
Out of Control
Kevlin Henney looks at paradigms, refactoring,
control flow, data and code, using Roman numerals
to make the point.

HowWe (Don't) Reason About Code
Lucian Radu Teodorescu takes us a step further from
just reading code and asks how we reason about it.

The Sea of C You Don't Want to See
Deák Ferenc presents a (digital) drama in 3 acts.

June 2021 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Replacing ‘bool’ Values
Spencer Collyer considers when booleans
can actually cause a world of pain.

11 How We (Don’t) Reason About Code
Lucian Radu Teodorescu takes reading code one
step further and asks how we reason it.

16 Out of Control
Kevlin Henney takes us on a whirlwind tour of
paradigms, control flow, data, code, dualism and
what Roman numerals ever did for us.

24 The Sea of C You Don’t Want to See
Deák Ferenc plays with the script paradigm and
dives into (a) deep sea (deap C).

OVERLOAD 163

June 2021

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Pandu Ior,
on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 164 should be
submitted by 1st July 2021 and
those for Overload 165 by
1st September 2021.

https://unsplash.com/
https://unsplash.com/@panduior

EDITORIAL FRANCES BUONTEMPO
Geek, Nerd or Neither?
Typecasting can be useful but has many
dangers. Frances Buontempo considers
how to pick your way through categories.
Sometimes we put labels on stuff or even people to
help us navigate our way through life. A magazine
might have a couple of pages at the front for an
editorial and yet, though the pages may be filled with
words, that doesn’t mean what is written is really an
editorial. I have previously tried using machine

learning to generate the words for me [Buontempo14], but the results were
suspect. Furthermore, I have recently been revisiting playing with Monte
Carlo chains (watch this space for details) and derailed myself yet again.
Some may claim having hundreds of thoughts and distractions in place is
some kind of neuro-atypical attention deficit hyperactivity disorder, while
others may recognize joy in having so many interesting things to find out
about and muse on. Sometimes labels help and sometimes labels hinder.

First impressions are a type of labelling; first impressions count. What
they count is another matter. If I wear jeans and a t-shirt for a meeting, I
may look out of place and yet if I wear a suit in a ‘hipster’ office I will
also look out of place. Nowadays, wearing pyjamas on a video call has
become the great leveller. The context influences whether the initial
judgement is positive or negative. First impressions also interleave with
stereotypes: try looking for an image of a programmer. You will find
different people over time and across the globe. In one place, a middle
aged man, fed on junk food, sitting in a darkened room. In another, groups
of women. It depends. It’s easy to forget the clichés about people we use
to navigate through life. I’ve been reading Software Design X-Ray
Patterns by Adam Tornhill recently, and he touched on the subject, saying
“The fundamental attribution error is a principle from social psychology that
describes our tendency to overestimate the influence of personality – such
as competence and carefulness – as we explain the behavior of people.”
In other words, we underestimate the context, whether that’s looking at
some legacy code or at someone’s behaviour. You know, thoughts like
“Typical Java coder” and the like.

Stereotypes and clichés do give broad brush strokes and often have roots
in the actual but, they are a compressed, ‘lossy’ summary. Worse, it is
tempting to extrapolate from one category to another, like a badly trained
recommender system. Do not extrapolate from three data points and do
not draw conclusions from a coincidence. Well, you can, but if you do,
use this as a hypothesis rather than a fact. Challenge your assumptions.

Have you ever described something as ‘typical’? Have you been described
as, say, a typical geek? Though some of us may proudly wear ‘geek’ or
‘nerd’ as a kind of badge, it can be dehumanising. Using a label suggests

a programmed system with no way to perform in
in te res t ing or unexpec ted ways . A
deterministic system gives the same outputs

for the same inputs, every time. Now, AI

code tends to use randomness to explore possibilities and appear to have
agency. Perhaps we are all programmed bots in a simulation, but that’s
another matter. I wonder if we could spot a ‘typical AI’. Would its
behaviour give it away? Philip K Dick explored this in ‘Do Androids
Dream of Electric Sheep?’ The androids tended to give themselves away
by lacking empathy, a trait some believe that coders also have, tending to
be further along the autistic spectrum than most. I stopped myself from
trying to find any evidence for this, because I know, first I’ll end up with
far too many tabs open in my browser, and second, I will be hunting out
evidence to support a statement I just made. This is a form of confirmation
bias. Though I know many other tech people who score highly on autism
tests, I am not sure if this label is a help or a hindrance.

A first impression, used as a broad brush stroke to find something in
common on a first meeting, can be enabling. If you are wearing a Slayer
t-shirt that invites me to throw up metal horns \m/ , a chat about certain
types of music will ensue. If you mention C++ on your profile, you give
me a potential conversation starter. These hints and clues may be esoteric
and not universally recognized. That’s OK. The point of a label is for
disambiguation. In contrast, all the kids in a class turning on the skinny
one who wears glasses and calling them ‘four eyes’ is another matter.
Labels to help start learning and communication are useful; labels for
bullying are not. For a while, glasses became a fashion must have, with
non-prescription specs available along-side others accessories in shops
when shops were a thing. An unexpected phenomenon, but looking like
a geek was on trend. This did cause some fake geek girl memes, but
perhaps is a hint of a change of mindset, rather than purely a cynical
marketing ploy? Who knows?

So, what does a geek look like? The internet does insist on glasses, in the
main. I think being a geek is more a state of mind: what’s inside counts.
Wikipedia tells me ‘geek’ was a pejorative term for “peculiar person,
especially one who is perceived to be overly intellectual, unfashionable,
boring, or socially awkward” [Wikipedia], and then mysteriously says the
negative connotation is due to its “earlier association with carnival
performers”. Possibly something to do with the word ‘geck’ in some
dialects meaning fool or clown. Sometimes the label ‘nerd’ is invoked
instead of geek, or the words used interchangeably. Do these terms differ?
Maybe. My internet search says both wear glasses, but a geek wears a t-
shirt whereas a nerd wears a shirt and tie. Again, shallow: it’s what’s inside
that counts. I tend to use ‘nerd’ for someone who knows their subject in
depth, armed with a vast number of facts and snippets of info. In contrast,
a geek would dismantle almost anything to find out how it works. I asked
twitter if people considered themselves a geek, nerd or neither. Each
option got about a third of the votes, so I have a nice balance in my
followers. One person did say they use ‘nerd’ as a very positive term and
like nerds because they live for the things they love. Some preferred the

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | June 2021

EDITORIALFRANCES BUONTEMPO
term ‘geek’ and many chose ‘neither’. Not every who codes will look or
act identically. Once too often I’ve heard the phrase, “You programmers
are all the same” followed by some claim about not being able to create
what the users want, or spending time faffing about with whitespace or so
on. Incredibly unfair; don’t use caricatures of people to prejudge their
character.

Mindlessly applying labels can cause all kinds of harm. And yet, labelling
data, particularly images, has become a part of everyday life. My phone
has some ‘AI lens’ for the camera app, which tries to label what it sees.
Sometimes a cat, sometimes a dog (wrong – it was the cat, but hey), once
a waterfall (also wrong – the cat was sitting on a green chair) and failing
that ‘portrait’. I presume if I rotate the phone appropriately, it would
become ‘landscape’. There must be a way to provide feedback to increase
the intelligence of the so-called AI, but I’ve never bothered investigating.
Many forms of machine learning or AI required labelled data, so the mind-
numbing task of attaching labels cat/dog, good/bad and so on to reams of
data must be farmed out to humans. This is now tending to be called human
in the loop machine learning. This is quite an old phrase and used to mean
a human steering where the machine was going; a much broader idea than
a human slave slapping labels on datasets. How many times have you been
asked to identify traffic lights when a sign-in like reCAPTCHA [Google]
goes wrong? Why are you being asked to do this? To label data for self-
driving cars, one presumes. What happens if you deliberately get it wrong
a few times? You get more pictures to label. Your choice is compared to
others and the majority votes wins. The wisdom of crowds.

Sometimes a crowd is more like an angry mob and shouldn’t be trusted.
However, while one individual may be terrible at making a numerical
estimate, the average can often be very close to the actual value. Wikipedia
(again, forgive me) reports Galton’s “surprise that the crowd at a county
fair accurately guessed the weight of an ox when their individual guesses
were averaged (the average was closer to the ox’s true butchered weight
than the estimates of most crowd members)” [Wikipedia-2] If you play
planning poker at work, perhaps you should take the median or mean of
the story points and see where that gets you. Guessing, or predicting, the
number in a range is one task we leave to stats and AI, and averages or
ensemble methods can work well here. Finding the average of a category
or label is much harder. You could count the most common, but with equal
votes between geek, nerd or neither you will be hard pressed to report the
winner. Building consensus requires more than taking an average or
declaring ‘nerd’ the winner having received 35.3% of votes, with ‘geek’
and ‘neither’ a close second at 32.4%.

Labels can be useful as a starting point for learning or exploring. We learn
language by pointing and declaring “cat” or “dog”, or, in my nephew’s
case, “Mummy” while pointing at a leather clad biker in a pub. Fortunately,
the biker saw the funny side. When we label data for AI, it can cheat and
memorise the labels. Perfect recall is not the same as intelligence. If a
computer has a lookup table of outcomes for possible moves in chess, is
it displaying intelligence? If a person can recite hundreds of digits or pi,
are they exhibiting understanding? Probably not. Does it matter? It

depends. I suspect we cannot define intelligence accurately. What we find
amazing, in terms of the capabilities of tech or humans, changes over time.
The thermostat, to control a heating system, was invented a long time ago.
It was referred to as a heat governor, capable of ‘self-acting’ [Ure37]. The
idea of self-acting or agency often plays a part in our intuitive sense of what
intelligence means, and yet seeing a thermostat as AI would seem weird
today. Perhaps one day, photos labelled automatically, chat bots helping
customers, self-driving cars and transporters and replicators will be the
norm. ‘Normal’ has a time axis, so if you feel out of sorts, like a socially
awkward geek or nerd, fear not, you might just be an embodiment giving
a glimpse of the future.

When you discover a word you don’t know, how comfortable do you feel
using it in a sentence? A child may not be shy about pointing at everyone
in sight and declaring them to be “Mummy”, but may become a bit more
self-conscious later on. Don’t let that put you off learning new things.
Something similar happens when you try to take on board new
programming paradigms. Many listen and watch others before having a go,
perhaps in the privacy of a bedroom, or shed or wherever. Perhaps you feel
like a fraud putting a new language on your CV which you have just started
to learn. Maybe you don’t feel you know enough to write an article. These
hints of imposter syndrome bite us all from time to time. Don’t let your
inner voice tell you, “You can’t do this”. You got this. Fake it till you make
it. Try out the new word, write different code, punt an article to a magazine.
It might be fun. You might learn something. Don’t let labels, yours or
others, box you in.

Let’s avoid too much typecasting. Start with labels, sure, but we all know
the trouble inappropriate reinterpret_cast can cause if applied
carelessly. What matters most is how you self-identify. Are you a geek, a
nerd or neither? I don’t mind, but I’m interested in what you want to talk
about and what you do. Imagine a world, where you could choose your
own label. Imagine if you could choose your own job title. How would you
describe yourself? I’d settle for Code Improver. What
about you? Whether you count yourself as a geek, nerd
or neither is by the by. Above all, you are human and
have interesting things to do and say.

References
[Buontempo14] Random (Non)sense, Overload, 22(119):2-3, February

2014 https://accu.org/journals/overload/22/119/buontempo_1853/

[Google] reCAPTCHA: https://www.google.com/recaptcha/about/

[Ure37] Andrew Ure, ‘On the thermostat or Heat Governor, a self-acting
physical apparatus for regulating Temperature’, The Royal Society,
1837

[Wikipedia] Geek: https://en.wikipedia.org/wiki/Geek

[Wikipedia-2] Wisdom of Crowds: https://en.wikipedia.org/wiki/
The_Wisdom_of_Crowds
June 2021 | Overload | 3

https://accu.org/journals/overload/22/119/buontempo_1853/
https://en.wikipedia.org/wiki/Geek
https://www.google.com/recaptcha/about/
https://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
https://en.wikipedia.org/wiki/The_Wisdom_of_Crowds

FEATURE SPENCER COLLYER
Replacing ‘bool’ Values
Booleans seem simple to use.
Spencer Collyer considers when they
can actually cause a world of pain.
hen used in the context of programming, the term Dimensional
Analysis refers to the technique of defining types to represent the
kinds of values used in the program. With the appropriate

operations between objects of those types defined the compiler can check
the expressions in the code to make sure they are valid. This is not generally
possible if you rely on using the fundamental types like int or double.

