
Stufftar Revisited
Personal projects can provide
valuable learning opportunities

Executors: a Change
of Perspective
Exploring the new C++ proposal

Afterwood
Reflecting on reflection

October 2021 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Showing Variables Using the Windows
Debugging API
Roger Orr explores the deep magic of debuggers.

13 Stufftar Revisited
Ian Bruntlett shares a system call surprise
he discovered while extending stufftar.

15 Executors: a Change of Perspective
Lucian Radu Teodorescu explains the new
C++ proposal.

20 Afterwood
Chris Oldwood reflects on reflection.

OVERLOAD 165

October 2021

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Dmitrii Vaccinium
on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 166 should be
submitted by 1st November 2021
and those for Overload 167 by
1st January 2022.

https://unsplash.com/photos/ByUAo3RpA6c
https://unsplash.com/@vaccinium

EDITORIAL FRANCES BUONTEMPO
The Right Tool for the Job
Fads and frameworks come and go.
Frances Buontempo encourages us to find
what works rather than follow fashions.
Having been on gardening leave recently, I have in
fact been gardening. As you can imagine, this hasn’t
left enough time to think of an editorial, so I apologise.
I used some loppers to cut down a climbing hydrangea,
which is making its way up a wall and over a roof. This
seemed like a good idea, but there are a couple of

cables going over the roof and into the wall. Fortunately, the one I cut
through by mistake is for a television point we don’t use. A close call, since
the other cable connects us to the internet. A near disaster I am not proud
of. With hindsight, using something smaller, like secateurs, would have
enabled more precise chopping. Though they wouldn’t have got through
the thicker branches, I would have been able to see what I was doing better.
I possibly also need to go to the opticians, but that’s another story.

They say a bad worker blames their tools, but if you use a hammer to put
a screw in place, things will go wrong. Perhaps someone blaming a
hammer for its failure to screw a nail in place is a sign of a bad worker.
The tool used does impact your work, though the effects can be subtle.
When I write my excuses for a lack of editorial straight into a word
processor, my writing style appears to change slightly. I’m not sure why
and find it hard to vocalise how, but I seem to want to type paragraphs in
order and end up with slightly tortured links between ideas. If I scribble
notes on paper first, I can draw arrows to remind me to move stuff around.
Obviously, you can move paragraphs around in a word processor too, but
I then forget what I was in the middle of. A line on a bit of paper seems
less disruptive. In contrast, trying to make notes on code, outside an editor,
means I have piles of paper dotted around, none of which make any sense
afterwards. Leaving a TODO comment, or better, something which won’t
compile works better for me. This doesn’t mean there is one true way for
any creative process, but there are options and some work better for some
people than others. Context is everything.

I have seen a recent trend claiming that agile is the only way to succeed
with software projects. This usually specifically means a very rigid scrum
process. Though this can work, it can also devolve into what might be
termed ‘dark scrum’. Ron Jeffries coined this term, saying, “Too often, at
least in software, Scrum seems to oppress people. Too often, Scrum does
not deliver as rapidly, as reliably, as steadily as it should. As a result,
everyone suffers. Most often, the developers suffer more than anyone.”
[Jeffries16] I have seen estimates for work in story points, which are not
supposed to reflect time required to complete, held as promises. If a
developer takes longer than a manager expects the number of story points
to need, trouble ensues. Stop using story points if you want to estimate
how many hours’ work something might take [Cohn14]. Scrum is not the

only project management approach and is
sometimes not the right tool for the job.

Kevlin Henney recently republished a blog
post [Henney21] about the development

process. He suggests that many agile shops are in fact using “waterfall
projects rebadged with new terminology, more urgent time scales and
increased micromanagement.” Micromanagement is almost always
mismanagement; however, claiming to be agile because you hold all the
right ceremonies is not agile. Furthermore, as Kevlin suggests in his blog,
waterfall might be appropriate sometimes. The right process for a job
depends on the context.

As opinions on processes change, tooling changes over time too. When
did you last use a fax machine? Faxes were the right choice, before
scanning and emails became common. They now seem like a slightly
pointless historical curio. How many scart cables do you own? Do you
still have any ‘off the shelf’ software on a CD or DVD, but a computer
without a cd reader? Or, even more redundant, a floppy disc or two in a
drawer somewhere? I have a nagging feeling I have a slide rule
somewhere. Unlike the digital tools, a slide rule would still work, though
I would need to spend a moment re-learning how to use one. Much of
technology becomes obsolete, and some of it really rather quickly. I tend
to think it takes a generation or two for tech to fade away, but fax machines
prove me wrong. I do wonder if some new tech under active research
might turn out to be a short lived fad if it ever becomes a reality, self-
driving cars being one thing I have in my sights. I’ve said it before, but I
want a transporter, and a replicator while you’re on the case, not a self-
driving car. A functional public transport system, more people eating
locally grown (or replicated) produce, thereby taking a few lorries off the
road, and other ways to reduce volume of traffic can only be a good thing.
Since the UK seems to be suffering a lorry driver issue at present, this is
now a pressing need. “Tea, Earl Grey. Hot.” as Picard says.

To continue on the theme of fads, I shall now turn my attention to AI. For
a long while, many new products proclaimed they used machine learning.
More recently there seems to have been a move to claiming things are
powered by AI. Much of this is an outright lie; however, some systems,
such as chat bots, smart speakers and recommender systems are genuinely
using elements of AI. Interestingly, anecdotal evidence suggests an
increased use of deep learning recently. Specifically, many winners of
Kaggle competitions [Kaggle], a website offering prizes for analysis of
many disparate datasets, have used deep learning, particularly for
‘unstructured’ problems – vision, text and sound [KDnuggets]. For those
unfamiliar with this tech, deep learning is a type of neural network, with
many ‘hidden layers of neurons’ giving it many more sums to do than a
traditional feedforward neural network, which tends to only have one
hidden layer. Inputs go to the first layer, magic (maths) happens in the
hidden layers, then predictions come out at the final layer. Back to this
deep learning fad. Why is this happening? I suspect a spot of TDD – tool
driven development – here. There are many free cloud-based frameworks
that support deep learning, so it is easy to chuck some data into a network
and see what happens without any local setup. You can even invoke the

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2021

EDITORIALFRANCES BUONTEMPO
power of many GPUs without having them locally. This doesn’t make it
the right tool for the job. I am not disparaging deep learning completely.
It does manage some near-magic in disparate domains. I’m not convinced
anyone really understands precisely how it works, though. Perhaps
whatever works is the right tool for the job.

I gave a talk at an online conference earlier this year, The Machine
Learning BASH [BASH], in which I explored the term ‘regression’. I was
asked about which machine learning frameworks to use. Between
ourselves, I panicked at this question. I do tend to zone in on Scikit Learn
[scikit-learn], a python framework providing curve fitting, classification
and clustering tools, and more besides. However, I have also used JCLEC,
a Java framework for evolutionary computation [Ramirez17], and played
around with tensor flow, keras, Google’s colab and many other
frameworks. To be frank, I can’t keep up. As I start to get the hang of one
thing, a new kid turns up on the block and I feel left behind. I have decided
to stick with understanding the maths behind the algorithms and learning
how to use the latest tool when I need to, with the full knowledge my ability
to drive the tool will become obsolete very quickly. Reading docs on the
latest version when required is better than memorising APIs etc which are
bound to change, at least to my mind.

I acknowledge some people like to be at the bleeding edge, so make an
effort to always upgrade to the latest version or try the newest framework
or language. I do feel like I’m missing out when I haven’t tried Rust or
whichever new language, tool or tech everyone is talking about, but I have
learnt to just watch some things from the side lines. There isn’t enough time
to learn everything, and your brain is a finite resource so I’m sure learning
some new things makes you forget other things. Sometimes if you need to
analyse data, keep track of something or create software, the best tool for
the job is one you know. It’s OK to use your favourite IDE, even if people
around you are being snobby and trying to make you use Vim or another
editor. It’s acceptable to draw an architecture diagram with a pencil on a
piece of paper, rather than spending an hour trying to work out how to draw
a text box on Lucid charts or Visio or the like. It’s fine to use a spreadsheet
if you want some basic adding up or plots and don’t know R or Python
very well. I might raise an eyebrow if you tried to do this in C++, but if
that’s what you want to do and can get results quickly enough that way,
do it. Your experience counts for something. Unfortunately, though, even
if you are familiar with one toolchain, you find yourself in a position where
you cannot use what you know. I recall having to use very old versions of
compilers and similar and being stumped when things went wrong. ProTip
– don’t read the latest docs for gcc or python if you are using a much earlier
version. Don’t expect things that compile under Microsoft to compile with
gcc – though to be fair, the gap is narrowing compared to twenty years ago.
Sometimes you have to use what’s to hand, even if you suspect there’s a
better way.

While some businesses are either stuck on old versions of tools and others
are on the cutting edge, many will have coding standards, dictating how
to do almost anything. This ‘One True Way’ may be enforced
automatically, or via gate-keeping code reviews. It is what it is; however,
notice that these guidelines all tend to vary. They are written by people,
and everyone has a different history. We’ve all been burnt by slightly
different problems in the past, or been taught one way to arrange braces

and whitespaces. Aside from the layout of the code, many guidelines stray
into diktats on testing, telling you to always/never use mocks, achieve
100% coverage with end to end tests, ensure the unit tests run quickly.
Always use parameterised tests. Never use parameterised tests. And so on.
Perhaps the variety of guidelines means we’re all still trying to figure out
what works. Time will tell.

Here’s the thing: many tools, processes and guidelines make sense when
you look at the world one way, but if you change your perspective different
things come into focus. I’ve recently been reading a handful of physics
books I’ve found on our bookshelves. The tensions and contradictions
between quantum (small subatomic scale) and classical (larger people and
planet type scale) models left us searching for a grand unified theory. We
do not seem to have found this yet. Classical models and relativity see the
world as smooth and predictable. Quantum models have packets or quanta
and are probabilistic. Both models make accurate predictions, even though
they seem to make conflicting assumptions about the fundamental nature
of the universe. The trick is to use the right equations for the scale at which
you need results.

It seems there can be such a thing as the right tool for the job, even though
opinions can be divided. Maybe the best thing to do is stand firm, ensuring
you are on a stable footing. I have been told your stance can make a huge
difference in snooker. You might think it’s all about maths models, and
angles and trig, but it turns out you need to be able to stand firmly and look
where you’re aiming. Don’t get distracted by what’s going on around you.
Keep your eyes on the balls. Don’t be shy about using something you are
familiar with if it gets the job done, but be willing to try out new things
once in a while.

