021

FEATURESTEVE LOVE

Records can only inherit from other records, so
we can’t inherit a record type from a class, nor

can a class derive from a record
compact than the alternative of creating a new instance, and passing in a
mixture of values and properties from an existing record to the constructor.

Deconstruction
We’ve examined construction of records so far, so in the interest of balance
let’s have a look at deconstruction. This is the process of capturing the
component properties of a record into individual variables, like this:

 var coord = new Point(12, 34);
 var (x, y) = coord;
 Assert.That(x, Is.EqualTo(coord.X));
 Assert.That(y, Is.EqualTo(coord.Y));

Here, the coord variable is being deconstructed into the named variables
x and y. We probably wouldn’t use deconstruction directly like this; it’s
more useful when we call a method that returns a record instance but we
want separate variables. Note that the names of the individual variables can
be different to the property names in the record. We can use any valid
variable name for those variables.

Sometimes we don’t need to capture all the components because we’re
only interested in a subset of the values. Instead of creating a variable that
is never used, we can use the underscore as a placeholder like this:

 public Point ParsePoint(string coordinate)
 {
 // ...
 }
 var (_, height) = ParsePoint("3,2");
 Assert.That(height, Is.EqualTo(2));

In this example, only the second component of the record – the Y property
– is copied to the named height variable. The placeholder, known as a
discard, tells the compiler to ignore the X property of the Point record.
For records with more than two properties we can use the underscore
identifier to discard multiple values.

String representation
Record types have a built-in consistent string representation available
using the ToString method. This method is available to all types, since
it’s defined on the object base class. However, unless we override it for
ourselves in classes and structs, it returns just the name of the type,
qualified with its namespace.

Calling ToString on a record instance, however, returns just the type
name along with the names and values of all of the properties, like this:

 var coord = new Point(12, 34);
 Console.WriteLine(coord);

This gives the output:

 Point { X = 12, Y = 34 }

The Console.WriteLine method calls ToString to obtain the
representation. We might also use string interpolation to embellish the
output with the variable name like this:

 Console.WriteLine($"{nameof(coord)} = {coord}");

Giving the output:

 coord = Point { X = 12, Y = 34 }

Although logging is the obvious choice as a good candidate for uses like
this, there are other potential benefits because the output is easily parsed
to re-create an object, although records don’t provide that facility for us –
we have to write that ourselves.

Inheritance
We can inherit one record type from another in exactly the same way as
we can with classes, and the semantics are broadly the same as for class
inheritance. For example, we can use a base-class reference to an inherited
record, and we can cast from one type to another. In the following example,
we derive a Point3d record from our Point record:

 public record Point(int X, int Y);
 public record Point3d(int X, int Y, int Z) :
 Point(X, Y);
 var coord3d = new Point3d(2, 3, 4);
 var coord = (Point)coord3d;
 Point point = new Point3d(2, 3, 4);
 var point3d = point as Point3d;

If we attempt to cast from a base type to a more derived type when the
conversion isn’t valid, we get an InvalidCastException, just as with
classes:

var coord = new Point(2, 3);
Assert.That(() => (Point3d)coord,
Throws.TypeOf<InvalidCastException>());

Also in exactly the same way as we would with a derived class, we can
use an instance of a derived record as an argument to a method expecting
a base class record, as shown here:

 public double LineDistance(Point a, Point b)
 {
 // ...
 }
 var pointa = new Point3d(2, 5, 4);
 var pointb = new Point3d(6, 8, 4);
 Assert.That(LineDistance(pointa, pointb),
 Is.EqualTo(5));

Records can only inherit from other records, so we can’t inherit a record
type from a class, nor can a class derive from a record.

We can seal a record to prevent it from being inherited. Once again, the
syntax is identical to that we’d use for a class, as shown here:

 public sealed record Speed(double Amount);

It’s common for value types to be sealed when they’re modelled as
classes. The built-in string class is a case in point, and all struct types
are effectively implicitly sealed. Conceptually, values are fine-grained bits
of information, often representing transient and even trivial bits of data.
Values are different from entities most clearly in that value types place
great importance on their state.
April 2021 | Overload | 5

FEATURE STEVE LOVE

We determine if two values are equal according
to the value they represent. This differs from
entity types where they compare equal if they
represent the same instance in memory
Value semantics
When we say that value types place great importance on their state rather
than their identity, what we really mean is that we determine if two values
are equal according to the value they represent. This differs from entity
types where they compare equal if they represent the same instance in
memory. This latter behaviour is often called reference semantics, where
we can have more than one reference to an object instance.

Struct instances are all independent of each other. They have true value
semantics in that we can’t generally have two variables representing the
same instance. Structs are copied by value, so when we assign one to
another we get a whole new distinct instance. However, since two values
compare equal if they have the same state, it makes no difference that
they’re distinct instances.

Records live in a middle ground. Under the covers, records are really
classes and so instances are copied by reference. When we assign one
record variable to another, we get a new reference to the same instance in
memory, unless we explicitly ask for a copy using the with syntax.

However, records are value like in that when we compare them for
equality, it’s their state that’s compared, not their identity.

This behaviour of comparing values instead of identities is much the same
as for the string type. string is a class, and so is a reference type.
Strings are copied by reference, so the contents of a string variable aren’t
usually copied. However, strings have value-like behaviour for the
purposes of equality comparisons. The string class overrides the
Equals method, and implements the IEquatable<string> interface,
which defines a type-specific overload for the Equals method.

String also has an operator== definition, which overrides the behaviour
of the built-in comparison with ==. When we compare two string variables
using either the Equals method or using ==, we’re determining if the two
strings have the same value, whether or not they refer to the same string
instance.

Equal by value
We can emulate value based comparison in our own classes by overriding
the Equals(object?) method, implementing IEquatable for our
type, and by providing both operator== and operator!=. There are
some subtleties and potential pitfalls to be aware of in those
implementations, including the need to handle null values correctly, and
making sure we correctly handle any possible base class implementations.
If we were to implement our Point type as a class, it might look something
like Listing 1.

Note that if we override the Equals(object?) method, we also need
to override GetHashCode. If we only override one or the other, we’ll get
a warning from the compiler. The reason it’s important is that two objects
that compare equal should also have equal hash codes. If we fail to observe
this rule, we risk being unable to find objects that are used as keys in
collections that depend on hash codes for lookup, such as Dictionary
and HashSet.

The overridden GetHashCode method in the class shown above might not
be the most efficient implementation, but it does guarantee that if two instances
of Point are equal, they will also definitely have the same hash code.

With record types, the compiler provides the implementations for each of
those members. The code generated by the compiler takes all of the fields
declared in the record into account to provide a value-based equality
comparison. When we create our own record types, we’re freed from the
need to provide all of this boilerplate code just to be able to compare the
values of two variables.

What about structs?
Instead of using a class, we can also model our own types using a struct.
All structs derive implicitly from the System.ValueType class which
provides the necessary overrides to give structs value semantics when we
compare them for equality. In addition to the Equals method,
ValueType also overrides GetHashCode in a way that ensures that
equal instances have matching hash codes.

We might therefore choose to model our Point type as a struct like
Listing 2.

This is significantly simpler than our class definition for Point, and only
a little more verbose than the record version. There are limitations to
structs, however.

The first thing to note is that we can’t compare two struct instances with
== unless we provide our own implementation of operator==. The
implementation of that is straightforward enough, however, and with a

Listing 1

public class Point : IEquatable<Point>
{
 public Point(int x, int y)
 => (X, Y) = (x, y);
 public int X { get; }
 public int Y { get; }
 public bool Equals(Point? other)
 => !ReferenceEquals(other, null) &&
 GetType() == other.GetType() &&
 X == other.X && Y == other.Y;
 public override bool Equals(object? obj)
 => Equals(obj as Point);
 public override int GetHashCode()
 => HashCode.Combine(X, Y);
 public static bool operator==(Point? left,
 Point? right)
 => left?.Equals(right) ??
 ReferenceEquals(right, null);
 public static bool operator!=(Point? left,
 Point? right)
 => !(left == right);
}

6 | Overload | April 2021

FEATURESTEVE LOVE

the derived class determines that the properties
specific to it are equal, and if they are, it defers to

the base class to perform its own comparison
matching operator!= it looks very much like the version for the class
implementation (Listing 3).

Struct instances can’t normally be null, but our implementations of ==
and != here also cater for nullable Point values.

Much more significant are the implementations of the Equals and
GetHashCode methods provided by the ValueType base class. Those
implementations must cater for every possible struct type, and must
therefore be very general. Structs can contain any number of fields, and
there is no restriction on the types of those fields. How, then, can the base
class implementation work correctly in all cases?

ValueType implementations
For GetHashCode, the answer is straightforward. The hash code for a
value is calculated from the first non-null field in the struct. If there are no
non-null fields, the hash code is 0. This has the correct behaviour in that
any two equal values will always have the same hash code. It’s not
necessarily the most efficient implementation, because two values can
differ in all their other fields, but will have the same hash code if just the
first fields are equal. This might slow down lookups requiring hash codes
when we have large numbers of values to be compared.

The Equals method needs to be a bit more sophisticated, because
comparing only the first field will not be correct in all cases. To determine
if two values are equal, all the fields must be compared. In order for this
to work for any value type, the implementation of ValueType.Equals
uses reflection to discover the fields, and compares the two values by
calling Equals on each field. See [Tepliakov] for more information on
how Equals and GetHashCode are implemented.

Reflection is a wonderfully powerful tool used in a variety of
circumstances, but one thing it most certainly is not is fast. Fortunately,
there are optimizations that remove both the need for reflection and the
restriction of calculating hash codes from only the first field. In fact, our

Point struct would most likely benefit from this optimization because it
has two int fields.

Where a struct has only built-in integral type fields, the Equals method
can perform a simple bit-wise comparison of two values, and
GetHashCode uses bit-masks and bit-shifting on the raw memory
representation to calculate a hash code very quickly.

The optimization gets disabled in a wide variety of relatively common
cases, however. If a struct contains any field that’s a reference, a floating-
point value, or itself provides an override for either the Equals or
GetHashCode methods, the slower algorithm must be used.

For the incorrigibly curious, the reference implementation of
ValueType.Equals can be found in [Equals]. The key optimization is
the call to CanCompareBits, and for the gory details (in C++), see
[DotNetCoreRuntime].

The bottom line here really is that we need to override both Equals and
GetHashCode for struct types if we need to be sure about the performance
of the implementation. These methods are generated for record types by
the compiler. There is no base-class implementation that needs to cater for
every possible combination of fields. The code is injected directly into a
record, almost exactly as if we’d hand-written it ourselves.

All structs are implicitly sealed, which means implementing equality for
a struct is relatively straightforward. Records can inherit from other
records, and this makes implementing equality more complicated. To see
exactly why that is, let’s look at a naïve implementation for a derived class.

Equality and inheritance
Earlier we saw a class called Point that had an override of the Equals
method taking an object parameter, and a type-specific overload of
Equals. Here is the Point class again, along with a Point3d class that
inherits from it (see Listing 4).

The implementation of the IEquatable interface in each of these classes,
that is the Equals method taking a Point or Point3d rather than
object, follows Microsoft’s advice on correctly defining equality for a
class as shown in [MSDN2015]. For brevity, they’re not exactly the same,
but they are equivalent to those shown online.

