
December 2021 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Programming Language Unlimited
Lucian Radu Teodorescu considers how
principles from linguistics might allow us
to read code with ease.

9 C++20 Text Formatting: An Introduction
Spencer Collyer gives an introduction to
the new formatting library.

22 No Move vs Deleted Move Constructors
Anders Knatten reveals what a deleted
definition means in practice.

24 Afterwood
Chris Oldwood reminisces on old
childhood games as inspiration for
various programming puzzles.

OVERLOAD 166

December 2021

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Yi ZhU
on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 167 should be
submitted by 1st January 2022
and those for Overload 168 by
1st March 2022.

https://unsplash.com/@jodey
https://unsplash.com/photos/uczEXZJIE9w

EDITORIAL FRANCES BUONTEMPO
It’s not normal
We live in strange times. Frances
Buontempo asks if everything’s OK.
As 2021 draws to a close, a suitable editorial topic
would be reflection on the year or making predictions
for the following year, but I am in denial that 2022 is
nearly upon us, so we’ll have none of that. Such an
approach may be traditional, but why would I let
what’s perceived to be normal drive my actions? My

Dad always used to remind me that normal people don’t have two legs.
Why? No-one has more than two, some have fewer, and so the ‘average’
or normal number isn’t two. If you were normal in every way, you would
be very different indeed. Besides, an aim of mediocrity is a strange target.
Trying to be better than average seems more aspirational. However, if you
are no good at something, in my case some exercises in a gym class, then
simply managing to get better than you were last time you tried is great.
Improvement matters: comparing the actual outcome if you are far worse
than average may tempt you to give up. The measurements you choose
can impact the outcome, so in order to gamify any activity, you need to
pick the right game.

Now, there are circumstances where knowing an average is helpful. We
know the average human’s body temperature, within a range. If yours is
outside that range, you might be in serious trouble. Knowing what’s
normal can help in some circumstances, therefore we need to know how
to spot what’s normal. Frequently this requires data gathering, involving
measuring or counting, though sometimes we notice things are amiss
before gathering numbers to analyse. If my PC starts making an odd noise,
something may be wrong. I suspect we unconsciously register what is
ordinary, so that even without numbers or metrics, you can spot when
something is off. This spidey sense of something being up comes from
noticing anything out of the ordinary. Experience can help you spot
reasons for apparently weird behavior, like fractions in code giving what
are often termed “floating point ‘errors’” or a recursive function causing
a stack overflow. In contrast, if you are trying something completely
different, like a new gym exercise or a new baking recipe, you have no
prior experience to go on. Even without having previous attempts to
remember, a bone going crack or a burning smell usually indicates a
problem. You can still hazard a guess about what to expect based on
different, but related, experiences. Trying to vocalise your concerns can
be difficult, since learning precise language to describe a novel situation
takes practice. Having an experienced person on hand to say “Looks
good!” or “No, stop!” is useful. The feedback may not tell you how to
improve, but can be enough to nudge you somewhere better. Now,
supervised machine learning and AI uses feedback functions as similar

nudges: we tell the machine if the generated
solution is good or not. The algorithm uses

this feedback to inform further attempts,
so that the AI may appear to learn

something. I suspect this is similar to the way many of us learn, but we
have the advantage of being able to question instructions and ask for help.

Whether AI can ever think like a human is an unanswered question. Turing
invented the so-called Turing test to avoid needing a definition of thinking
and AI is a big topic, so let’s change our focus. I talked about measuring
and counting to decide what’s normal. Some basic arithmetic, for example
a back of the envelope calculation, will indicate ball park figures. If you
want to know how long a program might run for, then knowing your clock
speed and number of calculations to perform gives a good enough
guestimate to determine whether your program has got stuck or not. Of
course, you could debug and find out what it’s actually up to, unless it’s
running on a machine you can’t access. If your program runs regularly as
a batch job, keeping stats on how long it usually takes is useful. Knowing
the average time taken is one thing, but the variance is useful too. Running
the same program with the same inputs is unlikely to take exactly the same
amount of time, or even RAM, or whatever else you want to track. If
anyone tells you an average, ask them for the variance or standard
deviation too. And also ask how many data points were used. If I measure
once, and find my code takes 120 seconds to run, the average is 120s, the
variance is 0, and though this is a data point, it is only one data point. Ask
how many samples were used. If you learn enough statistics, you can
decide if the sample size is large enough using maths, but even without
the detailed knowledge, very few data points might not be enough to go
on. It has been said “There are lies, damn lies and statistics.” Whether
Mark Twain, Benjamin Disreali or someone else first said this, we’ll
probably never know; however, ensure you are told the variance and
sample size and you might spot untruths.

What kind of things do you measure? Aside from the performance of the
programs you create, you might be tracking compile and link times as you
code. Perhaps these seem relatively stable, but after a year or so, a tiny
but creeping slow-down may have moved from almost imperceptible to
totally unacceptable. We all have different levels of patience, but I once
worked on a test suite which ran in about five seconds. Five seconds is
just under the limit of my attention span, before I get distracted and forget
what I was doing. Initially, there were no tests, so they took no time at all.
Gradually, we added more tests and they took a little time, but not too
much. I was keeping an eye on coverage to check I’d hit a lot of the code,
but the time taken mattered to my mind. If a test suite takes a long time,
people might not bother running the tests before committing code, and no
one wants a broken build. Because I was tracking the time, even though
it did gradually creep up, I spotted when a test went from running in
microseconds to taking a second or so. Many might mock, but the
implementation of a function had been changed, and if this had run in a
tight loop in production our batch would have missed service level

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2021

EDITORIALFRANCES BUONTEMPO
agreements and much trouble would have ensued. Catching the small
change early saved the day.

A dynamic system, such as a growing test suite, might have a ‘moving
average’. As you measure, things change. Though I said earlier to check
the variance and sample size as well as the average, life is, as ever, more
complicated. Ask yourself if the average is changing over time. Is it
trending up? Then your build times, test suite or batch job might breach
some limits in the long run. Maybe the average cycles, going up then down,
following what is known as a seasonal pattern [Kenton20]. Do you know
what’s driving the change? Maybe many people do a code commit a
Friday, forming a backlog on build servers, so things slow down at the end
of the week. A batch processing job may be longer at the weekend or the
end of the month, because more reports are generated then. Alternatively,
you may have a mystery slow down once in a while. Keeping stats and
plotting graphs can give you new viewpoints on problems. An initial gut
feeling or back of the envelope calculation as a starting point is ok, but
numbers give you so much more. This may help you track down mystery
abnormalities and find the root cause.

As averages can change in cycles or follow trend lines, data in general can
fall into one of many statistical distributions. The so-called normal
distribution is commonly assumed. This is the famous bell curve also
known as the Gaussian distribution. Gauss used the word normal to
describe the distribution, but in the sense of orthogonal or at right angles.
As a blog puts it, “The term comes from a detail in a proof by Gauss …
where he showed that two things were perpendicular in a sense.” [Cook08]
If you want to know which two things and in what sense, you’ll need to
go research. Wikipedia tells me,

by the end of the 19th century some authors had started using the
name normal distribution, where the word ‘normal’ was used as an
adjective – the term now being seen as a reflection of the fact that
this distribution was seen as typical, common – and thus ‘normal’.
[Wikipedia]

Collecting data and fitting regression lines to spot patterns and trends has
a long history. Recently we have turned this up to the max. It’s very
difficult to go anywhere near the internet without leaving ripples or a
digital footprint. You will gradually collect cookies, unless you are very
careful. Claims that this enables targetted marketing are used. Given a few
of the items certain social media sites try to sell me, I’m not certain of the
reasoning for the targets, to be honest. Maybe the internet has gotten out
of hand. I noticed a recent MIT press book claiming,

this has not always been the case: In the mid-to-late 1990s, when
the web was still in its infancy, ‘cyberspace’ was largely celebrated
as public, non-tracked space which afforded users freedom of
anonymity. How then did the individual tracking of users come to
dominate the web as a market practice? [Kant21]

How did this happen? By coders writing code. Why did it happen? Because
some people think collecting as much data as possible might help make
money. Don’t get me wrong, the internet is a tool that can be used for good
or harm, like many things. Being tracked online has become normalized
now, though you can maintain some anonymity, sometimes.

This brings us to another use of the word ‘normal’. In order to do data
science or statistics, you often need to scale data so it lies in the same
approximate range. We call this normalization. If you have two features
that differ by orders of magnitude, maybe height and shoe size, the larger
quantities can overshadow the smaller ones. Scaling so our numerical
values are similar, levels the playing field, as it were, makes it easier to
spot trends. Being programmers, we also normalize strings to deal with

various diacritic marks and similar. Furthermore, we can do this in several
different ways: canonical decompositions, compatibility decomposition
and one of these combined with composition afterwards [MDN]. This
means we also define canonical equivalence, which is not to be confused
with normalization. I thought numbers could be hard work until I
discovered strings.

So, what have we learnt so far? Normal doesn’t mean normal and we are
still none the wiser as to what normal really means. We do talk about
conventions as normal, like running tests before a commit, warm up before
exercising etc. Many habits we are encouraged into, like brushing our teeth
before bed, do have obvious benefits. Running tests locally as you write
code, or even checking it compiles can save you a world of pain in the long
run. However, conventions do vary and when this happens accusing
someone of not being normal because they do things differently is
unacceptable. I tend to use a bookmark as I read down a page if I’m using
a real life book or paper print out. Some people mock me for this. It helps
me concentrate and stops the letters moving about all over the place. Some
may say I have dyslexic tendencies, so first I apologise if my writing is
littered with typos and second, using a bookmark helps me, so don’t judge.

We are all different, and that’s a good thing. Doing things differently can
lead to innovations. Some programmers are told there are not normal –
accused of being geeks or nerds [Buontempo21]. I say hooray for geeks,
people who myopically collect details, measure and figure out what's going
on. Without us, the world would be very hard to navigate. Don’t strive to
be normal, it’s far too mediocre. As I draw to a close, I notice a relevant
tweet to end on [Kazum93]:

Normal people on their weekend: Chill, Netflix

Simon: Let’s create a memory allocator in C++

Thank you @kazum93, I couldn’t have put it better
myself.

References
[Buontempo] Frances Buontempo (2021) ‘Geek, Nerd or Neither?’

Overload 163, June 2021, available at https://accu.org/journals/
overload/overload163

[Cook08] John D. Cook, ‘Four characterizations of the normal
distribution’, published 13 March 2008 on
https://www.johndcook.com/blog/2008/03/13/four-
characterizations-of-the-normal-distribution/

[Kant21] Tanya Kant, ‘A history of the data-tracked user’, published 8
October 2021 at https://thereader.mitpress.mit.edu/a-history-of-the-
data-tracked-user

[Kazum93] Kazum93 on Twitter, available at https://twitter.com/
kazum93/status/1454387344031817732

[Kenton20] Will Kenton, ‘Seasonality’, updated 30 November 2020,
available from https://www.investopedia.com/terms/s/
seasonality.asp

[MDN] string.prototype.normalize() at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/String/normalize

[Wikipedia] ‘Normal distribution’, section 7.2 (‘Naming’), available from
https://en.wikipedia.org/wiki/Normal_distribution#Naming
December 2021 | Overload | 3

https://accu.org/journals/overload/overload163
https://accu.org/journals/overload/overload163
https://www.johndcook.com/blog/2008/03/13/four-characterizations-of-the-normal-distribution/
https://thereader.mitpress.mit.edu/a-history-of-the-data-tracked-user
https://thereader.mitpress.mit.edu/a-history-of-the-data-tracked-user
https://twitter.com/kazum93/status/1454387344031817732
https://twitter.com/kazum93/status/1454387344031817732
https://www.investopedia.com/terms/s/seasonality.asp
https://www.investopedia.com/terms/s/seasonality.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/normalize
https://en.wikipedia.org/wiki/Normal_distribution#Naming

FEATURE LUCIAN RADU TEODORESCU
Programming Language
Unlimited
How programmer-friendly are programming languages?
Lucian Radu Teodorescu considers how principles from
linguistics might allow us to read code with ease.
ou w a l k i n t o yo ur f av ou r i t e
bookstore. Your attention is drawn by
a book with good cover design, the

title sounds intriguing, you flick through it
and find the content interesting, you smell
the book. You decide to buy it. This is
precisely what happened to me at the
beginning of this year when I found
Language Unlimited by David Adger
[Adger19] (actually, I abstained from
smelling the book because of the Covid-19
pandemic).

For years, I have been interested in proper
linguistics, but have never taken the time to
dive into it. I still remember the times my
wife shared the great ideas from the General Linguistics courses that she
was attending while in college with me. One of the ideas that profoundly
fascinated me was that language structures our thinking (i.e., Linguistic
relativity principle [Wikipedia]), as first put forward by Wilhelm von
Humboldt. Later, for a few years, I worked on a text-to-speech project and
then on an automatic-speech-recognition project, and they gave me an
opportunity of seeing language from a different perspective. It was during
these years that I started to look with awe at the complexity of human
language; I began to think that if we ever fully understood language, we
would fully understand the human brain (making computers understand
language equates to making them think); since then, I have relaxed my
beliefs on the subject, but I still feel that is largely true.