References
[BASH] Machine Learning BASH: https://

www.youtube.com/watch?v=CFwlCCM8ZnI

[Cohn14] Mike Cohn, ‘Don’t Equate Story Points to
Hours’, posted 16 Sept 2014 on https://
www.mountaingoatsoftware.com/blog/dont-
equate-story-points-to-hours

[Henney21] Kevlin Henney, ‘Getting over the Waterfall’, posted 30 Aug
2021 on https://kevlinhenney.medium.com/getting-over-the-
waterfall-c090c6228ca9

[Jeffries16] Ron Jeffries, ‘Dark Scrum’, posted 8 Sept 2016 on
https://ronjeffries.com/articles/016-09ff/defense/

[Kaggle] Competitions: https://www.kaggle.com/competitions

[KDnuggets] ‘Lessons from 2 Million Machine Learning Models on
Kaggle’ at https://www.kdnuggets.com/2015/12/harasymiv-lessons-
kaggle-machine-learning.html

[Ramirez17] Aurora Ramirez and Chris Simons (2017) ‘Evolutionary
Computing Frameworks for Optimisation’ in Overload 142,
published December 2017 and available from https://accu.org/
journals/overload/25/142/ramirez_2444

[scikit-learn] skikit-learn: Machine Learning in Python at https://scikit-
learn.org/stable/
October 2021 | Overload | 3

https://ronjeffries.com/articles/016-09ff/defense/
https://www.mountaingoatsoftware.com/blog/dont-equate-story-points-to-hours
https://www.mountaingoatsoftware.com/blog/dont-equate-story-points-to-hours
https://kevlinhenney.medium.com/getting-over-the-waterfall-c090c6228ca9
https://kevlinhenney.medium.com/getting-over-the-waterfall-c090c6228ca9
https://www.kaggle.com/
https://www.kdnuggets.com/2015/12/harasymiv-lessons-kaggle-machine-learning.html
https://www.kdnuggets.com/2015/12/harasymiv-lessons-kaggle-machine-learning.html
https://www.youtube.com/watch?v=CFwlCCM8ZnI
https://www.youtube.com/watch?v=CFwlCCM8ZnI
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

FEATURE ROGER ORR
Showing Variables Using the
Windows Debugging API
Debuggers use deep magic to help us out. Roger Orr
explores how this magic is performed.
n previous articles [Orr11, Orr12], I demonstrated the basic principles
of using the Windows Debugging API to manage a program being
debugged and to produce a simple stack trace.

This article looks in more detail about what is needed to access variables
in the program using the debugging interface and additionally discusses
some of the issues with optimised code that make debugging it a challenge.
While the techniques may be useful in their owfn right, they are described
principally to try and help explain what interactive debuggers, such as
Visual Studio or WinDbg, are doing for us ‘under the hood’ to achieve
some of their functionality.

While the article is written explicitly using the Windows Debug API
targeting x64 programs, many of the principles apply to other
environments even though the precise details will differ.

Presenting the example code
The code in this article works through varying levels of detail in viewing
the local variables in the following, deliberately fairly simple, piece of
code. For this example I am using an ‘invasive’ explicit call to
stackWalk, which I will gradually expand to obtain information about
the local variables (Listing 1).

The printStack function simply creates a separate thread to perform the
actual stack trace, and then joins this thread. This technique allows the
program to print its own stack trace; in the previous articles cited in the

introduction I used a separate debugging process to control the target
process. Both techniques have their uses!

We would like to programmatically obtain the values of the local variables
and the return value of the calling function. Most of us will have done this
sort of thing before, but using an interactive debugger.

We will start out compiling the example code without optimisation, and
then later on look at the issues that result from turning on optimisation.

The first step in our quest is to walk the call stack. This basic code was
described in the earlier articles, and is also relatively well known, so I provide
a quick summary of the principles and the sample stack walking code.

Quick summary of stack tracing with the Win32
debugging API
The mechanism used by DbgHelp for Win32 stack tracing revolves around
the function StackWalk64. The programmer sets up the stackFrame
and context data for the start point on the stack and then calls
StackWalk64 in a loop until either it returns false or the frames of
interest have all been processed.

The reason for there being two structures involved is that the stackFrame
structure is portable and is passed as a pointer to a STACKFRAME64, but
the context structure contains environment-specific values – this
argument is passed by void* and it is up to the programmer to provide a
pointer to the correct structure for the environment being debugged.

While the basic operation is the same for each platform supported by
Win32, there are slight differences. For the purposes of simplifying this
article, I am only supporting the x64 platform. In this scenario the
Windows headers set up the CONTEXT typedef to refer to the default, x64,
con t ex t r eco rd and we mus t pa s s t he MachineType o f
IMAGE_FILE_MACHINE_AMD64 a s t he f i r s t a rgumen t t o
StackWalk64. Other use cases, such as debugging an x86 process, would
need to populate the appropriate actual context structure name and set the
corresponding value for MachineType.

The code for walking the stack starting from the ‘current location’ of the
target thread looks like Listing 2 (overleaf).

The addressToString function is unchanged from the earlier articles
cited above and, as its implementation is not relevant to this article, will
therefore not be explained further here.

Printing the basic call stack
If we compile the example program with no optimising and with debug
symbols ("/Zi") from the command line then, with the stackTrace
function shown above, printStack produces output like Listing 3 (also
overleaf).

(Note: to make the output easier to read I’ve shortened long paths by
replacing the middle of the path with)

While printing a call stack like is extremely useful for debugging problems
and getting clearer ideas of the flow of the program, it is possible to enrich
the information provided.

I

Listing 1

void process(Source &source) {
 int local_i = printf("This ");
 int local_j = printf("is ");
 int local_k = printf("a test\n");
 int local_l = source();

 printStack(); // << Here is our 'invasive'
 // function call
 if (local_i != 5 || local_j != 3 ||
 local_k != 7) {
 std::cerr << "Something odd happened\n";
 }
}
int test() {
 Source source;
 int return_value = source();
 process(source);
 return return_value;
}
int main() { return test(); }

Roger Orr Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in Canary
Wharf and the City. He joined ACCU in 1999 and the BSI C++
panel in 2002. He may be contacted at rogero@howzatt.co.uk
4 | Overload | October 2021

FEATUREROGER ORR

If we delete the PDB file and re-run the program,
it is easy to see what information from the PDB

file is used by the stack trace code
But how does it work ?
In the x64 world, stack walking uses the same logic that is used to support
exception handling. The compiler generates some metadata (tagged as
“xdata” and “pdata”) which is bound into the executable image and is
available at runtime.

You can dump out this data with the dumpbin program supplied with
Visual Studio (see, for example, Listing 4).

The function SymFunctionTableAccess64 is the one used by the
stack walker to obtain the address of the function table entry metadata for
the various code addresses found during stack unwinding. This data
provides, among other things, information about the size of the current
stack frame and the offset of the return address. The stack walking logic
uses this data on each iteration to work up the stack to the calling frame
and to update the stackFrame and context data to reflect this new
frame.

This logic does not require any additional debug information that might
be present in the PDB file, it simply uses the read-only tables in the binary.

What is in the PDB file?
If we delete the PDB file and re-run the program, it is easy to see what
information from the PDB file is used by the stack trace code: the same
number of stack frames is produced with the same addresses (subject to
any relocations performed by Address Storage Layout Randomisation) but
the names for the functions inside the executable and the source file
information are no longer printed; these are being obtained from the PDB
file.

The Microsoft PDB files contain a lot of data. For the example program,
I have a PDB file that is over 17 times larger than the executable! All we
have used so far is a small part of the overall data – to map addresses
to function names and source file information.

However, there is also a huge amount of detail available for the types and
variables inside the program. There is enough detail that we can, for instance,
generate the full definition of the data members and class hierarchy for the
C++ classes used by the program or, as we do next, to introspect on the
variables within the program. Note that the full type information is not
always available – for example Microsoft’s public symbol files for the
Windows binaries normally only expose function names.

The PDB file format is not, to the best of my knowledge, publicly
documented but there are various public APIs to read the data. However,
I have found that the documentation is often quite thin on detail and this
can make it quite slow to successfully make use of the API in your own
programs. See, for example, the [dbghelp.h] documentation.

Getting the names of local variables at each point in
the call stack
The first step we take towards our goal is to use the DbgHelp function
SymEnumSymbols to enumerate the local variables at each point in the
call stack and then simply printing the names of these variables to
demonstrate the enumeration works.

We add this functionality by writing a new function, showVariablesAt,
which is called on each iteration of the main loop in the stackTrace
function. This function first calls SymSetContext (which requires
popula t ing a s l igh t ly di f f eren t s t ack f rame s t ruc tu re :
IMAGEHLP_STACK_FRAME) to ensure the subsequent call to
SymEnumSymbols will search at the location of the call site. For each
variable found, a callback function we provide is called by the symbol
engine, passing us a pointer to the symbol information and a user-supplied
value.

(Note that the callback function is also passed a SymbolSize, which we
ignore here because the information is also available in the Size field of
the SYMBOL_INFO structure.)

The SymEnumSymbols function operates in a variety of modes – you can,
for instance, use it to enumerate all symbols within a binary file matching
a specified filter string. The callback function invoked for each symbol
found allows the option of terminating early if the item sought has been
found. In our use case, we want to enumerate all the local symbols in scope

Listing 2

void SimpleStackWalker::stackTrace(
 HANDLE hThread, std::ostream &os) {
 CONTEXT context = {0};
 STACKFRAME64 stackFrame = {0};
 context.ContextFlags = CONTEXT_FULL;
 GetThreadContext(hThread, &context);
 stackFrame.AddrPC.Offset = context.Rip;
 stackFrame.AddrPC.Mode = AddrModeFlat;
 stackFrame.AddrFrame.Offset = context.Rbp;
 stackFrame.AddrFrame.Mode = AddrModeFlat;
 stackFrame.AddrStack.Offset = context.Rsp;
 stackFrame.AddrStack.Mode = AddrModeFlat;
 os << "Frame Code "
 "address\n";
 while (::StackWalk64(
 IMAGE_FILE_MACHINE_AMD64, hProcess,
 hThread, &stackFrame, &context, nullptr,
 ::SymFunctionTableAccess64,
 ::SymGetModuleBase64, nullptr)) {
 DWORD64 pc = stackFrame.AddrPC.Offset;
 DWORD64 frame =
 stackFrame.AddrFrame.Offset;
 if (pc == 0) {
 os << "Null address\n";
 break;
 }
 os << "0x" << (PVOID)frame << " "
 << addressToString(pc) << "\n";
 }
}

October 2021 | Overload | 5

FEATURE ROGER ORR

Listing 3

Frame Code address
0x0000007CF88FE0A0 0x00007FFD554CCEA4 NtWaitForSingleObject + 20
0x0000007CF88FE140 0x00007FFD530B19CE WaitForSingleObjectEx + 142
0x0000007CF88FE180 0x00007FFD38672E24 Thrd_join + 36
0x0000007CF88FE1E0 0x00007FF67DB85C2F std::thread::join + 95 C:\Program Files
(x86)\...\include\thread(130) + 32 bytes
0x0000007CF88FE380 0x00007FF67DB81C60 printStack + 112 c:\article\TestStackWalker.cpp(65)
0x0000007CF88FE3C0 0x00007FF67DB81D2C process + 76 c:\article\TestStackWalker.cpp(76)
0x0000007CF88FF7A0 0x00007FF67DB81DB1 test + 65 c:\article\TestStackWalker.cpp(87)
0x0000007CF88FF7D0 0x00007FF67DB81DE9 main + 9 c:\article\TestStackWalker.cpp(90) + 9 bytes
0x0000007CF88FF820 0x00007FF67DB8AEA9 invoke_main + 57
d:\agent_work\4\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl(79)
0x0000007CF88FF890 0x00007FF67DB8AD4E __scrt_common_main_seh + 302
d:\agent_work\4\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl(288) + 5 bytes
0x0000007CF88FF8C0 0x00007FF67DB8AC0E __scrt_common_main + 14
d:\agent_work\4\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl(331)
0x0000007CF88FF8F0 0x00007FF67DB8AF3E mainCRTStartup + 14
d:\agent_work\4\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp(17)
0x0000007CF88FF920 0x00007FFD53B07034 BaseThreadInitThunk + 20
0x0000007CF88FF9A0 0x00007FFD55482651 RtlUserThreadStart + 33

The SYMBOL_INFO structure that we are
passed in the callback contains a number of
fields obtained from the PDB information for
the module being examined
at a given call site, so we provide "*" as the filter and always return TRUE
from our callback function to ensure we continue to enumerate.

