
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 8
June 1995

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
sean@corf.demon.co.uk

£3.50

Contents
Editorial 3

C++ Public Review 3

Living in the real world? 3

The Overload Disk 3

Software Development in C++ 3

The case against learning C++ right now – right or wrong? 3

OOA – The Shlaer-Mellor Approach 5

So you want to be a cOOmpiler writer? – part II 12

The Draft International C++ Standard 14

C++ – the official UK site 15

cv-qualified constructors 15

namespace – a short exposé 18

C++ Techniques 19

Wait for me! – virtual 20

Circle & Ellipse – Vicious Circles 23

Circle & Ellipse – Creating Polymorphic Objects 27

Having Multiple Personalities 30

‘Individual’ Control Validation in MFC 33

From polymorphism to garbage collection 36

A “too-many-objects” lesson 39

editor << letters; 40

++puzzle; 43

Books and Journals 44

Writing “Industrial Strength C++” 44

Vendor Focus 46

Edison Design Group 46

News and Product Releases 49

Microsoft Ships Visual C++ Version 1.52 49

 Overload – Issue 8 – June 1995

 Page 3

Editorial

C++ Public Review

The big news is that the ANSI public review has
officially begun. At present, it seems likely that
many other ISO member countries will also con-
duct public reviews of some sort – try to get in-
volved because this is a critical time for the draft
standard. In the Draft International C++ Stan-
dard section, you will find details of how to ac-
cess the draft and how to participate in the
public review process.

Living in the real world?

How “real-world” is object technology? At pre-
sent, good OO design doesn’t come naturally to
most of us – it seems very hard to identify the
right objects, partly because the “right” objects
are not always the real world objects in any tan-
gible sense. In this issue, David Davies explains
one of the many OO methodologies and this
highlights the necessity of looking beyond the
tangible objects.

One particular topic that seems to split you all on
“real world” issues is multiple inheritance and
mixins. The classic is-a relationship doesn’t hold
between derived and base for this sort of design
so which is “right”? I recently had to design and

implement a cluster of classes whose sole pur-
pose was to model relationships. The key ab-
straction was a relationship which is certainly
not a tangible object but the desired view of the
data made this the easiest solution to work with:
I could start with a list of all “inherits from” re-
lationships and list the parent and child in each.
The traditional way would be to have a list of all
children (or even all people) and check an “in-
herits from” data member within each. That
member would have to be a list because each
child has two parents.

Wait a minute! Let’s that around: would you say
you inherit characteristics from both your par-
ents? I expect you would: you’d consider some
of your characteristics inherited from your
mother and some inherited from your father. A
clear case of multiple inheritance – what could
be more “real world” than that?

The Overload Disk

As indicated in Overload 7, the Overload disk
has been discontinued. However, Francis had the
bright idea that I supply material to him that
would otherwise have gone on the disk and he
will put it on the CVu disk, which in turn will be
placed on Demon for ftp.

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development
tools, the software process and discussions about the good, the bad and the ugly in C++.

In this issue Roger Lever questions whether the mainstream is ready for C++, David Davies explains the
Shlaer-Mellor object-oriented analysis methodology and I continue my series about compiler writing.

The case against learning C++
right now – right or wrong?

by Roger Lever

My position

I do not exclusively use C/C++ for program-
ming – I like to remain flexible in terms of de-
velopment tools. I consider a programming
language to be a tool in the same way that a
writer would consider pen and paper, a type-
writer or a wordprocessor tools. I prefer to use

mainstream tools with established good practice
which enables me to produce code that passes
my ‘six month test’. Revisiting code six months
later it meets the following criteria:

1. It is understandable (to me!), so maintain-
able by a third party

2. It is well designed, clearly and concisely
written

3. It performs well, in terms of speed and de-
signed intention

 Overload – Issue 8 – June 1995

 Page 4

4. It is forgiving in terms of unexpected condi-
tions or actions

5. I do not want to drastically re-write it

Naturally, metrics can assist in quantifying these
criteria but I’m happy with an intelligent guess
or intuitive feel. Project managers and QA spe-
cialists need not comment!

I’ll try to resist then – Ed.

C++ is maturing fast with the standardisation
process now within sight of completion and all
of the major pieces in place in terms of the lan-
guage feature set. (There are also many job op-
portunities!) C++ has seen some drastic changes
since the late eighties and Bjarne Stroustrup has
the (probably) definitive list of events and the
“whys” in his book “The Design and Evolution
of C++”.

I’ve only become really interested in C++ re-
cently as it seems to be coming of age, although
I have kept tabs on it for a number of years.
However, is it the time now to really get to grips
with C++?

Against C++

C++ was positioned as a C compatible object
oriented extension with PIE (Polymorhism, In-
heritance and Encapsulation). It was used and
abused, and the ideas slowly evolved to build a
body of wisdom of what should be considered
good practice. This resulted in some idioms
which one could apply (with some understanding
as to why, of course) from top level design to
low level code such as:

1. Inheritance – use is-a or has-a to model the
solution

2. Use templates for same behaviour but differ-
ent types

3. Use inheritance for same type but different
behaviour

4. Avoid the surprise of bitwise copying with
copy constructors

5. Do not return references to private member
variables

6. Use const

7. ...

“Effective C++” by Scott Meyers was and is a
good read but it is in need of an update to in-
clude the latest language additions. At that time

templates and multiple inheritance were sketchy
in terms of accepted wisdom (if my memory
serves). Now that exception handling, RTTI
(Run Time Type Identification) and the STL
(Standard Template Library) are incorporated
into the language, that body of wisdom has a lot
of catching up to do.

Scott Meyers has just published “Effective
C++ Plus” which should answer this criti-
cism. It will be reviewed in Overload in due
course – Ed.

For a developer, the changes are much more fun-
damental. Previously, language features were
simply being abused due to ignorance and that
disappears with experience and/or training. The
basic mechanism of expressing a solution was to
use the PIE approach and away you go. Problems
regarding things like error handling at the mem-
ory allocation point were the same as usual.

That’s changed. To embrace ISO C++, we need
to use exception handling, to write code using a
try /catch sequence, to handle the bad_alloc con-
dition that a failed memory allocation gives
rather than the old null pointer, to use the ‘re-
source is acquistion’ style that Bjarne Stroustrup
describes in “The C++ Programming Language
2e”.

Developers wanted a standard library which was
portable and not to rely on vendor implementa-
tions, like Borland’s BIDS (Borland Intl Data
Structures). Writing these libraries in the first
place is no small task for a developer; much eas-
ier to use a ready-made one and so the introduc-
tion of the STL which is vendor independent.
Using the STL has advantages but it too imposes
a shift in programming, in a similar way that us-
ing streams via iostream.h rather than stdio.h
caused a shift.

The end result is that code written prior to the
use of these features will be substantially differ-
ent to code written using them. Of course, one
could avoid all of that but it would be like writ-
ing C in K&R style – it works but one should be
using ISO C.

Moving on from the addition of more language
features to the use of existing ones, there are sig-
nificant shifts in what is considered good coding
and design practice. Inheritance is a good exam-
ple of that: it started as a simple mechanism for
code reuse and later became a mechanism for
modelling the solution where the classic is-a and

 Overload – Issue 8 – June 1995

 Page 5

has-a were considered the correct way to use it.
Now, following some comments in Overload 7, I
wonder if it is about to be refined again in terms
of modelling types or objects? There is a multi-
tude of different practices in low level coding
which could be held up as an example. Browsing
back through Overload and/or CVu would high-
light some, such as the use (or not) of friends
and operator overloading.

Summary

There have been many, many changes both ma-
jor and minor: what are the options? Of course,
one could side-step the issues and take the “use
it later” approach. Or one could go forward with
the current perceived wisdom and assume that a
major rewrite will not be required later. Or, per-
haps one should wait and see?

C++ has moved on a great deal from C and it is
becoming mandatory that developers receive
quality training, but whilst C++ is still evolving
that may be a tall order. Consequently, I don’t
believe C++ is ready yet for mainstream usage,
or more accurately, it still needs to mature. In-
evitably, it will mature and having an ISO C++
Standard will do a great deal in that direction,
but in the meantime the leading edge must bleed.
There will always be shock troops for the bleed-
ing edge but the more conservative will learn
from their mistakes and not devote too much
effort to writing C++ – at least, not just yet.

Roger Lever

rnl16616@ggr.co.uk

There are certainly a lot of companies using
C++ as just a
“better C”. Roger
suggests that main-
stream use of full
C++ in an OO
style is some way
off – how “main-
stream” do you
feel your use of
C++ is? – Ed.

OOA – The
Shlaer-Mellor

Approach
by David Davies

Introduction

There are many competing OOA and OOD
methodologies available today, but in most re-
spects the conceptual similarity between them
outweighs any differences in implementation.
One methodology may use rounded rectangles to
graphically represent objects whilst another may
use square edged rectangles for the same repre-
sentation. It is this drive to differentiate their
offerings from the rest that has lead Object Ori-
entation methodologists to advocate the use of
symbols such as clouds. In essence, all method-
ologies offer a means of modelling different
views in order to facilitate comprehension of the
problem. OOA is the process of identifying ob-
jects and their attributes, identifying the opera-
tions performed on or by each object and
establishing the interfaces between objects. The
fundamental concept of Object Oriented design
is shown in Figure 1.

Overview of the Shlaer-Mellor meth-
odology

One of the popular methodologies has been de-
veloped by Sally Shlaer and Stephen Mellor. It is
particularly well suited to the analysis of infor-
mation systems or re-engineering applications
where the initial requirements are fairly well
defined.

The S-M approach analyses the problem from
three view points using an information model, a
state model and a process model.

The information model addresses the static as-
pects of objects. It identifies the objects (or enti-
ties) which form the domain. Objects have
attributes and relationships with other objects.

Methods
Design

Object
Oriented
Design

Object
Design

Object
Definition

Attributes
of
Objects

Communication
Among
Objects

Figure 1 Elements Of Object Oriented Design

 Overload – Issue 8 – June 1995

 Page 6

The information model comprises a table of ob-
jects and their attributes, an information struc-
ture diagram which shows the static
relationships between the objects in the applica-
tion domain and a description of the relation-
ships.

The state model analyses the behaviour of ob-
jects over time. Each object and relationship may
have a lifecycle – a series of events that follows
a set pattern. New instances of the object in
question may be created and deleted over time;
the so-called ‘born and die’ lifecycle. For exam-
ple, an instance of object bank_account is cre-
ated when an account is opened and it is deleted
when the account is closed. Other instances of an
object continually cycle through their states e.g.,
in the example discussed later the car is continu-
ally going through a lifecycle of being available
for hire and being hired. The outputs of the state
modelling phase are state transition diagrams
and/or state transition tables showing the cycle
of events which affect an object, and an event
list showing all the events that have been defined
for all state models.

The object communication model shows how the
various objects are co-ordinated. Event messages
are used to synchronise the behaviour of the ob-
jects within a system. At a certain state in an
object’s lifecycle an event is generated to initiate
an action by another object. In a process control
application the tank object may generate a tank-
full event to its controlling valve to shut off the
supply or to another object to initiate subsequent
processing of the tank contents. The object com-
munication model provides a graphical represen-
tation of the linkage between state models. The
state model looked at an object on an individual
basis, whereas the object communication model
shows how they co-operate to implement the
application.

Process models show the processing within the
actions of the state model. Each action is ex-
pressed in terms of datastores and processes and
the resulting diagrams are very similar to data
flow diagrams used with Structured Analysis and
Design methodologies. There is however one
vital difference. In S-M OOA, the problem is
first decomposed into objects, then into actions
and finally into processes within an action, giv-
ing a single flat dataflow diagram for each action
called an action dataflow diagram. This contrasts
with Structured Analysis and Design methodolo-

gies where the problem is expressed as an hier-
archical set of dataflow diagrams.

These views roughly map onto the structure
shown in Figure 1. The information model ad-
dresses object definition and attributes of ob-
jects. The state model and object communication
models cover the communication between ob-
jects, and the process model addresses the issues
of methods design.

Hire car example

As an example of an application of the Shlaer
Mellor methodology the requirements for a car
hire reservation system will be analysed. The
brief for the system is:

The system will accept reservations from cus-
tomers for a car on a date for a specific number
of days. At the end of their hire period customers
will settle the account. The cars fall in to various
hire groups and the hirer can hire the car on a
per mile or unlimited mileage basis. The system
shall determine the least cost hire basis at the
end of the hire period taking into account period
of hire and mileage driven.

The Information Model

Identifying the objects

A vital first step in OOA is to identify all the
objects that are pertinent to the application do-
main being analysed. The scope of the proposed
application must first be bounded so that objects
relevant to the application are defined. Although
in a large application identifying the objects is
no mean task, correct identification is critical in
ensuring a good quality analysis. There are sev-
eral methods of identifying objects from a speci-
fication. Techniques such as using the nouns in
the specification documents to indicate suitable
objects or using the entities to be modelled as a
basis for deciding on the relevant objects and
classes. These techniques form a good starting
point for the identification of objects. As an aid
to identification, the Shlaer-Mellor method rec-
ommends that objects are classified into several
major categories such as:

• Tangible objects
A tangible object is an abstraction of a real
world object, e.g., a computer.

• Role objects
Role objects represent the purpose or task of
an individual, a piece of equipment or or-

 Overload – Issue 8 – June 1995

 Page 7

ganisation. For example, a person may be a
cashier or piece of equipment may be con-
trolling part of a process plant.

• Incident objects
Incident objects represent occurrences or
events in the problem domain that the appli-
cation has to be aware of.

• Interaction objects
Interaction objects generally have a transac-
tion or contract aspect and are related to two
or more other objects in the model.

• Specification objects
Specification objects represent rules, stan-
dards or quality criteria that bound system
behaviour.

The Shlaer-Mellor method provides a set of re-
finement criteria to assist in identifying valid
objects and rejecting invalid ones. Every object
should pass all the tests in order to be considered
a valid object.

• Uniformity test
Each object instance must have the same set
of characteristics and be subject to the same
rules.

• Attribute test
An object must be more than a name, it must
have associated attributes, e.g., a person (ob-
ject) has a name, National Insurance number
and domicile (attributes).

• Singularity test
An object should refer to only one entity.

• More-than-a-list test
The object description must not be merely a
list of instances.

As a first pass (and a lot of OOA is iterative
where the model is refined to reflect the ana-
lyst’s increased understanding of the problem) a
initial list of objects is produced. The two obvi-
ous ones are Customer and Hire Car. A cus-
tomer can make many hirings and cars can be

hired to many hirers. As explained in more detail
in the section on relationships, a many-to-many
relationship (between hirings and cars) can best
be represented by using an associated object; in
this case, reservation. For the car hire example
the objects initially identified and validated are
shown in Table 1.

The list may be updated as the analysis proceeds,
but this list is sufficient for initial analysis of the
car hire application.

Ascertain the attributes

These four objects shown in Table 1 will form
the basis of the next step in the analysis which is
to ascertain the attributes associated with each of
these objects. Shlaer-Mellor define an attribute
as ‘an abstraction of a single characteristic pos-
sessed by all entities that are themselves ab-
stracted as an object’.

According to Shlaer-Mellor attributes can be
classified into three different types:

• Descriptive attributes
Descriptive attributes provide facts intrinsic
to each instance of the object.

• Naming attributes
Naming attributes are used to name or label
instances.

• Referential attributes
Referential attributes are used to tie an in-
stance of an object to an instance of another.

Each attribute should be briefly amplified. A few
sentences is usually sufficient.

Shlaer-Mellor provide four criteria for the nor-
malisation of attributes. Attributes should be:

• Atomic.
That is have no internal structure. Ford
Cortina would not pass the test as it is com-
prises make and model.

• One and only one value per attribute.
An instance must have only one value for

Object types Object tests

Object Category Uniform Attribute Singularity List

Customer tangible pass pass pass pass

Car tangible pass pass pass pass

Reservation interaction pass pass pass pass

Account incident pass pass pass pass

Table 1

 Overload – Issue 8 – June 1995

 Page 8

each attribute. Null values or multiple values
are not permitted.

• Characteristic of entire object
When an object has a compound identifier
every attribute that is not part of the identi-
fier is a characteristic of the entire object.

• Represent characteristic of instance
Each attribute that is not part of an identifier
represents a characteristic of the instance
named by the identifier. That is the value of
the mileage attribute is only applicable to the
car referred to in the identifier

For those of you that have done relational data-
base design, the rules will be familiar. As in re-
ducing database tables to their third normal form
the aim of the exercise is to eliminate redun-
dancy in the attributes.

One or more attributes are used to identify spe-
cific instances of an object. The particular at-
tribute used to tag an object is called an
identifier. One of the attributes for the hire car
object is registration number. This will uniquely
distinguish an instance of one particular car in
the fleet of hire cars and so can be used as an
identifier. Shlaer-Mellor recommend that the
identifier is distinguished by a prefix such as ‘*’.

The referential attribute, which in relational da-
tabase parlance is a foreign key, is annotated
with ‘(R)’. In table 2 the account object has a
referential attribute hire ref # to link it to the res-
ervation object.

For the car hire example, attributes for the ob-
jects can be defined as shown in Table 2.

Note that if objects containing similar character-
istics are identified, they can be grouped into
super- and sub-classes. A super-class contains all

the attributes that are common to a group. For
example a super-class road vehicle would con-
tain attributes that are common to, say, car, lorry
and bus. In a similar way class road vehicle may
be a member of super-class land transport along
with class rail transport.

Relationships between objects

The next stage in the development of the infor-
mation model is to identify the static relation-
ships between objects. The Information
Structure Diagram captures the various relation-
ships between objects in the problem domain in
an easy to understand diagrammatic representa-
tion.

Representation of relationships

In an Information Structure Diagram, objects are
depicted by square boxes and a relationship be-
tween two objects is indicated by a line joining
them, see Figure 2. The line is annotated by two
verb phases describing the relationship between
the objects from the viewpoint of each object.
For example if the two objects where Dog and
Owner the relationship would be Owner “owns”
Dog from the Owner viewpoint of Dog “is
owned by” Owner from object Dog viewpoint.
Relationships can be one-to-one, one-to-many or
many-to-many and can be conditional. In the
Dog-Owner example the relationship is a one-to-
many as an owner can have many dogs. However
taking the population as a whole only some per-
centage would be dog owners so if a person to
dog relationship was being considered, then a
conditional one-to-many relationship would be
required as not everybody owns a dog. See Fig-
ure 2.