For instance, say you have a program that deals with distances, durations,
and speeds. It should be obvious that adding or subtracting a distance and
a speed are invalid operations, but the compiler would not be able to tell
you that this code is incorrect:

 double distance = 10;
 double speed = 2;
 double duration = distance - speed;

However, if you have types Distance, Duration, and Speed, with
only the valid operations between them defined, the compiler can issue an
error for this code:

 Distance distance = 10;
 Speed speed = 2;
 Duration duration = distance - speed;

To be useable, when using this technique most types need to be defined
as classes or structures. There are libraries available for many languages
that make this task easier – a recent (2018) survey of them for many
languages can be found in [Preussner].

However, if you would normally think of using a bool variable to hold
the value, there are several mechanisms available in the C++ language that
can be used instead, with no need for library support. We will outline some
of them in this article, as well as try to explain why you might choose to
do so.

When reading the problem descriptions and suggested solutions below,
and wondering if you want to use them, it is worth applying what I call the
TLAMP principle. Pronounced ‘tee lamp’, it stands for Think Like A
Maintenance Programmer. What may seem obvious to you when first
writing a piece of code can look completely opaque to someone doing
maintenance work on that code in the future. They want the code to be as
clear as possible on first reading. That later programmer could be yourself
in six months – when you haven’t looked at the code for that length of time
what seemed obvious when you were writing it may not be so later.

Why bother when bools are so simple?
You might ask why we would bother replacing a bool value with some
other mechanism when bools are so simple to use. In this section, we will
outline some of the problems with using bools that make it worthwhile
to at least consider doing so.

Many of these problems arise because programmers decide to use bool
variables or parameters just because the value being represented can only
take two values. If you get into the habit of only using bool for values
that are going to be used in boolean expressions, you can avoid them to a
large extent.

To illustrate some of the problems we will use the following example1.

Imagine a water company wants a system written to monitor and control
its water network. There is a large amount of equipment on the network,
such as sensors for measuring things like flow rate, temperature, chemical
concentrations, and also control equipment such as valves and pumps to
allow the flows in the network to be controlled. This network has evolved
over many years, and the equipment is from different manufacturers and
of different ages, with a variety of protocols used to talk to it.

The initial analysis leads to a design in which the connections to this
equipment are handled by a Connection base class which provides a
standard interface, with a set of classes derived from Connection that
handle the details of each protocol. There is a factory function, called
CreateConnection, which returns an object of the correct class for
each connection. Each class is designed to handle either input or output
on the connection. The initial design for the CreateConnection
function interface looks like the following:

 ConnectionPtr CreateConnection(
 std::string_view id
 , bool is_output);

The is_output parameter determines whether an output (true) or input
(false) connection is being created.

An additional requirement is for some users to have elevated permissions
on some connections. This allows for operations like controlling pump
speeds to alter flow rates, for instance. To handle this, a second bool
parameter is added to indicate if the user is privileged or not.

During testing of the system, it is found that some parts of the network are
so old that they only support 7-bit data. As a result, communications over
these connections have to be encoded from binary to ASCII. To indicate
this a further bool parameter is added to the function, called
is_encoded, to indicate if this encoding is required or not.

Finally, a security review of the system raises concerns that some of the
connections go over public networks, and a requirement is made that those
connections need to be encrypted. A final parameter is added to the
function called is_encrypted which indicates if the connection needs
to be encrypted or not.

The final prototype for the function now looks like Listing 1, overleaf.

W

1. This example may seem contrived, but I once worked on a system that
had many functions with three or four bool parameters. A lot of the
calls were done using literal values for some or all of the parameters,
and only checking the surrounding code could confirm whether the
values were correct.

Spencer Collyer Spencer has been programming for more years
than he cares to remember, mostly in the financial sector, although
in his younger years he worked on projects as diverse as
monitoring water treatment works on the one hand, and television
programme scheduling on the other.
4 | Overload | June 2021

FEATURESPENCER COLLYER

Unless a programmer knows the function prototype off
by heart, it would be easy for them to get the parameter

order wrong, and the compiler won’t warn about it
The meaning of true
Or rather, the meaning of true. And, indeed, false. In many cases where
a variable can take just two values, and so at first looks like a good
candidate to use a bool, it is not obvious which value should map to true
and which to false.

The is_output parameter in the CreateConnection function is a
perfect example of this. The parameter allows the caller of the function to
determine if an outgoing or incoming connection is required, but other than
the name of the parameter there is nothing that indicates which of those is
selected by passing true and which by passing false.

You could argue that the name of the parameter shows how it is used, but
that relies on anyone reading the code either knowing the prototype
because they have seen if before, or else are willing to look it up. Neither
of which is guaranteed to be done by a maintenance programmer who is
under pressure to get a fix out quickly.

All bools look the same
In many cases, the bool values do match what we would expect for a given
parameter, but they can still be problematic, especially if you have more
than one bool in the parameter list. This is because all bools look the
same to the compiler.

The CreateConnection function illustrates this problem. If we ignore
the problem with it outlined above, it is reasonable that the is_output
parameter is the first bool in the list, as the direction of the connection is
the most important property it has.

Good arguments could be made for any order of the other three bool
parameters however – the one chosen here has arisen simply because of
the order the requirement for them came up in the development process.
For instance, i t could be argued that the is_encoded and
is_encrypted parameters are the wrong way around for an outbound
connection, as encryption occurs before encoding when sending a
message.

Unless a programmer knows the function prototype off by heart, it would
be easy for them to get the parameter order wrong, and the compiler won’t
warn about it. Only extensive testing will ensure all calls are correct.

What can be even more confusing for someone reading the code later is if
it uses named variables for the parameters, but gets them in the wrong
order. For instance, consider the code in Listing 2.

This will work, in the sense of giving the expected result, because the
is_encoded and is_encrypted variables have the same value.

However, if one of those values needs to change later, or someone copies
the code elsewhere and changed one of the values, the result would be
incorrect, but it wouldn’t be obvious why unless the person reading the
code recognises that the last two parameters are in the wrong order.

The compiler cannot report this problem because it just sees the types of
parameters passed in. The names of the variables are relevant only to tell
it where to read the parameter value from – it doesn’t check that they match
the names in the function prototype.

Note: This problem doesn’t just apply to the bool type of course – lists
of parameters all with the same type can be problematic when trying to
work out what each parameter means. This article doesn’t deal with that
situation but it is worth being aware of it.

Conversions to and from bool
The built-in C++ scalar types all implicitly convert to and from the bool
type. This implicit conversion is useful when writing code that tests that
a value is not zero or a null pointer.

Some classes in the standard library also provide an operator bool to
test that an object is in a valid state – for instance, the std::basic_ios
class that is the base of many iostreams classes class provides one to check
if an error has occurred on the stream.

Another use for this implicit conversion is in the !! pseudo-operator,
which can be used to return the bool equivalent of an expression2 in any
cases where automatic conversion doesn’t happen.

However, this implicit conversion can cause problems if it happens when
you are not expecting it. For instance when calling a function, if you pass
a scalar value in a parameter that expects a bool, it will be converted.

Consider the code in Listing 3. The two PrintArgs functions simply
output their prototype and the values they have been called with. The
second one allows the bool parameter to be defaulted, hence why the
short is placed before it in the parameter list.

Unfortunately, when this program is compiled, the line labelled // 3 fails
to compile. The output in Listing 4 shows the errors when the code is
compiled with the GCC on my Linux system.

Listing 1

ConnectionPtr CreateConnection(
 std::string_view id
 , bool is_output
 , bool is_authorised
 , bool is_encoded
 , bool is_encrypted);

2. I have seen this pseudo-operator referred to as the ‘normalise
operator’. The way it works is by relying on the right-to-left binding of
the ! operator. The right-hand ! applies to the operand, forcing it to the
bool equivalent and then negating the result. The left-hand ! then
applies to the resulting value and negates it again, giving us back the
bool equivalent of the original operand.

Listing 2

bool is_encoded =
 /* code that sets value to true */;
bool is_encrypted =
 /* code that sets value to true */;
...
auto connptr = CreateConnection(id, is_output,
 is_authorised, is_encrypted, is_encoded);
June 2021 | Overload | 5

FEATURE SPENCER COLLYER

the overload resolution process is done, and we
still have two candidates with no way to pick
between them, and hence the call is ambiguous
The problem arises during the overload resolution process to decide which
function should be called. The full details of overload resolution are
complex (see [CppRef1]) but the case here is relatively simple. An
important point is that an integer with no suffix in the code has type int
so the 2 in the problematic call has type int.

When the compiler sees the call in the line labelled // 3, it first finds all
the declared functions named PrintArgs and adds them to the overload
set. It then checks each one to see if it matches the arguments given. This
proceeds as follows:

 For the two-parameter function, the "Abc" can be converted to a
std::string, so the first argument matches the first parameter.
The 2 is an int, and it can be implicitly converted to the bool type
of the second parameter. Both arguments match the function
parameters, so the function is a candidate.

 For the three-parameter function, the "Abc" is a match as above.
The 2 is an int, and that can be implicitly converted to a short
using a narrowing conversion. The third argument is missing but the
parameter has a default value, so it is ignored in the matching. The
arguments match the parameter list for this function, so it is also a
candidate.

At this point, the overload resolution process is done, and we still have two
candidates with no way to pick between them, and hence the call is
ambiguous.

To solve the ambiguity the programmer changes the second definition so
it looks like the one in Listing 5 (overleaf). Unfortunately, the default value
for the bool parameter can no longer be used, but the ambiguity no longer
occurs.

The program now compiles without any problems and appears to run fine
as well, producing the output in Listing 6. However, looking closely at the
output shows that the output from the lines labelled // 3 and // 4 do
not match the arguments in the code. This is again because of implicit
conversions.

In the case of the call in line // 3, the 2 is converted from int to bool,
ending up with the value true.

In the case of the call in line // 4, the 2 in the second argument is again
converted from int to the bool value true, and the true in the third
argument is converted from bool to short, ending up with the value 1.

This kind of bug can arise if you change the interface of a function and
rely on the compiler to catch any calls with incorrect arguments. As can
be seen in this example, it does not always issue warnings or errors for calls
that you should have changed. A refactoring tool may be able to find them,
or you might simply have to check each call by hand.

This kind of problem with implicit conversions can arise in other cases,
but the one going to or from a bool is more insidious because the values
of a bool are fundamentally different from the values of a scalar type, in

Listing 3

#include <iostream>
#include <string_view>

void PrintArgs(const std::string& s,
 bool to_uc = false)
{
 std::cout
 << "Called PrintArgs(string, bool) with ("
 << s << ", " << to_uc << ")\n";
}
void PrintArgs(const std::string& s, short len,
 bool to_uc = false)
{
 std::cout << "Called PrintArgs(string, short,
 bool) with (" << s << ", " << len << ",
 " << to_uc << ")\n";
}

int main()
{
 std::cout << std::boolalpha;
 PrintArgs("Abc"); // 1
 PrintArgs("Abc", true); // 2
 PrintArgs("Abc", 2); // 3
 PrintArgs("Abc", 2, true); // 4
}

Listing 4

conversion-1.cpp: In function ‘int main()’:
conversion-1.cpp:19:23: error: call of overloaded ‘PrintArgs(const char [4], int)’ is ambiguous
 19 | PrintArgs("Abc", 2); // 3
 | ^
conversion-1.cpp:4:6: note: candidate: ‘void PrintArgs(const string&, bool)’
 4 | void PrintArgs(const std::string& s, bool to_uc = false)
 | ^~~~~~~~~
conversion-1.cpp:9:6: note: candidate: ‘void PrintArgs(const string&, short int, bool)’
 9 | void PrintArgs(const std::string& s, short len, bool to_uc = false)
 | ^~~~~~~~~
6 | Overload | June 2021

FEATURESPENCER COLLYER

each additional parameter replaced doubles the
number of new functions required
that they are logical truth values, not numbers. The fact that the C++ spec
dictates that false maps to a value of 0 and true maps to a value of 1
when converted to a number is just a convention to allow the conversion
to occur. Other languages don’t allow such conversion, or if they do they
use different mappings3.

It may not matter to you if an int gets converted to a short as long as
the value doesn’t change, but with a bool you are going from a logical
value to a number or from a number to a logical value, which is a more
fundamental change, and one that may well make no sense in the context
of the code.

More than two values
It might sound trite to say it, but a bool value can only hold two different
values. This may become a problem if you realise that a parameter needs
to hold more than two values.

For instance, in our water company example, the binary-to-ASCII
encoding on some connections might need doing using UUencoding
[Wikipedia-1], while others might use Base64 [Wikipedia-2].

With just two values for is_encoded and one of those used to indicate
no encoding is required, you cannot represent those two different types of
encoding in the parameter. You have two options in this case – either add
another parameter to give the encoding or else convert the bool parameter
to some other kind that can represent three (or more) values. The first
extends the function interface even more, and the second has all the
possible problems associated with conversion to/from bool given above.

