
Paul Floyd shows how you should
perform floating-point comparisons

(and how not to do it)

Determining If A Template
Specialization Exists
Lukas Barth determines whether a class or function
template can be used with specific arguments

Stack Frame Layout On x86-64
Eli Bendersky describes the
x86-64 stack layout in detail

Value-Oriented Programming
Lucian Radu Teodorescu explores this paradigm

Afterwood
Chris Oldwood asks us to meet him halfway
when considering the value of meetings



Book today to attend the ACCU Conference 2023

The content
The ACCU Conference has C and C++ at its core, but
also has sessions relating to other languages – such
as C#, D, F#, Go, Haskell, Java, Kotlin, Lisp, Python,
Ruby, Rust, and Swift.

It’s not just about languages, though. There are
sessions on tools, techniques and processes (such
as TDD, BDD and how to ‘do programming right’).

The attendees
This is a great event to attend whether you are a
software developer or programmer working as an
employee or as a consultant or contractor.

The event welcomes:

• Talented and innovative programmers and
developers

• Industry leaders and game changers

• Internationally renowned speakers

• Industry organisationsThe format
This is an in-person conference, with much of the
content over the conference also being streamed.

The main event starts on Wednesday 19th April and
closes on Saturday 22nd April. Each day has five
concurrent streams, focusing on different areas of
programming and development.

The pre-conference workshops (not accessible
virtually) run on Monday 17th and Tuesday 18th April.

The full programme – including confirmed keynote
speakers – is at www.accuconference.org

The tickets

Early bird discount until Tuesday 28 February 2023

Member Non-member

Day ticket From £195 From £225

In-person (4 days) From £635 From £745

Virtual (4 days) From £425 From £535

Pre-conference workshops on Monday 17th & Tuesday 18th April 2023
Wednesday 19th to Saturday 22nd April 2023 at Bristol Marrio� Hotel City Centre

accu
2023

Hos�ng a wide selec�on of keynote speakers,
training sessions and workshops,

this Conference is designed by programmers,
for programmers, about programming.

The Conference is always popular.
We recommend you book now to
avoid disappointment at:

www.accuconference.org

Check out our social media channels for
updates ahead of the event, and keep an eye
on our YouTube channel for exclusive content!

• Facebook: www.facebook.com/accuorg

• Twitter: twitter.com/ACCUConf

• YouTube: @ACCUConf



OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications 

and activities, visit the ACCU website: 
www.accu.org

February 2023 | Overload | 1

The ACCU
The ACCU is an organisation of 
programmers who care about 
professionalism in programming. That 
is, we care about writing good code, 
and  about writing it in a good way. We 
are dedicated to raising the standard of 
programming.

The articles in this magazine have all 
been written by ACCU members – by 
programmers, for programmers – and 
have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or 
claimed as such. The use of such terms is not intended to support nor disparage any trade 
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the 
author. By submitting material to ACCU for publication, an author is, by default, assumed to 
have granted ACCU the right to publish and republish that material in any medium as they 
see fit. An author of an article or column (not a letter or a review of software or a book) may 
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 
2) members to copy source code for use on their own computers, no material can be copied 
from Overload without written permission from the copyright holder.

February 2023
ISSN 1354-3172

Editor
Frances Buontempo 
overload@accu.org

Advisors
Ben Curry 
b.d.curry@gmail.com

Mikael Kilpeläinen 
mikael.kilpelainen@kolumbus.fi

Steve Love 
steve@arventech.com

Chris Oldwood 
gort@cix.co.uk

Roger Orr 
rogero@howzatt.co.uk

Balog Pal 
pasa@lib.hu

Tor Arve Stangeland 
tor.arve.stangeland@gmail.com

Anthony Williams 
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe 
pete@goodliffe.net

Cover photo by Lari Bat (from 
iStock Photo).

Copy deadlines
All articles intended for publication 
in Overload 174 should be 
submitted by 1st March 2023 and 
those for Overload 175 by 1st May 
2023.

 4 Floating Point Comparison
Paul Floyd shows how you should (and shouldn’t) 
perform floating-point comparisons.

 7 Determining If A Template Specialization Exists
Lukas Barth determines whether a class or function 
template can be used with specific arguments.

 11 Stack Frame Layout On x86-64
Eli Bendersky describes the x86-64 
stack layout in detail.

 14 Value-Oriented Programming
Lucian Radu Teodorescu explores this paradigm.

 20 Afterwood
Chris Oldwood asks us to meet him halfway 
when considering the value of meetings.

https://www.istockphoto.com/photo/festive-background-of-multi-colored-inflatable-balls-decoration-by-air-globs-gm1352264831-427740117?clarity=false
https://www.istockphoto.com/photo/festive-background-of-multi-colored-inflatable-balls-decoration-by-air-globs-gm1352264831-427740117?clarity=false


FrAnCES BuOnTEmPOFEATurE

2 | Overload | February 2023

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and 
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning 
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the 
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

The news in the UK has told me everything is under 
pressure, and I know the feeling. I have been trying to 
write two conference talks, along with doing a variety 
of other tasks and there are just not enough hours in 
the day. Suffice it to say, I haven’t written an editorial, 
but instead thought long and hard about being under 

pressure. Much of this is of my own making and I must learn to say, “No” 
more often. Maybe the start of a new year is a good time to reflect and 
think about how to make changes. 

Mind you, pressure, in and of itself, is not a bad thing. We own a pressure 
cooker, which is useful for cooking beans and pulses. My hazy memory 
of physics from school tells me that the cooker is sealed, so keeps the 
volume fixed, meaning as the pressure increases when heat is supplied, 
the temperature also increases, cooking food more quickly than in an 
unsealed pan. The internet suggests this is related to Gay Lussac’s law, 
“the pressure of a gas varies directly with temperature when mass and 
volume are kept constant”, so that

for two pressures, P1, P2 and two volumes, V1, V2 [ChemTalk]. Similar 
physics means trying to boil a kettle up a mountain is somewhat difficult, 
or rather the water boils, but at a much lower temperature than some 
people would want. Since the atmospheric pressure is lower there, water 
boils below 100⁰, making a substandard cup of tea. Pressure is sometimes 
useful!

Running performance tests on a system can be illuminating. Stress or 
load tests simulate high traffic to a website, or service or similar, to see 
what happens. There is a subtle difference between them. A load test 
shows what happens under an expected load, meaning you know how 
long you expect a response or similar to take. In contrast, a stress test 
finds the upper limits of a system’s capacity, meaning you can prepare for 
a DDoS attack, or at least be aware of what might happen to your system 
[LoadNinja]. You can even run such tests as part of your CI pipeline, to 
keep an eye on timings and so on. Putting your system under pressure in 
a dev environment prepares you for production. In theory.

Knowing upper limits can be important. Big-oh notation is a fundamental 
part of many computer science courses. For once, that was not a typo, the 
technical term is big-o, but, like me, you might say uh-oh internally if 
someone asks what the space or time complexity of a specific algorithm 
is, when you haven’t thought about this for a long time. Nothing like 

the pressure of an interview or similar to make 
your brain seize up. Of course, big-o is short 

for order of approximation [Wikipedia]. It 
tells us how many calculations, or how much 

space, an algorithm might take in the worst case, giving a sense of how an 
algorithms scales with the item count. Roger Orr wrote an article a long 
while ago, looking at what can actually happen in real life [Orr14]. He 
reminded us that big-O “may ignore other factors, such as memory access 
costs that have become increasingly important in recent years.” Given the 
article was written in 2014, I wonder how different the results might look 
today. Feel free to re-read the article and run the test cases to see what 
happens now. 

The runtime behaviour of a system can be hard to predict, and different 
architectures will have different runtime profiles. If a system appears to 
be under strain, you can try throwing more hardware at it, as the phrase 
goes. Not literally, of course. Now, we’ve all read, or are at least aware of, 
The Mythical Man Month by Fred Brooks, originally published in 1975. 
He shows that adding more people to a software project that is behind 
schedule is likely to delay it even longer. I wonder if adding more hardware 
to a system can have a similar effect. Changing the hardware can improve 
some performance measures. Certainly an SSD is likely to be quicker 
than a spinning disk, and probably use less energy and generate less heat. 
The SSD may not improve the performance of your linked list, though. 
And adding a second computer might make it take even longer to traverse 
the nodes of the list. Changing the data structure is more likely to improve 
performance. Adding more hardware can speed up calculations, provided 
you get the parallelism right. Some problems are embarrassingly parallel, 
in the sense that they do not need to communicate, which is often the 
bottleneck, both in the Mythical Man Month and many parallel algorithms. 
Others are not, which is why we often see multithreaded code run slower 
than equivalent single threaded code. The point about swapping to an 
SSD shows that changing a setup can make more difference than adding 
more of the same. In order to cope with pressure, finding a way to do 
things differently often helps. If a deadline is looming, the best approach 
might be to limit what gets delivered, so a minimum viable product 
(MVP). Many people have written about this, and an MVP is about more 
than doing the bare minimum. The Agile Alliance attributes the term to 
Eric Ries in his Lean Startup book [Agile Alliance], and emphasizes 
the MVP as the core piece of a strategy of experimentation. Finding a 
“version of a new product which allows a team to collect the maximum 
amount of validated learning about customers with the least effort,” means 
you get feedback quickly. This might mean teams “dramatically change a 
product that they deliver to their customers or abandon the product together 
based on feedback they receive from their customers.” Furthermore the 
MVP is supposed to reduce stress or pressure. As with many agile ideas, 
small baby steps FTW. 

You cannot add more people to solve certain problems, such as taking 
an exam. You have a limited amount of time to prepare beforehand and a 
maximum amount of time in the examination itself. Though you can find 

under Pressure
Mounting pressure can be problematic. 
Frances Buontempo takes a step back and 
wonders if pressure is always a bad thing.



FrAnCES BuOnTEmPO FEATurE

February 2023 | Overload | 3

friends to help you revise, you cannot parallelise that task, with three or 
four people learning different parts and taking a section of the exam each.  
Well, you could try, but the invigilator will almost certainly spot what you 
are doing. However, if a group of friends split up to learn different aspects 
of a subject, and reconvene to share what they have learnt, this can work. 
Each person will know some of the subject in depth and by explaining it 
to others may understand even better. Those they explain to might pick up 
some of the subset explained to them. Collaborating can take some of the 
pressure off, and give an arena to vent frustration in. Without a group of 
friends to help, you can choose to focus on a smaller subset yourself, and 
at least ensure you can answer some of the exam questions.