The key points here are that the derived class determines that the properties
specific to it are equal, and if they are, it defers to the base class to perform
its own comparison. The base class checks that both values being
compared are exactly the same type before also comparing its individual
properties. The type check is required to catch the following comparison:

 var point = new Point(2, 3);
 var point3d = new Point3d(2, 3, 4);
 Assert.That(point.Equals(point3d), Is.False);

Here we’re comparing a Point variable with an instance of Point3d.
The Equals method actually being used here is the one defined on the
Point base class. The point3d variable will be implicitly cast to a
Point. The comparison fails the type check in Point.Equals because

Listing 2

public struct Point
{
 public Point(int x, int y)
 => (X, Y) = (x, y);
 public int X { get; }
 public int Y { get; }
}

Listing 3

public static bool operator==(Point? left,
 Point? right)
 => left?.Equals(right) ?? !right.HasValue;
public static bool operator!=(Point? left,
 Point? right)
 => !(left == right);
April 2021 | Overload | 7

FEATURE STEVE LOVE

Records can inherit from other records as long as
the base record isn’t sealed. The key is in how
equality is implemented for records.
the run time types of the two objects being compared aren’t exactly the
same.

Even though the X and Y properties match in both objects, the two objects
don’t have the same value. A Point3d instance has an extra property
named Z that will not be considered by the base class Equals method.

We wouldn’t usually directly assign a derived type to a base class reference
like this. It would more usually occur when we call a method taking
parameters of the base class type.

Base class comparisons
Standing in for a real method taking parameters of Point type in this
example is a simple method named AreEqual (Listing 5).

In this example, we create two Point3d instances that differ in their Z
property. We confirm they do indeed compare not equal when we call the
Equals method. On the last line we call the AreEqual method, which
takes two parameters of the base class type.

This test fails because the call to AreEqual actually returns True. This
time, both objects are exactly the same type, and neither one is null. More
than that, their X and Y properties both match. However, the comparison
of Z properties never happens when the objects are compared using their
base class type.

If we change the AreEqual method to take object parameters instead
of Point, the test will pass, because object.Equals is a virtual method
call. However, in keeping with the advice given on the MSDN, the type-
specific overload of Equals is not virtual. When we use a Point variable
to call the Equals method, the Point implementation will be called,
irrespective of whether the variable actually refers to a more derived type.

We can resolve this problem by making Point.Equals virtual, and
adding an override for it to the Point3d class. There are some subtleties
to doing this, however, and it’s very easy to get wrong.

Records, as we noted earlier, can inherit from other records as long as the
base record isn’t sealed. Moreover, records behave correctly with
inheritance and don’t exhibit the problems demonstrated here. The key is
in how equality is implemented for records.

Compiler-generated Equals
The code generated by the compiler to implement equality diverges from
that recommended in [MSDN2015] – quite rightly, since that
implementation isn’t sufficient, as we’ve demonstrated. Let’s begin with
the base type Point. Again, for the sake of brevity, the code in Listing 6
isn’t exactly the same as that created by the compiler, but its equivalent.

There are two things of note here. The first is the synthesized
EqualityContract method. This is used in the Equals method to
confirm that both the invoking object and the argument are exactly the
same type. It replaces the call to object.GetType for this purpose.

The GetType method is available to any type, but it’s a non-virtual
method that involves a native system call. The EqualityContract
method is virtual, but makes use of the typeof operator which is
evaluated at compile t ime . The result of both GetType and
EqualityContract under these circumstances is identical, but
EqualityContract uses information available to the compiler,
whereas GetType calculates the required Type to return at run time.

The second thing to note is that the type-specific implementation of the
Equals method is itself virtual. The importance of this becomes apparent
when we look at the equivalent code in the derived Point3d class.

Listing 4

public class Point : IEquatable<Point>
{
 public Point(int x, int y)
 => (X, Y) = (x, y);
 public int X { get; }
 public int Y { get; }
 public bool Equals(Point? other)
 => !ReferenceEquals(other, null) &&
 GetType() == other.GetType() &&
 X == other.X && Y == other.Y;
 public override bool Equals(object? obj)
 => Equals(obj as Point);
 // ...
}
public class Point3d : Point, IEquatable<Point3d>
{
 public Point3d(int x, int y, int z)
 : base(x, y) => Z = z;
 public int Z { get; }
 public bool Equals(Point3d? other)
 => !ReferenceEquals(other, null) &&
 Z == other.Z && base.Equals(other);
 public override bool Equals(object? obj)
 => Equals(obj as Point3d);
 // ...
}

Listing 5

bool AreEqual(Point left, Point right)
{
 return left.Equals(right);
}
var p1 = new Point3d(2, 3, 1);
var p2 = new Point3d(2, 3, 500);

Assert.That(p1.Equals(p2), Is.False);
Assert.That(AreEqual(p1, p2), Is.False);
8 | Overload | April 2021

FEATURESTEVE LOVE

Inheritance and virtual methods work well for
entity types where we want to customize or

embellish the behaviour of a base class
Inheriting Equals
Listing 7 is the equivalent code for Point3d that derives from the Point
type.

Not only does Point3d provide its own type-specific implementation for
the IEquatable interface, it also overrides the base class’s type-specific
Equals. The override invokes the Equals method taking object? as
its argument. This in turn resolves to the Point3d.Equals(object?)
method, which attempts to cast its parameter to a Point3d.

We should also note that the type-specific implementation of Equals is
sealed in the Point3d class. This means that if we were to inherit from

Point3d – for the sake of the argument let’s call it Point4d – that more
derived type cannot override that method. Sealing a method has the effect
preventing a derived type from further customising the implementation of
it, but the method is still available for more derived types to call. Our
potential Point4d type could still override the Equals(Point3d?)
method, however.

Testing Equals for records
There are other minor differences between our Point.Equals
implementation and that shown previously, but the main point is that if we
were to model our Point and Point3d types as classes, there is quite a
lot of boilerplate we need to provide in order for equality to work correctly.

Using records to model these types saves a great deal of code that would
otherwise have to not only be written, but tested too. We previously saw
a test for equality for our original class implementation of Point and
Point3d that failed. Here it is once more:

 bool AreEqual(Point left, Point right)
 {
 return left.Equals(right);
 }
 var p1 = new Point3d(2, 3, 1);
 var p2 = new Point3d(2, 3, 500);

 Assert.That(p1.Equals(p2), Is.False);
 Assert.That(AreEqual(p1, p2), Is.False);

Where Point3d is a record that inherits from a Point record, this test
now passes. There is more than just equality to consider when we inherit
from a value type, however.

Style over substitutability
Although the compiler generates code to correctly perform an equality
comparison for records that inherit from one another, it can’t generate code
for any of the other operations we might need to implement. For example,
if we wanted to implement the IComparable interface for our Point and
Point3d types, we’d have to implement it ourselves.

Would it make sense for us to compare a Point3d instance to determine
if it was less than an instance of a Point? What about the other way
around? What compromises might we have to make?

Inheritance and virtual methods work well for entity types where we want
to customize or embellish the behaviour of a base class. We also get the
benefit of substitutability between the base type and derived type. An
instance of a derived type can be used anywhere a base type reference is
needed. This allows us to write code in terms of a base type that can be
used seamlessly by objects that inherit from that base type.

Entities are the higher-order objects in our designs. They usually represent
the persistent information about a system, and the processing of that
information in collaboration with other entities. Identity is often important
for entities, because we often need to use a specific instance. By contrast,

Listing 6

public class Point : IEquatable<Point>
{
 public Point(int x, int y)
 => (X, Y) = (x, y);
 public int X { get; }
 public int Y { get; }

 protected virtual Type EqualityContract
 => typeof(Point);

 public virtual bool Equals(Point? other)
 => !ReferenceEquals(other, null) &&
 EqualityContract == other.EqualityContract
 && X == other.X && Y == other.Y;
 public override bool Equals(object? obj)
 => Equals(obj as Point);
 // ...
}

Listing 7

public class Point3d : Point, IEquatable<Point3d>
{
 public Point3d(int x, int y, int z)
 : base(x, y) => Z = z;
 public int Z { get; }

 protected override Type EqualityContract
 => typeof(Point3d);

 public sealed override bool Equals(Point? other)
 => Equals((object?)other);
 public virtual bool Equals(Point3d? other)
 => base.Equals(other as Point) && Z == other.Z;
 public override bool Equals(object? obj)
 => Equals(obj as Point3d);
 // ...
}

April 2021 | Overload | 9

FEATURE STEVE LOVE
values place no importance on identity. One value is as good as any other
value with the same state.

The benefits of inheritance are much less clear for values, which is the
reason that structs don’t – indeed cannot – take part in inheritance
relationships. It’s also the reason that value-like classes such as string
are sealed. Substitutability doesn’t work so well for values; it’s not fair to
say that a Point3d is substitutable for a Point because they have
different values, and the value is what really matters for a value type.

Has-A versus IS-A
Inheritance is commonly employed to re-use the characteristics of a type
and build on it. When we derive a type from a non-abstract base, such as
when inheriting Point3d from Point, we’re really inheriting the
implementation. Substitutability between types works best when the
implementation doesn’t matter. What we really want is to represent the
same interface.

More formally the distinction is between class inheritance and type
inheritance. By deriving a Point3d from a Point we’re using class
inheritance. In order to make it work correctly, we must alter the interface.

However, a much simpler solution would be to discard the inheritance
altogether, and simply have Point3d contain an instance of a Point. We
get all the benefits of re-using the implementation of Point, but have none
of the difficulties of substitutability. Furthermore, we’d make both classes
sealed and the implementations of both would be more straightforward.
Perhaps even better, we make them structs instead of classes.

Consider the struct in Listing 8.

Here we have a Point3d type modelled as a struct that contains an
instance of a Point as a field. We have no need to consider the case where
a base class parameter might really be a Point3d because that’s not
possible. The only overridden methods are those necessary to provide the
basic equality and hash code calculations from the object base class.

We can’t use an instance of Point3d anywhere that a Point is needed.
We might provide an explicit conversion – or projection – to a Point that
could be used to invoke a method expecting Point variables. In all other
respects, the behaviour of this struct matches all the expected behaviour
from a Point3d that inherits from a Point.

The one possible objection to this is that structs are copied and passed by
value, whereas records are copied and passed by reference. Since a
Point3d contains an instance of another struct, we might expect its
performance to suffer as a result of needing to copy the whole instance
rather than just the reference.

As with all such questions, we must invoke the wisdom, or at least the
objectivity, of a performance profiler.

Performance of structs and records
Our Point3d struct doesn’t do much other than being a value. Similarly,
the most important aspect of the record equivalent is its value. Therefore
the most obvious thing to compare between the two is how equality is
implemented. Just as important as the Equals implementation is the
GetHashCode method. We should, then, measure the performance
characteristics of both methods.

One simple way to do that is to employ a HashSet, which will use
GetHashCode to determine where to look for a key, and then use Equals
to determine an exact match. A hash set is a unique collection of keys, so
a useful test would be to attempt to introduce duplicate keys so that we can
be sure a full lookup of a value takes place.

The following simple test creates a list of Point3d objects, and we
deliberately introduce duplicate values. We use the source list to
populate a HashSet using the ToHashSet method, which simply
discards any values that have already been added to the collection. (See
Listing 9.)

The number of elements is intentionally very large in order to scale-up the
relative cost of each method call to make the differences observable. All
the following results were obtained by profiling a test using the dotTrace
profiler from JetBrains (https://www.jetbrains.com/profiler/) using a
straightforward wall-clock time report. In each case, the test was profiled
using a Release build.