Therefore, buying this book, was a perfect opportunity for me to brush up
my knowledge on general linguistics. Besides offering a lot of linguistics
information, the book also contains some gems that can be used in
Software Engineering.

Main ideas from Language Unlimited
The book starts by explaining that virtually every statement (especially the
more complex ones) is novel, i.e., we haven’t heard it before. Think about
it; what is the probability that you heard the previous sentence before?
Close to zero. And yet, it is easy for us to understand it. This suggests that
our mind has a structure that allows it to understand (and produce)
language; language is not learned directly from experience. Humans are
born with some ability that Noam Chomsky calls Universal Grammar,
which allows us to easily process language.

The book revolves around three main ideas: First, that human language is
organised in a special way and cannot transgress some boundaries
(imposed by human biology). Second, that language is organised
hierarchically. And finally, that macrostructures in the language echo the

smaller structures that they are built from (i.e., language has some fractal
properties).

Languages are built hierarchically. There is no language in which grammar
rules are based on sequentiality (e.g., next noun, next verb, 3 words to the
right, etc.); all languages are built out of hierarchical structures. Grammars
for natural languages are context-free grammars, a term that we study in
Computer Science1.

The book describes numerous experiments that show how the language is
inherently hierarchical, and deeply rooted in our human nature. From
examples of deaf people who create structure in their own invented sign
language, to examples of MRI scans performed on the newly born babies
that reveal how we have innate structures for processing language.
Although other animal species have better abilities than humans to listen
to sounds and good abilities in statistical learning, they can’t structure
language like we do. The human mind is hardwired for a particular kind of
language acquisition; this is what Chomsky calls Universal Grammar;
different languages appear as particularisations of this Universal Grammar.

The human languages seem to revolve around the distinction between verb
and noun. Moreover, the concept of grammatical Subject, which seem to
be an imperceptible property of languages, is central to the construction
of a language. And, the distinction seems to never be based on meaning.
For some languages, classifiers seem to be important in the distinction
between nouns and verbs.

The book also briefly covers the Merge process, introduced by Chomsky
in the 90s [Chomsky95]. This process appears to be used in all human
languages. If we have two (compatible) units of language, then we can
group them together and form another language unit. This grouping can
be done hierarchically until the entire phrase becomes a language unit. If
this process is deeply embedded in our brain, then this will explain why
all the languages are hierarchical. This seems to provide the upper-
boundary for the limits of the languages that we can have in practice.

As an example of Merge, one can look at the classic Subject Verb Object
sentences. In the sentence Alice sends a message, Alice is the Subject,
sends is the Verb and a message is the Object. Here, a message is a noun
phrase created using Merge from determiner a and noun message; this
phrase is created by Merge from its two constituents. Thereafter, the phrase
sends a message can be formed by Merge from the verb and the last phrase.
Adding Subject to the newly formed phrase, we obtain the complete
sentence.

This Merge process makes the larger structures of the language similar to
the smaller structures of the language (like a fractal). For programmers,
this means that each sentence can be represented as a binary tree. The
binary tree might be slightly complicated in some cases (i.e., with what
we can call symbolic links between the nodes), but nevertheless, a
relatively simple structure.

Y

1. Interestingly enough, the concept of context-free grammars was
invented by Noam Chomsky, the prominent linguist behind most of the
main theories of languages advocated in the book. Chomsky didn’t just
make major contributions to linguistics, but to Computer Science as well.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
4 | Overload | December 2021

FEATURELUCIAN RADU TEODORESCU

if there is one trait that we want our code to have
in common with natural language, that would be

the ability to process it easily and very fast
Thinking fast language
The entire book talks about how the human brain is hardwired to process
language. We are born with Universal Grammar, and, based on the
language we hear (or see) around us in early childhood, we constrain this
into an actual language. It’s similar to how we are born with the ability to
move our body, and then we learn different types of movements (standing,
walking, running, various athletic movements, etc.).

Similar to how we can walk without thinking about it, we can process
language without having our attention to the structure of the language
itself. This is an automatism in on brain. This leads us to the distinction
found in Daniel Kahneman’s famous book Thinking, fast and slow
[Kahneman11]: our brain can be thought of as operating in two modes: one
fast, called System 1, and one slow, called System 2. In the first mode of
operation, our brain has the ability to respond quickly to inputs, and it does
this in an automatic manner, without requiring our attention. In the second
mode of operation, our brain acts only when we pay attention to a particular
situation, and typically is associated with complex computations.

Language processing is fast, it’s performed by System 1. On the other hand,
processing mathematical sentences is typically handled in System 2, it’s
slow, and it requires our attention.

If we think about language as the means of communicating (not necessarily
between humans), then the code that we have in Software Engineering is
also language. It is a special type of language, but can still be language2.

And, if there is one trait that we want our code to have in common with
natural language, that would be the ability to process it easily and very fast.
That is, read code without focusing our attention on it, just like reading a
novel. This might be a goal that we cannot achieve, but still, the closer we
get to it, the better. After all, programming is a knowledge acquisition
process (see [Henney19]); the better we are at reading the code, the more
attention we can divert to understanding and reasoning about the code.

In this context, it makes sense to look at natural language for inspiration
when we design programming languages. The more we can create the
structures in programming languages to be compatible with our brain’s
ability to process language, the better. Thus, we arrive at the following
goal:

Programming languages should be designed in such a way that the
code written can be easily processed by our innate language abilities
– the programming language should be a specialisation of the
Universal Grammar.

It then makes sense to look at how natural languages are constructed and
draw some conclusions that might be applied to programming languages.

The different levels of language
Let us think for a bit what the English language means. If we think about
the spoken language, then there is a phonetic aspect of the English
language that is exercised in speech. If we think about the written text, then
there are lexical rules in the language. Both oral and written English have
some syntactic rules that constrain how words can form sentences. On top
of the syntactic rules, we have semantics, which tell us what different
words mean. The semantics and the syntax of a language overlap, but, for
simplicity, let’s consider them as being completely distinct.

We also have the distinction between lexical rules, syntactical rules and
semantic rules in programming languages as well. We are going to briefly
look at some aspects of these levels for natural languages so that maybe
we benefit in programming languages.

Let us consider the phrase: Winston Churchill was the best president that
Unitd Kingdom had.

Most of the readers can easily understand all the words in this sentence;
even if one word contains a typo. We usually don’t focus on the lexical
part; we just read the symbols and fill in the gaps. We are using the fast
part of our brain (System 1, to use Kahneman’s terms).

Similarly, most of the readers will be able to process the structure of the
sentence with no problem. We unconsciously identify what is the Subject
of the sentence, what is the Verb and how different words are connecting
with other words, forming the structure of the sentence. And most
probably, nobody thinks about the Subject when reading this sentence. The
parsing of the sentence is done automatically by our brain, without needing
our attention. Again, syntax processing for natural languages are done in
the System 1 mode.

Things become more interesting when we look at the semantic level. Here,
a lot of the readers will probably treat the sentence with increased attention,
i.e., using the slow and analytic System 2. Part of the reason for doing that
is that UK doesn’t have a president, and part of the reason is that claiming
that somebody is the best PM of UK is highly debatable. In general, for
sentences containing some novelty, we tend to involve the analytic part of
the brain.

Looking back at programming languages, it would be nice if we could
design them in such a way that lexical and syntactic processing is always
handled by our fast brain, while leaving the semantics to the analytical,
slow brain. The understanding and the reasoning about the code are
typically much more demanding than understanding regular English texts.
Thus, it’s important that our entire attention goes to these processes, which
means we should not require the programmer to divert attention to lexical
and syntactical processing of the code.

We have yet another argument that syntactic processing needs to be done
with the fast brain, and thus we should try to create programming
languages to model the Universal Grammar.

The infamous for-loop
I’ve written before how the classic 3-clause for loop is not programmer-
friendly [Teodorescu21]. But, at the time, I’d argued that using this for

2. Throughout the article I’ll use the term programming language to mean
generically code, i.e., the information encoded according to some
predefined rules. This is similar to how we use the term language to
express a set of sentences that convey some information (e.g., a text
written in English), without referring to a particular set of syntactic and
semantic rules (for example of English).
December 2021 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU

Translating this to programming languages, we cannot
naturally have lists of elements in which some elements
(i.e., the first) has a special meaning compared to the rest
loop is bad because of reasoning complexity. The idea is that, to fully
understand what the for loop does, one needs to perform a significant
amount of reasoning; significantly more than the reasoning one needs to
perform for a ranged for loop (20 steps versus 8).

Here, I will move the argument to the next level. This structure is not user-
friendly because it doesn’t follow the structure of a natural language. This
means that, most probably, our brain needs to focus when reading the for
structure. It is precisely what we said above we want to avoid.

For example, let’s look at the follow classic for loop:

 for (int i=0; i<100; i++) console.print(i);

It’s hard to fit this into our patterns of reading natural language. Let’s try
it out: for int i equals 0 <pause> i is less than 100 <pause> i plus plus
<pause> console print i. This is hard to process by humans. It is like
reading a mathematical statement, thus it most probably requires System 2
to process it. It cannot be similar to natural language.

On the other hand, let’s take a look at the ranged for loop (written in an
imaginary programming language):

 for (i: 1..100) console.print(i);

This can be processed easier by humans; one can say this out loud: for i
in range 1 to 100 <pause> console print i. This starts to sound like regular
English (not quite there, but close). It means that it can be processed by
the fast part of our brain, without requiring our attention.

A simple grammar test
OK, so we have decided that we shall try to create the programming
languages to be processed by the fast part of our brain. Do we have a
measure to see how close we are to our goal?

Approaching this from a linguistic perspective is the right way to go, but
probably that is an overkill for most of us in Software Engineering. But,
there might be a trick to make things much easier.

Similar to how in linguistics we use various tests to check the constituency
of a phrase (probably the most known is the substitution test), we can have
a test that will easily tell us if the structure of the programming language
corresponds to our innate structure of the brain responsible for processing
language. And that test is simply reading the code aloud.

One should be able to read aloud a piece of code and have it sound
like natural language.

This is what we’ve done above for the classic for loop to prove that it
doesn’t quite sound like the languages humans are accustomed to; and
we’ve also applied the same test to show that the ranged for loop can be
made to sound like natural language.

On sequentiality
Language Unlimited reveals us a fact about natural language organisation,
that for us, software engineers, might sound surprising.

Apparently, there isn’t a single language found on Earth in which
sequentiality plays a structural role. Languages do not have rules of the kind

‘rule X applies when a word or type of word is followed by another word or
type of word’. For example, one might imagine a rule in which grammatical
Agreement works between a noun and the following verb; but this is never
the case; one can always insert a structure containing nouns and verbs in
between the two words for which we apply the Agreement. Similarly, there
are no rules that rely on counting (three words to the right, etc.)

Language is always hierarchical.

Even when we have enumerations, language is hierarchical. Let’s take the
following phrase as an example: “Alice, Bob and Carol talk loudly”. We
have a hierarchical structure that looks like Figure 1.

Here, the first “and” is mute, while the second one is audible. Even if we
naively think that we have a sequence of words in the enumeration, our
innate abilities process that as a (binary) tree structure.

The point is not that our brain cannot process enumerations fast, but that
the elements of the enumeration are processed as being homogeneous. In
the enumerations that we find in natural language, we can’t find the first
term to have a special meaning compared to the rest of the terms.

Moreover, because of Merge, our brain can assimilate the whole
enumeration as one language unit. Thus, we can easily substitute the
enumeration by one word or one phrase. For example, the following
sentence is equivalent: “They talk loudly”; we’ve replaced the enumeration
“Alice, Bob and Carol” with the pronoun “they”.

Translating this to programming languages, we cannot naturally have lists
of elements in which some elements (i.e., the first) has a special meaning
compared to the rest. This means that a Lisp command line (write a b
c d e) is not necessarily easily parsed by our brains. Similarly, Haskell’s

and Carol

Bob & N

and N &'

Alice & &P talk loudly

N &' V Adv

&P VP

S

Figure 1
6 | Overload | December 2021

FEATURELUCIAN RADU TEODORESCU

functional languages seem to be further
away from natural language statements;

they are closer to mathematical formulation
syntax func arg1 arg2 arg3 ... doesn’t necessarily play nice with
the fast part of our brain (especially when having more than 2 arguments).

The syntax of a sentence
Most phrases in English contain a Subject (e.g., doing some action), and
a Verb (e.g., expressing the action done by the Subject). There is often
another term, called Object, which typically represents the object acted
upon. For example, in the sentence “Bob
drinks wine”, “Bob” is the Subject, “drinks”
is the Verb and “wine” is the Object.