If you are building a software system with several moving parts, you 
might split the work up between teams. However you make the split, 
you need to make sure the whole system works when the pieces are 
glued together. I’ve seen this succeed when pieces from another team 
are mocked out; for example, a service returning hard coded results, until 
the database is in place, and so on. When this happens, the teams can 
program to an interface and be sure the parts will slot together. Without 
an initial discussion on the interfaces to use, trying to make the parts work 
together at the last minute often leads to trouble, later night and fraught 
discussions. Some pressure is avoidable. 

Pressure can lead to innovation, but so can the offer of a reward. King 
Oscar II of Sweden and Norway offered a prize in 1885 for a solution to 
the problem of determining the stability of the solar system. The question 
was, “Will the planets of the solar system continue forever in much the 
same arrangement as they do at present? Or could something dramatic 
happen, such as a planet being flung out of the solar system entirely or 
colliding with the Sun?” [Britannica].

At the time, modelling the motion of two bodies was possible, but three 
or more, let alone all of our solar system’s planets and moons. Poincaré 
won the prize, though he couldn’t fully solve the problem. His ideas lead 
to differential equations. Differential equations can be used to model all 
kinds of dynamical systems, and every now and then people find relatively 
simple looking equations that lead to very complex solutions. “Even 
when there is no hint of randomness in the equations, there can be genuine 
elements of randomness in the solutions.” [Britannica]. Now, whether the 
solutions exhibit genuine randomness is a big question. Certainly you 
might see one small change in initial conditions leading to a large change 
in outcomes. The recurrence relationship governing the familiar 
Mandelbrot set gives a clear example of this. The simple looking equation 
used is

where c is a complex number and z starts at 0. Any numbers which leave 
z bounded belong to the set. The boundary of the set is very complicated 
and if you zoom in, you start to see patterns repeating. This is often cited 
as an example of chaos. I am sure this is something very different to 
randomness. Surprising complex behaviour emerging from a simple model 
is deterministic, and I suspect randomness is often uses synonymously 
with non-determinism. Radioactive decay is often regarded as random, in 

the sense that we are not able to predict when a specific atom will decay, 
even if we can be very precise about the half-life of a radioactive material. 
Einstein said “God does not play dice with the universe” in response to the 
probabilistic laws used in quantum mechanics. He did not like the idea 
of randomness as a fundamental feature of any theory. [Natarajan08]. He 
had other objections too, but that would require a digression into linear 
models and more maths and physics. The salient point is that sequence 
regarded as random do often have predictable properties. Whether 
anything is truly random is another matter. I shall attempt to broach this 
subject in my ACCU conference talk this year, if I ever finish my slides.

We’ve looked briefly at pressure and how it can have positive aspects. 
If people or systems are under too much pressure, they usually crack or 
fail in some way. Having knowledge on the upper bound that a setup 
can handle is useful, but if the environment strays towards that upper 
bound, trouble is on the way. That Poincaré won a prize for developing a 
new area of mathematics is marvelous. Sometimes curiosity and a carrot, 
rather than a stick, is a great motivator. If you are 
under pressure to complete something by a deadline, 
work extra hours, or do something else you can’t 
manage, learn to say “No”. I haven’t yet, but might 
give it a go this year.

references
[Agile Alliance] Minimal Viable Product (MVP): at  

https://www.agilealliance.org/glossary/mvp/
[Britannica] Dynamic systems theory and chaos:  

https://www.britannica.com/science/analysis-mathematics/
Dynamical-systems-theory-and-chaos

[ChemTalk] Gay-Lussac’s Law:  
https://chemistrytalk.org/gay-lussacs-law/

[LoadNinja] https://loadninja.com/articles/load-stress-testing/
[Natarajan08] Vasant Natarajan (2008) ‘What Einstein meant when 

he said “God does not play dice…”’, Resonance, published July 
2008, pp.655–660. Available online at: https://arxiv.org/ftp/arxiv/
papers/1301/1301.1656.pdf

[Orr14] Roger Orr (2014) ‘Order Notation in Practice’, Overload, 
22(124):14-20, December 2014. https://accu.org/journals/
overload/22/124/overload124.pdf#page=15

[Wikipedia] Big O notation:  
https://en.wikipedia.org/wiki/Big_O_notation

You can find details of Fran’s book, Genetic 
Algortithms and Machine Learning for 
Programmers, at https://pragprog.com/titles/
fbmach/genetic-algorithms-and-machine-
learning-for-programmers/

https://www.agilealliance.org/glossary/mvp/
https://www.britannica.com/science/analysis-mathematics/Dynamical-systems-theory-and-chaos
https://www.britannica.com/science/analysis-mathematics/Dynamical-systems-theory-and-chaos
https://chemistrytalk.org/gay-lussacs-law/
https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf 
https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf 
https://accu.org/journals/overload/22/124/overload124.pdf#page=15
https://accu.org/journals/overload/22/124/overload124.pdf#page=15
https://en.wikipedia.org/wiki/Big_O_notation
https://pragprog.com/titles/fbmach/genetic-algorithms-and-machine-learning-for-programmers/
https://pragprog.com/titles/fbmach/genetic-algorithms-and-machine-learning-for-programmers/
https://pragprog.com/titles/fbmach/genetic-algorithms-and-machine-learning-for-programmers/


PAuL FLOyDFEATurE

4 | Overload | February 2023

It is often said that you shouldn’t compare two floating point numbers 
for equality. To quote one erstwhile guru:

Any programmer claiming competence that uses equality between 
floating point values clearly requires re-education on this point.

I agree that in general you need to take care with floating point 
comparisons, but there are times when using == and != is the right 
thing to do. There are two major problems that I see

1. You don’t want to use a tolerance on every single floating-point 
comparison. Not knowing what you are doing and just randomly 
sprinkling tolerances into your comparisons won’t make the 
problems go away.

2. Often the way that the tolerance is used is just plain wrong.

When you use a tolerance to make a floating-point comparison you are 
in effect saying, “This value has some inaccuracy, so I’ll do an inaccurate 
comparison to compensate for it”. The two questions that need to be 
answered are a) is that really the case and b) how inaccurate should the 
comparison be?

A lot depends on your domain of application. First, let’s consider 
mathematical libraries. Here you want to strive to get as much accuracy 
as possible (and indeed the precision may be mandated by [IEEE754]). 
I’ll take the C standard library ‘pow’ function as an example. One 
implementation can be found on GitHub [GNU].

Consider this check
  if (y == 0)
    return 1.0;

I think that it would be an extremely bad idea to use a tolerance here. I 
expect x**0 to be 1. I do not expect x**1e-5 to also be 1 (unless x is 1 
or close to it). There are similar tests for x**1, x**2 and x**-1. There 
is not one use of tolerance in this function, and several floating-point 
comparisons.

Another situation where you shouldn’t use a tolerance is if you are doing 
3-way testing like
  If (a < b) {
    // handle less than
  } else if (a == b) {
    // handle equality
  } else {
    // handle greater than
  }

This is fine as it is and using a tolerance instead of a == b just adds 
gratuitous inaccuracy.

If your numbers come from physical observations, then your precision is 
probably way below the precision of double and even float. Double has 
a precision of about 1 part in 1016 (1 in ten quadrillion). That’s about a 
thousand times more precise than the most accurate measurements that 
we can make [StackExchange].

Even if your data doesn’t come from some inexact source, if you do 
any sort of operation on the data then there will be some rounding error. 
One common case that often surprises the uninitiated is the conversion 
from base 10 strings to binary floating-point (via functions like ‘atof’, 
strtod or std::stod). This doesn’t give an exact result in the sense 
of being identical to the original base 10 value. Furthermore, there will 
be rounding errors on most floating-point operations. The analysis of 
floating-point errors is too big a subject to cover even superficially here. 

If you’d like to delve deeper into the subject, I recommend Accuracy 
and Stability of Numerical Algorithms [Higham02]. For an overview of 
techniques to mitigate rounding errors, see the series of articles published 
by the late Richard [Harris11]. Thirdly, there is ‘What every computer 
scientist should know about floating-point arithmetic’ [Goldberg91]  
which gives a thorough explanation of floating-point. All I will say is that 
if your numerical code is not too badly written then rounding errors will 
generally accumulate slowly in the manner of a drunkard’s walk.

Potential errors
What could happen if you don’t use a tolerance in a floating-point 
comparison? The most immediate thing is that the wrong branch of your 
code could execute.
  if (a == b) {
    action1();
  } else {
    action2();
  }

In the above code, there is the risk that a and b are very close but not 
equal and action2() gets performed rather than action1().

One possibly worse situation that can occur is that your code hangs in a 
loop.
  while (estimation != answer) {
    estimation = refinement(x);
  }

I say possibly worse since at least if this does get stuck in an infinite loop 
it will be easy to debug and fix. Algorithms like this that use progressive 
refinement are common in numerical analysis.

How not to perform floating-point comparisons.
For pedagogical purposes, I’ll start with some bad code that shows how 
not to perform floating-point comparison. This will build up to something 
reasonably functional. All my examples use double but apply equally to 
float and long double.

My first example is the worst code. Don’t do this.

Floating-Point Comparison
Comparing floating point values can be difficult. 
Paul Floyd shows how you should perform 
floating-point comparisons (and how not to do it).

Paul Floyd has been writing software, mostly in C++ and C, for 
about 30 years. He lives near Grenoble, on the edge of the French 
Alps and works for Siemens EDA developing tools for analogue 
electronic circuit simulation. In his spare time, he maintains Valgrind. 
He can be contacted at pjfloyd@wanadoo.fr



PAuL FLOyD FEATurE

February 2023 | Overload | 5

  bool cmpEq(double a, double b)
  {
    return std::fabs(a – b) < 
      std::numeric_limits<double>::min();
  }

I’ve seen this in production and it almost totally wrong. This applies 
equally to the macro DBL_MIN. The problem is that the ‘min’ value here 
is the smallest possible non-denormalized value of a double, typically 
something like 2e-308. For the expression to be true, either a and b have 
to be equal or either/both denormalized. (For those that are not familiar 
with denormalized numbers, they are a special case of the set of floating-
point numbers that extend the minimum possible value to approx. 5e-324 
at the expense of losing precision and slower CPU execution.)