Profile results
Figure 1 contains the results from running this test using our Point3d
record, which inherits from a Point record. the same test was profiled
using our Point3d struct, which contains an instance of a Point struct.
The results are also in Figure 1.

The headline time shows that the test using structs took not much more
than half the time of the test using records. Note that the ToHashSet call
is somewhat slower for records, but calls to Equals and GetHashCode
are much slower than for structs. In fact, the cost of Equals for the struct
type doesn’t even register, which means the JIT compiler probably inlined
the code.

The Equals method for records is relatively expensive owing to the
number of virtual method calls i t makes, in this case to the
EqualityContract method.

The remainder of the time difference between the struct and record
versions is most likely down to the fact that the struct instances are copied
by value, but for the records, only the references are copied from the source
to the hash set. The difference of ~200ms is negligible really, considering
the huge number of elements we were using.

However, copying by value versus copying by reference has another, less
obvious implication, which goes some way towards explaining the
significant difference in the cost of the call to ToList.

Listing 8

public readonly struct Point3d :
IEquatable<Point3d>
{
 public Point3d(int x, int y, int z)
 => (xy, this.z) = (new Point(x, y), z);
 public int X => xy.X;
 public int Y => xy.Y;
 public int Z => z;
 public bool Equals(Point3d other)
 => xy.Equals(other.xy) && z == other.z;
 public override bool Equals(object? obj)
 => obj is Point3d other && Equals(other);
 public override int GetHashCode()
 => HashCode.Combine(xy, z);
 public static bool operator==(Point3d? left,
 Point3d? right)
 => left?.Equals(right) ?? !right.HasValue;
 public static bool operator!=(Point3d? left,
 Point3d? right)
 => !(left == right);
 private readonly Point xy;
 private readonly int z;
}

Listing 9

const int N = 50000000;
const int Filter = 10000;

var source = Enumerable.Range(0, N)
 .Select(i => new Point3d(0, 0, i % Filter))
 .ToList();
var unique = source.ToHashSet();

Assert.That(unique.Count, Is.EqualTo(Filter));
Assert.That(unique.Contains(new Point3d
 (0, 0, Filter - 1)), Is.True);
10 | Overload | April 2021

https://www.jetbrains.com/profiler/

FEATURESTEVE LOVE
The impact of the managed heap
Records are reference types, allocated on the heap, and are subject to
garbage collection in the same way that class instances are. We deliberately
introduced duplicate values in our source list, and when the ToHashSet
method discards those duplicates they become unreachable, and so are
eligible for garbage collection. Struct instances are never individually
garbage collected, they simply go out of scope when they’re no longer
needed.

Adding such a large number of elements to the list would certainly put
some pressure on memory, and very likely use up enough space to cause
several garbage collections. We can see this by digging into the ToList
call (see Figure 2).

The cost of the garbage collection here isn’t objects actually being
collected, it’s most likely the cost of tracing references to each object to
determine if they can be collected.

In fact, since we’re putting so much pressure on memory here, it’s likely
that even the discarded objects stay in memory for much longer than
necessary because they’ll survive successive garbage collections caused
by the huge number of memory requests being made.

All of which demonstrates that while copying objects by reference might
be cheaper than copying by value, the associated cost of inhabiting the
managed heap can offset that benefit and even overwhelm it.

Summary
The new record types in C# v9.0 provide us with a very compact way of
defining value-like types without the need to manually write all the
boilerplate code to perform equality correctly. The syntax we’ve explored
in this article relates to positional records, which is the most compact
representation that allows the compiler the greatest flexibility to generate
code on our behalf.

We can choose to write our own version of almost any of the methods
generated by the compiler if we wish. The exceptions to this are that we
can’t provide our own operator== or operator!=. If we want to
customize the behaviour of equality, we need to write our own type-
specific Equals method for the type. The compiler-generated
operator== just forwards to the Equals method anyway.

Any method we write ourselves prevents the compiler from synthesizing
its own version; it simply uses the version we provide.

However, since the compiler provides efficient and correct
implementations for each of those methods, there seems to be little benefit
in writing our own. If we feel the need to have more control over equality,
we may as well just use a struct. Where we just need a simple
representation of a value, records work very well and the associated facility
of non-destructive mutation with the with keyword is a very useful way
of handling those values.

Just because we can inherit one record from another, doesn’t mean that
we should. Values in general make poor parents, and so records, like structs
and other value-like types such as string, should be sealed to prevent
further derivation.

We also need to understand that records really are classes under the hood;
when we create a record type, the compiler injects a class definition for
us. Records are therefore reference types, and so live on the managed heap.
This means they are garbage collected, and we might therefore consider
using a struct anyway if we’re very sensitive to performance.

An overview of records in C# v9.0, and more detail on what methods the
compiler provides can be found at [MSDN2020]. 

References
[Equals] https://referencesource.microsoft.com/#mscorlib/system/

valuetype.cs,22

[DotNetCoreRuntime] https://github.com/dotnet/runtime/blob/
01116d4e145d17adefc1237d55b1e3574919b1c1/src/coreclr/vm/
comutilnative.cpp#L1738

[MSDN2015] https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/statements-expressions-operators/how-to-
define-value-equality-for-a-type

[MSDN2020] https://docs.microsoft.com/en-us/dotnet/csharp/whats-
new/csharp-9#record-types

[Tepliakov] https://devblogs.microsoft.com/premier-developer/
performance-implications-of-default-struct-equality-in-c/

Figure 1

Records

► 5.52% Hashset_of_records • 5,622 ms • TestRecords.Hashset_of_records()
 ► 3.00% ToList • 3,055 ms • System.Linq.Enumerable.ToList(IEnumerable)
 2.51% ToHashSet • 2,554 ms • System.Linq.Enumerable.ToHashSet(IEnumerable)
 ► 0.47% Equals • 478 ms • Point3d.Equals(Point3d)
 ► 0.35% GetHashCode • 357 ms • Point3d.GetHashCode()

Structs

► 2.95% Hashset_of_structs • 3,002 ms • TestStructs.Hashset_of_structs()
 2.28% ToHashSet • 2,325 ms • System.Linq.Enumerable.ToHashSet(IEnumerable)
 ► 0.09% GetHashCode • 94 ms • Point.GetHashCode()
 ► 0.66% ToList • 677 ms • System.Linq.Enumerable.ToList(IEnumerable)

Figure 2

 3.00% ToList • 3,055 ms • System.Linq.Enumerable.ToList(IEnumerable)
 2.76% <Hashset_of_records>b__13_0 • 2,809 ms • <Hashset_of_records>b__13_0(Int32)
 1.60% [Garbage collection] • 1,633 ms
 <0.01% [Thread suspended] • 5.8 ms
 ► <0.01% Point3d..ctor • 5.7 ms • Point3d..ctor(Int32, Int32, Int32)
April 2021 | Overload | 11

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-define-value-equality-for-a-type
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-define-value-equality-for-a-type
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#record-types
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#record-types
https://devblogs.microsoft.com/premier-developer/performance-implications-of-default-struct-equality-in-c/
https://devblogs.microsoft.com/premier-developer/performance-implications-of-default-struct-equality-in-c/
https://referencesource.microsoft.com/#mscorlib/system/valuetype.cs,22
https://referencesource.microsoft.com/#mscorlib/system/valuetype.cs,22
https://github.com/dotnet/runtime/blob/01116d4e145d17adefc1237d55b1e3574919b1c1/src/coreclr/vm/comutilnative.cpp#L1738
https://github.com/dotnet/runtime/blob/01116d4e145d17adefc1237d55b1e3574919b1c1/src/coreclr/vm/comutilnative.cpp#L1738

FEATURE LUCIAN RADU TEODORESCU
Composition and Decomposition
of Task Systems
Concurrency can be hard to get right. Lucian Radu
Teodorescu demonstrates how tasks can help.
robably the most important method that we apply when designing
software is decomposition; this comes in the same package as
composition. All the rest are irrelevant if we cannot decompose

software. Even the highly acclaimed abstraction is insignificant compared
to this pair.

Indeed, if we cannot decompose the system into multiple independent
parts, then we could only apply the abstraction to the whole software. Thus,
we would have the whole system and the abstracted whole system. There
would be no other part that could benefit from using the abstraction instead
of the whole system. So, the abstraction would be completely useless.

When one needs to solve a complex problem, one applies decomposition
to break that problem into multiple parts that are easier to conceive,
understand and develop. Thus, a software system is decomposed into
multiple subsystems/components. I cannot think of any software system,
even the most simple ones, that cannot be decomposed into simpler
systems. That’s just how our world is.

Ideally, the subsystems of a system can be developed in parallel, at least
to a certain degree. Then, it’s important that those subsystems can be put
together, so that we can form the whole system.

Let’s take a simple example, using functional decomposition and
composition. Let’s assume that for a given number n we want to compute
f(n)=n2+1. To solve this problem, we can decompose it in two smaller sub-
problems: square a number, and add 1 to a number. That is, we reduce the
initial problem to solving two other problems: computing sqr(n)=n2 and
inc(n)=n+1. After implementing these smaller functions, we need to
combine them in the following way: f(n)=inc(sqr(n)), or, more commonly
in mathematics: f=inc ∘⃘sqr.

Decomposition and composition are the two faces of the same coin. One
is useless without the other. For example, it’s useless to decompose a
software system into multiple components, if we can’t compose the
smaller components to form the larger system. They are so tied together
that I cannot resist the urge to quote Heraclitus:

The road up and the road down is one and the same.

This article aims to show that by using tasks, one can achieve good
decomposability and composability, and thus tasks can be used as building
blocks for concurrency.

Threads and locks are not composable
We all know that programming using raw threads and locks (in general,
synchronisation primitives) is hard. We have understandability problems,
we have thread safety problems, and most often we have performance
problems. But one important inconvenience of this concurrent
programming style is that raw threads and locks are not composable.
[Lee06]

To ensure proper functioning of a subcomponent, one needs to understand
the threading constraints of the adjacent subcomponents; that is, from what
threads the subcomponent will be called, and what are the locks that are
held while making these calls.

If one component holds a lock while calling the other, we need to be very
sure that the other component will not call the first component back in a
call that would require the same lock. And we need to make sure we are
always taking all the locks in the same order, even if we don’t have
visibility of the other components. Also, components cannot assume that
some APIs will be called from a known set of threads; a component will
never know the threading used by adjacent components.

There are ways to protect against these types of safety problems, but they
typically fall into two categories:

1. They are not general enough to be applied to all types of problems
(i.e., they are ad hoc).

2. They typically degrade overall performance (they involve adding
locks and restrictions).

To better illustrate this, let’s revisit the simple example that Edward Lee
used [Lee06]. Consider a single-threaded implementation of the observer
pattern, as shown in Listing 1. If this is run inside a component that only
calls addListener and setValue from a single thread, then this would
be ok. But if another component tries to call this from a different thread,
then we have a potential race condition; and, it’s somehow normal to
expect other components to maybe call this from different threads.

To fix this, one would add locks around the critical code, something similar
to what is shown in Listing 2. This may work in certain cases, but not in
others; depending on how listeners are implemented, this can lead to a
deadlock. In general, it is bad practice to call unknown functions while
holding a lock.

Another potential fix may be to extract the calling of the listeners from the
lock, as shown in Listing 3. Now, even this version may have some

P

Listing 1

template <typename T>
class ValueHolder {
public:
 using Listener = std::function<void(T)>;
 void addListener(Listener listener) {
 listeners_.push_back(std::move(listener));
 }
 void setValue(T newVal) {
 curValue_ = std::move(newVal);
 for (lstner : listeners_)
 lstner(curValue_);
 }
private:
 std::vector<Listener> listeners_;
 T curValue_;
};

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
12 | Overload | April 2021

FEATURELUCIAN RADU TEODORESCU

One can speak of decomposition when
separating out complex processes into multiple
threads. But, each time we do that, we encounter
the two usual problems: safety and performance
problems, but in general, most people would agree that this is a good
solution.