Customer Car Reservation Account

* customer ID * registration # * hire ref # * account ref #

name manufacturer registration # (R) hire ref # (R)

street model # customer ID (R) amount

town hire group period of hire CDW

post code mileage at hire
start

 mileage charge

driver’s licence # mileage at hire
end

 paid/not paid

Table 2 Car Hire Application: Objects and Attributes

 Overload – Issue 8 – June 1995

 Page 9

A many-to-many relationship can be represented
either by using two one-to-many relationships or
by using an associative object that contains ref-
erences to identifiers in each of the participating
instances. For example a many-to-many relation-
ship arises from a actor-role instance. An actor
can star in many films and a film has many ac-
tors. The relationship can be formalised by using
object Appears in a one-to-many relationship
with both Actor and Film or an associative ob-
ject Appears that contains references to both
sides of the relationship. See Figure 3 below.
Shlaer-Mellor favour the associative approach.

Information Structure Diagram

After all the objects and their relationships have
been identified the Information Structure dia-
gram can be drawn. In some respects the Infor-
mation Structure Diagram is similar to the Entity
Relationship Diagram which is generally used
for developing relational databases.

Figure 4 shows the Information Structure Dia-
gram for the car hire application. The many-to-
many relationship between customer and car is
shown as an associa-
tive relationship with
reservation. A condi-
tional one-to-one
relationship arises
between reservation
and account. This
caters for the situation when a reservation is

made but subsequently cancelled.

The State Models

State models provide the second viewpoint that
is created when following the Shlaer-Mellor
methodology. State models formalise object life
cycles and relationships by constructing a lifecy-
cle diagram for each (nontrivial) object in the
information model. The object lifecycle shows
the behaviour of objects over time. Each object
and relationship may have a lifecycle – a series
of events that follows a set pattern. The object
instance moves from state to state by means of
events which trigger the move to the next state in
the lifecycle.

State Transition Diagrams

Lifecycles are expressed as State Transition Dia-
grams. Each event in the lifecycle effects one or
more actions at each state of the lifecycle. Ob-
jects do not change state until all the actions for
that state are completed. Diagrammatically,
states in the lifecycle are represented by boxes
and the line linking adjacent boxes in the lifecy-

cle is annotated with a description of the event
which triggers the movement between the two

Dog Owner Dog

owns

is owned by

R1
Person Dog

owns

is owned by
C

R1

Figure 2 Unconditional & Conditional One-To-Many Relationships

FILM

FILM

APPEARS

ACTOR FILM

APPEARS

name title

name
title

M:M Relationship

Expressed as two 1:M relationships Expressed as an associative
Relationship

has
role in

role

ACTOR

ACTOR

Figure 3 Many-To-Many Relationships

 Overload – Issue 8 – June 1995

 Page 10

states. The STD should also
contain a description of the
actions performed at each
state. However, practice has
indicated that the diagrams
can become very cluttered so
generally the action descrip-
tion is held separately and
just a cross reference is
placed on the STD. Not hav-
ing the action descriptions
on the STD also means that
there are no restrictions on
the amount of text that can
be associated with a state,
although verbosity is not to
be encouraged.

State Transition Diagrams
need not be produced for all
objects in the problem do-
main, only those that have
complex behaviour and so
require modelling in order to
facilitate understanding of
the issues involved.

Alternatively, the object lifecycle
can be represented by a State Tran-
sition Table. In a state transition
table (STT) each row represents
one of all possible states of the
state model and the columns list all
the events that cause a transition to
the next state.

The object Car has the lifecycle of
“available for hire”, “reserved”,
“hired”, and “valeted after use”. It
is then “available for hire” again.
The reservation can be cancelled at
any time before the hire begins. The State Tran-
sition Table is shown in Table 3 and
the State Transition Diagram for the
car object is shown in Figure 5. The
initial state is “available for hire” and
the event of it being earmarked for a
customer moves it to state of “re-
served”. The event of the customer
using the car triggers the move to the
state “hired”. The event of the hirer
returning the car triggers the transi-
tion to being ready for valeting and at
the completion of this activity the car
again becomes “available for hire”.

Customer Car

Reservation

Account

R1

R2

is hired by hires

results from

results in C
(Conditional
Relationship)

* registration #
 manufacturer
 model #
 hire group
 mileage start
 mileage end

* customer ID
 name
 street
 town
 post code
 driver's licence #

* hire ref #
 registration # (R)
 customer ID (R)
 period of hire

* account ref #
 hire ref # (R)
 hire charges
 CDW
 mileage charge
 paid/not paid

Figure 4 Information Structure Model

 V1: res-
ervation
made

V2: res-
ervation
can-
celled

V3: hire
car col-
lected

V4: hire
car re-
turned

V5:
valeting
complete

1. Ready
to rent

2 na na na na

2. Re-
served

na 1 3 na na

3. Hired na na na 4 na

4. Valet-
ing re-
quired

na na na na 1

Table 3 State Transition Table for Hire Car lifecycle

1. Ready to Rent

2. Reserved

3. Hired

4. Valeted

V1: Reservation made

V2: Reservation
 cancelled

 V3: Customer
collects car

V4: Customer
 returns car

V5: Valeting
completed

Generate
A1: produce
 invoice

Figure 5 State Transition Diagram For Hire Car

 Overload – Issue 8 – June 1995

 Page 11

In a similar manner the customer object has a
similar lifecycle. The customer makes reserva-
tion, incurs charges through using the hire car,
and pays the account after returning the vehicle
at the end of the hire period.

For all the objects identified in the application,
an event list is produced showing all the events
which trigger the transition from one state to
another in the STD.

Object Communication Model

So far, the analysis has concentrated on individ-
ual objects and their attributes. The next stage is
to consider how the objects interact to form the
overall system. The Object Communication
Model shows event communication between
state models and external entities and objects in
other systems.

By convention, the OCM is laid out with the
most powerful and knowledgeable object at the
top of the diagram with the more limited objects
beneath. This provides a rough hierarchical lay-
ering of objects. In a typical process control ap-
plication typical objects identified might be:
Batch, Pump, Tank and Valve, where Batch
represents a volume of the product being pro-
duced by the plant e.g., paint. Pump, Tank and
Valve represent the physical objects making up
the plant. In this application the Batch process
would be the most knowledgeable about the
process required to produce the paint and so it
would be placed at the top of the OCM diagram.
Underneath this would be the middle layer of
objects comprising objects relating to sub-

operations like transferring the contents of
one tank to another or useful configurations
of lower objects such as a number of
valves, pumps and pipes to form a path. The
lowest level would be the objects that di-
rectly control external entities, such as the
valves and pumps and would be placed at
the bottom of the diagram.

The most knowledgeable object has also
been termed the “actor”. Middle layer ob-
jects whose function is to relay events to
other (lower level) objects are termed
“agents”, whilst the lowest level objects
which generally communicate with physical
objects are termed “servants”.

As stated above, objects communicate
through events. An event can either be gen-
erated internally by a state model within the

system, or externally from an entity outside the
system being modelled. At a high level such en-
tities may be other systems or operators which
provide commands to the system. At the lower
levels, typical external entities are pumps, valves
etc. Events can be classified as either solicited or
unsolicited. An unsolicited event is one fro
which the system has no prior knowledge of its
timing. It has not occurred in response to some
previous action of the system. Conversely a so-
licited event is one that is expected by the sys-
tem in response to an event generated by the
system. An example of an unsolicited event
would be a customer making a reservation hire a
car. The system ‘knows’ what to do when such
an event occurs but cannot ascertain when such
an event will occur.

The recommended procedure for building an
OCM is to extract the entries from the event list
where the source and destination are different.
An event list is usually generated as part of the
object lifecycle analysis activity. The event list
for the car hire application would contain entries
for the car, customer, reservation and account
objects. A simplified OCM is shown in Figure 6.

The Process Models

With reference to Figure 1, the last stage in the
analysis is Methods Design. This covers the
computational processes required to implement
the required transforms within the application.
At each state of a state model actions are per-
formed. Actions are provided with event data by

Customer

Account

Customer
makes
resevation

Customer
cancels
resevation

Customer
settles
account

Reservation Hire Care

Raise invoice

Car Reserved

Car Released

Figure 6 Object Communication Model

 Overload – Issue 8 – June 1995

 Page 12

the event that caused the transition to the current
state.

Action Data Flow Diagrams

Action Data Flow Diagrams are Shlaer-Mellor’s
way of describing the processing carried out to
implement actions and are the main means of
documenting the process model. Persistent data
is held in the datastores. In the car hire example,
details of the tariff structure would be held in a
datastore.

An event that initiates action within a state
model is depicted on the ADFD as a dataflow
without a source. The event dataflow is labelled
with the attributes that are required by the proc-
ess. This can be seen in Figure 7 as the dataflow
leading into process ACC1. The account details
cannot be calculated until the customer returns
the car and the mileage and period of hire deter-
mined.

To support the ADFD, process descriptions are
also produced. These expand on the details of
the processing required at each process. For the
example in question, the process description of
process ACC1 could be:

1. compare the cost of hire based on a daily
rate and a per mile basis with the cost of
unlimited mile rate for the hire period.

2. calculate the cost of hire based on the
cheaper option.

3. produce invoice.

Code can be now be produced based on the three
models generated in the analysis, but that, as
they say, is another story.

Conclusion

This article has attempted to provide a high level
overview of the Shlaer-Mellor methodology. For

a more in-depth understanding of their approach
I recommend studying their two books:

• OBJECT LIFECYCLES Modelling the
World in States, Prentice-Hall 1992 ISBN 0-
13-629940-7

• OBJECT-ORIENTED SYSTEMS
ANALYSIS Modelling the World in Data,
Prentice-Hall 1988 ISBN 0-13-629023-X

David Davies

So you want to be a cOOmpiler
writer? – part II

by Sean A. Corfield

The story so far...

When I started this series in Overload 5, I in-
tended to show you what makes a compiler tick
and how you design and build such a beast in
C++. I was going to illustrate this with snippets
of Programming Research code and discussion
of some of the “bad practice” issues that our QA
C++ product detects. In future articles in this
series, I may yet do that, but much has happened
since I wrote that introductory article over a year
ago and I want to digress somewhat.

A little diversion

I’ve been using C++ for about three and a half
years and have been involved with the standardi-
sation process all that time, initially attending
BSI panel meetings then ISO meetings and for
the last 18 months ANSI meetings as well. When
my company first looked at C++, we had about
200K lines of C in our products – much of it
K&R C but being migrated to ISO C by virtue of
our in-house coding standards being automati-
cally applied. Our decision to adopt C++ for fu-
ture development meant that we would have to

deal with mixed language
development because we
intended to reuse many of
our generic library com-
ponents – all written in C.
My long-term plan was to
migrate all the C code to
C++ as I felt this would
make maintenance easier,
so we reviewed our coding
standards for C to outlaw
all incompatibilities with
C++ and began to incre-

Tarrif
Details

 ACC1
Calculate hire charges

mileage,
period of hire

hire charges

Figure 7 Action Dataflow Diagram (Part)

 Overload – Issue 8 – June 1995

 Page 13

mentally apply them. By the time I started writ-
ing this series, we had around 50K lines of C++,
and about 60K lines of our C code was compi-
lable as either C or C++. As I write this second
instalment, one year on, the balance has com-
pletely changed: we have only about 100K lines
of pure C code left and about 140K lines of C++.

Why am I telling you this? I mentioned our ge-
neric library components above. These are not
container classes and so on but reusable code
that deals with command-line argument process-
ing, configuration and message files, data filters
and error databases. We have been able to reuse
most of our GUI code for three of our four prod-
ucts. These are all “obvious” components in
products like ours and the result is that each of
our language analysis products comprise a pars-
ing engine – typically 40K lines – and support
and GUI code totalling a further 50K lines. For
three products, that makes 3 x 40K + 50K =
190K lines and it also means that the parsing
engine is far and away the greatest contribution
to any new product we plan. So we’ve been
looking at parsing abstractions in order to make
it easier to build new engines...

A typical compiler

At the heart of a typical compiler are three
things: a lexer, a parser and a symbol table. In
order to make compiler writing easier, tools were
developed that can generate lexers and parsers
from symbol and grammar descriptions. UNIX
developers know these as lex and yacc supplied
with every system. There are many variants (e.g.,
flex, byacc) and PC versions are available too –
recently, C++ wrappers have also appeared. In
essence, they all work in the same way: you
write a description of a symbol, or sentence in
the language, and lex, or yacc, produces code
that “accepts” it.
/* some tokens using lex: */
IDENT: [A-Za-z_][A-Za-z0-9_]*
NUMBER: [0-9]+
%%
{IDENT} return IDENT;
{NUMBER} return NUMBER;
"+" return PLUS;
"-" return MINUS;
"*" return TIMES;
"/" return DIVIDE;

/* an expression using yacc: */
%token
IDENT NUMBER PLUS MINUS TIMES DIVIDE
%%
expr: factor addop factor ;
factor: term mulop term ;
term: IDENT | NUMBER ;
addop: PLUS | MINUS ;

mulop: TIMES | DIVIDE ;

The error-handling in both of these tools is leg-
endarily poor and not all languages easily fit the
mould of yacc’s restricted grammar description
(e.g., typedef in C means that the lexer has to be
smart enough to tell the parser whether an identi-
fier symbol is a type name or not). The effort
involved in making languages like C++ or
FORTRAN “yacc-able” is huge. For instance,
FORTRAN has no keywords:
 INTEGER IF(100)
 I=1
C assign to element of array
C called if:
 IF(I)=2
C if statement:
 IF(I) GOTO 10

and it allows non-significant whitespace in iden-
tifiers:
C start of DO-loop:
 DO 10 I = 1,3
C assign 1.3 to variable
C called do10i:
 DO 10 I = 1.3

In C++, deciding whether a sequence of tokens
is a declaration or an expression can involve an
arbitrary amount of lookahead.

In our parsing engines, we use a mix of yacc-like
table-driven parsers and hand-crafted recursive
descent or state-transition parsers (I’ll come back
to these terms later in the series). For lexical
analysis, we tend to hand-craft because we usu-
ally want to add a lot of checks into the lexer to
support coding standards (again, more on this
later in the series).

What about reusability?

Since the grammar is different for every lan-
guage, you clearly cannot reuse the parser. Lexi-
cal structure is often similar, so we may make
some progress there and basic symbol table op-
erations have enough commonality that quite a
lot of reuse should be possible. Again, these are
“obvious” candidates for reuse because they are
fairly concrete. The reason that I held this col-
umn over from Overload 7 is because I want to
look beyond the obvious candidates for some
more abstract ones: the sort of candidates
touched on by the columns on multiple inheri-
tance and object relationships.

Back on track

In Overload 5, I outlined how a C++ compiler
worked, in terms of the phases of translation and

 Overload – Issue 8 – June 1995

 Page 14

said that part II would take a slightly closer look
at phases 1 to 4. Before diving into the mechan-
ics of each phase, let’s take a step back and look
at what a phase does.

Each phase is a mapping – in particular, phase
three is a mapping from a stream of (internal)
characters to a stream of tokens. Later phases
map streams of tokens to different streams of
tokens, earlier phases map streams of characters
to different streams of characters. Perhaps we
could say:
class Lexer
: public Mapping<char, pptoken> ...

But a phase is also a source of characters or to-
kens or...
class Lexer
: public Source<pptoken> ...

What operations does a phase support? You can
obviously “get” a character or token...
class Lexer ... {
public:
 pptoken get();
};

But since we saw that a phase is a source, we
might expect get() to be inherited from the base
class source<pptoken>.

The client of each phase is the next phase in the
sequence – such clients will either be hard-coded
(statically bound) or instantiated at run-time (dy-
namically bound). The former approach might
look like:
class Preprocessor {
private:
 Lexer source;
};

whereas the latter approach might look like:
class Preprocessor ... {
public:
 Preprocessor(Lexer* source)
 : lexer(source) ...
 ...
private:
 Lexer* lexer;
};

or more realistically:
class Preprocessor ... {
public:
 Preprocessor(Source<pptoken>*
 source)

 : lexer(source) ...

 ...
private:
 Source<pptoken>* lexer;
};

Note that any source of pptokens is an accept-
able argument to Preprocessor – it doesn’t have
to be a phase, i.e., Preprocessor does not need
access to any of the mapping machinery in its
argument.

Finally, we would want to explicitly write out
the abstraction of “phase”:
template<class T>
class Source { ... };

template<class From, class To>
class Mapping { ... };

template<class From, class To>
class Phase
: public Source<To>,
 public Mapping<From, To> { ... };

class Lexer
: public Phase<char, pptoken> { ... };

class Preprocessor
: public Phase<pptoken, pptoken> { ...
};

I’m going to stop there for now. Elsewhere in
this issue, various authors discuss multiple in-
heritance and virtual . Since both of those play a
big part in what comes next, I’d like you all to
think about the code above. As an exercise, you
might like to try to write the interfaces for the
base classes Source and Mapping – what ser-
vices do they provide and what initial informa-
tion do they need?

Sean A. Corfield

Development Group Manager

sean_corfield@prqa.co.uk

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

As noted in the Editorial column, the ANSI public review has begun – information about obtaining the
draft and taking part in the reviews is given below. We also look at a proposal from Kevlin Henney.

 Overload – Issue 8 – June 1995

 Page 15

C++ – the official UK site
maintained by Steve Rumsby

Steve Rumsby works for the Mathematics Insti-
tute at Warwick University. He is also an active
member of the BSI C++ panel, regularly repre-
senting the UK at the joint ISO/ANSI standards
meetings. He also maintains the primary UK site
for information about C++ and the standardisa-
tion process in particular.

If you have a Web browser, go to
http://www.maths.warwick.ac.uk/c++/

which provides links to, amongst other things,
the Standard Template Library and the Virtual
C++ Library. It also provides a link to a “public
review” page which will give information on
how to participate in the reviews being con-
ducted by various countries including UK and
USA.

Members of the BSI C++ panel (IST/5/-/21) can
access the ISO and BSI archives from here, in-
cluding minutes of meetings, working papers and
proposals. To find out about joining the BSI
panel, send email to:
demorgan@parallax.demon.co.uk

Richard DeMorgan is the convenor of the BSI
C++ panel.