The difference between the Subject and the
Object is their position in the hierarchy; the
Object is always merged with the Verb (see
Figure 2).

English is a Subject Verb Object language;
but not all the languages are like this. For
example, Japanese is a Subject Object Verb
language. There are also some languages
that have Verb Object Subject ordering, and
recent ly l inguists also found some
languages that have Object Verb Subject
ordering. While there are some languages
that have the ordering of Verb Subject Object, these can be explained by
a more complex set of rules that involve duplicating the verb and silencing
one occurrence (something similar to what English does with auxiliaries).

When designing a programming language, we have to pick a convention.
For example, let us pick the Subject Verb Object order as in English. In
the following paragraphs, we will be focusing only on the structure of
expressions, ignoring other control structures (if clauses, loops, etc.).

In the most common case, if we ignore any punctuation, our programming
language sentences should be of the following form:

 subject operation argument

This looks extremely similar to the notation in Object-Oriented languages.
The only difference is that we typically have a dot between subject and
operation and, depending on how we look at it, parentheses around the
argument. That is: subject.operation(argument). Now, if we
have multiple arguments, they can be similar to an enumeration. That is,
one can think of the whole notation being subject.operation
argument, where argument can be written as (arg1, arg2, ...).

I’m not actually advocating here for intense use of OO languages, but in
terms of syntax, the common practice for expressing a basic statement
seems to be close to statements in natural languages. On the other hand,
functional languages seem to be further away from natural language
statements; they are closer to mathematical formulation, which tends to
make our brain use the slower System 2 part of our brain.

An OO statement like plane.fly() makes sense syntactically, and it can
be easily spoken, too. Similarly, the following statement makes sense

syntactically and again can be spoken relatively easily too:
rectangle.draw(context).

However, I’m not necessarily satisfied by the OO solution either. While a
plane can fly, a rectangle cannot draw. Especially, a rectangle doesn’t draw
a context. A rectangle can only be drawn by somebody else, i.e., the
Subject. But what can be this subject? I think the only reasonable
assumption is that the Subject is the actual system that executes the
p rog ram. T hus , a more app rop r i a t e s t a t em en t wou ld be
System.draw(rectangle, context), read as “System, draw the
rectangle in the context”.

The more we think about this assumption, the more it makes sense for most
o f t h e a c t i on s i n an OO p r ogram to be o f t he fo rm
System.action(argument). But, if we repeat System all over the
place, it is maybe better to just remove it and have it implicitly there, only
when we speak . Thus , we t r ans fo rm ou r s t a t emen t s i n to
action(argument). This is similar to how this is spelled in most of the
functional programming languages: doSomething arg1 arg2 arg3;
we would read this as “System do something with arg1, arg2 and arg3”.
This sounds a bit better.

Starting from this, we can develop a large analysis of the possible
conjugations for verbs in natural languages and how they can translate to
programming languages. We could also discuss the grammatical
agreement. But, unfortunately, that falls outside the scope of this article.

In natural languages Subject, and the distinction between Subject and
Object, seem to be an important part of syntax. In programming languages,
the notion of Subject doesn’t seem to be too well-defined. I hope that we
can make some progress in programming languages for better isolating the
Subject from possible Objects, and with that make the programming
language more natural.

Coming back to the structure of phrase, most of the phrases in natural
languages are much more complicated than just the 3 terms Subject Verb
Object. Each of these terms can have sub-structures. As David Adger
explained, the high-level structure of a phrase is similar to the low-level
structure of the phrase; it’s Merge all the way down.

Instead of a noun we can put structures that contain determiners (e.g., “the
chair”), adjectives (e.g., “red chair”), or we can put entire phrases (e.g.,
“The man who sold the world was caught by the authorities”). Similarly,
we can have adverbs near verbs (“he spoke quickly and loudly”), and entire
phrases instead of verbs (e.g., “She read a book in bed before going to
sleep”). One interesting case of nesting is the possessive chains, which can
go on forever (at least in English); consider for example “My mother’s
brother’s wife’s book was lost”.

We often have this nesting in programming languages too. The possessive
chains are often used in OO languages (ex: a.b.c.fun()), but they can
be found in other types of languages too. Replacing objects with
expressions is almost universal in programming languages. Replacing
verbs (i.e., functions) with complex statements is also very frequent in
programming languages (ex: using lambdas instead of functions).

drinks wine

Bob V N

N VP

S

Figure 2
December 2021 | Overload | 7

FEATURE LUCIAN RADU TEODORESCU
Sentences in Sparrow
For years, I worked on a programming language called Sparrow
[SparrowRepo] [Teodorescu15]. I wanted to create a language that
integrates efficiency, flexibility and naturalness, and the central feature of
the language was (paradoxically) static metaprogramming. For a long
time, Sparrow was mainly an OO imperative language, but later on started
to migrate towards being more functional (the transition was not
complete).

Borrowing from Scala, Sparrow has an interesting syntax for expressions.
Coupled with the use of ranges, it creates some nice possibilities for
expressing some algorithms. Expressions in Sparrow have two forms:

 subject operation – postfix notation for unary operations

 subject operation object – infix notation for binary
operations

In both cases, no actual punctuation is needed. The operation can be an
operator or a simple function name. Moreover, the operation has name
lookup rules that will search near the given subject.

Let us take an example (actually taken from [Teodorescu15]). Let’s
compute the sum of squares for all the odd numbers belonging to the first
n Fibonacci numbers. This is achieved in Sparrow by the following one-
liner (assuming functions fib, isOdd and sqr are already present):

 1...n map \fib filter \isOdd map \sqr sum

No other punctuation is actually needed (previous versions of Sparrow
required a semicolon at the end of the sentence, but the last one doesn’t).
The backslash is used to transform a function name into an object. This
line contains the following operations: ..., map, filter and sum.

Reading this line from left to right, it sounds like: “the inclusive range from
1 to n, mapped through fib, filtered by isOdd, mapped through sqr, then
summed”. Reading this from right to left, it sounds like: “the sum of the
squares of all odd Fibonacci numbers generated from range 1 to n
(inclusive)”. In both cases, it sounds relatively well in English.

Let us take another example of the same kind. Let’s compute the root-
mean-square of the lengths of all the Collatz sequences up to the first one
that has a length greater than or equal to 500. Given a natural number, a
Collatz sequence is a sequence of numbers starting with the given number,
and repeatedly applying a transformation until we reach 1; although for all
known starting numbers the Collatz sequence is always finite, the computer
cannot know that, which makes the problem especially interesting. This
problem can be solved in Sparrow by the following one-liner:

 (1..) map \collatzSeq map \rangeSize takeWhile
 (fun s = s<500) rootMeanSquare

Here, the structure (fun s = s<500) is a lambda function. This can be
read from left to right in the following way: “the infinite range starting from
1, mapped through collatzSeq, mapped through rangeSize, taking
elements while the number is less than 500, and apply rootMeanSquare
for all these elements. Again, this can be read relatively easy.

Looking at this problem in more depth, we start with an infinite range. For
each element in that range, we generate a range that is potentially infinite.
We reduce these to a finite sequence of numbers by mapping through
rangeSize and by calling takeWhile with an appropriate predicate.
This one liner is pretty complex for its succinctness. Moreover, the tests
I’ve done on this form proved that this can be as efficient as writing
imperative code (actually, it was faster than traditional code, probably
because it exposed some optimisations to the compiler). So, this one-liner
is the most efficient implementation of the (no trivial) problem, very
succinctly (shorter than the actual program description) and with a syntax
that can be easily be read by humans.

I was pretty happy with the results after finishing the design of the syntax
in Sparrow. Now, after some time in which I haven’t worked in Sparrow,
with the new focus on linguistic structure, I find the results to be even
better.

I am not arguing that the syntax of expressions in Sparrow is the best one,
and all programming languages should use something similar. For that, we
do need a more in-depth analysis. The point I’m trying to make is that we

can find syntactic forms that will be easier to read (and to process) by
humans. There are ways in which written code sounds natural, and the
programmer can process the syntax with the fast part of the brain, while
focusing the analytic part on the code semantics.

What can be done next
A collaboration between programming language designers and
experienced linguists, and possible neuroscientists would be highly
beneficial in order to design programming languages that require only
System 1 for processing the syntax of the code.

David Adger brings in his book a lot of evidence that originates in
experiments involving MRI scans for humans exposed to language. And,
of course, that leaves us pondering whether we can do the same thing for
programmers.

If we can have MRI experiments that would show how different sentences
expressed in different programming languages are read by programmers,
then we can compare different programming languages and different
syntactic rules from a naturalness perspective. We could probably find a
ranking between different types of syntactic structures. Having that, we
can create programming languages that fully exploit the innate structures
in our brain and allow us to read code with ease, similar to reading natural
language.

Conclusions
Inspired by David Adger’s book, Language Unlimited, this article tried to
question how programming languages should be designed to be as close
as possible to natural languages. The article doesn’t attempt to provide any
answer, but just explores different aspects of language, with the hope of
having a first attempt at drawing the space of the problem.

Besides this, the article tries to argue that all programming languages
should have a (new?) goal: to make the syntax similar to human language,
with the same structure, so that the human mind processes the syntax in
the fast mode, leaving the programmer to direct their attention on
semantics.

If we achieve this goal, then maybe programmers might start to immerse
in the programming language, similar to how people are plunging into
language since the day they are born. We can then speak of programming
language as the totality of code that can be written and easily understood,
as the sea of structures that shapes how we think programming; similar to
the way we use the term language to mean a fundamental part of the human
existence.

Only then we can fully unleash our creativity in programming. Only then
we can have programming language unlimited.

References
[Adger19] David Adger, Language unlimited: The science behind our

most creative power, Oxford University Press, 2019

[Chomsky95] Noam Chomsky, The Minimalist Program, MIT Press,
1995

[Henney19] Kevlin Henney, ‘What Do You Mean?’, ACCU 2019,
https://www.youtube.com/watch?v=ndnvOElnyUg

[Kahneman11] Daniel Kahneman. Thinking, fast and slow, Macmillan,
2011.

[SparrowRepo] Lucian Radu Teodorescu, ‘The Sparrow programming
language’, https://github.com/Sparrow-lang/sparrow

[Teodorescu21] Lucian Radu Teodorescu, ‘How We (Don’t) Reason
About Code’, Overload 163, June 2021

[Teodorescu15] Lucian Radu Teodorescu, Improving Flexibility and
Efficiency in Programming Languages: a natural approach, PhD
Thesis, 2015, https://github.com/Sparrow-lang/sparrow-materials/
raw/master/PhD/ThesisLucTeo.pdf

[Wikipedia] Wikipedia, ‘Linguistic relativity’, https://en.wikipedia.org/
wiki/Linguistic_relativity
8 | Overload | December 2021

https://en.wikipedia.org/wiki/Linguistic_relativity
https://en.wikipedia.org/wiki/Linguistic_relativity
https://github.com/Sparrow-lang/sparrow-materials/raw/master/PhD/ThesisLucTeo.pdf
https://github.com/Sparrow-lang/sparrow-materials/raw/master/PhD/ThesisLucTeo.pdf
https://github.com/Sparrow-lang/sparrow
https://www.youtube.com/watch?v=ndnvOElnyUg

FEATURESPENCER COLLYER
C++20 Text Formatting:
An Introduction
C++20 has brought in many changes. Spencer Collyer
gives an introduction to the new formatting library.
uch of the talk about the C++20 standard has focused on the ‘big
four’ items, i.e. modules, concepts, coroutines, and ranges. This
tends to obscure other improvements and additions that may have

a bigger impact on the general programmer who spends their lives working
on application code.

One such addition is the new text formatting library, std::format. This
brings a more modern approach to text formatting, akin to Python’s
str.format. This article is intended as a brief introduction to the library,
outlining the main items that allow you to produce formatted text.

The original proposal for the library [P0645] was written by Victor
Zverovich and was based on his {fmt} library [fmtlib]. It was
subsequently extended and modified by further proposals. A brief history
can be found in a blog post [Zverovich19].

This article deals with the formatting of fundamental types and strings. A
later article will describe how you can write formatters for your own types.

Current implementation status
At the time of writing (September 2021), support for std::format in
major compilers is patchy.

The C++ library support page for GCC [GCClib] indicates that support is
not yet available. A query to the libstdc++ mailing list received the
response that no work on implementing it was currently known.

For Clang, work is being carried out on an implementation, and the
progress can be found at [ClangFormat]. It is expected that full support will
be available in Clang 14, due for release in 2022.

For MSVC, the C++ library support page [MSVClib] indicates that support
is available for std::format, but with a caveat that to use it you
currently need to pass the /std:c++latest flag, because of ongoing
work on the standard.

