
saturating_add vs. saturating_int –
New Function vs. New Type?
Jonathan Müller explores when and how to
avoid integer arithmetic overflows

Don't Block Doors
Frances Buontempo uses cellular automata to
show what happens if people stand in doorways

Lessons Learned After 20 Years
of Software Engineering
Lucian Radu Teodorescu shares his reflections

Afterwood
Chris Oldwood considers what legacy we can
leave to make life better for others

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

August 2022 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

August 2022
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by @wirestock on
freepik.com.

Copy deadlines
All articles intended for publication
in Overload 171 should be
submitted by 1st September 2022
and those for Overload 172 by 1st
November 2022.

	 4	 saturating_add vs. saturating_int
– New Function vs. New Type?
Jonathan Müller explores when and how to avoid
integer arithmetic overflow.

	 7	 Advancing the State of the Art for
std::unordered_map Implementations
Joaquín M López Muñoz presents a new, fast
version of unordered maps.

	10	 Don’t Block Doors
Frances Buontempo uses cellular
automata to demonstrate what happens
if people stand in doorways.

	12	 Lessons Learned After 20 Years of
Software Engineering
Lucian Radu Teodorescu reflects on
lessons learned during his career.

	16	 Afterwood
Chris Oldwood considers what legacy we
can leave to make life better for others.

https://www.freepik.com/author/wirestock
https://www.freepik.com/free-photo/old-brick-wall-split-by-crack_27736591.htm#query=pattern&position=8&from_view=search

Frances BuontempoEditorial

2 | Overload | August 2022

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been
a programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.

Whodunnit?
Coding is a creative process.
Frances Buontempo wonders how
close it often gets to fiction.

Recently, I have been watching far too many murder
mysteries on the television, so forgot to write an
editorial. Some are more serious than others. We have
several episodes of Midsomer Murders [IMDB-1]
saved, which we dip into from time to time. This long
running series is a typical ‘whodunit’ (pronounced

“Who done it?”) [Wikipedia-1], where someone is murdered near the start
and you spend the next hour or so trying to decide who the murderer is.
Over time, the series resorted to adding more and more murders and the
plots became more and more silly, leaving you guessing what ridiculous
plots twists may come next rather than trying to remember who died
and who the murder might be. Other murder mysteries are available. A
whodunit is very different to a thriller, in that the former goes backwards
and forwards in time, filling in clues, while the latter usually moves
forward in time, ramping up the sense of suspension. One encourages
you to guess who is responsible while the other makes you wonder what
happens next. I suggest both types of narrative crop up while we write
or run code. Many other types of fiction can happen too as we attempt to
create software.

The ACCU conference talks are now showing up on YouTube, giving me
even more to watch instead of writing an editorial. Matthew Dodkin’s talk
[Dodkin22] encouraged us to expect the unexpected and think about what
happens next. He talked about dolphin and bat detectors, requiring long
deployments (months). You chuck them overboard in a remote location
and wait, meaning you can’t easily monitor remotely – and go back and
get them later. This necessitates the need to minimize and handle failures
and keeping a log of what happened somewhere accessible is useful.
Matthew talked about various ways to ‘handle’ problems, including an
error handler which does nothing, in effect ignoring problems, or sits in
a while loop doing nothing. He also mentioned asserts and said you
should “disable them in production code that needs to keep running, unless
you are extremely confident about what happens next.” Furthermore, he
suggested using ‘what happens next’ as a useful thought-experiment for
designing all your error handling functionality. In order to avoid any
further plot spoilers, I’ll say no more but leave you to watch the talk’s
recording. Other ACCU conference talks are available.

“What happens next?” fits the thriller genre better than a murder
mystery, though the advice to leave accessible logs does chime with a
crime investigation. When we try to figure out what went wrong in code,
logs are often a first port of call. Of course, they tell us what happened
previously rather than what’s up next. Writing useful log files is a bit of

an art form. Chris Oldwood has spoken and written
about this on many occasions. In an article for

Overload, he claimed log files rarely contain
anything helpful and suggested ways to do

better [Oldwood15]. His 2019 conference talk encouraged us to avoid
the stream of consciousness style of logging, and add a little structure
[Oldwood19]. Writing a stream of consciousness ‘story’ is one thing, and
can be cathartic; however, trying to read it might not be so easy. James
Joyce’s Ulysses is often cited as an example of this style of writing and
many people, myself included, who try to read it, give up. I lost track of
who the characters were, and lost the plot, if there really is one. Wikipedia
quotes an example on its ‘Stream of consciousness’ page [Wikipedia-2]:

a quarter after what an unearthly hour I suppose theyre just getting
up in China now combing out their pigtails for the day well soon
have the nuns ringing the angelus theyve nobody coming in to
spoil their sleep except an odd priest or two for his night office the
alarmclock next door at cockshout clattering the brains out of itself
let me see if I can doze off 1 2 3 4 5 what kind of flowers are those
they invented like the stars the wallpaper in Lombard street was
much nicer the apron he gave me was like that something only I
only wore it twice better lower this lamp and try again so that I can
get up early

Many log files read like this. Don’t get me wrong, a tumble of word
associations and ideas can be fun. I recently reminded myself of the
‘lyrics’ to Eat, Sleep, Rave, Repeat by Fatboy Slim. The words tumble
and you only partially follow what’s going on.

And then this cat walked in
You know, not like a cat
Like a feline cat
Like a real, like you know
Like
You know what I’m saying dog
Like cats and dogs
It was raining

Logs can aid us in detective work after the fact if they contain the right
clues. If we can debug code, which wasn’t the case for the bat and dolphin
sensors, we can watch things play out in real time and that can take time
too. Finding the best place to put a breakpoint is important. I’ve lost hours
deep down inside a call stack when the problem was actually somewhere
completely different. In some ways, this ends up like the tumbling lyrics
or stream of consciousness style of writing. It’s very easy to lose the plot.
Always time-box debugging and try to find more efficient ways to work
out who or what ‘done it’, like writing a unittest if you can. Sometimes
a program crashes and gives you a useful core dump. This so-called
post-mortem analysis tells you where to start looking and if often way
quicker than stepping through every line of code. Silent Witness anybody?
[IMDB-2]. You can also use diagnostic tools on live code in order to
figure out why strange things are afoot.

Frances Buontempo Editorial

August 2022 | Overload | 3

Before ever running the code, you might use a compiler along with static
analysis tools. When faced with a wall of errors, it sometimes takes some
investigation work to find one offending line. Have you ever resorted to
a binary search taking smaller and smaller chunks of code out until you
find the cause of the problem? Maybe you tried ctrl+Z to undo code until
you got back to a clean state, or maybe you used version control? Hurrah
for small commits between changes, otherwise you may have a very
large search space! Playing detective is part of programming and leaving
yourself a trail of easy to follow clues is a good idea. For unscripted
languages, you can lean on the compiler to find problems and even code
usage, by changing a name or type and so on [Feathers04]. Scripted
languages may seem like another genre, but often don’t have much of a
plot either. However, the interpreter and static analysis tools can also help
you avoid a potential crime scene.

There’s often more to coding than just the source code. As mentioned, if
you’re kind to yourself, you’ll be using version control. Not only does
that help you undo any changes that broke things, but also keeps track
of who did what, when. Unless you use git lie squash on the commits, of
course, or change a username to ‘deleted’ when they leave, which is not
unheard of. Many have a ‘blame’ command that displays which line was
changed by whom and when. If you’re trying to solve a coding crime, this
can be useful. I’ve heard it claimed that blame might be a bit of a negative
frame of mind, and ‘praise’ might be due sometimes. That’s fair – not
everything coding is problem fixing and troubleshooting. Sometimes, it’s
actually fun. You may be using some kind of work tracking system too,
perhaps Jira. Jira, in and of itself, is fine. Left to my own devices, I’d use
a simple Kanban board or just a TODO list, however keeping track of
what needs doing is the important part. And yet many people complain
about Jira. It is configurable, which, again, in and of itself is fine. You
can even write stories, or epics, which is nice. But, and this is the reason
for most of the complaints, Jira can be configured to a point of pain or
even left on its defaults, forcing you to add various fields and tick many
boxes to move a story through to the finale. Once a process becomes
onerous, people get inventive and find work-rounds. If coding ends up
as a form-filling Kafkaesque nightmare, and I don’t mean the distributed
event-streaming sort, I mean the writer Kafka’s bureaucratic nightmare
world. More screaming than streaming.

Sometimes ‘whodunit?’ doesn’t actually matter. What’s more important
is how you are going to fix it. Fix the problem, not the blame, as the
saying goes. Sometimes we may never find out whodunit, but that’s OK.
What’s important is how we move on. It’s all too easy to get caught up
in gossip and rumour, or follow a hunch down a rabbit hole. If you’re
trying to release code or fix a bug, you need to keep your eyes on the prize
and avoid being distracted (too much) by other things, like most of the
UK government resigning or tweets about the C++ on Sea conference.
Many places I have worked at use the pattern of ascribing the blame to
the last person who left. As soon as someone starts asking “Who on earth
wrote this code?”, then reply is “So-and-so, remember them?” You are
supposed to then say “So-and-so who?” and concentrate on the task in
hand. The culprit isn’t important, rather making progress is. Knowing
who is responsible won’t stop a repeat performance. You might end up in
a non-fiction version of Groundhog day [IMDB-3] with variations of the
same thing happening over and over again.