The public review version of the draft C++ stan-
dard can be found in both PostScript and Adobe
PDF formats at
ftp.maths.warwick.ac.uk:/pub/c++/std/WP/

but be warned that the draft is over 700 pages
long when printed!

Steve Rumsby

steve@maths.warwick.ac.uk

cv-qualified constructors
by Kevlin Henney

Abstract

There is currently no mechanism for a construc-
tor to be aware, and so take advantage, of an ob-
ject’s cv-qualification. In a number of cases,
such as the use of proxy objects that hold refer-
ences to others and behave directly on their be-
half, it is not possible to ensure statically with

one class that a well defined system has been
constructed.

This paper proposes that cv-qualification is de-
fined for constructors.

Rationale, syntax and affected parts of the work-
ing paper are covered.

Introduction

The next three sections of this paper look at
some particular problem areas that the introduc-
tion of cv-qualified constructors would address.
The section following this considers alternative
approaches and their shortcomings. The pro-
posed syntax is used all the way through. It is
explained in detail in the section following dis-
cussion of the alternatives.

The rationale for this proposed change is ex-
plained throughout. The proposal is summarised
in terms of changes to the working paper at the
end.

Optimising construction

Objects may be statically or dynamically created
with cv-qualification, e.g.,
static volatile void* const port =
 (volatile void *)
0xfeedf00d;
auto const string message = argv[1];
const transform* skewer =
 new const transform(dx,
dy);

If such an object wishes to take advantage of its
qualification it has no means of doing so at con-
struction time. In contrast, for the rest of its life-
time its cv-qualification, or the cv-qualification
of the access path to that object, may be deduced
from which of a set of member functions over-
loaded only on cv-qualification are called. This
is somewhat after the fact of construction, where
a decision based on cv-qualification could alter
the particular use of runtime resources for the
object.

Additional cv-qualification of constructors
would allow separate strategies for construction
to be adopted statically. For instance, not all
member date is necessarily used in a const ob-
ject: a less complex construction is possible:
class RecoverableResource
{
public:
 RecoverableResource()
 : change_log(log_name) {}
 const RecoverableResource()
 : change_log() {}
 // no changes possible on a const

 Overload – Issue 8 – June 1995

 Page 16

 // object, so an open change log
is
 // not required
 ...
};

To be effective, this proposal does not require
the introduction of cv-qualified destructors. That
would require that the language definition en-
sures each object remembers how it was con-
structed so that the correct destructor may be
called. This is trivial for auto and static objects,
but additional support is needed for deletion of
dynamically allocated objects. Where special
actions are required on destruction for actions
taken in a cv-qualified constructor, a program-
ming solution – such as using a flag set in the
constructor – is simpler than placing additional
burden on the language and the run time system.
For most such optimisations the normal destruc-
tor action will be adequate and harmless, e.g.,
deleting a null pointer rather than an allocated
pointer or closing an unopened file.

The latter may actually be catastrophic – Ed.

A class may use cv-qualified constructors to im-
pose certain restrictions. For instance, non-const
objects cannot be created of a class with only
const constructors. More general uses of this
technique are explored in the next two sections.

Object wrappers

Wrapper classes are often used to apply a high-
level interface to a low level type. This may take
the form of either a fully fledged abstraction that
manages the type, or a simple convenience layer
into which the objects of the low level type are
passed. Consider the following code fragment
for a class that provides a number of standard
string operations on a given null terminated
string:
class string_alias
{
public:
 string_alias(char *str)
 : wrapped(str) {}
 ...
 char operator[](size_t pos) const
 { return wrapped[pos]; }
 char& operator[](size_t pos)
 { return wrapped[pos]; }
 size_t length() const
 { return strlen(wrapped); }
 ...
private:
 char* wrapped;
};

Looking at the constructor provided, only non-
const strings may be aliased. A programmer

looking to use this class for a const string is
forced to cast away its const-ness:
bool check(const char *filename)
{
 string_alias convenience(

 const_cast<char*>(filename));
 ...
}

The cast in this case not only casts away const-
ness to allow construction: the appropriate type
checking, and the guarantees that go with it, are
also lost. The string_alias object created will
now permit non-const operations on a const
string, and thus introduce unwanted and poten-
tially undefined run time behaviour. The de-
signer of the string_alias class might chose to
make the class more convenient to use by pro-
viding a weaker constructor which performs the
cast itself:
class string_alias
{
public:
 string_alias(const char* str)
 : wrapped(const_cast<char*>(str))
{}
 ...
};

This is easier for users of the class, but it is now
harder to track down strange behaviour. The
cause of any problem is effectively hidden:
bool check(const char* filename)
{
 string_alias
convenience(filename);
 ...
 // modify filename via
convenience!
}

Introducing a constructor differentiated on const
would provide a safe const-preserving route
through the code:
class string_alias
{
public:
 const string_alias(const char*
str)
 : wrapped(const_cast<char*>(str))
{}
 string_alias(char* str)
 : wrapped(str) {}
 ...
};

The programmer can now guarantee that only
const operations are performed on aliased const
strings:
const char* const_str = ...;
string_alias illegal(const_str);
 // not legal because illegal is
non-
 // const and the only non-const

 Overload – Issue 8 – June 1995

 Page 17

 // constructor requires char* arg

const string_alias legal(const_str);
 // legal: const constructor
accepts
 // const char*

Proxy classes

This problem is not restricted to wrapping up
low-level types. The method of viewing one ob-
ject through another will always beg the question
of how the cv-qualification of the target can be
reflected in the proxy (often, however, such is-
sues are swept aside and ignored). Consider the
following classes that represent a string and
sliced views of it. The solution presented here
uses the proposed cv-qualification for construc-
tors:
class full_string;
class sub_string
{
public:
 const sub_string(const
full_string&,
 size_t from, size_t
size);
 sub_string(full_string&,
 size_t from, size_t
size);
 const sub_string(const
sub_string&);
 sub_string(sub_string&);
 ...
private:
 full_string& target;
 size_t start, count;
};

class full_string
{
public:
 ...
 const sub_string operator()(
 size_t from, size_t size)
const;
 sub_string operator()(
 size_t from, size_t size);
 ...
};

The reader is invited to consider where casts
would have to be inserted in the class implemen-
tation or a class user’s code if cv-qualified con-
structors were not present. Also under
consideration is the reliability and maintainabil-
ity of such code, in particular the scope for in-
troducing undefined behaviour.

Alternative approaches

Top-level cv-qualification is ignored by typeid,
and so this method of inspection is not available
to a constructing object. That is, the first type of
example cannot be implemented in a single class
without additional dummy arguments for a con-

structor. If such a solution is adopted there is no
way to enforce the correct construction of cv-
qualified objects.

Similarly, the other examples illustrated that it is
not possible to get the required behaviour in a
secure way from a single class. Adding an extra
class might at first sight appear to be the solution
to some of these problems.

Patterning the creation of proxies after the STL
container classes, where a container may return a
normal iterator or a const iterator dependent on
the const access path to the container, has some
initial appeal. However, iterators represent a
level of indirection not present in the examples
chosen: the cv-qualification of the iterator de-
scribes the cv-qualification of the iterator itself
and not the referenced container, the const-ness
of which is described by the actual class of the
iterator (plain or const). This is not the case with
objects that are acting in some way like refer-
ences rather than pointers.

To preserve expected substitutability the non-
const class would also have to be derived from
the const version. It is possible that in some
cases an additional protected constructor would
have to be added to bypass the normal construc-
tion of the base or to actually implement the
construction of the non-const derived class. This
adds significant complexity and, potentially, in-
security in the long term.

Templates represent an alternative method of
generalisation. However, they have nothing to
offer to this discussion: there is no way to select
on the cv-qualification of a template parameter.
As such, issues like substitutability cannot be
tackled.

The reason for dividing one class into two is
based solely on the const-ness of construction
alone: in all other respects the roles are already
partitioned within a single class by cv-
qualification of member functions. C++ has a
sound and regular method for specifying cv-
qualification of objects at creation (the recent
change to allow a cv-qualifier in a new expres-
sion serves to illustrate the need and desire for a
regular approach) and for specifying member
function access throughout the object’s lifetime.
An extension of cv-qualification to constructors
would allow additional type safety and expres-
sive power.

 Overload – Issue 8 – June 1995

 Page 18

Syntax and rules

A constructor selected on cv-qualification is only
effective if it assumes that the qualification is a
minimum requirement of the object under con-
struction. For example, an unqualified construc-
tor may be used to construct any kind of object
but a const qualified constructor may only be
used to construct const and const volatile ob-
jects. This is fully compatible with the status
quo, where unqualified constructors are used to
construct all objects. Adoption of this proposal
would break no existing code.

The syntax itself, where the cv-qualification pre-
cedes the constructor name, has been chosen to
reflect the syntax used in the declaration of the
object or the equivalent new expression:
class X
{
public:
 const X();
 X();
 ...
};

const X a;
const X* p = new const X;

It is also important that this syntax differs from
the cv-qualification for ordinary non-static mem-
ber functions. The semantics are quite different:
a const constructor may only be called to con-
struct a const object, but a non-const constructor
may be called to construct any object; a const
member function need not be called on a const
object, but a non-const member may not be
called on a const object. Using a single syntax to
express two quite separate ideas would lead to
confusion, hence the form chosen here.

The cv-qualification of the object under con-
struction acts as the tie breaker for overloading,
e.g.,
const X x; // const X() invoked

If there is any remaining ambiguity the construc-
tion is ill formed, e.g.,
class Y
{
public:
 const Y();
 volatile Y();
 ...
};

const volatile Y y; // error

The syntax for constructor definition simply pre-
fixes the plain definition with the qualifier, e.g.,
const Y::Y()

{
...
}

Kevlin Henney

Westinghouse Systems Ltd

kevlin@wslint.demon.co.uk

Since the committee have tackled cv-
qualification of objects many times with sev-
eral proposals already being rejected, I’d
like to think that Kevlin’s proposal will be
given serious consideration. It will be inter-
esting to see whether this issue comes up in
the various public reviews. – Ed.

namespace – a short exposé
by Sean A. Corfield

So far, very few compilers support namespaces.
Metaware’s is, I believe, the only commercially
available compiler at present although several
vendors are working on them. This means that
we have no experience of working with them at
all. I shall present a few short code examples
showing how the draft standard says they will
work and ask you for your comments.
namespace A {
 int j;
}
void f()
{
 j = 1; // error: no j in scope
}
void g()
{
 using namespace A;
 j = 1; // fine: finds A::j
}

Even without explaining the rules to you, this is
probably intuitive. Let’s look at a more complex
example:
namespace A {
 int j;
}
int j;
void f()
{
 j = 1; // fine: finds global ::j
}
void g()
{
 using namespace A;
 j = 1; // ambiguous: ::j or
A::j?
}

Does that surprise you? Let me explain the rule
for lookup: scopes are searched for a name and if
the global scope is reached, any namespaces
specified with a using directive are “unlocked”

 Overload – Issue 8 – June 1995

 Page 19

and also searched. A more complicated example
will see whether we understand that:
namespace A {
 int j;
}
int j;
void f()
{
 int j = 0;
 if (j) // fine: local j
 {
 using namespace A;
 j = 0; // finds local j
 }
}

The scopes are searched outwards and the local
variable j is found. Since we didn’t reach the
global scope, no namespaces were unlocked.

What about when one namespace uses another?
namespace A {
 int j;
}
namespace B {
 using namespace A;
 int k;
}
void f()
{
 using namespace B;
 j = 0; // fine: A::j
}

This is because the namespace lookup is transi-
tive – once one namespace is unlocked for
lookup, any other namespaces mentioned are
also unlocked. In particular if B had defined an-
other variable j in the above example, the use of
j in f would have been ambiguous: B:: j or A:: j.
Note, however, that in the example as written, j
is not a member of B so the following will not
work:
namespace A {

 int j;
}
namespace B {
 using namespace A;
 int k;
}
void f()
{

 B::k = 0; // fine: k is member
of B

 B::j = 0; // error: no j in B
 using namespace B;
 j = 0; // fine: B is unlocked
 // and so is A
}

This can get particularly confusing, in my opin-
ion, when functions are involved instead of vari-
ables, because they overload across namespaces
once any namespace in the chain is unlocked!
namespace A {
 void h(int);
}
namespace B {
 using namespace A;
 void h(char);
}
void f()
{
 A::h('a'); // calls A::h(int)
 B::h(123); // calls B::h(char)
 using namespace B;
 h('a'); // chooses B::h(char)
 h(123); // chooses A::h(int)
}

I’ll leave it as an exercise to construct more com-
plicated examples but I’d like to hear your com-
ments on this – send me email about it and I’ll
summarise in Overload 9.

Sean A. Corfield

sean@corf.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

The “Circle & Ellipse” problem posed by Francis Glassborow in Overload 7 generated quite a lot of re-
sponses – Kevlin Henney and Francis both give their sides to the solution. Multiple inheritance also fea-
tures heavily as The Harpist continues his discussion of object relationships and Ian Horwill gives a
beginner’s-eye view of virtual . Kenneth Jackson provides useful data validation techniques for MFC con-
trols, Bryan Scattergood shows how you might start to write “smart pointers” and Peter Wippell revisits
the “Record I/O” theme from the last issue. Part II of Ulrich Eisenecker’s series on multiple inheritance
has been held over to Overload 9 for reasons of space.

 Overload – Issue 8 – June 1995

 Page 20

Wait for me! – virtual
by Ian Horwill

This is the second article aimed at people who,
like me, are still valiantly trying to develop basic
C++ programming skills while the rest of the
world gallops on with the latest language devel-
opments.

In this article, I’d like to cover the two uses of
the keyword virtual . This was an area of some
unnecessary difficulty for me when learning
C++, not because of any particular complexity of
the ideas involved, but because of the word it-
self!

The problem started in ‘O’ level physics. For
whatever reason, I couldn’t really understand
what was meant by a “virtual image” when
studying lenses etc. Then, when I saw this word
in C++, I thought – “Uh oh, this must be diffi-
cult!”

However, I finally sorted it all out. “Virtual”
means “something that isn’t really, but for our
purposes we can pretend it is”, e.g., virtual mem-
ory.

We’ll see how I think that relates to virtual func-
tions next. As for virtual base classes, there are
probably sufficient similarities to virtual func-
tions to justify re-using the keyword.

Virtual functions

Consider the following:
class NetwareServer
{
public:
 void connect();
 void disconnect();
 ...
};

void DoSomething(NetwareServer& host)
{
 host.connect();
 ... // do something!
 host.disconnect();
}

It’s pretty obvious that connect() and discon-
nect() are member functions of the class Net-
wareServer and those are the functions that are
being called.

Now, to extend the program you might decide to
add different types of server, e.g., a Unix host on
a dial-up link. As you can imagine, the equiva-

lent connect() function will be somewhat differ-
ent from the Netware one.

Having read our book (or chapter – we’re in a
hurry) on object-oriented programming, we de-
cide we need an abstract type that will represent
the common features of all our servers without
bothering about the details of any of them.

(Note – an abstract class is one that is not in-
tended to represent anything directly, but which
specifies an interface – set of functions etc. –
from which we derive classes that do represent
something, i.e., an abstract class represents a
kind of “virtual” object. Hmm!)

We then want to be able to do this:
void DoSomething(Server& host)
{
 host.connect();
 ... // do something!
 host.disconnect();
}

without worrying about what type of server
(Netware or Unix) we are dealing with. Obvi-
ously we need to write specific versions of the
connect() and disconnect() functions somewhere,
and we do that by deriving classes from our new
abstract class:
class Server
{
public:
 void connect();
 void disconnect();
 ...
};
class NetwareServer : public Server
{
public:
 void connect();
 void disconnect();
 ... // Netware-specific stuff
};
class DialUpServer : public Server
{
public:
 void connect();
 void disconnect();
 ... // dial-up specific stuff
};
void NetwareServer::connect()
{
 // Attach/login to Netware server
}

void NetwareServer::disconnect()
{
 // Logout from Netware server
}
void DialUpServer::connect()
{
 // Dial up/login to remote server
}

void DialUpServer::disconnect()
{
 // Logout/disconnect from the

 Overload – Issue 8 – June 1995

 Page 21

 // dial-up server
}

Because NetwareServer and DialUpServer are
derived from Server, we can call DoSomething
with either of them because it is declared with a
Server& parameter:
NetwareServer file_server;
DialUpServer internet_host;

DoSomething(file_server);
DoSomething(internet_host);

So, we now have an abstract base class which
specifies that objects of this type have connect()
and disconnect() functions, and two derived
classes that provide specific implementations of
those functions.

However, as written, the last DoSomething()
function above calls the connect() and discon-
nect() functions of the base class (Server). These
functions may not even exist, and we don’t want
them to be used anyway!

What we want to say in DoSomething() is “call
whichever versions of these functions apply to
the actual object we are dealing with”. And that
is exactly what virtual functions do. If we change
the definition of Server to:
class Server
{
public:
 virtual void connect() = 0;
 virtual void disconnect() = 0;
};

then DoSomething() works just as we want it to
(we could also add “virtual” to the function dec-
larations in the derived classes, but it is redun-
dant).

The “= 0” makes our virtual functions “pure”
virtual functions, which means we aren’t going
to define versions of these functions for the class
Server itself. This also means we can’t create
objects of type Server directly, which is what we
want and is what makes it an abstract class.

So this is why they are called “virtual” func-
tions; they look as though they exist for an ab-
stract base class, but they don’t really.

If we left off the “= 0” and defined these func-
tions for Server, they would act as defaults for
any derived classes that didn’t provide their own
versions. We would also be able to declare ob-
jects of type Server (assuming it didn’t have any
other pure virtual functions).

How do they do that?