Given the above, the code samples in this article were compiled using the
{fmt} library, version 8.0.1. This version provides std::format
compatible output. Versions of {fmt} before 8.0.0 had some differences,
especially regarding some floating-point formatting and locale handling.

To convert the listings to use the standard library when available, replace
the #include <fmt/format.h> with #include <format>, and
remove the using namespace fmt line. One small wrinkle is that
{fmt} has its own string_view class, so on the rare occasions when
we use string_view in the examples, it is always qualified with the std
namespace.

Text formatting functions
This section describes the main std::format functions. These are all
you need if you just want to produce formatted text.

format
The first function provided by std::format is called format. Listing 1
gives an example of how you would use it, along with lines that produce

the same output using printf and iostreams. Output of this program is
given in Figure 1.

As can be seen from the listing, the interface to the format function is
similar to the one for printf. It takes a format string specifying the format
of the data to be output, followed by a list of values to use to replace fields
defined in the string. In printf the fields to be replaced are indicated by
preceding the format instructions with %, while in format they are
delimited by { and } characters.

Looking at the strings passed to format in the listing, it is obvious that
there is nothing in the replacement fields that indicates the types of values
to be output. Unlike printf, format knows what types of arguments
have been passed. This is because it is defined as a template function with
the following signature:

 template<class... Args>
 string format(string_view fmt,
 const Args&... args);

M

Figure 1

Using printf : 10 1.234 Hello World!
Using iostreams: 10 1.234 Hello World!
Using format : 10 1.234 Hello World!

Listing 1

#include <fmt/format.h>
#include <iostream>
#include <cstdio>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 int i = 10;
 double f = 1.234;
 string s = "Hello World!";
 printf("Using printf : %d %g %s\n", i, f,
 s.c_str());
 cout << "Using iostreams: " << i << " " << f
 << " " << s << "\n";
 cout << format("Using format : {} {} {}\n", i,
 f, s);
}

Spencer Collyer Spencer has been programming for more years
than he cares to remember, mostly in the financial sector, although
in his younger years he worked on projects as diverse as
monitoring water treatment works on the one hand, and television
programme scheduling on the other.
December 2021 | Overload | 9

FEATURE SPENCER COLLYER

Because format knows what the types of each
argument are, if you try to use incompatible
formatting with a value it will throw an exception
The fmt argument is the format string specifying what the output should
look like. The args arguments are the values we want to output. Note that
format returns a string, so to output it you need to write the string
somewhere – in the example, we simply send it to cout.

The format string syntax will be described in more detail later, but for now,
it is sufficient to know that the {} items output the corresponding value
from args using its default formatting.

Because format knows what the types of each argument are, if you try
to use incompatible formatting with a value it will throw an exception.
Listing 2 demonstrates this, where we give an integer argument, but the
format type is a string one. This function produces the following output:

 Caught format_error: invalid type specifier

This contrasts with printf, which in all likelihood will at best output
garbage with no indication why, and at worst can crash your program.

format_to and format_to_n
The format function always returns a new string on each call. This is a
problem if you want your output to be built up in several stages, as you
would have to store each string produced and then stitch them all together
at the end when outputting them.

To avoid this, you can use the format_to function. This appends the
formatted text to the given output. The signature for this function is as
follows:

 template<class Out, class... Args>
 Out format_to(Out out, string_view fmt,
 const Args&... args);

The first parameter, out, is an output iterator, which has to model
OutputIterator<const char&>. The formatted output is sent to this
output iterator. The function returns the iterator past the end of the written
text.

Listing 3 shows how you might use format_to to output all the values
in a vector. The output is a back_insert_iterator<string>, which
matches the constraint, and appends the formatted values to the end of the
string. Output from this program is in Figure 2.

If you also need to limit the number of characters written, use the
format_to_n function. The signature for this function is similar to that
for format_to, as follows:

 template<class Out, class... Args>
 format_to_n_result<Out> format_to_n(Out out,
 iter_difference_t<Out> n,
 string_view fmt, const Args&... args);

This takes the maximum number of characters to write in parameter n. The
return value of this function is a format_to_n_result structure, which
contains the following members:

 out – Holds the output iterator past the text written.

Listing 2

#include <fmt/format.h>
#include <iostream>
using namespace std;
using namespace fmt;
int main()
{
 int i = 10;
 try
 {
 cout << format("Using format: {:s}\n", i);
 }
 catch (const format_error& fe)
 {
 cout << "Caught format_error: " << fe.what()
 << "\n";
 }
}

Listing 3

#include <fmt/format.h>
#include <iostream>
#include <iterator>
#include <vector>
using namespace std;
using namespace fmt;
string VecOut(const vector<int>& v)
{
 string retval;
 back_insert_iterator<string> out(retval);
 for (const auto& i: v)
 {
 out = format_to(out, "{} ", i);
 }
 return retval;
}
int main()
{
 vector<int> v1{2, 3, 5};
 cout << VecOut(v1) << "\n";
 vector<int> v2{1, 2, 4, 8, 16, 32};
 cout << VecOut(v2) << "\n";
 vector<int> v3{1, 4, 9, 16, 25, 36, 49, 64, 81,
 100};
 cout << VecOut(v3) << "\n";
}

Figure 2

2 3 5
1 2 4 8 16 32
1 4 9 16 25 36 49 64 81 100
10 | Overload | December 2021

FEATURESPENCER COLLYER

If you need to know how many characters would
be output for a particular format string and set of

arguments, you can call formatted_size
 size – Holds the size that the formatted string would have had,
before any potential truncation to a length of n. This can be used to
detect if the output has been truncated, by checking if the value is
greater than the n passed in.

The VecOut function in Listing 4 is similar to the one in Listing 3, but
this time it limits the number of characters written for each value to 5. As
can be seen from the output in Figure 3, the third value in v2 is truncated
from 1000000 to 10000 – probably something you’d only want to do if you
were putting together a toy program to illustrate how the format_to_n
function works.

formatted_size
If you need to know how many characters would be output for a particular
format string and set of arguments, you can call formatted_size. This
can be used if you want to create a buffer of the right size to accept the
output. The function has the following signature:

 template<class... Args>
 size_t formatted_size(string_view fmt,
 const Args&... args);

The size_t value returned gives the length that the formatted string
would have with the given arguments. If you are using this to create a
buffer to write a C-style string to, remember that the value returned would
not include any terminating '\0' character unless you include it in the
format string.

Listing 5 illustrates the use of formatted_size. The output is in
Figure 4. It may appear that the length output is incorrect but remember
that the terminating newline character is included in the format string.

Wide-character support
The functions described above all deal with classes (string ,
string_view, the output iterators) that use char to represent the
characters being handled. If you need to use wchar_t characters, there is
an overload for each of the functions which take or return the appropriate
class using wchar_t. For instance, the format function that uses
wchar_t has the following signature:

 template<class... Args>
 wstring format(wstring_view fmt,
 const Args&... args);

Note that as of the C++20 standard, std::format does not handle any
of the charN_t types (e.g. char16_t, char32_t).

Error reporting
Any errors detected by std::format are reported by throwing objects
o f t he c l a s s format_error . Th i s i s de r i ved f r om the

Figure 3

1 100 10000
1 1000 10000

Listing 4

#include <fmt/format.h>
#include <iostream>
#include <iterator>
#include <vector>
using namespace std;
using namespace fmt;
string VecOut(const vector<int>& v)
{
 string retval;
 back_insert_iterator<string> out(retval);
 for (const auto& i: v)
 {
 auto res = format_to_n(out, 5, "{}", i);
 retval += ' ';
 }
 return retval;
}
int main()
{
 vector<int> v1{1, 100, 10000};
 cout << VecOut(v1) << "\n";
 vector<int> v2{1, 1000, 1000000};
 cout << VecOut(v2) << "\n";
}

Listing 5

#include <fmt/format.h>
#include <iostream>
#include <cstdio>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 int i = 10;
 double f = 1.234;
 string s = "Hello World!";
 string fmt_str{"{} {} {}\n"};
 cout << "Length of formatted data: "
 << formatted_size(fmt_str, i, f, s) << "\n";
 cout << format(fmt_str, i, f, s);
 cout << "123456789|123456789|12\n";
}

Figure 4

Length of formatted data: 22
10 1.234 Hello World!
123456789|123456789|12
December 2021 | Overload | 11

FEATURE SPENCER COLLYER

Any text that isn’t part of a replacement field or
an escape sequence is output literally
std::runtime_error class so it has a what function that returns the
error string passed when the exception is created. Listing 2, presented
previously, shows an example of catching a format_error.

Format string
The format strings used by the std::format functions consist of escape
sequences, replacement fields, and other text. They are based on the style
used by the Python str.format, for anyone familiar with that. A similar
style is also used in the .NET family of languages, and in Rust.

Escape sequences
The two escape sequences recognised are {{ and }}, which are replaced
by { and } respectively. You would use them if you need a literal { or }
in the output.

Obviously this is distinct from the normal string escapes that the compiler
requires if you want to insert special characters in the string, such as \n.
By the time the std::format functions see the string, these will have
already been replaced by the compiler.

Replacement fields
A replacement field controls how the values passed to the std::format
function are formatted. A replacement field has the following general
format:

'{'[arg-id][':'format-spec]'}'

where:

 arg-id

If given, this specifies the index of the argument in the value list that
is output by the replacement field. Argument indexes start at 0 for
the first argument after the format string.

 format-spec

Gives the format specification to be applied to the value being
handled. Note that if you give a format-spec, you have to precede it
with a :, even if you do not give an arg-id.

Later sections will give more details on arg-ids and format-specs.
Examples of valid replacement fields are {}, {0}, {:10d}, {1:s}.

Other text
Any text that isn’t part of a replacement field or an escape sequence is
output literally as it appears in the format string.

Argument IDs
The first item in a replacement field is an optional arg-id. This specifies
the index of the value in the argument list that you want to use for that
replacement field. Argument index values start at 0.

If not specified, the arguments are simply used in the order that they appear
in the function call. This is known as automatic argument numbering. For

instance, in Listing 1 the format call has no arg-ids, so the arguments
are just used in the order i, f, s.

A given format string cannot have a mix of manual and automatic
argument numbering. If you use an arg-id for one replacement field you
have to use arg-ids for all replacement fields in the format string.

A simple use for this argument numbering can be seen in Listing 6, where
it is used to output the same value in three different bases, along with lines
that do the same thing for both printf and iostreams. The output from
this is in Figure 5.

Another important use for this facility will be described later in the section
‘Internationalization’.

Note that the format string does not have to specify arg-ids for all the
arguments passed to the function. Any that are not given will simply be
ignored. An example of this is shown in Listing 7, with the output in
Figure 6.

Format specifications
The standard format-spec has the following general format1:

[[fill]align][sign][#][0][width][prec][L][type]

There should be no spaces between each item in the format-spec. Also,
every item is optional, except that if fill is specified, it must be
immediately followed by align. If align is given, any ' 0 ' will be ignored.

Anyone familiar with printf format strings will see that
std::format uses a very similar style. However, there are some

1. This section describes the standard format-spec defined by
std::format for formatting fundamental types, strings, and
string_views. Other types, like std::chrono, have their own
format-spec definitions, and user-defined types can also define their
own.

Figure 5

10 12 a
10 12 a
10 12 a

Listing 6

#include <fmt/format.h>
#include <iostream>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 int i = 10;
 printf("%d %o %x\n", i, i, i);
 cout << i << " " << std::oct << i << " "
 << std::hex << i << std::dec << "\n";
 cout << format("{0} {0:o} {0:x}\n", i);
}

12 | Overload | December 2021

FEATURESPENCER COLLYER

like printf format specifiers, but unlike many iostreams
manipulators,the values given in a format-spec only

apply to the current field and don’t affect any later fields
significant differences, so the following sections describe each item in the
above format in detail, except for the ' L ' character, which will be left until
the section on internationalization.

Note that like printf format specifiers, but unlike many iostreams
manipulators, the values given in a format-spec only apply to the current
field and don’t affect any later fields.

The type option is called the presentation type. The valid values for each
fundamental type are given below, along with a description of what effect
they have. Remember that, unlike printf, std::format knows the
type of value being output, so if you just want the default format for that
value, you can omit the type option.

Text alignment and fill
The align value is a single character that gives the alignment to use for
the current field. It can have any of the values <, >, or ^. The meaning
of these is as follows:

 < – The value is left-justified in the field width. This is the default
for string fields.

 > – The value is right-justified in the field width. This is the default
for numeric fields.

 ^ – The value is centred in the field width. Any padding will be
distributed evenly on the left and right sides of the value. If an odd
number of padding characters is needed, the extra one will always
be on the right.

If the first character in the format-spec is immediately followed by one
of the alignment characters, that first character is treated as the fill
character to use if the field needs padding. A fill character must be
followed by a valid align character. You cannot use either of the
characters { or } as fill characters.

Note: The fill and align values only make sense if you also specify a
width value, although it is not an error to specify them without one.