This user-supplied value can be used to pass arbitrary data to the callback;
here we use the common technique when calling such a C API from C++
and pass a pointer to an instance of a user defined structure as the user
defined value, dereference this in the callback function, and finally call its
operator() (see Listing 5, on facing page).

The SYMBOL_INFO structure that we are passed in the callback contains
a number of fields obtained from the PDB information for the module
being examined. We will need several of these fields in order to
successfully decode the values of the variables we are interested in. The
first pair we are interested in are Name and NameLen, as these provide us
with the name of each variable found.

However, we should also consider the Flags field. We are only interested
in symbols where SYMFLAG_LOCAL is set and we should also exclude any
symbols marked with SYMFLAG_NULL. We will be using other flags in
the Flags field in due course.

We will enrich the contents of the EnumLocalCallBack function call
operator as we proceed, but the first implementation is quite simple (see
Listing 6).

The showVariablesAt function (Listing 7) populates the structures and
invokes SymEnumSymbols.

Finally we must add a call to this function to the end of the main loop in
stackTrace:

 showVariablesAt(os, stackFame, context);
6 | Overload | October 2021

Listing 4

C:> dumpbin /unwindinfo TestStackWalker.exe
...
 Begin End Info Function Name
...
 0000000C 00001EF0 00001F69 000188D4 ?process@@YAXAEAVSource@@@Z (void __cdecl process(class Source &))
 Unwind version: 1
 Unwind flags: None
 Size of prologue: 0x09
 Count of codes: 1
 Unwind codes:
 09: ALLOC_SMALL, size=0x3
...

FEATUREROGER ORR
October 2021 | Overload | 7

With all this in place we now get a list (Listing 8) of the local variables at
each function in the stack trace (or at least, those for which the debug
information is available).

Note that the order in which the local variables are enumerated does not
match declaration order in the source code.

How to identify the types of these variables
The PDB information for each symbol also includes type information. This
information is held by index (since multiple variables can have the same
type) and the index to this information is provided in the TypeIndex field
of the SYMBOL_INFO structure.

We add a new function to the SimpleStackWalker to encapsulate
adding the type to the variable name:

 void decorateName(std::string &name,
 DWORD64 ModBase,
 DWORD TypeIndex) const;

We call this with the name to add type information before printing it – note
that the function needs to modify the name because the declaration rules
in C and C++ may result in embedding the variable name in the complete
declaration (for example void (*func)()).

The decorateName function makes use of another function in the
symbol library, SymGetTypeInfo. This function provides access to
va r i ou s a t t r i bu t e s o f t h e t y pe , s e l ec t ed by t he
IMAGEHLP_SYMBOL_TYPE_INFO enumeration type passed as the fourth
argument. The actual data is returned in the final argument, where the
format of the data depends on the value of the GetType parameter.

We provide a member function, GetTypeInfo(), that adds hProcess
as the first argument to avoid having to specify this everywhere.

Listing 5

struct EnumLocalCallBack {
 // Called by the Symbol Engine
 static BOOL CALLBACK
 enumSymbolsProc(PSYMBOL_INFO pSymInfo,
 ULONG /*SymbolSize*/,
 PVOID UserContext) {
 auto &self =
 *(EnumLocalCallBack *)UserContext;
 self(*pSymInfo);
 return TRUE;
 }
 EnumLocalCallBack(
 const SimpleStackWalker &eng,
 std::ostream &os,
 const STACKFRAME64 &stackFrame,
 const CONTEXT &context)
 : eng(eng), os(os),
 frameOffset(frameOffset),
 context(context) {}
 void operator()(
 const SYMBOL_INFO &symInfo) const;
private:
 const SimpleStackWalker ŋ
 std::ostream &os;
 const STACKFRAME64& stackFrame;
 const CONTEXT &context;
};

Listing 6

// Simplest useful implementation
void EnumLocalCallBack::
operator()(const SYMBOL_INFO &symInfo) const {
 if (!(symInfo.Flags & SYMFLAG_LOCAL)) {
 // Ignore anything not a local variable
 return;
 }
 if (symInfo.Flags & SYMFLAG_NULL) {
 // Ignore 'NULL' objects
 return;
 }
 std::string name(symInfo.Name, symInfo.NameLen);
 os << " " << name << '\n';
}

Listing 7

void SimpleStackWalker::showVariablesAt(
 std::ostream &os,
 const STACKFRAME64 &stackFrame,
 const CONTEXT &context) const {
 EnumLocalCallBack callback(
 *this, os, stackFrame, context);
 IMAGEHLP_STACK_FRAME imghlp_frame = {0};
 imghlp_frame.InstructionOffset =
 stackFrame.AddrPC.Offset;
 SymSetContext(hProcess, &imghlp_frame, nullptr);
 SymEnumSymbols(
 hProcess, 0, "*",
 EnumLocalCallBack::enumSymbolsProc,
 &callback);
}

Listing 8

0x000000BBDEAFE0E0 0x00007FFD554CCEA4 NtWaitForSingleObject + 20
0x000000BBDEAFE180 0x00007FFD530B19CE WaitForSingleObjectEx + 142
0x000000BBDEAFE1C0 0x00007FFD38672E24 Thrd_join + 36
0x000000BBDEAFE220 0x00007FF7CF505C2F std::thread::join + 95 C:\Program Files
(x86)\...\include\thread(130) + 32 bytes
 this
0x000000BBDEAFE3C0 0x00007FF7CF501C60 printStack + 112 c:\article\TestStackWalker.cpp(65)
 ss
 hThread
 thr
0x000000BBDEAFE400 0x00007FF7CF501D2C process + 76 c:\article\TestStackWalker.cpp(76)
 source
 local_k
 local_i
 local_l
 local_j
0x000000BBDEAFF7E0 0x00007FF7CF501DB1 test + 65 c:\projects\articles\2021-09-
...

FEATURE ROGER ORR
There are many different classes of symbol information, all accessed using
this method and the type index. We pass TI_GET_SYMTAG to
SymGetTypeInfo to provide the tag type of the corresponding symbol
information. These tag values are defined in the enumeration
SymTagEnum in cvconst.h (found in the DIA SDK\include
subdirectory of Visual Studio, which is not by default in the include path)
or alternatively from DbgHelp.h , if you define the symbol
_NO_CVCONST_H.

Since each tag holds different information the tag is used as the condition
for a switch statement. For the purposes of this article, only four types
are of interest and I describe each in turn and show the code for that case
statement.

1. Built-in data types
The value SymTagBaseType is used for ‘built-in’ data types, such as int
and double. The TI_GET_BASETYPE and TI_GET_LENGTH arguments
to SymGetTypeInfo provide the underlying type (taken from the
BasicType enumeration, for example btUInt) and the data length (for
example, 4).

The code uses a helper function, std::string getBaseType(DWORD
baseType, ULONG64 length), to convert the data to C++ data types
such as unsigned short.

The getBaseType function uses a data structure holding type, length,
and corresponding C++ type name, for example:

 ...
 {btUInt, sizeof(unsigned short),
 "unsigned short"},
 {btUInt, sizeof(unsigned int), "unsigned int"}
 ...

In action, getBaseType just returns the name found in the matching
element of this structure. The complete case statement is then this:

 case SymTagBaseType: {
 DWORD baseType{};
 ULONG64 length{};
 getTypeInfo(modBase, typeIndex,
 TI_GET_BASETYPE, &baseType);
 getTypeInfo(modBase, typeIndex,
 TI_GET_LENGTH, &length);
 name.insert(0, " ");
 name.insert(
 0, getBaseType(baseType, length));
 break;
 }

2. User defined types
The value SymTagUDT is used for user defined types, such as Source in
our example code.

The first call we make in the function uses TI_GET_SYMNAME value,
which retrieves the full type name as a wide character string, where
strFromWchar simply creates an std::string from a WCHAR*:

 case SymTagUDT: {
 WCHAR *typeName{};
 if (getTypeInfo(modBase, typeIndex,
 TI_GET_SYMNAME,
 &typeName)) {
 name.insert(0, " ");
 name.insert(0, strFromWchar(typeName));
 // We must free typeName
 LocalFree(typeName);
 }
 break;
 }

3. Pointers and arrays
Pointers and arrays are identified by the SymTagPointerType and
SymTagArrayType, respectively. In both cases the dependent type is

ob ta ined us ing TI_GET_TYPEID and we recurs ive ly ca l l
decorateName on this type index. (See Listing 9.)

The recurse logic is common and is at the end of the decorateName
function:

 if (recurse) {
 DWORD ti{};
 if (getTypeInfo(modBase, typeIndex,
 TI_GET_TYPEID, &ti)) {
 decorateName(name, modBase, ti);
 }
 }

Listing 10 (overleaf) is a stack trace with the names and types of local
variables.

Note that the type of source in the process function is shown as
Source * although the argument is actually passed by reference. In the
PDB file, the distinction in the C++ code between pointers and references
is lost.

Showing the actual *values* for local variables
We now know the name and the type of our local variables, what about
their value?

In an unoptimised program, local variables are held in the stack frame; if
we look at the assembly output from compiling the program we can see
this (produced when we add /Fasc to the command line):

local_i$ = 32
...
?process@@YAXAEAVSource@@@Z PROC; process
...
 0001589 44 24 20 mov DWORD PTR local_i$[rsp], eax

The compiler output uses a symbolic name for the variable and uses this
value as an offset from the stack pointer (rsp).

In the symbol engine, this is indicated in the SYMBOL_INFO by a flag value
of SYMFLAG_REGREL. The base register is provided in the Register
field and the offset (32 for local_i, in this example) is supplied in the
Address field.

There is a large enumeration in cvconst.h listing all the various register
values – the one we want here for local_i is CV_AMD64_RSP (which is
335).