To accomplish this piece of virtual magic, each
object of a class with virtual functions has a hid-
den data member, which is a pointer to a table
containing the addresses of its versions of the
virtual functions. Let’s look at some fake com-
piler-generated code to see what happens:

(Please note – this is for illustration only!)
class Server
{
public:
 virtual void connect() = 0;
 virtual void disconnect() = 0;
 ...
 // The table must be accessible
 // through the base class:
 function_address* vtbl;
};
class NetwareServer : public Server
{
public:
 virtual void connect();
 virtual void disconnect();
 ...
 // Each class has its own set of
 // function pointers:
 static function_address
 netware_vtbl[2];
 // And we initialise the vtbl

 // pointer in the base class to

 // point to our function table
 NetwareServer()
 { vtbl = netware_vtbl; }
};
function_address
NetwareServer::netware_vtbl[2] =
{
 connect, // address of
 // NetwareServer::connect()
 disconnect // address of
 // NetwareServer::disconnect()
};
void f()
{
 NetwareServer file_server;
 DoSomething(file_server);
}
void DoSomething(Server& host)
{
// call NetwareServer::connect()
 (host.vtbl[0])();
...
// call NetwareServer::disconnect()
 (host.vtbl[1])();
}

So when the compiler doesn’t know which de-
rived class it’s working with (such as in
DoSomething()), and therefore which version of
a virtual function to call, it looks it up in the
objects vtbl.

When the object’s type is known, the compiler
can call the correct virtual function directly,
avoiding the overhead of the indirect virtual
function call:
void f()

 Overload – Issue 8 – June 1995

 Page 22

{
 NetwareServer server;
 server.connect();
 // NetwareServer::connect() can be
 // called directly here
}

Virtual base classes

C++ allows multiple inheritance – i.e., a class
can be derived from more than one base class:
class Fax
{
public:
 void receive();
 void send();
};
class Scanner
{
public:
 void scan();
};
class FaxScanner
: public Fax, public Scanner
{
// Other stuff in addition to
// receive,send and scan
};

So the class FaxScanner has all the capabilities
of a Fax and those of a Scanner. Now presuma-
bly, the Fax class receives and sends a docu-
ment, and the Scanner class scans in a document.
So let’s assume we have a Document class to
represent this, which we will add as a base class
to both Fax and Scanner:
class Fax : public Document
{
public:
 void receive();
 void send();
};
class Scanner : public Document
{
public:
 void scan();
};

The problem with this is that our FaxScanner
has two documents, one with its Fax part and
one with its Scanner part:

Document Document

Fax Scanner

FaxScanner

To get round this, Fax and Scanner both have to
declare Document as a virtual base class:
class Fax
: public virtual Document {
// as before

};

class Scanner
: public virtual Document {
// as before
};

Now virtual here doesn’t mean that the Docu-
ment doesn’t really exist; rather, it means that a
separate copy will probably not exist because it
will be shared with all other classes in the same
tree (i.e., that are bases – direct or indirect – of
some derived class):

Document

Fax Scanner

FaxScanner

Note that any class in the tree that doesn’t de-
clare Document as virtual still gets its own copy.

Now that all seems simple enough, doesn’t it?
However, from this useful feature an number of
complications arise. Here are two of them:

Initialisation

It is quite likely that Document will have one or
more constructors, and a class derived from
Document will supply arguments to one of these
constructors to initialise its Document part.

You’ve beaten me to it – what if Fax and Scan-
ner both supply different arguments to Docu-
ment’s constructor? Or call different
constructors?

The answer is simple and specific. A virtual base
class can only be intialised by the “most de-
rived” class, which in our case is FaxScanner.
Intermediate classes (Fax and Scanner) can pro-
vide intial values for Document (and should, for
when they are used on their own) but they will
be ignored.
class FaxScanner
: public Fax, public Scanner
{
public:
 FaxScanner()
 : // probably initialise Fax and
 // Scanner here too
 Document(x) // x is some initial
 // Document
};

Note that FaxScanner can initialise Document
even though it is not a direct base class.

 Overload – Issue 8 – June 1995

 Page 23

If the most derived class does not specify initial
values for the virtual base class, then its default
constructor will be used. If it doesn’t have one,
and the compiler can’t generate one (because
other constructors exist), the program is in error.

Casting

C++ allows a pointer or reference to a derived
class to be implicitly converted (i.e., without you
having to say so) into a pointer/reference to any
of its base classes, as long as the base class is
accessible at the point of the conversion (public
base classes are accessible everywhere).

E.g., if the memory layout of a FaxScanner is:

Fax part

Scanner part

FaxScanner part

then a pointer to a FaxScanner can be inplicitly
converted to a pointer to a Scanner:
void f()
{

 FaxScanner fs;

 Scanner* p = &fs;
}

and that the compiler will adjust the value of the
pointer to do the conversion, by adding the size
of the Fax part (because the pointer to FaxScan-
ner points to the start of the whole object). This
is a constant value known at compile time.

An explicit conversion is also allowed from the
base class pointer back to the derived class
pointer. The same constant value is subtracted
from the base class pointer. The conversion has
to be explicit because you are telling the com-
piler “this instance of the class X is part of a Y,
honest”. If it weren’t, the resulting adjusted
pointer could be pointing to anything (or noth-
ing).

Now let’s look at the situation with virtual bases.
The layout of a stand-alone Scanner object
might look like this:

Document part

Scanner part

giving an offset of 0 to convert a Scanner* to a
Document* , whereas if the Scanner object is part
of a FaxScanner the fact that Document is a vir-
tual base means its position relative to Scanner

or Fax (or both) must be different from its stand-
alone position, e.g.,

Document part

Fax part

Scanner part

FaxScanner part

Therefore the offset of a virtual base relative to a
derived class is not constant and so must be
stored as an extra (hidden) field in the derived
class. This mechanism is invisible to the pro-
grammer, and the derived-to-base conversion can
be performed as normal.

(Note: I’ve used the pointer conversion example,
but the offset is also needed when accessing, for
example, Document fields from within Scanner
member functions.)

The opposite conversion, from a virtual base
pointer to a derived class pointer, is not allowed
(remember it is allowed when the base is not
virtual). My copy of the C++ Annotated Refer-
ence Manual says that this is “to avoid requiring
an implementation to maintain pointers to en-
closing objects”.

And finally...

Needless to say, virtual base classes can contain
virtual functions and they work pretty much as
you might expect, although they do add some
complications for compiler writers.

Well, that’s it from me. May all your programs
be virtually error-free.

Ian Horwill

ian@horwill.demon.co.uk

Circle & Ellipse –
Vicious Circles
by Kevlin Henney

Modelling the relationship and similarity be-
tween circles and ellipses with inheritance is a
recurring question in articles and newsgroups. It
is often seen as a paradoxical problem beyond
the reach of OO. The Harpist went over the
problem in Overload 7 [1], and Francis followed
this with a request for solutions [2].

 Overload – Issue 8 – June 1995

 Page 24

The problem

The reason a solution is so hard to come by is
because the problem is poorly stated: mathemat-
ics tells us that a circle is an ellipse, so I can sub-
stitute a circle wherever an ellipse is required,
suggesting that a circle is a subtype of an ellipse:
class ellipse
{
 ...
};
class circle : public ellipse
{
 ...
};

So far so good, but the troubles start when we
introduce any state modifying functions, such as
assignment or the ability to change the major and
minor axes independently. The invariant for a
circle states that its axes are the same, and can be
known alternatively as the radius. The following
code illustrates that we can easily break the in-
variant:
circle c(1);
ellipse& e = c;
e = ellipse(2,4); // oops rather
 // than oop!

This seems less pathological when you consider
that the reference binding might be of an actual
to a formal function parameter. There seems to
be a problem, and one that the Harpist and many
others believe cannot be expressed using OO or
within the C++ type system. I believe this to be a
non-problem, albeit a subtle one. Not only do I
think that OO and C++ are up to the job, but you
will find that there is more than one solution.

The real problem

We’ve looked at what the problem appears to be,
but did anyone spot what I did wrong? As I said,
this is subtle: what are the requirements and
where is the analysis?

I am in the middle of a design that doesn’t work,
so is it the paradigm or the design that is at fault?
We are so confident that we understand the
mathematical concepts behind circles and ellip-
ses that we have not bothered to ask any more
questions of that domain. The tip-off is in the
phrase “the troubles start when we introduce any
state modifying functions”.

We have also not said what we wish to use our
circles and ellipses for. Not only is the previous
design flawed by internal contradiction, it is not
fit for a purpose for the simple reason that we
have failed to identify one.

Principia Mathematica

Let us restrict ourselves to just modelling circles
and ellipses as we see them in maths, rather than
for any specific application such as graphics:
class ellipse
{
public:
 ellipse(double a, double b);
 ellipse(const ellipse &);
 ~ellipse();
 // queries:
 double semi_major_axis() const;
 double semi_minor_axis() const;
 double eccentricity() const;
 double area() const;
 ...
 bool operator==(const ellipse&)
 const;
 bool operator!=(const ellipse&)
 const;
private:
 double semi_major, semi_minor;
 // no implementation
 ellipse& operator=(const
 ellipse&);
};
class circle : public ellipse
{
public:
 circle(double r);
 circle(const circle &);
 ~circle();
 // queries
 double radius() const;
private:
 // no implementation
 circle& operator=(const circle&);
};

The first observation is that there is no way to
change circles and ellipses once you have cre-
ated them. Even if you do not declare them const
they are effectively const objects. This is the
correct mathematical model: there are no side
effects in maths, conic sections do not undergo
state changes, and there are no variables in the
programming sense of the word. Two conic sec-
tions with the same parameters are indistinguish-
able, and so their internal state is effectively
their identity: change the state and you change
the identity. In some senses a copy constructor
can be considered superfluous.

We are dealing with value based rather than ref-
erence based objects. Readers who are comfort-
able and familiar with functional programming
and data flow models will recognise the ap-
proach. In the case of circles and ellipses, the
circle is simply an ellipse with specialised in-
variants. There is no additional state and none of
the members of an ellipse need overriding as
they apply equally well to a circle. For this rea-
son I have kept the classes completely nonpoly-
morphic.

 Overload – Issue 8 – June 1995

 Page 25

The case for const inheritance

The solution above is a disarmingly simple solu-
tion, but from the mathematical perspective it is
the correct one. In a procedural language, how-
ever, you will doubtless find the inability to as-
sign these objects quite constraining: state is
bound to objects once at the point of creation.
Once you have assignment and a few transforma-
tion functions, such as a function that returns the
ellipse after stretching along a particular axis,
you need no other modifiers. But even the intro-
duction of this one mutator function will break
the subtyping relationship that circles may be
used wherever ellipses are expected.

Another way to look at this is that we want to
change ellipses in a way that is incompatible
with circles, and yet preserve the value subtyp-
ing between them. The simplest solution to this
is unfortunately not currently possible in C++:
class ellipse
{
 ...
public: // ch-ch-changes
 ellipse& operator=(const
 ellipse&);
};
class circle
: public const ellipse // not real code
{
 ...
public: // as good as a rest

 circle& operator=(const circle&);

};

The circle class now partially inherits from an
ellipse, but in a way that preserves the subtype
relationship: a circle is substitutable for a const
ellipse. In other words, where you expect an el-
lipse that remains unmodified, a circle is substi-
tutable:
circle c;
ellipse& e = c; // illegal
const ellipse& e = c; // legal

Because there is no polymorphism, no state
added, and a closed inheritance hierarchy, the
DESTROY-CREATE pattern for assignment can be
used in the circle without any problems:
circle& operator=(const circle& rhs)
{
 if(this != &rhs)
 {
 this->~circle(); // destroy
 // and recreate in same place
 new(this) circle(rhs);
 }
 return *this;
}

This obviates the need for protected access to the
parent class. However, this is one of the very
few places that this particular pattern can be
used safely, otherwise you would be wise to
keep it out of your code [3].

In principle once you have assignment, all legal
state changes to ellipses and circles are possible
simply by assigning from a newly constructed
temporary. However, this could become tedious
for applications where certain operations are
common, such as changing one axis independ-
ently of the other. In this case a convenience
member might be appropriate.

More classes

All well and good, but const inheritance is not
currently legal. The alternative is to model this
using separate classes: the const versions form
the trunk of the inheritance tree, with the muta-
ble versions as extensions off them:
class ellipse // const class
{
... // as side effect free version
};
class mutable_ellipse
: public ellipse
{
... // as const inheritable version
};
class circle
: public ellipse // const class
{
... // as side effect free version

};

class mutable_circle : public circle
{
... // as const inheriting version
};

Although this approach uses more classes to ex-
press the same ideas, it is open to some exten-
sion that the briefer const inheritance version
could not manage. For instance, both circles and
ellipses may be symmetrically rescaled. Such a
feature can be incorporated into the ellipse class
without violating the invariant of the circle:
class ellipse
{
 ...
 ellipse& operator*=(double);
 ...
};

You may notice stronger coupling between the
two classes now. This closed anticipated rela-
tionship may not be appropriate for many de-
signs, so the purely const version may be
preferred. As ever, such a design decision should
be taken in context.

 Overload – Issue 8 – June 1995

 Page 26

The property market

In the limit, a circle is simply an uneccentric el-
lipse, and its valid set of states is a strict subset
of the ellipse’s. It has to be said that other than
its complete symmetry, there is nothing of par-
ticular interest in a circle that is not already
modelled by an ellipse. For some applications
this is enough reason to model circularity as a
predicate property of an ellipse and completely
abandon the modelling of this special case as a
separate class:
class ellipse
{
 ...
 bool circular() const;
 ...
};

This is analogous to the way that empty strings
do not need a separate class to model them: an
ordinary string class will suffice. Again, whether
or not this is an appropriate approach depends
completely on your expected use.

All sorts to make a world

For graphics it is likely that we need a more
complex model of ellipses and circles than the
one presented above. For instance, we might
wish to position our shapes on a set of world co-
ordinates. Another design decision is whether to
model location and orientation within the object
or not. If we model a graphical shape as a primi-
tive shape plus translational, rotational and scal-
ing transforms, there is no need to change the
mathematical model presented above. However,
should we decide to incorporate positional fea-
tures in the shapes and preserve the integrity of
the design at runtime, we can:

• abandon the hierarchy, as Coplien [4] sug-
gests, treating circles and ellipses as quite
separate shapes — in addition we can in-
clude methods to create one from the other,
or a null shape on failing;

• abandon circles, as suggested in the previous
section, regarding the equality of major and
minor axes as a usage convention;

• treat shapes as pure value objects, so that all
objects are transformed by returning a re-
placement shape — this is an extension of
the side effect free approach and is similar to
the idea of replacement behaviour in actor
theory [5].

Other approaches

There are often attempts to model the relation-
ship the wrong way up, i.e., have a circle as the
base class for an ellipse. In terms of subtyping,
this clearly makes no sense and is often the re-
sult of a failed and misguided attempt to reuse
implementation. It has been suggested that a vir-
tual assignment operator for the ellipse, overrid-
den in the circle class, might be a solution if it
did ‘clever’ things like:

• ignore a non-circular operand, leaving the
state unchanged, or

• take the average of the axes to assign the
new diameter from, or

• use the larger or smaller axis as the diameter,
or

• use assertions or exceptions to introduce
stronger behavioural preconditions.

A similar philosophy has also been applied to
stretching functions and other transforms. How-
ever, these all suffer from the problem that they
are quite obviously kludges rather than correct
implementations of the specified operation:
stretching a circle in one direction should give
an ellipse and not a larger circle.

I first encountered a practical example of the
circle-ellipse problem in a graphical system to
which group editing was added. Prior to this all
editing was on primitive or separately definable
and nameable composite symbols. Group editing
permitted translation and rescaling, but not rota-
tion. None of the above workarounds for re-
scaling circles work because a group requires its
members to maintain their relative positioning
— very strange things happened when they do
not! Symbols, composed of primitive shapes and
other symbols, never ran into this problem be-
cause they were defined as draw — rather than
actual — transforms on a prototypical symbol
notionally defined at the origin. Had the bound-
ing boxes of shapes been independent of the
shapes there might have been less of a problem,
but one of the great advantages of primitive
shapes is that the bounding box need not be ex-
plicit as it can be deduced!

Until I added group editing with stretching, the
design problem either not had existed or had lain
dormant, depending on your point of view.

 Overload – Issue 8 – June 1995

 Page 27

Conclusion

Although I have done it above, in many cases it
is not especially good practice to derive one con-
crete class from another: the other issue lurking
in this discussion is the difference between type
and class, and its effect on system design, integ-
rity and reuse. However, it is possible to discuss
the circle-ellipse problem without taking such a
detour – for brevity I did.

The solution to the circle-ellipse problem is one
of method rather than of the method. Put like
that, it is unsurprising. What is surprising is that
because of our expectations and prior knowledge
such an apparently simple modelling task can
have such sensitivity to initial (and final) condi-
tions. Then again, I guess circles and ellipses are
non-linear...

References

[1] The Harpist, “Related objects”, Overload 7,
April 1995

[2] Francis Glassborow, “Related addendum”,
Overload 7, April 1995

[3] Andrew Koenig, “Using constructors for
assignment”, C++ Report 7(2), February
1995

[4] James O Coplien, Advanced C++: Pro-
gramming Styles and Idioms, Addison-
Wesley, 1992

[5] Gul Agha, Actors: A Model of Concurrent
Computation in Distributed Systems, MIT
Press, 1986

Kevlin Henney

kevlin@wslint.demon.co.uk

Circle & Ellipse – Creating Po-
lymorphic Objects

by Francis Glassborow

A recap

You remember that in the last issue of Overload
I threw down the gauntlet with a challenge to all
and sundry to implement a polymorphic object
type as opposed to a polymorphic type. Well no-
one has sent me a solution (perhaps you sent
them to Sean instead, or asked him to return all
my contributions unopened).

As if! :-) – Ed.

In order to implement such mathematical rela-
tionships as those that hold between a circle and
an ellipse we need objects that can change their
types at run time. We can change behaviour by
replacing member functions with addresses that
can be reset at runtime. Unfortunately this is not
enough because we need to make sure that the
dynamic type is changed so that the new typeid
and dynamic_cast facilities will work correctly
as well. These facilities depend on the virtual
function table pointer (or so I believe) for their
success. This means we need to change this hid-
den variable if our objects are to behave poly-
morphically. We also have to tackle the problem
of varying amounts of data – ellipses require
more than circles, and make sure that we cope
with any other hidden information that imple-
mentors have elected to use.

I am not going to give you a fully worked solu-
tion but I hope that the following will be enough
for you to flesh it out for yourselves. I would
also be delighted if some of you come up with
other (probably better) solutions.