If one can draw the conclusion that, in a threads and locks approach, to be
able to interoperate with other components, one needs to encapsulate the
threading behaviour, hardening the threading assumptions. In general,
cross-API calls need to be made without holding any lock, and all the
incoming calls need to be assumed that can be coming from any thread.

This is a simple example. The problems can only amplify for larger and
more complex systems.

The composition for threads and locks systems is ad hoc, with effort
needed to prevent safety issues, and, in general, with performance issues.
It is hard to obtain good composability within systems based on threads
and locks.

Decomposition with threads and locks
Decomposition is seldom associated with threads and locks. This is mainly
because there are no general rules for decomposition.

One can speak of decomposition when separating out complex processes
into multiple threads. But, each time we do that, we encounter the two usual
problems: safety and performance. To solve the safety problem, we
typically need to add more locks. As we know, adding more locks typically
downgrades performance.

There is also another performance problem caused by too many threads.
One cannot simply create numerous threads if one has a limited number
of cores. Assuming CPU-intensive work, the optimal performance is
obtained when the number of threads is equal to the number of cores. Thus,
decomposing in terms of threads seems like a bad idea.

Bottom line, decomposition with threads and locks is, at best, ad hoc.

Composability of task systems
Compared to the classical threads and locks approach, task-based systems
compose better. The composability advantages of tasks systems can be
summarised as follows:

 no extra protection needed at the interface level (i.e., adding a
component to an existing component does not compromise its
safety)

 no safety issue

 no loss in performance

We will analyse all these point one at a time, but before doing that let’s
introduce some formalism. For a given component c, let T(c) be the set of
all tasks that can be generated/executed in that component. Also, following
the notation from [Teodorescu20b], we denote by t1→t2 the fact that task
t2 depends on task t1 being executed (dependency relation), and by t1~ t2
the fact that tasks t1 and t2 cannot be executed in parallel (restriction
relation).

For representation simplicity, we also assume that whenever there is a
dependency relation t1→t2, there is also a restriction relation t1~ t2. After
all, if one task depends on another task, the two tasks cannot run in parallel.

With these two relations, we can define the set of constraints for a
component:

In addition, we also denote by spanw(t) the action of spawning a task t,
and by S(c) the set of all the points in the component c where we spawn a
task.

With these defined, then the three sets T(c), R(c), and S(c) completely
define the task system for the component c.

Now, if we want to compose two components and into a bigger system ,
then the following would apply:

Listing 2

template <typename T>
class ValueHolder {
public:
 using Listener = std::function<void(T)>;
 void addListener(Listener listener) {
 std::unique_lock<std::mutex> lock{bottleneck_};
 listeners_.push_back(std::move(listener));
 }
 void setValue(T newVal) {
 std::unique_lock<std::mutex> lock{bottleneck_};
 curValue_ = std::move(newVal);
 for (lstner : listeners_)
 lstner(curValue_);
 }
private:
 std::vector<Listener> listeners_;
 T curValue_;
 std::mutex bottleneck_;
 // Yes, this is a bottleneck
};

Listing 3

void setValue(T newVal) {
 std::vector<Listener> listenersCopy;
 {
 std::unique_lock<std::mutex> lock{bottleneck_};
 curValue_ = std::move(newVal);
 listenersCopy = listeners_;
 }
 for (lstner : listenersCopy)
 lstner(curValue_);
}

R c t t t t T c t t

t t t t T c t t

() {() | , (), }

{(~) | , (), ~

     
 

1 2 1 2 1 2

1 2 1 2 1 22}
April 2021 | Overload | 13

FEATURE LUCIAN RADU TEODORESCU
In plain English, the super-component contains all the tasks, relations and
spawns of the two subcomponents, plus some more relations or spawn that
might appear from the integration. The set of tasks is always the union of
the two sets corresponding to the two sub-components; a task can be
created either by one sub-component or by the other. But, when composing
the two sub-components we may need to add relations between tasks
coming from different sub-components. Similarly, we need to allow the
code from one component to spawn a task from a different component.

There is an important assumption we are making: the set R(c) for a
component is maximal. That is, if two tasks cannot be run in parallel, there
must be a restriction connecting these two tasks (either direct or by
transitivity). We do not consider subsets of R(c) which are not maximal,
and two tasks are not executed in parallel for other, accidental, factors (i.e.,
some functions are never called into a particular order).

Lemma 1 (inner safety). When composing two or more task-safe
components into a larger one, the internal safety of each component is not
affected. i.e., one does need to add extra protection within any of these
components to make the composed system safe.

Let’s assume that there are two tasks t1, t2 within one component c1, so
that, when composing c1 with c2 into a super-component c+ we get a safety
issue. To get a safety issue in c+ we need to be missing a dependency or
restriction relation between the two tasks; formally (c1~c2)∉Rሺc+). But
because t1, t2∈Tሺc1), the missing dependency or restriction relation must
also be part of Rሺc1).

However, based on the above assumption, the set Rሺc1) is maximal.
Together with the fact c1 that is tasksafe, this means that we cannot be
missing any relation from Rሺc1).

We reached a contradiction. Therefore, we cannot have two tasks
belonging to one component that, when joined with other components will
generate a safety issue. This means that adding an extra component to an
existing component we do not compromise the safety of the first
component.

Q.E.D.

Lemma 2 (overall safety). Composing two components that are task-safe,
will make the resulting supercomponent also task-safe, assuming that the
tasks have only local effects.

Before proving this lemma, let us discuss what do we mean by “tasks have
only local effects”. The tasks in a component should affect only the
resources owned by that component and should not have global effects.
Of course that if two components have tasks that affect the global
resources, then running two of such tasks in parallel, one from each
component, might create a safety issue.

Let us prove this by contradiction. In order for the super-component to be
unsafe, then there must be two tasks t1 and t2 that cannot be safely run in
parallel, yet the composed system allows it. One alternative would be for
the tasks to belong to the same component; but this cannot be true because
of the previous lemma. Therefore, the only other alternative is for one task
to be from a component and the other from the other component. But the
tasks have only local effects. Thus, a task from one component cannot
affect in any way the other component, so it cannot be unsafe to run it in
parallel with another task from another component. This cannot be the
case.

If neither of the two alternatives are plausible, it means that we cannot find
two tasks that can run in parallel in the composed system, so the composed
system is task-safe.

Q.E.D.

The reader should note that there are cases in which tasks have global
effects. This doesn’t necessarily mean that the safety of the super-system
is compromised; it means that when composing the two components we
need to add constraints (dependencies or restrictions) between tasks

belonging to different components. This is precisely the reason why we
said that the set of relations for the super-component can contain elements
that are not in the any of the sets of relations for the sub-components.

Lemma 3 (inner performance). The task execution throughput of a
component does not decrease when it’s composed with other components,
assuming there are no extra constraints added for the tasks belonging to
that component, and that there are enough hardware resources.

Let qp(c) the maximum task execution throughput for component c, on a
system with p cores: how many tasks are executed in a unit of time. This
throughput is directly affected by the duration of the tasks and by the
available parallelism. We assume infinite parallelism, and also, for
simplicity let’s not bother with the duration of tasks and assume they are
all equal – we are concerned with the general dynamics, rather than specific
timings that the tasks might have.

If there would be no restrictions, set (R(c)=0), then all the tasks can be
executed in parallel, so q∞=|T(c)|. The only way to reduce this is to add
constraints on the tasks. So, the throughput is a function of the restrictions
set: q∞(c)=q∞(N(c),R(c)).

Adding other components without adding extra restrictions will keep R(c)
unchanged. Thus, all parameters being equal, the throughput remains the
same. Q.E.D.

Please note that, in practice, the actual throughput is smaller than the
maximal throughput. We never have all the tasks ready to start, and thus
we only achieve a faction of this maximal throughput. The more tasks we
spawn, the closer we get to the maximal throughput. Therefore, it may
happen that, whenever other components are adding more spawns to the
initial component, its throughput might actually grow.

On the other side, composing components with non-local tasks might
require adding more constraints between tasks of different components.
The more constraints, the less our throughput will be. A well-designed
component, with very few tasks that have global effects will tend not to
suffer from this problem.

Lemma 4 (overall performance). The total throughput of a system
comprised of two components that have tasks with local effects will be the
sum of the throughputs of the two components, assuming enough hardware
resources.

The components have local tasks, so there will be no extra restrictions
added to the overall system. Thus, taken independently the two
components will not degrade their throughput. Now, considering that we
have enough hardware resources, the tasks from two components can run
completely in parallel. Therefore, the total throughput will be the sum of
the individual throughputs. Q.E.D.

In practice, when the amount of parallelism is limited, the throughput will
also be limited by the hardware constraints.

Again, the same discussions about tasks with global effects and about real-
world throughput and maximal throughput apply here.

Also, as argued in [Teodorescu20a], one needs to be fully aware that in a
real-world system there is always some indirect contention between the
tasks, which may affect performance.

Theorem (composability of tasks systems). Components that have tasks
with local effects can be composed in larger systems without any loss of
safety or performance.

This follows directly from the above lemmas. Q.E.D.

Tasks systems will not have the same problems that the classical threads
and locks approach would have.

Decomposing tasks into sub-tasks
So far, we’ve shown that tasks systems compose really well. If one has two
components that are using tasks, they can easily be composed into a larger
system while maintaining safety and performance. This is essential for a
bottom-up approach. The questions that we are trying to answer in this
section is whether is as easy to decompose task systems into smaller sub-
systems; that is, how easy would it be to have a topdown approach to
concurrency with tasks?

T c T c T c

R c R c R c

S c S c S c

() () ()

() () ()

() () ()







 
 
 

1 2

1 2

1 2
14 | Overload | April 2021

FEATURELUCIAN RADU TEODORESCU
If we assume that the system is composed of generic tasks, then we can
always have a partition of the tasks and relations, and have the
decomposition around that partition. But if we have certain concurrent
abstractions (e.g., a pipeline) that generate tasks then it might be harder to
partition the tasks.

Also, we might need to take a large task and divide it into smaller tasks,
so that they can be potentially run in parallel (under certain constraints).
This may be relatively easy if the tasks are hand-made, but it may be more
complicated if the tasks are generated by a concurrent abstraction (e.g., a
pipeline).

Let us take a motivating example and try to fix all these cases. Let’s assume
that we have a high-level pipeline processing in our component, one stage
of that pipeline can be subdivided into smaller tasks. This actually comes
from a real-world problem that I tried to solve recently.

Figure 1 shows a diagram of the problem. We have a pipeline with 4 stages,
and the third stage contains more processing than the others, and can be
potentially decomposed into smaller tasks. The amount of parallelism
generated by the pipeline is relatively small, especially because the third
stage needs to be executed in order. Thus, we would take great
performance advantage from breaking a task from the third stage into
multiple smaller tasks.

The problem
The way that the pipeline abstraction is constructed, at each stage the body
of the task is executed, and when that execution is finished, the pipeline
checks to spawn the next tasks (next stage and the same stage of the next
line). Given a task functor, the pipeline wraps it into another function that
executes this task termination logic.