We can encapsulate the access to the register value by creating a struct
and a helper function:

Listing 9

case SymTagPointerType: {
 name.insert(0, "*");
 recurse = true;
 break;
}
case SymTagArrayType: {
 if (name[0] == '*') {
 name.insert(0, "(");
 name += ")";
 }
 DWORD Count{};
 getTypeInfo(modBase, typeIndex,
 TI_GET_COUNT, &Count);
 name += "[";
 if (Count) {
 name += std::to_string(Count);
 }
 name += "]";
 recurse = true;
 break;
}

8 | Overload | October 2021

FEATUREROGER ORR

Frame Code address
0x000000CD0F6FE110 0x00007FFD554CCEA4 NtWaitForSingleObject + 20
0x000000CD0F6FE1B0 0x00007FFD530B19CE WaitForSingleObjectEx + 142
0x000000CD0F6FE1F0 0x00007FFD36972E24 Thrd_join + 36
0x000000CD0F6FE250 0x00007FF61B674F4F std::thread::join + 95 C:\Program Files
(x86)\...\include\thread(130) + 32 bytes
 std::thread *this
0x000000CD0F6FE3F0 0x00007FF61B671E40 printStack + 112 c:\article\TestStackWalker.cpp(64)
 std::basic_stringstream<char,std::char_traits<char>,std::allocator<char> > ss
 void *hThread
 std::thread thr
0x000000CD0F6FE430 0x00007FF61B671F0C process + 76 c:\article\TestStackWalker.cpp(75)
 Source *source
 int local_k
 int local_i
 int local_l
 int local_j
0x000000CD0F6FF810 0x00007FF61B671F81 test + 49 c:\article\TestStackWalker.cpp(85)
...
 struct RegInfo {
 RegInfo(std::string name, DWORD64 value)
 : name(std::move(name)), value(value) {}
 std::string name;
 DWORD64 value;
 };
 RegInfo getRegInfo(ULONG reg,
 const CONTEXT &context);

This function returns the correct name and value for the supplied reg; at
this point the ‘Minimal viable product’ is:

 RegInfo getRegInfo(ULONG reg,
 const CONTEXT &context) {
 switch (reg) {
 case CV_AMD64_RSP:
 return RegInfo("rsp", context.Rsp);
 }
 return RegInfo("", 0);
 }

We will come back to this function before we have finished....

So the steps we need to obtain the value of the variable are:

 detect it is a register relative value

 add the offset to the corresponding register value

 read Size bytes from the resulting address.

In code this looks like Listing 11, where eng.readMemory is a simple
wrapper for ReadProcessMemory that adds the current hProcess.
Listing 12 (overleaf) shows the stack trace with names, types, and values
of local variables.

Hurrah! We have successfully walked the stack and printed the values of
the (simple) local variables we find. We could, if we wished, expand the
code further to print out the contents of C++ classes by reflecting on the
fields and their offsets.

However, the code so far has been demonstrated against an unoptimised
program.

What happens when we start to optimise the code?
As many readers are likely to be already aware, it is usually harder to debug
optimised code because of the changes made to the executable code during
optimisation.

Here are a few of the troublesome optimisations:

 code movement, so things no longer occur in the order of the source
code syntax

 heavy use of registers rather than storing values on the stack

 elimination of ‘dead stores’ (values stored but not subsequently
loaded)

 inline function calls.

We can some see these at work in the example program if we enable /O1
– the local variables displayed in the stack trace for the process function
are shown as:

 Source *source
 int local_k
 int local_i
 int local_j

The compiler has eliminated local_l which you might have noticed was
written to but not read. The compiler noticed too – a debug build gives a
warning:

 C4189: 'local_l': local variable is initialized
 but not referenced

The optimised build elides storing the return value into local_l, and
doesn’t even write any information for the variable into the pdb.

Secondly, the values are no longer shown. This is because the optimiser
is now using registers to store the values – they do not need to be stored
on the stack in the function.

Listing 11

if (symInfo.Flags & SYMFLAG_REGREL) {
 const RegInfo reg_info =
 getRegInfo(symInfo.Register, context);
 if (reg_info.name.empty()) {
 opf << " [register '"
 << symInfo.Register << "']";
 } else {
 opf << std::hex
 << " [" << reg_info.name << " + "
 << symInfo.Address << "]";
 if (symInfo.Size != 0 &&
 symInfo.Size <= 8) {
 DWORD64 data{};
 eng.readMemory(
 (PVOID)(reg_info.value +
 symInfo.Address),
 &data, symInfo.Size);
 opf << " = 0x" << data;
 }
 opf << std::dec;
 }
}

Listing 10
October 2021 | Overload | 9

FEATURE ROGER ORR
If we examine the assembly output from the compiler we see:

 lea rcx, OFFSET FLAT:??_C@_05PFHNGCBD@This?5@
 call printf

; 69 : int local_j = printf("is ");

 lea rcx, OFFSET FLAT:??_C@_03FLKGGKMB@is?5@
 mov ebx, eax

The complier is using the 32bit register ebx to hold the value of local_i.

On the x86 instruction set, a general purpose register can be treated as a
64-bit, a 32-bit, a 16-bit, or an 8-bit value. Writing to the 32-bit value, for
instance, modifies only the lower 32 bits of the full 64-bit register value.
Hence, the context at this point will have the ebx value as the low 32
bits of the value in context.Rbx.

To see this information in the symbol engine we check another flag in the
Flags field: SYMFLAG_REGISTER.This flag indicates that the value of
the variable is held in a register (and the field Register holds the register
used – in this case CV_AMD64_EBX).

The first thing we need to do is to implement a fuller version of the
getRegInfo() function we used to decode the values of the stack based
variables in the unoptimised case.

There are two things we need to do to this function; the first one is to add
the other general purpose registers to the switch statement and the other
thing we need to do is to mask the values for the registers which are using
only part of the 64bit general purpose register.

So, when processing local_i, the line in the switch statement that will
be executed is:

 case CV_AMD64_EBX:
 return RegInfo("ebx", context.Rbx & ~0u);

We then add handling for the SYMFLAG_REGISTER flag to the function
call operator of EnumLocalCallBack, just after the existing code for the
SYMFLAG_REGREL flag, like Listing 13.

With these changes we now get values printed for the local variables in
the optimised build too. Listing 14 shows the stack trace with the names,
types, and values of local variables in an optimised build.

Listing 12

Frame Code address
0x00000097900FE570 0x00007FFD554CCEA4 NtWaitForSingleObject + 20
0x00000097900FE610 0x00007FFD530B19CE WaitForSingleObjectEx + 142
0x00000097900FE650 0x00007FFD2E512E24 Thrd_join + 36
0x00000097900FE6B0 0x00007FF7196A62CF std::thread::join + 95 C:\Program Files
(x86)\...\include\thread(130) + 32 bytes
 std::thread *this [rsp+60] = 0x97900fe6f8
0x00000097900FE850 0x00007FF7196A1E70 printStack + 112 c:\article\TestStackWalker.cpp(64)
 std::basic_stringstream<char,std::char_traits<char>,std::allocator<char> > ss [rsp+60]
 void *hThread [rsp+20] = 0xc4
 std::thread thr [rsp+38]
0x00000097900FE890 0x00007FF7196A1F3C process + 76 c:\article\TestStackWalker.cpp(75)
 Source *source [rsp+40] = 0x97900fe8d0
 int local_k [rsp+28] = 0x7
 int local_i [rsp+20] = 0x5
 int local_l [rsp+2c] = 0xfda93c3e
 int local_j [rsp+24] = 0x3
0x00000097900FFC70 0x00007FF7196A1FB1 test + 65 c:\article\TestStackWalker.cpp(85)
 int return_value [rsp+20] = 0x799c244e
 Source source [rsp+30]
...

Listing 13

} else if (symInfo.Flags &
 SYMFLAG_REGISTER) {
 opf << " " << name;
 const RegInfo reg_info =
 getRegInfo(symInfo.Register, context);
 if (reg_info.name.empty()) {
 opf << " (register '"
 << symInfo.Register << "\')";
 } else {
 opf << " (" << reg_info.name << ") = 0x"
 << std::hex << reg_info.value
 << std::dec;
 }
}

Listing 14

Frame Code address
0x000000A0EA72E390 0x00007FFD554CCEA4 NtWaitForSingleObject + 20
0x000000A0EA72E430 0x00007FFD530B19CE WaitForSingleObjectEx + 142
0x000000A0EA72E460 0x00007FFD4B2E2DFF Thrd_join + 31
0x000000A0EA72E5F0 0x00007FF72B7A3Df2 printStack + 2f2 c:\article\TestStackWalker.cpp(62) + 47 bytes
 std::basic_stringstream<char,std::char_traits<char>,std::allocator<char> > ss [rsp + 50]
 void *hThread [rsp + 40]
 std::thread thr [rsp + 30]
0x000000A0EA72E620 0x00007FF72B7A3F4F process + 79 c:\article\TestStackWalker.cpp(75)
 Source *source (rdi) = 0xa0ea72e650
 int local_k (esi) = 0x7
 int local_i (ebx) = 0x5
 int local_j (ebp) = 0x3
0x000000A0EA72F9F0 0x00007FF72B7A440F test + 115 c:\article\TestStackWalker.cpp(85)
 int return_value (ebx) = 0x673ae2c3
 Source source [rsp + 20]
...
10 | Overload | October 2021

FEATUREROGER ORR
But … what? Where does the right register value
come from?
The code changes we had to make to display local variables in an optimised
build were quite small. The ‘magic’ is that we were provided with the
correct value of Rbx in the context record. When we read the initial thread
context in the stackTrace method:

 GetThreadContext(hThread, &context);

then I see the value of Rbx as 0. Where, you might wonder, does the
runtime find the value of 5 which Rbx had further up the call stack?

The ‘Register usage’ documented in [x64abi] states that the Rbx register
value must be preserved when a function is called, and restored on return.
The register set is basically divided into ones that must be restored – also
called ‘non-volatile’ and ones that are ‘scratch’ – also called ‘volatile’.

So, if the called function wants to use the register, it must save it
somewhere. There is no point using another register to save it as the called
function could simply use the other register itself so the value is saved on
the stack, and restored when the function returns. This of course applies
to the process function as well, so the function prolog contains the
instruction:

 mov QWORD PTR [rsp+8], rbx

and the function epilog reverses this:

 mov rbx, QWORD PTR [rsp+48]

(The stack offsets are different because the function manipulates the stack
pointer during its prolog and epilog, and the ordering in the epilog is not
the reverse of that in the prolog.)

This works well during normal flow, but what if an exception is thrown
somewhere? The runtime needs to ensure the register convention is
maintained otherwise the code catching the exception might find a local
variable, held in a register, had suddenly changed value!

However it would be expensive (and hard!) for the runtime to try and do
this by disassembling the code in each function as it unwinds in order to
work out which registers were saved and what frame offset should be used
to restore them.

This information is also saved in the unwind meta-data I touched on briefly
in the discussion of stack tracing (‘But how does it work?’)

We can examine this data for the process function as before using
dumpbin, but this time on the optimised program (Listing 15).

The table contains the information for each non-volatile register and how
it should be restored. At runtime the unwind logic uses this information as
it works up the stack to restore the register values at each level. The symbol
engine code does exactly the same thing when you produce a stack trace
– it reads the unwind metadata to update the context with the register
values that were currently at each call site.

More extreme optimisation
It's not possible to undo the effect on debugging of all optimisations. As
we saw, even in our simple example, local_l is not saved. The return
value from source() is returned in the Eax register, but this is a volatile
register and here the fourth instruction in printStack overwrites the
Rax register and this value is lost forever.

A particular problem is debugging inlined functions. Inlining not only
removes the function prolog and epilog, but it also allows the compiler to
further optimise the instructions in the called function as part of the body
of the caller. This results in code where the assembly instructions executed
may toggle back and forth between logically different functions.