Sometimes ‘who did it’ really does matter. I often try to look up a source
for a quote and find various conflicting suggestions. It’s good to be able to

reference a source for a variety of reasons, but if you can’t, you can’t. If
you can, you can leave clues for readers to follow, so they can draw their
own conclusions. Some theorems, physical phenomena and computing
ideas are named after the person who invented them, for example
Pascal’s triangle, the Higgs boson or the Liskov substitution principle.
We do sometimes find that names are misattributed though. I was told
about the Rutherford experiment at school, and later learnt he was the
supervisor and the experiments themselves were performed by Geiger
and Marsden [Wikipedia-3]. You could argue that science or knowledge
is more important, but if someone’s name is associated with an idea
making them more well-known, this might skew our understanding of
history, particularly if they didn’t do it. In effect, this rewriting history
is a lie. I already told you what I thought of git squash to rewrite history!
Misappropriations happen, though we can strive to avoid making
things worse. And it’s lovely to ensure you credit someone if they have
contributed or helped in some way. So, thank you to all our writers and
the review team.

We’ve considered a few styles of fiction, and though programming isn’t
really fictional, it is a creative process and it may involve stories or actors
(of Carl Hewitt et al’s formalism, rather than thespians [Hewitt73]).
Sometimes real drama is involved if you have a
prod outage or other catastrophic failure. Sometimes
the code you are using seems somewhere between
fantastical or a farce, littered with ‘Here be dragons’
or ‘Wtf?!’ comments on the way.

References
[Dodkin22] Matthew Dodkin, ‘A Year In A Rainforest: Engineering For

Survival’ from the ACCU 2022’ conference, available online at:
https://www.youtube.com/watch?v=Zua4twRU2VU

[Feathers04] Michael Feathers (2004) Working Effectively With Legacy
Code, Addison-Wesley

[Hewitt73] Carl Hewitt, Peter Bishop and Richard Steiger (1973) ‘A
Universal Modular Actor Formalism for Artificial Intelligence’
IJCAI, available at: https://www.ijcai.org/Proceedings/73/
Papers/027B.pdf

[IMDB-1] Midsomer Murders: https://www.imdb.com/title/tt0118401/
[IMDB-2] Silent Witness: https://www.imdb.com/title/tt0115355/
[IMDB-3] Groundhog day: https://www.imdb.com/title/tt0107048/
[Oldwood15] Chris Oldwood, ‘Terse Exception Messages’, Overload,

23(127):15-17, June 2015, available at: https://accu.org/journals/
overload/23/127/oldwood_2110/

[Oldwood19] Chris Oldwood, available at https://www.youtube.com/
watch?v=O6NJgcK6K7g

[Wikipedia-1] Whodunit: https://en.wikipedia.org/wiki/Whodunit
[Wikipedia-2] Steam of consciousness: https://en.wikipedia.org/wiki/

Stream_of_consciousness
[Wikipedia-3] Geiger & Marsden experiments: https://en.wikipedia.org/

wiki/Geiger%E2%80%93Marsden_experiments

https://www.youtube.com/watch?v=Zua4twRU2VU
https://www.ijcai.org/Proceedings/73/Papers/027B.pdf
https://www.ijcai.org/Proceedings/73/Papers/027B.pdf
https://www.imdb.com/title/tt0118401/
https://www.imdb.com/title/tt0115355/
https://www.imdb.com/title/tt0107048/
https://accu.org/journals/overload/23/127/oldwood_2110/
https://accu.org/journals/overload/23/127/oldwood_2110/
https://www.youtube.com/watch?v=O6NJgcK6K7g
https://www.youtube.com/watch?v=O6NJgcK6K7g
https://en.wikipedia.org/wiki/Whodunit
https://en.wikipedia.org/wiki/Stream_of_consciousness
https://en.wikipedia.org/wiki/Stream_of_consciousness
https://en.wikipedia.org/wiki/Geiger%E2%80%93Marsden_experiments
https://en.wikipedia.org/wiki/Geiger%E2%80%93Marsden_experiments

Jonathan MüllerFeature

4 | Overload | August 2022

saturating_add vs. saturating_int
– New Function vs. New Type?
Integer arithmetic tends to overflow. Jonathan Müller
explores when and how to avoid this.

Suppose you want to do integer arithmetic that saturates instead
of overflowing. The built-in operator+ doesn’t behave that
way, so you need to roll something yourself. Do you write a

saturating_add() function or a new saturating_int type
with overloaded operator+? What about atomic_load(x)
vs atomic<int> x? Or volatile_store(ptr, value) vs
volatile int*?

When should you provide functions that implement new behaviour and
when should you write a wrapper type? Let’s look at the pro and cons.

Writing a new function
If you want to have a saturating addition, just write saturating_
add(int, int); to load something atomically, just write atomic_
load(int*); to store something that isn’t optimized away, just write
volatile_store(int*, int).

It’s a simple, straightforward solution, and for some of you the post can
end here. However, it isn’t quite ideal.

Disadvantage #1: Can’t re-use existing names/operators
The following code computes something with overflowing (undefined)
behaviour:
 int x = …;
 int result = x * 42 + 11;

This is the same code, but using saturating behaviour:
 int x = …;
 int result =
 saturating_add(saturating_mul(x, 42), 11);

Which version is more readable?

As operator* and operator+ already have meaning for ints, we
can’t use them for saturating arithmetic, we have to use functions. This
means we lose the nice operator syntax and instead have to figure out
nested function calls.

The problem can be solved at a language level. For example, Swift has
+ which raises an error on overflow and &+ which wraps around on
overflow. By defining new syntax, we don’t need to resort to function
calls. Of course, this is inherently limiting to users that don’t work on the
language itself, or it requires a language where you can define your own
operators. But even Swift has no saturating operator and C++ doesn’t
have anything at all.

If we instead decide to write a new saturating_int type, we can
overload operator* and operator+ to implement the desired

functionality (Listing 1), then code that performs saturating arithmetic
looks almost identical to regular code, we just need to change the types:
 int x = …;
 auto result = int(saturating_int(x) * 42 + 11);

Disadvantage #2: Can’t directly use generic code
This is really the same as the first disadvantage: as we have to invent a
new name for the operation and can’t re-use the existing one, generic
code doesn’t work out of the box. In C++, templates use duck-typing
and they call operations based on syntax. If the syntax isn’t available or
doesn’t do what we want, we can’t use them.

For example, using our saturating_add() function, we can’t use
std::accumulate directly, as it calls operator+. Instead, we have
to pass in a custom operation that calls saturating_add.

Disadvantage #3: Can’t enforce behaviour
Suppose we want to control some sort of embedded peripheral (e.g. an
LED) by writing to the special address 0xABCD. The code in Listing 2 is
buggy. As the compiler can’t see anybody reading the 1 written to *led,
it considers it a dead store that can be optimized away. The compiler has
no idea that it has the additional side-effect of turning an LED on and
needs to be preserved!

The correct fix is to use a volatile store, which tells the compiler that
it must not optimize the store away. Let’s suppose it is implemented
by a hypothetical volatile_store() function (see Listing 3,
overleaf). Now it works, but we have to manually remember to use
volatile_store() as opposed to *led every time. If we forget,
nobody reminds us.

Jonathan Müller is a computer science and physics student at the
RWTH Aachen University. In his spare time, he works on various
C++ projects, and enjoys writing libraries (especially for real-time
applications, where performance matters). You can contact him via
his blog (foonathan.net) or Twitter (https://twitter.com/foonathan).

struct saturating_int
{
 int value;
 explicit saturating_int(int v)
 : value(v) {}
 explicit operator int() const
 {
 return value;
 }
 friend saturating_int operator+
 (saturating_int lhs, saturating_int rhs);
 friend saturating_int operator*
 (saturating_int lhs, saturating_int rhs);
 …
};

Listing 1

const auto led =
 reinterpret_cast<unsigned char*>(0xABCD);
*led = 1; // turn it on
std::this_thread::sleep_for
 (std::chrono::seconds(1));
*led = 0; // turn it off

Listing 2

Jonathan Müller Feature

August 2022 | Overload | 5

In actual C++, where volatility is part of the pointer type, this isn’t an
issue: once we create a volatile unsigned char*, all loads/stores
are automatically volatile and we don’t need to remember it. By putting it
in the type system, we can enforce the consistent use of a given behaviour.

Disadvantage #4: Can’t store additional state
Suppose we want to write a generic function that can atomically load a
value at a given memory address:
 template <typename T>
 T atomic_load(T* ptr);

On modern CPUs, implementing this function is straightforward if
sizeof(T) <= 8. For sizeof(T) == 16, it becomes tricky, and for
sizeof(T) == 1024, it is impossible, as there simply is no instruction
that can load 1KiB of data atomically.