Alternatives to bool
We have seen why you might want to avoid using bool variables and
parameters, now we will show some methods that you can use to do so.
As mentioned previously, all of these are available from the core language,
with no library support required.

Some of these methods are designed primarily for replacing function
parameters, while the others are more general and can be used to replace
variables as well.

Split one function into two (or more)
Rather than having a single function with different functionality selected by
passing a bool parameter, split the functionality into two different functions,
with their names indicating what is being done. Any common functionality
can be split off into a third function that the two new functions call.

This is particularly useful for the case where it is not obvious what the
mapping from the true or false values to the selected functionality is.

In our water company example, rather than passing the is_output
pa ram e t e r , y o u w o u l d i n s t e a d c r e a t e f u nc t i o ns c a l l e d
CreateOutboundConnection and CreateInboundConnection,
where the names indicate what type of connection is being created.

This method is fine for replacing one or maybe two parameters. The
problem with doing more than that is that each additional parameter
replaced doubles the number of new functions required. Also, with
descriptive function names, they can get unmanageably long very quickly.

Using a flags variable
This method involves replacing one or more bool values with a variable
holding a collection of single-bit fields. This will generally be an integer
value or a std::bitset.

An example of a flags variable in the standard library is the mode parameter
of the std::ifstream and std::ofstream constructors, which uses
the std::ios_base::openmode type.

3. Anyone old enough to have used one of the microcomputers released
during the 1980s home computer boom might remember that the
BASIC built into many of them used -1 for the ‘true’ value, presumably
because the representation of that value has all bits set to 1. Sinclair
Basic, as used on the ZX81 and Spectrum, went its own way and used
1 for the ‘true’ value.

Listing 5

#include <iostream>
#include <string_view>

void PrintArgs(const std::string& s,
 bool to_uc = false)
{
 std::cout
 << "Called PrintArgs(string, bool) with
 (" << s << ", " << to_uc << ")\n";
}
void PrintArgs(const std::string& s, bool to_uc,
 short len)
{
 std::cout << "Called PrintArgs(string, bool,
 short) with (" << s << ", " << to_uc << ",
 " << len << ")\n";
}
int main()
{
 std::cout << std::boolalpha;
 PrintArgs("Abc"); // 1
 PrintArgs("Abc", true); // 2
 PrintArgs("Abc", 2); // 3
 PrintArgs("Abc", 2, true); // 4
}

Listing 6

Called PrintArgs(string, bool) with (Abc, false)
Called PrintArgs(string, bool) with (Abc, true)
Called PrintArgs(string, bool) with (Abc, true)
Called PrintArgs(string, bool, short) with (Abc,
 true, 1)
June 2021 | Overload | 7

FEATURE SPENCER COLLYER
When using this method with an integer, you would normally define a set
of constants, one for each flag value. The value of each constant has its
particular flag bit set to 1, all other bits set to 0, so the constant represents
the flag being turned on. You then use normal binary operations to turn on
the flags and to test if they are turned on or not.

You can do the same when using a std::bitset, but you also have the
option of accessing individual bits using the [] operator or the test()
function, which take the position of the bit in the bitset to check and return
true if it is set to 1, else false.

One advantage of using a flag variable is that the user just has to turn on
the flags they want, and all the others default to off. On the other hand, it
is awkward to explicitly say that a flag is turned off, should you wish to
do so.

If you find a flag needs more than two values, you just need to increase
the size of the field and adjust the constants appropriately. If you are using
a bitset, the direct bit access through [] or test() could not be used in
this case.

A useful trick in case this might happen is to not make bitfields adjacent
to each other when they are first defined. For instance with four flags in a
four byte integer, set the fields up as the lowest bit in each byte. That way
if you do need to increase the number of values represented by a flag, you
won’t have to change any of the constants that don’t relate to that flag.

Using a flags structure
This method uses a structure to hold the flags. The structure members can
be either bools or single-bit bitfields.

If using this method, you can directly set the individual fields to turn the
flag on or off. For the bitfields version you would usually use 0 for off and
1 for on.

If using the bitfield version you need to define them as unsigned, as they
are just one bit wide. If they are defined as signed then setting the value
to 1 will end up with it being treated as -1. Listing 7 illustrates this.
Checking the output, you can see that structure with int fields outputs -1
for each one, while the structure with unsigned int values outputs 1
for them:

 -1 -1 -1
 1 1 1

If you don’t want to create a variable of the structure type to pass to a
function you can use an initializer-list as the parameter and the structure
will be created for you. Listing 8 shows examples of both types.

The advantage of setting up a variable before passing it to the function is
that someone reading the code later can see exactly which flags are being
set, whereas when using an initializer list they have to know what the
structure looks like to know which flags are being set.

When using the bitfield version, if you need to extend a field to hold more
than two fields you can just extend its width. For the bool version, you
can just replace the bool with a different type.

Using enums
This method simply uses enums with two enumerators defined. Using
appropriate names means the values can be self-documenting. Either
scoped or unscoped enums can be used.

Unscoped enums have the disadvantage that the enumerators are defined
in the scope enclosing the enum, so you cannot have the same enumerator
name in two enums that will be used at the same time. On the other hand,
it does mean that the enumerators can be used with no qualification.

For scoped enums the enumerators are defined in the scope of the enum,
so two enums can have enumerators with the same name if that makes
sense. This does mean that they have to be qualified with the enum name
when used.

If an unscoped enum is passed as a function parameter that expects an
integer, the value in the enum variable will be converted to an integer. This
does not happen for a scoped enum – no conversion takes place.

Listing 7

#include <iostream>

struct A
{
 int a1 : 1;
 int a2 : 1;
 int a3 : 1;
};
struct B
{
 unsigned int b1 : 1;
 unsigned int b2 : 1;
 unsigned int b3 : 1;
};
int main()
{
 A a; a.a1 = 1; a.a2 = 1; a.a3 = 1;
 std::cout << a.a1 << " " << a.a2 << " "
 << a.a3 << "\n";
 B b; b.b1 = 1; b.b2 = 1; b.b3 = 1;
 std::cout << b.b1 << " " << b.b2 << " "
 << b.b3 << "\n";
}

Listing 8

#include <iostream>

struct BitFlags
{
 unsigned int flag1 : 1;
 unsigned int flag2 : 1;
 unsigned int flag3 : 1;
};
struct BoolFlags
{
 bool flag1;
 bool flag2;
 bool flag3;
};
void fbit(BitFlags flags)
{
 std::cout << flags.flag1 << " " << flags.flag2
 << " " << flags.flag3 << "\n";
}
void fbool(BoolFlags flags)
{
 std::cout << std::boolalpha << flags.flag1
 << " " << flags.flag2 << " "
 << flags.flag3 << "\n";
}
int main()
{
 BitFlags bitflags;
 bitflags.flag1 = 0;
 bitflags.flag2 = 1;
 bitflags.flag3 = 0;
 fbit(bitflags);
 fbit({1, 0, 1});

 BoolFlags boolflags;
 boolflags.flag1 = false;
 boolflags.flag2 = true;
 boolflags.flag3 = false;
 fbool(boolflags);
 fbool({true, false, true});
}

8 | Overload | June 2021

FEATURESPENCER COLLYER
Listing 9 is the scoped enum equivalent of Listing 3. This version compiles
with no ambiguous function calls detected, and if you run the resulting
program you will see that the PrintArgs functions called in each case
are the correct ones. The output for the program is shown in Listing 10.

C++20 and using enum

The point was made above that when using scoped enums you need need
to precede the enumeration name with the scoped enum name. This has
been addressed in C++20 with the addition of the using enum construct
to pull all the names in the named enum into the current scope.

A brief description of this facility can be found at [CppRef2] – look for
Using-enum-declaration. The facility was added by P1099r5 [P1099r5],
and a fuller description of it can be found by reading that (brief) paper.

As of the time of writing (April 2021), the C++20 language features pages
for GCC (at version 11) and MSVC (at VS 2019 16.4) show this feature
as being implemented. The equivalent Clang page shows this feature has
not yet implemented.

Problems versus suggested alternatives
In this section, we will check if the suggested alternatives solve any of the
problems outlined.

The meaning of true
Splitting into two functions works, as long as you use sensible names for
the new functions.

Using a flags variable mostly works, as long as you use sensible names
for the constants representing the flags. As noted in the description it is
not as simple to explicitly indicate the flag is turned off.

Using a flags structure works as long as the structure members have
sensible names. Unlike the case above, it is also simple to set the correct
member to indicate the flag is turned off.

Using enums works as long as the enumerators have sensible names.

All bools look alike
Splitting into two functions can work if you only have two bool
parameters, but any more than that and it becomes impractical.

Using a flags variable or a flags structure works as we no longer have
multiple variables.

Using enums works because all enums are distinct from each other.

Conversions to and from bool
Splitting into two functions works for the parameter that has been removed,
although any remaining bool parameters being passed could still suffer
from conversion.

Using a flags variable held in an integer can undergo all the normal integer
conversions, so it does not solve this problem.

Using a flags variable held in a std::bitset is better because you
cannot assign an integer to a bitset or vice versa. Note however that you
can initialize a bitset with an integer, so passing an integer to a function
when it expects a bitset will use the integer to initialize the bitset.

Using a flags structure works as structs do not implicitly convert to
anything else.

Using unscoped enums partially solves the conversion problem. An integer
or floating-point type cannot be converted to the enum type implicitly4.
On the other hand, values of the enum type are implicitly convertible to
integral types.

Using scoped enums solves the implicit conversion problem completely4, 5.

More than two values
Splitting into two functions could solve this problem as you just need to
add a function for each new value. If your functions are handling two
conditions then you’ll need a new function for each possible new
combination, so it may be worth redesigning at this point to stop the
number of functions from exploding.

Using a flags variable works as you can just increase the number of bits
each flag uses to represent its value. You do have to be careful that the
constants for different flags don’t overlap each other.

Using a flags structure works by allowing you to easily determine the size
of each member of the structure. Unlike for the flags variable above you
do not need to keep fields separated manually.

Using enum types works as you just need to add new enumerators for the
new values. If using unscoped enums you have to be careful not to create
any name clashes with enumerators belonging to other unscoped enum types.

Potential disadvantages with suggested alternatives
This section will discuss some potential disadvantages with the suggested
alternatives, and hopefully show that they are either not a problem or else
the pros outweigh the cons.

Listing 9

#include <iostream>
#include <string_view>

enum class RedBlue { Red, Blue };
std::ostream& operator<<(std::ostream& ostr,
 const RedBlue conv)
{
 ostr
 << (conv == RedBlue::Red ? "Red" : "Blue");
 return ostr;
}
void PrintArgs(const std::string& s,
 RedBlue to_uc = RedBlue::Red)
{
 std::cout << "Called PrintArgs(string, RedBlue)
 with (" << s << ", " << to_uc << ")\n";
}
void PrintArgs(const std::string& s, short len,
 RedBlue to_uc = RedBlue::Red)
{
 std::cout
 << "Called PrintArgs(string, short, RedBlue)
 with (" << s << ", " << len << ",
 " << to_uc << ")\n";
}
int main()
{
 std::cout << std::boolalpha;
 PrintArgs("Abc"); // 1
 PrintArgs("Abc", RedBlue::Blue); // 2
 PrintArgs("Abc", 2); // 3
 PrintArgs("Abc", 2, RedBlue::Blue); // 4
}

Listing 10

Called PrintArgs(string, RedBlue) with (Abc, Red)
Called PrintArgs(string, RedBlue) with (Abc, Blue)
Called PrintArgs(string, short, RedBlue) with
 (Abc, 2, Red)
Called PrintArgs(string, short, RedBlue) with
 (Abc, 2, Blue)

4. Although you can use an explicit cast, such as a static_cast, to
convert integer, floating-point, or enumeration values to an enum type,
whether unscoped or scoped.

5. Scoped enum values can be converted to integer values using a
static_cast though.
June 2021 | Overload | 9

FEATURE SPENCER COLLYER
More verbose code
All of the alternatives suggested make the code more verbose. For most
of them this is simply a case of replacing code like

 if (x) { ... }

with an explicit test like

 if (x == value) { ... }

It could be argued that making the test explicit does make the code more
self-documenting, so should not be seen as a disadvantage.

The alternative using constants to define flag bits, either in an integer or a
std::bitset, does have code that looks more complicated, as you have
to use a binary ‘and’ to isolate the flag bit and test if it is set, like

 if ((x & flagbit) == flagbit)

or if you are happy to rely on the implicit conversion to bool you can use

 if (x & flagbit)

instead. Neither is as clear as the simple test against a value. On the other
hand with the std::bitset you can use the [] operator or test
function to check a bit at a position.