To all intents and purposes, this code only gives a false sense of security 
and behaves like operator==. 

The intention here was probably to use std::numeric_
limits<double>::epsilon(). Epsilon is the smallest representable 
number that can be added to 1.0 to make a new value. This means that 
it represents the limits of numerical precision around the value 1.0. The 
precision is determined by the bits of the hardware – 53 binary digits for 
8-byte doubles which is roughly 16 decimal digits. 

This is not the same thing as the accuracy, which is the measure of error 
of a sequence of computations.

Since I’ve mentioned epsilon, how about using that? Quite often I see 
code like
  bool cmpEq(double a, double b)
  {
    return std::fabs(a – b) < 
      std::numeric_limits<double>::epsilon()*10.0;
  }

(DBL_EPSILON could be used instead of std::numeric_
limits<double>::epsilon()). 

I’ve somewhat arbitrarily multiplied it by a factor of 10 to give a bit of 
margin. But what if a and b are far away from 1.0? If both a and b are 
much smaller than 1.0 then the above comparison will always be true. 
Let’s say a is 1e-18 and b is 1e-24. a is a million times bigger than b 
yet the above function will say that they are equal. That may not be what 
you want. Now what if a and b are much greater than 1.0? Let’s say a is 
1e10 and b is 1.0000000000001e10. That’s a difference that could arise 
from rounding error, but the difference is still 1e-3 which is much greater 
than the 2e-15 tolerance used above. In short, the above function will 
only work well for values that are not too far from 1.0. That might be a 
big restriction.

For my third bad comparison function, I’ll introduce the notion of relative 
tolerance (reltol). The idea behind a reltol is to have a tolerance that scales 
with the values being compared which avoids the problems with big and 
small values that the previous version suffered from. Unfortunately, there 
are still weaknesses and several ways to get this wrong.

  bool cmpEq(double a, double b)
  {
    double reltol = fabs(a)*1e-7;
    return std::fabs(a – b) < reltol;
  }

There is a potential problem with this function not being commutative if 
the double tolerance is larger. More specifically, if the factor used for the 
tolerance is larger than sqrt(DBL_EPSILON) (which is about 1.5e-8) 
and the difference between a and b is a factor between (1.0 + DBL_
EPSILON) and (1.0 + DBL_EPSILON + DBL_EPSILON^2) then the 
comparison is not commutative.

This can be illustrated by Listing 1, which outputs only “then these should 
also equal”. That can be the source of nasty bugs that are hard to track 
down (for instance if this function were used as part of a test in code that 
requires strict weak ordering, for instance as a predicate for std::sort 
or the ordered containers std::map and std::set).

The second problem is that it doesn’t handle infinity nicely. Infinity is 
sticky, which mean that the reltol will also be infinite. So, if both a and 
b are infinite then the expression std::fabs(a - b) < reltol 
becomes Inf < Inf which is false, but Inf == Inf is true.

There are a few things that we can do to fix these problems. Firstly, we can 
apply the reltol factor to a combination of a and b. But what combination? 
I’ve seen their sum, average, min and max used. The sum and average 
have the disadvantage of requiring checks that there is no floating-point 
underflow or overflow, so I don’t recommend using them. That leaves 
min and max. The only difference is that the choice will slightly narrow or 
widen the tolerance, respectively. Since the reltol factor itself is somewhat 
arbitrary, that’s not a big difference. I’ve seen the min version referred to 

#include <iostream>
#include <limits>
#include <cmath>

const double EPSILON = 1e-7;

bool cmpEq(double a, double b)
{
  double reltol = std::fabs(a) * EPSILON;
  return std::fabs(a - b) < reltol;
}
int main()
{
  double testValue = 42.0;
  double otherValue = testValue * 
    (1.0 + EPSILON + EPSILON * EPSILON / 2.0);
  if (cmpEq(testValue, otherValue)) {
    std::cout << "if these are equal then \n";
  }
  if (cmpEq(otherValue, testValue)) {
    std::cout << 
    "then these should also equal\n";
  }
}

Listing 1

The idea behind a reltol is to have a 
tolerance that scales with the values 

being compared which avoids the 
problems with big and small values



PAuL FLOyDFEATurE

6 | Overload | February 2023

as “essentially equal to” ([Knuth97] ), and the Boost documentation refers 
to the max version as “close enough with tolerance” and the min version 
as “very close with tolerance”.

The problem with infinity can be fixed by adding a quick check for 
equality of the arguments.

So now we have Listing 2.

This works with infinity (and NaN which should never compare equal) 
as well as my corner case with values separated by a factor of about 1.0 
+ EPSILON.

Are we all done? Sadly not. Using just a reltol is not good for very small 
values that are close to zero. cmpEq(1e-85, 2e-85) will return false. 
In many situations values these small are just numerical noise possibly 
arising from cancellation and should be considered equal to zero. To 
eliminate these, we must add back a test along the lines of our second 
version using an absolute tolerance (abstol).

 One final version is in Listing 3.

This is still not completely safe. If a and b are very large and of opposite 
signs, then a - b could overflow. If a and b are both very small, 
then multiplying by EPSILON could underflow – moving the abstol 
comparison earlier would fix that.

That only leaves one thing and that is how to choose the relatively 
arbitrary constants used for abstol and reltol EPSILON? For that you 
need to apply your domain knowledge as unfortunately there is no 
one-size-fits-all solution. It also depends on your accuracy requirements. 
I work in the domain of analogue microelectronic circuit simulation. In 
this domain voltages are typically 1V and currents are typically 1µA. A 
good rule of thumb is to have an EPSILON for reltol something like 1e-4 
and an abstol something like 1e-6 times your typical domain values. So, 
for circuit simulation that would be a voltage abstol of 1e-6 and a current 
abstol of 1e-12 [Kundert95].

Existing implementations
Most unit test libraries will have functions for performing floating-point 
comparisons, for instance the WithinAbsMatcher of [Catch2]. Boost has 
floating_point_comparison.hpp [Boost]. One thing that I don’t 
like about this is that the code normalizes the difference by dividing by 
the values. Floating-point division is slow, and I’d rather avoid it when 
possible. The other problem that I see with this is that it suffers from 
Boost template bloat. The header when pre-processed is about 54k lines 
of which about 42k lines are code. That’s a lot for what is essentially 
a 5-line function. A functor close_at_tolerance is provided which 
tests with a relative tolerance. Despite my reservations I would still prefer 
to see boost being used than a wrong home-rolled comparator.

Summary
1. Don’t blindly use tolerances in all floating-point comparisons.

2. Don’t use std::numeric_limits<double>::min() or 
DOUBLE_MIN for tolerances.

3. Consider whether you need an absolute tolerance or not.

4. Choose abstol and reltol EPSILON with care depending on the 
domain of application.

5. Consider using existing and well-tested libraries. n

references
[Boost] floating_point_comparison.hpp:  https://www.boost.org/doc/

libs/1_81_0/boost/test/tools/floating_point_comparison.hpp
[Catch2] catch_matchers_floating_point.hpp: 

https://github.com/catchorg/Catch2/
blob/223d8d638297454638459f7f6ef7db60b1adae99/src/catch2/
matchers/catch_matchers_floating_point.hpp

[GNU] e_pow.c: https://github.com/lattera/glibc/blob/master/sysdeps/
ieee754/dbl-64/e_pow.c 

[Goldberg91] David Goldberg ‘What every computer scientist shoudl 
know about floatig-point arithmetic’, published in ACM Computing 
Surveys, Volume 23, Issue 1 March 1991 and availalbe at: https://
dl.acm.org/doi/10.1145/103162.103163 

[Harris11] Richard Harris wrote a series of four articles in Overload 
from 2010 to 2011:

	n Why Fixed Point Won’t Cure Your Floating Point Blues, 
Overload 18(100):14-21 available at: https://accu.org/journals/
overload/18/100/harris_1717/

	n Why Rationals Won’t Cure Your Floating Point Blues, 
Overload 19(101):8–11 available at: https://accu.org/journals/
overload/19/101/harris_1986/

	n Why Interval Arithmetic Won’t Cure Your Floating Point Blues, 
Overload 19(103):18-23 available at: https://accu.org/journals/
overload/19/103/harris_1974/

	n Why Computer Algebra Won’t Cure Your Floating Point Blues, 
Overload 20(107):14-19 available at: https://accu.org/journals/
overload/20/107/harris_1938/

[Higham02] Nicholas J. Higham (2002) Accuracy and Stability of 
Numerical Algorithms, 2nd Ed.,, SIAM, ISBN 978-0-898715-21-7 

[IEEE754] 754-2019 – IEEE Standard for Floating-Point Arithmetic, 
available at: https://ieeexplore.ieee.org/document/8766229 (Non-
free PDF download.)