Yet std::atomic<T>::load() from the C++ standard library works
for all T, as long as they’re trivially copyable. How do they manage that?

One possible implementation can look like Listing 4. As they define a
new type for atomic access, they can put additional members in there. In
this case, a mutex to synchronize access. If all we have is a function that
can’t change the type, this isn’t something we can do.

Writing a new type
So based on those disadvantages you decide to write a new type when you
want to tweak the behaviour. A saturating_int, a volatile_ptr,
an atomic<T>. It’s a lot more boilerplate compared to the couple of free
functions, but it’s worth it, as you have the beauty of existing operators,
the flexibility of adding additional state if necessary, and the safety
guarantees the type system gives you.

However, the new situation isn’t ideal either.

Disadvantage #1: Conversions everywhere
Suppose you want to do saturating arithmetic, but only sometimes;
otherwise, you want overflow. As the behaviour is provided by types, you
need to change types to change the behaviour:
 int x = …;
 saturating_int y = saturating_int(x) * 42;
 int z = int(y) + 11;
 saturating_int w = saturating_int(z) * 2;

For an int, this doesn’t really matter, the compiler will optimize them
away. But for bigger types? All of those conversions can add up and the
poor CPU needs to constantly move stuff around.

Disadvantage #2: Different types
A saturating_int is not an int. Sure, you can provide a conversion
operator to make them related, but this doesn’t help in the case of
std::vector<saturating_int> and std::vector<int>:
they’re entirely unrelated types.

Remember how I complained about having to pass saturating_add
to std::accumulate? Well, if you start with a std::vector<int>
as opposed to std::vector<saturating_int>, you’re still out of
luck. Your only option is to use C++20 ranges to provide a view that turns
a std::vector<int> into a range of saturating_int. Or you just
provide a custom operation.

A similar issue occurs when you decide to store a value somewhere. Do
you store it as an int, as that’s what it is, or as a saturating_int as
that’s how it’s used? The types are different, you have to pick one.

The fundamental issue
There is a fundamental issue trade-off here we have to make: logically, we
want to provide behaviour which is done by writing functions, but in the
OOP model we need types to do it properly.

In C++, we always have this trade-off that we need to reason about.
However, there are some hypothetical language changes that could be
made to improve the situation.

Disclaimer: They aren’t serious proposals and don’t work with C++
for multiple reasons.

Solution #1: Distinguish between ‘layout’ and ‘type’
Right now, int and saturating_int are different types even though
for the CPU they’re essentially the same, only the function matters. So
we can imagine that this underlying layout can be reasoned about in the
language. C++20 already has the notion of ‘layout compatible types’
[cppreference], which matter for unions, let’s build on top of that.

We can imagine a layout_cast<T>(expr) operator that changes the
type of an object while keeping the layout intact:
 int x = …;
 auto y = layout_cast<saturating_int>(x);

const auto led =
 reinterpret_cast<unsigned char*>(0xABCD);
volatile_store(led, 1); // turn it on
std::this_thread::sleep_for
 (std::chrono::seconds(1));
volatile_store(led, 0); // turn it off

Listing 3

template <typename T>
class atomic
{
 T value;
 mutable std::mutex mutex;
public:
 T load() const
 {
 std::lock_guard<std::mutex> lock(mutex);
 return value;
 }
};

Listing 4

Suppose you want to do saturating arithmetic, but
only sometimes; otherwise, you want overflow. As

the behaviour is provided by types, you need to
change types to change the behaviour

Jonathan MüllerFeature

6 | Overload | August 2022

This generates no assembly instructions, as nothing changes for the CPU,
and it logically ends the lifetime of x. y is now a new object that lives at
the same address as x and stores the same bit pattern, but has a different
type. The only effect is a different overload resolution for its operator+.

This can then also be extended to containers:
 std::vector<int> x = …;
 auto y =
 layout_cast<std::vector<saturating_int>>(x);

Again, logically there is no difference between a bunch of ints and a
bunch of saturating_ints, so the CPU doesn’t need to do anything.
Only the type has changed.

This allows us to change the behaviour without affecting actual runtime
performance.

Solution #2: Packaging behaviour into a separate entity
Scala has an interesting take on the problem. Consider
std::accumulate() again. It takes an additional operation that controls
how ‘addition’ is performed as well as the initial value. Mathematically,
that is called a Monoid [Wikipedia], it describes ‘addition’ as well as the
identity of ‘addition’. For int, that is operator+ and 0. However, it

can also be operator* and 1. As such, std::accumulate() accepts
the range of input as well as the Monoid to use.

In Scala, the Monoid can be passed in a special way, as an implicit
parameter. The example in Listing 5 is from their website [Scala].

We first define a Monoid as an interface that has addition and unit, we
then implement it for strings and int, and write a generic function that
sums a list. It accepts the Monoid as an implicit parameter which doesn’t
need to be passed on the call site. Instead, the compiler will search for the
closest implicit value and pass that in.

The same principle can be applied to our problem as well. For example,
we can define overflowArithmetic and saturatingArithmetic
and then use something to indicate which one we want. This would then
change the lookup of operator+ and operator* in our algorithms
accordingly.

Of course, this requires a way to easily specify a ‘compile-time interface’,
like Rust has with traits. However, C++ decided against C++0x concepts,
which makes it impossible to add something like that now.

Conclusion
Writing a new type to change the behaviour is strictly more powerful than
writing a new function. As such, in situations where you have to write a
new type (e.g. std::atomic<T>), the choice is easy.

In all other cases, it is a trade-off.

Do you often need to mix different behaviours? Is it important that you
can’t accidentally forget the new behaviour? If so, write a new type.
Otherwise, write a function.

In an ideal world, where we have some way of decoupling layout from
behaviour, this wouldn’t be a problem. But we don’t have that, so we have
to live with trade-offs. Of course, we can also provide both versions. This
is what Rust does with wrapping_add and Wrapping<T>. n

References
[cppreference] std::is_layout_compatible: https://en.cppreference.

com/w/cpp/types/is_layout_compatible
[Scala] Implicit parameters: https://docs.scala-lang.org/tour/implicit-

parameters.html
[Wikipedia] Monoid: https://en.wikipedia.org/wiki/Monoid

abstract class Monoid[A] {
 def add(x: A, y: A): A
 def unit: A
}
object ImplicitTest {
 implicit val stringMonoid: Monoid[String] =
 new Monoid[String] {
 def add(x: String, y: String)
 : String = x concat y
 def unit: String = “”
}
implicit val intMonoid: Monoid[Int] =
 new Monoid[Int] {
 def add(x: Int, y: Int): Int = x + y
 def unit: Int = 0
}
def sum[A](xs: List[A])(implicit m: Monoid[A])
 : A =
 if (xs.isEmpty) m.unit
 else m.add(xs.head, sum(xs.tail))

def main(args: Array[String]): Unit = {
 println(sum(List(1, 2, 3)))
 // uses intMonoid implicitly
 println(sum(List("a", "b", "c")))
 // uses stringMonoid implicitly
 }
}

Listing 5
This article was first published on Jonathan’s blog (https://www.
foonathan.net/2022/03/behavior-function-type/) on 30 March 2022.

Do you often need to mix different
behaviours? Is it important that you can’t
accidentally forget the new behaviour? If
so, write a new type.

https://en.cppreference.com/w/cpp/types/is_layout_compatible
https://en.cppreference.com/w/cpp/types/is_layout_compatible
https://docs.scala-lang.org/tour/implicit-parameters.html
https://docs.scala-lang.org/tour/implicit-parameters.html
https://en.wikipedia.org/wiki/Monoid
https://www.foonathan.net/2022/03/behavior-function-type/
https://www.foonathan.net/2022/03/behavior-function-type/

Joaquín M López MuñozFeature

7 | Overload | August 2022

Several Boost authors have embarked on a project [Boost-1] to
improve the performance of Boost.Unordered’s implementation of
std::unordered_map (and multimap, set and multiset

variants), and to extend its portfolio of available containers to offer faster,
non-standard alternatives based on open addressing.

The first goal of the project has been completed in time for Boost 1.80
(launching in August 2022). We describe here the technical innovations
introduced in boost::unordered_map that makes it the fastest
implementation of std::unordered_map on the market.

Closed vs. open addressing
On a first approximation, hash table implementations fall on either of two
general classes:

	� Closed addressing (also known as separate chaining [Wikipedia-1])
relies on an array of buckets, each of which points to a list of
elements belonging to it. When a new element goes to an already
occupied bucket, it is simply linked to the associated element list.
Figure 1 depicts what we call the textbook implementation of closed
addressing, arguably the simplest layout, and among the fastest, for
this type of hash tables.

	� Open addressing [Wikipedia-2] (or closed hashing) stores at most
one element in each bucket (sometimes called a slot). When an
element goes to an already occupied slot, some probing mechanism
is used to locate an available slot, preferrably close to the original
one.