Listing 8 shows the effect of the align and fill values. The output is in
Figure 7.

Sign, #, and 0
The sign value specifies how the sign for an arithmetic type is to be output.
It can take the following values:

 + – A sign should always be output for both negative and non-
negative values.

 - – A sign should only be output for negative values. This is the
default.

 (space) – A sign should be output for negative values, and a space
for non-negative values.

The # character indicates that the alternative form should be used for
output of the given value. The meaning of this is described under the
appropriate section below.

The 0 character is only valid when also specifying a width value. If present
it pads the field with 0 characters after any sign character and/or base
indicator. If an align value is present, any 0 character is ignored.

Note that the sign, #, and 0 values are only valid for arithmetic types,and
for bool or char (wchar_t in wide string functions) when an integer
presentation type is specified for them (see later).

Figure 6

Compilation succeeded
Compilation succeeded with 10 Warning(s)
Compilation failed with 10 Error(s)
Compilation failed with 10 Error(s) and 10
Warning(s)

Listing 7

#include <fmt/format.h>
#include <iostream>
#include <string>
using namespace std;
using namespace fmt;
void write_success(int warnings, int errors)
{
 string fmtspec = "Compilation ";
 if (errors == 0)
 {
 fmtspec += "succeeded";
 if (warnings != 0)
 {
 fmtspec += " with {0} Warning(s)";
 }
 }
 else
 {
 fmtspec += "failed with {1} Error(s)";
 if (warnings != 0)
 {
 fmtspec += " and {0} Warning(s)";
 }
 }
 fmtspec += "\n";
 cout << format(fmtspec, warnings, errors);
}
int main()
{
 write_success(0, 0);
 write_success(10, 0);
 write_success(0, 10);
 write_success(10, 10);
}

December 2021 | Overload | 13

FEATURE SPENCER COLLYER
Listing 9 shows the effect of the sign and 0 values. Output is shown in
Figure 8. The effect of the # value will be shown in examples in the
arithmetic type sections.

Width and precision
The width value can be used to give the minimum width for a field. If the
output value needs more characters than the specified width, it will be
displayed in full, not truncated to the width. If you need the value to be
truncated to a certain width you can use the format_to_n function to
output the value, with the guarantee that only the given number of
characters at most will be written.

The value given for the width field depends on whether you are hard-
coding the width in the string, or need it to be specified dynamically at
runtime. If it is to be hard-coded, it should be given as a literal positive
decimal number. If you need to specify the width dynamically at runtime,
you use a nested replacement field, which looks like {} or {n}.

Listing 10 demonstrates the use of the width value, using both literal values
and nested replacement fields with automatic and manual numbering. As

shown in Figure 9, if the value is wider than the given width, the width
value is ignored and the field is wide enough to display the full value.

The prec value is formed of a decimal point followed by the precision,
which like the width field can be a literal positive decimal number or a
nested replacement field.

The prec value is only valid for floating-point or string fields. It has
different meanings for the two types and will be described in the relevant
section below.

If using a nested replacement field for either width or prec, you must use
the same numbering type as for the arg-ids, e.g. if using manual numbering
for arg-ids you must also use it for nested replacement fields.

If you use automatic numbering, the arg-ids are assigned based on the
count of { characters up to that point, so the width and/or prec values come
after the value they apply to. This contrasts with printf, where if using
the * to indicate the value is read from the argument list, the values for
width and prec appear before the value they apply to.

Integer presentation types
The available integer presentation types are given below. Where relevant,
the effect of selecting the alternate form using the # flag is also listed. Note
that any sign character will always precede the prefix added in alternate
form.

 d – Decimal format. This is the default if no presentation type is
given.

Listing 8

#include <fmt/format.h>
#include <iostream>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 string str;
 cout << "No fill character specified:\n";
 str = format("|{:^10}| |{:<10}| |{:^10}| | "
 "{:>10}|\n", "default", "left", "centre",
 "right");
 cout << str;
 string fmtstr = "|{0:10}| |{0:<10}| | "
 "{0:^10}| |{0:>10}|\n";
 str = format(fmtstr, 123);
 cout << str;
 str = format(fmtstr, 1.23);
 cout << str;
 str = format(fmtstr, "abcde");
 cout << str;

 cout << "\nFill character set to '*'\n";
 str = format("|{:*<10}| |{:*^10}| |{:*>10}|\n",
 "left", "centre", "right");
 cout << str;
 fmtstr = "|{0:*<10}| |{0:*^10}| |{0:*>10}|\n";
 str = format(fmtstr, 123);
 cout << str;
 str = format(fmtstr, 1.23);
 cout << str;
 str = format(fmtstr, "abcde");
 cout << str;
}

Listing 9

#include <fmt/format.h>
#include <iostream>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 int ineg = -10;
 int ipos = 5;
 double fneg = -1.2;
 double fpos = 2.34;

 cout << format(
 "With sign '+' :|{:+}|{:+}|{:+}|{:+}|\n",
 ineg, fneg, ipos, fpos);
 cout << format(
 "With sign '-' :|{:-}|{:-}|{:-}|{:-}|\n",
 ineg, fneg, ipos, fpos);
 cout << format(
 "With sign ' ' :|{: }|{: }|{: }|{: }|\n",
 ineg, fneg, ipos, fpos);
 cout << format("With sign '+' and '0' "
 ":|{:+06}|{:+06}|{:+06}|{:+06}|\n",
 ineg, fneg, ipos, fpos);
 cout << format("With sign '-' and '0' "
 ":|{:-06}|{:-06}|{:-06}|{:-06}|\n",
 ineg, fneg, ipos, fpos);
 cout << format("With sign ' ' and '0' "
 ":|{: 06}|{: 06}|{: 06}|{: 06}|\n",
 ineg, fneg, ipos, fpos);
}

Figure 8

With sign '+' :|-10|-1.2|+5|+2.34|
With sign '-' :|-10|-1.2|5|2.34|
With sign ' ' :|-10|-1.2| 5| 2.34|
With sign '+' and '0' :|-00010|-001.2|+00005|+02.34|
With sign '-' and '0' :|-00010|-001.2|000005|002.34|
With sign ' ' and '0' :|-00010|-001.2| 00005| 02.34|

Figure 7

No fill character specified:
default		left		centre		right
123		123		123		123
1.23		1.23		1.23		1.23
abcde		abcde		abcde		abcde

Fill character set to '*'
left******		**centre**		*****right
123*******		***123****		*******123
1.23******		***1.23***		******1.23
abcde*****		**abcde***		*****abcde
14 | Overload | December 2021

FEATURESPENCER COLLYER
 b, B – Binary format. For alternate form, the value is prefixed with
0b for b, and 0B for B.

 o – Octal format. For alternate form, the value is prefixed with 0 as
long as it is non-zero. For example, 7 outputs as 07, but 0 outputs as
0.

 x, X – Hecadecimal format. The case of digits above 9 matches the
case of the presentation type. For alternate form, the value is
prefixed with 0x for x, or 0X for X.

 c – Outputs the character with the code value given by the integer.
A format_error will be thrown if the value is not a valid code
value for the character type of the format string.

Listing 11 gives examples of outputting using all the presentation types,
with and without alternate form where that is relevant. The output is shown
in Figure 10.

Floating-point presentation types
The available floating-point presentation types are given below.

 e – Outputs the value in scientific notation. If no prec value is given,
it defaults to 6.

 f – Outputs the value in fixed-point notation. If no prec value is
given, it defaults to 6.

 g – Outputs the value in general notation, which picks between e
and g form. The rules are slightly arcane but are the same as used for
g when used with printf. If no prec value is given, it defaults to 6.

 a – Outputs the value using scientific notation, but with the number
represented in hexadecimal. Because e is a valid hex digit, the
exponent is indicated with a p character.

If no presentation type is given, the output depends on
whether a prec value is given or not. If prec is present
the output is the same as using g. If prec is not present,
the output is in either fixed-point or scientific notation,
depending on which gives the shortest output that still
guarantees that reading the value in again will give the
same value as was written out.

If the floating-point value represents infinity or NaN,
the values 'inf' and 'nan' will be output respectively.
They will be preceded by the appropriate sign

character if required. Specifying # does not cause a base prefix to be output
for infinity or NaN.

The e, f, g, and a presentation types have equivalent E, F, G, and A types
which perform the same, but output any alphabetic characters in uppercase
rather than lowercase. For the f and F types this only affects output of
infinity and NaN.

If the # character is used to select the alternate form, it causes a decimal
point character to always be output, even if there are no digits after it. This
does not apply to infinity and NaN values.

Listing 12 gives examples of outputting using the lowercase presentation
types, and how prec and alternate form affects the output. Output is given
in Figure 11.

Listing 13 gives examples of outputting infinity and NaN values. Because
all presentation types give the same output for infinity and NaN, we only
give the output for types f and F. Output is given in Figure 12.

Character presentation types
The default presentation type for char and wchar_t is c. It simply copies
the character to the output.

You can also use the integer presentation types b, B, d, o, x, and X. They
write the integer value of the character code to the output, and take account
of the alternate form flag # if relevant.

Figure 10

Default: -10 0 10
Decimal type: -10 0 10
Binary type: -1010 -1010 0 0 1010 1010
Binary '#' : -0b1010 -0B1010 0b0 0B0 0b1010 0B1010
Octal type: -12 0 12
Octal '#' : -012 0 012
Hex type: -a -A 0 0 a A
Hex '#' : -0xa -0XA 0x0 0X0 0xa 0XA
Char type: | | |~|

Figure 9

Specified width: | 10| | 10| |10000000| | 10000000|
Variable width, automatic numbering: | 10| | 10000000|
Variable width= 7, manual numbering: | 10| |10000000|
Variable width= 8, manual numbering: | 10| |10000000|
Variable width= 9, manual numbering: | 10| | 10000000|
Variable width=10, manual numbering: | 10| | 10000000|

Listing 11

#include <fmt/format.h>
#include <iostream>
using namespace std;
using namespace fmt;
int main()
{
 int i1 = -10;
 int i2 = 10;
 cout << format("Default: {} {} {}\n", i1, 0,
 i2);
 cout << format("Decimal type: {:d} {:d} {:d}\n",
 i1, 0, i2);
 cout << format("Binary type: {0:b} {0:B} {1:b} "
 "{1:B} {2:b} {2:B}\n", i1, 0, i2);
 cout << format("Binary '#' : {0:#b} {0:#B} "
 "{1:#b} {1:#B} {2:#b} {2:#B}\n", i1, 0, i2);
 cout << format("Octal type: {0:o} {1:o} "
 "{2:o}\n", i1, 0, i2);
 cout << format("Octal '#' : {0:#o} {1:#o} "
 "{2:#o}\n", i1, 0, i2);
 cout << format("Hex type: {0:x} {0:X} {1:x} "
 "{1:X} {2:x} {2:X}\n", i1, 0, i2);
 cout << format("Hex '#' : {0:#x} {0:#X} {1:#x} "
 "{1:#X} {2:#x} {2:#X}\n", i1, 0, i2);
 cout << format("Char type: |{:c}| |{:c}|\n", 32,
 126);
}

Listing 10

#include <fmt/format.h>
#include <iostream>
using namespace std;
using namespace fmt;
int main()
{
 int v1 = 10;
 int v2 = 10'000'000;
 cout << format("Specified width: |{0:4}| "
 "|{0:12}| |{1:4}| |{1:12}|\n", v1, v2);
 cout << format("Variable width, automatic "
 "numbering: |{:{}}| |{:{}}|\n", v1, 5, v2, "
 "12);
 for (int len = 7; len < 11; ++len)
 {
 cout << format("Variable width={0:>2},
 manual numbering: |{1:{0}}| |{2:{0}}|\n",
 len, v1, v2);
 }
}

December 2021 | Overload | 15

FEATURE SPENCER COLLYER
Listing 12

#include <fmt/format.h>
#include <iostream>

using namespace std;
using namespace fmt;

int main()

{
 double small = 123.4567;
 double nodps = 34567.;
 double large = 1e10+12.345;
 double huge = 1e20;

 cout << "Default precision:\n";
 cout << format("Default: {} {} {} {} {}\n", 0.0,
 small, nodps, large, huge);
 cout << format("Type f : {:f} {:f} {:f} {:f} "
 "{:f}\n", 0.0, small, nodps, large, huge);
 cout << format("Type e : {:e} {:e} {:e} {:e} "
 "{:e}\n", 0.0, small, nodps, large, huge);
 cout << format("Type g : {:g} {:g} {:g} {:g} "
 "{:g}\n", 0.0, small, nodps, large, huge);
 cout << format("Type a : {:a} {:a} {:a} {:a} "
 "{:a}\n", 0.0, small, nodps, large, huge);
 cout << "\nAlternate form:\n";
 cout << format("Default: {:#} {:#} {:#} {:#} "
 "{:#}\n", 0.0, small, nodps, large, huge);
 cout << format("Type f : {:#f} {:#f} {:#f} "
 "{:#f}{:#f}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type e : {:#e} {:#e} {:#e} "
 "{:#e} {:#e}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type g : {:#g} {:#g} {:#g} "
 "{:#g} {:#g}\n", 0.0, small, nodps, large,
 huge);