Variable volume of data

The first thought that crossed my mind was that I
might try some form of inverted inheritance tree
for the data with ellipse data derived from circle
data. The problem with this approach is that, as a
general solution, it inhibits further development
of the principal hierarchy (Shape in this case).
Careful thought led to the following:
class Shapedata
{
protected:
 // make Shapedata an abstract
 // base class
 virtual void setdata(const

 Shapedata&)=0;

 virtual ~Shapedata() {};
public:
 // default constructors are OK
};

class Shape
{
 Shapedata* data;
public:
 Shape() : data(0) {}
 Shape(const Shape&);
 // shape interface of pure
 // virtuals
 virtual ~Shape()
 { delete data; }
};

Notes:

The Shapedata destructor is protected which
means that only derived classes will be able to

 Overload – Issue 8 – June 1995

 Page 28

use it. The same is true of setdata(). Shapedata
is only intended for use by Shape derivatives. I
have tried to ensure that derived classes from
Shapedata are only available to the Shape hier-
archy.

As all our concrete Shapes will have dynamic
instances of Shapedata handled by the
Shapedata pointer, I have set that pointer to zero
in the constructor for Shape so that I can safely
delete it in the destructor for Shape.

A point I noticed while testing the ideas for this
solution was the way that different compilers
deal with the definition of virtual functions in
the interface. Some compilers simply suppress
the implicit inline attribute, others issued a diag-
nostic and some messed up. I had not con-
sciously recognised this as a problem before.
Reflection shows that there is a problem here
because inline requires code to be available so
that the compiler can use it (it is too late by the
time the linker is involved). By contrast virtual
means delay selection of code until runtime (link
time is too early).

Another problem that arose was that I wanted to
declare the Shape hierarchy as a friend of the
Shapedata hierarchy. The language does not
seem to allow this. Perhaps someone else has a
better idea.

I considered making Shapedata a protected lo-
cal class nested in Shape. I decided to skip this
idea for the time being because it would have led
to deriving a nested class from a base class that
was itself nested in a base class. I suspect that
this approach has potential for hiding the imple-
mentation of the Shapedata hierarchy.

Now using these ABCs we can define two pairs
of concrete classes:
class Ellipse; // predeclare
class Ellipsedata : public Shapedata
{
friend class Ellipse;
// copy constructor OK
// copy assignment OK
 float diameter; // major axis
 float xfocus1, yfocus1,
 xfocus2, yfocus2;
 Ellipsedata(float xf1,
 float yf1,
 float xf2,
 float yf2,
 float d);
 void setdata(const
 Shapedata&);
};

class Ellipse : public Shape
{

 void change();
protected:
 Ellipse(){}
public:
 Ellipse(float xf1,
 float yf1,
 float xf2,
 float yf2,
 float d)
 : data(new Ellipsedata(xf1,
 yf1, xf2,
 yf2, d))
 {};
 ~Ellipse() {};
};

class Circle; // predeclare
class Circledata : public Shapedata
{
friend class Circle;
// copy constructor OK
// copy assignment OK
 float diameter;
 float xcentre, ycentre;
 Circledata(float x = 0,
 float y = 0,
 float d = 2);
 void setdata(const
 Shapedata&);
};

class Circle : public Ellipse
{
 void change();
protected:
 Circle();
public:
 Circle(float x = 0,
 float y = 0,
 float d = 1)
 : data(new Circledata(x,y,d))
 {};
 ~Circle() {};
};

Notes:

Usually the derived versions of Shapedata will
have Shapedata as a direct base class. This is
because the data required for each type of shape
will depend on the shape rather than on the
shape from which it is derived.

The change() function is special as it must only
be called from other polymorphic functions at
the level of the current dynamic type of the ob-
ject because this is the key to polymorphism at
object rather than class level. If you called it
from a non-polymorphic function you might call
a static version that was not correct for the dy-
namic type of the object. Remember that objects
of any polymorphic kind are often handled via
pointers or references whose static type is that of
a base class.

The default constructors for the concrete Shape
classes are protected because the true dynamic
type will need to initialise the Shapedata pointer
to its own type of data, but the rules will require

 Overload – Issue 8 – June 1995

 Page 29

the base class to be constructed first. So an in-
stance of a circle must first create a dataless el-
lipse. On the other hand it must not be possible
for a naive client to create a dataless ellipse.
Dataless shapes can only be bases.

Now let me move on to the implementation of
the change() function. The first thing it must do
is to grab hold of responsibility for the current
Shapedata so that it can use it to initialise the
Shapedata for the new type.

Then it must explicitly call the destructor for the
present Shape. We do not want to release the
memory in use; just to remove the object. When
we have done that we use a placement new to
construct the new object in the same memory.
Lastly we delete the old Shapedata instance.

If you are going to use a placement new you
must remember to include new.h. I forgot and
found myself wasting rather more time than I
should have done. The fact that ordinary ver-
sions of new work without new.h while place-
ment new’s require it is a pain.

For the less experienced C++ programmer who
is reading this I should explain the concept of a
placement new. The new operator in C++ is
implemented in two parts, both of which may be
user supplied. The first is a function that sup-
plies memory. The second is a constructor for
the relevant object. The first of these functions
is, confusingly, called operator new. The user
can provide both global and in class overrides of
the default version. You can also provide over-
loaded versions in both global and class scopes.
Any overload version of operator new is said to
provide a placement new. The most common of
these is one where the user provides a pointer to
the required memory.

The prototype for a basic operator new() is:
void* operator new(size_t);

All user written versions must return a void* and
take a size_t as the first parameter (this will be
the value of the sizeof the object being created).
We do not need to mess with the normal opera-
tor new() for the current problem. What we need
is a simple placement new where the user pro-
vides a pointer to the memory to be used. The
following will do the job nicely:
void* operator new(size_t, void* vp)
{ return vp; }

Note that I have made the first parameter anony-
mous because I do not need it though the rules of
the language require it to be present. I could
have provided an in class version of the operator
as a static member function, but the standard
one (actually provided by most compilers) is all I
need. Also note that an eccentricity of all place-
ment new’s is that the value for the first parame-
ter (the amount of memory required) is supplied
by the last argument (the object being created) in
the call.

So let us look at the code for a change function:
void Circle::change()
{
 Shapedata* temp = data;
 data = 0; // disconnect
 // original
 this->~Circle();
 // destroy the
 // circle object,
 // keep the memory
 new (this)
 Ellipse(temp->xcentre,
 temp->ycentre,
 temp->xcentre,
 temp->ycentre,
 temp->diameter);
 delete temp;
 // now discard the
 // original data
}

Of course this is just one of a number of ways
that you can achieve the same end.

Conclusion

As far as I know this method must work. I am
not conscious of using any undefined behaviour.
However you will need to be particularly careful
about where you call change(). It could be very
dangerous to make it a polymorphic function
because by the time you return the object has
changed to a different type. I think this means
that it must always be the last function called
from a member function that has done something
that requires the object to morph into something
else. I might be being over cautious about this
and would welcome your opinions.

I suspect that our esteemed editor will describe
the whole mechanism as a ‘horrible hack’. It cer-
tainly is not something to rush at if you are pro-
gramming with serious intent. Note that the
mechanism for handling data is vital because it
guarantees that all Shapes have the same basic
size, with the variable amount of data hidden
away out of harms way.

Francis Glassborow

 Overload – Issue 8 – June 1995

 Page 30

francis@robinton.demon.co.uk

Francis is right – I think the DESTROY-
CREATE pattern is horrible and with the re-
cent committee decisions on object lifetimes,
I have no idea whether it’s safe or not – Ed.

Having Multiple Personalities
by The Harpist

Before I tackle the main topic of this article I
would like to present a somewhat different view
of inheritance criteria from the one that is glibly
thrown around by most authors.

Writers of books on object-orientation (should
those words be entitled to capitals?) give a sim-
ple rule of thumb for determining when to inherit
(the is-a relationship) and when to use aggrega-
tion or layering (the has-a relationship). Scott
Meyers extends this a little by including another
option, that of ‘being implemented as a’ to
which he assigns private inheritance, or pro-
tected inheritance if this detail belongs to the
hierarchy rather than to the base-class designer.
The problem with such simplistic rules of thumb
is that they are expected to be applied with un-
derstanding. Those inventing the rules have the
understanding to use them. They include this
essential ingredient when they pass it on. It is
those who hear the rule without listening to the
intent that then teach it to others without the all
important explanation.

It is my contention that the right decision are
more along the lines:

• X can be used as Y – all X behaviour is di-
rectly Y behaviour: derive X from Y (or pro-
vide a conversion from X to Y)

• Y is a part of X but Y’s behaviour is not di-
rectly part of X’s: layer Y inside X (do not
provide any conversion)

The traditional vehicle-car-wheel trio will serve
to exemplify this. The behaviour of a car sub-
sumes the behaviour of a vehicle and so we
would expect to be able to use a car as an in-
stance of a vehicle. On the other hand, all cars
have wheels (let us not get pedantic about this
and start talking about hover-cars) and the be-
haviour of a wheel is essential to the working of
a car but it is not part of the behaviour of a car.

Other important criteria when building inheri-
tance trees are those of data and behaviours. A

more derived object should have at least as much
data and at least as much behaviour as one of its
bases. This is the reason why most mathematical
objects do not fit in traditional OO inheritance
hierarchies. Mathematical objects are related by
increasing constraints. A square is specified by
less data than a rectangle because part of the in-
formation is encapsulated directly in its nature.
A rectangle has a greater range of behaviour than
a square because squares are constrained rectan-
gles. If you do not understand this – at least at
the implicit level – you have not yet made the
paradigm shift to an OO world view.

This does not mean that C++ cannot handle such
relationships; it can but not through conventional
OO methods. Many programs and class hierar-
chies are broken at the design stage because the
designer/programmer does not understand this
subtle aspect of OO. C++ used for mathematics,
science and engineering demands these insights
from its users. Those doing much business and
commercial programming may get away without
this understanding.

Real-World versus Object-Oriented

Another problem arises from those who relate
the objects of object-orientation to real world
objects. Just because something is a real world
object does not automatically qualify it to be an
object-oriented one. On the other hand there are
many things that are not objects in the real world
sense but which would be object-oriented ones.
Abstract behaviours and algorithms are two ex-
amples of such.

If we are to obtain the versatility that we need
for writing powerful, reusable code we need to
grasp such things and understand the implica-
tions.

Several years ago Francis came to me with a
problem that an ACCU member had raised. Take
a relatively simple single inheritance hierarchy
and try to change the behaviour of a base class.
For example change a sort from a heap sort to a
quick sort. You cannot do it unless you have the
source code for the relevant base class. It is easy
to tune behaviour of the most derived class, you
just derive again and override the behaviour in
question but you cannot splice in a change any-
where else.

This is not an essential problem with C++, it is
one created by class designers who over-specify
the behaviour of base classes. It is not the job of

 Overload – Issue 8 – June 1995

 Page 31

a class designer to determine which sorting algo-
rithm should be used unless it is for purely inter-
nal data where the designer knows the nature of
the data set.

Such behaviour should be provided via some
form of polymorphic behaviour. To do this we
need carefully designed algorithmic classes. It is
because full code reuse requires such develop-
ments that writing reusable code takes so long.
Many software groups are used to the concept of
analysis and design applied to applications but
code reuse requires that similar care is taken
with the analysis and design of tools (reusable
code).

I am not going to tackle this area here but I think
that we need a series of articles addressing this
vital area (like an article about baggage classes).
The majority of commercial libraries for C++ are
not fully reusable because their design too often
over-specifies base classes. In the rest of this
article I would like you to keep the needs of de-
sign for reuse in the back of your mind because I
believe that many apparently complex tech-
niques become attractive in such circumstances.

In simple terms I think that such things as multi-
ple inheritance are largely the domain of the li-
brary designer. Further, I think library designers
that do not understand multiple inheritance are
like architects who do not understand load bear-
ing.

Being two-faced

Consider the problem of developing a Text-
Window class. It is clearly two things at once, an
instance of text and an instance of a window.
Because it is both these things we could rea-
sonably expect it to substitute for either as the
context required. The question is how we should
provide this mechanism. First let me clear out
the obviously silly.
class Window
{ ... };
class TextWindow : public Window
{ ... };

It’s true that a TextWindow object can substitute
for a Window but how is it going to be pure
Text? We can do a little better with:
class Window { ... };
class Text { ... };
class TextWindow : public Window
{
public:
 operator Text () { return data; }
 // rest of public interface

private:
 Text data;
 // other private items
};

This means that by inheritance we provide an
automatic conversion from TextWindow to Win-
dow and the user provided conversion operator
will deal with conversion from TextWindow to
Text. If the lack of symmetry worries you then
you could write:
class altTextWindow
{
public:
 operator Text () { return data; }
 operator Window () { return info }
 // rest of public interface
private:
 Text data;
 Window info;
 // other private items
};

I have made no attempt to smooth off the rough
corners in the preceding code because I think
that the approach is flawed. I do not want to be
able to convert a TextWindow into something
else, I want to be able to use a TextWindow as
either a Window or as Text. To spend time tink-
ering with the above code so that I can do this is
plain stupid. A TextWindow can be used as a
Window so it must have Window as a base.
Equally a TextWindow can be used as Text and
must have Text as a base. Neither can a Window
be used as a Text, nor can a Text be used as a
Window so neither must have the other as a base.
This logic dictates that:
class TextWindow
: public Text, public Window
{ ... };

is the way forward. Now we have the correct
automatic conversions. A TextWindow object
can be handled through a Text* , a Text& , a Win-
dow* and a Window& . Of course, we must be
careful about the potential for confusion. A
TextWindow’s address obtained as a Text* will
not be the same as its address as a Window* .
However, in a RTTI (runtime type information)
environment, information will not have been
lost – only hidden. I think that this preservation
of information is extremely important but not
everyone will agree with me.

Another point that should be remembered is that
only one user provided conversion can be used
in any implicit conversion sequence. It is my
understanding that derived to base conversions
do not count as user defined conversions. They
better not, else the concept of a derived object

 Overload – Issue 8 – June 1995

 Page 32

being a base object is broken – a base object
conversion requiring a user-defined conversion
would not be implicitly available to a derived
object.

Derived to base is a standard conversion,
i.e., not user-defined – Ed.

This rule about user-defined conversions means
that the choice between multiple inheritance and
aggregation with operator conversions provides
different behaviour. Such choices should be
made by the class designer and not just decided
by arbitrary coding rules that outlaw multiple
inheritance.

It seems to me that the multiple inheritance route
is much safer for the client programmer. If I have
a Text class and a Window class provided by li-
braries and need a TextWindow then multiple
inheritance is less likely to have hidden surprises
for the inexperienced programmer. Getting user
defined conversions to work is full of surprises
to the extent that it is these that should be con-
strained by company coding standards. I do not
mean that you should actively seek to use MI,
just that I do not think you should be frightened
to use it to combine disjoint behaviours. Using
MI for overlapping behaviours is a very different
story.

Building interfaces

Experienced class designers have a very differ-
ent view of the world. They regularly separate
interfaces from implementation. They have a
whole toolkit for providing such things as ‘single
interface – multiple implementation’ (pure ABC
based polymorphism), ‘multiple interface – sin-
gle implementation’ (Cheshire Cat based meth-
ods) and ‘type independent interfaces-
implementations’ (template classes). These are
not tools for children. Just as you wouldn’t give
a chisel to a child, you shouldn’t be letting inex-
perienced C++ programmers near much of the
technology available for stable reusable class
hierarchy design. Sorry folks, but you must learn
to crawl before you try to run; a good teacher
will let you get from one stage to the next more
quickly but you still need to develop skill. You
also need to develop the wisdom to know which
tool is appropriate in each circumstance.

When you come to design an interface you have
three routes. First you can do everything from
scratch and then implement it. This does not

seem to be an appropriate route for those who
want to increase reuse of code and design.

The second choice is to build your new interface
from your collection of interface fragments. This
has the advantage that you are reusing earlier
interface designs but it is hard to build on exist-
ing implementations. For example:
class ABC1 { // specification of an
 // abstract base class
};
class ABC2 { // specification of an
 // abstract base class
};
class ABC3 { // specification of an
 // abstract base class
};
class Interface
: public ABC1,
 public ABC2,
 public ABC3 {
// added interface elements
};

Now you must provide one or more implementa-
tions via concrete classes derived from the Inter-
face. Because of the multiple inheritance every
one of the derived versions can be handled as
any of the abstract base types. But you do not get
reusable polymorphic behaviour of the ABCn
classes when you use them for building different
interface classes.

We could produce sets of implementations for
each of the primitive abstract ABCn classes.
These could be combined to produce our com-
posite concrete class. The problem with this ap-
proach is that each concrete class will only be
related to the others via a collection of unrelated
abstract base classes. What I want is something
like:
class Concrete1 : public Interface
{ ... };
class Concrete2 : public Interface
{ ... };

to derive a polymorphic hierarchy from Inter-
face. The problem is that I do not get any code
reuse (well I can always use cut and paste – but I
do not consider that code reuse). Can I do any
better?

On to the third approach which is similar to the
second but you fragment the interface by virtual
public inheritance so as to create your final con-
crete class by adding together concrete classes
derived from the abstract derived fragments used
as base classes.Well how about something like:
class ABC1x : virtual public Interface
{ // implement ABC1 };
class ABC1y : virtual public Interface
{ // implement ABC1 };

 Overload – Issue 8 – June 1995

 Page 33

class ABC1z : virtual public Interface
{ // implement ABC1 };
class ABC2x : virtual public Interface
{ // implement ABC2 };
class ABC2y : virtual public Interface
{ // implement ABC2 };
class ABC2z : virtual public Interface
{ // implement ABC2 };
class ABC3x : virtual public Interface
{ // implement ABC3 };
class ABC3y : virtual public Interface
{ // implement ABC3 };
class ABC3z : virtual public Interface
{ // implement ABC3 };

Now you have a whole menu of concrete imple-
mentations that can be used to flesh out the In-
terface as appropriate. Typically you could have:
class Concrete1
: public ABC1x,
 public ABC2z,
 public ABC3y {
// minimum extras
};

Your variations are now all derived from Inter-
face and so provide a polymorphic hierarchy
based on Interface. The trouble is that the im-
plementations of ABCn lexically reuse code in
different interface classes but have to use a spe-
cific virtual base class so each interface hierar-
chy needs its own set of implementation
fragments. What I want is:
template <class T> class ABC1y
: virtual public T {
// an implementation of ABC1
};

So I could write:
class Concrete1
: public ABC1x<Interface>,
 public ABC2z<Interface>,
 public ABC3y<Interface> {
// extras
};

Is this valid C++ code? I have just over-stepped
my knowledge of C++. While the above use of a
template seems perfectly reasonable, I do not
know if templates work that way. I think this is
probably the place to stop this excursion but I
hope that this leaves you with some food for
thought.