[Knuth97] Donald E. Knuth (1997) The Art of Computer Programming, 
Volume 2, Seminumerical Algorithms, 3rd Ed, Addison-Wesley, 
ISBN 0-201-89684-2

[Kundert95] Ken Kundert (1995) Appendix A ‘Simulator Options’ from 
The Designers Guide to SPICE and Spectre available at:  
https://designers-guide.org/analysis/dg-spice/chA.pdf Details of the 
book are available at: https://designers-guide.org/analysis/dg-spice/
index.html

[StackExchange] Physics: What is the most precise physical 
measurement ever performed? Question and answers available at: 
https://physics.stackexchange.com/questions/497087/what-is-the-
most-precise-physical-measurement-ever-performed

bool cmpEq(double a, double b)
{
  const double EPSILON = 1e-7;
  if (a == b) {
    return true;
  }
  double reltol = std::max(std::fabs(a),
    std::fabs(b)) * EPSILON;
  return std::fabs(a - b) < reltol;
}

Listing 2

bool cmpEq(double a, double b, 
  double epsilon = 1e-7, double abstol = 1e-12)
{
  if (a == b) {
    return true;
  }
  double diff = std::fabs(a - b);
  double reltol = std::max(std::fabs(a),
    std::fabs(b)) * epsilon;
  return diff < reltol || diff < abstol;
}

Listing 3

https://www.boost.org/doc/libs/1_81_0/boost/test/tools/floating_point_comparison.hpp
https://www.boost.org/doc/libs/1_81_0/boost/test/tools/floating_point_comparison.hpp
https://github.com/catchorg/Catch2/blob/223d8d638297454638459f7f6ef7db60b1adae99/src/catch2/matchers/catch_matchers_floating_point.hpp
https://github.com/catchorg/Catch2/blob/223d8d638297454638459f7f6ef7db60b1adae99/src/catch2/matchers/catch_matchers_floating_point.hpp
https://github.com/catchorg/Catch2/blob/223d8d638297454638459f7f6ef7db60b1adae99/src/catch2/matchers/catch_matchers_floating_point.hpp
https://github.com/lattera/glibc/blob/master/sysdeps/ieee754/dbl-64/e_pow.c
https://github.com/lattera/glibc/blob/master/sysdeps/ieee754/dbl-64/e_pow.c
https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://accu.org/journals/overload/18/100/harris_1717/
https://accu.org/journals/overload/18/100/harris_1717/
https://accu.org/journals/overload/19/101/harris_1986/
https://accu.org/journals/overload/19/101/harris_1986/
https://accu.org/journals/overload/19/103/harris_1974
https://accu.org/journals/overload/19/103/harris_1974
https://accu.org/journals/overload/20/107/harris_1938/
https://accu.org/journals/overload/20/107/harris_1938/
https://ieeexplore.ieee.org/document/8766229
https://designers-guide.org/analysis/dg-spice/chA.pdf 
https://designers-guide.org/analysis/dg-spice/index.html
https://designers-guide.org/analysis/dg-spice/index.html
https://physics.stackexchange.com/questions/497087/what-is-the-most-precise-physical-measurement-ever-performed
https://physics.stackexchange.com/questions/497087/what-is-the-most-precise-physical-measurement-ever-performed


LukAS BArTh FEATurE

February 2023 | Overload | 7

Determining If A Template 
Specialization Exists
How do you tell if a class or function template can be used with 
specific arguments? Lukas Barth details his approach.

One C++17 problem I come across every now and then is to 
determine whether a certain class or function template specialization 
exists – say, for example, whether std::swap<SomeType> or

std::hash<SomeType> can be used. I like to have solutions for these
kind of problems in a template-toolbox, usually just a header file living 
somewhere in my project. In this article I try to build solutions that are as 
general as possible to be part of such a toolbox.

Note that it is not entirely clear what ‘a specialization exists’ means. Even 
though this might seem unintuitive, I’ll postpone that discussion to the 
last section (‘What do I mean by ‘a specialization exists’?’) and will, for 
now, continue with the intuitive sense that ‘specialization exists’ means ‘I 
can use it at this place in the code’.

Where I mention the standard, I refer to the C++17 standard [C++17], 
and I usually use GCC 12 and Clang 15 as compilers. See the sidebar on 
MSVC at the end for why I’m not using it in this article.

Testing for a specific function template 
specialization
First, the easiest part: Testing for one specific function template 
specialization. I’ll use std::swap as an example here, though in C++17
you should of course use std::is_swappable to test for the existence
of std::swap<T>.

Without much ado, my proposed solution is in Listing 1.

Let’s unpack this: The two exists overloads are doing the heavy lifting
here. The goal is to have the preferred overload when called with the 
argument 42 (i.e., the overload taking int) return true if and only if
std::swap<T> is available. To achieve this, we must only make sure
that this overload is not available if std::swap<T> does not exist,
which we do by SFINAE-ing it away if the expression 
  decltype(std::swap<T>(std::declval<T&>(),

std::declval<T&>()))

is malformed.

You can play with this at Compiler Explorer [CompExp-1]. Note that 
we need to use std::declval<T&>() instead of the more intuitive 
std::declval<T>() because the result type of std::declval<T>() 
is T&&, and std::swap can, of course, not take rvalue references.

Testing for a specific class template specialization
Now that we have a solution to test for a specific f unction template 
specialization, let’s transfer this to class templates. We’ll use std::hash 
as an example here.

To transform the above solution, we only need to figure out what to use 
as default-argument type for Dummy, i.e., something that is well-formed 
exactly in the cases where we want the result to be true. We can’t just 
use Dummy = std::hash<T>, because std::hash<T> is a properly 
declared type for all types T! What we actually want to check is whether
std::hash<T> has been defined and not just declared. If a type has 
only been declared (and not defined), it is an incomplete type. Thus we 
should use something that does work for all complete types, but not for 
incomplete types.

In the case of std::hash, we can assume that every definition of 
std::hash must have a default constructor (as mandated by the standard 
for std::hash), so we can do Listing 2.

This works nicely as you can see at Compiler Explorer [CompExp-2]. 
This is how you can use it:
  std::cout << "Does std::string have std::hash? "

<< HasStdHash::check<std::string>();

struct HasStdSwap {
private:
  template <class T, class Dummy =
    decltype(std::swap<T>(std::declval<T &>(),
                          std::declval<T &>()))>
  static constexpr bool exists(int) {
    return true;
  }
  template <class T> static constexpr bool 
    exists(char) { return false; }

public:
  template <class T> static constexpr bool
      check() {
    return exists<T>(42); }
};

Listing 1

struct HasStdHash {
private:
  template <class T, class Dummy = 
decltype(std::hash<T>{})>
  static constexpr bool exists(int) {
    return true;
  }

  template <class T>
  static constexpr bool exists(char) {
    return false;
  }

public:
  template <class T>
  static constexpr bool check() {
    return exists<T>(42);
  }
};

Listing 2

Lukas Barth is a software engineer who has been using C++ almost 
exclusively for a couple of years now. After completing his computer 
science PhD with a focus on algorithms in 2020, he now works at 
MENTZ on building a journey planner for public transport. You can 
contact him at contact@lukas-barth.net



LukAS BArThFEATurE

8 | Overload | February 2023

A generic test for class templates
If I want to put this into my template toolbox, I can’t have a implementation 
that’s specific for std::hash (and one for std::less, one for 
std::equal_to, …). Instead, I want a more general form that works 
for all class templates, or at least those class templates that only take type 
template parameters.

To do this, I want to pass the class template to be tested as a template 
template parameter. Adapting our solution from above, Listing 3 is what 
we would end up with.

This does still work for std::hash, as you can see at Compiler Explorer 
[CompExp-3], when being used like this:
 std::cout << "Does std::string have std::hash? "
 << IsSpecialized<std::hash>::check<std::string>();

However, by using Tmpl<Args...>{}, we assume that the class (i.e., 
the specialization we are interested in) has a default constructor, which 
may not be the case. We need something else that always works for any 
complete class, and never for an incomplete class.

If we want to stay with a type, we can use something unintuitive: the 
type of an explicit call of the destructor. While the destructor itself has no 
return type (as it does not return anything), the standard states in [expr.
call]:

If the postfix-expression designates a destructor, the type of the 
function call expression is void; […]

So Listing 4 will work regardless of how the template class is defined1 
(changes highlighted in Listing 4).

Note that we use std::declval to get a reference to Tmpl<Args...> 
without having to rely on its default constructor. Again you can see this at 
work at Compiler Explorer [CompExp-4].

1 With the notable exception of the template class having a private 
destructor.

Problem: Specializations that sometimes exist 
and sometimes don’t
The question of whether SomeTemplate<SomeType> is a complete 
type (a.k.a. ‘the specialization exists’) depends on whether the respective 
definition has been seen or not. Thus, it can differ between translation 
units, but also within the same translation unit. Consider this case:
 template<class T> struct SomeStruct;
 bool test1 =
   IsSpecialized<SomeStruct>::check<std::string>();
 template<> struct SomeStruct<std::string> {};
 bool test2 =
   IsSpecialized<SomeStruct>::check<std::string>();

What should happen here? What values would we want for test1 
and test2? Intuitively, we would want test1 to be false, and 
test2 to be true. If we try to square this with the IsSpecialized 
template from Listing 4, something weird happens: The same template, 
IsSpecialized<SomeStruct>::check<std::string>(), is 
instantiated with the same template arguments but should emit a different 
behavior. Something cannot be right here. If you imagine both tests (once 
with the desired result true, once with desired result false) to be 
spread across different translation units, this has the strong smell of an 
ODR-violation.

If we try this at Compiler Explorer [CompExp-5], we indeed see that this 
does not work. So, what’s going on here?

The program is actually ill-formed, and there’s nothing we can do to 
change that.

template <template <class... InnerArgs> 
          class Tmpl>
struct IsSpecialized {
private:
  template <class... Args, 
    class dummy = decltype(Tmpl<Args...>{})>
  static constexpr bool exists(int) {
    return true;
  }
  template <class... Args>
  static constexpr bool exists(char) {
    return false;
  }
public:
  template <class... Args>
  static constexpr bool check() {
    return exists<Args...>(42);
  }
};

Listing 3

template <template <class... InnerArgs> 
          class Tmpl>
struct IsSpecialized {
private:
  template <class... Args,
    class dummy =
    decltype(std::declval<Tmpl<Args...>>()
    .~Tmpl<Args...>())>
  static constexpr bool exists(int) {
    return true;
  }
  template <class... Args>
  static constexpr bool exists(char) {
    return false;
  }
public:
  template <class... Args>
  static constexpr bool check() {
    return exists<Args...>(42);
  }
};

Listing 4

If we want to stay with a type, we can use 
something unintuitive: the type of an 
explicit call of the destructor.

As an aside, if you know of a way to extend this to templates taking 
non-type template parameters, please let me know!



LukAS BArTh FEATurE

February 2023 | Overload | 9

The standard states [C++17a]:

If a template […] is explicitly specialized then that specialization 
shall be declared before the first use of that specialization that would 
cause an implicit instantiation to take place, in every translation unit 
in which such a use occurs; no diagnostic is required. […]

Of course the test for the availability of the specialization would ‘cause an 
implicit instantiation’ (which fails and causes SFINAE to kick in).2 Thus 
it is always ill-formed to have two tests for the presence of a specialization 
if one of them ‘should’ succeed and one ‘should’ fail.

In fact, the standard contains a paragraph, [C++17c] that does not define 
anything (at least if I read it correctly), but only issues a warning that 
‘there be dragons’ if one has explicit specializations sometimes visible, 
sometimes invisible. I’ve not known the standard to be especially poetic, 
this seems to be the exception:

The placement of explicit specialization declarations […] can 
affect whether a program is well-formed according to the relative 
positioning of the explicit specialization declarations and their points 
of instantiation in the translation unit as specified above and below. 
When writing a specialization, be careful about its location; or to 
make it compile will be such a trial as to kindle its self-immolation.