Listing 12 (cont’d)

 cout << format("Type a : {:#a} {:#a} {:#a} "
 {:#a} {:#a}\n", 0.0, small, nodps, large,
 huge);
 cout << "\nPrecision=3:\n";
 cout << format("Default: {:.3} {:.3} {:.3} "
 "{:.3} {:.3}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type f : {:.3f} {:.3f} {:.3f} "
 "{:.3f} {:.3f}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type e : {:.3e} {:.3e} {:.3e} "
 "{:.3e} {:.3e}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type g : {:.3g} {:.3g} {:.3g} "
 "{:.3g} {:.3g}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type a : {:.3a} {:.3a} {:.3a} "
 "{:.3a} {:.3a}\n", 0.0, small, nodps, large,
 huge);
 cout << "\nPrecision=3, alternate form:\n";
 cout << format("Default: {:#.3} {:#.3} {:#.3} "
 "{:#.3} {:#.3}\n", 0.0, small, nodps, large,
 huge);
 cout << format("Type f : {:#.3f} {:#.3f} "
 "{:#.3f} {:#.3f} {:#.3f}\n", 0.0, small,
 nodps, large, huge);
 cout << format("Type e : {:#.3e} {:#.3e} "
 "{:#.3e} {:#.3e} {:#.3e}\n", 0.0, small,
 nodps, large, huge);
 cout << format("Type g : {:#.3g} {:#.3g} "
 "{:#.3g} {:#.3g} {:#.3g}\n", 0.0, small,
 nodps, large, huge);
 cout << format("Type a : {:#.3a} {:#.3a} "
 "{:#.3a} {:#.3a} {:#.3a}\n", 0.0, small,
 nodps, large, huge);
}

16 | Overload | December 2021

Figure 11

Default precision:
Default: 0 123.4567 34567 10000000012.345 1e+20
Type f : 0.000000 123.456700 34567.000000 10000000012.344999 100000000000000000000.000000
Type e : 0.000000e+00 1.234567e+02 3.456700e+04 1.000000e+10 1.000000e+20
Type g : 0 123.457 34567 1e+10 1e+20
Type a : 0x0p+0 0x1.edd3a92a30553p+6 0x1.0e0ep+15 0x1.2a05f2062c28fp+33 0x1.5af1d78b58c4p+66

Alternate form:
Default: 0.0 123.4567 34567.0 10000000012.345 1.e+20
Type f : 0.000000 123.456700 34567.000000 10000000012.344999 100000000000000000000.000000
Type e : 0.000000e+00 1.234567e+02 3.456700e+04 1.000000e+10 1.000000e+20
Type g : 0.00000 123.457 34567.0 1.00000e+10 1.00000e+20
Type a : 0x0.p+0 0x1.edd3a92a30553p+6 0x1.0e0ep+15 0x1.2a05f2062c28fp+33 0x1.5af1d78b58c4p+66

Precision=3:
Default: 0 123 3.46e+04 1e+10 1e+20
Type f : 0.000 123.457 34567.000 10000000012.345 100000000000000000000.000
Type e : 0.000e+00 1.235e+02 3.457e+04 1.000e+10 1.000e+20
Type g : 0 123 3.46e+04 1e+10 1e+20
Type a : 0x0.000p+0 0x1.eddp+6 0x1.0e1p+15 0x1.2a0p+33 0x1.5afp+66

Precision=3, alternate form:
Default: 0.00 123.0 3.46e+04 1.00e+10 1.00e+20
Type f : 0.000 123.457 34567.000 10000000012.345 100000000000000000000.000
Type e : 0.000e+00 1.235e+02 3.457e+04 1.000e+10 1.000e+20
Type g : 0.00 123.0 3.46e+04 1.00e+10 1.00e+20
Type a : 0x0.000p+0 0x1.eddp+6 0x1.0e1p+15 0x1.2a0p+33 0x1.5afp+66

FEATURESPENCER COLLYER
Listing 14 gives examples of outputting characters. Output is given in
Figure 13.

String presentation types
String formatting works for std::string and std::string_view as
well as the various char* types.

The only presentation type for strings is s, which is also the default if not
given. The default alignment for string fields is left-justified.

If a precision value is specified with prec, and it is smaller than the string
length, it causes only the first prec characters from the string to be output.
This has the effect of reducing the effective length of the string when
checking against any width parameter.

Listing 15 shows examples of outputting various types of string, as well
as the interaction between width and prec values. The output is shown in
Figure 14.

Bool presentation types
The default bool presentation type is s, which outputs true or false.

You can also use the integer presentation types b, B, d, o, x, or X. These
behave like the same types for integers, treating false as 0 and true as 1.

You can also use c as a bool presentation type. It will output the characters
with values 0x1 and 0x0 for true and false, which may not be what you
expect (or particularly useful).

Listing 16 is an example of formatting bools, with the output in Figure 15.

The line that uses the c presentation type appears to print nothing, but if
you send the output to a file and then examine the output using a program
that displays the actual bytes in the file, you will see that the characters
with codes 0x0 and 0x1 have been output. For instance, you can use od c
on a Unix or Linux box.

Pointer presentation types
The only type value available for pointers is 'p'. It can be omitted and
std::format will deduce the type from the argument. Note that if the
pointer is to one of the char types, it will be treated as a string, not as a
pointer. If you want to output the actual pointer value you need to cast it
to a void*.

Pointer values are output in hexadecimal, with the prefix '0x' added. and
digits a to f in lowercase. The output is right-justified by default, just like
arithmetic types.

Note that the C++20 standard specifies that only pointers for which
std::is_void_t returns true can be output by std::format, which
in practice means you need to cast any pointers to void*. Listing 17
shows examples of pointer formatting, and does exactly that. Sample
output is in Figure 16.

Internationalization
Internationalization, or i18n as it is commonly written, is the process of
writing a program so its output can be used natively by people speaking
different languages and with different conventions for writing things like
numbers and dates.

Listing 13

#include <fmt/format.h>
#include <limits>
#include <iostream>
using namespace std;
using namespace fmt;
int main()
{
 auto pinf =
 std::numeric_limits<double>::infinity();
 auto ninf =
 -std::numeric_limits<double>::infinity();
 auto pnan =
 std::numeric_limits<double>::quiet_NaN();
 auto nnan =
 -std::numeric_limits<double>::quiet_NaN();
 cout << "Default:\n";
 cout << format("Default: {} {} {} {}\n", ninf,
 pinf, nnan, pnan);
 cout << format("Type f : {:f} {:f} {:f} {:f}\n",
 ninf, pinf, nnan, pnan);
 cout << format("Type F : {:F} {:F} {:F} {:F}\n",
 ninf, pinf, nnan, pnan);
 cout << "\nAlternate form:\n";
 cout << format("Default: {:#} {:#} {:#} {:#}\n",
 ninf, pinf, nnan, pnan);
 cout << format("Type f : {:#f} {:#f} {:#f} "
 "{:#f}\n", ninf, pinf, nnan, pnan);
 cout << format("Type F : {:#F} {:#F} {:#F} "
 "{:#F}\n", ninf, pinf, nnan, pnan);
 cout << "\nWidth=7:\n";
 cout << format("Default: |{:7}| |{:7}| |{:7}| "
 "|{:7}|\n", ninf, pinf, nnan, pnan);
 cout << "\nWidth=7, using '0':\n";
 cout << format("Default: |{:07}| |{:07}| "
 "|{:07}| |{:07}|\n", ninf, pinf, nnan, pnan);
}

Figure 12

Default:
Default: -inf inf -nan nan
Type f : -inf inf -nan nan
Type F : -INF INF -NAN NAN

Alternate form:
Default: -inf inf -nan nan
Type f : -inf inf -nan nan
Type F : -INF INF -NAN NAN

Width=7:
Default: |-inf | |inf | |-nan | |nan |

Width=7, using '0':
Default: | -inf| | inf| | -nan| | nan|

Listing 14

#include <fmt/format.h>
#include <iostream>
using namespace std;
using namespace fmt;
int main()
{
 char c = 'a';
 cout << format("Default: {}\n", c);
 cout << format("Char type: {:c}\n", c);
 cout << format("Decimal type: {:d}\n", c);
 cout << format("Binary type: {0:b} {0:B} "
 "{0:#b} {0:#B}\n", c);
 cout << format("Octal type: {0:o} {0:#o}\n", c);
 cout << format("Hex type: {0:x} {0:X} {0:#x} "
 "{0:#X}\n", c);
}

Figure 13

Default: a
Char type: a
Decimal type: 97
Binary type: 1100001 1100001 0b1100001 0B1100001
Octal type: 141 0141
Hex type: 61 61 0x61 0X61
December 2021 | Overload | 17

FEATURE SPENCER COLLYER
By default, std::format takes no account of the current locale when
outputting values. The reasons for this are described in the original
proposal [P0645] in the section ‘Locale support’. In contrast, iostreams
takes account of the locale on all output, even if it is set to the default.

Format strings
The ability to use manual argument numbering in format strings to reorder
arguments is useful when using translated output. Allowing arguments to
appear in a different order in the output can make for grammatically correct
output in a given language.

Rather than hard-coding the format strings in your code, you could use a
mechanism that provides the correct translated string to use, with manual
argument numbers inserted. Libraries exist that make it easier to use such
translated strings – for instance, GNU’s gettext library [gettext] takes
a string and looks up the translated version of it, as long as the translations
have been provided in the correct format.

Locale-aware formatting
In a format-spec, the L modifier can
be used to specify that the field
should be output in a locale-aware
fashion. Without this modifier, the
locale is ignored. You can use this
for output of numeric values, and

Listing 15

#include <fmt/format.h>
#include <iostream>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 string s = "Hello World!";
 const char* cp = "Testing. Testing.";
 const char* cp2 = "Goodbye World!";
 std::string_view sv = cp2;
 cout << format("Default: {} {} {}\n", s, cp,
 sv);
 cout << format("Type : {:s} {:s} {:s}\n", s,
 cp, sv);
 cout << "\nUsing width and precision:\n";
 cout << format("With width: w=7:|{0:7s}| "
 "w=20:|{0:20s}|\n", s);
 cout << format("With precision: p=4:|{0:.4s}| "
 "p=15:|{0:.15s}|\n", s);
 cout << format("With width and precision: "
 "w=7,p=4:|{0:7.4s}| w=20,p=4:|{0:20.4s}|\n",
 s);
 cout << format("With width, precision, align: "
 "|{0:<8.4s}| |{0:^8.4s}| |{0:>8.4s}|\n", s);
}

Figure 14

Default: Hello World! Testing. Testing. Goodbye
World!
Type : Hello World! Testing. Testing. Goodbye
World!

Using width and precision:
With width: w=7:|Hello World!| w=20:|Hello World!
|
With precision: p=4:|Hell| p=15:|Hello World!|
With width and precision: w=7,p=4:|Hell |
w=20,p=4:|Hell |
With width, precision, align: |Hell | | Hell
| | Hell|

Figure 15

 b B d o x X
true 1 1 1 1 1 1
false 0 0 0 0 0 0

Using alternate form
#b #B #d #o #x #X
0b1 0B1 1 01 0x1 0X1
0b0 0B0 0 0 0x0 0X0

Using type=s
|false| |true|

Using type=c
| | ||

Listing 16

#include <fmt/format.h>
#include <iostream>
using namespace std;
using namespace fmt;
int main()
{
 cout << " b B d o x X\n";
 cout << format("{0} {0:b} {0:B} {0:d} {0:o}
 {0:x} {0:X}\n", true);
 cout << format("{0} {0:b} {0:B} {0:d} {0:o} "
 "{0:x} {0:X}\n", false);
 cout << "\nUsing alternate form\n";
 cout << "#b #B #d #o #x #X\n";
 cout << format("{0:#b} {0:#B} {0:#d} {0:#o} "
 "{0:#x} {0:#X}\n", true);
 cout << format("{0:#b} {0:#B} {0:#d} {0:#o} "
 "{0:#x} {0:#X}\n", false);
 cout << "\nUsing type=s\n";
 cout << format("|{:s}| |{:s}|\n", false, true);
 cout << "\nUsing type=c\n";
 cout << format("|{:c}| |{:c}|\n", false, true);
}

Figure 16

Default: |0x55595cbc8eb0| |0x55595cbc8ed0| |0x0|
Type : |0x55595cbc8eb0| |0x55595cbc8ed0| |0x0|
Width : | 0x55595cbc8eb0| | 0x55595cbc8ed0| | 0x0|

Listing 17

#include <fmt/format.h>
#include <iostream>
#include <memory>
using namespace std;
using namespace fmt;
int main()
{
 int* pi = new int;
 void* vpi = static_cast<void*>(pi);
 double* pd = new double;
 void* vpd = static_cast<void*>(pd);
 void* pnull = nullptr;

 cout << format("Default: |{}| |{}| |{}|\n", vpi,
 vpd, pnull);
 cout << format("Type : |{:p}| |{:p}| "
 "|{:p}|\n", vpi, vpd, pnull);
 cout << format("Width : |{:20p}| |{:20p}| "
 "|{:20p}|\n", vpi, vpd, pnull);
}

18 | Overload | December 2021

FEATURESPENCER COLLYER
also bool when doing string format output. When used with bool it
changes t he ‘ t r ue ’ and ‘ f a l s e ’ va l ue s t o t he app rop r i a t e
numpunct::truename and numpunct::falsename instead.