Oh, before I forget, my understanding is that
composition of classes by multiple inheritance
from several base classes is called using addin
classes while the method based on fragmenting
an abstract base class into several whose derived
versions can be recombined is a variety of mixin
technology. But maybe you know better. If so I
am sure our esteemed editor would love to pub-
lish.

The Harpist

I’m sure The Harpist’s article will generate a
lot of responses – multiple inheritance and
mixins certainly seem to fire some people up!

As for The Harpist’s use of templates: yes,
the code is valid but some compilers do not
currently allow derivation from a template
formal parameter (inheriting from T in the
above example). Another, similarly powerful
technique that some compilers don’t cur-
rently support is this:

template<class T> class Base
{ ... };
class Derived : public Base<Derived>
{ ... };

I use this technique quite a lot to provide
memory management optimisation for
classes. I’ll write it up one day! – Ed.

‘Individual’ Control Validation in
MFC

by Kenneth Jackson

The motivation

Validation of controls within a dialog using Vis-
ual C++ and the MFC is relatively straight-
forward. This is achieved by use of the Class-
Wizard to add DDV_ (Dialog Data Validation)
functions for the appropriate control to the
CDialog::DoDataExchange() member function
of the CDialog derived class. However, valida-
tion using this method is only performed when
the user presses the OK button.

The question arises: how do you provide valida-
tion on a per control basis? That is, validation as
the user moves away from a control. In many
situations the user does not want to proceed on
through a dialog if some initial data is invalid,
for example, checking the form of an account
number; serial number; reference number; or
name. Taking this a step further it may be neces-
sary to check an entry against a database field.

Stepping towards a Solution

I shall present successive refinements in order to
highlight problems and show their solutions.

Validation

Providing validation within the CDia-
log::DoDataExchange() function is inadequate
in cases where validation is required before the

 Overload – Issue 8 – June 1995

 Page 34

dialog is to be closed. A means of knowing that
the user has moved from the control is required.
This is satisfied by providing a handler for the
EN_KILLFOCUS notification message within
the dialog class. Appropriate Edit Notification
handlers for controls can be added by use of the
ClassWizard.

So far so good. Within the CDia-
log::OnKillFocusControlName() handler we can
either provide the validation or call a function to
provide the validation. In order to access the en-
try within the control we must now use a func-
tion such as CWnd::GetDlgItemText() giving the
ID for the control being interrogated.

Cancelling out of the dialog

What happens if the user presses Cancel? Oh
dear!! At present if the user presses Cancel after
moving to a control for which validation is pro-
vided within the OnKillFocusControlName()
handler the validation will still be performed. To
avoid this it is necessary to know which control
is to gain focus. However, notification handlers
are passed no arguments.

The necessary information is passed to a handler
for WM_KILLFOCUS (if there is one) within the
control class. The one argument to
CWnd::OnKillFocus(Cwnd* pNewWnd), the
CWnd* , is the pointer to the control object which
is to receive focus.

We only need to perform the validation if the
CWnd* passed to the CWnd::OnKillFocus() han-
dler is not the address of the Cancel button. This
can be done by calling CWnd::GetDlgCtrlID() to
determine the control ID and compare it with
IDCANCEL. In order to provide a
CWnd::OnKillFocus() handler for each control
we need to add control objects for each of these
controls to the dialog. The ClassWizard can be
used to add CEdit control objects to the dialog,
for the edit controls. In the case of the edit con-
trols it is necessary to derive a class from the
standard CEdit control in order to add function-
ality to a message handler. The ClassWizard can
be used to create a new control class, call it
CMyEdit, by deriving a class from the generic
CWnd and then changing the base class from
CWnd to CEdit.

Having added the above mentioned control ob-
jects to the dialog class using the ClassWizard,
the handler CMyEdit::OnKillFocus(CWnd*
pNewWnd) can be used to set a boolean value

within the dialog (call it m_bCancel) to true if
the pNewWnd is a pointer to the Cancel button.
if(pNewWnd->GetDlgCtrlID() == IDCANCEL)
{
 ((CMyDialog*)Parent)->
 m_bCancel = TRUE;
}

The OnKillFocusControlName() handler can
now use the boolean m_bCancel to determine
whether or not validation has to take place, i.e.,
not on cancel.

Chasing the focus

We are getting there slowly! Now we can pro-
vide the validation if the cancel button is not
pressed. But what about using the system menu
to close the dialog window? From what we have
so far this would result in validation being per-
formed, whereas from a user’s point of view we
would more typically expect this to have the
same effect as pressing Cancel. Arguably a dia-
log of the type we are trying to develop should
have limited exit points, namely only OK and
Cancel. If we were to restrict the exit points then
the problem does not arise, i.e., simply turn off
the system menu in the AppStudio for the dialog
resource. The alternative is to trap the
WM_SYSCOMMAND in order to provide a han-
dler to set the boolean m_bCancel. The former
approach I feel is cleaner, but that is a personal
opinion and there may be occasions requiring the
system menu.

Having provided validation on an edit control
what do we do if the validation fails? This is the
point where the problems start! A message box
could be used to convey to the user some suit-
able comment. However, where do we want fo-
cus to rest after the message box dialog has
closed? Even worse is that we cannot initiate the
message box from within the EN_KILLFOCUS
handler where we currently have the validation.
Shifting focus in the middle of shifting focus can
have some interesting results – try it!!!

Have we put the validation in the correct place?
Is there a better way of doing things? The an-
swers to these questions are not easy but, put
simply, we could attempt to place the validation
somewhere else but the same sort of problem
arises. It is possible to perform all sorts of cos-
metic rearrangements but one will still be left
with the same dilemma: how to inform the user
of the validation failure and successfully transfer
focus back to the offending control.

 Overload – Issue 8 – June 1995

 Page 35

Register a new message

The solution is in providing one’s own message,
and thereby a message handler, such that the
user initiated change of focus can be completed
successfully before displaying error message.
const UINT NEAR WM_FAILEDVALIDATION =
 RegisterWindowMessage(
 "Failed Validation");

Within the OnKillFocusControlName() handler
the WM_FAILEDVALIDATION message can
now be posted to the dialog itself. Simply:
PostMessage(WM_FAILEDVALIDATION);

An entry must be added manually to the message
map, namely:
ON_REGISTERED_MESSAGE(
 WM_FAILEDVALIDATION,
 OnFailedValidation)

This can be added between the Wizard comment
markers and the resulting message/handler asso-
ciation will be shown by the ClassWizard. For
further details on the above see MFC Tech Note
6.

Handling the failure

The message handler OnFailedValida-
tion(WPARAM, LPARAM) can now be provided.
This message handler should first move the fo-
cus back to the offending control before a mes-
sage box is displayed informing the user of the
error. The HWND of the offending control can
be passed within the WPARAM of the
WM_FAILEDVALIDATION message. Thus we
can now write something like:
LRESULT CPenDialog::OnFailedValidation(
WPARAM wp, LPARAM)
{
 if(wp)
 {
 ::SetFocus(HWND(wp));
 MessageBox("Number to big",
 "Failed Validation",

 MB_OK|MB_ICONINFORMATION);

 }
 return 1;
}

If it is necessary to distinguish between different
validation failures the LPARAM can be used to
pass some additional information to be selected
upon.

Focus revisited

Unfortunately there are still two further prob-
lems regarding the moving of focus! One relates
to the shifting of focus to another application

and the second that displaying the message box
causes a second call to the OnKillFocusCon-
trolName() notification handler and a further
attempt at validation!

The first can be resolved by testing to determine
if focus is shifted to another application within
the edit controls OnKillFocus() handler, such as:
void CMyEdit::OnKillFocus(
 CWnd* pNewWnd)
{
 // TODO: Add your message handler
 // code here
 CWnd* pMainWnd = AfxGetMainWnd();
 CWnd* pWnd = pNewWnd;

 while(pWnd && (pWnd != pMainWnd))
 pWnd = pWnd->GetParent();
 if(pNewWnd->GetDlgCtrlID() ==
 IDCANCEL || !pWnd)
 {
 ((CPenDialog*)Parent)->
 m_bCancel = TRUE;
 }
 CEdit::OnKillFocus(pNewWnd);
}

The above code now tests that the window, to
which the handler is passed a pointer, is a win-
dow within the current application. This is
achieved by stepping back through its parents to
see if it matches the current applications main
window pointer. If not, then pWnd will be
NULL.

The second problem can be resolved by adding a
boolean flag to the dialog class, call it
m_bFailedValidation, which is tested within the
OnKillFocusControlName() handler before do-
ing any work. This flag is initially set to FALSE
within the constructor. If the flag is set to TRUE
then do nothing otherwise perform the valida-
tion. If the validation fails then set the flag to
TRUE, then reset the flag to FALSE after dis-
playing the MessageBox within the OnFailed-
Validation() handler.

Conclusion

Whilst providing validation on a per control ba-
sis is possible it is certainly non-trivial. I have
presented ‘a’ solution to the problem, however I
am sure that it is capable of refinement.

The quest for a solution to this problem arose out
of a client’s question about this. At first I
thought there must be a straight-forward way of
achieving this, but was then told that they had
spent a considerable amount of time trying to
resolve it before giving up!

 Overload – Issue 8 – June 1995

 Page 36

An interesting point to note is that OWL2.0
which comes with Borland C++ 4.x supports
validation on an individual edit control basis.
From the developers’ point of view it is simply a
matter of adding a validator object to the TEdit
control. Validator objects being objects of a
class derived from the TValidator class. There
are various predefined classes of validator, but
one can derive one’s own. The advantage which
OWL2.0 has is that the functionality for this
form of validation is built into the class library,
that is, there is functionality for validation built
into the TWindow and TEdit classes. From the
developers’ point of view the whole mechanism
is totally transparent.

Unfortunately with the MFC if you want indi-
vidual control validation you will have to resort
to adding the sort of code I have indicated.

Kenneth Jackson

kpjackson@cix.compulink.co.uk

From polymorphism to
garbage collection
by Bryan Scattergood

The use of virtual methods in C++ allows us to
exploit late binding, but only at a price. Dynamic
binding is only possible through a pointer (or
reference) to a base class. Arguments for which
this polymorphism is to be exploited must be
passed by reference or pointer to prevent slicing.
However, while pass by reference works well for
arguments, it does not work well for return val-
ues. The only way in which a function can return
such a value by reference is to construct the
value on the heap, and in this case it is more
natural to return a pointer to indicate that the
value must be deleted by the caller.

The end result of returning such values as simple
pointers is a program with calls to delete spread
through it and which almost certainly contains
errors in its memory allocation. For example, if
we are using Shape as an abstract base class it is
all too easy to produce code like:
class Shape
{
public:
 virtual Number area() const = 0;
};

class Circle : public Shape
{
public:
 Circle(Number x)

 { r = x; }
 Number area() const
 { return pi * r * r; }
private:
 Number r;
};

Shape* f()
{ return new Circle(1); }

which can leak memory unless care is taken. For
example, consider
Number g()
{
 Shape* s = f();
 Number a = s->area();
 // didn’t call delete - disaster!
 return a * 2;
}

In a large program, such leaks are almost un-
avoidable when pointers are used in this way.
The only way of avoiding the problem is to out-
law returning pointers into the heap (which
makes f difficult to write) or to make sure that
the storage is freed automatically.

Basic pointers

What is needed is a smarter pointer which can
delete the object pointed to when it is no longer
required. Templates and some of the newer lan-
guage features provide the facilities needed to
encapsulate a pointer. The minimal implementa-
tion is:
template<class T> BasicPointer
{
public:
 BasicPointer(T* x)
 : ptr(x) { }
 ~BasicPointer()
 { delete ptr; }
 T& operator*() const
 { return *ptr; }
 T* operator->() const
 { return ptr; }
private:
 T* ptr;
 // Suppress the default versions
 BasicPointer(const

 BasicPointer<T>&);

 const BasicPointer<T>& operator=(
 const BasicPointer<T>&);
};

where we must suppress the copy constructor
and assignment operator since the default mem-
berwise versions will result in erroneous calls to
delete. This class is useful in itself, since we can
write
BasicPointer<Shape> p(f()));

and be sure that the destructor will be called
when the pointer p goes out of scope. Note that it
is not possible to write this as

 Overload – Issue 8 – June 1995

 Page 37

BasicPointer<Shape> p = f();

since this is equivalent to
BasicPointer<Shape> p(
 BasicPointer<Shape>(f()));

and the copy constructor call involved in the ini-
tialisation of p is not accessible, even though
many compilers can optimise the call away.

Adding a copy constructor

We need to provide a working copy constructor
if the class is to be of practical use; this would
allow functions to return smart pointers. The
basic problem is that the default implementation
of the copy constructor results in multiple calls
to delete for a single allocation. This can be pre-
vented in two ways; the copy constructor can
produce a new object to which the copy can
point, or the existing object must be shared and
deleted only when all active pointers have been
destroyed. The first approach can be coded as
template<class T>
BasicPointer<T>::BasicPointer(
 const BasicPointer<T>& x)
: ptr(x->clone()) { }

where the class T must provide a clone opera-
tion. It is not sufficient to write
template<class T>
BasicPointer<T>::BasicPointer(
 const BasicPointer& x)
: ptr(new T(x)) { }

since T may well be an abstract class.

However, this deep copying is not compatible
with the behaviour of a traditional pointer since
those are copied shallowly. The other alternative
is more promising; all we need is a simple count
of how many times a given object is pointed to;
when the count reaches zero, the object can be
destroyed. If the count and its manipulation is
delegated to the object pointed to, a suitable
definition of Pointer is given by
template<class T>
class Pointer
{
public:
 Pointer(T* x)
 { set(x); }
 ~Pointer()
 { clr(); }
 Pointer(const Pointer& x)
 { set(x.ptr); }
 const Pointer& operator=(
 const Pointer& x)
 {
 if(this != &x)
 {
 clr();
 set(x.ptr);

 }
 return *this;
 }
 T& operator*() const
 { return *ptr; }
 T* operator->() const
 { return ptr; }
 int null() const
 { return ptr == 0; }
private:
 T* ptr;
 void set(T* x)
 { ptr = x; if (ptr) ptr->inc(); }
 void clr()
 { if (ptr) ptr->dec(); ptr = 0; }
};

The set method connects the simple pointer to
the underlying object while the clr method
breaks the connection. Given these, the construc-
tors, destructor and assignment operation are
comparatively simple. (Exercise: Convince your-
self that the test in the assignment operation is
sufficient to avoid aliasing problems and prema-
ture deletion.) Not only does this give the ex-
pected pointer semantics, it also avoid the
potentially expensive clone operations. We can
then rewrite the problematic functions given ear-
lier as
Pointer<Shape> f()
{ return new Circle(1); }
Number g()
{ return f()->area() * 2; }

and be sure that the storage allocated will be
freed as soon as it is no longer required (in this
case during the destruction of the temporary at
the end of g.) No increment, decrement or arith-
metic operations are provided for Pointer, nor is
a direct conversion to a simple pointer available;
the former are not sensible since the pointer is
expected to refer to a single, dynamically allo-
cated value and the latter is too dangerous.

Counter as a class

We now consider the inc and dec methods which
T must provide if we are to form Pointer<T>.
The object pointed to is expected to come into
existence with no smart pointers connected to it
and to maintain an internal count which is modi-
fied by these two methods. When the count
reaches zero from above, the object is allowed to
deallocate itself. These basic properties can all
be captured in a single class
class Counter
{
public:
 Counter()
 { count = 0; }
 virtual ~Counter()
 { assert(count == 0); }
 void inc()

 Overload – Issue 8 – June 1995

 Page 38

 { ++count; }
 void dec()
 {
 if(--count == 0)
 // need the virtual destructor
 delete this;
 }
private:
 int count;
};

This simple class can then be used as a mixin.
For example, if we are exploiting polymorphism
through pointers to the abstract base class Shape,
then we might have
class Shape : public Counter
{
public:
 virtual Number area() const = 0;
};

and it is then reasonable to form
Pointer<Shape>.

Efficiency

An obvious question is how expensive these
smart pointers are in comparison to traditional
pointers. In terms of speed, the inc and dec op-
erations are called frequently in typical applica-
tions and often need to be inlined to be effective.
In terms of space, all objects which can poten-
tially be pointed to are increased in size by the
storage needed for the counter and possibly by
the space needed to store the vptr for the virtual
destructor. Typically this last cost can be ignored
since a base class used to exploit polymorphism
should already have virtual methods (including a
virtual destructor). In practice, the reduction in
memory leaks in programs using these two
classes more than covers the time and space
overheads.

Counter and const

The implementation for Counter given above is
not quite sufficient. If we attempt to form
Pointer<const Shape> to replace const Shape* ,
then we find that the inc and dec methods cannot
be called for a constant object; it is necessary to
modify them to:
void Counter::inc() const
{ ++(((Counter*) this)->count); }
void Counter::dec() const
{
 if(--(((Counter*) this)->count)
 == 0)
 delete (Counter*) this;
}

or to the corresponding construct using the new
const_cast notation. Conceptually, modifying

the count maintained in the object does not mod-
ify an observable property of the object, so the
methods which do so can be const.