Recent, high-performance hash tables use open addressing and leverage
on its inherently better cache locality and on widely available SIMD
[Wikpedia-3] operations. Closed addressing provides some functional
advantages, though, and remains relevant as the required foundation for
the implementation of std::unodered_map.

Restrictions on the implementation of
std::unordered_map
The standardization of C++ unordered associative containers is based on
Matt Austern’s 2003 N1456 paper [Austern03]. Back in the day, open-
addressing approaches were not regarded as sufficiently mature, so closed
addressing was taken as the safe implementation of choice. Even though
the C++ standard does not explicitly require that closed addressing must
be used, the assumption that this is the case leaks through the public
interface of std::unordered_map:

	� A bucket API is provided.

	� Pointer stability implies that the container is node-based. In
C++17, this implication was made explicit with the introduction of
extract capabilities.

	� Users can control the container load factor.

	� Requirements on the hash function are very lax (open addressing
depends on high-quality hash functions with the ability to spread
keys widely across the space of std::size_t values.)

As a result, all standard library implementations use some form of closed
addressing for the internal structure of their std::unordered_map
(and related containers).

Coming as an additional difficulty, there are two complexity requirements:

	� iterator increment must be (amortized) constant time,

	� erase must be constant time on average,

that rule out the textbook implementation of closed addressing (see N2023
[López-Muñoz06] for details). To cope with this problem, standard
libraries depart from the textbook layout in ways that introduce speed and
memory penalties: for instance, Figure 2 shows how libstdc++-v3 and
libc++ layouts look.

To provide constant iterator increment, all nodes are linked together,
which in its turn forces two adjustments to the data structure:

	� Buckets point to the node before the first one in the bucket so as to
preserve constant-time erasure.

	� To detect the end of a bucket, the element hash value is added as
a data member of the node itself (libstdc++-v3 opts for on-the-fly
hash calculation under some circumstances).

Advancing the State of the Art for
std::unordered_map Implementations
Unordered maps can be implemented in various ways.
Joaquín M López Muñoz presents a new, fast version.

Figure 1

Joaquín M López Muñoz is a telecommunications engineer
freelancing in product/innovation/technological consultancy for telco,
TV, and IoT. He is the author of three Boost libraries (MultiIndex,
Flyweight, PolyCollection) and has made some minor contributions
to the standard, such as N3657 (heterogeneous lookup). Contact
him at joaquin.lopezmunoz@gmail.com

Figure 2

Joaquín M López Muñoz Feature

August 2022 | Overload | 8

Visual Studio standard library (formerly from Dinkumware) uses an
entirely different approach to circumvent the problem, but the general
outcome is that resulting data structures perform significantly worse than
the textbook layout in terms of speed, memory consumption, or both.

Boost.Unordered 1.80 data layout
The new data layout used by Boost.Unordered goes back to the textbook
approach (see Figure 3).

Unlike the rest of standard library implementations, nodes are not linked
across the container but only within each bucket. This makes constant-
time erase trivially implementable, but leaves unsolved the problem
of constant-time iterator increment: to achieve it, we introduce so-called
bucket groups (top of the diagram). Each bucket group consists of a
32/64-bit bucket occupancy mask plus next and prev pointers linking
non-empty bucket groups together. Iteration across buckets resorts to a
combination of bit manipulation operations on the bitmasks plus group
traversal through next pointers, which is not only constant time but also
very lightweight in terms of execution time and of memory overhead (4
bits per bucket).

Fast modulo
When inserting or looking for an element, hash table implementations
need to map the element hash value into the array of buckets (or slots in
the open-addressing case). There are two general approaches in common
use:

	� Bucket array sizes follow a sequence of prime numbers p, and
mapping is of the form h → h mod p.

	� Bucket array sizes follow a power-of-two sequence 2n, and mapping
takes n bits from h. Typically it is the n least significant bits that are
used, but in some cases, like when h is postprocessed to improve its
uniformity via multiplication by a well-chosen constant m (such as
defined by Fibonacci hashing [Wikipedia-4]), it is best to take the
n most significant bits, that is, h → (h × m) >> (N − n), where N is
the bitwidth of std::size_t and >> is the usual C++ right shift
operation.

We use the modulo by a prime approach because it produces very good
spreading even if hash values are not uniformly distributed. In modern
CPUs, however, modulo is an expensive operation involving integer
division; compilers, on the other hand, know how to perform modulo
by a constant much more efficiently, so one possible optimization is to
keep a table of pointers to functions fp : h → h mod p. This technique
replaces expensive modulo calculation with a table jump plus a modulo-
by-a-constant operation.

In Boost.Unordered 1.80, we have gone a step further. Daniel Lemire et
al. [Lemire19] show how to calculate h mod p as an operation involving
some shifts and multiplications by p and a pre-computed c value acting
as a sort of reciprocal of p. We have used this work to implement hash
mapping as h → fastmod(h, p, c) (some details omitted). Note that, even
though fastmod is generally faster than modulo by a constant, most
performance gains actually come from the fact that we are eliminating
the table jump needed to select fp, which prevented code inlining.

Time and memory performance of Boost 1.80
boost::unordered_map
We are providing some benchmark results [Boost-2] of the
boost::unordered_map against libstdc++-v3, libc++ and Visual
Studio standard library for insertion, lookup and erasure scenarios.
boost::unordered_map is mostly faster across the board, and in
some cases significantly so. There are three factors contributing to this
performance advantage:

	� the very reduced memory footprint improves cache utilization,

	� fast modulo is used,

	� the new layout incurs one less pointer indirection than libstdc++-v3
and libc++ to access the elements of a bucket.

As for memory consumption, let N be the number of elements in a
container with B buckets: the memory overheads (that is, memory
allocated minus memory used strictly for the elements themselves) of the
different implementations on 64-bit architectures are in Table 1 (overleaf).

Which hash container to choose
Opting for closed-addressing (which, in the realm of C++, is almost
synonymous with using an implementation of std::unordered_map)
or choosing a speed-oriented, open-addressing container is in practice not
a clear-cut decision. Some factors favoring one or the other option are
listed:

	� std::unordered_map

	� The code uses some specific parts of its API-like node extraction,
the bucket interface or the ability to set the maximum load
factor, which are generally not available in open-addressing
containers.

Figure 3

We use the modulo by a prime approach
because it produces very good spreading even

if hash values are not uniformly distributed.

Joaquín M López MuñozFeature

9 | Overload | August 2022

	� Pointer stability and/or non-moveability of values required
(though some open-addressing alternatives support these at the
expense of reduced performance).

	� Constant-time iterator increment required.

	� Hash functions used are only mid-quality (open addressing
requires that the hash function have very good key-spreading
properties).

	� Equivalent key support, i.e. unordered_multimap/
unordered_multiset, required. We do not know of any
open-addressing container supporting equivalent keys.

	� Open-addressing containers

	� Performance is the main concern.

	� Existing code can be adapted to a basically more stringent API
and more demanding requirements on the element type (like
moveability).

	� Hash functions are of good quality (or the default ones from the
container provider are used).

If you decide to use std::unordered_map, Boost.Unordered 1.80 now
gives you the fastest, fully-conformant implementation on the market.

Next steps
There are some further areas of improvement to boost::unordered_
map that we will investigate post Boost 1.80:

	� Reduce the memory overhead of the new layout from 4 bits to 3 bits
per bucket.

	� Speed up performance for equivalent key variants (unordered_
multimap/unordered_multiset).

In parallel, we are working on the future boost::unordered_flat_
map, our proposal for a top-speed, open-addressing container beyond
the limitations imposed by std::unordered_map interface. Your
feedback on our current and future work is very welcome. n

Acknowledgements
The Boost.Unordered evolution project is being carried out by Peter
Dimov, Christian Mazakas and the author. This work is funded by The
C++ Alliance (https://cppalliance.org/).

References
[Austern03] ‘A Proposal to Add Hash Tables to the Standard Library

(revision 4)’: https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2003/n1456.html

[Boost-1] ‘Development Plan for Boost.Unordered’:
https://pdimov.github.io/articles/unordered_dev_plan.html

[Boost-2] ‘Benchmarks’: https://www.boost.org/doc/libs/develop/libs/
unordered/doc/html/unordered.html#benchmarks

[GNU] ‘Hash Code’ in The GNU C++ Library Manual, available
at https://gcc.gnu.org/onlinedocs/libstdc++/manual/unordered_
associative.html#containers.unordered.cache

[Lemire19] Daniel Lemire, Owen Kaser and Nathan Kurz, ‘Faster
Remainder by Direct Computation: Applications to ompilers and
Sofware Libraries’ from Software: Practice and Experience 49(6),
available at https://arxiv.org/abs/1902.01961

[López-Muñoz06] ‘erase (iterator) for unordered containers should not
return an iterator’: https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2006/n2023.pdf

[Wikipedia-1] ‘Separate chaining’ in the topic ‘Hash table’:
https://en.wikipedia.org/wiki/Hash_table#Separate_chaining

[Wikipedia-2] ‘Open addressing’ in the topic ‘Hash table’:
https://en.wikipedia.org/wiki/Hash_table#Open_addressing

[Wikipedia-3] ‘Single instruction, multiple data’:
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data

[Wikipedia-4] ‘Fibonacci hashing’ in the topic ‘Hash table’
https://en.wikipedia.org/wiki/Hash_function#Fibonacci_hashing

Implementation Memory overhead (bytes)
libstdc++-v3 16 N + 8 B (hash caching [GNU])

8 N + 8 B (no hash caching)

libc++ 16 N + 8 B

Visual Studio (Dinkumware) 16 N + 16 B

Boost.Unordered 8 N + 8.5 B

Table 1

This article was first published on Joaquín’s blog Bannalia: trivial notes
on themes diverse (http://bannalia.blogspot.com/2022/06/advancing-
state-of-art-for.html?m=1) on 18 June 2022.