Windows debuggers are able to make use of additional data in the PDB
file which identifies where the various parts of the inlined functions end
up in the binary. This allows the debugger in Visual Studio to make a
reasonable stab at debugging even quite heavily optimised code.

I'm not going to attempt to do this here.

How can we debug and get performance?
As a developer there is a tension between performance and debuggability.

The ideal case is where the program behaves in a sufficiently similar way
with and without optimisation, so you can run an interactive debugger
against an unoptimised build and get the same behaviour as with the
released product.

This is the well known pattern of having separate ‘Release’ and ‘Debug’
builds.

If this works in your case, it is likely to be the easiest way to resolve
problems. Of course, this pattern only works if you are able to reproduce
a problem originally occurring with a Release build when using a Debug
one.

More nuanced control is possible, however, with care.

The naïve approach of mixing together object files from a Debug and
Release build, unfortunately, very rarely works. This is because many
compiler flags differ between the two projects, which means things like
structure sizes and layouts may not match.

However, you can change just the optimisation setting for individual files
in the Release build and for even finer control you can change the
optimisation setting for individual functions.

This can be very useful when you know roughly which functions are
involved in a failure case but cannot, for whatever reason, use the full
Debug build.

Let us try this out in our simple example. If we compile with full
optimisation (for example with the compiler option /Ox) our stack trace
is now not very useful. Listing 16 (overleaf) contains output from a fully
optimised program.

Listing 15

C:> dumpbin /unwindinfo TestStackWalker.exe
...
 Begin End Info Function Name
...
 00000264 00003F00 00003F86 0001095C ?process@@YAXAEAVSource@@@Z (void __cdecl process(class Source &))
 Unwind version: 1
 Unwind flags: None
 Size of prologue: 0x14
 Count of codes: 8
 Unwind codes:
 14: SAVE_NONVOL, register=rsi offset=0x40
 14: SAVE_NONVOL, register=rbp offset=0x38
 14: SAVE_NONVOL, register=rbx offset=0x30
 14: ALLOC_SMALL, size=0x20
 10: PUSH_NONVOL, register=rdi
October 2021 | Overload | 11

FEATURE ROGER ORR
Here we see that the call stack in our program has collapsed – main calls
printStack directly and the intervening calls to both test and
process have been inlined.

If we wrap the process function in a #pragma optimize("", off)
/ #pragma optimize("", on) pair then this function will not be
optimised and therefore easy to debug, without affecting the optimisation
elsewhere in the program. Listing 17 shows output from a fully optimised
program with an unoptimised function.

Conclusion
In this article, I have sketched some of the techniques used by an interactive
debugger to provide values for local variables. I’ve also shown some of
the ways in which more work is needed to do this when optimisations are
applied.

The implementers of the various Windows debuggers have done a great
job at providing a powerful environment which works amazingly well even
on optimised programs.

However, there are times when if you wish to obtain debugging
information at runtime you may need to compromise on the performance,
at least for the parts of the program under investigation which you are
focussing on.

References
[dbghelp.h] dbghelp.h header documentation:

https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/

[Orr11] Roger Orr, ‘Using the Windows Debugging API’, C Vu 23.1
https://accu.org/journals/cvu/23/1/cvu23-1.pdf

[Orr12] Roger Orr, ‘Using the Windows Debugging API on Windows
64’, C Vu, 23.6 https://accu.org/journals/cvu/23/6/cvu23-6.pdf

[x64abi] Microsoft x64 Software Conventions:
https://docs.microsoft.com/en-us/cpp/build/x64-software-
conventions

Source code
The full source code for this article can be found at: https://github.com/
rogerorr/articles/tree/main/Debugging_Optimised_Code

Listing 16

This is a test
Frame Code address
0x000000A72BAFE420 0x00007FFB259ACEA4 NtWaitForSingleObject + 20
0x000000A72BAFE4C0 0x00007FFB230619CE WaitForSingleObjectEx + 142
0x000000A72BAFE4F0 0x00007FFB20272DFF Thrd_join + 31
0x000000A72BAFE6B0 0x00007FF7602F1E6A printStack + 346 c:\article\TestStackWalker.cpp(62) + 49 bytes
 std::basic_stringstream<char,std::char_traits<char>,std::allocator<char> > ss [rsp+80]
 void *hThread [rsp+70]
 std::thread thr [rsp+40]
0x000000A72BAFFA80 0x00007FF7602F2302 main + 178 c:\article\TestStackWalker.cpp(88) + 178 bytes
0x000000A72BAFFAC0 0x00007FF7602FA830 __scrt_common_main_seh + 268
d:\a01\...\startup\exe_common.inl(288) + 34 bytes
 bool has_cctor [rsp+20]
0x000000A72BAFFAF0 0x00007FFB24A67034 BaseThreadInitThunk + 20
0x000000A72BAFFB70 0x00007FFB25962651 RtlUserThreadStart + 33

Listing 17

This is a test
Frame Code address
0x0000006E236FE4F0 0x00007FFB259ACEA4 NtWaitForSingleObject + 20
0x0000006E236FE590 0x00007FFB230619CE WaitForSingleObjectEx + 142
0x0000006E236FE5C0 0x00007FFB20272DFF Thrd_join + 31
0x0000006E236FE780 0x00007FF7FA041E6A printStack + 346 c:\article\TestStackWalker.cpp(62) + 49 bytes
 std::basic_stringstream<char,std::char_traits<char>,std::allocator<char> > ss [rsp+80]
 void *hThread [rsp+70]
 std::thread thr [rsp+40]
0x0000006E236FE7C0 0x00007FF7FA0420FC process + 76 c:\article\TestStackWalker.cpp(75)
 Source *source [rsp+40] = 0x6e236fe7f0
 int local_k [rsp+28] = 0x7
 int local_i [rsp+20] = 0x5
 int local_l [rsp+2c] = 0xd9e328d8
 int local_j [rsp+24] = 0x3
0x0000006E236FFB90 0x00007FF7FA04224D main + 125 c:\article\TestStackWalker.cpp(89) + 125 bytes
0x0000006E236FFBD0 0x00007FF7FA04A830 __scrt_common_main_seh + 268
d:\a01\...\startup\exe_common.inl(288) + 34 bytes
 bool has_cctor [rsp+20]
0x0000006E236FFC00 0x00007FFB24A67034 BaseThreadInitThunk + 20
0x0000006E236FFC80 0x00007FFB25962651 RtlUserThreadStart + 33
12 | Overload | October 2021

https://accu.org/journals/cvu/23/1/cvu23-1.pdf
https://accu.org/journals/cvu/23/6/cvu23-6.pdf
https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/
https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/
https://github.com/rogerorr/articles/tree/main/Debugging_Optimised_Code
https://github.com/rogerorr/articles/tree/main/Debugging_Optimised_Code

FEATUREIAN BRUNTLETT
Stufftar Revisited
Personal projects can provide valuable learning
opportunities. Ian Bruntlett shares a system call
surprise he discovered while extending stufftar.
n Overload 132, I presented stufftar, a program used by me to backup
key parts of my filesystem [Bruntlett16]. Since then, I have occasionally
had the need to find out: what has changed in my filesystem since a

particular backup file was created? It remained a ‘would like to have’
option until I was experimenting with the GNU find command line
utility. It has a -newer option which, while searching a sub-directory,
causes it to list any files newer than a reference file. So this command will
list any files in my TECH-Manuals folder newer than the file TECH-
Manuals.tar.gz:

 find ~/TECH-Manuals/ -newer ~/TECH-Manuals.tar.gz

Because I wasn’t sure I could remember the name of the -newer option,
I wrote a bash shell script inspired by the above command. And wrote it
so that I could pass additional parameters to find. The script is in Listing 1
and is called like this:

 newtar ~/TECH-Manuals ~/TECH-Manuals.tar.gz

The script requires two parameters – the path to the backed up directory
and the name of the backup file. For example, given the directory TECH-
Manuals and a backup of it, TECH-Manuals.tar.gz, running:

 find ~/TECH-Manuals/ -newer ~/TECH-Manuals.tar.gz

currently gives this output:

 TECH-Manuals
 TECH-Manuals/tm-processes.html
 TECH-Manuals/tm-index.html
 TECH-Manuals/tm-processes.html~
 TECH-Manuals/tm-index.html~
 TECH-Manuals/tm-platforms.html
 TECH-Manuals/tm-platforms.html~

That is useful – but what if you want to know more about those files? You
can pass in printf options. This example lists when the new files were
last updated:

 newtar TECH-Manuals TECH-Manuals.tar.gz -printf
 "%t %p\n"

which gives this output:

Since I wrote stufftar, I have learned about the shellcheck program that
critiques shell programming style. This new script is quietly accepted by
shellcheck.

I

Sun Jul 18 21:16:08.7651258860 2021 TECH-Manuals
Wed Jul 7 18:35:57.6009844760 2021 TECH-Manuals/
tm-processes.html
Sun Jul 18 21:16:08.7651258860 2021 TECH-Manuals/
tm-index.html
Wed Jul 7 18:06:16.9915321630 2021 TECH-Manuals/
tm-processes.html~
Fri Jul 9 16:30:47.2928147850 2021 TECH-Manuals/
tm-index.html~
Wed Jul 7 18:34:51.5270892980 2021 TECH-Manuals/
tm-platforms.html
Wed Jul 7 18:05:39.4933397510 2021 TECH-Manuals/
tm-platforms.html~

Listing 1

#!/usr/bin/env bash
Ian Bruntlett, 20th April 2021 - 7th July 2021
newtar - file to list entries in a tar file
newer than the date of a 2nd file
Based on this command: find ~/TECH-Manuals/
-newer ~/TECH-Manuals.tar.gz
2021-07-07 - updated using advice from
shellcheck
function Usage
{
 echo Usage: "$0" dir-of-source-files tar-file-
that-backed-up-that-dir
 echo Example: "$0" Desktop
Desktop_02_April_2021.tar.gz
 echo Note: Extra parameters passed on command
line are passed on to find
}
if [$# -lt 2]; then
 Usage >&2
 echo Incorrect number of parameters - at least 2
expected, received $# >&2
 exit 1
fi

if [! -d "$1"]; then
 Usage >&2
 echo ERROR: "$1" is not a directory >&2
 exit 1
fi

if [! -f "$2"]; then
 ERROR_CODE=$?
 Usage >&2
 echo ERROR: "$2" is not a file \($ERROR_CODE\)
>&2
 exit 1
fi

STARTING_POINT=$1
TIME_REFERENCE=$2
shift
shift
find "$STARTING_POINT" -newer "$TIME_REFERENCE"
"$@"

Ian Bruntlett Ian has been programming for some years. He also
reads a lot to improve his skills. He volunteers for a mental health
charity called Contact (www.contactmorpeth.org.uk) doing various
things including running a Computer Wombling Project (refurbishing
old computers with Linux for the members) and, perhaps, running
Mongoose Traveller games there again one day.
October 2021 | Overload | 13

www.contactmorpeth.org.uk

FEATURE IAN BRUNTLETT
A system call surprise
It seems that every Linux expert says “it’s in the man files” but I was
always curious to know: how do you find out about what you don’t know
exists? The apropos command (a synonym for man -k) can be used to
find about things related to a topic. For example, to find out things related
to the Hewlett Packard Printing and Scanning utilities, I use this command:

 apropos hp-

which yields this (abbreviated) output::

So I thought: what if I used a regular expression? I tried this command:

 man -k "[a-z]"

and got a lot of output – 7,519 lines worth. And then I thought… what if
I restricted the output to a particular section of the man pages using the -s
option? To refresh the reader’s memory, here is a quick summary of the
section numbers:

1. Executable programs or shell commands
2. System calls (functions provided by the kernel)
3. Library calls (functions within program libraries)
4. Special files (usually found in /dev)
5. File formats and conventions, e.g. /etc/passwd
6. Games
7. Miscellaneous (including macro packages and conventions), e.g.

man(7), groff(7)
8. System administration commands (usually only for root)
9. Kernel routines [Non standard]

So running this command lists all the pages on system calls:

 man -k "[a-z]" -s 2

yielding 496 lines of output, abbreviated here:

Again, I took this as an opportunity to write a supporting shell script so I
wrote the one in Listing 2:

The added bonus of the above bash script is that it can list the contents of
multiple sections. So the command man-section 1 8 will list
executables for the user (section 1) and for administrators (section 8).