Namespace pollution
All of the suggested alternatives insert new entities into the current
namespace, whether functions, constants, or types. All of those entities
introduce new names into the current namespace which wouldn’t need to
exist if you just used bool values. This will cause problems if they clash
with any names already in that namespace.

Of course, this isn’t specific to this case – it occurs whenever you add new
entities to a scope, so do whatever you normally would to get around it.

An easy solution is to add the new entities in their own namespace. This
does mean that the names need the namespace as an extra qualifier, but
you can use a using declaration to bring the name into the current
namespace. If the new entities are only used in a single *.cpp file you
can put them in an anonymous namespace in that file and you won’t even
need the extra qualifier.

Size and speed of compiled programs
A common concern when using the alternatives is that the code will be
larger and/or slower than when using bools. This should not be a concern
as modern compilers are intelligent enough to recognise what the code is
doing and optimizing it appropriately.

Sample code to show this can be found on [BitBucket], [GitHub], or
[GitLab], depending on your preferred supplier. The various *.cpp files
each demonstrate one alternative, except the bools.cpp one which
shows the original form with bool variables.

The find-medians.sh shell script in that directory runs all the
programs and captures the runtimes, then works out the median and mode
runtimes for each one. Running this script on my main machine gives the
runtimes shown in Table 1 for code optimized with -O3.

As can be seen, the runtimes for the optimized programs are virtually
identical for all the programs. This shows that you don’t lose much if any
speed when using the alternatives.

As far as code size is concerned, for the optimized code the program sizes
range from 17160 bytes for functions.opt to 17320 for bitset-
consts.opt. The bools.cpp file is 17272 bytes. So there is little
difference in code size either.

So no more bools then?
It might seem that this article is saying that you shouldn’t use bool values
in your programs at all. This is not the intention.

One target is the use of bools in what might be termed long-range code.
What do we mean by long-range code?

Calling a function is long-range, as you are leaving the current function’s
scope and entering the called one. You should think carefully before using
bools as parameters of functions. As this article has tried to show, there
are alternatives which can be both safer and clearer, with little or no loss
of program speed.

Code in a single function could also be considered long-range if the whole
usage cannot be seen on a single screenful of code6. Using a bool to store
the result of a logical operation which is used in the immediately following
code is fine, as it’s obvious what is going on. Even if the value is only used
once, if it simplifies a condition expression it can still be valid to do so.

Another target is the use of bool for class member variables. This is an
ideal case for using one of the alternatives, especially enums. Classes
provide their own scope, so the potential for namespace pollution is
immediately reduced. And if the member variable is private (as they should
normally be), all the code using it will be written by the class maintainer,
so the users of the class won’t have to handle it at all.

So in summary, if the use of the bool would be obvious from the
immediate context of the code, it is fine to use it. In all other cases, consider
using an alternative. This article provides several such alternatives as a
starting point.

References
[BitBucket] https://bitbucket.org/dustycorner/articles/src/master/

replacing-bool-values/testcode

[CppRef1] https://en.cppreference.com/w/cpp/language/
overload_resolution

[CppRef2] https://en.cppreference.com/w/cpp/language/enum

[GitHub] https://github.com/dustycorner/articles/tree/master/replacing-
bool-values/testcode

[GitLab] https://gitlab.com/dustycorner/articles/-/tree/master/replacing-
bool-values/testcode

[P1099r5] Gašper Ažman and Jonathan Müller, ‘Using Enum’, http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1099r5.html

[Preussner] ‘Dimensional Analysis in Programming Languages’,
https://gmpreussner.com/research/dimensional-analysis-in-
programming-languages

Wikipedia-1] UUencode: https://en.wikipedia.org/wiki/Uuencoding

[Wikipedia-2] Base64: https://en.wikipedia.org/wiki/Base64

Table 1

Test Case Median Mode

Bools 387 387

Bitset with constants 387 388

Bitset with indexing 387 388

Scoped enum 387 387

Unscoped enum 387 387

Functions 382 382

Integer flags 387 387

Struct with bitfields 387 386

Struct with bools 387 387

6. And by a single screenful of code I don’t mean using huge monitors and
small fonts to get 150+ lines of code on a screen at a time. Think more
like 40 to 50 lines maximum, so a quick scan up and down is easy to do.
10 | Overload | June 2021

https://bitbucket.org/dustycorner/articles/src/master/replacing-bool-values/testcode
https://bitbucket.org/dustycorner/articles/src/master/replacing-bool-values/testcode
https://en.cppreference.com/w/cpp/language/overload_resolution
https://en.cppreference.com/w/cpp/language/overload_resolution
https://en.cppreference.com/w/cpp/language/enum
https://github.com/dustycorner/articles/tree/master/replacing-bool-values/testcode
https://github.com/dustycorner/articles/tree/master/replacing-bool-values/testcode
https://gitlab.com/dustycorner/articles/-/tree/master/replacing-bool-values/testcode
https://gitlab.com/dustycorner/articles/-/tree/master/replacing-bool-values/testcode
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1099r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1099r5.html
https://gmpreussner.com/research/dimensional-analysis-in-programming-languages
https://en.wikipedia.org/wiki/Uuencoding
https://en.wikipedia.org/wiki/Base64

FEATURELUCIAN RADU TEODORESCU
How We (Don’t) Reason
About Code
Reading code is time consuming. Lucian Radu Teodorescu
takes it one step further and asks how we reason about code.
think it’s well known in the software industry that we spend more time
reading code than writing it. One person who helped popularise this idea
is Kevlin Henney. See Figure 1 for two tweets posted by Kevlin arguing

this idea [Henney20]. At that point, I also argued that we should probably
be using the terms ‘Reasoning’ or ‘Understanding’ instead of ‘Reading’
to reflect more accurately what software developers do when they sit in
front of the code.

Five minutes after posting my tweet, one question found its way into my
head, and then dark thoughts followed. What does it mean to Reason about
code? After letting these thoughts multiply and form connections in the
back of my mind for several months, this article tries to provide an answer
to that question.

We will try to find out how proper reasoning about code should be
undertaken, and then we will inspect some very interesting implications
of our ability to reason about code.

What would proper reasoning mean?
According to the Merriam-Webster dictionary [MW], Reason means
(selected entries):

 a rational ground or motive

 a sufficient ground of explanation or of logical defense; especially :
something (such as a principle or law) that supports a conclusion or
explains a fact

 the power of comprehending, inferring, or thinking especially in
orderly rational ways

There are other, softer, meanings of the word Reason, but, as we are in an
engineering discipline, we should rely on science; so we will take the most
scientific definition we can get.

For this reason, for the rest of the article I will assume that reasoning about
the code means to comprehend the code, its exact meaning and its
limitations, and to be able to properly draw conclusions about its
implications – all done in a logical/mathematical way.

For example, if i is an integer, then reasoning about the statement i++
should include:

 whether the expression is valid

 what would be the value of i after the increment

 what would be the returned value

 when the new i will be higher than the old i (not always true!)

 what happens when we reach the maximum value allowed for the
integer type

There are multiple ways of formalising this analysis. One common method
used in Software Engineering is by using Hoare rules [Hoare69]. In this
formalism, for each command/instruction C we have a set of pre-
conditions {P}, and a set of postconditions {Q} – typically represented as
a triple {P}C{Q}. If the preconditions {P} hold, then after executing C
the postconditions {Q} will also hold.

Therefore, reasoning about a code C means finding out all the properties
that belong to the set {Q}. And, of course, by finding out we should mean
proving. That is, reasoning about code should mean a process of
mathematically proving the implications of the code.

Please note that, in this context, the preconditions {P} and postconditions
{Q} refer to mental activities, and have little to do with the definition of
the programming language. They refer the set of thoughts that are in our
heads, if we were to reason about these mathematically.

This type of reasoning is something that we don’t do daily when
programming, but let’s analyse what it entails.

An analysis of for loops
Let us try to analyse the two for loops shown in Listing 1 and Listing 2.
The intent of both code fragments is to print the content of vec.

I

Figure 1

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
June 2021 | Overload | 11

FEATURE LUCIAN RADU TEODORESCU

reasoning about the code means to comprehend the
code, its exact meaning and its limitations, and to be
able to properly draw conclusions about its
implications
Before this, let’s make a few simplifying assumptions:

 we assume all the constructs work as specified in the language
standard (I’m assuming C++ in this case)

 we assume all the function calls behave like they are intended to,
without us needing to analyse the implementation (i.e., using
abstractions simplifies reasoning)

 we indulge ourselves not to be extremely formal

In other words, we want to avoid becoming like Principia Mathematica
[Whitehead10], where the equality 1 + 1 = 2 was proved only at page 379
of the book.

Let’s also assume the following preconditions are true at the point where
the code appears:

 P1: we are targeting a conformant C++11 compiler

 P2: vec has type std::vector<int>, with usual semantics

 P3: int denotes a 32-bit integer

 P4: the size of the vector is less than 1000 elements

 P5: function print is defined with the following signature: void
print(int)

We will attempt to list all the postconditions for the two cases, without
attempting to prove all of them.

Ranged for loop
Postcondition Q1

1. The syntax of the code in Listing 1 is valid. (This
follows from the language specification. This should have been broken
down in multiple items, but let’s not try to be overzealous)

Postcondition Q1
2. The range expression (vec) is semantically valid.

Postcondition Q1
3. The for loop, if valid, would iterate over all the

elements of the given vector. (By the meaning of for-loops as defined by
the C++ standard.)

Postcondition Q1
4. The range declaration (auto el) is semantically

valid. (From the language rules, and considering also that range expression
is valid.)

Postcondition Q1
5. el is a variable of type int.

Postcondition Q1
6. The call print(el) is semantically valid (and prints

the value of el).

Postcondition Q1
7. The for loop is semantically valid. (Consequence of

the other preconditions.)

Postcondition Q1
8. The for loop will print all the values in the given

vector. (Consequence of Q1
3 and Q1

7.)

We were not extremely formal, but we managed to prove in 8 steps (more
accurately, with 8 postconditions) the semantics and the behaviour of the
for loop in Listing 1. Thus, reasoning about the code from Listing 1, with
the above assumptions, should entail finding and proving these 8
postconditions.

Please note that if we had more complex types in the vector, or we used a
reference for the el variable, or if we had had to do implicit conversions,
the analysis would have been more complex.

Classic for loop
Let’s now turn our attention to the for loop in Listing 2.

Postcondition Q2
1. The syntax of the code in Listing 2 is valid.

Postcondition Q2
2. The init statement (int i=0) is semantically valid.

(This should have been broken down, as we should have proved first that
the constant 0 is compatible with type int, but again, let’s not be too
overzealous.)

Postcondition Q2
3. i is a variable of type int.

Postcondition Q2
4. The initial value of i is 0.

Postcondition Q2
5. The expression vec.size() is valid, and has the

type size_t (this again is more complex than stated here, as the return
type is a dependent type – but let’s keep things as simple as we can).

Postcondition Q2
6. The expression i<vec.size() is valid, and has the

type bool. (This comes from the fact that there is an operator < defined
between int and size_t, with the usual meaning.)

Postcondition Q2
7. The expression i++ is semantically valid.

Postcondition Q2
8. The expression vec[i] is semantically valid, well-

defined and has the type int, assuming i is in range 0..N, where N-1 is
the number of elements in the vector. (To prove this one needs to take into
consideration the implicit conversion from int to size_t, consider the
multiple function specialisations and consider the constness of vec.)

Postcondition Q2
9. Assuming that i is in range 0…N, where N-1 is the

number of elements in the vector, then the statement print(vec[i]) is
semantically valid and well-defined.

Postcondition Q2
10. Assuming that i is in range 0…N, where N-1 is the

number of elements in the vector, then the for loop from Listing 2 is
semantically valid and well-defined.

Now, at this point, the reader might think that we are done; compared to
the for loop from Listing 1, it’s not even that bad: 10 postconditions
instead of 8. But we haven’t dealt yet with the trickiest part: making sure
that the code does what we want to do (print all the values in the vector),
i.e., something similar to Q1

8. OK, so let’s tackle that.

Postcondition Q2
11. Unless i reaches INT_MAX, then i can only

monotonically grow. (To prove this we must notice that the only operation
that changes i is i++, and this can only increase the value of i, but only
if i hasn’t the value of INT_MAX.)

Listing 1

for (auto el: vec)
 print(el);

Listing 2

for (int i=0; i<vec.size(); i++)
 print(vec[i]);
12 | Overload | June 2021

FEATURELUCIAN RADU TEODORESCU

oftentimes, small details can have huge, and
potentially disastrous, consequences
Postcondition Q2
12. The value of i can only be positive if i never

becomes INT_MAX. (Coming from the previous postcondition, coupled
with the initialisation value.)