The various output functions described earlier use the global locale when
doing locale-aware formatting. You can change the global locale with a
function call like the following:

 std::locale::global(std::locale("de_DE"));

This will set the global locale to the one for Germany, de_DE.

If you only want to change the locale for a single function call, there are
overloads of the various output functions that take the locale as their first
parameter. For instance, the format function has the following overload:

 template<class... Args>
 string format(const std::locale& loc,
 string_view fmt, const Args&... args);

Listing 18 shows examples of using locale-aware output, using both global
locales and function-specific ones. Output from this program is shown in
Figure 17.

Avoiding code bloat
The formatting functions are all template functions. This means that each
time one of the functions is used with a new set of argument types, a new
template instantiation will be generated. This could quickly lead to

unacceptable code bloat if these functions did the actual work of generating
the output values.

To avoid this problem, the format and format_to functions call helper
functions to do the actual formatting work. These helper functions have
names formed by adding 'v' to the start of the name of the calling function.
For instance, format calls vformat, which has the following signature:

 string vformat(string_view fmt,
 format_args args);

The format_args argument is a container of type-erased values, the
details of which are probably only interesting to library authors. They are
certainly outside the scope of this article.

There will only be a single instantiation of the vformat function, and one
vformat_to instantiation for each type of output iterator.

The actual work of doing the formatting is done by these helper functions,
so the amount of code generated for each call to format or format_to
is considerably reduced.

These functions are part of the std::format public API, so you can use
them yourself if you want to. Listing 19, which is based on code presented
in [P0645], shows one such use, with a logging function that takes any
number of arguments. The output from this function is in Figure 18. The
call to vlog_error uses the make_format_args function to generate
the format_args structure.

Conclusion
Hopefully this article has given you a taster of what std::format can
do. If you want to start trying it out you can use {fmt} as a good proxy
for it until library authors catch up with the standard.

Listing 18

#include <fmt/format.h>
#include <iostream>
#include <cstdio>
#include <string>
using namespace std;
using namespace fmt;
int main()
{
 double dval = 1.5;
 int ival = 1'000'000;
 cout << "Using default locale:\n";
 cout << format("format : {:.2f} {:12d}\n",
 dval, ival);
 cout << format("format+L: {:.2Lf} {:12Ld}\n",
 dval, ival);
 cout << "\nUsing global locale de_DE:\n";
 locale::global(locale("de_DE"));
 cout << format("format : {:.2f} {:12d}\n",
 dval, ival);
 cout << format("format+L: {:.2Lf} {:12Ld}\n",
 dval, ival);
 cout << "\nUsing function-specific locale:\n";
 cout << format(locale("en_US"),
 "en_US: {0:.2f} {0:.2Lf} {1:12d} {1:12Ld}\n",
 dval, ival);
 cout << format(locale("de_DE"),
 "de_DE: {0:.2f} {0:.2Lf} {1:12d} {1:12Ld}\n",
 dval, ival);
}

Figure 17

Using default locale:
format : 1.50 1000000
format+L: 1.50 1000000

Using global locale de_DE:
format : 1.50 1000000
format+L: 1,50 1.000.000

Using function-specific locale:
en_US: 1.50 1.50 1000000 1,000,000
de_DE: 1.50 1,50 1000000 1.000.000

Listing 19

#include <fmt/format.h>
#include <iostream>
#include <string>
using namespace std;
using namespace fmt;
void vlog_error(int code, std::string_view fmt,
format_args args)
{
 cout << "Error " << code << ": "
 << vformat(fmt, args) << "\n";
}
template<class... Args>
void log_error(int code, std::string_view fmt,
 const Args&... args)
{
 vlog_error(code, fmt,
 make_format_args(args...));
}
int main()
{
 int i = 10;
 double f = 1.234;
 string s = "Hello World!";
 log_error(1, "Bad input detected: {} is not "
 "an integer value", 10.1);
 log_error(10, "Oops - Type mismatch between {} "
 "and {}", "var1", 10);
 log_error(255, "Something went wrong!");
}

Figure 18

Error 1: Bad input detected: 10.1 is not an
integer value
Error 10: Oops - Type mismatch between var1 and 10
Error 255: Something went wrong!
December 2021 | Overload | 19

FEATURE SPENCER COLLYER
In my own projects I am already using the std::format compatible parts
of {fmt}, and in general find it easier and clearer than the equivalent
iostreams code.

In future articles I intend to explore how to create formatters for your own
user defined types, and also how to convert from existing uses of iostreams
and printf-family functions to std::format.

Acknowledgements
I’d like to extend my thanks to Victor Zverovich for responding quickly
to my various queries whilst writing this article, and also for reviewing
draft versions of the article, making many useful suggestions for
improvement. I’d also like to thank the Overload reviewers for making
useful suggestions for improvements to the article. Any errors and
ambiguities that remain are solely my responsibility.

Appendix 1: Comparison of format and printf format
specifications
Both std::format and printf use format specifications to define how
a field is to be output. Although they are similar in many cases, there are
enough differences to make it worth outlining them here. The following
list has the printf items on the left and gives the std::format
equivalent if there is one.

 - – Replaced by the <, ^, and > flags to specify alignment.
Repurposed as a sign specifier.

 +, space – These have the same meaning and have been joined as
sign specifiers by -.

 # – Has the same meaning.

 0 – Has the same meaning.

 * – Used in printf to say the width or precision is specified at run-
time. Replaced by nested replacement fields. See Note 1 below on
argument ordering differences when converting these.

 d – In printf it specifies a signed integer. In std::format, it
specifies any integer, but as it is the default it can be omitted, except
when outputting the integer value of a character or bool.

 h, l, ll, z, j, t – Not used. In printf, they specify the size of
integer being output. std::format is type aware so these are not
needed.

 hh – Not used. In printf it specifies the value is a char to be output
as a numeric value. Use d in std::format to do the same thing.

 i, u – Not used. Replaced by d.

 L – Not used. In printf it specifies a long double value is being
passed, but std::format is type aware. The L character has been
repurposed to say the field should take account of the current locale
when output.

 n – Not used. In printf, it saves the number of characters output
so far to an integer pointed to by the argument. Use
formatted_size as a replacement.

 c, p, s – Have the same meaning, but as they are the default output
type for their argument type, they can be omitted.

 a, A, e, E, f, F, g, G, o, x, X – All have the same meaning.

Note 1: If using dynamic values for width or precision, and you are using
automatic parameter numbering in std::format, the order of assigning
parameter numbers when parsing the string means the width and precision
values come after the value being output, whereas in the printf-family
functions they come before the value.

Note 2: POSIX adds positional parameters to the printf format
specification. These are specified using %n$ for value fields, or *m$ for
width and precision fields – e.g %1$*2$,*3$f. The std::format
format specification already supports these using manual numbering
mode.

Table 1 (overleaf) shows examples of printf formatting and the
equivalent std::format version.

Appendix 2: std::format and {fmt}
As previously mentioned, std::format is based on the {fmt} library.
However, {fmt} offers a number of extra facilities that are not in the
C++20 version of std::format. This appendix gives a brief description
of the main ones.

Direct output to a terminal
Both iostreams and the printf-family functions have the ability to write
directly to the terminal, either using std::cout or the printf function
itself. The only way to do this in std::format in C++20 is to use
format_to with a back_inserter attached to std::cout, but this
is not recommended as it leads to slow performance. This is why the
examples in this article write the strings produced to std::cout.

The {fmt} library provides a print function to do this work. It can in
fact write to any std::FILE* stream, defaulting to stdout if none is
specified in the function call. A proposal to add this to C++23 has been
made [P2093].

Named arguments
The {fmt} library supports named arguments, so you can specify an
argument in the replacement field by name as well as position.

Output of value ranges
There are a number of utility functions provided in {fmt}. One of the most
useful is fmt::join, which can be used to output ranges of values in a
single operation, with a given separator string between each value. The
ranges output can be tuples, initializer_lists, any container to which
std::begin and std::end can be applied, or any range specified by
begin and end iterators.

References
[ClangFormat] Libc++ Format Status, https://libcxx.llvm.org//Status/

Format.html

[fmtlib] {fmt} library, https://github.com/fmtlib/fmt

[GCClib] GCC library support, https://gcc.gnu.org/onlinedocs/libstdc++/
manual/status.html#status.iso.2020

[gettext] GNU gettext library, https://www.gnu.org/software/libc/
manual/html_node/Translation-with-gettext.html

[MSVClib] MSVC C++ library support, https://docs.microsoft.com/en-
us/cpp/overview/visual-cpp-language-conformance

[P0645] Text Formatting, Victor Zverovich, 2019, http://wg21.link/
P0645

[P2093] Formatted Output, Victor Zverovish, 2021, http://wg21.link/
P2093

[Zverovich19] std::format in C++20, Victor Zverovich,
https://www.zverovich.net/2019/07/23/std-format-cpp20.html
20 | Overload | December 2021

https://libcxx.llvm.org//Status/Format.html
https://libcxx.llvm.org//Status/Format.html
https://github.com/fmtlib/fmt
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2020
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2020
https://www.gnu.org/software/libc/manual/html_node/Translation-with-gettext.html
https://www.gnu.org/software/libc/manual/html_node/Translation-with-gettext.html
https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance
https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance
http://wg21.link/P0645
http://wg21.link/P0645
http://wg21.link/P2093
http://wg21.link/P2093
https://www.zverovich.net/2019/07/23/std-format-cpp20.html

December 2021 | Overload | 21

FEATURESPENCER COLLYER

printf std::format

Integer output

int iv = -1;
short sv = -2;
long lv = -3;
long long llv = -4;
printf("%i, %hi, %li, %lli\n", iv, sv, lv, llv);
unsigned int uiv = 1;
unsigned short usv = 2;
unsigned long ulv = 3;
unsigned long long ullv = 4;
printf("%u, %hu, %lu, %llu\n", uiv, usv, ulv,
 ullv);

int iv = -1;
short sv = -2;
long lv = -3;
long long llv = -4;
cout << format("{}, {}, {}, {}\n", iv, sv, lv,
 llv);
unsigned int uiv = 1;
unsigned short usv = 2;
unsigned long ulv = 3;
unsigned long long ullv = 4;
cout << format("{}, {}, {}, {}\n", uiv, usv, ulv,
 ullv);

Floating-point output

float f = 1.234;
double d = 2.345;
long double ld = 3.456;
printf("%g %g %Lg\n", f, d, ld);

float f = 1.234;
double d = 2.345;
long double ld = 3.456;
cout << format("{} {} {}\n", f, d, ld);

Character output

char c = 'A';
printf("%c %hhd\n", c, c);

char c = 'A';
cout << format("{} {:d}\n", c, c);

String output

const char* cptr = "Mary had a little lamb";
std::string str(cptr);
std::string_view strview(str);
printf("%s\n", cptr);
printf("%s\n", str.c_str());
// printf cannot handle std::string_view

const char* cptr = "Mary had a little lamb";
std::string str(cptr);
std::string_view strview(str);
cout << format("{}\n", cptr);
cout << format("{}\n", str);
cout << format("{}\n", strview);

Pointer output

printf("%p\n", static_cast<const void*>(cptr)); cout << format("{}\n",
 static_cast<const void*>(cptr));

Field alignment

printf("[%-10d] [%10d]\n", iv, iv);
// printf doesn't support centred alignment

cout << format("[{:<10}] [{:>10}]\n", iv, iv);
cout << format("[{:^10}]\n", iv);

Sign field

printf("[%+d] [% d] [%+d] [% d]\n", -1, -1, 1, 1);
// printf does not support '-' as a sign specifier

cout << format("[{:+}] [{: }] [{:+}] [{: }]\n",
 -1, -1, 1, 1);
cout << format("[{:-}] [{:-}]\n", -1, 1);

Run-time width and precision

int width=10, prec=5;
double val=123.456;
printf("%*.*f\n", width, prec, val);

int width=10, prec=5;
double val=123.456;
cout << format("{:{}.{}f}\n", val, width, prec);

Positional parameters

float fv = 123.456;
printf("%1$*2$.*3$f\n", fv, 10, 5);

float fv = 123.456;
cout << format("{0:{1}.{2}f}\n", fv, 10, 5);

Table 1

FEATURE ANDERS KNATTEN
No Move vs Deleted Move
Constructors
C++ allows you to mark constructors as
deleted. Anders Knatten reveals what a
deleted definition means in practice.
t’s easy to think that deleting the move constructor means removing it.
So if you do MyClass(MyClass&&) = delete, you make sure it
doesn’t get a move constructor. This is, however, not technically

correct. It might seem like a nitpick, but it actually gives you a less useful
mental model of what’s going on.