Thus, as a rule of thumb (not just for testing whether a specialization 
exists): If you use Tmpl<T> at multiple places in your program, you must 
make sure that any explicit specialization for Tmpl<T> is visible at all 
those places.

A generic test for function templates
The move from testing whether one particular class template was 
specialized for a type T to having a test for arbitrary class templates 
was pretty easy. Unfortunately it is a lot harder to replicate the same 
for function templates. This is mainly because we cannot pass around 
function templates as we can pass class templates as template template 
parameters.

If we want to have a template similar to IsSpecialized from 
above (let’s call it FunctionSpecExists), we need a way of 
encapsulating a function template so that we can pass it to our new 
FunctionSpecExists. On the other hand, we want to keep this 
‘wrapper’ as small as possible, because we will need it at every call site. 
Thus, building a struct or class is not the way to go.

C++14 generic lambdas provide a neat way of encapsulating a function 
template. Remember that a lambda expression is of (an unnamed) class 
type. Thus, we can pass them around as template parameter, like any 
other type.

Encapsulating the function template we are interested in (std::swap, 
again) in a generic lambda could look like this:
  auto l = [](auto &lhs, auto &rhs) { 
    return std::swap(lhs, rhs); };

2 This is explicitly stated in [C++17b].

Now that we have something that is callable if and only if 
std::swap<decltype(lhs)> is available. When I write ‘is 
callable if’, this directly hints at what we can use to implement 
our FunctionSpecExists struct – ‘is callable’ sounds a lot like 
std::is_invocable, right?

So, to test whether SomeType can be swapped via std::swap, can we 
just do this?
  auto l = [](auto &lhs, auto &rhs) {
    return std::swap(lhs, rhs); };
  bool has_swap = std::is_invocable_v<decltype(l),
    SomeType &, SomeType &>;

Unfortunately, no. [CompExp-6] Assuming that SomeType is not 
swappable, we are getting no matching call to std::swap 
errors. The problem here is that std::is_invocable must rely on 
SFINAE to remove the infeasible std::swap implementations (which 
in this case are all implementations). However, SFINAE only works 
in the elusive ‘immediate context’ as per paragraph 8 in section 17.8.2 
(temp.deduct) of the specification [C++17d] . The unnamed class that 
the compiler internally creates for the generic lambda looks (simplified) 
something like this:
  struct Unnamed {
    template <class T1, class T2>
    auto operator()(T1 &lhs, T2 &rhs) {
      return std::swap(lhs, rhs);
    }
  };

Here it becomes obvious that plugging in SomeType for T1 and T2 does 
not lead to a deduction failure in the ‘immediate context’ of the function, 
but actually just makes the body of the operator() function ill-formed. 

We need the problem (no matching std::swap) to kick in in one of the 
places for which the temp.deduct section of the specification [C17++c] 
says that types are substituted during template deduction. Quoting from 
paragraph 7:

The substitution occurs in all types and expressions that are used 
in the function type and in template parameter declarations.

One thing that is part of the function type is a trailing return type, so we 
can use that. Let’s rewrite our lambda to:
  auto betterL = [](auto &lhs, auto &rhs) 
      -> decltype(std::swap(lhs, rhs)) {
    return std::swap(lhs, rhs);
  };

Now we have a case where, if you were to substitute the non-swappable 
SomeType for the auto types, there is an error in the types involved 
in the function type. And indeed, this actually works, as you can see on 
Compiler Explorer [CompExp-7] and in Listing 5 (overleaf).

I don’t think that you can further encapsulate this into some utility 
templates to make the calls more compact, so that’s just what I will use 
from now on.

If you use Tmpl<T> at multiple places in your program, 
you must make sure that any explicit specialization for 

Tmpl<T> is visible at all those places



LukAS BArThFEATurE

10 | Overload | February 2023

What do I mean by ‘a specialization exists’?
I wrote at the beginning that it’s not entirely clear what ‘a specialization 
exists’ should even mean. It is, of course, not possible – neither for class 
templates, nor for function templates – to check at compile time whether 
a certain specialization exists somewhere, which may be in a different 
translation unit. I wrote the previous sections with the aim of testing 
whether the class template (resp. function template) can be ‘used’ with 
the given arguments at the point where the test happens.

For class templates, I say a ‘specialization exists’ if, for a given set 
of template arguments, the resulting type is not just declared, but also 
defined (i.e., it is a complete type). As an example:
  template<class T>
  struct SomeStruct;
  
  template<>
  struct SomeStruct<int> {};
  // (Point A) Which specializations "exist" 
  // at this point?
  template<>
  struct SomeStruct<std::string> {};

In this code, at the marked line, only the specialization for the type int 
‘exists’.

For function templates, it’s actually a bit more complicated, since 
C++ has no concept of ‘incomplete functions’ analogous to ‘incomplete 
types’. Here, I say that a specialization ‘exists’ if the respective overload 
has been declared. Take this example:
  template<class T>
  void doFoo(T t);
  
  template<class T, class Dummy=
    std::enable_if_t<std::is_integral_v<T>, 
    bool> = true>
  void doBar(T t);
  template<class T, class Dummy=std::is_same_v<T,
    std::string>, bool> = true>
  void doBar(T t) {};
  
  // (Point B) Which specializations "exist" 
  // at this point?

At the marked, line:

	n For any type T, the specialization doFoo<T> ‘exists’, because the 
respective overload has been declared in lines one and two.

	n The two specializations doBar<std::string> and doBar<T> for 
any integral type T ‘exist’. Note that this is indenpendent of whether 
the function has been defined (like doBar<std::string>) or 
merely declared.

	n For all non-integral, non-std::string types T, the specialization 
doBar<T> does ‘not exist’.

This of course means that our ‘test for an existing specialization’ for 
functions is more of a ‘test for an existing overload’, and can in fact be 
used to achieve this. n

references
[C++17] The C++17 Standard: https://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2017/n4659.pdf
[C++17a] Explicit specialization declaration: https://timsong-cpp.github.

io/cppwp/n4659/temp.expl.spec#6
[C++17b] Implicit specialization: https://timsong-cpp.github.io/cppwp/

n4659/temp.inst#6
[C++17c] Explicit specialization: https://timsong-cpp.github.io/cppwp/

n4659/temp.expl.spec#7
[C++17d] Template argument deduction: https://timsong-cpp.github.io/

cppwp/n4659/temp.deduct#8
[CompExp-1] Compiler Explorer (1): https://godbolt.org/z/MjTn6Y3Eo
[CompExp-2] Compiler Explorer (2): https://godbolt.org/z/6hv4rcTrc
[CompExp-3] Compiler Explorer (3): https://godbolt.org/z/qhso5vajj
[CompExp-4] Compiler Explorer (4): https://godbolt.org/z/8ocaWMTd9
[CompExp-5] Compiler Explorer (5): https://godbolt.org/z/5xMv6Mh16
[CompExp-6] Compiler Explorer (6): https://godbolt.org/z/jj4PjYG9n
[CompExp-7] Compiler Explorer (7):  

https://godbolt.org/z/MWjW7WT84
[CompExp-8] Compiler Explorer (8): https://godbolt.org/z/8bMhM5xhq
[Microsoft] MSVC STL implementation: https://github.com/microsoft/

STL/blob/214e0143d1d2f7a1c5ca53a338ba3fbb657bdfa3/stl/inc/
type_traits#L2177-L2204

A note on mSVC and std::hash
In all my examples, I used GCC and Clang as compilers. This 
is because my examples for std::hash do not work with MSVC 
[CompExp-8], at least if you enable C++17 (it works in C++14 mode). 
That is because of this (simplified) std::hash implementation in 
MSVC’s STL implementation [Microsoft]:

  template <class _Kty, bool _Enabled>
  struct _Conditionally_enabled_hash 
  {
    // conditionally enabled hash base
    size_t operator()(const _Kty &_Keyval) const
    {
    return hash<_Kty>::_Do_hash(_Keyval);
    }
  };
  template <class _Kty>
  struct _Conditionally_enabled_hash<_Kty, false>
  {
    // conditionally disabled hash base
    _Conditionally_enabled_hash() = delete;
    // *no* operator()!
  };

  template <class _Kty>
  struct hash
    : _Conditionally_enabled_hash
    <_Kty, should_be_enabled_v<_Kty>>
  {
    // *no* operator()!
  };

This implementation is supposed to handle all integral, enumeration 
and pointer types (which is what should_be_enabled_v tests for), 
but the point is: For all other types, this gives you a defined, and thus 
complete, class – which does not have an operator(). I’m not sure 
why the designers built this this way, but that means that on MSVC, our 
testing-for-type-completeness does not work to determine whether 
a type has std::hash. You must also test whether operator() 
exists!

This article was published on Lukas Barth’s blog on 1 January 
2023 and is available at: https://lukas-barth.net/blog/checking-if-
specialized/

auto betterL = [](auto &lhs, auto &rhs) 
    -> decltype(std::swap(lhs, rhs)) {
  return std::swap(lhs, rhs);
};
constexpr bool sometype_has_swap =
  std::is_invocable_v<decltype(betterL), 
    SomeType &, SomeType &>;

Listing 5

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://timsong-cpp.github.io/cppwp/n4659/temp.expl.spec#6
https://timsong-cpp.github.io/cppwp/n4659/temp.expl.spec#6
https://timsong-cpp.github.io/cppwp/n4659/temp.inst#6
https://timsong-cpp.github.io/cppwp/n4659/temp.inst#6
https://timsong-cpp.github.io/cppwp/n4659/temp.expl.spec#7
https://timsong-cpp.github.io/cppwp/n4659/temp.expl.spec#7
https://timsong-cpp.github.io/cppwp/n4659/temp.deduct#8
https://timsong-cpp.github.io/cppwp/n4659/temp.deduct#8
https://godbolt.org/z/MjTn6Y3Eo
https://godbolt.org/z/6hv4rcTrc
https://godbolt.org/z/qhso5vajj
https://godbolt.org/z/8ocaWMTd9
https://godbolt.org/z/5xMv6Mh16
https://godbolt.org/z/jj4PjYG9n
https://godbolt.org/z/MWjW7WT84
https://godbolt.org/z/8bMhM5xhq
https://github.com/microsoft/STL/blob/214e0143d1d2f7a1c5ca53a338ba3fbb657bdfa3/stl/inc/type_traits#L2177-L2204
https://github.com/microsoft/STL/blob/214e0143d1d2f7a1c5ca53a338ba3fbb657bdfa3/stl/inc/type_traits#L2177-L2204
https://github.com/microsoft/STL/blob/214e0143d1d2f7a1c5ca53a338ba3fbb657bdfa3/stl/inc/type_traits#L2177-L2204
https://lukas-barth.net/blog/checking-if-specialized/
https://lukas-barth.net/blog/checking-if-specialized/


ELI BEnDErSky FEATurE

February 2023 | Overload | 11

Stack Frame Layout On x86-64
Stacks can have different layouts. Eli Bendersky 
describes the x86-64 layout in detail.