This composability of custom stage logic with pipeline logic is done inside
a single task, in the single stack of execution and on a single thread. Thus,
one cannot simply inject multithreaded execution on that thread / stack
context.

A first attempt
One way of getting around this is by using the fork-join pattern
[McCool12] [Robison14] [Teodorescu20c]. In Concore [concore], one can
implement it similar to the code shown in Listing 4. One can spawn a lot
of sub-tasks attached to a task_group and then wait for that
task_group object, waiting on all these tasks to be complete.

From a high-level perspective, this gives us what we need: we can create
sub-tasks inside a pipeline stage, and parallelise the stage more. The wait
operation is going to be a busy wait, so, in terms of throughput we are ok,
assuming that we have enough tasks to be executed.

But this solution can introduce high latencies, and may not work well when
we don’t have too many tasks to be executed, like in our case. The problem
is that the wait() call will try to execute any task that it can, hoping that
the tasks from the group will finish early. It provides no guarantee that the
tasks spawn in the same context will be executed first. Thus, we can arrive

in a situation that we execute all the other tasks before we can actually
execute the tasks that we need. If we don’t have enough tasks in the system,
we may actually drain the tasks from the system, leading to reduced
throughput.

For example, in our pipeline problem, such a wait() call may execute
all the stages/lines that can be executed before the stage is completed. This
will essentially reduce the entire parallelism to the completion of one task.

This solution is relatively simple and can work in certain cases, but it will
not solve all the needs for decomposition.

A better solution
Let us derive a general solution that will not have this performance
problem.

First, going back to the theory from [Teodorescu20b], we argued that a task
system implementation needs to have some special logic in two places to
function properly. The first one is at the task creation, and the second one
is at the completion of the task. We are going to focus on the latter one.

If one defines a task as a wrapper over std::function<void()>, then
the logic that happens on task completion must be manually encoded in
the body of the functor. For many structures that are built on top of these
tasks (pipeline, task serializers, task graphs, etc.) each time the user pushes
a task into it, another wrapper functor is created that contains the original
task logic, plus the continuation logic.

If fn is the function that needs to be executed at the stage n, then the pipeline
actually constructs a task that executes the wrapper function wn(fn,cn),
ensuring that after executing the user task the pipeline advances. Ignoring
the error handling code, we can say that wn is just executing cn after fn.

Traditionally, cn is executed within the same stack, and on the same thread
as fn, but if we look more carefully, this doesn’t need to be true. We can
call cn from a different thread, a different context; as long as we will call
it, the pipeline can advance. This starts to resemble the continuation pattern
[Teodorescu20c].

Let us formalise this, prove that it can actually solve our problem and prove
that it can be applied generically to similar problems.

Instead of a task t(f) that takes a user-supplied functor to be executed, we
will introduce a new type of task of the form w(f,c). The execution of an
old-style task was defined as execute(t(f))=f (). For the new task, we
define execution as execture(w(f,c))=f();c() – that is, first execute the
functor f then the functor c. All the other elements of the task system
(spawning, constraints, etc.) remain the same.

Lemma 5 (equivalence). A task system using new tasks of the form w(f,c)
can be used to model all the problems that can be solved with old task types
t(w), with the same performance.

The proof follows directly from the realisation that we can always
construct the new tasks with an empty continuation functor, such as:

Q.E.D.

After this equivalence lemma, we will use the new set of tasks in our
higher-level concurrency abstractions. We will consider that all the user-
supplied functors will be placed in the part untouched, while the code
needed to make the abstraction work we will put in the part, without mixing

Figure 1

Listing 4

void third_stage(LineData& line) {
 auto grp = concore::task_group::create();
 // Create some sub-tasks
 concore::spawn([&line]{ f1(line); }, grp);
 concore::spawn([&line]{ f2(line); }, grp);
 concore::spawn([&line]{ f3(line); }, grp);
 // Ensure that all the tasks are executed
 // before continuing
 concore::wait(grp);
}

w f t f f(,) (),0  
April 2021 | Overload | 15

FEATURE LUCIAN RADU TEODORESCU
the user-supplied functors with the functors needed for realising the
constraints of the abstraction. A concurrency abstraction that has this
division, and that does not impose any restrictions on which threads the
continuations are called will be called from now on a continuation-based
concurrency abstraction. One can make abstractions like pipeline, the task
serializers, task graphs, and a continuation abstraction [Teodorescu20b] as
continuation-based concurrency abstractions.

Any continuation-based concurrency abstraction runs independently of the
user-supplied functors (if they do not try to interact with the abstraction
itself). Thus, regardless of the user-supplied functions, a pipeline will have
the same execution pattern. Focusing on the continuations will allow us to
assess the properties of the abstraction itself; in particular we are interested
is seeing if various transformations will keep the abstraction running.

A key point in how we defined these continuation-based concurrency
abstractions is that if the continuations are executed in the same order
(possible from different threads), all the properties of the abstractions will
remain the same. Thus, if one moves the execution of a continuation from
a thread to another thread, the abstraction will still function.

Lemma 6 (task decomposition). A continuation-based concurrency
abstraction that executes a task w0(f0,c0) can be transformed so that it
executes an arbitrary graph of tasks G={w1, w2, …,wn}(that ends its
execution with a task wn) instead of task w0, without changing the
functioning of the continuation-based concurrency abstraction.

The key here is to exchange the execution of w0 with the execution of G,
and ensure that c0 is called at the end of the execution of G. If we can do
that, then, based on what we observed above, the continuation-based
abstraction will function the same.

For this, we will define cn' = cn;c0 (call cn then c0) and (replace the
continuation in wn), and G'={w0, w1, …,wn'} (replace the last task from
G). We also define f0' = execute(G') and w0' = (f0',0).

Now, if we exchange w0 with w0', the continuation c0 is still called when
everything else finishes to execute. This means that we can safely
exchange w0 with w0' in our continuation-based abstraction, without
affecting the functioning of the abstraction. Q.E.D.

Theorem (task decomposition generality). For any concurrency
abstraction that can be turned into a continuation-based concurrency
abstraction, one can decompose tasks into smaller tasks (possible running
in parallel), without affecting the overall properties of the abstraction.

This follows directly from the above lemmas. Q.E.D.

Listing 5 shows how this technique can be applied in concore1, to avoid
the blocking-wait from Listing 4.

We have now a good way to take a top-down approach to our concurrency:
use the most appropriate (continuation-based) concurrency abstraction,
then, where more concurrency is needed, decompose a task into smaller
tasks.

Conclusions
This article explores composition and decomposition of task-based
systems. If classical threads and locks systems are hard to compose
properly, with tasks this seems to be an easy task (pun intended).

With threads and locks, composition can easily lead to safety problems.
To protect against these safety issues, one must always work at the
interfaces between components and strengthen the protection. This is
typically done by adding more locks, and this can downgrade the
performance.

With task systems, we show that, for most cases, good composability is
achieved without sacrificing safety and performance, and without any
additional effort. The cases that need special attention are the cases in
which tasks from one component have a global effect, and they are not safe
to run in parallel with tasks from another component.

A good design would limit the number of tasks with global effects, so the
amount of extra work, and the performance degradation would be limited.

Then we turn our attention to the decomposition of tasks. We show that,
higher level concurrency abstractions based on continuations can easily be
used to with task decomposition. We can break down a larger task into
smaller ones, without affecting the functionality of the abstraction from
which the task belonged to.

This is crucial as it would allow us to approach concurrency in a top-down
manner. One first finds the right abstraction at the higher level, then
decomposes different parts of that high-level abstraction into smaller one.
This process can be repeated until we reached the desired level of
concurrency.

Concurrency design is no longer dependent on the details of
implementation, it doesn’t need to be a bottom-up approach. One can
design the concurrency of the application upfront, in a top-down, like any
other software design activity.

Concurrency design doesn’t need to be a hard thing. 

References
[concore] Lucian Radu Teodorescu, Concore library, https://github.com/

lucteo/concore

[Lee06] Edward A. Lee, The Problem with Threads, Technical Report,
2006, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-1.pdf

[McCool12] Michael McCool, Arch D. Robison, James Reinders,
Structured Parallel Programming: Patterns for Efficient
Computation, Morgan Kaufmann, 2012

[Robison14] Arch Robison, A Primer on Scheduling Fork-Join
Parallelism with Work Stealing, Technical Report N3872,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n3872.pdf

[Teodorescu20a] Lucian Radu Teodorescu, Refocusing Amdahl’s Law,
Overload 157, June 2020, available online at: https://accu.org/
journals/overload/28/157/teodorescu_2795/

[Teodorescu20b] Lucian Radu Teodorescu, The Global Lockdown of
Locks, Overload 158, August 2020, available online at:
https://accu.org/journals/overload/28/158/teodorescu/

[Teodorescu20c] Lucian Radu Teodorescu, Concurrency Design Patterns,
Overload 159, October 2020, available online at: https://accu.org/
journals/overload/28/159/teodorescu/1. Continuation-based concurrency abstractions are just in infancy in

concore. The syntax might change in the near future.

Listing 5

void third_stage(LineData& line) {
 auto* cur_task = concore::task::current_task();
 auto cur_cont = cur_task->get_continuation();
 // Create the final task, with the current
 // continuation
 concore::task t_final{f_final, {}, cur_cont)};
 // Clear the continuation from the current tasks
 cur_task->set_continuation({});
 // Create some more tasks
 concore::spawn([&line]{ f1(line); });
 concore::spawn([&line]{ f2(line); });
 concore::spawn([&line]{ f3(line); });
 // we assume that after these tasks are executed,
 // t_final will be called
}

16 | Overload | April 2021

https://github.com/lucteo/concore
https://github.com/lucteo/concore
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
https://accu.org/journals/overload/28/157/teodorescu_2795/
https://accu.org/journals/overload/28/157/teodorescu_2795/
https://accu.org/journals/overload/28/158/teodorescu/
https://accu.org/journals/overload/28/159/teodorescu/
https://accu.org/journals/overload/28/159/teodorescu/

FEATUREEUGENE HUTORNY
Chepurni Multimethods for
Contemporary С++
Multimethods can be implemented in various
ways. Eugene Hutorny showscases an approach
using custom type identification and introspection.
ultiple dispatch, or multimethods, is a feature of some programming
languages in which a function or method can be dynamically
dispatched based on the run-time (dynamic) type or, in the more

general case, some other attribute of more than one of its arguments
[Wikipedia-1]. The need for such a feature appears, for instance, in
software architectures where numerous classes of objects interacts with
each other in a way, specific for each pair. The C++ language did not
directly provide such feature on the language level. It is possible to use
std::visit in conjunction with std::variant to achieve
multimethods (see [Filipek18], [Mertz18]). This article will consider an
alternative approach, based on custom type identification and
introspection facilities, letting us explore a variety of modern C++
techniques and providing flexibility

This study does not advocate a solution that would fit all use cases. Instead,
it focuses on practical solutions for different use cases. The author
encourages readers to experiment with the proposed solutions and tune or
rework them for their particular needs.

Introduction

Existing solutions
Since a need for multiple dispatching is as old as the world of
programming, quite a few solutions for C++ have been created (see
[Bettini], [LeGoc14], [Loki], [Pirkelbauer07], [stfairy11], [Shopyrin06a],
[Shopyrin06b], [Smith03a], [Smith03b]). However, none of them has a
chepurni look (chepurni, Ukrainian чепурні – neat, clean, deft).
Undoubtedly, chepurness is a subjective category. In the author’s opinion,
a chepurni solution is simple to implement, easy to use, modern, non-
intrusive and well structured. In other words, the complexity of a chepurni
solution is related to the problem’s complexity, its use does not create extra
dependencies, does not complicate the project maintenance, does not
require changes to the existing designs, and every element of the solution
addresses a single concern[Wikipedia-2] or bears a single responsibility
[Wikipedia-3].