Postcondition Q2
13. If i is never INT_MAX then i cannot be greater than

N, where N is the size of the vector (but can be equal to N).

Postcondition Q2
14. The value of i is between 0 and N. (This results from

the previous postcondition, and from P4).

Postcondition Q2
15. The body of the loop will be called with values of i

between 0 and N-1. (Once i becomes N, it will not be called any more;
results from the semantics of the for loop.)

Postcondition Q2
16. The body of the loop will be called each time with a

new value of i, monotonically increasing. (People may forget this, but this
is a crucial fact that makes the for loop work.)

Postcondition Q2
17. The expression vec[i] is well-defined. (This can

be proved from Q2
15 and Q2

8.)

Postcondition Q2
18. The statement print(vec[i]) is well-defined.

Postcondition Q2
19. The expression vec[i] will represent during the

iteration all the values from the input vector. (This results from the
semantics of the vector, Q2

16 and Q2
15; it is similar to Q1

2.)

Postcondition Q2
20. The for loop in Listing 2 will print all the values in

the given vector.

Phew, we reached the end. We showed that the code in Listing 2 is
syntactically correct, is semantically correct, and it performs the intended
function (prints all the values in the given vector). This time it took us 20
steps to come to this conclusion, compared to 8 steps needed for Listing 1.
Although I was clearly trying to make a point, I tried not to exaggerate the
number of postconditions. I tried to follow in my head the actual steps to
prove mathematically the functioning of the two code snippets, and then
wrote the lemmas that would have appeared.

Subtlety matters
Some readers might argue that we’ve gone to great lengths to prove
something that is obvious to most programmers. And there is some truth
in that – we’ll cover that a bit later. But, oftentimes, small details can have
huge, and potentially disastrous, consequences.

Take a look, for example, at this code:

 for (size_t i=vec.size()-1; i>=0; i--) {...}

It looks perfectly normal, but it’s utterly wrong; I can’t count how many
times I’ve been bitten by code like this. Or, for the same type of code, forget
to subtract 1 from the size of the vector, or to perform a strict comparison
with zero. That entirely changes the behaviour of the code.

Also think of cases in which the size of the vector can overflow the capacity
of the index type.

There are also variants that do not change the behaviour of the code, and
yet they look different enough. One simple example is changing i++ to
++i or i+=1. These changes have a non-zero mental cost when reading

the code, which proves that our brain has to do a bit more processing to
properly or improperly ‘reason’ about the code.

A new metric for complexity
The whole exercise we undertook with the two loop structures yielded the
conclusion that the classical 3-part for loop is more complex than the
ranged-for loop. It is more complex in terms of number of steps to reason
about it, and it is also more complex considering the number of
preconditions we have to use from that point on when reading the code
inside the for loop (postconditions turn into preconditions).

But, not only can we say that one is more complex than the other, we can
also quantify the difference in complexity. We can obtain this by the
following formula:

ReasoningComplexity({P}C{Q}) = |Q|-|P|

In plain English, the reasoning of complexity of the code is the number of
post-conditions added by that piece of code that were not present in the
initial assumptions (we assume that the assumptions before the code are
also kept). Or, informally, reasoning complexity is the number of ideas we
have to entertain while trying to mathematically reason about the code.

This metric can give a better indication of the complexity of a code than
cyclomatic complexity [McCabe76] or Halstead complexity [Halstead77].
Cyclomatic complexity completely avoids all the code complexities that
do not involve branches. In other words, a very complex calculation
without branches is equally complex to a simple x=0 assignment. On the
other hand, the Halstead complexity measures the complexity purely from
a syntactic perspective, without including any semantic elements.

In ideal conditions, the metric we defined above would measure how much
effort does a person need to spend to (properly) reason about a particular
code.

Pattern matching and limitations for reasoning
complexity
The above reasoning complexity has one major flaw: it assumes that
programmers properly reason about the code, in the mathematical sense.
And, that is far from the truth. I think in this article it’s the first time I’ve
tried to reason about a piece of code, and even here, I took many shortcuts.

Instead, programmers do something more like pattern matching on the
code. That is, most C++ programmers have seen code similar to the one
in Listing 2, and they know what the code does without going over the 20
steps of post-conditions. And, I think that would apply to many
programmers who haven’t programmed in C or C++ too, as the ideas about
classic for loops are so common in programming.

I like to describe this process in the following way: a person sees a code
fragment, and that code fragment starts to resonate with other code that
the person has seen before. One can immediately see the similarities and
the differences with other code, and one can immediately (but not always
logically) draw conclusions. Most of these conclusions can be true, even
without making once a proper reasoning.
June 2021 | Overload | 13

FEATURE LUCIAN RADU TEODORESCU

it tends to be easier for people to read code in the
order ‘variable predicate constant’ rather than
‘constant predicate variable’
More generally, a person makes sense of new experiences by resonating
with past experiences. And this doesn’t apply only to software. One sees
a door, one knows that it may be opened; one sees a chair, and knows that
someone might sit on it; one sees an animal like a wolf, one knows that it
might do harm.

The fact that our senses are cheating on us is a well-known fact, and yet,
every day we rely on our senses to understand what’s happening around
us. Pure rationalism doesn’t get us very far (i.e., you can’t be really sure
of a single thing), so this type of incomplete reasoning is the only way for
us humans to live.

This way of incomplete reasoning we also apply to code, for better or for
worse.

A more practical complexity measure
To make our reasoning complexity more practical, we somehow need to
incorporate past experience in our formula. Let’s assume that for a given
person X, we have a set of Hoare triplets forming the past experience of
that person: PE(X)={{Pi}Ci {Qi}}.

With this, the complexity associated for person X to infer conclusions (not
mathematical, but rather in a more empirical approach) about a given code
is given by:

InferenceComplexity(X,{P}C{Q}) =
min(dist({P}C{Q},{P'}C'{Q'}) | {P'}C'{Q'} PE(X)

with the function dist defined something like:

dist({P}C{Q},{P'}C'{Q'}) = |Q| - |P Q'|, for C ≈ C'

Now, the above definition is somewhat ambiguous, and that’s almost
intentional. Having a non-ambiguous formula here would mean that we
thoroughly understand how the brain works, which is far from the truth.

The main idea is that, when trying to define the complexity for a given
code, we need to consider also the previous experience of the programmer
reading the code. The more the programmer has seen and made inference
about that type of code, the simpler the code would be. This is why, for
most programmers, the code from Listing 2 is roughly as complex as the
code from Listing 1 – we’ve seen that code pattern many times, and we
know what it means.

A few takeaways and examples
Now that we have two complexity measures, let’s pick some random
examples and see how they can be used for analysing various situations.

There is no one single style to rule them all
What I find to be easy to understand may not be for the next programmer.
And vice versa. We constantly have to be aware of our biases.

We can have some general reasoning why certain things might be simpler
than other things, but we should always remember that these are context-
dependent.

One good example for this is coding styles (read formatting). I’ve seen
many passionate arguments from a lot of people, arguing that a certain code
style is better than another – some coming from people I respect a lot. But,
after a given point, every style choice will be received well by some
programmers and painfully by others.

In this category, a good example in the C++ community is the east-const
vs west-const debate (I won’t even post a link to it).

My takeaway from this is that I would get familiar with multiple styles of
programming, looking at the essential properties of the software, and not
at the code style.

Complexity for smaller operations
Apart from the style issues, there are certain practices which seems (to me)
very odd. People sometimes add more complexity to the code (in the
absolute mode) in the hope of making it simple. This seems a bit counter-
intuitive.

Please see Listing 3. In the first if condition, instead of just checking the
value of my_bool, we make a new comparison with constant true. This
is clearly more complex than just the code if (my_bool), at least for
an analytical mind.

The second if clause in Listing 3 is called Yoda conditions [WikiYoda],
a reference to Yoda from the Star Wars film, who frequently reverses
words. In many languages, people express simple statements in the form
‘subject verb complement’; for example “The grass is green”; we would
not typically say “green the grass is”. I think most English-speaking people
can understand what “green the grass is” means, but, at the same time, it
would be against people’s expectations, and would add extra mental
processing (small, but it’s there).

Translating this into software, it tends to be easier for people to read code
in the order ‘variable predicate constant’ rather than ‘constant predicate
variable’. There were historical reasons for why the Yoda conditions were
preferred, but I strongly suggest using the proper tools to solve those
problems, and not change the coding style, adding mental effort for most
if statements.

But then again, this is a styling issue.

Monads
We can roughly divide the programming world in two: those who know
about monads and love them and those who hate monads as they consider
them completely abstract. (There is also a joke that most programmers read

Listing 3

bool my_bool = ...;
if (my_bool == true) ...

int my_int = ...;
if (0 == my_int) ...
14 | Overload | June 2021

FEATURELUCIAN RADU TEODORESCU

We, as programmers, tend not to reason in
the mathematical sense, but rather infer

conclusions based on previous experience
about monads every couple of months, and then immediately forget about
them – but let’s ignore this category.)

For functional programmers, using monads is a day-to-day job, so the
inference complexity for reading code with monads is lower than a person
who doesn’t use monads frequently.

In reality, monads are simple concepts, and they are heavily used by
imperative programmers as well, just that most of the time they don’t pay
attention to it. I’ll try a very short pitch to the C++ developers.

A monad is a type wrapper (read template type), plus a type convertor
function (called unit or return) that transforms a value into a value of the
wrapped type, and another function called combinator (sometimes named
bind or flatmap) that transform that monadic type.

The std::optional<T> and std::vector<T> are well known
monadic types; the constructors for these types that take T as parameters
can be considered the type convertor; functions with the declaration shown
in Listing 4 (or similar) can act as combinators.

The bottom line is that, the reasoning complexity is actually lower than
the perceived complexity. So, the inference complexity can also have
negative feedback loops. Interesting…

Functional programming vs OOP
After discussing monads, it makes sense to discuss functional
programming vs OOP.

It would probably make sense to start an analysis on the reasoning
complexity for common structures in the two paradigms, but that’s too far
beyond the goal of this article. But, I think it’s safe to say that they probably
have the same reasoning complexity.

This means that OOP people have a bias against the complexity coming
from functional programming, and functional programming people will
have a bias against the complexity coming from OOP programs.

At least for me, with the two metrics of complexity in front of me, I now
realise that the major difference between the two paradigms is the
perceived complexity. The way to resolve this difference is by learning:
people need to get accustomed to the other style of programming.

As linguistics would say, learning a new language means learning a new
way to think.

Conclusions
The article tries to analyse what reasoning about code properly means.
Formally, we argue that reasoning means deriving the implications of the
code. Based on this, we define a new complexity metric, that essentially
counts the number of new post-conditions that were added after executing
that code.

But this metric doesn’t seem to properly apply in practice. We, as
programmers, tend not to reason in the mathematical sense, but rather infer
conclusions based on previous experience; we can be occasionally wrong,
but it tends to work really well in practice. Thus, we hint at another
complexity metric (very informally defined) that considers the experience
of the programmer.

Both complexity metrics tend to relate to the effort that the programmer
makes (or is assumed to make) when trying to make sense of the code.

This opens the discussion of assessing the complexity of code, from two
directions, which are sometimes contradictory. From one perspective, a
reasoning complexity tries to have an absolute, independent position for
assessing the complexity of the code. This can provide a good basis for
discussion, but it often may be impractical. On the other side, the
perspective of using inferred complexity tries to look more from the
programmer’s point of view, but loses objectivity. This can be used to
discuss complexity related to social issues (coding styles, paradigms, etc.).

But, maybe more importantly, as the inferred complexity is learned, we
may learn to rely less on it, and use the reasoning complexity. That would
provide us better opportunities to reason about reasoning about code.

References
[Halstead77] Maurice H. Halstead. Elements of Software Science.

Elsevier North-Holland, 1977

[Henney20] Kevlin Henney, One of the most important observations…,
Twitter, https://twitter.com/kevlinhenney/status/
1303989725091581952?s=21, 2020

[Hoare69] C. A. R. Hoare, An axiomatic basis for computer
programming. Communications of the ACM. 12 (10): 576–580, 1969.