The command man-section {1..9} will list pages for all 9 sections.
This gives a strange warning message on my system as there are no
installed pages for section 9 on my system.

I know its a cliché but I am perpetually hopping inside a small collection
of languages, learning new things and reinforcing existing knowledge. I
have been advised that one way to achieve this is to have side projects to
exercise knowledge to avoid losing it. I bought some revision flash cards
from WH Smith’s and am collecting bash questions for me to answer in
the future. As time goes by, I’ll collect questions for the other languages.
I am aware that the shell scripts here are quite basic but I believe that
developing them has helped improve my bash skills and possibly provided
people with a couple of useful tools.

References
[Bruntlett16] Ian Bruntlett (2016) ‘Stufftar’ in Overload 132, published

April 2016, available from https://accu.org/journals/overload/24/
132/bruntlett_2226/

hp-align (1) - Printer Cartridge Alignment
Utility
hp-check (1) - Dependency/Version Check
Utility
hp-check-plugin (1) - AutoConfig Utility for
Plug-in Installation

_newselect (2) - synchronous I/O multiplexing
_Exit (2) - terminate the calling process
__clone2 (2) - create a child process
_exit (2) - terminate the calling process
_llseek (2) - reposition read/write file
offset
_syscall (2) - invoking a system call without
library support (OBSOLETE)
_sysctl (2) - read/write system parameters
accept (2) - accept a connection on a socket
<snip!>
vserver (2) - unimplemented system calls
wait (2) - wait for process to change state
wait3 (2) - wait for process to change
state, BSD style
wait4 (2) - wait for process to change
state, BSD style
waitid (2) - wait for process to change state
waitpid (2) - wait for process to change state
write (2) - write to a file descriptor
writev (2) - read or write data into multiple
buffers

Listing 2

#!/usr/bin/env bash
2021-07-11 Ian Bruntlett
2021-07-14 Tidying up heredoc in "Usage"
function.
Name : man-section
Purpose: To dig around the man pages

function Usage
{
cat <<END-OF-USAGE-MESSAGE
Usage: $0 section-number (from 1 to 9, optional)
 1 Executable programs or shell commands
 2 System calls (functions provided by
the kernel)
 3 Library calls (functions within
program libraries)
 4 Special files (usually found in /dev)
 5 File formats and conventions, e.g. /
etc/passwd
 6 Games
 7 Miscellaneous (including macro
packages and conventions), e.g. man(7), groff(7)
 8 System administration commands
(usually only for root)
 9 Kernel routines [Non standard]
END-OF-USAGE-MESSAGE
}

if [$# -eq 0]; then
 Usage >&2
 exit 0
fi

while ["$1" != ""]; do
 man -k "[a-z]" -s "$1"
 shift
done
14 | Overload | October 2021

https://accu.org/journals/overload/24/132/bruntlett_2226/
https://accu.org/journals/overload/24/132/bruntlett_2226/

FEATURELUCIAN RADU TEODORESCU
Executors: a Change
of Perspective
Parallelism is powerful. Lucian Radu Teodorescu
explains the new C++ proposal for managing
asynchronous execution on generic execution contexts.
n software engineering, it’s often the case that a change of perspective
can dramatically modify the perceived usefulness and complexity of a
given piece of code. Probably one of the most famous examples in the

C++ world is Sean Parent’s rotate algorithm [Parent13]; once you
realise that a complex loop is essentially a rotate operation, you can
simplify how you write the code a lot, but, more importantly, also how you
reason about the code.

I believe that most of us have had several of these “Aha!” moments during
our programming careers, which significantly improved our
understanding of some programming problems. Some of us might
remember the joy provoked by the understanding of pointers,
backtracking, dynamic programming, graph traversal, etc. We probably
often don’t pay attention to these moments, and they are constantly
happening. Sometimes the trigger is learning a new technology, sometimes
it is learning a new trick, and sometimes it is just a clear explanation from
a colleague.

But, regardless of the trigger for these moments, oftentimes the result is
that the change of perspective brought a positive improvement in
understanding. The problem does not change, but the way we approach it
is (fundamentally) different. And sometimes the end results are
remarkable.

This article is about such a perspective change. In fact, it’s about two
separate perspective changes: one coming from the C++ standard
committee, as they revised and reworded the executors proposal, and one
from my side, looking at the proposal in an entirely different way.

However, before diving into this perspective change, I owe the readers an
apology.

Errata
In my last article, ‘C++ Executors: the Good, the Bad, and Some
Examples’ [Teodorescu21], I made one major mistake. While trying to
pick out some pros and cons of the proposal of the initial set of algorithms
([P1897R3]), I claimed that the proposed executors do not have a monadic
bind operation defined. This is fundamentally wrong. I failed to realise that
the proposal defines the let_value operation, which is precisely the
monadic bind. I was confused about the description of the operation and
failed to realise that this is the monadic bind I was looking for.

The let_value operation receives two parameters: a sender and an
invocable, and returns another sender. When the whole computation runs,
the value resulting from running the input sender is passed to the given
invocable. This invocable is then returning a sender, possibly yielding a
different value type. There you go: this is just the monadic bind.

I hope the readers will excuse me for this error.

A new proposal, a new perspective
This year, the C++ standard committee dropped [P0443R14] and related
proposals, and combined all the important pieces into a new proposal:
P2300: std::execution [P2300R1].

The core of the proposal is the same. The proposal envisions that senders
and receivers are the basis for expressing asynchronous execution,
concurrency, and parallelism in future C++ programs. While the core
remains the same, there are some fundamental changes to the new
[P2300R1] proposal.

I would categorise these changes into two groups: simplification of the
concepts and simplified presentation. Let’s analyse them individually.

Simplification of concepts
The first major simplification is the dropping of the concept of executor
completely, along with any of the related functionalities. The new proposal
argues that executor concepts should be replaced by schedulers (and
senders). The core responsibility is the same for both, and it makes sense
to drop one of them. And schedulers have the advantage over executors in
that they also have completion notifications; one can get notified when a
certain work is completed (whether successfully, with an error or
cancelled) with schedulers, but with executors, the same job is much more
complex. Thus, schedulers have the advantage here.

The idea of an executor is elementary: an executor executes work.
Schedulers are not as easy to describe; they can be described by schedulers
represent execution contexts, or schedulers represent strategies for
scheduling work on execution contexts. This difference of perceived
complexity is somewhat subjective, but I argue that the idea of executing
work is easier to understand than scheduling work for execution.

However, this complexity is just at the surface. One can easily transform
a scheduler into an executor. In fact, the paper proposes an algorithm void
execute(scheduler auto sched, invocable auto work) that
practically makes the scheduler behave like an executor. To make things
clearer, here is a possible implementation (a bit simplistic, but it works):

 void execute(scheduler auto sched,
 invocable auto work) {
 start_detached(schedule(sched) | then(work));
 }

This function calls three algorithms defined by [P2300R1]. Calling
schedule on a scheduler object will return a sender that would simply
send an impulse and no value to its receiver. The then algorithm takes
the impulse coming from the scheduler and calls the work. This ensures
that the work will be executed whenever the scheduler schedules the work,
and on whatever execution context is defined in the scheduler. The then
algorithm also returns a sender. The whole thing is started by
start_detached, which ensures that the entire composition will start
to be executed.

The second change that I would call major is the removal of the submit
operation and, with that, the cleaning of possible operations on the main

concepts. The old submit() operation can be substituted by the more

I

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
October 2021 | Overload | 15

FEATURE LUCIAN RADU TEODORESCU

the biggest perspective shift that reduces the
complexity is the breakdown of the proposal
design into user side and implementer side
flexible connect()/start() pair as shown in this (simplified)
definition:

 void submit(sender auto s, receiver auto recv) {
 start(connect(std::move(s), std::move(recv)));
 }

This removal makes the important concepts and operations between them
easier to understand:

 schedulers are strategies for scheduling work on the execution
context

 one can call schedule() on a scheduler to obtain a sender that
just sends an impulse on the right execution context

 senders describe work to be done

 one can call connect() on a sender and a corresponding
receiver to obtain an operation state object

 receivers are completion notifications and serve as glue between
senders

 senders will call one of set_value, set_done or
set_error on them

 operation states represent actual work to be done1

 one can call start() on an operation state to actually start the
work

The paper envisions that end users will only use schedulers and senders,
while receivers and operation states are more of a concern to the library
implementers. But, more on that later.

There are more changes that [P2300R1] makes over [P0443R14] and
related papers. The new proposal adds more algorithms to make it simpler
for users to use this proposal in various contexts, allows implementers to
provide more specialised algorithms, removes the need for properties
(replacing them with scheduler queries, which are much easier to
understand for regular programmers), etc. Such changes make the whole
proposal more approachable by typical C++ programmers. We won’t be
diving into these now. I highly encourage the reader to take a look at the
proposal…

Simplified presentation
One pleasant surprise of the new proposal [P2300R1] is that it can be easily
read, without being a C++ expert. The new proposal is organised in such
a way that it can be read by both users and library creators; it’s not quite
for beginners, but still, it’s accessible to a larger audience. Again, I urge
the reader to take a look at the [P2300R1] proposal to check this.

One of the first things to notice is that the new proposal starts with clear
motivation, a set of guiding priorities and some well-explained examples.

These will allow the typical reader to understand much more easily the
problem that the proposal tries to solve. Thus, by this new arrangement of
the content, the authors make the whole proposal seem less complex.

But probably the biggest perspective shift that reduces the complexity is
the breakdown of the proposal design into user side and implementer side.
In other words, the authors clearly delimit between the things that most
users will care about, and the things that mostly the implementers will care
about. This translates into a great simplification for most users.

In terms of concepts, users will care about schedulers and senders.
Schedulers, as mentioned above, describe execution contexts. The only
thing that the user can do with them is to obtain a sender. The current
proposal allows this only by using the schedule() algorithm; in the
future, there might be other ways to create senders.