Other applications

Although the Pointer and Counter classes were
produced to help support the use of polymor-
phism, they can also be used to encapsulate
memory management in many other circum-
stances. For example, consider the construction
of a singly linked list, modelled on those found
in Lisp. Such lists are built from the empty list
(which is returned by the default constructor) by
adding elements to the front of the list using the
cons operation. The operation null indicates if a
list is empty, and if not it can be split into the
first element and the remainder of the list using
car and cdr respectively.
template<class T> class List
{
 struct Node : public Counter
 {
 T data;
 Pointer<Node> next;
 Node(const T& d,
 const Pointer<Node>& n)
 : data(d), next(n) { }
 };
 Pointer<Node> ptr;
 List(Node* x)
 : ptr(x) { }
 List(const Pointer<Node>& x)
 : ptr(x) { }
public:
 // Default assignment operation
 // and copy constructor are
 // acceptable.
 List()
 : ptr(0) { }
 friend List cons(const T& x,
 const List& y)
 {
 return List(new Node(x, y.ptr));
 }

 int null() const

 { return ptr.null(); }
 T car() const
 { return ptr->data; }
 List cdr() const
 { return List(ptr->next); }
};

In less than forty lines of code, this is sufficient
to provide the basic expressive power of Lisp
lists in C++. Lists are automatically deallocated
when they are no longer needed, even though
there are no explicit calls to a destructor in the
class. (Exercise: Is the default destructor for
Node acceptable? Is it virtual ?) The traditional
definition of list length can be written directly in
C++ as
template<class T>
int length(const List<T>& x)

 Overload – Issue 8 – June 1995

 Page 39

{ return x.null() ? 0 : 1 +
 length(x.cdr()); }

or, avoiding the recursion
template<class T> int length(const
List<T>& x)
{
 int n = 0;
 for (List<T> i = x;
 !i.null();
 i = i.cdr())
 ++n;
 return n;
}

Of course the implementation using Pointer and
Counter is less efficient than a more direct en-
coding of singly-linked lists. For example, we
pay the space and time overhead of a virtual de-
structor for Node which could be avoided. Nev-
ertheless, the gain in readability (and
confidence) over a more direct implementation
may be worth the increased cost.

Unresolved problems

There is one minor problem with the pointers
presented here; there is no automatic conversion
from type Pointer<T> to type Pointer<const T>
which mimics the natural conversion from T* to
const T* . The obvious conversion function:
Pointer<T>::operator
 Pointer<const T>() const
{ return Pointer<const T>(ptr); }

works well for non-constant types, but when de-
fining Pointer<const T> my main compiler
(Watcom) complains that a user-defined conver-
sion cannot return its own class. This seems rea-
sonable, but if this is true it is unclear how I can
allow the conversion. Solutions are invited.

Summary

The problems caused by the fact that polymor-
phism needs pointers or references have been
circumvented by using two small classes exploit-
ing templates, mixins and a virtual destructor.
These classes have other uses; they implement a
simple (shallow) garbage-collection strategy
which should be adequate for any acyclic data-
structure.

Bryan Scattergood

bryan@fsel.com

The C++ standards committees have consid-
ered adding some sort of reference-counted
smart pointer to the standard library but so
far there has not been sufficient support for

this (or rather insufficient agreement on the
exact details).

I’d like everyone to study Bryan’s code care-
fully and see where you feel you might
change things. Two questions which I’ll ask
to start you off are related to const-
correctness and intrusiveness:

1. Is the equivalent to const T* a
Pointer<const T> or a const
Pointer<T>? Why? What does the other
form mean and how well does it work?

2. Can you have smart pointers to library
classes? If not, why not? How would you
deal with this issue?

I look forward to your responses – Ed.

A “too-many-objects” lesson
by Peter Wippell

It was great to see articles on program structure
in the last Overload. Help is short in this area,
which is a pity because it is a major hurdle in
learning OOP. My response here is just to sug-
gest a more straightforward approach to Roger
Lever’s article, “On not mixing it...”, where a
hierarchy of output management classes is cre-
ated, which is then implemented in terms of ex-
isting stream library classes. Surely the stream
library is complicated enough without introduc-
ing another layer of classes! Anyway it should
be capable of meeting the requirement directly.

An alternative

My proposed main function doesn’t use any new
i/o classes and goes like this:
int main()
{
// create a file and printer object
 ofstream file(“junk.txt”),
 printer(“PRN”);
// make a general device reference
// which can point to any device
// including cout
 ostream& device = file;
// declare record objects and send
// them to the chosen device
 Record r;
 ExtendedRecord rr;
 device << r << rr << endl;
}

The ExtendedRecord class has a Number field in
addition to the Record’s string field and inherits
a virtual function write(), which is called poly-
morphically from ostream& opera-
tor<<(ostream&, Record&) . I thought this idea

 Overload – Issue 8 – June 1995

 Page 40

was original until I read Francis’s latest article in
EXE yesterday!

If required, extra screen handling capability
could be obtained by deriving a constream class
from ofstream and Borland provide such a class
to show you how. Similarly, I have added some
extra printer control, by deriving a new Printer
class:
class Printer : public ofstream
{
public:
 Printer() : ofstream(“LPT1”)
 { if (0x90 != biosprint(2,0,0))
 cerr <<
 “Cannot access printer.\n”;
 }
};

And given it underline capability with a parame-
terless manipulator:
ostream& set_underline(ostream& os)
{
 if (dynamic_cast<Printer*> (&os))
 {
 os << UNDERLINE_ESCAPE_CODE
 << 1;
 }
 return os;
}

Surprisingly, the file descriptor seems not to be
available to users of ofstream. It’s protected. So
the Printer class had to be invented to make sure
that escape codes aren’t sent to devices other
than printers.

Two points of detail

I had to use the BIOS to check printer status. The
condition, if (! printer), which some books sug-
gest, doesn’t seem to work on my PC. I find that
sorting out this sort of problem, can waste a lot
of time, especially when you try to be too clever
with the stream library!

The draft ISO C++ string class is more appropri-
ate for a record field than a strstream. A pitfall
of strstream is that every time you call char*
strstream::str(), as is done in the article, memory
is allocated using new. So, if you don’t want
memory leaks, you must delete the resulting
char* when you have finished with it.

I have supplied the complete code in case any-
one wants to improve it.

Peter Wippell

The code will be on the next CVu disk and
will be available on Demon for ftp shortly af-
ter – Ed.

Stop press! Just as Overload was going to
press, Peter supplied a revised version of his
article which tackles the problem of access-
ing the file descriptor in an interesting man-
ner – I will feature that in Overload 9.

editor << letters;
Hi Sean,

I moved at the end of Dec ‘94. I informed Fran-
cis but obviously failed to get the new address
into the Overload address database. I discovered
issue 7 after going over to the old address and
scrabbling through a pile of old mail for previous
tenants that the new tenants hadn’t forwarded!

Well done; after spending around two hours
reading through it, I’m glad I did. Some thought
provoking stuff. And thanks.

Warm regards,

Fazl Rahman

fazl@hadronic.demon.co.uk

I’m glad you enjoyed Overload 7 – I
hope Overload 8 finds its way to you
more directly!

Dear Sean,

My tuppennyworth on Francis’s “polymorphic
objects” – isn’t a circle just an ellipse with the
eccentricity attribute set to 1 (or whatever the
proper value is)?

Regards,

Ian Horwill

ian@horwill.demon.co.uk

If you fix an attribute of the base class
inside a derived class then any opera-
tions that change that attribute will not
accept an object of the derived class in
place of an object of the base class – one
of the basic premises of the “is-a” rela-
tionship. See Kevlin Henney’s article in
this issue.

 Overload – Issue 8 – June 1995

 Page 41

The following two letters follow on from
Dave Midgley’s letter in Overload 7 and are
extracted from email conversations – hence
my answers are interspersed – Ed.

Sean,

Dave Midgley’s letter in Overload 7, and your
reply, show why something along the lines of
‘public readonly:’ would be a popular addition
to the language. However, in the absence of this,
something similar may be achieved using mac-
ros:
#define READONLY(Type, Name)
 \
 public: \
 const Type& Name() const \
 { return m_ ## Name; } \
 private: \
 Type m_ ## Name
#define READWRITE(Type, Name) \
 public: \
 const Type& Name() const \
 { return m_ ## Name ; } \
 Type& Name() \
 { return m_ ## Name; } \
 private: \
 Type m_ ## Name

class TestClass
{
 READONLY (int, ReadOnly) ;
 READWRITE (int, ReadWrite) ;
};

void CMainDialog::OnClickedButton1()
{
 TestClass TC;
 int x = TC.ReadOnly();
 int y = TC.ReadWrite();

 TC.ReadOnly () = x; // Error
 TC.ReadWrite () = y;

// Demonstrates member access on
// a const object
 const TestClass& TC2 = TC;
 y = TC2.ReadWrite();
 TC2.ReadWrite() = y; // Error

}

A couple of points should be noted about the
macro itself: firstly, I have omitted the final
semi-colon in the macro definition, on the as-
sumption that the user will supply it. Secondly,
the macro is designed to leave the class access
state as private.

For simple types, return of a direct copy may be
more efficient than the const reference, but I
would expect a decent optimiser to be able to
cope with this.

Also note the override on const type of the
READWRITE access functions. This allows one

to read class members of const objects, but only
to write to members of non-const objects.

Unfortunately, if TestClass wishes to modify its
ReadOnly member, it has to refer to it by its
mangled name (i.e., m_ReadOnly).

Apart from my knee-jerk reaction
(“don’t use macros”) this is quite a neat
idea.

Find me a template solution, and I’d be more
than happy. Actually, find me any solution ex-
cluding macros. PLEASE!

[On always leaving the access in state
private] Hmm, liveable I guess.

Well, the alternative was leaving access public.
My personal preference is to keep access re-
stricted unless loosened. This matches Bjarne’s
‘private by default’ of class, as opposed to the
‘public by default’ of struct.

Part of what I’d like (I don’t demand) would be a
meta-language, such that one could loop over all
members calling their serialisation functions, for
instance. I don’t know what the language would
be, but I don’t think it could be called C++ any
more.

[On using the mangled name in member
functions] Perhaps a
DECLARE_READONLY macro (to re-
place READONLY above) and a new
READONLY macro that just glues m_ on
the front?

What I was trying to do was define a member
that need only be accessed using accessor func-
tions, with a sensible name thereof.

My first solution for READONLY had a private
member function returning a non-const reference
(i.e., the same one as available in the
READWRITE macro, but private). Unfortu-
nately, of course, it tends to hide the public one
returning the const reference when dealing with
non-const objects.

Once I’d been forced into using another name, I
decided that the internal use of the member’s
real name was no worse than a SetMember pri-
vate function. YMMV.

Alan Bellingham

alan@doughnut.demon.co.uk

“Be prepared. Always carry a rose bush.”

 Overload – Issue 8 – June 1995

 Page 42

I include Alan’s .sig because it appeals
to my sense of humour.

Dear Sean,

I just received the April issue of Overload. On
pages 34 to 35, Dave Midgley asks whether it is
possible to define a member variable which is
private for writing but public for reading. It can
be done by means of a public const reference as
shown in the example below, taken from Dave’s
letter and modified:
class fred
{
public:
 fred(int x)
 : readOnlyAttribute(privNum),
 // initializing the reference
 privNum(x) { }
 void changeAttribute(int z)
 { privNum = z; }
 const int& readOnlyAttribute;
private:
 int privNum;
};

fred aFred(100);
cout << aFred.readOnlyAttribute
 << endl; // reading works!
aFred.readOnlyAttribute = 0; // error!
 // writing doesn't!
 // (const!)
aFred.changeAttribute(88); // change
 // with method works

I admit that this approach is not very elegant. An
inline-function is normally better in all cases,
where possibly a computation shall be added
later. It is easy to change a function, but it is not
easy to change all locations where the variable is
used.

Yours is one of the more elegant solu-
tions I received, although it still has the
problem that the external name doesn’t
match the internal name.

This is not a real problem. The external name
has to be chosen carefully, and the internal name
can’t be seen anyway by users of the class.

The resemblance of both names is important
only for the class developer. For such cases I
prefer the underscore-notation which is used by
Myers, Gamma et al.

However, in the example I sent to you I wanted
to express the attribute properties “read-only”
and “private” in the names of the variables.

Best regards,

Uli Breymann

uli.breymann@m2tek.north.de

I agree with Uli’s point here: at the end
of the day, the importance of the public
names is user-centric, which should be
the higher priority.

Dear Sean,

Thank you very much for some very stimulating
reading in your Overloads.

Here is a contribution which tries to build on
Roger Lever’s article in the last issue. If accept-
able, I suppose it could be treated as a letter or a
short article.

About your remarks on streams, “Borland C++
Object Oriented Programming” by Ted Faison
gives a number of examples, deriving classes
from parts of the stream library.

My feeling is, however, that use of the stream
library is limited mainly to file i/o, because Dia-
logs, Windows, and customised printer classes
take the place of streams in real modern applica-
tions. String streams, though, are very useful for
formatting output. See Adrian Fagg’s article in
the current CVu. I was concerned to read that
they were being discarded.

All the best,

Peter Wippell

Just to clarify, strstream was deprecated
in Valley Forge (November ‘94) which
means that it remains part of draft stan-
dard C++ but might be removed in a fu-
ture revision of the standard. The reason
for deprecating strstream was that
stringstream provides effectively the
same functionality using the standard
string class instead of the error prone
raw char*.

Peter’s article appears elsewhere in this
issue.

 Overload – Issue 8 – June 1995

 Page 43

++puzzle;
In Overload 7, I asked “What is the longest sequence of distinct keywords and reserved words possible in
a valid C++ program?”. Unfortunately, I was completely underwhelmed by responses so no-one wins the
prize (and I’m not even going to tell you what you missed out on).

Anyway, here’s a program containing the longest sequence that I know of:
// keywords.cc lastmod 12 Nov 94 SAC
// created 11 Nov 94 SAC
//
// copyright: (c) 1994 Jonathan Caves, Sean Corfiel d, Fergus Henderson,
// Mats Henricson, Steve Rumsby, Erwin Unruh
//
// purpose: to write a valid C++ program containing the longest sequence
// of unique keywords/reserved words
//
// history:
// 12 Nov 94 SAC Added comments and tidied up the code
// 11 Nov 94 SAC Initial 25 keyword version
// 11 Nov 94 ---
// Started with:
// explicit virtual inline operator const volatile unsigned long int*();
// Realised you could use bitand to replace * (i.e. , change pointer to a
// reference type) and took it from there...

#include <iostream.h>
#include "keywords.h" // overloaded operator de finitions

struct X {
 int f()

 {

 if(0)
 return 0;

// --------------- all these *really* are keywords! ---------------
 else do return throw sizeof
 true bitor compl not new
 const volatile unsigned short int
 not_eq false and bitand operator
 and_eq or_eq this or static_cast

 <B&>(b), 0;
 while (1);
 }
};

int main() {
 try {
 X x;
 x.f();
 } catch (int) {
 cout << "Hello world!\n";
 }
 return 0;
}

I’ll leave the contents of keywords.h as an exercise for the reader!

Hopefully, Overload 9 will see the return of the Questions & Answers section unless, of course, you no
longer have any holes in your C++ knowledge...

Sean A. Corfield
sean@corf.demon.co.uk

 Overload – Issue 8 – June 1995

 Page 44

Books and Journals
Forthcoming reviews will include “Taligent’s Guide To Designing Programs”, Barton & Nackman’s “Sci-
entific and Engineering C++” and in Overload 9, “Design Patterns” by Gamma, Helm, Johnsson & Vlis-
sides. If any C++ experts want to get involved with in-depth reviews of books old or new, please drop me
a line.

Writing “Industrial Strength
C++”

by Mats Henricson

I asked Mats Henricson and Erik Nyquist –
authors of the forthcoming book “Industrial
Strength C++” – to write about how the book
came to be written and what is involved in
writing a “public” coding standard. This ar-
ticle was their response – Ed.

Background

In early 1990, C++ was chosen as the implemen-
tation language for a huge telecom project at
Ellemtel Telecom Systems Labs in Stockholm.
Ada was rejected since it wasn’t object-oriented,
and Eiffel fell through for commercial reasons.
A small group of people was formed to discuss
general C++ issues. The first task for the group
was to review and improve a first version of a
programming standard. The result was a com-
pletely new document that Erik and I maintained.

Then, in 1991, there was a discussion about pro-
gramming standards in the newsgroup
comp.lang.c++ . I wrote a message describing
the structure of our document. Suddenly I got an
email from Bjarne Stroustrup asking if he could
have a look at the document. The fact that it was
written in Swedish was no problem to him, since
Danish is close enough to Swedish. I got cold
feet and had to ask around for advice within the
company. After some lobbying by Erik and I, the
document was put into the public domain.
Shortly after, it was translated into English by a
consultant, Joseph Supanich, and put up for
anonymous ftp.

Why was it so successful?

This document spread like wildfire across the
world, and I still get several emails a week from
people asking for new versions or other ques-
tions. I have a list from August last year with
names of companies or organizations that I know

have the document. It lists 35 universities, 4
banks, 18 laboratories and 89 other companies.

Many people know how hard it can be to write a
company wide programming standard for a lan-
guage as complex as C++. Instead of endless
internal debates they could just pick something
for free from the net. The copyright notice gave
people the option to edit the document as long as
the original copyright notice was intact. This
way they could, with only a small amount of ed-
iting, get something that was good enough.

The second reason was probably that we explic-
itly listed all the guidelines instead of having
them somewhere in a block of text, entangled
with discussions and code examples. Another
reason was probably that we differentiated be-
tween rules and recommendations (R&R). Eve-
ryone should follow the rules, while the
recommendations were more “good ideas” that
should be followed unless there is a good reason
not to.

The document eventually ended up at Prentice
Hall and we got an email asking if we would like
to rewrite it as a book. We accepted without
really having any idea of the implications. Now,
more than two years later, when it seems like we
are actually pretty close to wrapping the whole
thing up, it is time to try to find out why it has
taken us such long time.

It is a constantly changing C++ world

C++ has changed in many ways during the last
couple of years, which has been problematic for
us. What was previously looked upon with sus-
picion is now widely accepted, like multiple in-
heritance. We have constantly changed our
minds in quite a few areas, while others are so
new that hardly any experience exists anywhere
(e.g., RTTI and namespaces). We have often
been worried because we haven’t had many
R&R for templates but how do you find good
R&R without considerable experience?

Areas like mixin-programming, OO design pat-
terns and the STL library have given a new twist

 Overload – Issue 8 – June 1995

 Page 45

to our view of the world. We previously had a
recommendation saying that virtual inheritance
should be avoided but practical experience has
shown that it is sometimes the easiest way to
implement a derived class. For more information
on this subject, see “Scientific and Engineering
C++” by Barton & Nackman (Addison Wesley,
ISBN 0-201-53393-6).