Problem overview
A dynamic, run-time dispatching requires knowledge about the class of the
object. C++ facilitates Run-Time Type Information (RTTI), which is the
number one choice for a project which already deploys it or is allowed to.
However, the solution would not be chepurni if it did not offer an
alternative for those projects where enabling RTTI would make them
unviable.

Traditionally, multiple dispatching in C++ is implemented via a virtual
method (the first dispatch) that performs next level dispatches with an if
or switch statement, or with another virtual call to the other object. From
the data modelling point of view, in many cases these methods do not look
like natural parts of the classes implementing them, but rather as a
workaround, caused by a missing language feature. They would look more
organic if implemented as functions. However, in this study we will not

impose a constraint to use only functions. Instead, we allow to use
dispatchable methods along with functions.

Data models
In this study we will experiment with hierarchies of shapes and calculus
expressions with simple inheritance (Listing 1).

Functions multidispatcher
Classes/templates, introduced in this section:

 MULTIDISPATCHER

The main template, implementing a dispatcher over a list of
functions

 ENTRY

An auxiliary template for type identification and invocation

 EXPECTED

An auxiliary template for argument type matching

Let’s start with the calculus model and assume that it defines operations
add, sub, implemented as template functions:

 template<class A, class B>
 Expression* add(const A&, const B&);
 template<class A, class B>
 Expression* sub(const A&, const B&);

M

Listing 1

namespace shapes {
 struct Shape {
 virtual ~Shape() {}
 };
 struct Rect : Shape {};
 struct Circle : Shape {};
 struct Square : Rect {};
}
namespace calculus {
 struct Expression {
 virtual ~Expression() {}
 };
 struct Constant : Expression {};
 struct Integer : Constant {};
 struct Float : Constant {};
}

Eugene Hutorny is a software engineer from Ukraine. He started
his professional career in his last year in the Kyiv Polytechnic
Institute back in 1994. Since then, Eugene has participated in many
different projects using various technology stacks, keeping a
passionate interest in C++ through the years and advocating its
wider use in the software engineering in general, and particularly in
embedded systems. Contact: eugene@hutorny.in.ua
April 2021 | Overload | 17

FEATURE EUGENE HUTORNY

the complexity of a chepurni solution is related to the
problem’s complexity: its use does not create extra
dependencies, complicate project maintenance, or
require changes to the existing design
This assumption greatly simplifies the start, and we will make it more
complicated as we advance.

As it was mentioned earlier, our multimethod should discover actual
argument types, select a proper function from the list of available
according to the discovered types, and invoke the selected function. Here
we stated three concerns. Let’s address them.

Function list
To define a list of function to dispatch we will use a variadic template with
auto parameters, so it can be used as the following:

 multidispatcher<
 add<Integer, Integer>,
 add<Float, Integer>,
 add<Integer, Float>,
 add<Float, Float>>::dispatch(a,b);

For this kind of usage, the template may look like Listing 2.

In the dispatch method we delegated type identification and invocation
to another template entry, let’s write it as in Listing 3.

Another template, expected, determines the actual argument’s type and
whether it matches the expected type. With this design decision, the
complete implementation is in Listing 4, which is available for
experiments on this link: godbolt.org/z/oz585K

This implementation is very simple, although, comparing to the open
methods, it has certain constraints:

1. the length of the function list is limited by the compiler’s recursion
depth

2. the return type covariance is not supported
3. the parameter covariance is not supported
4. the first good candidate is selected instead of the best one
5. virtual parameters not distinguished form regular, all treated as

virtual

The second constraint restricts the users from using a function that returns
a covariant result, for example one like this Float* sub(const

Float&, const Float&). Also, this implementation does not do
anything special about multiple inheritance. Such cases are handled the
same way as simple inheritance – the first matching function is selected.

Third, fourth and fifth constraints limit the use cases. We will address them in
the sections below. For now, we will focus on the first and second constraints.

Multimethods
Classes/templates/functions, introduced in this section

 multimethod

The main template, implementing a dispatcher over a list of
functions or methods

 resolve

A helper function for resolving overloaded functions

 class_hash()

A function for generating unique class ID

 is_virtual_parameter

An auxiliary template for distinguishing between virtual and non-
virtual parameters

Return type covariance
To support the return type covariance, we need to define the most generic
return type for all used functions. To make it simple, we put this
responsibility on the user and add this type as a parameter to our new
template:

 template<typename ReturnType, auto ... Entries>
 struct multimethod;

As we are given the return type, we may use it for replacing the recursion
with a folding expression (see Listing 5).

Listing 2

template<auto Entry, auto ... Entries>
struct multidispatcher {
 template<class ... Arguments>
 static auto dispatch(Arguments& ... arguments) {
 if (entry<Entry>::matches(arguments...)) {
 return entry<Entry>::call(arguments...);
 }
 if constexpr (sizeof...(Entries)>0) {
 return multidispatcher<Entries...>
 ::dispatch(arguments...);
 }
 }
};

Listing 3

template<auto Method>
struct entry;
template<class Return, class ... Parameter,
 Return (*Function)(Parameter...)>
 struct entry<Function> {
 template<class ... Argument>
 static constexpr bool matches(const Argument&
 ... argument) noexcept {
 return (expected<Parameter>::matches(argument)
 and ...);
 }
 template<class ... Argument>
 static Return call(Argument& ... argument)
 noexcept(noexcept(Function)) {
 return (*Function)((Parameter)(argument)...);
 }
};
18 | Overload | April 2021

godbolt.org/z/oz585K

FEATUREEUGENE HUTORNY
This modified example is available on this link: godbolt.org/z/rj5vvY

We have to admit that this approach requires the return type to be default
constructible and to support move semantics. For our examples it makes
no difference. For the other use cases, this may need taking into account.

A curious reader perhaps noticed that the last example on godbolt.com is
not using overloaded functions for sub:

 Float* subf(const Float&, const Float&);
 Integer* subi(const Integer&, const Integer&);

This is a workaround for a C++ feature for the overloaded functions. To
get an address of an overloaded function, one has to specify its full type:

(Float* (*)(const Float&, const Float&))&sub. This
inconvenient syntax could be a bit sugared with a template resolve:

 resolve<Float*, const Float&,
 const Float&>{}(&sub).

RTTI substitute
To work around the dependency on RTTI contributed with typeid, the
model has to implement a custom type identification and introspection
facilities (CTII). For instance, it could be a manually or automatically
generated ID, assigned to every class. We may follow a simple
autogenerating approach with a hash of __PRETTY_FUNCTION__:

 template<class Class>
 constexpr auto class_hash() noexcept {
 return
 hash(std::string_view(__PRETTY_FUNCTION__));
 }

Unfortunately, std::hash is not yet constexpr, thus we have to write
out own hash function, (for example, one like given in [Hutorny]). Now
we can easily assign unique IDs to our classes:

 static constexpr auto classid =
 class_hash<Rect>();

To access classid we define a template function classinfo:

 using class_info = size_t;
 template<class Class>
 class_info classinfo() noexcept {
 return Class::classid;
 }

For the dynamic type introspection, we define a virtual method (Listing
6). To avoid a dependency from the custom class class_info, we hide
it behind a façade:

 //Shape
 template<class Expected>
 bool instanceof() const noexcept {
 return instance_of(classinfo<Expected>());
 }

Note, these methods are not overloaded. This will simplify our feature
detecting template has_instanceof.

While we were using RTTI, we could ignore differences between virtual
and regular parameters – typeid works for all types, and optimizer
removes extraneous type checking for static types from the generated
binary code. With CTII, however, we need to decide how to distinguish
virtual parameters from non-virtual and how to compare the types for the
latter. We may set the following rule: lvalue reference parameters to
polymorphic types are virtual, the others are not:

 template<class Class>
 struct is_virtual_parameter {
 static constexpr bool value =
 std::is_polymorphic_v<std::remove_reference_t
 <Class>> and
 std::is_reference_v<Class>;
 };

Listing 4

template<class Parameter>
struct expected {
 template<class Argument>
 static constexpr bool matches(const Argument&
 argument) noexcept {
 return typeid(Parameter) == typeid(argument);
 }
};
template<auto Method>
struct entry;
template<class Return, class ... Parameter,
 Return (*Function)(Parameter...)>
 struct entry<Function> {
 template<class ... Argument>
 static constexpr bool matches(const Argument& ...
 argument) noexcept {
 return (expected<Parameter>::matches(argument)
 and ...);
 }
 template<class ... Argument>
 static Return call(Argument& ... argument)
 noexcept(noexcept(Function)) {
 return (*Function)((Parameter)(argument)...);
 }
};
template<auto Entry, auto ... Entries>
struct multidispatcher {
 template<class ... Arguments>
 static auto dispatch(Arguments& ... arguments) {
 if (entry<Entry>::matches(arguments...)) {
 return entry<Entry>::call(arguments...);
 }
 if constexpr (sizeof...(Entries)>0) {
 return multidispatcher<Entries...>
 ::dispatch(arguments...);
 }
 }
};

Listing 5

template<typename ReturnType, auto ... Entries>
struct multimethod {
 template<class ... Arguments>
 static auto dispatch(Arguments& ... arguments) {
 ReturnType value;
 if (((entry<Entries>::matches(arguments...)
 and ((value = entry<Entries>::
 call(arguments...)), true)) or ...))
 return value;
 else
 throw std::logic_error
 ("Missing dispatch entry");
 }
};

Listing 6

//Shape
virtual bool instance_of
 (const class_info& expected) const noexcept {
 return classinfo<decltype(*this)>() ==
 expected;
}
//Rect, Circle
bool instance_of(const class_info& expected)
 const noexcept override {
 return classinfo<decltype(*this)>() == expected
 or Shape::instance_of(expected);
}

April 2021 | Overload | 19

godbolt.org/z/rj5vvY

FEATURE EUGENE HUTORNY
For the type check of not-virtual parameters we may use, for instance,
is_same, or is_assignable. With this design of CTII, the adjusted
template expected may look like Listing 7.

Supporting the methods
So far, our multimethod template only supports functions. Let’s extend
it to accept methods as well. First what we need is to separate an object
from the remaining arguments. We may, for example, define a new method
in multimethod that accepts the objects as its first argument (Listing 8)
and specialize template entry for methods (Listing 9).

Dealing with methods are somewhat more complicated than with functions
– their signature may have specifier const. Thus, we will need two
specializations of entry, and two methods call . With such
implementation our multimethod accepts functions intermixed with
methods. The sources for this design are available for experiments on this
link: godbolt.org/z/ehEnnc

Parameter covariance
The CTII design with instance_of calling the base class also enabled
parameter covariance. However, to get it working properly, the list should
be ordered in a specific way: functions with more specific parameters
should precede ones with more generic. It does not seem feasible to sort
the list at compile time. Instead, one could add an order check which
ensures that there are no functions below the current, accepting classes
derived from the current ones. Computational complexity of such checking
is estimated as O(kn²), where k is number of parameters, and n – number

of functions in the list. It worth to note that this checking may significantly
slowdown the compilation.

Multiple inheritance
Our CTII may also help with multiple inheritance – a class, inheriting
multiple base classes should simply call instance_of of all its base
classes. However, there might be cases, when the list ordering would not
be sufficient for selecting the best match for certain combinations of
parameter types.