A few months before writing this article, I wrote one called ‘Where the 
top of the stack is on x86’ [Bendersky11], which aimed to clear some 
misunderstandings regarding stack usage on the x86 architecture. 

The article concluded with a useful diagram presenting the stack frame 
layout of a typical function call.

In this article, I will examine the stack frame layout of the newer 64-bit 
version of the x86 architecture, x64.1 The focus will be on Linux and 
other OSes following the official System V AMD64 ABI. Windows uses 
a somewhat different ABI, and I will mention it briefly in the end.

I have no intention of detailing the complete x64 calling convention here. 
For that, you will literally have to read the whole AMD64 ABI.

registers galore
x86 has just 8 general-purpose registers available (eax, ebx, ecx, edx, 
ebp, esp, esi, edi). x64 extended them to 64 bits (prefix ‘r’ instead 
of ‘e’) and added another 8 (r8, r9, r10, r11, r12, r13, r14, r15). 
Since some of x86’s registers have special implicit meanings and aren’t 
really used as general-purpose (most notably ebp and esp), the effective 
increase is even larger than it seems.

There’s a reason I’m mentioning this in an article focused on stack 
frames. The relatively large amount of available registers influenced some 
important design decisions for the ABI, such as passing many arguments 
in registers, thus rendering the stack less useful than before.2

Argument passing
I’m going to simplify the discussion here on purpose and focus on integer/
pointer arguments.3 According to the ABI, the first 6 integer or pointer 
arguments to a function are passed in registers. The first is placed in rdi, 
the second in rsi, the third in rdx, and then rcx, r8 and r9. Only the 
7th argument and onwards are passed on the stack.

The stack frame
With the above in mind, let’s see how the stack frame for the C function 
in Listing 1 looks. The stack frame is in Figure 1. 
So the first 6 arguments are passed via registers. But other than that, 
this doesn’t look very different from what happens on x864, except this 
strange ‘red zone’. What is that all about?

1 This architecture goes by many names. Originated by AMD and dubbed 
AMD64, it was later implemented by Intel, which called it IA-32e, then 
EM64T and finally Intel 64. It’s also called x86-64. But I like the name 
x64 – it’s nice and short

2 There are calling conventions for x86 that also dictate passing some 
of the arguments in registers. The best known is probably fastcall. 
Unfortunately, it’s not consistent across platforms.

3 The ABI also defines passing floating-point arguments via the xmm 
registers. The idea is pretty much the same as for integers, however, and 
IMHO including floating-point arguments in the article will needlessly 
complicate it.

4 I’m cheating a bit here. Any compiler worth its salt (and certainly gcc) 
will use registers for local variables as well, especially on x64 where 

The red zone
First I’ll quote the formal definition from the AMD64 ABI:

The 128-byte area beyond the location pointed to by %rsp is 
considered to be reserved and shall not be modified by signal 
or interrupt handlers. Therefore, functions may use this area 
for temporary data that is not needed across function calls. In 
particular, leaf functions may use this area for their entire stack 
frame, rather than adjusting the stack pointer in the prologue and 
epilogue. This area is known as the red zone.

Put simply, the red zone is an optimization. Code can assume that the 
128 bytes below rsp will not be asynchronously clobbered by signals or 
interrupt handlers, and thus can use it for scratch data, without explicitly 
moving the stack pointer. The last sentence is where the optimization lays 
– decrementing rsp and restoring it are two instructions that can be saved 
when using the red zone for data.

registers are plentiful. But if there are a lot of local variables (or they’re 
large, like arrays or structs), they will go on the stack anyway.

long myfunc(long a, long b, long c, long d,
            long e, long f, long g, long h)
{
  long xx = a * b * c * d * e * f * g * h;
  long yy = a + b + c + d + e + f + g + h;
  long zz = utilfunc(xx, yy, xx % yy);
  return zz + 20;
}

Listing 1

Figure 1

Eli Bendersky has been programming since the late 1990s. Most 
recently he’s been working on the Go programming language at 
Google. You can contact him at eliben@gmail.com



ELI BEnDErSkyFEATurE

12 | Overload | February 2023

However, keep in mind that the red zone will be clobbered by function 
calls, so it’s usually most useful in leaf functions (functions that call no 
other functions).

Recall how myfunc in the code sample above calls another function 
named utilfunc. This was done on purpose, to make myfunc non-leaf 
and thus prevent the compiler from applying the red zone optimization. 
Looking at the code of utilfunc (Listing 2), this is indeed a leaf 
function. Let’s see how its stack frame looks when compiled with gcc 
(Figure 2).

Since utilfunc only has 3 arguments, calling it requires no stack usage 
since all the arguments fit into registers. In addition, since it’s a leaf 
function, gcc chooses to use the red zone for all its local variables. Thus, 
rsp needs not be decremented (and later restored) to allocate space for 
this data.

Preserving the base pointer
The base pointer rbp (and its predecessor ebp on x86), being a stable 
‘anchor’ to the beginning of the stack frame throughout the execution 
of a function, is very convenient for manual assembly coding and for 
debugging.5 However, some time ago it was noticed that compiler-

5 Since inside a function rbp always points at the previous stack frame, it 
forms a kind of linked list of stack frames which the debugger can use to 

generated code doesn’t really need it (the compiler can easily keep track 
of offsets from rsp), and the DWARF debugging format provides means 
(CFI) to access stack frames without the base pointer.

This is why some compilers started omitting the base pointer for 
aggressive optimizations, thus shortening the function prologue and 
epilogue, and providing an additional register for general-purpose use 
(which, recall, is quite useful on x86 with its limited set of GPRs).

gcc keeps the base pointer by default on x86, but allows the 
optimization with the -fomit-frame-pointer compilation flag. How 
recommended it is to use this flag is a debated issue – you may do some 
googling if this interests you.

Anyhow, one other ‘novelty” the AMD64 ABI introduced is making the 
base pointer explicitly optional, stating:

The conventional use of %rbp as a frame pointer for the stack 
frame may be avoided by using %rsp (the stack pointer) to index 
into the stack frame. This technique saves two instructions in the 
prologue and epilogue and makes one additional general-purpose 
register (%rbp) available.

gcc adheres to this recommendation and by default omits the frame 
pointer on x64, when compiling with optimizations. It gives an option 
to preserve it by providing the -fno-omit-frame-pointer flag. For 
clarity’s sake, the stack frames showed above were produced without 
omitting the frame pointer.

The Windows x64 ABI
Windows on x64 implements an ABI of its own, which is somewhat 
different from the AMD64 ABI. I will only discuss the Windows x64 
ABI briefly, mentioning how its stack frame layout differs from AMD64. 
These are the main differences:

1. Only 4 integer/pointer arguments are passed in registers (rcx, rdx, 
r8, r9).

2. There is no concept of ‘red zone’ whatsoever. In fact, the ABI 
explicitly states that the area beyond rsp is considered volatile 
and unsafe to use. The OS, debuggers or interrupt handlers may 
overwrite this area.

3. Instead, a ‘register parameter area’6 is provided by the caller in each 
stack frame. When a function is called, the last thing allocated on 
the stack before the return address is space for at least 4 registers 
(8 bytes each). This area is available for the callee’s use without 
explicitly allocating it. It’s useful for variable argument functions as 
well as for debugging (providing known locations for parameters, 
while registers may be reused for other purposes). Although the 
area was originally conceived for spilling the 4 arguments passed 
in registers, these days the compiler uses it for other optimization 
purposes as well (for example, if the function needs less than 32 

access the execution stack trace at any given time (in core dumps as well).
6 Sometimes also called ‘home space’.

long utilfunc(long a, long b, long c)
{
    long xx = a + 2;
    long yy = b + 3;
    long zz = c + 4;
    long sum = xx + yy + zz;

    return xx * yy * zz + sum;
}

Listing 2

Figure 2

some compilers started omitting the base 
pointer for aggressive optimizations, thus 
shortening the function prologue and epilogue



ELI BEnDErSky FEATurE

February 2023 | Overload | 13

bytes of stack space for its local variables, this area may be used 
without touching rsp).

Another important change that was made in the Windows x64 ABI is the 
cleanup of calling conventions. No more cdecl/stdcall/fastcall/
thiscall/register/safecall madness – just a single “x64 calling 
convention”. Cheers to that! n

Further reading
For more information on this and other aspects of the Windows x64 ABI, 
here are some good links:

	n Official MSDN page on x64 software conventions – well organized 
information, IMHO easier to follow and understand than the 
AMD64 ABI document. [MSDN1]

	n ‘Everything You Need To Know To Start Programming 64-Bit 
Windows Systems’ – MSDN article providing a nice overview. 
[MSDN2]

	n ‘The history of calling conventions, part 5: amd64’ – an article by 
the prolific Windows programming evangelist Raymond Chen. 
[Chen04]

	n ‘Why does Windows64 use a different calling convention from all 
other OSes on x86-64?’ – an interesting discussion of the question 
that just begs to be asked. [Stackoverflow]

	n ‘Challenges of Debugging Optimized x64 code’ – focuses on the 
‘debuggability’ (and lack thereof) of compiler-generated x64 code. 
[Microsoft09]

references
[Bendersky11] Eli Bendersky ‘Where the top of the stack is on 

x86’, published 4 February 2011 at https://eli.thegreenplace.
net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

[Chen04] Raymond Chen ‘The history of calling convention...’, 
published 14 January 2004, available at https://devblogs.microsoft.
com/oldnewthing/20040114-00/?p=41053

[Microsoft09] ‘Challenges of Debugging...’ published 9 January 2009, 
available at https://learn.microsoft.com/en-gb/archive/blogs/
ntdebugging/challenges-of-debugging-optimized-x64-code

[MSDN1] ‘Overview of x64 ABI convention’ published 22 April 2022 
at https://learn.microsoft.com/en-us/cpp/build/x64-software-convent
ions?redirectedfrom=MSDN&view=msvc-170

[MSDN2] ‘Everything you need to know…’ published 10 July 2019 
(from an original published May 2006) at https://learn.microsoft.
com/en-us/archive/msdn-magazine/2006/may/x64-starting-out-in-
64-bit-windows-systems-with-visual-c

[Stackoverflow] ‘Why does Windows64 use a different …’ – question 
asked 13 December 2010, last answer 1 September 2022 at 
https://stackoverflow.com/questions/4429398/why-does-windows64-
use-a-different-calling-convention-from-all-other-oses-on-x86

This article was published on Eli Bendersky’s website on 6 September 
2011 and is available at: https://eli.thegreenplace.net/2011/09/06/
stack-frame-layout-on-x86-64/#id8

unwind Tables
The unwind tables (for both the Itanium ABI and the Windows ABI) 
ensure exceptions (and debuggers!) are able to unwind the stack and 
recover the values of some local variables even without the chain of 
‘base pointer’ registers.