To be reviewed in a future Overload – Ed.

Formulating R&R is very hard!

It can sometimes be painfully hard to find the
best possible angle for a rule or recommenda-
tion. For example, which of the following word-
ings are best?

1. Do not modify string literals.

2. Only use const char-pointers to access
string literals.

They basically deal with the same thing, but
from two different view-points. The first points
out that modifying string literals gives you unde-
fined behaviour:
char a[] = "abc";
a[1] = 'x'; // undefined behaviour

The second tells you how you should avoid such
intended changes:
const char a[] = "abc";
a[1] = 'x'; // compile-time error

Unfortunately you can cast away const anyway:
((char*)a)[1] = 'x'; // not a word
 // from the compiler!!

Another problem has been whether or not we
should just list the base R&R and avoid all cor-
ollaries. A rule saying that you should avoid all
undefined, unspecified and implementation-
defined parts of C++ makes sense for portability
reasons. Unfortunately such a large rule makes
all other R&R in this area completely unneces-
sary, which is not very wise since many of these
issues need to be warned about explicitly (e.g.,
do not depend on the order of evaluation of ar-
guments to a function).

Sometimes it is very difficult to define the words
necessary for formulating a R&R. We have this
recommendation:

Before throwing an exception from a
member function, make certain that the
class invariant holds and, if possible,
leave the state of the object unchanged.

The problem here is that it is painfully hard to
find rock solid definitions of the words “state”
and “invariant”. We can be pretty sure that our
definitions will not be the same as other authors’
definitions.

What is the best structure for the
book?

The problem we have wrestled with most is how
to structure the book. In the beginning, we had
grandiose ideas of a chronological structure that
would begin with R&R on analysis and design
and end up with stuff on testing. Unfortunately
neither Erik nor I am experts on OO testing, nor
OOA/OOD for that matter. I can tell you that it
was with considerable unease I started to write
about testing! So, we decided to settle for areas
we knew well, i.e., the language C++ itself. It
will, for example, not contain anything about
testing, code reviews, OOA/OOD or metrics.

After reading the book “Safer C” by Dr Les Hat-
ton (McGraw-Hill, ISBN 0-07-707640-0) I got
carried away by finding out that the international
standard ISO 9126 defined six aspects of soft-
ware quality that seemed to fit pretty well with
our current structure of the book:

1. Functionality

2. Reliability

3. Usability

4. Efficiency

5. Maintainability

6. Portability

The problem was that “pretty well” was not good
enough. Another problem was that it seemed like
most rules would go into chapters 2 and 3, while
chapters 1 and 4 would be pretty empty, which
makes a rather strange structure!

“Safer C” also made me browse through ISO
9000-3, ISO 9001, ISO 9126, “The Capability
Maturity Model” (CMM) and other standards or
pseudo-standards in a fruitless and disappointing
search for a description of what a programming
standard should contain. The only thing we
found out was that it seems that the issues of
programming style should not be a part of the
main standard. Our approach will be to put sty-
listic issues in an appendix. However, “Safer C”
did not give us a good definition of “style” – a

 Overload – Issue 8 – June 1995

 Page 46

fact that every now and then throws me and Erik
into long discussions.

R&R must follow guidelines

R&R must not only warn against blatant bugs,
but also stop people from doing dangerous stuff,
even if it is sometimes valid, e.g.,

A concrete class should not inherit from
another concrete class.

Should it always be possible to check R&R with
a tool like Programming Research’s QA C++?
Well, we would like to, but the world is a bit too
complicated. Unfortunately it seems that rules
that cannot be checked by a tool are followed
much less often than checkable rules (see “Safer
C”). We have chosen to use the same criteria as
the public domain document for deciding be-
tween making something a rule or recommenda-
tion.

R&R should basically be valid both for rookies
and experts at the same time. This is sometimes
mind-bogglingly difficult to fulfill. Most pro-
grammers should not have to deal with virtual
inheritance, virtual assignment operators or
pragmas, but how can you ban such dangerous
features when some people need them badly?
Lengthy discussions and descriptions are needed
in many cases to make sure the reader is aware
of the problems with special features.

Another problem is that R&R should be valid
and relevant for programming on all possible
platforms. Banning all extensions to C++ for
portability reasons would stop __huge for
DOS/Windows programming, which would be
fatal since Windows programmers will probably
be the vast majority of the customers of the
book. Banning signal handling makes sense for a

completely portable UNIX application, but there
are no signals on Windows!

R&R may be perfectly valid but still not make it
into the book since they are just too obscure for
most programmers. Like banning the use of bit-
fields, which makes good sense, but most pro-
grammers would never dream of using them.
That is why we don’t have such a recommenda-
tion. A 500 page long C++ standard would never
be used.

Something that has given us a lot of headache is
the problem of finding good examples for de-
scribing particular rules or recommendations. Do
we really know what we are talking about if we
cannot produce anything but a completely patho-
logical example? Will readers just swallow and
digest text without code examples?

Finally, the fact that there are two of us working
on this project has delayed it a lot. It would have
been published a long time ago had it been writ-
ten by just Erik or just me, but the quality would
not have been as good. By having two authors
we stop each other from going astray into some-
thing that is either not particularly fruitful or
important. We also believe that the set of R&R
in the book are so carefully worded after endless
iterations that they should be as bullet-proof as
anything gets in this world.

Mats Henricson

mats.henricson@eua.ericsson.se

Erik Nyquist

erny@enea.se

You can be sure that when “Industrial
Strength C++” is finally available, it will be
reviewed here! – Ed.

Vendor Focus
In this issue, I turn the spotlight on a C++ compiler-writer. If you’d like to see a particular vendor under
the spotlight – especially if you are willing to conduct a virtual interview – let me know.

Edison Design Group
a virtual interview by Sean A. Corfield

Edison Design Group is a small American com-
pany that is big “behind the scenes” in the C++
world. They write compiler front-ends for many
well-known companies. This article is adapted

from an email interview conducted with Steve
Adamczyk.

Steve founded Edison Design Group in 1988
with a partner who left about a year later. They
currently have three staff: Steve, Mike Ander-
son, and John Spicer.

 Overload – Issue 8 – June 1995

 Page 47

Can you tell me a bit about yourselves?

The three of us met at a company called Axxess
Information Systems back in 1982. John and
Mike were working there, and Steve came there
from a company called Advanced Computer
Techniques (ACT). About a year later, Axxess
foundered, and the three of us went (back) to
ACT. ACT was, among other things, a compiler
house, selling compilers to companies like com-
puter manufacturers. Mike left ACT in 1986 and
moved to New Hampshire, going to work for
DEC. Steve left in 1988 and founded EDG, and
John left shortly thereafter and went to work for
AT&T. Mike joined EDG in 1990, and John in
1992.

We have combined programming experience of
about 63 years, an average age of about 42, an
average height of about 6’ 2”, three wives, and
four children (three boys and one girl).

Is it true you all work from home?

Yes, it’s true. At the end of 1989, Steve was
looking to hire someone to help him with devel-
opment of a Fortran front end. Mike was the ob-
vious choice: he and Steve had worked together
previously, on Fortran among other things, and
Mike was at that point working on Fortran at
DEC. The only snag was that Mike was in New
Hampshire and liked it there and therefore was
not going to move back to New Jersey. So Steve
suggested that we try it with Mike working from
his home. What started as an experiment ended
up as our preferred way of doing things. John
and Steve work from their homes in New Jersey,
and Mike from his home in New Hampshire.

That must be pretty different from the aver-
age office – does it cause any problems?

After a bit of practice, it works great. You have
to learn to do your work and your socializing
over the phone and by e-mail, but if you can
adapt to that, this way of working is very con-
venient: there’s no commuting and your sched-
ule can be quite flexible to deal with family
obligations. Of course, the phone bills are large,
but they’re less than the cost of renting an office.

It’s also true, though, that this wouldn’t work
nearly so well if we weren’t good friends too.
Knowing one another’s strengths and not-so-
strengths (surely there are no actual weak-
nesses), having a lot of trust in each other, being

able to communicate honestly and well together
have been a key to making this work.

So why did you start ‘yet another’ compiler
company?

We had been in the compiler business with ACT,
so it’s the business we knew. But we didn’t just
start yet another compiler company; we started a
compiler front end company. We decided we
wanted to stay small and technical, and that sug-
gested that we should pick just one part of the
compiler business and do that as well as we
could. As it turns out, by doing only front ends,
we have made it possible for us to sell to compa-
nies that would ordinarily be thought of as our
competitors, i.e., compiler vendors.

Why front-ends?

If you can do it better than anyone else and make
money at it, why not :-) ? The front end of a
compiler is a nicely separable piece. Doing one
requires a substantial investment in development
time and maintenance, and also a substantial in-
vestment in learning about the language at the
level of detail required to write a front end. Our
customers can get a front end from us, in source
form, for less than they can develop it them-
selves, and we take care of the ongoing updating
of the front end to track the evolving language.
That frees them to concentrate their efforts on
code generators, optimizers, and libraries. A
C++ front end, in particular, is a very large
wheel to reinvent.

Can you name some of your users for the
readers?

There are 30 licensees of our C++ front end. Of
those, we can name Silicon Graphics, Cray Re-
search, Novell/Unix Systems Group, Tartan, The
Portland Group, Kuck & Associates, CenterLine
Software, Siemens Nixdorf, Apogee Software,
Tera Computer, and Visual Edge. Only a few of
our licensees have products out in the field at
this point, but quite a few more will be releasing
products during 1995.

Hmm, plus nearly twenty others – an impres-
sive list! What about the software? Is it all
written in C++?

No, it’s written in ISO C.

 Overload – Issue 8 – June 1995

 Page 48

Why’s that? Surely you need development
experience in C++ to write a good C++ com-
piler?

Well, it is a bit embarrassing, but... We’re really
just C programmers who know a lot about the
C++ language rules.

Our C++ front end is based on a C front end be-
gun in 1988, and adapted into a C++ front end
beginning in 1991. The C front end was written
in C, naturally enough, and it was gradually
changed into the C++ front end, so we lost what-
ever opportunity we might have had to start over
in C++.

We do find we could make use of things like
constructors and destructors, but on the other
hand having the front end in C makes it quite
portable and avoids a bootstrapping step.

What’ve been the hardest C++ features to
implement and why?

Templates have been a challenge, because it’s
hard to do much with a template until you do an
actual instantiation, and yet you want to do cer-
tain things before that to improve error diagno-
sis.

Name lookup issues have also been tricky.

Beyond that, the hardest problems have been
compatibility issues. We provide a mode that
offers fairly complete compatibility with the
AT&T/Unix System Laboratories/Novell cfront,
and it’s been quite an adventure to duplicate
some of cfront’s behaviors.

You picked on name lookup – could you
elaborate on that, please?

We haven’t done namespaces, or template name
binding. There’s plenty to keep one busy in the
other name lookup issues, though. C++ is very
rich in local contexts that change the lookup
rules: A::x, struct x, void A:: f() { ... x ... }, and
so forth. Some of the variations in lookup can
make the difference between a name being a type
and being a nontype, which can have an effect
on how the program is parsed. It gets even more
interesting when you combine these cases with
things like lookahead for disambiguation: you
have to look ahead and recognize the contexts
and modify the symbol table lookup appropri-
ately, but make no permanent changes in the
symbol table, since the the disambiguation scan
is just exploratory.

Since you don’t deal with code generation,
has RTTI had any impact on what you do?

We don’t do code generation, but we have to
make sure that our intermediate language pro-
vides the right information so others can do it.
We also have and use a C-generating back end
for our testing (it allows one to compile C++ to
C), and therefore we have to do some kind of
implementation of every language feature. Ini-
tially, we just followed the cfront implementa-
tions of features. More recently, we’ve gotten
into language features that were never imple-
mented in cfront, and we’ve had to design the
runtime representations for those. RTTI did re-
quire some work, but it wasn’t as bad as, say,
exception handling.

What would you change about C++?

Well, it would be nice if it weren’t such a big
language, but it’s hard to decide what one would
choose to remove. You get used to it. It would
have been helpful, however, if all these features
had been implemented somewhere before being
written into the standard.

What about the library? It’s very large – any
comments on that?

That’s not really much of an issue for us, since
we don’t provide a library. We have been getting
pressure to deliver the language features needed
to write a standard library, so that library devel-
opers can use our front end. We expect to have
those features out in the next few months (i.e.,
mid-1995).

One fear we have is that when programmers start
using complicated template libraries like STL
they’re going to be getting cryptic error mes-
sages when the templates fail to match or instan-
tiate. Simple programmer mistakes are going to
produce pages of error messages from deep in
the bowels of the library headers. We’re doing
what we can to provide clear error messages, but
there’s only so much a front end can do.

My experience with STL bears this out –
compilers need to get a lot more helpful!
EDG’s very involved with the standards proc-
ess – how confident are you about the sched-
ules?

We seem to have misplaced our crystal ball, so
we can’t help you on the schedules. There’s lots
of work that still must be done on the draft to

 Overload – Issue 8 – June 1995

 Page 49

make it a standard. It’s hard to know if that can
be done in time.

Do you have any other comments to make
about the joint ISO / ANSI process?

Of the standards process in general, we’d have to
say that it’s the worst possible way of producing
standards, except for all the others. It does pro-
duce results eventually, and the safeguards built
in help avoid the worst problems. Unfortunately,
they don’t prevent language bloat.

What’s EDG going to do next?

We’d love to be working on some other front
end (we’re coming up on five years on this one),
but for the next year or two it’s clear we’re going
to be working on C++ full time. When we’ve
wrapped this one up to our satisfaction, we’ll see
what the market seems to want.

Presumably there’s only a small number of
people that you can sell a front-end to?

As for the potential number of sales, we keep
being surprised; we would not have predicted
that we could sell 30 licenses, and the C++ mar-
ket shows no signs yet of slowing down. And
we’re just starting to be known on your side of
the Atlantic!

Which for a three man company working
from home is quite an achievement! Than-
kyou for your time.

Steve Adamczyk

jsa@edg.com

Mike Anderson

rma@edg.com

John Spicer

jhs@edg.com

News and Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

Microsoft Ships Visual C++ Ver-
sion 1.52

Introduces OLE and ODBC programming to
entry level C++ developers!

Responding to the tremendous success of Micro-
soft Visual C++ Standard Edition, Microsoft is
upgrading its 16-bit product to Visual C++ de-
velopment system for Windows version 1.52.
Visual C++ version 1.52 adds support for OLE
and ODBC programming through MFC classes
and wizard technology, and will be available for
an estimated retail price of only £66.00 + vat.

“We are excited by the rapidly growing interest
in C++ development for Windows among entry-
level developers,” said Andrew King, European
marketing manager for the Developer Division at
Microsoft. “While the professional community
of developers for Windows is successfully de-
veloping powerful 32 bit Windows-based appli-
cations using Visual C++ 2.0, there is strong
interest among entry-level C++ developers to
learn OLE and ODBC programming using
MFC.”

Features and benefits:

The Visual C++ development system version
1.52 provides the following:

• Support for both Windows and MS-DOS
programming

• Latest Microsoft optimizing 16 bit C and
C++ compiler

• New 16-bit MFC (the industry-standard ap-
plication framework for programming Win-
dows) supporting OLE, ODBC, MAPI,
Windows Sockets, property pages (tabbed
dialogs) and floating toolbars

• More than 20,000 lines of MFC code spe-
cifically to enable easy OLE development

• ODBC database drivers for Microsoft Ac-
cess, Microsoft SQL Server, the FoxPro da-
tabase management system, Paradox,
dBASE, Microsoft Excel and Btrieve.

• The MFC Migration Kit, helping developers
migrate their C code to MFC

• An extensive help system

 Overload – Issue 8 – June 1995

 Page 50

• More than 2,500 pages of printed documen-
tation in the box, including a step by step
C++ tutorial

• Eight of the most popular games from the
Microsoft Windows Entertainment Packs

System requirements:

The system requirements for the Microsoft Vis-
ual C++ development system version 1.52 are:

• An IBM-compatible personal computer run-
ning MS-DOS 5.0 or higher and Microsoft
Windows version 3.1 or higher

• An Intel 80386 or higher processor, with 8
MB of available RAM, a CD-ROM drive,
and a VGA or higher-resolution adapter and
monitor

• A hard disk with enough space to install the
options needed: 40 MB of available storage
space minimum using the CD-ROM installa-
tion option; 80 MB of available disk space
for the full configuration.

Pricing and availability:

The Microsoft Visual C++ development system
version 1.52 is available for an estimated retail
price of £66.00 + vat. An Academic Edition is
also available at a discounted price to students
for only £32.00. To obtain Visual C++ version
1.52, customers should contact their usual soft-
ware dealer or call Microsoft on 0345 00 2000.

“Entry level” developers will be forgiven for
their disappointment at the continued lack of
templates or exception handling in Micro-
soft’s 16-bit offerings – Ed.

 Overload – Issue 8 – June 1995

 Page 51

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
sean@corf.demon.co.uk

Production Editor

Alan Lenton
yeti@feddev.demon.co.uk

Advertising

John Washington
Cartchers Farm, Carthorse Lane

Woking, Surrey, GU21 4XS
john@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy
c/o 11 Foxhill Road

Reading, Berks, RG1 5QS
pippa@octopull.demon.co.uk

Distribution

Mark Radford
mradford@devel.ds.ccngroup.com

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

The copyright of all material published in Overload (except book and product reviews whose copyright is
the exclusive property of ACCU) remains with the original author. Except for licences granted to (a) Cor-
porate Members to copy solely for internal distribution (b) members to copy source code for use on their
own computers, no material can be copied from Overload without the prior written consent of the copy-
right holder.

Next Issue
In the August issue, The Draft International C++ Standard will report on the July meeting of the joint
ISO/ANSI C++ committee and discuss some of the issues arising from the public reviews. C++ Tech-
niques will, no doubt, continue the discussion of multiple inheritance. Books and Journals will look at the
“Gang of Four” Design Patterns book. Product Reviews will cover S-CASE: a multi-platform OO case
tool based on Booch’s notation. The rest is up to you!

Copy deadline
All articles intended for inclusion in Overload 9 (August) must be submitted to the editor by July 3rd.