Possible improvements
Maintaining a long list of functions may become too difficult for long
function lists. To address this issue, one may group the list by the first
parameter, like in the following example:

 groupdispatcher<
 group<Expression*,
 add<Integer, Float>,
 add<Integer, Integer>>,
 group<Expression*,
 add<Float, Integer>,
 add<Float, Float>>>::dispatch(a,b);

Each group then can be maintained in a separate header file. Also, one can
use virtual methods for the first dispatch and multimethod – for the next
dispatches.

Performance
This implementation of multimethod sequentially examines the
functions till it finds a suitable one. Experiments shows 700 instructions
in average for a list of 40 functions (please refer to perf.cpp on the github
or to godbolt.org/z/1caGTs). With this implementation, a test run on x64
completes 10,000,000 dispatches in 6.4 sec. A table dispatching,
expectingly, would show a better performance.

Table dispatching
Classes/templates/functions, introduced in this section

 matrixdispatcher

The main template, implementing a matrix dispatcher over a list of
functions or methods

 jumpvector

An auxiliary template defining a row in the matrix

 jumpmatrix

An auxiliary template defining the dispatcher’s matrix

 compute_score()

A helper function, computing the score for a given pair of actual
argument, formal parameter

Listing 7

template<class Parameter>
struct expected {
 using parameter_type =
 std::remove_reference_t<std
 ::remove_cv_t<Parameter>>;
 template<class Argument>
 static constexpr bool matches(Argument&&
 argument) noexcept {
 if constexpr(has_instanceof<Argument>(0)) {
 return argument.template
 instanceof<parameter_type>();
 } else {
#if __cpp_rtti >= 199711
 return typeid(Parameter) == typeid(argument);
#else
 static_assert(
 not is_virtual_parameter_v<Parameter>,
 "No class info available");
 return is_assignable_parameter_v<Parameter,
 Argument>;
#endif
 }
 }
};

Listing 8

// multimethod
template<class Target, class ... Arguments>
static auto call(Target& target,Arguments& ...
arguments) {
 ReturnType value;
 if (((entry<Entries>::matches(target,
 arguments...)
 and ((value = entry<Entries>::call(target,
 arguments...)),true)) or ...))
 return value;
 else
 throw std::logic_error("Dispatcher failure");
}

Listing 9

template<class Target, class Return,
 class ... Parameter,
 Return (Target::*Method)(Parameter...)>
 struct entry<Method> {
 template<class Object, class ... Argument>
 static constexpr bool matches(Object& obj,
 Argument& ... argument) noexcept {
 return expected<Target>::matches(obj)
 and (expected<Parameter>::matches(argument)
 and ...);
 }
 template<class Object, class ... Argument>
 static Return call(Object& target,
 Argument& ... argument) {
 return ((Target&)(target).*Method)
 ((Parameter&)(argument)...);
 }
};
20 | Overload | April 2021

godbolt.org/z/ehEnnc
godbolt.org/z/1caGTs

FEATUREEUGENE HUTORNY
 make_score()

A helper function, computing the score for a given function/method

 find_best_match()

A helper function, selecting the best scored function/method from
the list

 function_traits

An auxiliary template, revealing characteristics of a function

 func

An internal template, generating wrapper functions

Assumptions
For a table dispatching, which is a matrix dispatch for two parameters, we
need to fulfil some preconditions and solve some challenges:

1. An effective table dispatching requires sequential class IDs,
preferably with no gaps.

 A manual ID assignment is error prone and, for some projects,
may be too difficult in maintaining.

2. A type-safe matrix may contain only functions of the same type, e.g.
with identical signature.

 A manual matrix filling is error prone, difficult even for small
set of classes and practically impossible for large hierarchies.

For now, we just assume that sequential identification is made by the user,
and address this concern in a chapter below. Also, as in previous designs,
we assume that the functions are defined with the parameter types they
actually operate on.

Matrix design
We have outlined the challenges, let’s find a design to solve them. As in
earlier chapters, we start with a hierarchy of N classes that has K
dispatchable functions defined on it. These functions we may list in our
variadic template:

 matrixdispatcher<
 add<Integer, Integer>,
 add<Float, Integer>,
 add<Integer, Float>,
 add<Float, Float>>::dispatch(a,b);

As we assumed, class identification is made by the user:

 static constexpr auto classid = 1;
 virtual size_t classID() const
 { return classid; }

If we require the same signature for all K functions, our template would
not be able to distinguish them and pick the best one. Also, requiring the
same signature we would transfer responsibility of down casting on the
user. This seems to be too intrusive. So, we instead assume that the
functions have different signatures with type of parameters they actually
operate. To close the gap between different signatures on input and
identical in the matrix we need some intermediate functions. With help of
templates, we may delegate generating needed quantity of functions to the
compiler and fill the matrix with pointers to them. They all should have
the same signature, with the most common parameters of all dispatchable
functions. Deriving such signature does not seem feasible, so we let the
user to specify it as an input parameter FunctionType of our template.
Also, we are not able to determine the actual number of classes, that we
may get in our dispatch method. So, we will require this information to
be a part of the input as well.

With this design, our matrix may look like in this example:

 FunctionType matrix[sizeA][sizeB];

However, filling this matrix in a constexpr manner is not handy, so we
make it a bit more complex:

 std::array<std::array<FunctionType, sizeA>,
 sizeB> matrix;

Now, let’s find a way to fill it with function pointer. We need a
constexpr filling to ensure that it will happen during compilation. C++

provides some means for filling constexpr arrays, in this design we use
index_sequence. For instance, we may fill one row in our matrix with
this line of code:

 std::array<FunctionType,N> { &Template<I> ... };

Where Template is a template function with class ID as a parameter, and
I is an index sequence. Elaborating this design to some degree of
completeness we get Listing 10.

Please note, in the code above we had to shift from a template function
Template, to a template class Template with a static method
function. This is because a template function would require signature,
defined at this time. While with a static method we may defer the signature
definition to a late stage.

Applying this design to all rows, we may fill the entire matrix (Listing 11).

This implementation sets up the requirements for the template class
Template:

 template<size_t A, size_t B>
 struct func {
 static result_type function(parama_type& a,
 paramb_type& b);
 };

where result_type, parama_type, and paramb_type are parts,
deduced from the FunctionType signature.

Scoring and selecting
For each specialization of our template func, we know exact class of each
parameter – they are set by A and B. Thus, we can select the best candidate
yet at compilation. To make this selection simple, we split it on two steps
– scoring all functions with some criteria and selecting one with the highest

Listing 10

template<template<size_t> class Template,
 size_t N>
class jumpvector : public
 std::array<typename Template<0>::value_type,N>
{
public:
 using value_type =
 typename Template<0>::value_type;
 constexpr jumpvector() : jumpvector<Template,N>
 (std::make_index_sequence<N>()) {}
private:
 template<size_t ... I>
 constexpr jumpvector
 (std::index_sequence<I...>)
 : std::array<value_type,N> {
 &Template<I>::function ... } {}
};

Listing 11

template<template<size_t, size_t> class Template,
 size_t N, size_t M>
class jumpmatrix : public
 std::array<std::array<typename
 Template<0,0>::value_type, M>, N> {
public:
 using value_type = std::array
 <typename Template<0,0>::value_type, M>;
 constexpr jumpmatrix() : jumpmatrix<Template,
 N, M>(std::make_index_sequence<N>()) {}
private:
 template<size_t ... I>
 constexpr jumpmatrix(std::index_sequence<I...>)
 : std::array<value_type, N> {
 jumpvector<reduce<Template,I>
 ::template type,M>{} ... } {}
};
April 2021 | Overload | 21

FEATURE EUGENE HUTORNY
score. The criteria should operate on actual and expected types. In C++17
we have standard templates is_same and is_base_of. For example, a
class scoring template may be implemented as this:

 template<class Parameter, class Argument>
 constexpr ssize_t compute_score() noexcept {
 if(std::is_same_v< Argument, Parameter>)
 return 2;
 if(std::is_base_of_v<Parameter, Argument>)
 return 1;
 return 0;
 }

The function score then can be computed as a product of its parameter
scores. This would work for simple hierarchies without multiple
inheritance. More complex hierarchies may require a more advanced
scoring design, based on a custom genesis inspection.

Now, we fill an array with the scores for every function from the list
(Listing 12).

And select an element with the highest score:

 template<class ClassA, class ClassB,
 auto ... Entries>
 constexpr ssize_t find_best_match() noexcept {
 constexpr auto sc = function_scores<ClassA,
 ClassB, Entries...>{};
 return sc.highest();
 }

In a snippet of code above, function_traits is an auxiliary template
for determining the function’s characteristics (see Listing 13).

Once we have a constexpr function index, we can get a function pointer
from the list of input functions. To pass parameters to that function, we
need a down cast, but since we already proved the proper relationship
between the types, we may safely use static cast. Thereby, our
function template becomes as in Listing 14.

Here we used another template type, returning a type by its ID, e.g.,
implementing the reverse class-ID mapping. Since we have custom class
IDs, this mapping has to be custom as well. The mapping and supply of
the maximal class ID are related responsibilities, so we may delegate them

to a single concept, further named domain. We have two input parameters
and they may belong to different domains, thus we need two custom
domains, which we will get as the parameters of our matrixdispatch.
When both parameters share the same domain, the same domain class will
be used in place of both domain parameters. All these design decisions can
be implemented with the code in Listing 15.

With some more work, we may improve this template to support methods,
functions and combinations of them. Live example for this template is
available on the following link: godbolt.org/z/Y89ThK

Performance
The matrix dispatch shows much better performance – 40 instructions (vs
700 in linear) for a list of 40 functions. However, it is also much more
resource consuming for the compiler: O(pnk²) where p is a number of
parameters, n is the number of functions, and k is the number of classes.
Compilation of an example with 25 classes and 40 functions takes 20 sec
more, when the matrixdispatch template is actually used. Also, the

Listing 12

template<auto Entry>
static constexpr function_score make_score(size_t
index) noexcept {
 using entry = function_traits<decltype(Entry)>;
 using paramA = typename entry::template
nth_arg_type<0>;
 using paramB = typename entry::template
nth_arg_type<1>;
 return function_score {
 index, compute_score<paraьA,argA>() *
compute_score<paramB,argB>() };
}

Listing 13

template<typename Function>
struct function_traits;

template<class Return, class ... Parameter>
struct function_traits<Return (*)(Parameter...)> {
 using result_type = Return;
 static constexpr size_t parameter_count =
 sizeof...(Parameter);
 template<size_t N>
 using nth_arg_type = std::tuple_element_t<N,
 std::tuple<Parameter...>>;
};

Listing 14

template<size_t A, size_t B>
struct func {
 static result_type function(parama_type& a,
 paramb_type& b) {
 constexpr auto best = find_best_match<type<A>,
 type, Entries...>();
 if constexpr(best >= 0) {
 constexpr auto f = get_entry<best,
 Entries...>();
 return (*f)(static_cast<type<A>>(a),
 static_cast<type>(b));
 } else {
 LOGIC_ERROR("Dispatcher failure");
 }
 }
 }
};

Listing 15

template<typename FunctionType, class DomainA,
class DomainB, auto ... Entries>
class matrixdispatch {
public:
 using entry = function_traits<FunctionType>;
 using result_type = typename entry::result_type;
 using parama_type =
 typename entry::template nth_arg_type<0>;
 using paramb_type =
 typename entry::template nth_arg_type<1>;
 constexpr matrixdispatch() noexcept {}
private:
 template<size_t A, size_t B>
 struct func {
 static result_type function(parama_type& a,
 paramb_type& b) {
 //See code snippet above
 }
 };
 static constexpr jumpmatrix<func, DomainA::size,
 DomainB::size> matrix {};
public:
 static result_type dispatch(parama_type arg1,
 paramb_type arg2) {
 return matrix[arg1.classID()][arg2.classID()]
 (arg1, arg2);
 }
};
22 | Overload | April 2021

godbolt.org/z/Y89ThK

FEATUREEUGENE HUTORNY
15-times decrease of the instruction count per dispatch does not lead to the
same decrease of the dispatch time. An experiment on x64 for 10,000,000
dispatches complete in 1.2 sec vs 6.4 sec for the linear dispatch.