The full details are pretty messy and fortunately few programmers 
need to navigate the tables themselves. For example, see: 
https://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf

And the winners are…
In Overload 172 and CVu 34.6, we invited you to vote for your favourite articles 
both in Overload and CVu (which is our sister publication for members). 
The results are in.

2nd place
CVu: Code Optimization (Part 1 & Part 2) (Pete Goodliffe, in CVu 34.3 and 34.4)
Overload: C++20 Benefits: Consistency With Ranges (Andreas Fertig in Overload 167)

Thank you to everyone who took the time to vote, and to those who wrote the articles. We 
can’t offer a prize – just the mention here. A number of other writers got a vote, so if you 
wrote something for us, someone probably thoroughly enjoyed what you had to say.

1st place
CVu: LOON: Line Oriented Object Notation (Pete Cordell, in CVu 34.4)
Overload: Compile-time Wordle in C++20 (Vittorio Romeo in Overload 169)

If you’re reading this online, the article titles (or parts, in the case of Code Optimization) 
link to the articles. Overload articles are publicly available, but you must be a member 
(and logged in) to access the CVu ones. If you’re not a member yet, why not join?

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/
https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/
https://devblogs.microsoft.com/oldnewthing/20040114-00/?p=41053
https://devblogs.microsoft.com/oldnewthing/20040114-00/?p=41053
https://learn.microsoft.com/en-gb/archive/blogs/ntdebugging/challenges-of-debugging-optimized-x64-code
https://learn.microsoft.com/en-gb/archive/blogs/ntdebugging/challenges-of-debugging-optimized-x64-code
https://learn.microsoft.com/en-us/cpp/build/x64-software-conventions?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/x64-software-conventions?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/may/x64-starting-out-in-64-bit-windows-systems-with-visual-c
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/may/x64-starting-out-in-64-bit-windows-systems-with-visual-c
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/may/x64-starting-out-in-64-bit-windows-systems-with-visual-c
https://stackoverflow.com/questions/4429398/why-does-windows64-use-a-different-calling-convention-from-all-other-oses-on-x86
https://stackoverflow.com/questions/4429398/why-does-windows64-use-a-different-calling-convention-from-all-other-oses-on-x86
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/#id8
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/#id8
https://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf
https://accu.org/journals/cvu/34/3/goodliffe/
https://accu.org/journals/cvu/34/4/goodliffe/
https://accu.org/journals/overload/30/167/fertig/
https://accu.org/journals/cvu/34/4/cordell/
https://accu.org/journals/overload/30/169/romeo/


LuCIAn rADu TEODOrESCuFEATurE

14 | Overload | February 2023

robert C. Martin argues that we’ve probably invented all possible 
programming languages [Martin11]. There are two dimensions we 
need to analyse programming languages by: syntax and semantic 

class. In terms of syntax, we’ve experimented just about everything; 
we’ve probably seen all types of syntax we can have.1 If we look at the 
semantic class of a programming language – i.e., the paradigm that the 
language emphasizes – we don’t have too many choices.

The approach that Robert C. Martin has on semantic classes is particularly 
interesting. He argues that a programming paradigm is best characterised 
by what it removes, not by what it adds; for example, structured 
programming is the paradigm that removes gotos from the language, 
constraining the direct transfer of control, which leads to programs that 
are easier to reason about. Imposing constraints on the possible set of 
programs that can be expressed in a language adds discipline to the 
language and can improve the language.

In this article, we will build on this idea and show that we haven’t yet 
reached the end of the stack with the things we can remove from languages. 
We look at value-oriented programming, a programming paradigm that 
the Val programming language [Val] proposes, and how this paradigm 
can improve safety, local reasoning, and the act of programming.

Programming paradigms and their constraints
Let’s start by looking at how Robert C. Martin describes mainstream 
paradigms in terms of their restrictions.2

Before doing that, let us issue a warning to the reader and soften some 
claims we will make. Whenever we say that a language restricts the use 
of a feature, we don’t actually mean that the language completely forbids 
it; it’s just that there is an overall tendency not to use that feature, even if 
the language allows it (directly or indirectly). In practice, languages don’t 
strictly follow a single paradigm. Moreover, the idea of a programming 
paradigm is an abstraction that omits plenty of details; we can’t have 
a clear-cut distinction between languages just by looking at their 
programming paradigms.

Modular programming is a paradigm that imposes constraints on the 
source code file size. The idea is to disallow/discourage putting all the 
source code of a program into one single file. One can have the same 
reasoning applied to the size of functions. Doing this will enable us, the 
readers of the programs, to understand the code more easily; we don’t 
have to fit the entire codebase in our head, we can focus on smaller parts.

1 For any syntax, there is also semantics associated with it; Robert C. 
Martin seems to conflate the two notions and just talks about syntax.

2 Some of the readers might disagree with some of these characterisations; 
as much as possible, I tried to stick to Marin’s exposition of semantic 
classes (programming paradigms).

Structured programming can be seen as a discipline imposed on direct 
transfer of control. We don’t use goto instructions, but rather construct 
all our programs of sequence, selection, or iterations. This allows us to 
easily follow the flow of the program, and manually prove the correctness 
of the code (when applicable).3 Structured programming also allows (to 
some degree) local reasoning about the code; this is something of great 
interest for the purpose of this article.

Object-oriented programming is a paradigm that adds restrictions 
on the use of pointers to functions and indirect transfer of control. In 
languages like C, to achieve polymorphic behaviour, one would typically 
use function pointers. In OOP, one would hide the use of function pointers 
inside virtual tables, which would be implementation details for class 
inheritance. This will make polymorphism easier to use, safer (fewer 
needs of casts) and it also allows us to easily implement dependency 
inversion. In turn, dependency inversion allows us to have loose coupling 
between our modules, making the code easier to reason about.

Functional programming can be thought as a paradigm that imposes 
discipline on assignment of variables. If the assignment is not allowed, 
all values are immutable, which leads to function purity. Function 
purity allows easier reasoning about the functions (i.e., function results 
depend solely on their input arguments), improves safety, allows a set 
of optimisations that are not typically available with impure functions 
(removing unneeded function calls, adding memoisation, reordering of 
function calls, etc.) and allows code to be automatically parallelised.

We can see a pattern here: we restrict the ability to write certain types 
of programs, we get some guarantees back from the language, and these 
guarantees can help us write better programs. Removal of features can be 
beneficial. To make a parallel, this is similar to governments that make 
laws to prevent certain (unethical) things to happen, but the removal of 
something that was previously allowed will make the society a better 
place.

In general, switching from one programming paradigm to another is hard, 
as we have to change our mental model for reasoning about code; things 
that are common practice in one paradigm may be restricted in another. 
Both the strategies and the patterns that we use must change. That is why 
I prefer the syntagm programming paradigm rather than semantic class 
when discussing these categories of programming languages.

Before looking at what restrictions the value-oriented programming 
paradigm instills, let’s first look at the main benefits of its restrictions: 
safety and local reasoning.

Safety in programming languages
There is a lot of confusion around the word safety in the context of 
programming languages, so I will spend some time to define it for this 
article. I will follow the line of thought from Sean Parent [Parent22].

3 The ideas of structured programming go beyond this point; structured 
programming also emphasizes the use of abstractions, decomposition 
of programs and local reasoning [Dahl72]; but we will ignore these for 
the purpose of this article.

Value-Oriented Programming
The research Val programming language 
uses value-oriented programming. 
Lucian Radu Teodorescu explores this paradigm.

Lucian Radu Teodorescu has a PhD in programming languages 
and is a Staff Engineer at Garmin. He likes challenges; and 
understanding the essence of things (if there is one) constitutes the 
biggest challenge of all. You can contact him at lucteo@lucteo.ro



LuCIAn rADu TEODOrESCu FEATurE

February 2023 | Overload | 15

All programs consist of operations/commands; we will represent such an 
operation as C. Following Hoare formalism [Hoare69], we can associate 
preconditions (noted as P) and postconditions (noted as Q) to these 
operations. Thus, the programs can be represented as sets of triplets of 
the form {P}C{Q}. For a correct program, in the absence of any errors, 
for all operations in the program, if the preconditions P hold, then, after 
executing C, the postconditions Q will also hold.

For example, in C++, if i is a variable of type int, then for the operation 
i++ we can say that the precondition is that i is not the maximum integer 
value and that the postcondition is that the new value of i is one greater 
than its initial value.

Let us look at all the possible cases there can be when we execute the 
operation in {P}C{Q} (see Table 1).

If all the operations in a program are in the first scenario (i.e., both 
preconditions and postcondition hold) then we say the program is well-
formed and correct. Typically, it is impossible for programming languages 
to guarantee that all the code expressible in the language falls under this 
scenario.

The second scenario lays the emphasis on correctness in the presence 
of errors.4 The program accepts the fact that there might be errors that 
can lead to failure to satisfy postconditions for all operations, but it’s 
important for these errors to be handled correctly. For example, it may be 
impossible for a program to make a network call to a server if the network 
cable is unplugged; if that is correctly treated as an error, the program is 
correct (assuming that everything else is also treated appropriately). It is 
outside the scope of this article to delve into what it means to have correct 
error reporting, but this is not something hard to do (see [Parent22] for 
details). The bottom line is that error handling is the key to program 
correctness.