If you decide to use std::unordered_map,
Boost.Unordered 1.80 now gives you the
fastest, fully-conformant implementation
on the market

https://cppalliance.org/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1456.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1456.html
https://pdimov.github.io/articles/unordered_dev_plan.html
https://www.boost.org/doc/libs/develop/libs/unordered/doc/html/unordered.html#benchmarks
https://www.boost.org/doc/libs/develop/libs/unordered/doc/html/unordered.html#benchmarks
https://gcc.gnu.org/onlinedocs/libstdc++/manual/unordered_associative.html#containers.unordered.cache
https://gcc.gnu.org/onlinedocs/libstdc++/manual/unordered_associative.html#containers.unordered.cache
https://arxiv.org/abs/1902.01961
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2023.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2023.pdf
https://en.wikipedia.org/wiki/Hash_table#Separate_chaining
https://en.wikipedia.org/wiki/Hash_table#Open_addressing
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Hash_function#Fibonacci_hashing
http://bannalia.blogspot.com/2022/06/advancing-state-of-art-for.html?m=1
http://bannalia.blogspot.com/2022/06/advancing-state-of-art-for.html?m=1

Frances BuontempoFeature

10 | Overload | August 2022

Don’t Block Doors
You can build simulations using cellular automata.
Frances Buontempo uses this technique to demonstrate
what happens if people stand in doorways.

Being in lockdown for much of the last couple of years, many of us feel
a bit anxious about being in crowded spaces. You’ve probably seen
models of how a pandemic spreads; those are fairly common. For my

presentation at the ACCU conference in April, I used cellular automata to
create some models. Instead of modeling the spread of a disease, I started
from first principles – people moving in space. If we wanted to see how an
infection spreads through a crowd, we could extend this example.

In this article, you’ll learn how to make a simple cellular automata (CA)
model. CAs date back to the 1940s and were introduced by von Neumann
[Wikipedia-1], among others. People had grand ideas of sending robots
into space to mine precious metals and wondered if the robots could be
autonomous and even repair or rebuild themselves. This need for robot
autonomy lead to a simplified idea of minimal units or cells following
instructions – CA were born. They have tended to remain a bit of a niche
curiosity; however, CAs can be used to model aspects of biology from
patterns on shells to fibroblasts. You can also use them to model fluid
flows [Wikipedia-2]. Whatever your motivation, CAs are surprisingly
simple to code up and fun to watch.

People moving in space
Let’s build a simple CA to model people moving in space. We can then
watch what happens and see if we learn anything. We’ll model the world
as a two-dimensional space containing some blobs. The blobs start inside
a paper bag and can move around. As a bonus, if the blobs manage to get
out of the bag, we’ve coded our way out of a paper bag, which is a useful
skill. The blobs could represent conference attendees moving through
an atrium, represented by the bag. Maybe the attendees are heading to
the bar or outside. We could make many possible simulations, but the
simplest is to see the space as a grid (Figure 1).

Each circle is a space a blob can occupy. All but the top row are in the
paper bag/atrium – whatever we are modelling. The top row is outside
the paper bag, simulating people moving outside an enclosed space, and
arriving in the bar or another destination.

It’s easy to vary the number of blobs or their starting positions, but
imagine you have a row – maybe people who just left a talk or workshop
(Figure 2).

If they all walked forward at the same pace, we would have something
very easy to code, but it wouldn’t be much fun to watch and we wouldn’t
learn much. Instead, let’s build stochastic cellular automata. Our blobs are
the automata – they have agency and can therefore move. They move in
the cells, so are cellular in that sense, rather than being living, breathing
organisms. Finally, they are stochastic, in the sense that their movements
are random.

Starting positions and neighbours
Some cellular automata, such as Conway’s Game of Life [Game-of-Life],
have deterministic rules, though may initialize their grids at random. In
this article, we’ve doing things the other way round: always placing the
automata in the same starting position, but letting them make random
moves. Rather than teleporting off to another cell, each automaton can
only move only to an adjacent or neighboring square. In general, cellular
automata tend to use one of two definitions of ‘neighbour’, von Neumann,
or Moore.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She
has been a programmer since the 90s, and learnt to program by
reading the manual for her Dad’s BBC model B machine. She can be
contacted at frances.buontempo@gmail.com.

Figure 1

Figure 2

Frances Buontempo Feature

August 2022 | Overload | 11

Moore’s schema includes the eight surrounding squares, up, down, left,
right and the diagonals. Von Neumann’s is the simplest, since it has only
four, up, down, left, and right with no diagonals. Let’s keep it simple.

Defining movement
So, we know where the blobs start, and where they can move to. Let’s
stop them from going through the sides or standing on each other, so the
four neighboring cells may not be available. Let’s also allow a blob to
stay still if it chooses.

In order to make the cellular automata stochastic, we simply pick a
possible, allowed move at random. For example, given a some possible
moves, in C++ you form a new list of unoccupied positions:
 std::vector<std::pair<int, int>> moves{{0, 0},
 {-1, 0}, {1, 0}, {0, 1}, {0, -1}};

Feel free to use a language of your choice.

The first number is a step left or right; -1 or 1 respectively. The second
indicates up or down. {0, 0} means the blob stays still. Now, we could
pick any of these options; however, if any move is equally likely, the
blobs will amble around for a long time. If our attendees are aiming to
escape the paper bag, we can encourage them to go up. Only one of the
options involves up, {0, 1}, so making that combination more likely gives
us what we need.

More complex options
You can do more sophisticated things, and then build all kinds of
simulations. What we have done, in effect, is hard code what’s called a
static floor field. It’s static because it doesn’t change, and it’s a floor field
because, like a magnetic field or similar, it influences the blobs within
it. In this case they tend to go up. We could ascribe weights or values to
cells in the grid and use those instead, like this for a door or exit at the
top. See Figure 3.

That scheme is over the top for this simple case, but would allow us to add
obstacles and even have a dynamic floor field if we wanted.

An algorithm to move blobs
Now that we have things to move and know how to choose where they
move, the simplest thing to do is let each blob move, one at a time.
In theory, you could let them all move together, but you’d have to do
something about blobs trying to move to the same grid square. If you
make a grid class to keep track of where each blob is, the overall algorithm
is as follows:
 choose n (=25)
 put n blobs in grid (at bottom of bag)
 while True:
 draw bag
 for each Blob in grid:
 if blob in bag:
 move blob
 draw blobs

Blobs do gradually move towards the door. Success. However, since there
is only one row at the top, they end up blocking the door and the later
escapees get stuck – for quite a long time. For example, colouring the
blobs in the bag cyan and changing them to magenta when they escape,
you can see the escaped blobs partially blocking the door for the others
(see Figure 4, and there’s an animated version available [Buontempo22]).

A dynamic floor field, simulating the blobs noticing what’s happening
around them, might overcome this. After drawing the blobs in the loop,
you could increase the field value of empty spaces. This change would
encourage Blobs to move away from each other. Alternatively, adding
several other rows so there’s more space to move into might help too. This
second solutions is akin to encouraging people not to block doorways.
Something worth remembering if you’ve not been outside for a while!

Both options are simple to code up, but do tell us important things
about crowd control and designing a space. The floor field simulates the
directions people tend to move in. If you are trying to leave a conference

centre, an airport, or similar, there are exit signs, which are often lit
up. The clear signage is meant to encourage people to move in a given
direction, which clearly matters in the case of an emergency. Sometimes
exits get blocked, so turning those exit signs off, and even introducing a
one way system, might get people safely out of a building more quickly.
You can then ask yourself what-if questions: what if we add more exit
signs; try a one way system; and so on? You can use your simulation to
measure the total time taken to evacuate everyone, or find out if some
blobs get stuck or even trampled.