[McCabe76] T. J. McCabe, A Complexity Measure, IEEE Transactions
on Software Engineering (4), 1976

[MW] Merriam-Webster, Reason, https://www.merriam-webster.com/
dictionary/reason, 2021

[WikiYoda] Wikipedia, Yoda conditions, https://en.wikipedia.org/wiki/
Yoda_conditions

[Whitehead10] Alfred North Whitehead; Bertrand Russell, Principia
Mathematica, vol 1/2/3 (1 ed.), Cambridge: Cambridge University
Press, 1910/1912/1913, https://quod.lib.umich.edu/cgi/t/text/text-
idx?c=umhistmath;idno=AAT3201.0001.001Listing 4

template <typename T1, typename T2>
optional<T2> bind(const optional<T1>& x,
 function<optional<T2>(T1)> f);

template <typename T1, typename T2>
vector<T2> bind(const vector<T1>& x,
 function<vector<T2>(T1)> f);
June 2021 | Overload | 15

https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAT3201.0001.001
https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAT3201.0001.001
https://www.merriam-webster.com/dictionary/reason, 2021
https://www.merriam-webster.com/dictionary/reason, 2021
https://twitter.com/kevlinhenney/status/1303989725091581952?s=21, 2020
https://twitter.com/kevlinhenney/status/1303989725091581952?s=21, 2020
https://en.wikipedia.org/wiki/Yoda_conditions
https://en.wikipedia.org/wiki/Yoda_conditions

FEATURE KEVLIN HENNEY
Out of Control
An essay on paradigms, refactoring, control flow, data,
code, dualism and what Roman numerals ever did for
us. Kevlin Henney takes us on a whirlwind tour.
ooking at something from a different point of view can reveal a hidden
side. With physical objects this hidden side can be literal, hence why
technical drawings of three-dimensional objects are often made using

a multi-view projection, such as a plan view and elevation views. With
abstract concepts the hidden side is more figurative. In software
architecture, for example, view models, such as 4+1 [Kruchten95] or ODP
viewpoints [ODP], can be used to bring different concerns of a system into
focus, such as user interaction, governance, behaviour, code structure,
information model, physical distribution, infrastructure, etc.

Numeral systems also have this quality. Changing how numbers are
represented doesn’t change the numbers represented, but it does change
how we think about them. Thinking about integers in binary, for example,
reveals different patterns (and failures) than when we think about them in
decimal. Binary also chunks more easily into hexadecimal. Thinking about
RGB triplets makes more sense in hex than in decimal. And so on.
Changing base can reveal new possibilities [Deigh17].

The same shift in perspective is also possible moving from a positional
system, such as the common Hindu–Arabic system for decimals
[Wikipedia-1], to one based on abbreviations of values of different
magnitudes, a sign–value system (sign in the semiotic sense of symbol
rather than as a positive/negative indicator) [Wiktionary], such as Roman
numerals [MathsIsFun]. And somewhere between these two numeral
systems – and more globally – we find the abacus, a bi-quinary coded
decimal system [WordFriday] (like Roman numerals), built on a simpler
sign system, but organised positionally (like the Hindu–Arabic system) to
enable rapid arithmetic.

The Roman numeral system was used across Europe before the widespread
adoption of the Hindu–Arabic system. It was perhaps more uniformly
standardised following the fall of the Western Empire than during the
heyday of Roman rule.

That would be the end of the history lesson if it were not for the persistence
of the numeral system long after the Renaissance and into the modern day.
The most likely places you will encounter Roman numerals these days
include old buildings, analogue clock faces, sundials, chords in music,
copyright years for BBC programmes and coding katas for programmers
[Wikipedia-2].

The standard form can comfortably represent 1 to 3999 (I to
MMMCMXCIX), although sometimes 4000 and beyond can be expressed
(with 4000 as MMMM); numbers beyond this range would typically have
been written as words, and would often be approximated. There was no
notation for zero – or even a concept of zero as a number – so in medieval
texts this would have been written as nulla or abbreviated to N. And,
without zero, there were certainly no negative numbers. It works, but…

The Python code in Listing 1 shows one way of converting a number to a
corresponding string of Roman numerals.

Leaving aside questions of type and range validation, this code works. We
can find support for this claim through reasoning, review and running
against the sample of test cases in Listing 2.

L

Listing 1

def roman(number):
 result = ""
 while number >= 1000:
 result += "M"
 number -= 1000
 if number >= 900:
 result += "CM"
 number -= 900
 if number >= 500:
 result += "D"
 number -= 500
 if number >= 400:
 result += "CD"
 number -= 400
 while number >= 100:
 result += "C"
 number -= 100
 if number >= 90:
 result += "XC"
 number -= 90
 if number >= 50:
 result += "L"
 number -= 50
 if number >= 40:
 result += "XL"
 number -= 40
 while number >= 10:
 result += "X"
 number -= 10
 if number >= 9:
 result += "IX"
 number -= 9
 if number >= 5:
 result += "V"
 number -= 5
 if number >= 4:
 result += "IV"
 number -= 4
 while number >= 1:
 result += "I"
 number -= 1
 return result

Kevlin Henney is a consultant, speaker, writer and trainer. His
interests include programming languages, software architecture
and programming practices. Kevlin loves to help and inspire others,
share ideas and ask questions. He is co-author of A Pattern
Language for Distributed Computing and On Patterns and Pattern
Languages, editor of 97 Things Every Programmer Should Know
and co-editor of 97 Things Every Java Programmer Should Know.
16 | Overload | June 2021

FEATUREKEVLIN HENNEY

If, however, we look at this code as a stepping
stone rather than as an end state, it becomes an

example and opportunity
So, sure, the function works, but it ain’t pretty. It’s the kind of code only
an enterprise programmer could love. Or, perhaps, a Pascal programmer:
this control-flow–heavy approach was used in Pascal: User Manual and
Report by Kathleen Jensen and Niklaus Wirth. Given that Pascal was often
held up as a language from which and in which to learn good practice this
might be considered ironic.

The code for the roman function is very procedural in that it is relentlessly
imperative and control-flow oriented. Even as a procedural solution,
however, it is not a particularly good one. It is repetitive, clumsy and
lacking in abstraction.

If, however, we look at this code as a stepping stone rather than as an end
state, it becomes an example and opportunity – especially in the presence
of tests – rather than a counterexample and dead end. This latitude is
perhaps a generosity we should extend to most code. Unless, like Romans
chiselling words and numerals onto buildings, you are setting your code
into stone, it may always be best to consider code a work in progress.

In the eyes of those who anxiously seek perfection, a work is
never truly completed – a word that for them has no sense –

but abandoned; and this abandonment, of the book to the fire
or to the public, whether due to weariness or to a need to

deliver it for publication, is a sort of accident, comparable to
the letting-go of an idea that has become so tiring or annoying

that one has lost all interest in it.
~ Paul Valéry

From duplication to unification
Recurrent structure is often a good starting point for seeing what can be
abstracted. At first glance, the rhythmic stanza of a while followed by
three if statements looks like a good fulcrum from which to lever a
refactoring (Listing 3).

The structure of this fragment for 1000, 900, 500 and 400 is repeated for
100, 90, 50 and 40 and then again for 10, 9, 5 and 4. But refactoring based
on this recurrence misses a deeper duplication and, therefore, unification.

Consider, first, what is a while statement? It is a statement that, governed
by a condition, executes zero to many times. What, then, is an if
statement? It is a statement that, governed by a condition, executes zero
times or once. Squinted at just right, an if can be considered a bounded
case of a while.

Looking at the specific numbers and operations involved, we see the
while-only code in Listing 4 is equivalent to the previous mix of while
and if code.

The newly minted while statements will execute zero times or once, just
like their if antecedents. There is no change in behaviour, but there is a
huge change in how we perceive the problem and the shape and nature of
what we want to refactor.

Listing 2

cases = [
 # Decimal positions correspond to numerals
 [1, "I"],
 [10, "X"],
 [100, "C"],
 [1000, "M"],
 # Quinary intervals correspond to numerals
 [5, "V"],
 [50, "L"],
 [500, "D"],
 # Multiples of decimal numerals concatenate
 [2, "II"],
 [30, "XXX"],
 [200, "CC"],
 [3000, "MMM"],
 # Non-multiples of decimals concatenate in
 # descending magnitude
 [6, "VI"],
 [23, "XXIII"],
 [273, "CCLXXIII"],
 [1500, "MD"],
 # Numeral predecessors are subtractive
 [4, "IV"],
 [9, "IX"],
 [40, "XL"],
 [90, "XC"],
 [400, "CD"],
 # Subtractive predecessors concatenate
 [14, "XIV"],
 [42, "XLII"],
 [97, "XCVII"],
 [1999, "MCMXCIX"]
]
failures = [
 [number, expected, roman(number)]
 for number, expected in cases
 if expected != roman(number)
]
assert failures == [], str(failures)

Listing 3

while number >= 1000:
 result += "M"
 number -= 1000
if number >= 900:
 result += "CM"
 number -= 900
if number >= 500:
 result += "D"
 number -= 500
if number >= 400:
 result += "CD"
 number -= 400
June 2021 | Overload | 17

FEATURE KEVLIN HENNEY

We are more likely to code control flow directly than
chart it, but that serves to highlight that while some
things in the world of programming change, there is
nothing new in letting the data do the talking
We now have thirteen loops that look like

 while number >= value:
 result += letters
 number -= value

What matters most to the solution is the series of threshold values and their
corresponding letters. This is not a control-flow problem: it is a data
problem. We need data structure, not control structure (see Listing 5).

This version still qualifies as procedural, but it is more declarative than the
first version, which was strictly imperative.

Data-driven approaches separate data from the code that is driven by the
data, with the effect of making both intent and structure clearer. Niklaus
Wirth stated that Algorithms + Data Structures = Programs [Wikipedia-3],
but algorithm and data structure are not necessarily equal partners. As Fred
Brooks noted, in The Mythical Man Month under the heading
‘Representation Is the Essence of Programming’:

Sometimes the strategic breakthrough will be a new algorithm […].
Much more often, strategic breakthrough will come from redoing the
representation of the data or tables. This is where the heart of the

program lies. Show me your flowcharts and conceal your tables, and
I shall continue to be mystified. Show me your tables, and I won’t
usually need your flowcharts; they’ll be obvious.

We are more likely to code control flow directly than chart it, but that
serves to highlight that while some things in the world of programming
change, there is nothing new in letting the data do the talking. This family
of approaches, from lookup tables to table-driven code, finds expression
across many paradigms and contexts – the data-driven tests for roman
already shown, for example – but is often overlooked. This way of thinking
is either not taught fully and explicitly or, in the case of less capable
languages like Pascal, cannot always be expressed conveniently.

Tables apart
There’s (a lot) more that we could do to explore the algorithmic space and
paradigm shapes of the Roman numerals problem, such as transforming
the loop into a fold operation (reduce in Python) or eliminating the
arithmetic and expressing the solution using term rewriting (converting to
unary and then using replace [Deigh17]), but for now we’ll leave the
control flow in place so we can take off in a different direction to explore
the organisation of the code elements.

Because the numerals table doesn’t change and is independent of the
number parameter, we can implement invariant code motion to hoist it out
of the function. (See Listing 6.)

We can add further distance to this separation by placing the definition of
numerals into another source file, numerals.py (Listing 7), which leads
to the code module being, well, just code. (See Listing 8.)

Perhaps not for this particular problem, but this is an interesting decoupling
because – as long as the data’s structure is consistent – it allows us to
change the actual data independently of the algorithm. We are using the
Python in numerals.py as a data language, which, in effect, makes
numerals.py a native database. Another way of looking at the
separation is that the code in roman.py implements an interpreter for the
highly domain-specific data language of numerals.py.

Listing 4

while number >= 1000:
 result += "M"
 number -= 1000
while number >= 900:
 result += "CM"
 number -= 900
while number >= 500:
 result += "D"
 number -= 500
while number >= 400:
 result += "CD"
 number -= 400

Listing 5

def roman(number):
 numerals = [
 [1000, "M"], [900, "CM"],
 [500, "D"], [400, "CD"],
 [100, "C"], [90, "XC"],
 [50, "L"], [40, "XL"],
 [10, "X"], [9, "IX"],
 [5, "V"], [4, "IV"],
 [1, "I"]
]
 result = ""
 for divisor, letters in numerals:
 result += (number // divisor) * letters
 number %= divisor
 return result

Listing 6

numerals = [
 [1000, "M"], [900, "CM"],
 [500, "D"], [400, "CD"],
 [100, "C"], [90, "XC"],
 [50, "L"], [40, "XL"],
 [10, "X"], [9, "IX"],
 [5, "V"], [4, "IV"],
 [1, "I"]
]
def roman(number):
 result = ""
 for divisor, letters in numerals:
 result += (number // divisor) * letters
 number %= divisor
 return result
18 | Overload | June 2021

FEATUREKEVLIN HENNEY
On the dualism of data and code
This leads us to ponder – and not for either the first or the last time in the
history of computer science – the distinction between code and data. We
stumble across this question even in the simplest cases. How would you
describe the refactoring transformations above? Many would describe
them in terms of separating the data from the code. Does that mean, then,
that numerals.py contains data but not code? It’s a valid Python module
that initialises a variable to a list of string–integer pairs. Sounds like code.
Nothing says an essential qualification for something to be considered
code is the presence of control flow.