Senders, on the other hand, can be manipulated in multiple ways using
sender algorithms. Here, the paper also makes it easier for users to
understand the proposed functionality by breaking these sender algorithms
into three categories:

 sender factories (schedule(), just() and transfer_just())

 sender adaptors (transfer(), then(), upon_*(), let_*(),
on(), into_variant(), bulk(), split(), when_all(),
transfer_when_all() and ensure_started())

 sender consumers (start_detached() and sync_wait())

Now, even without knowing what these algorithms do, one can intuitively
figure out the rough idea behind them. And this helps a lot in improving
understandability of the whole proposal.

Arranging user-facing concepts like this is a change of perspective that
makes the proposal seem less complex.

Only after presenting all the user-facing concepts does the paper go into
describing the design of the concepts and algorithms needed for the
implementer. The average user will not care about this. In this section, the
paper describes the design of the receivers and of the operation states, how
the senders can be customised, and the design decisions that make senders
and receivers be performant in many different contexts.

What is commonly known as the proposal of senders and receivers, now
splits the senders from receivers, making them part of different sets of
concerns. It’s just a change of perspective, but this change makes the
proposal look simpler.

Key insight: it’s all about computations
The second major change of perspective presented in this article is my own
change of perspective. Since the last article [Teodorescu21], I have had an
Aha! moment that made me realise that one can look at schedulers, senders
and receivers in a simpler way.

Naming
The main problem that I had with the previous proposal was that the names
sender and receiver are extremely abstract. In fact, one can apply the
sender/receiver terminology to function composition, single-threaded

1. We said that senders describe work, and operation state objects
represent actual work. While senders are just pieces of work that need
to be glued with receivers, the operation states represent these glued
pieces of work. Starting an operation state will execute work, whereas
we cannot simply start directly one sender.
16 | Overload | October 2021

FEATURELUCIAN RADU TEODORESCU

one can apply the sender/receiver terminology to
function composition, single-threaded algorithms,

processes, Unix pipes, architectural components, and a
multitude of other concepts in software engineering
algorithms, processes, Unix pipes, architectural components, and a
multitude of other concepts in software engineering. Moreover, in the
concurrency world, there are many types of useful tasks in which we are
not sending and receiving any important data; the sending and the
receiving part is not essential, the execution of the task is.

The change of perspective that I’m proposing is the following:

 let’s think of senders as async computations

 let’s think of receivers as async notification handlers

Because asynchronicity is implied in this context, I’ll drop the term async
and keep just computations and notification handlers. I argue that it’s
easier to explain to users the concepts described in [P2300R1] by using
computations and notification handlers instead of senders and receivers.

One can easily think of computations as just description of work to be
executed in one or multiple execution contexts. Schedulers are then the
objects that schedule computations: when and where these should start
executing. Receivers, if one needs to use them, are the handlers that get
notified about the completion of computations. Doesn’t sound that
complicated.

To make things clearer, I’ll make the distinction between computation and
computation parts. Let’s look at one simple example:

 auto c1 = schedule(my_scheduler);
 auto c2 = then(c1, some_work_fun);
 auto c3 = then(c2, some_other_work_fun);
 start_detached(c3);

We define three computations: c1, c2, and c3. The first computation is a
part of the second computation, which, in turn, is a part of the third
computation. When we refer to a computation, we refer both to the
algorithm that we are using to define it (along with its parameters) and to
the base sender that the algorithm might take. Thus, the c3 computation
also includes c2. However, a computation_part is only the algorithm
invocation, without including the base computation.

While a computation can be recursively defined, a computation part refers
only to a narrow description of an operation that needs to be executed as
a part of a chain.

Figure 1 tries to illustrate the recursion of computations. c3 defines the
entire computation, and it consists of 3 parts (colored differently). c3
recursively contains c2 which in turn contains c1.

Computations and tasks
In [Teodorescu20], we defined a task to be an independent unit of work.
That is, the minimal amount of work that can be executed in one thread of
execution, in such a way that it doesn’t conflict with other active tasks
currently executing. Leaving the independent part aside for a moment, let’s
compare tasks and computations with from the amount of work
perspective.

Having [P2300R1] in mind, computations can be created at different
levels:

 sub-unit computations; where multiple computations are chained
together to form a unit of work (typically run on a single thread)

 unit computations; where a computation is roughly equivalent to a
task

 multiple unit computations; where the computation corresponds to
more than one task, possible executed on different threads.

The code in the section above showed an example of sub-unit
computations. We will show, however, an example containing the two
other categories in Listing 1.

It’s interesting to notice that, even in this example, sub-unit computations
are defined. In fact, most of the time, the framework forces the user to
employ sub-unit computations. Some of them are stored in named
variables, and some of them are just temporaries. In this example, both
start and start2 variables represent sub-unit computations.

The variables c1 and c2 represent tasks, so we can say that they are units
of work.

In the second part of the example, we’ve shown a computation that spawns
two tasks and ensure they are both executed. In this sense, c3 describes
more work than a task can.

This example is illustrated in Figure 2. c2 looks just like a task, while c3
describes two independent tasks, plus the initial split operation and the
final join operation. This suggests that computations can represent higher
level patterns of concurrency.

Figure 1

��
��

��
Listing 1

// unit
sender auto start = schedule(my_scheduler);
sender auto c2 = start | then(save_log_to_disk);
start_detached(c2);
// more than one unit
sender auto start2 =
split(schedule(my_scheduler));
sender auto c3 = when_all(
 then(star2, [] { do_first_work(); }),
 then(star2, [] { do_second_work(); })
);
start_detached(c3);
October 2021 | Overload | 17

FEATURE LUCIAN RADU TEODORESCU
In order for a computation to become greater than a unit of work, one has
to call some algorithms that can move work from one thread to another.
Example of such algorithms are split, transfer or bulk. We can
easily identify these cases just by code inspection.

On the other hand, the distinction between sub-unit and unit computation
may not always be clear. The same computation can be both a sub-unit and
a unit computation in different contexts; the user of the computation
decides whether it is a part of a bigger unit computation or it is spawned
into a task.

The bottom line is that these computations (again, they are called senders
in [P2300R1]) can have different sizes, sometimes much bigger than tasks.
This has two important consequences:

1. As computations can be equivalent with tasks, everything that can
be modelled with tasks can also be modelled with computations.

2. Computations can be used to express large parts of the concurrent
applications.

The first consequence is crucial. We proved in [Teodorescu20] that every
concurrent system can be described with tasks, and we don’t need mutexes
or any other low-level synchronisation primitives (except in the task
framework itself). With this consequence in mind, we can apply the same
conclusion with a system based on computations (or senders): all
concurrent problems can be expressed with just computations, without
needing synchronisation primitives in user-code. We can use computations
as a global solution to concurrency.

This is where the independent part in the definition of a task is important.
We assume that the breakdown of work between computations is done in
such a way that two computations that can be run in parallel will not
produce unwanted race conditions.

If the first consequence allows us to prove the existence of a general
algorithm for handling the concurrency algorithm (something that we
won’t do in this article), the second consequence allows us to easily build
complex concurrent applications. Let’s quickly dive into this.

Composability of computations
As we’ve seen above, computations are built on top of each other, starting
from small primitives and building up. This is especially visible when we
use the pipe operator (see above example). What is on the left of the pipe
operator (i.e., |) are computations, but also the result of the pipe
computations are computations. That is, smaller computations are
composed into bigger computations. That is, computations are highly
composable.

The examples in the proposal are, of course, small; the authors couldn’t
have spent most of the papers discussing a large example. We won’t do
that here either, but we will try to contemplate how such an example might
look.

Let’s assume that we want to build a web server, with functionality similar
to Google Maps. One needs to implement operations for downloading map

data, for searching the map and for routing through the map, plus other less-
visible operations (e.g., getting data for points-of-interest, downloading
pictures, searching similar points of interests, etc.). Some operations might
be bigger (e.g., calculating routes) and some might be smaller (e.g.,
downloading data).

If we ignore the concerns related to network communication, security and
data packaging, the application needs to have some request handlers that,
given some inputs, will generate the right outputs to be sent to the user.
Let’s focus on this core part. Each type of request will have a
corresponding handler. These handlers can vary in size for anything
between small and big. But, we can express any of these handlers as one
computation. Each of these computations can be then made by joining in
multiple smaller computations.

A computation that will implement the routing algorithm will probably be
broken down into computations that will perform a general analysis of the
situation, read the corresponding map data into memory, perform a graph
routing algorithm to find the best path, compute the properties of the best
route found, gather all the data that needs to be sent down to the client, etc.
All of these can be implemented again in terms of computation. Moreover,
they can be executed on multiple threads of execution inside the same
server, or can be distributed across multiple servers. We can represent all
of this using computations.

For example, Listing 2 shows how one can encode the part that reads the
data needed for such a request.

Some brief explanations for this example:

 starting from the data received as argument,
read_data_computation() will first break the data into tiles
and then attempt to load the tiles

 the loading of the tiles is done in parallel by using the bulk
algorithm; we divide the work to be done into smaller chunks, one
per tile, calling do_read_tile to read a tile’s worth of data;

 load_tiles_async returns a computation/sender; the way to
integrate it into the upper level function is to use the monadic bind;
this is done by using the let_value algorithm; the reader
hopefully sees why I had the urge to show an example of
let_value

Hopefully, you can understand the main idea behind our sketch example.
We can compose computations into more and more complex
computations, until we represent large chunks of the application as one
bigger computation. This is extremely powerful.

Now, the point of this exercise was to show you that we can approach
complex concurrency problems from a top-down perspective, and we’ve
encapsulated the concurrency concerns into computations.

Applying this technique, we can have a structured approached to
concurrency. We can easily define the concurrency structure of our
programs, and we can make it as visible as any other major architectural
structure. Here, when I say structured concurrency, I’m only referring to
the high-level concerns of what it means to have a structured approach;
please see Eric Niebler’s blog post on Asynchronous Stacks and Scopes
[Niebler21] for a discussion of structured concurrency focusing on lexical
scopes (what I would call the low-levels of structured programming).

Figure 2

��

��

Listing 2

sender auto read_data_computation(in_data_t data)
{
 return just(data) | then(break_into_tiles)
 | let_value(load_tiles_async);
}
sender auto load_tiles_async(tiles_t& tiles) {
 size_t num_tiles = tiles.count();
 return bulk(num_tiles, do_read_tile);
}
void do_read_tile(size_t tile_idx, tiles_t&
tiles)
{...}
18 | Overload | October 2021

FEATURELUCIAN RADU TEODORESCU
An analogy with iterators
We’ve seen that computations and the corresponding algorithms are
powerful mechanisms that:

 allow us to build any concurrent application

 allow us to build complex concurrent applications by composing
simpler functionalities

This is excellent. But we still don’t have a good answer to whether the
proposed abstractions are too complex. The perceived complexity of a
software system is hard to define, and probably complexity of abstractions
are even harder to define, so I don’t have a definitive answer here. Instead,
I’ll try to provide a few hints.

Probably the best way to shed some light into this matter is an excellent
analogy I’ve heard recently: senders/receivers are like iterators. I think
this really captures the essence of the problem.