First: When does this matter? It matters for understanding in which cases
you’re allowed to make a copy/move from an rvalue.

Listing 1 contains some examples of having to copy/move an object of
type MyClass.

They are all examples of ‘direct initialization’ (the first two) and ‘copy
initialization’ (the last four). Note that there is no concept of ‘move
initialization’ in C++. Whether you end up using the copy or the move
constructor to initialize the new object is just a detail.

For the rest of this article, let’s just look at copy initialization; direct
initialization works the same way for our purposes. In any case, you create
a new copy of the object, and the implementation uses either the copy or
the move constructor to do so.

Let’s first look at a class NoMove (Listing 2).

This class has a user-declared copy constructor, so it doesn’t automatically
get a move constructor :

If the definition of a class X does not explicitly declare a move
constructor, a non-explicit one will be implicitly declared as
defaulted if and only if

 X does not have a user-declared copy constructor

 (…)
[C++Standard_1]

So this class doesn’t have a move constructor at all. You didn’t explicitly
declare one, and none got implicitly declared for you.

On the other hand, let’s see what happens if we explicitly delete the move
constructor (Listing 3).

This is called ‘a deleted definition’:

A function definition of the form:
 (…) = delete ;

is called a deleted definition. A function with a deleted definition is
also called a deleted function. [C++Standard_2]

Importantly, that does not mean that its definition has been deleted/
removed and is no longer there. It means that is has a definition, and that
this particular kind of definition is called a ‘deleted definition’. I like to
read it as ‘deleted-definition’.

So our NoMove class has no move constructor at all. Our DeletedMove
class has a move constructor with a deleted definition.

Why does this matter?

Let’s first look at a class with both a copy and a move constructor, and
how to copy-initialize it (Listing 4).

When initializing movable2, we need to find a function to do that with.
A copy constructor would do nicely. And since we do have a copy
constructor, it indeed gets used for this.

What if we turn movable into an rvalue?

 Movable movable2 = std::move(movable);

Now a move constructor would be great. And we do have one, and it
indeed gets used.

I

Listing 1

MyClass obj2(obj1);
MyClass obj3(std::move(obj1));

MyClass obj4 = obj1;
MyClass obj5 = std::move(obj1);

return obj1;
return std::move(obj1);

Listing 3

struct DeletedMove
{
 DeletedMove();
 DeletedMove(const DeletedMove&);
 DeletedMove(DeletedMove&&) = delete;
};

Listing 2

struct NoMove
{
 NoMove();
 NoMove(const NoMove&);
};

Listing 4

struct Movable
{
 Movable();
 Movable(const Movable&);
 Movable(Movable&&);
};
Movable movable;
Movable movable2 = movable;

Anders Knatten Anders started programming in Turbo Pascal in
1995, and has been programming professionally in various languages
since 2001. He’s currently a senior developer at Zivid, making 3D
cameras for robot vision. He’s the author of the blog ‘C++ on a Friday’
(https://blog.knatten.org) and ‘C++ Quiz’ (https://cppquiz.org/).
22 | Overload | December 2021

https://cppquiz.org/
https://blog.knatten.org

FEATUREANDERS KNATTEN
But what if we didn’t have a move constructor? That’s the case with our
class NoMove in Listing 2.

This one has a copy constructor, so it doesn’t get a move constructor. We
can, of course, still make copies using the copy constructor:

 NoMove noMove;
 NoMove noMove2 = noMove;

But what happens now?

 NoMove noMove;
 NoMove noMove2 = std::move(noMove);

Are we now ‘move initializing’ noMove2 and need the move constructor?
Actually, we’re not. We’re still copy-initializing it, and need some
function to do that task for us. A move constructor would be great, but a
copy constructor would also do. It may be less efficient, but of course
you’re allowed to make a copy of an rvalue.

So this is fine, the code compiles, and the copy constructor is used to make
a copy of the rvalue.

What happened behind the scenes in all the examples above, is overload
resolution. Overload resolution looks at all the candidates to do the job,
and picks the best one. In the cases where we initialize from an lvalue, the
only candidate is the copy constructor. We’re not allowed to move from
an lvalue. In the cases where we initialize from an rvalue, both the copy
and the move constructors are candidates. But the move constructor is a
better match, as we don’t have to convert the rvalue to an lvalue reference.
For Movable, the move constructor got selected. For NoMove, there is
no move constructor, so the only candidate is the copy constructor, which
gets selected.

Now, let’s look at what’s different when instead of having no move
constructor, we have a move constructor with a deleted definition
(Listing 5).

We can of course still copy this one as well:

 DeletedMove deletedMove2 = deletedMove;

But what happens if we try to copy-initialize from an rvalue?

 DeletedMove deletedMove2 =
 std::move(deletedMove);

Remember, overload resolution tries to find all candidates to do the copy-
initialization. And this class does in fact have both a copy and a move
constructor, which are both candidates. The move constructor is picked as
the best match, since again we avoid the conversion from an rvalue to an
lvalue reference. But the move constructor has a deleted definition, and the
program does not compile.

A program that refers to a deleted function implicitly or explicitly,
other than to declare it, is ill-formed. [Note: This includes calling
the function implicitly or explicitly (…) If a function is overloaded, it
is referenced only if the function is selected by overload
resolution.(…)] [C++Standard_2]

The function is being called implicitly here, we’re not manually calling the
move constructor. And we can see that this applies because overload
resolution selected to use the move constructor with the deleted definition.

So the differences between not declaring a move constructor and defining
one as deleted are:

 The first one does not have a move constructor, the second one has
a move constructor with a deleted definition.

 The first one can be copy-initialized from an rvalue, the second
cannot.

References
[C++Standard_1] C++ standard: ‘Copying and moving class objects’,

available from https://timsong-cpp.github.io/cppwp/n4659/
class.copy

[C++Standard_2] C++ standard: ‘Delete definitions’, available from
https://timsong-cpp.github.io/cppwp/n4659/dcl.fct.def.delete

This article was previously published online at:
https://blog.knatten.org/2021/10/Listing 5

struct DeletedMove
{
 DeletedMove();
 DeletedMove(const DeletedMove&);
 DeletedMove(DeletedMove&&) = delete;
};
December 2021 | Overload | 23

Best Articles 2021

Vote for your favourite articles:

 Best in CVu

 Best in Overload

Select up to 3 favourites from
each magazine.

Voting open now at:

https://www.surveymonkey.co.uk/r/YR9MVMH

https://timsong-cpp.github.io/cppwp/n4659/class.copy
https://timsong-cpp.github.io/cppwp/n4659/class.copy
https://timsong-cpp.github.io/cppwp/n4659/dcl.fct.def.delete
https://blog.knatten.org/2021/10/
https://www.surveymonkey.co.uk/r/YR9MVMH

FEATURE CHRIS OLDWOOD
Afterwood
Players in Escape Rooms are set puzzles to be
solved in order to win. Chris Oldwood
reminisces on old childhood games as
inspiration for various programming puzzles.
s I write this, the number one show on the popular streaming service
Netflix is called Squid Game, a South Korean drama where
hundreds of adult contestants compete in a deadly series of

children’s games for a life changing sum of money. Naturally, the meme
generators are working overtime and I can’t help but be seduced by
thoughts of how you might apply the premise of the show to our own
profession. The show has a somewhat macabre element, which I’d rather
not dwell on in a family friendly publication such as this, so maybe The
Crystal Maze would be considered a better format. However, if it’s
children’s games from my era [Wikipedia-1] we’re after then I’d need to
regress a few more years back into the mid ’80s BBC Archives where we
meet its spiritual successor – The Adventure Game. This show was set on
the fictional planet of Arg, which feels like the perfect place for
programmers to battle it out.

This also feels like the ideal topic to start testing our contestant’s mettle –
passing arguments. The scenario I have in mind is one which I personally
have spent the past few weeks tearing my hair out over, namely passing
arguments with embedded quotes. Shells like Bash and PowerShell
support more than one style of quotes (for string interpolation reasons)
which makes the simple case undaunting. The show should require
something more akin to my recent task which involved passing a non-
trivial PowerShell command line to a remote Windows VM from a Bash
shell, which in turn invoked a shell script that used SSH to talk to the
VM’s host and SSH from the host into the guest VM, which in turn had
Bash configured as the default shell on the Windows side. That should
keep them busy for a while just googling how to escape quote characters
in different shells and tools!

The second game I have in mind taps into the Squid Game theme, but only
in name – Stuck in the Mud. On this occasion we’re not alluding to the
Multi-User Dungeon, which is probably more befitting of the Adventure
Game, but the term popularised by Brian Foote and Joseph Yoder. As a
system grows over time, close attention must be paid to the architecture
and design lest it wind up as the aforementioned Big Ball of Mud
[Wikpedia-2] – “a haphazardly structured, sprawling, sloppy, duct-tape-
and-baling-wire, spaghetti-code jungle”. Hence the task our competitors
must face would be to make sense of a legacy codebase and refactor it so
the unnecessary duplication is removed and it becomes more amenable to
change without taking its toll on the team’s morale.

Much as I like the play on words in that title, I think there is a better
playground game that lends itself more to this particular exercise. In
‘Spot’, players take it in turns to kick a football against a wall, and if they
miss, they lose a life. (Each life is represented by one letter of S.P.O.T.
and when all lives are lost the player is out). Not only does the title gel
nicely with the idea of refactoring to reduce the duplication of concepts,
i.e. a Single Point of Truth (aka SPOT), but the format also suggests the

use of limiting the number of test failures allowed as a mechanism for
‘lives’. I’m sure the ridiculousness of a scenario where the production
code is in an absolute mess but also contains a full suite of tests won’t be
lost on the contestants. I’m going to have my work cut out for me trying
to provide a plausible backstory. (As an aside I’m now beginning to
wonder if Kent Beck took his inspiration for “Test && Commit || Revert”
from the show as that also seems quite brutal…)

Given the amount of exposure the TV show has had in the media and on
the socials in the last few weeks, I don’t think it’s a spoiler to say that one
of the challenges they face in Squid Game is a variation of what we Brits
called Statues, but they call Red Light/Green Light, where the players
have to creep up on the person who’s ‘it’ while their back is turned. I sense
there is some additional testing related mileage here under the more
‘punful’ name Red Bar/Green Bar. Here you can’t make progress by
adding new features to the product unless the bar is green; when it’s red
you must fix the code first. That feels a little too much like real life but, in
my game, you won’t be able to just comment the test out, add an ignore
attribute, or make the test run multiple times in the hope it succeeds
eventually and manages to hide the lack of determinism.

For the finale I can think of no more difficult a topic for programmers to
tackle than that of time. In ‘What’s the Time, Mr. Wolf?’ our contestants
will be faced with a series of challenges that require them to correctly
calculate dates and times across the globe. For example, one task might
be to use Outlook in one country to book a Zoom meeting where all the
participants are situated in other countries. You lose a life if at least one
person doesn’t show up at the correct time. Another would see you
execute a multi-currency, multi-month trade where the start and end dates
straddle Christmas and Golden Week, during a leap year. I mustn’t forget
to include a daylight saving time puzzle in there somewhere too!

I’m sure if I cast my mind back far enough to my childhood, I can dredge
up some more inspiration. The game of Sardines (a variant of Hide-and-
Seek) where you work ever harder to overcome a lack of capacity has an
eerily familiar tone to it. Likewise the practice of chaos engineering feels
like it has its roots in a game of Knock Down Ginger where you try and
switch off random hardware without getting caught by the customer, and
I’ve definitely been involved in code reviews that have felt more like a
game of British Bulldog!

References
[Wikipedia-1] List of children’s games: https://en.wikipedia.org/wiki/

List_of_children%27s_games

[Wikipedia-2] Big ball of mud:
https://en.wikipedia.org/wiki/Big_ball_of_mud

A

24 | Overload | October 2020

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has
resumed commentating on the Godmanchester duck race but continues to be easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

https://en.wikipedia.org/wiki/List_of_children%27s_games
https://en.wikipedia.org/wiki/List_of_children%27s_games
https://en.wikipedia.org/wiki/Big_ball_of_mud

	It’s not normal
	Programming Language Unlimited
	C++20 Text Formatting: An Introduction
	Best Articles 2021
	No Move vs Deleted Move Constructors
	Afterwood