We use the word code freely, referring both to anything written in a
programming language and, more specifically, to code (sic) whose
primary concern is algorithm and operation rather than data structure and
definition. Natural language is messy like that, filled with ambiguity,
synecdoche and context dependency.

If we want to be more rigorous, we could say that we have separated the
code into code that abstracts operation and code that abstracts data. In other
words, we are saying that Programs = Code and, given that Algorithms +
Data Structures = Programs, therefore Algorithms + Data Structures =
Code. This can be convenient and clear way to frame our thinking and
describe what we have done. We also need to recognise, however, that it
is just that: it is a thinking tool, a way of looking at things and reasoning
about them rather than necessarily a comment on the intrinsic nature of
those things; it is a tool for description, a way of rendering abstract
concepts more concretely into conversation.

If we confuse a point of view for the nature of things we will end up with
a dichotomy that feels like Cartesian dualism. Just as Descartes claimed
there were two distinct kinds of substance, physical and mental, we could
end up claiming there are two distinct kinds of code – code that is data and
code that is operation.

When we look to hardware, compilers or the foundations of computer
science, such as Turing machines, we will not find clear support or a strict
boundary for such separation. The indistinction runs deep. Although we
have code and data segments in a process address, these enforce negotiable
matters of convention and protection (e.g., the code or text segment is often
read-only). Both code and data segments contain data, but the data in the
code segment is intended to be understood through a filter of predefined
expectations and an instruction set. On the other hand, it is also possible
to treat data in the data segment as something to execute.

The fundamental conceit of the Lisp programming language is that
everything can be represented and manipulated as lists, including code.
The Lisp perspective can be summarised as Data Structures = Programs.
For some languages, source code is data for a compiler, that in turn
generates data for a machine – physical or virtual – to execute. For other
languages, such as Python, source code is a string that can be interpreted

and executed more directly. We can blur that code–data boundary
explicitly in our example seen in Listing 9.

The dualism we are grappling with here is not the strict categorisation of
things that are intrinsically separate, but the dualism of things that are
innately bound together. A yin and yang of complementary perspectives
that we are forcing into competition, but that exist in a cat state as easily
resolved one way as the other. Which one we see or chose is a question of
observation and of desire and of the moment rather than one of artefact
(Figure 1).

The tables are turned
Instead of involving intermediate variables and conversions, we could
simply replace numerals.py with a file that contains just the data
expression, no statements (see Listing 10).

Although a valid Python expression, this is no longer a useful Python
module. The data is not bound to a variable that can be referenced
elsewhere. It does, however, bear a striking resemblance to a more widely
recognised data language: JSON (see Listing 11).

If you had wondered why I’d avoided using tuples and single-quoted
strings in the code so far, you now have your answer: looked at the right
way, JSON is almost a proper subset of Python. (If you hadn’t, no worries.
As you were.) The relationship becomes closer and the observation truer
if you replace the previous eval expression with the following:

 eval(source.read(),
 {"null": None, "false": False, "true": True})

Listing 7

numerals = [
 [1000, "M"], [900, "CM"],
 [500, "D"], [400, "CD"],
 [100, "C"], [90, "XC"],
 [50, "L"], [40, "XL"],
 [10, "X"], [9, "IX"],
 [5, "V"], [4, "IV"],
 [1, "I"]
]

Listing 8

from numerals import numerals
def roman(number):
 result = ""
 for divisor, letters in numerals:
 result += (number // divisor) * letters
 number %= divisor
 return result

Listing 9

source = """[
 [1000, "M"], [900, "CM"],
 [500, "D"], [400, "CD"],
 [100, "C"], [90, "XC"],
 [50, "L"], [40, "XL"],
 [10, "X"], [9, "IX"],
 [5, "V"], [4, "IV"],
 [1, "I"]
]"""
numerals = eval(source)

Figure 1

The rabbit–duck (or duck–rabbit…) illusion.

Image from Wikimedia Commons [Wikimedia].

Listing 10

[
 [1000, "M"], [900, "CM"],
 [500, "D"], [400, "CD"],
 [100, "C"], [90, "XC"],
 [50, "L"], [40, "XL"],
 [10, "X"], [9, "IX"],
 [5, "V"], [4, "IV"],
 [1, "I"]
]

June 2021 | Overload | 19

FEATURE KEVLIN HENNEY
Of course, this lets more through than just valid JSON, which may make
you feel – justifiably – a little uncomfortable. We can more fully
acknowledge and safeguard the transformation by replacing the
permissive and general eval with something more constrained and
specific:

 from json import loads
 with open("numerals.json") as source:
 numerals = loads(source.read())

Configuration is code
Looking at the progression of code above, evolving from the first tabular
version to the final JSON version, at what point in the transformation did
the table stop being code and start becoming configuration?

This is, to some extent, a trick question, but that is also the point. We’re
not done with dualism, ambiguity and perspective. The question serves to
highlight a common blind spot and oversight: configuration is code.
Treating configuration as disjoint from the concept of code steers us in the
wrong direction. Treating it as something other often leads to it being
treated as something lesser.

What, then, is configuration? It is a formal structure for specifying how
some aspect of software should run. Sounds like code. It doesn’t matter
whether configuration is defined in key–value pairs or a Turing-complete
language, whether it uses an ad hoc proprietary binary format or a widely
used and recognised text-based one, if a software system does not behave
as expected, we consider it a problem. Whether that problem originated in
a JSON payload, a registry setting, a database, an environment variable or
the source code is not relevant: the software is seen as not working — there
is a bug to be fixed.

The consequences of incorrect configuration range from the personal
inconvenience of having your settings trashed when an app updates to the
more costly failure of a rocket launch [Clark17]. Configuration is no less
a detail than any other aspect of a software system. Its common second-
class citizenship, however, causes it to be accorded less respect and
visibility, leading to a high incidence of latent configuration errors [Xu] .
If we consider it as code we are more likely to consider version control,
testing, reviewing, design, validation, maintainability and other qualities
and practices we normally confer on other parts of our codebase but may
overlook for configuration.

Programming with perspective
Whether you find yourself exploring TDD with Roman numerals, playing
with the Gilded Rose refactoring kata [Bache], casting an intricate set of
constraints into code or trying to crack the code of a legacy logic tangle,
inverting the problem with respect to data can you show you the problem
and solution in ways you might not otherwise see if you only view it from
the journey of control flow.

That said, although data-driven and table-lookup approaches are
unreasonably effective, the message here is not that a data-centred

approach is unconditionally the path of choice regardless of your situation.
It is all too easy to jump from one world view to another without properly
learning the lessons of either or the journey in between. If the default way
that code is cast is in terms of control flow, however, viewing program
structure through the prism of data structure often reveals an extended
spectrum of complexity-reducing possibilities.

We should be wary of any quest for the One True™ paradigm or a silver
bullet solution, and cautious of such exclusive attachment. As Émile-
Auguste Chartier cautions us:

Nothing is more dangerous than an idea when you have only
one idea.

The value of paradigms, perspectives and points of view is in their
multiplicity. Sometimes one offers a better frame for understanding or
creation than another — and in some contexts it might do so consistently.
Sometimes habit leads us to get stuck with one and neglect others.
Sometimes, like binocular vision, we need more than one to make sense
of a situation or to unlock a solution.

References
[Bache] Emily Bache ‘Starting code for the GildedRose Refactoring Kata

in many programming languages’ available from https://github.com/
emilybache/GildedRose-Refactoring-Kata

[Clark17] Stephen Clark (2017) ‘Russian official blames Nov. 28 launch
failure on botched software programming’ available from
https://spaceflightnow.com/2017/12/30/russian-official-blames-
nov-28-launch-failure-on-botched-software-programming/

[Deigh17] Teedy Deigh (2017) ‘All About the Base’ in Overload 138,
April 2017, available from: https://accu.org/journals/overload/25/
138/deigh_2364/

[Kruchten95] Philippe Kruchten (1995) ‘The 4+1 View Model of
Architecture’ published in IEEE Software 12(6):45-50, available
from https://www.researchgate.net/publication/
220018231_The_41_View_Model_of_Architecture

[MathsIsFun] Roman Numerals: https://www.mathsisfun.com/roman-
numerals.html

[ODP] Reference Model of Open Distributed Processing (RM-ODP):
http://www.rm-odp.net/

[Wikimedia] File: Duck-Rabbit illusion.jpg:
https://commons.wikimedia.org/wiki/File:Duck-Rabbit_illusion.jpg

][Wikipedia-1] Hindu–Arabic numeral system: https://en.wikipedia.org/
wiki/Hindu%E2%80%93Arabic_numeral_system

[Wikipedia-2] Kata (programming): https://en.wikipedia.org/wiki/
Kata_(programming)

[Wikipedia-3] Algorithms + Data Structures = Programs:
https://en.wikipedia.org/wiki/
Algorithms_%2B_Data_Structures_%3D_Programs

[Wiktionary] Sign-value notation: https://en.wiktionary.org/wiki/sign-
value_notation

[WordFriday] Bi-quinary coded decimal (2014):
https://www.facebook.com/WordFriday/posts/725954844159142/

[Xu] Tianyin Xu, Xinxin Jin, Peng Huang, and Yuanyuan Zhou,
University of California, San Diego; Shan Lu, University of
Chicago; Long Jin, University of California, San Diego; Shankar
Pasupathy, NetApp, Inc. ‘Early Detection of Configuration Errors to
Reduce Failure Damage’ available from https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/xuListing 11

with open("numerals.json") as source:
 numerals = eval(source.read())
def roman(number):
 result = ""
 for divisor, letters in numerals:
 result += (number // divisor) * letters
 number %= divisor
 return result
20 | Overload | June 2021

https://github.com/emilybache/GildedRose-Refactoring-Kata
https://github.com/emilybache/GildedRose-Refactoring-Kata
https://spaceflightnow.com/2017/12/30/russian-official-blames-nov-28-launch-failure-on-botched-software-programming/
https://accu.org/journals/overload/25/138/deigh_2364/
https://accu.org/journals/overload/25/138/deigh_2364/
https://www.researchgate.net/publication/220018231_The_41_View_Model_of_Architecture
https://www.researchgate.net/publication/220018231_The_41_View_Model_of_Architecture
https://www.mathsisfun.com/roman-numerals.html
https://www.mathsisfun.com/roman-numerals.html
http://www.rm-odp.net/
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Kata_(programming)
https://en.wikipedia.org/wiki/Kata_(programming)
https://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
https://en.wiktionary.org/wiki/sign-value_notation
https://en.wiktionary.org/wiki/sign-value_notation
https://www.facebook.com/WordFriday/posts/725954844159142/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://commons.wikimedia.org/wiki/File:Duck-Rabbit_illusion.jpg

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

FEATURE DEÁK FERENC
The Sea of C You Don’t Want to See
Last issue included a script. Deák Ferenc plays with the
paradigm and dives into (a) deep sea (deap C).
(A digital drama in 3 acts)

Dramatis Personae
The Speaker – the one introducing the other characters, reading up ere an
act, and having the general moderator role.

The Source – the one character who is’t acts irresponsibly through the
entire playeth, oft changes its shape, and mostly doest not collaborate very
well with other actors in the scene, doest not coequal conform to standards,
but since Source being the central person in the entire playeth, everyone
tries to winneth his favours.

The Compiler – the character with a huge responsibility of trying
understandeth the humor swings of the Source while in the same time
taming the shrew in the direction of being a productive member of society
without uncovering an overly abusive encroachment while being expos’d
to the behavioural traits of the Source. Sadly, due to excess pressure, a high
workload and constant propagation, the Compiler suffers from a light
version of schizophrenia, which expresses himself in the form, yond the
Compiler oft calleth himself gcc, oft clang, and oft something else, and
coequal at which hour taking one persona, the Compiler cannot decideth
in some very basic features, such as a version number so all these
combinations cometh up with very amusing conversations the Compiler
hast with the same Source.

Did lay the scene
(Speaker enters the scene, softly pulling the Source after himself with one
handeth, while holding his headeth in dismay with the other.)

Speaker Thither is programming, and thither art programmers. Thither art
most wondrous practices, thither art poor practices and thither art nay
practices. And then thither is the very much obscure ordinary of code
yond no-one understands.

Source And thither is me!

Speaker Contrary to the mainstream development methodologies and
recommendations at which thy cometh about writing code which is
easy to readeth, maintain and generally can beest pondered obeying
the laws of crisp code, in this lightheart’d drama we shall explore
the enshielf depths of exceptionally obscure coding disciplines at
which hour one tries to writeth code which is hard to readeth,
disobeys the ingraft sense, uses practices which oft can beest
pondered dangerous but still worketh did bind to specific Compiler
and platforms, and last but not least thee would not wanteth to see
those imbued into thy production code base.