Coming from other programming languages, it may seem that iterators are
too complex. However, they are proven to be the right abstraction to
separate containers from algorithms. Moreover, C++ programmers are
accustomed to iterators, and they don’t consider it as an overly complex
feature.

Yes, it is probably easier to write my_vector.sort() than using
iterators, but with C++20 we can express the same thing as
std::ranges::sort(my_vector). It’s not bad at all.

But, even if we didn’t have ranges, the advantages of having iterators far
outweighs the complexity costs that we are paying.

Let’s enumerate some of the benefits that the [P2300R1] proposal brings
us:

 ability to represent all computations (from simple ones to complex
ones)

 ability to represent computations that have inner parts that can be
executed on different execution contexts (e.g., different threads,
different computation units, different machines)

 can use computations to solve all concurrency problems (without
using synchronisation primitives in the user code)

 composability

 proper error handling and cancellation support

 no memory allocations needed to compose basic computations

 no blocking waits needed to implement most of the algorithms

 allows flexibility in specialising algorithms, thus allowing
implementors to create highly efficient implementations

 ability to interoperate with coroutines

All these put together seem to suggest that [P2300R1] brings the right
abstractions in the C++ world. We can build correct and efficient
applications with them. The standard committee seemed to hit the sweet
spot with the abstraction level of senders and receivers. Not too low, so
that it would be extremely hard for users to build concurrent applications,
and not so high that we lose efficiency.

Raw tasks and executors might be a bit higher level or a bit easier to use.
But they do not provide all the benefits that this proposal does; for example,
error handling and achieving no memory allocations for composing
computations is harder to obtain with raw tasks.

Yes, tasks and executors might be simpler on the surface, but senders/
receivers have more advantages. Just like iterators are better than the
apparently simpler algorithms-as-methods approach.

And, probably just like with iterators, one of the biggest challenges in the
coming years for the C++ community is to find ways to teach computations

to new programmers. This is something that may not be as easy as it
sounds. But we must embark full speed on this endeavour.

A final perspective
During the course of this article, we showed that changing the perspective
on senders and receivers, while maintaining the same core ideas, can result
in a reduction of complexity. We argued that these abstractions will allow
us to solve, in general, all concurrency problems, without needing blocking
synchronisation in user code, and also the composability of computations
allows us to easily represent with them any part of the system. Eventually,
we made an analogy between these computations and iterators.

Although we might have some challenges teaching the new model, the end
result is probably worth it. If everything goes well, we would have a good
solution to concurrency. We hope to fix a concurrency model that has
plagued the software industry for decades.

But is this the final perspective we will have on senders/receivers,
computations or concurrency? Most probably not. History teaches us that
we often come up with new perspectives that make old models look more
appealing without changing the core concepts. Software engineering is a
discipline of knowledge acquisition (see, for example, Kevlin’s brilliant
presentation [Henney19]), so, changing the perspective (into a better one)
is probably the best weapon to tame complexity.

Perspective change is something that happens a lot to me as well. And it’s
not just happening to me out of the blue, it’s something that I constantly
work towards: I constantly strive to refine my assumptions and thus my
perspectives. Thus, I know already that this is not going to be my final
perspective; it’s a better perspective, which will be someday superseded
by yet another perspective.

I do not write articles to show I know something, but because in the process
of laying down arguments my understanding becomes better; in fact, I
can’t remember a single article that I have written for which I fully knew
the conclusions beforehand. And, of course, I write because I believe that
the readers too can benefit from this process. Hopefully, they can forgive
me for the lack of definite solutions.

References
[Henney19] Kevlin Henney, ‘What Do You Mean?’, ACCU 2019,

https://www.youtube.com/watch?v=ndnvOElnyUg

[Niebler21] Eric Niebler, ‘Asynchronous Stacks and Scopes’, 2021,
https://ericniebler.com/2021/08/29/asynchronous-stacks-and-
scopes/

[P0443R14] Jared Hoberock et al., ‘P0443R14: A Unified Executors
Proposal for C++’, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p0443r14.html

[P1897R3] Lee Howes, ‘P1897R3: Towards C++23 executors: A
proposal for an initial set of algorithms’, http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2020/p1897r3.html

[P2300R1] Michał Dominiak, Lewis Baker, Lee Howes, Kirk Shoop,
Michael Garland, Eric Niebler, Bryce Adelstein Lelbach, ‘P2300R1:
std::execution’, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2021/p2300r1.html

[Parent13] Sean Parent, C++ Seasoning, GoingNative, 2013,
https://www.youtube.com/watch?v=W2tWOdzgXHA

[Teodorescu20] Lucian Radu Teodorescu, ‘The Global Lockdown of
Locks’, Overload 158, August 2020

[Teodorescu21] Lucian Radu Teodorescu, ‘C++ Executors: the Good, the
Bad, and Some Examples’, Overload 164, August 2021
October 2021 | Overload | 19

https://www.youtube.com/watch?v=ndnvOElnyUg
https://ericniebler.com/2021/08/29/asynchronous-stacks-and-scopes/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1897r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1897r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2300r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2300r1.html
https://www.youtube.com/watch?v=W2tWOdzgXHA

FEATURE CHRIS OLDWOOD
Afterwood
It’s useful to step back and evaluate from time to time.
Chris Oldwood reflects on reflection.
ay back in 2014, I gave a slightly extended lightning talk at the
ACCU Conference titled ‘The Art of Code’ [Oldwood14]. One
of the ‘humorous’ code snippets I presented lampooned the

hidden complexity that can arise from the overuse of reflection based
libraries and frameworks, most notably of the dependency injection kind.
At the time, I had found myself face-to-face with a C# codebase that was
difficult to reason about due to this very affliction and it also lead me to
make the following pun on Twitter:

They say C# & Java developers have a habit of overusing reflection.
Given the quality of their code, I’d say they’re not reflecting enough...

The vast majority of my Twitter puns are poor attempts at wordplay and
throwaway comments, but every once in a while I realise there may be
something deeper in the punchline that I wasn’t immediately aware of.
Consequently, I now find myself reflecting on reflection, which feels
awfully meta!

While I had never realised it until very recently, I believe my own interest
in reflection is another one of those characteristics which I can attribute to
Steve Maguire’s 90’s book Writing Solid Code. One of the ideas he
introduces quite early on is the notion that when you find a bug, before
fixing it, you ask yourself some questions, such as “How could I have
prevented this?” and “How could I have automatically detected it?” The
book goes on to introduce the use of ASSERTs to verify assumptions,
along with cranking up optional compiler diagnostics and using static
analysers to work smarter instead of harder.

Initially, I limited this practice to what the book was addressing – writing
code – but as my experience as a programmer grew and I got to branch out
into other disciplines, I found myself adopting the questions more and
more whenever something went awry. Around the same time, Ed Nisley’s
column in Dr Dobbs Journal began to explore some of the post mortems
that NASA had been publishing and while I took solace in even their
ability to fail spectacularly on occasion with the vast resources they had
available, their desire to reflect and improve at every scale was an attitude
I felt was laudable.

Consequently, that question grew from being a way to help avoid bugs in
native code to being one that pervaded more and more aspects of both my
professional and personal life. It wasn’t just limited to trying to help avoid
my own mistakes either but became a more natural question to ask
whenever something went wrong. I found I started developing a strong
desire to avoid settling for simply fixing incidents in isolation and instead
to see if there might be an underlying pattern and therefore find a way to
avoid the entire class of incidents in future.

After many late nights in those early days of debugging native code, I was
perfectly happy to buy into Maguire’s advice around leveraging tooling
and practices that would minimise these problems. It didn’t take me long
to be sold on unit testing and then Test Driven Development (TDD) once
I became aware of them and my own inadequacies at manual testing.
(Interestingly, Maguire only makes a passing comment about unit tests: if
you have them, you should run them. I now wonder what unit tests looked
like back in the early ’90s!)

In a metaphorical sense, you might consider a test-first mentality to be the
‘reflection’ in a timeline from a post-debugging retrospective – a desire to
unearth defects as early as possible is a natural consequence of frustration

after being by bitten by a problem that could have easily been avoided.
Even if the problem was unavoidable, being in a position to automatically
validate and deploy the resulting fix quickly is still a much better place to
be than facing another phase of handovers and manual testing.

That level of pessimism which comes with hard won experience was once
summed up wonderfully by @fioroco on Twitter in 2017 [Fioroco17]:

junior dev: “i found the bug”
senior dev: “i found a bug”

Naturally, there is a balance here. Sometimes it is just a simple mistake
but other times it’s a more fundamental misunderstanding. I once
discovered a memory leak caused by a non-virtual destructor in a base
class. Rather than fix it and move on, I checked for a pattern and quickly
found the same author had done it another 19 times and, although not in
my team any more, was still only a few desks away. They really
appreciated the heads up and I managed to stem the tide in two systems.

On the interviewing front, I’ve begun to feel that a tendency to reflect on
one’s work is probably a strong indicator of quality, even if they haven’t
performed it as a formal exercise like a retrospective. I’ve never really
been one to ask classic interview questions like “What does SOLID stand
for?” but I wanted candidates to try and embellish more on the ‘why’
when talking about what they’ve worked on – I like decisions to be
conscious rather than done by rote. Hence if a candidate lists something
like SOLID on their CV, I’d ask them “Give me an example of a time when
you applied one of the SOLID principles as part of a refactoring.” I’ve found
this style of question provides more avenues to explore their thought
processes and understanding of a topic.

Even if behaviours are apparently done by rote now, maybe they were once
done more consciously and it’s been a while since any reflection was
performed on the practice or the conditions under which it once applied. It’s
taken a beating over the last few years due to misuse in some circles but the
principle of ‘strong opinions, weakly held’ is still one I feel is valuable. The
school of hard knocks can send us down a more cautious path which often
bears fruit for a considerable time, but we should be open to being challenged
and accept that progress may have been made in the intervening years. I now
find that usually comes from others, but not as direct criticism, more as a
fleeting comment which I once might have simply dismissed but now
embrace as an opportunity to re-evaluate past decisions.

Maguire’s book also taught me to “step through your code [with a
debugger]” – a practice which I found invaluable for so many years. Even
after adopting unit testing and then TDD, I struggled to let go of the debugger
even when writing tests. But what caused me to drop it in the end wasn’t more
confidence in my ability to solve problems correctly first time but that the
massively reduced cost of failure and recovery in modern software
development meant that I could be far less paranoid of the consequences.

References
[Fioroco17] Tweet posted 4 Dec 2017, available at https://twitter.com/

fioroco/status/937824968594853888

[Oldwood14] Chris Oldwood (2014) ‘The Art of Code’,
ACCU Conference 2014, available at https://
www.slideshare.net/chrisoldwood/the-art-of-code

W

20 | Overload | October 2021

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has
resumed commentating on the Godmanchester duck race but continues to be easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

https://twitter.com/fioroco/status/937824968594853888
https://twitter.com/fioroco/status/937824968594853888
https://www.slideshare.net/chrisoldwood/the-art-of-code
https://www.slideshare.net/chrisoldwood/the-art-of-code

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	The Right Tool for the Job
	Showing Variables Using the Windows Debugging API
	Stufftar Revisited
	Executors: a Change of Perspective
	Afterwood