CAs are loads of fun. This stochastic cellular automata reminds us not to
stand in doorways, but you can use CAs to design a space for safety – and
so much more! Have a play with cellular automata. Try some what-if
questions. For example, add some obstacles and see what happens. n

References
[Buontempo22] Door blocking CA: https://www.youtube.com/

watch?v=wlsbg5q0hO0
[Game-of-Life] Game of Life: https://playgameoflife.com/
[Wikipedia-1] Von Newmann cellular automaton: https://en.wikipedia.

org/wiki/Von_Neumann_cellular_automaton
[Wikipedia-2] Lattice gas automaton: https://en.wikipedia.org/wiki/

Lattice_gas_automaton

Figure 3

Figure 4

This article was first published online on Pragmatic Programmers
on 15 June 2022 (https://medium.com/pragmatic-programmers/
dont-block-doors-e38e7affbf56). You will find more information
in Fran’s ACCU Conference presentation. You may also enjoy
Genetic Algorithms and Machine Learning for Programmers,
published by The Pragmatic Bookshelf.

https://www.youtube.com/watch?v=wlsbg5q0hO0
https://www.youtube.com/watch?v=wlsbg5q0hO0
https://playgameoflife.com/
https://en.wikipedia.org/wiki/Von_Neumann_cellular_automaton
https://en.wikipedia.org/wiki/Von_Neumann_cellular_automaton
https://en.wikipedia.org/wiki/Lattice_gas_automaton
https://en.wikipedia.org/wiki/Lattice_gas_automaton
https://medium.com/pragmatic-programmers/dont-block-doors-e38e7affbf56
https://medium.com/pragmatic-programmers/dont-block-doors-e38e7affbf56

Lucian Radu Teodorescu Feature

August 2022 | Overload | 12

Lessons Learned After 20 Years
of Software Engineering
It’s good to sit back and reflect from time to time.
Lucian Radu Teodorescu does just that and reports back.

15th of August 2002 – the date I started working as a professional
software developer. I was still 18 at that time. I have been in this
profession more than half my life. Enough time to hope that one can

learn a thing or two about what it means to be a software engineer. This
article explores 20 lessons that I learned (or I wish I had learned better)
during my 20-year career.

Far be it from me to provide a list of clear guidelines for young software
engineers based on my professional experience. But I do believe this
could be a nice occasion to share a list of items that are hard to master;
and, yes, I must confess that I am not an expert in most of the items below.
However, I do believe that the sooner a software engineer connects with
these items, the easier it is to acquire the needed skills. These items are
not necessarily the end goal; they can be the means for improving oneself
to be a better software engineer. An aspect on which I am continuing to
work, as despite over-used clichés, I consider that learning must be a
never-ending process.

1. Reading more software engineering literature
Software engineering should be based on science. Science is based
on knowledge.1 Knowledge is best obtained through reading books or
journals. Reading about software engineering is thus essential for being
a good professional.

Repeatable experiments are key to good science, but not every scientist
and engineer needs to repeat all the relevant experiment; we should know
the ‘state of the art’ in our field and not reinvent the wheel.

This is important, especially in our era. We are now bombarded by too
many shortcuts for getting to needed information. There are wikis, small
articles, small YouTube videos, and countless tweets. All of these seem to
give the audience condensed information. That can be helpful sometimes,
but it is not proper knowledge. To properly assimilate information and
transform it into knowledge, one often needs to know the context around
that information and to be able to fully reason about it.

For example, saying that QuickSort is O(n log n) on average misses a
lot of the context where QuickSort can be used and what the guarantees
are about it. One may need to know that the worst case is O(n2), that
there are tricks to improve its performance, that it can be faster than other
O(n log n) sorting algorithms, or that it is usually slower than an insertion
sort for small number of elements, etc.

With all the benefits of being able to access information quickly, we tend
to lose a lot of the things that form knowledge. New media simply doesn’t
allow the authors to expand on the context for the information they try
to convey.

1	 The word science comes from Latin sciencia which means knowledge.
Nowadays, we often define science as the application of scientific
method; this is a method of acquiring knowledge that involves making
hypothesis (or models), driving predictions based on these hypotheses,
and then verifying the predictions against reality. However we look at it,
knowledge is at the heart of science.

Looking from another perspective, literature can be more trustworthy
than various blogs found on the internet. Good publishing houses
have thorough review processes and try to keep high standards for
everything they publish. Of course, books can sometime contain errors/
misinformation, and getting quick access to information is sometimes
good enough, but the general idea holds in many contexts.

2. Read more literature, in general
Reading about software engineering is good, but reading general
literature (i.e., fiction) should not be ignored either. It can help a lot in
self-development. In a way, it allows one to live more than one life. It
promotes the development of one’s understanding skills, it makes one
much more capable of mastering various languages, and it contributes
significantly to building knowledge in general.

The human mind does not work like a set of drawers (or like a hard disk)
in which we put information in different compartments, disallowing any
interaction between them. It’s more like a complicated web of interactions
between different parts. If a programmer looked at the brain, they would
probably describe it as the biggest spaghetti code that ever existed.

Acquiring knowledge in one domain helps in other domains too. Learning
to learn and to reason will help software engineering a lot, as our field can
be described as applied epistemology (see below).

For example, looking at how many attempts we had before we sent people
to the moon can provide good insights on how software engineering needs
multiple iterations and refinement to solve complex problems.

3. Context is king
During my 20 years of professional activity, I often searched for good
solutions that could be applied to all types of problems. For example,
trying to search for the best programming paradigm, the best style of
writing programs, the best way to approach concurrency, or the best way
to architect a software system. But all my attempts were in vain; for each
of these subjects, there isn’t a general best solution.

All solutions depend on the context of the issue they try to address.
Changing the context of the best solution can make the solution pretty
bad compared to other solutions.

For example, there are cases in which monoliths are superior to
microservices, despite the popular trend of moving from monolithic
applications to microservices.

“It depends!” is often the right answer.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Lucian Radu TeodorescuFeature

13 | Overload | August 2022

4. Everything is a tradeoff
Even if the context of a problem is well understood, there isn’t such a thing
as a perfect solution. Every solution has downsides. I believe that part of
our role as software engineers is to recognise these tradeoffs and provide
the best solution, the one that best matches the goals of the project.

We often improve performance of a system by degrading its modifiability.
Similarly, security is usually improved at the expense of usability. We
frequently want to reduce coupling in an application, but the complete
absence of coupling means that the two components cannot be used
together; we need to have a tradeoff.

At the organisation level, there is always a tradeoff between being too
conservative or being too progressive. A conservative organisation works
with known tools and can be more predictable; however, it typically stays
behind in the innovation game. A progressive organisation will use the
latest version of each tool (even beta versions), and can innovate faster;
on the other hand, it needs to spend too much time learning new things,
that are then thrown away. The organisation must have a compromise
between the two extremes.

I often say that, if you can’t argue on both sides on a technical topic, you
are probably just confused.

Drawing a parallel from philosophy, Aristotle founds his ethics on the
principle of the golden mean, which is a tradeoff between two extremes
[Aristotle]. He says:

virtue is a mean, […] a mean between two vices,
the one involving excess, the other deficiency

For example, Aristotle argues that the virtue of courage is the mean (to be
read tradeoff) between cowardliness and recklessness.

And maybe this is just a small example of how general literature can help
with new perspectives on software engineering. The truth is that we ought
to properly see the tradeoffs with each solution we provide.

Maybe it’s also worth mentioning that tradeoffs change over time. Well,
to be more exact, it’s not the tradeoff that changes over time, but the value
that we associate with the alternatives involved in the tradeoff. In any
case, the change over time is often important to be remembered; see also
item 9 (‘Document the decisions’). 2

5. Software Engineering is applied epistemology
I learned this fact in the last few years from Kevlin Henney [Henney19],
and it entirely changed my view of software engineering.

It may sound a bit precious to begin with, but once one thinks more about
it, it makes sense. In our field, the main problem is not how to write
code that machines understand, but rather to write code that humans
understand; to be able to keep track of all the different parts of a complex
system, to reason about it, and to ensure that the system grows according
to the expectations. The main bottleneck is our mind, not the typing speed.

Thus, our main concern should be to organise knowledge in a structured
and meaningful way. That is applied epistemology.

Taking this together with the previous item, it makes sense to say that
software engineering can be closer to philosophy than we might naively
acknowledge.

6. Software engineering != programming
For many years, I described myself as being a professional programmer.
I don’t do that anymore. We are (or should be) software engineers, not
programmers. I found that there needs to be a big distinction between
software engineers and programmers.

Similarly to the distinction between a carpenter and a mechanical
engineer, and to the distinction between an electrician and an electrical
engineer, we must have a distinction between a programmer and a

2	 Or maybe this paragraph was just the result of my mind trying to argue
both sides of the argument.

software engineer. The main job of the engineers is to design, while the
non-engineers typically just execute. The non-engineers might design
small-scale things, but they don’t have a structured approach to design.

I believe that being good software engineers really entails the following:

	� 	basing our decisions on knowledge

	� 	having a structured approach to design

	� 	using empirical methods

	� 	using iterations to improve knowledge

As Mary Shaw remarks in Progress Toward an Engineering Discipline of
Software [Shaw15], one of the purposes of good engineering is to allow
regular persons to do what previously could only be done by virtuosos.

And, let’s not forget that engineers should solve real problems. That may
seem obvious, but oftentimes we spend a lot of effort solving problems
that we don’t have (overgeneralization or problem misunderstanding).
Talking to the customer for a couple of minutes can make the difference
between implementing what the customer really wants and what we
assume they want.