Source And yond is me!

Speaker Thee wast did warn, thee shalt not followeth the traits of the
Source, useth thy inner force to raiseth above him and deliver for thy
peers a much better version while learning from mistakes done
hither.

Act 1 – The one who did nothing
Speaker (Stands alone in the middle of the scene, a single beam of light

shines down upon him) There are programs that do nothing, lazy
Sources wasting their life in the wast emptiness of the digital
landscape, without having a meaning, except to annoy specific
Compilers, but here, witness dear spectators an interaction of one of
these.

(Source haughtily enters the scene, he wears a very finely decorated
mantle, the scene lits up)

Source Here we are, born to be kings, without excess doings of precise
one time useth of the keywords the C language shall present to us,
dear Compiler, but warned be thy meant to be, not more than one of
all of them shall be presented by us. And hither we art:

 int main(long _, char __)
 {
 switch (_)
 do {
 case 0:
 default:
 for (auto float _ = sizeof(union {});
 ; *(const double*)&) {
 extern struct {
 enum { _ } _;
 } __;
 }
 if ((void*)0) goto * 0;
 else continue;
 static volatile signed short i;
 typedef unsigned j;
 register j k;
 break;
 } while (0);
 return _;
 }

(Compiler jumps in the scene, seemingly agitated)

Compiler I have seen a Source, just like the wildest of cards, but more like
a Morse, the one from the code, not the one from Scotland Yard. This
Source thither contained all the keywords of the C language, I am
meanteth to compile, their order like a rhyme, but wholly like the
chyme. Not to say that feels like crime.

Source How dare thee fig me, thee insignificant luxurious mountain goat,
can’t thee see that I am the shortest of all C programs that must
contain all the keywords of the language?

Compiler I see that thee non standard compliant piece of the horror. How
dare thee declare the parameters to the main to beest long?

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at Maritime Robotics as a system programmer, and in his free time,
by exploring the hidden corners of the C++ language in search of
new quests. He can be reached at fritzone@gmail.com
22 | Overload | June 2021

FEATUREDEÁK FERENC
(Compiler starts to tremble, violently shaking, several personaes appear
one after the other)

The GCC personae of Compiler I see nothing wrong. A bit of flexibility,
hither or thither, but forsooth as that gent sayeth, this source is to
beest compiled. (Turning to the Source) Not that too much t’will
doth, mostly just leaveth as thee cameth to this world. Without facts,
without meaning. Doing nothing. Void emptiness, shell of a life not
meanteth to achieve anything in his time. (Compiler shakes himself,
new personae appears)

The clang personae of the Compiler Oh the horrores, madre mio, padre
Santos, has’t thee seen this source? That gent useth a jump to a
dereferenced address of 0, not that I would dare to compile. Dame
agua, hijo, I cannot standeth the violations of the argumentos to poor
main, one is a long, the other one is a char, oh, the indignity that
I has’t to see source like this, and the shame that that gent presents
himself to the world. Ayúdame, el cielo se me cae encima. (Compiler
shakes himself, new personae appears)

The icc personae of the Compiler (Compiler inspects closely the source)
Thither is nothing extraordinary to see hither, moveth ’long prithee,
moveth ’long. Oh aye, yond the expression in goto is constant…
well, t happeneth from time to time, but nothing extraordinary thither
either, and well, yond thither is an orphan’d do in the switch? We
has’t eke seen a similar behaviour yond in Duff’s device at which
hour t wast writ. Oh my most humble apology, actually it’s not
orphan’d but since we haven’t been ’round in those days I very much
can’t comment on this erratic behaviour. T just worketh, as thee can
see, nothing hither, moveth ’long, prithee moveth ’long. But anon
in earnest, whither doest yond switch end? (Compiler shakes
himself, new personae appears)

The MSVC personae of the compiler Source? What source? Oh yes, that
one! Not that, sorry.

(The Speaker enters the centre of the stage)

Speaker Out, out, all of thee witty fools, since thy presence is better than
that of a motley-minded wit, but this charade must cease, and we
must advance the playeth.

(All leave the scene, Lights off, Curtain down)

Act 2 – The one who included himself
(Curtains up, if possible with jarring sounds)

Speaker (Enters the scene, in a cardboard box, Production is written on
the side of the box, we might just wonder what is he hiding
underneath) Put a thin layer of silver on a glass, and what was once
a window is transformed into a mirror. Where you used to see others
now you see just yourself. But should a Source true to itself see itself,
or should see other Sources? And what if other Sources see our initial
Source? Do they look back from behind a window or did they break
the glass? (Turns to the audience) Dear audience, let me kindly draw
your attention that somewhere in the midst of our previous act, sadly
we have reached the upper limit of the number of allowed words
from our Shakespearian trial module, and sadly we will have to
return to RP English as heard on the streets of London, but feel free
to read the text aloud in any other English dialect you prefer. We are
really curious how this piece sounds with Fair Isle accent.

(Source enters the scene, wearing a T-shirt, which has an image of himself
wearing a T-shirt, which has an image of himself, wearing a ...)

Source Sometimes some type is the wrong type, unless it’s the guarded
SOMETYPE, hidden somewhere in the main file, like a mostly green
crocodile, in the river called the Blue Nile.

(Source turns backwards, bows down, speaks with head between his feet,
not that this is an easy feat for humans)

Source So, there you are, hiding behind a guard. Why, oh why did you
had to hide from the menaces of this cruel world?

(Source turns again, stands up, normally like before, if there is even a bit
of normality in these Sources)

Source I had a deal with the guards. They let me escape. I think the
programmers almighty might see a reasoning of not having to
forward declare. Here, please see.

 #ifdef GUARD
 SOMETYPE main()
 {
 return somefunction();
 }
 #else
 #define GUARD
 #define SOMETYPE int
 int somefunction()
 {
 return 2;
 }
 #include __FILE__
 #endif

(Compiler enters the scene, wearing a white tuxedo, black slippers, yellow
coloured jeans and a propeller hat)

Compiler This beauty on the shore of existence, good example for
persistence, escaped from the guards, with a hand full of cards, aces,
spades, all mans’ aides, and reached here in the last, even with no
typecast, it solved its trouble, with no muddle... and in the end it just
compiled.

Source Oh the elegance, oh the brilliance, oh the perfect construction, now
it’s time for production.

Compiler (Singing like an aria) We approve, GCC, we approve, clang,
we approve, icc, we approve, MSVC, we approve, PRODUCTION!

Speaker (Intervenes hastily) Production? No. Honestly, would you like to
see this in production?

Source (Singing) PRODUCTION!

Compiler (Singing) We approve!

Speaker (Steps out from his cardboard box, raises his hand in front of him,
starts to go out from the scene backwards. Does he wear any
clothes?) No, never!

Source (Starts walking towards the Production cardboard box, still
singing) PRODUCTION!

Compiler (Singing) We approve!

Source (Climbs in the box) Production, finally, feeling alive, being live,
in the middle ... (Curtain falls down, big text on it: SEGMENTATION
FAULT)

(Lights off)

Act 3 – The one who defined define
(Curtains up, two Sources enter the scene. One of them is dressed in old
Victorian dresses, the other one pretty much looks like a generic
impersonation of a 20th century gangster, but regardless, a well dressed one)

Victorian Source My dear friend, I have seen what you have produced
some very afternoonified looking lines, and I must congratulate you
on your bricky attitude.

Gangster Source Yo man, thanks. That was not a big fuss, you just need
to know from where to steal yo’ assets.

Victorian Source My dear friend, stealing … oh, such a violence of words,
may I restrain myself from its usage, I feel that even the act of
speaking it will violentize my tongue.

Gangster Source Yeah, whatever, just go talk to Boost, see if he allows
you to ste … err… borrow a few of its lines.

Victorian Source But of course, in these days of struggle we need all kind
of help. Especially since the Compiler is now our enemy. You see,
dear friend, it does not even allow us to define define. Like we used
to do it in 1895. Or was it 1985?

Gangster Source Yo man, but no worries, mate, we discussed with a few
of them, and they seemed to be on our side.
June 2021 | Overload | 23

FEATURE DEÁK FERENC
Victorian Source Oh, indeed, a small success for a Source, a big leap
forward for all Sources. May I inquire on how this breakthrough was
achieved?

Gangster Source We just had to really, really convince them to work twice
as hard as they were used to. Now they’re able to compile Sources
that have shortenings for preprocessor directives, that act as
preprocessor directives.

Victorian Source Wonderful, wonderful news. Would you be so kind, my
friend and elaborate a bit on how this was achieved?

Gangster Source Yo, man, just look at my bro, below:
 #define CAT(x, y) CAT_I(x, y)
 #define CAT_I(x, y) x ## y
 #define APPLY(macro, args) APPLY_I(macro, args)
 #define APPLY_I(macro, args) macro args
 #define STRIP_PARENS(x)
 EVAL((STRIP_PARENS_I x), x)
 #define STRIP_PARENS_I(...) 1,1
 #define EVAL(test, x) EVAL_I(test, x)
 #define EVAL_I(test, x)
 MAYBE_STRIP_PARENS(TEST_ARITY test, x)
 #define TEST_ARITY(...) APPLY(TEST_ARITY_I,
 (__VA_ARGS__, 2, 1))
 #define TEST_ARITY_I(a,b,c,...) c
 #define MAYBE_STRIP_PARENS(cond, x)
 MAYBE_STRIP_PARENS_I(cond, x)
 #define MAYBE_STRIP_PARENS_I(cond, x)
 CAT(MAYBE_STRIP_PARENS_, cond)(x)
 #define MAYBE_STRIP_PARENS_1(x) x
 #define MAYBE_STRIP_PARENS_2(x)
 APPLY(MAYBE_STRIP_PARENS_2_I, x)
 #define MAYBE_STRIP_PARENS_2_I(...) __VA_ARGS__

 #define W(...) __VA_ARGS__
 #define x(...) STRIP_PARENS(__VA_ARGS__)
 #define A(x) STRIP_PARENS(x(a))
 #define Nx(a,b,c)
 a##STRIP_PARENS((STRIP_PARENS(b))W(c))
 #define S(...) Nx(, __VA_ARGS__)

 #define DEF S(%:, define)
 #define INC S(%:, include)
 #define IF S(%:, if)
 #define ELSE S(%:, else)
 #define ENDIF S(%:, endif)
 #define ERROR S(%:, error)

 INC <stdio.h>

 DEF Cs const
 DEF STAY 2
 DEF NOSTAY 1
 DEF my STAY

 IF my == NOSTAY
 ERROR "Can't stay"
 ENDIF

 int main()
 {
 const int s = my;
 Cs int a = 55;
 printf("%d\n", s);
 return a;
 }

Victorian Source (Pulls out a monocle from his pocket, places it in front
of his eyes) I see, I see, indeed a very peculiar set of commands, my
friend. I would see no reason an able minded Compiler would ever
compile this. I see digraphs, I see mayhem of macros and all kind of
odd constructs that transform this Source into an abhorrent collection
of characters. But please tell me, how do the Compilers tackle this
mess?

Gangster Source Nothing simpler than that, mate, I’ve told you. They just
need some extra convincing (Opens his left palm, makes a fist with
the right one, and easily hits the left palm). Look here:

 gcc -E act_3.c | gcc -x c -

Victorian Source Oh, My oh, My… Now I see, my dear friend what do
you mean with the extra work. But may I observe, that we are very
alone here … would you mind telling me where are the Compilers?

(The voice of the Speaker comes from somewhere, an unidentified address
in the void)

The Voice of the Speaker They were ashamed they had to work with you.
They have resigned.

(Curtain)

Finally
(Curtains up, Speaker enters the scene)

Speaker (Steps forward and bows) Thank you for your patience, for
making an acquaintance with our Sources, Compilers, and we would
like to extend our appreciation towards the following distinguished
members of the Source community: http://ioccc.org/1985/lycklama/
lycklama.c and http://ioccc.org/1987/lievaart/lievaart.c for teaching
us with slight amount of frustration, that there was a time when we
could define even the almighty define and last, but not least http:/
/boost .2283326.n4.nabble.com/preprocessor-removing-
parentheses-td2591973.html for allowing us to get an insight not
necessarily deeply understood but highly appreciated into the depths
of the macro community of Sources. Now, without hesitation, it’s
time for a well deserved vacation. Good bye and thanks for all the
bits.
24 | Overload | June 2021

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Geek, Nerd or Neither?
	Replacing ‘bool’ Values
	How We (Don’t) Reason About Code
	Out of Control
	The Sea of C You Don’t Want to See