Automatic identifier assignment
To make the class identifier assignment simple, we may craft a domain
template (see Listing 16).

This template accepts a list of classes, and implements forward
(id_of<MyClass>()) and reverse (type<ID>) mapping. This template
does not require the listed classes to be completely defined, just forward
declarations of them is sufficient.

To reduce the compilation complexity, we may exclude abstract classes
from the matrix – instances of such classes cannot be created, and thus,
they will never participate in the dispatch. However, to make this exclusion
efficient, we need to assign abstract classes IDs from a lower diapason
[0..M]. To address this challenge in a simple way we may assume that all
abstract classes listed prior the concrete classes and provide a validation
facility to check, whether this assumption is true.

Performance comparison
The results of performance tests are summarized in the table below. In this
table, test std::visit denotes a reference implementation with
std::visit , dispatching over variant-of-object arguments,
std::visit* dispatching over variant-of-pointers, obtained via virtual
calls to the objects. Wall time column lists timing for 10,000,000
dispatches over 40 functions/methods. 

Final notes
1. gcc compiler for some examples, published on godbolt.org,

generates code with static dispatching instead of dynamic. To make

it truly dynamic, the test functions should be compiled in different
compilatons units, as in examples on github.

2. Examples from this study are also available on gist.github.com/
hutorny:

calculus multidispatcher

calculus multifunction

shapes multimethod

matrix dispatch

3. Ready to use templates are available as include-only library:
github.com/hutorny/multimethods

4. The sources of performance test are available in the same repository.

References
[Bettini] L. Bettini ‘Doublecpp – double dispatch in C++’ –

http://doublecpp.sourceforge.net/

[Filipek18] B. Filipek, ‘How To Use std visit With Multiple Variants’ –
https://www.bfilipek.com/2018/09/visit-variants.html

[Hutorny] E. Hutorny, ‘FNV-1b hash function with extra rotation’ –
https://gist.github.com/hutorny/
249c2c67255f842fae08e542f00131b5

[LeGoc14] Y. Le Goc and A. Donzé (2014) ‘EVL: A framework for
multi-methods in C++’ – https://www.sciencedirect.com/science/
article/pii/S0167642314003360

[Loki] Loki Library, Multiple dispatcher – https://sourceforge.net/
projects/loki-lib/ Reference/MutiMethod.h

[Mertz18] A. Mertz, ‘Modern C++ Features – std::variant and std::visit’ –
https://arne-mertz.de/2018/05/modern-c-features-stdvariant-and-
stdvisit/

[Pirkelbauer07] P. Pirkelbauer, Y. Solodkyy, B. Stroustrup (2007) ‘Open
Multi-Methods for C++’ – https://www.stroustrup.com/
multimethods.pdf

[Shopyrin06a] D. Shopyrin, ‘MultiMethods in C++: Finding a complete
solution’ – https://www.codeproject.com/Articles/7360/
MultiMethods-in-C-Finding-a-complete-solution

[Shopyrin06b] D. Shopyrin, ‘Multimethods in C++ Using Recursive
Deferred Dispatching’ – https://www.computer.org/csdl/magazine/
so/2006/03/s3062/13rRUxBa5ve

[Smith03a] J. Smith ‘Draft proposal for adding Multimethods to C++’ –
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/
n1529.html

[Smith03b] J. Smith ‘Multimethods’ – http://www.op59.net/accu-2003-
multimethods.html

[stfairy11] stfairy ‘Multiple Dispatch and Double Dispatch’ –
https://www.codeproject.com/Articles/242749/Multiple-Dispatch-
and-Double-Dispatch

[Wikipedia-1] ‘Multiple dispatch’ – https://en.wikipedia.org/wiki/
Multiple_dispatch

[Wikipedia-2] Separation of Concerns – https://en.wikipedia.org/wiki/
Separation_of_concerns

[Wikipedia-3] Single-responsibility principle – https://en.wikipedia.org/
wiki/Single-responsibility_principle

Instructions per call Wall time (sec)

G++-10 CLANG++-11 G++-10 CLANG++-11

std::visit 38 25 0.64 1.0

std::visit* 58 50 0.93 1.3

multimethod 750 702 5.8 6.4

matrixdispatch 54 47 0.88 1.2

Listing 16

template<class ... Classes>
struct domain {
 static constexpr auto size = sizeof...(Classes);
 template<size_t ID>
 using type = std::tuple_element_t<ID,
 std::tuple<Classes...>>;
 template<class Class>
 static constexpr size_t id_of() noexcept {
 constexpr auto value = index_of<Class,
 Classes...>();
 return value;
 }
};
April 2021 | Overload | 23

github.com/hutorny/multimethods
gist.github.com/hutorny
gist.github.com/hutorny
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns
https://gist.github.com/hutorny/e5785a34a1de5d5e56b9bcfa7fa092b0
https://gist.github.com/hutorny/864f83eb716274167168e4e7336d941b
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1529.html
https://gist.github.com/hutorny/249c2c67255f842fae08e542f00131b5
https://arne-mertz.de/2018/05/modern-c-features-stdvariant-and-stdvisit/
https://gist.github.com/hutorny/2a87190d55a28d6c69c90c5a81643d85
https://www.bfilipek.com/2018/09/visit-variants.html
https://www.computer.org/csdl/magazine/so/2006/03/s3062/13rRUxBa5ve
https://www.computer.org/csdl/magazine/so/2006/03/s3062/13rRUxBa5ve
https://www.codeproject.com/Articles/7360/MultiMethods-in-C-Finding-a-complete-solution
https://www.codeproject.com/Articles/7360/MultiMethods-in-C-Finding-a-complete-solution
https://www.stroustrup.com/multimethods.pdf
https://www.stroustrup.com/multimethods.pdf
https://sourceforge.net/projects/loki-lib/ Reference/MutiMethod.h
https://sourceforge.net/projects/loki-lib/ Reference/MutiMethod.h
https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Multiple_dispatch
http://doublecpp.sourceforge.net/
https://www.codeproject.com/Articles/242749/Multiple-Dispatch-and-Double-Dispatch
https://www.sciencedirect.com/science/article/pii/S0167642314003360
https://www.sciencedirect.com/science/article/pii/S0167642314003360

FEATURE TEEDY DEIGH
<script>
“Now I will believe that there are unicorns.”
Teedy Deigh loses the plot a little.
erona is in lockdown, but the business and troubles of software
development continue. Romeo wanders the streets alone, pondering
a production problem he hasn’t been able to figure out. Before the

plague hit, he was struck by feelings for his co-worker, Julia. He wonders,
does she feel the same? He finds himself on the street where she lives.

Julia appears on the balcony of her apartment, laptop in hand, unaware
of Romeo on the street below.

Romeo: But soft! What loop through yonder window handler breaks?
It is the east const and Julia is the fractal set.
See how she codes and uses lean techniques to improve her flow.
O, that I could pair program with her.

Julia: Ay me!

Romeo: She speaks! O, speak again, bright engineer!
For your code craft being o’er my head
Is wisdom and inspiration to my soul.

Julia: O Romeo, Romeo! Wherefore art thou Romeo?
Denial of service is the cause of our ills.
Refuse the connection after so many retries.
Once again, I must fix the oversight in your code.

Romeo: Shall I hear more, or shall I speak at this?

Julia: ’Tis thy naming of variables that is my enemy;
I come to fix your code, not to bury it,
You obsess over your x and I know not y.
Brevity is the soul of wit,
But here is an obstacle to understanding.
Lo, in this block you name a variable b and another b2.
b2 or not b2 is not the question,
Whether ’tis nobler in the code to state meaning clearly,
Or to use comments against a C of troubles.
Were I to comment, I would say much,
But ’tis better to rename.
I shall reveal intent with words filled with sense.
I shall extract functions and write new tests and then,
Before the night is out,
I shall put this bug to bed and check it into the repo. Man,
The debt of your code weighs heavy against my schedule.
But hark, what did Romeo name the retry counter?

Romeo: Julia, it is i!

Julia: What man art thou that thus bescreen’d in night
So stumblest on my code rant?

Romeo: Julia, you ask “Wherefore art thou Romeo?”
I am here!

Julia: O Romeo, Romeo, let dictionary.com be thy companion.
Wherefore means not where but why or for what.
And I ask this of you and your code
As it keeps me from sleep each night.

Romeo: I would suggest other ways that could happen,

But would I be too bold?

Julia: You follow me on Twitter and Instagram.
Is that not enough? Must you also do that IRL?
Your tags are unmatched and braces askew.
Your data structuring leaves much to desire,
And there is not desire left in me for its author.
That which you call rows
By another name would be a code smell.
Besides, we are in lockdown.
Our std::distance must be social
And my apartment model has but a single thread.

Romeo: It is true, there is a plague on both our houses.

Julia: And the rest of the world.
It’s but a stage, and we are merely players,
But our parts we must play until we are rid of this pandemic.

Romeo: O that this virus would not spread so!
That I could firewall against it.
That we could work together
And I could learn from thy counsel.

Julia: Alas, poor Romeo! I know you, and your ratio:
The quantity of learning to quantity of feedback is poor.
Alack, there lies more peril in thy code
Than Dunning–Kruger could e’er have known.

Romeo: Thy words are harsh but true.
The fool doth think he is wise,
But the wise man knows himself to be a fool.
My code ambition is such stuff as dreams are made on.
I would cast all this away to know what you know,
To code as you do.

Julia: Cast it all away?
Like that time you compared this to a summer’s day?
That was a monstrosity.
The loops were infinite, and the execution confined.
The allocations were boundless, and the act a slave to limit.
It took the team ages to find that bug.

Romeo: O Julia, what would you have me do?
When shall we tweet again?

Julia: When the hurlyburly’s done.
When this work item’s fixed and done.
Give the code leave awhile.
’Tis one thing to be tempted,
Another thing to fall.

Romeo: Thou desirest me to stop?

Julia: Spend time on thyself, good Romeo.
Improve thy skills and sharpen thy knowledge.
Watch videos from $SponsorName.
They have many a course on code and its practice.

Romeo: You are fair and wise.
I thank thee and $SponsorName for your help.

Julia: Laters.

Romeo: Laters.

The rest is silence.

V

Teedy Deigh has heard that a varied diet is important to lockdown
living. She is currently living off a mixed diet of home-baked sourdough
bread, delivered takeaways, coffee, homemade cocktails and screen
radiation. In lieu of travel, she has been experimenting with varying her
time zones, sometimes on a daily basis. At least, that is how she has
been reframing her unstable sleep patterns.
24 | Overload | April 2021

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Keep up at the back
	Amongst Our Weaponry
	Composition and Decomposition of Task Systems
	Chepurni Multimethods for Contemporary С++
	<script>