7. Apply knowledge and good reasoning in
day-to-day work
When we design software in a certain way, we should not do it just
because it feels right. We should make informed decisions, and we should
be able to defend our decisions.

For example, we might design a certain system with a few classes that
follow the clean code doctrine. The code looks right to us, and it looks
right to our peers. But we should also be able to explain why that’s the
case. We should probably be able to explain that our system has low
coupling, high cohesion, and it follows the SOLID principles.

As another example, if we decide to use a NoSQL database solution for a
web service, we should have made a comparison with SQL databases and
be able to show why the chosen solution is superior. Just using NoSQL
because it is trendy is not a good argument. See also item 4 (‘Everything
is a tradeoff’).

This type of reasoning needs to be applied to the important parts when
designing a system, but it also has to be applied in the day-to-day job.
This can be a hard thing to do, but that’s the mark of a good engineer.
Whenever one writes a new function, changes a class, uses an algorithm,
it must follow the same knowledge-based reasoning approach. This
process may not need to be shared with other engineers, but it has to
happen in the head of the person writing the code.

8. Know the implications of the design
Having a design that solves a particular set of concerns is not enough. The
design must perform well for any other concerns that might apply to the
software system.

This phrasing is a bit abstract, so let’s take an example. One might design
a software sub-system to process some images. The business rules might
be complex, so the design will focus on meeting those constraints. But,
even if performance is not an explicit constraint of the problem, the
engineer needs to be aware of the performance implications of the new
design.

If one chooses an algorithm to solve a problem, one has to know the
conditions in which the algorithm can operate, the performance
characteristics, and the potential difficulties that using the algorithm
might entail.

If one chooses a particular database engine, one must understand the
performance characteristics, the functional capabilities, the scalability
implications, the costs for using that database, and, of course, the
development cost for using that database.

Every decision has a set of implications, and these should be well
understood when taking the decision.

Lucian Radu Teodorescu Feature

August 2022 | Overload | 14

9. Document the decisions
Software development is applied epistemology, so one can consider it
to be a large collection of decisions. The rationale behind the decisions
might be forgotten with time. Furthermore, not all the engineers working
on the project were involved with these decisions. Thus, it’s important to
document the decisions.

When documenting these decisions, one should document the context
in which the decision was taken, the alternatives considered, tradeoff
analysis between different alternatives and the impact of the decision.

The context is essential; if the context changes, then the decision may
not be valid anymore. If we don’t document the context, we never know
when a decision is not applicable anymore.

While writing too much documentation can be a big burden, good
judgement needs to be taken to document just the things that make sense
to be documented. In my personal experience, I would document all
architectural decisions, and other decisions that may not be intuitive, or
for which the context may not be immediately apparent.

10. Find a way to explain technical details
to newcomers
Explaining complex technical details to newcomers is an essential
skill for software architects and a good-to-have skill for any software
engineer. One should be able to explain technical details to new engineers
on the team, to seasoned engineers that were not part of the design, to
quality engineers, to management and sometimes to end users. All these
stakeholders should have the same understanding of the problem/solution.

One can consider this to be a communication ability. But probably what’s
more important is the skill of abstracting out the unimportant details
and focusing on the important aspects. Having good abstraction skills
is required to be a good engineer, and tailoring your explanation to your
audience helps develops those skills.

11. Design the system for others to understand it
In our profession, we often work in teams. We don’t just have to build
personal knowledge on the system we are designing, but instead we
should build collective knowledge about it. This means that it’s often
more important for others to understand a design than the person doing
the design.
And, considering the amount of information we subject our brain to, we
soon start to forget why and how we designed the system the way it is. We
often become the ‘other’.

A good approach when designing a software system is to ask whether
a Jon Doe can easily understand the design. If the answer is yes, then
we probably did a good job designing.3 If the answer is no, we should
consider what needs to change to make it easier for another person to
understanding it. Sometimes this means changing the design, sometimes
it means documenting important aspects of the design, and sometimes
this requires having discussions with other people to understand the pain
points. Regardless of the solution, we should make sure the design can be
easily understood by other people.

12. Testing is essential
Just to be clear, this item doesn’t say that we need a Software Quality
department in addition to the software engineers. Any software engineer
needs to spend considerable amount of time performing testing activities.

I’m not saying this because I’m a sold TDD fan. I’m saying this because
testing is a core aspect of engineering. As part of being empirical, we
must consider that our hypotheses are wrong, and try to test them. The
more empirical we are, the more testing we are doing.

There are multiple ways of testing that we can employ in software
engineering (unit testing, integration testing, load testing, etc.), and

3	 Here, we just focus on the human understating aspect of the design. We
take for granted the fact that the design meets all its goals (functional,
quality attributes, constraints).

typically more than one testing method is used in a given project. The
mix of testing methods depends on the specifics of the software projects.
But regardless of the type of project, performing the required testing is
the mark of being a good engineer.

13. More solving problems than writing code
Our job as software engineers is to solve software problems. Not to
write code. Sometimes, removing code is the best solution for a certain
problem. Sometimes, changing the configuration solves the problem.
Other times, we can just prove that the problem is just apparent, and that
this is actually the best behaviour for the users (in the given context).
Occasionally, it’s just making sure that other engineers/teams have the
required information to implement a simple solution on their end.

A typical engineer writes about 300 lines of code per day. If we just
consider the typing part, this can be done in less than 5 minutes. That is,
about 1% of the total work time for a software engineer. We need to be
aware that the other 99% is dedicated to solving problems.

One important part of that 99% is design, but there are other activities that
need not be neglected: communicating with others, writing documentation,
analysing empirical data, creating models to better understand the
consequences of a certain design, exploratory experimentation, etc.

14. Knowing the algorithms and data structures
Coming back to what it means to be a good software engineer, we need
to base our work on prior knowledge. Knowledge about algorithms and
data structure constitute a significant part of software engineering’s body
of knowledge.

Knowing algorithms and data structures is like knowing the vocabulary
of a language. The better one knows the vocabulary, the better one can
communicate in that language; better capture the intended meaning, and
be more precise.

15. Innovate on the small items
We tend to associate innovation with significant changes in our industry,
like the launch of the iPhone, the launch of iPad, the advancements in
deep learning, etc. But innovative products are not built out of thin air.
They often require a culture of innovation; this culture is typically built
on small-scale innovations.

Innovation is improving a product or a process compared to a de facto
standard.

I frequently give the following example: if the common practice in a
team is to get all the emails into a single inbox folder, adding rules to
automatically move some emails to dedicated folders can be a small-
scale innovation. Previously, one had to manually sort emails, and after
a certain number of emails received daily, this can become a burden, and
a source of defocus. If all the emails on a particular subject would go to
a dedicated folder, then the person is freed of some manual work, and,
moreover, can be more focused on reading emails.

If one gets in the habit of improving small processes, then one gets the
innovation habit. Sooner or later, this person will participate in larger
innovations.

16. Learn by doing and do by learning
Learning is quintessential to software engineering. After all, we argued
that we are doing applied epistemology; moreover, we are constantly
building new things, increase complexity, and adopt new technologies. I
don’t believe that there will be a point in the career of a software engineer
in which one can stop learning.

Reading books, watching YouTube lectures is a way of learning. But one
needs also applied learning. Thus, one needs to learn by doing. After all,
engineering has to be empirical.

However, I believe that the opposite can also be true. We can do
spectacular stuff by learning. If we develop good learning methods, if we
apply sound empirical processes, a learning experience can also lead to

Lucian Radu TeodorescuFeature

15 | Overload | August 2022

good software. Approaching new topics with intense curiosity increases
our creativity. This can lead to innovation.

17. Learn from mistakes to get things right
It’s hard to not make mistakes in our field. Be it estimates that are too
optimistic, consequences that were not anticipated, unintentional bugs, or
something else, we all make mistakes. One should not be afraid to make
mistakes, as the mistakes are key to progress.

One problem with trying very hard to avoid mistakes is to enter analysis-
paralysis; that is, to continuously delay the point at which the solution is
considered ready. This increases the time needed to build software a lot,
and cannot eliminate mistakes. If we are entirely ignoring the severity
of the mistakes, having a failure rate of 5% with a speed of 100 features
per year is more profitable than having a failure rate of 1% with just 10
features completed per year. In the first case, the engineer delivers 95
good features in a year, while in the second case they deliver just 9.9 good
features per year (on average).

The other key aspect of making mistakes is the impact of these mistakes.
One needs to make sure that their impact is kept under control. Thus,
when implementing a feature, the engineer must assess and track the most
important risks of the feature. If these are kept under control, the possible
mistakes have small impact.

Mistakes are not entirely negative. They tend to help us learn faster.
Empiricism is based on the fallibility of hypothesis; we make a prediction,
and if that turns out to be false, we learn something new. Mistakes prove
that our model is wrong, which often leads to improving our model and
our understanding. This was the key to success in natural science, and can
be the key to success in software engineering as well.

In short, if their impact is controlled, making mistakes fast can lead to
good software and improved knowledge.

18. Being skeptical with everything, including self
Engineering is based on science, and according to Karl Popper, science
needs to be built on falsifiable propositions. That is, we should assume
that all propositions can be false. We should be skeptical about all the
predictions we make about our software.

Being skeptical allows us to incorporate failure in our processes. As
previously discussed, this allows us to continuously improve.

But just being skeptical isn’t enough. We also need to measure key
aspects of the software we are building. Without this measuring, we are
blindly navigating a territory full of traps and dead ends. Continuous
measurement and frequent iterations allows us to improve our models
and build quality software.

Looking at the moon-landing for example, we did not achieve success
at the first attempt. There were several dozen missions – some of them
successful, some of them failures – that led us to expand our knowledge.
With each mission, we learned something new, so that incrementally we
build the right technology to accomplish the moon-landing goal. The key
behind the iterations was a large dose of skepticism. We had to assume
that we might be wrong, to carry on an experiment.

This skepticism should also apply to yourself. You are also fallible, and
you should acknowledge this. Be your number one critic. Spotting your
mistakes first is extremely beneficial for your personal growth, and it also
gives others less chance to criticise you.

19. Own biases are problems that need to be managed
Continuing on the previous item, you should acknowledge your biases.
You have to be an attentive observer of self, and then work out what your
biases are. Knowing your biases allows you to compensate them so that
you get the best out of you.

Personally, I’m an introvert. Although it doesn’t come naturally, I learned
to force myself to communicate even when I would rather just run away.
I was also fearful of making mistakes; I learned that I should try more

often, and that I should engage others to criticise me as early as possible
so that I don’t get the overall feeling that I completed something just to
find out it was a mistake. Being too optimistic in estimating simple tasks
is also a bias that I have (for complex tasks, I usually overestimate).

Think of your biases as problems that need to be tackled even if, most
probably, you will not be able to eradicate them. Then apply empirical
methods to improve yourself.

20. Never being done
People have claimed for centuries that physics is almost done. And yet,
we continue to have big revolutions in physics.

Civil engineering (and its precursors) is an old discipline. By now, we
expect that most of the things have already been tried, and somehow there
is not much left for us to do in civil engineering. And yet, now and then
we have innovation in this field.

We can’t expect software engineering to be done soon. After all, this is
about complexity, and we cannot find a way to simplify all the complexity
involved.

We should not stop learning, experimenting, and improving ourselves. n

Acknowledgement
During my 20 years as a software engineer, I have met many people
who contributed in a significant and positive manner to my professional
development. I always will be grateful for what they taught me, directly or
indirectly. Still, I want to take this opportunity to express my appreciation
for the very first person who, in a country which at that time did not
encourage young students to take jobs, being rather reluctant to this idea,
believed in my passion and offered me my first job. Thank you, Gina, for
giving my career a wonderful start.

References
[Aristotle] Aristotle, Nicomachean Ethics, translated by W. D. Ross,

http://classics.mit.edu/Aristotle/nicomachaen.mb.txt
[Henney19] Kevlin Henney, ‘What Do You Mean?’, ACCU 2019,

https://www.youtube.com/watch?v=ndnvOElnyUg
[Shaw15] Mary Shaw, ‘Progress Toward an Engineering Discipline

of Software’, GOTO 2015, https://www.youtube.com/
watch?v=lLnsi522LS8

http://classics.mit.edu/Aristotle/nicomachaen.mb.txt
https://www.youtube.com/watch?v=ndnvOElnyUg
https://www.youtube.com/watch?v=lLnsi522LS8
https://www.youtube.com/watch?v=lLnsi522LS8

Chris OldwoodFeature

16 | Overload | August 2022

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or @
chrisoldwood

Afterwood
What’s your legacy? Chris Oldwood
considers what we can leave
to make life better for others.

As I write, the UK is going through political turmoil. The current
Prime Minister (PM) has finally stepped down as leader of his
party and so we’re in for a new PM in the coming months. Given

the various shenanigans that have gone on over the last couple of years,
it’s unlikely that history will look kindly on him, although some of the
more recent changes in policy feels like it comes straight from Orwell’s
1984 so maybe we’ll never unearth the truth.

Much like the last two Prime Ministers, my own tenure is shorter than a
normal employee because I’m a freelancer. One consequence of moving
on frequently is that I get to reflect on the ‘legacy’ that I’m leaving behind
for the team. Hopefully, unlike the last few PMs, my parting gifts are
looked upon with more affection.

Outside the world of software development, the term ‘legacy’ has a far
more positive meaning. It’s commonly used to convey some asset (money
or property) that’s left as part of a will. By and large, receiving a legacy
is A Good Thing and relished by the recipient. Conversely, in the world
of software, it’s more generally used as a pejorative – inheriting a legacy
codebase is more likely to be met with derision. If we take the extreme
view put forward by Michael Feathers in his seminal book Working
Effectively with Legacy Code, any code without tests is considered legacy
code. Ergo, if you’re not practising TDD then you’re producing legacy
code with every keypress until you pay off your debt by adding a test.
When the PM said he “got Brexit done”, what I heard was “it’s code
complete” – metaphorically, Brexit feels like a monster codebase with
no tests.

Closely related and suffering a similar disparity in persona is the notion
of inheritance. Finding out you have a long-lost, obscenely rich relative
who you have inherited a massive estate from is the stuff which dreams
are made of. In contrast, the thought of receiving a massive inheritance
in a codebase fills one with dread. In typical programming fashion,
the term is overloaded and not all inheritance is the work of the devil.
Implementation Inheritance and deep class hierarchies are frowned upon
due to the tight coupling they introduce, whereas Interface Inheritance is
lauded for helping to loosen unnecessary coupling. In this work of fiction,
the Open/Closed Principle is your overly literal uncle responsible for the
quagmire of classes you find yourself wading through.

Refactoring parts of a codebase to make it both easier to understand
and, more importantly, to change, is definitely the kind of the legacy we
should all look to give and receive. George Orwell warned us in 1984
about people who had a habit of rewriting history, but I’d hope he would
approve of its use to simplify code. Unlike in 1984, where any evidence
of the past was eradicated, we have the wonders of version control to
allow us to see how we got to the new state of affairs and why. Of course,
version control tools come with their own problems and I’m sure Orwell
would have plenty to say about squashed commits and rebasing.

For sure, improving the quality of the product’s production code is a
rewarding legacy to pass on, but for me it’s also the easiest to justify
and therefore also perhaps the least contentious. Personally, I look to
improving those aspects of the software delivery process which are a little
harder to instigate (often for political reasons) or less valued by others,
but only because they may not realise what a difference it can eventually
make.

Automated builds are far more common these days, but also being reliable
and easy to reproduce locally is still a gap that frequently needs plugging.
Before the rise of ‘DevOps’ as a more formal role, it was left to the
developers to try and lash something together in and around their other
duties. Much like testing, the ability to build and deploy the product took
a back seat, and so taking on that ‘poisoned chalice’ feels like a challenge
worth tackling. Making it easy to go from ‘works on my machine’ to
‘also works on the production machine’ really helps the flow. Sadly, the
rise of so called ‘continuous integration’ products has meant that I now
see ‘broken on the build server’ coupled with ‘can’t reproduce on my
machine’ because the developers can no longer build, test, and deploy the
product locally in the same way as the 3rd party product does it. Closing
this gap always pays dividends in the end when it really matters.

Another task which rarely gets any TLC is documentation. The emphasis
is traditionally on trying to make the code as readable as possible to
make comments redundant. However, as Grady Booch likes to say, “the
code is the truth, but it’s not the whole truth”. Matters of architecture and
design, such as the rationale cannot be reflected in the code, only the
outcome of the decisions. Similarly, even if you represent your platform
as code, forcing someone to mentally derive the overall architecture by
reading your Terraform scripts is not a pleasurable experience. Adding
Architecture Decision Records and, say, a C4 model of the system goes
a long way to helping newer team members understand the journey.
Also having a wiki is a great start. What’s even better though is having
some actual content in it. In general, I feel that developer documentation
appears to be in the same state that developer tests were a decade ago –
they were rarely found and, if they did exist, were poorly written. Giving
a wiki some structure, content, and style so that it can be browsed as well
as searched is probably my other preferred contribution that I hope makes
my successors nod in approval.

Unlike the departing PM, I do not see my legacy as a medium for getting
my ego massaged. My legacy is not some kind of monument to be revered;
on the contrary, it’s more like the scaffolding that surrounds it enabling
the team to work in safety. If it goes unnoticed that’s not a bad thing, if
anything that’s an even bigger compliment as it means it’s
not become a source of friction. n

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

ACCU is a not-for-profit organisation.

Become a member and support your
programming community.

www.ACCU.org

	Whodunnit?
	saturating_add vs. saturating_int– New Function vs. New Type?
	Advancing the State of the Art forstd::unordered_map Implementations
	Don’t Block Doors
	Lessons Learned After 20 Yearsof Software Engineering
	Afterwood