The last case is the one in which we are trying to execute an operation, but 
the preconditions don’t hold. This case is about the safety of the language. 
The only way in which preconditions may fail is when the program is 

4 Errors are not bugs, just like throwing exceptions is not considered buggy 
behaviour. A program can be correct, i.e., bug-free, in the presence of 
errors.

invalid (i.e. there is a bug); so safety in a programming language concerns 
its response to invalid programs.

We call an operation safe if it cannot lead to undefined behaviour, directly 
or indirectly. If we have an operation that may corrupt memory, it can 
lead to crashes while executing the operation, or the program may crash 
at any later point, or the program may execute the code of any other 
arbitrary program, or the program may continue to function normally — 
the behaviour is undefined, so that operation is unsafe.

We call an operation strongly safe if the program terminates when 
executing it if the preconditions of the operation don’t hold. That is, 
programs consisting of strongly safe operations will catch programming 
failures and report them as fast as they can.

Operations that are safe but not strongly safe may result in unspecified 
behaviour. The operation can result in invalid values or can execute 
infinite loops. For example, the implementation of a square root function 
that is just safe can produce invalid values for negative numbers or can 
loop forever. Unlike undefined behaviour, though, unspecified behaviour 
is bounded by the normal rules of the language: no matter what else 
happens, the same program is still executing when that behaviour 
completes.

Ideally, we want all our programs to be strongly safe; but, unfortunately, 
strong safety is much harder to achieve than simple safety, because safety 
is a transitive property, while strong safety is not. An operation cannot 
contain undefined behaviour if it consists of a series of operations that 
cannot have undefined behaviour, which makes safety transitive. On the 
other hand, we can violate the preconditions of an operation without 
violating any of the preconditions of the operations it consists of.

The non-transitivity of strong safety is illustrated by the C++ code in 
Listing 1. In this example, all the operations are safe, thus calling 
floorSqrt cannot lead to undefined behaviour. We have a precondition 
that the given argument must be positive. But passing a negative number 
to this function will not invalidate the preconditions of any operation in the 
function.5 All the operations inside the function have their preconditions 

5 In C++, overflows of unsigned values are well defined and use modulo 
arithmetic.

Possible scenarios when executing operations

Scenario What should happen
P and Q both 
hold

the execution is well-formed; the program is 
correct with respect to this operation

P holds, but Q 
doesn’t hold

C needs to report an error, ideally explaining what 
led to the error; otherwise, the program is buggy 

P doesn’t hold C can terminate the program (ideal case), it can 
produce unspecified behaviour, or it can result in 
undefined behaviour

Table 1

// Precondition: x >= 0
unsigned int floorSqrt(int x) {
  if (x == 0 || x == 1)
    return x;
  unsigned int i = 1;
  unsigned int result = 1;
  while (result <= x) {
    i++;
    result = i*i;
  }
  return i-1;
}

Listing 1

Ideally, we want all our programs to be strongly 
safe; but, unfortunately, strong safety is much 

harder to achieve than simple safety,



LuCIAn rADu TEODOrESCuFEATurE

16 | Overload | February 2023

hold, but overall, the precondition doesn’t hold. In this case, passing a 
negative value as an argument can led to an infinite loop. 

To conclude, strong safety is hard to achieve systematically, but we 
can achieve safety systematically. A programming language should 
aim at allowing only safe programs (unless explicitly overridden by the 
programmer).

To become safe, a language must add restrictions on the operations 
that can lead to undefined behaviour. Operations that lead to undefined 
behaviour in C++ are the ones that contain: memory safety violations 
(spatial and temporal), strict aliasing violations, integer overflows, 
alignment violations, data races, etc.

Locally and globally detectable undefined behaviour
Undefined behaviour can be of two types, depending on the amount of 
code we need to inspect in order to detect it:6

	n Locally detectable, if we can detect it by analysing the operation 
in question, or surrounding code. Examples: integer overflow, 
alignment violations, null-pointer dereference, etc.

	n Globally detectable, if we need to analyse the whole program to 
detect safety issues. Examples: most memory safety violations, data 
races, etc.

Locally detectable undefined behaviour can be easily fixed in a 
programming language. The language can insert special code to detect 
violations and deal with them. Globally detectable undefined behaviour 
is trickier to deal with because it cannot be easily detected. In an unsafe 
language, one needs a certain discipline to ensure that this kind of 
undefined behaviour cannot occur.

Listing 2 shows a C++ function that, at first glance, seems perfectly 
fine. But, on the caller side, we use the function in a way that will cause 
undefined behaviour. The push_back call might need to reallocate 
memory, move all the objects contained in the vector and might invalidate 
all the pointers to the original objects; if the given object is part of the 
original vector memory, then we would be accessing an invalid object.

6 We use the term ‘detect’ here in a broader context; we don’t mean that 
the compiler or generated runtime code would be required to perform 
analysis to identify those scenarios (that might lead to the halting 
problem). If a person looking at the code can identify the potentiality of 
safety issues, we say that the undefined behaviour is detectable.

This is clearly a bug and it cannot be detected only by looking at the 
function that has the undefined behaviour. We need to also look at all the 
possible ways this function is called.

Listing 3 shows another case in which we access invalid memory. Here, 
in a similar way, we take a string_view object from an object that 
is part of our vector. The ownership of the actual string data belongs to 
the Person object, which belongs to the vector. But, while utilising the 
string_view object we are changing the vector, possibly deleting the 
underlying object. Invalid memory access is expected.

Listing 4 shows a slightly strange code: we indirectly change the content 
of a container while traversing the container. While this example may be 
somehow contrived, one can find it in large code-bases under different 
forms. We are trying to access an object with some predicate, and because 
of the complexity of the code we are unaware of the fact that the predicate 
may actually change the original object.

All these examples have a common problem: looking locally at the 
code, we are assuming that objects we are operating with have certain 
properties, without realising that the codebase will indirectly change 
those properties. We might assume that a reference will point to a valid 
object, that the object referenced by a constant reference will not change 
or that the object, if it’s in a valid state, will remain in that state. All these 
assumptions cannot be guaranteed by the compiler, just by looking at the 
surrounding context. We need to perform analysis on the whole program 
to spot potential safety issues.

The language is not strong enough to provide us guarantees that would 
enable us to reason locally. It’s similar to how the use of void* casts and 
gotos is discouraged, even though we can write good programs with 
them – these features require extra discipline to ensure the code is correct.

void my_push_back(vector<MyObj>& dest,
    const MyObj& obj) {
  dest.push_back(MyObj{});
  dest.back().copy_name(obj);
}
// caller:
vector<MyObj> vec = generate_my_vector();
my_push_back(vec, vec[0]);

Listing 2

void remove_by_name(vector<Person>& persons,
                    string_view name) {
  std::erase(persons.begin(), persons.end(),
    name); // C++20
}
// caller
const Person& to_fire = 
  worst_performer(employees);
remove_by_name(employees, to_fire.name());

Listing 3

vector<MyObj> objects;
bool my_pred(const MyObj& obj) {
  if (obj.is_invalid() && !objects.empty() 
      && objects.front() == obj) {
    objects.erase(objects.begin())
  }
  return obj.can_be_selected();
}
auto it = find_if(objects.begin(), objects.end(),
  my_pred);

Listing 4

Locally detectable undefined behaviour 
can be easily fixed… Globally detectable 
undefined behaviour is trickier to deal 
with because it cannot be easily detected.



LuCIAn rADu TEODOrESCu FEATurE

February 2023 | Overload | 17

Local reasoning
The previous examples suggested that maintaining local reasoning is 
hard, even within the bounds of structured programming, if we have 
mutation on top of reference semantics. In the presence of references, 
two objects might be connected in ways that cannot be properly deduced 
by reasoning locally.

Local reasoning lowers our cognitive burden when writing and analysing 
code. And, as we know that our mind is the main bottleneck while 
programming, it is probably making sense to conclude that local reasoning 
as one of the most important goals in software engineering. Therefore, 
programming languages should aim at ensuring local reasoning.

We call it spooky action at a distance when local reasoning is broken 
because shared state has been unexpectedly mutated.

Value-oriented programming
In this article, what we call value-oriented programming is a programming 
paradigm in which first-class references are not allowed. The language 
might use references under the covers for efficiency reasons, but these are 
not exposed as first-class entities to the programmer. In contrast to pure 
functional programming where first-class references are also not present, 
value-oriented programming allows mutation.

Forbidding first-class references has the following consequences:

	n spooky action at a distance cannot happen anymore

	n the law of exclusivity is imposed [McCall17], which guarantees 
exclusivity of access when performing mutation

	n aggregation is eliminated; to be replaced by composition.

In this paradigm, emphasis is on the use of value semantics across the 
language. All types in such a language should behave like int; one 
should see all objects as values, like int values.

A first formalisation of this paradigm can be seen in [Racordon22a].

Law of exclusivity and spooky action at a distance
Surprisingly, we can eliminate all undefined behaviour detectable only 
globally (probably the worst class of safety issues) if we impose just one 
restriction on the programming language: whenever an object is mutated, 
the code that does the mutation needs to have exclusive access to the 
object. This is called the law of exclusivity [McCall17]. This law is a 
fundamental part of value-oriented programming.

This law has two important consequences:

	n while reading an object, nobody can change it

	n while mutating an object, nobody can read or change it.

If we start looking at an object, and we know that the object is valid, there 
is nobody else that can invalidate the object while we are looking at it. 
Mutation of the object would require us to stop looking at the object.

While trying to change the object, we don’t affect other code that might 
look at the same object; there can’t be such code under the law of 
exclusivity.

In other words, there cannot be any spooky action at a distance 
[Racordon22a, Abrahams22a, Abrahams22b, Abrahams22c 
Racordon22b]. Nobody can indirectly change an object while we are 
looking at it. Eliminating spooky action at a distance greatly improves 
local reasoning; I see this as a considerable improvement on some core 
ideas from Structured Programming [Hoare69].

Coming back to safety, if we start with a valid object, the only way to 
break the validity of that object is in the local code (as all the mutation to 
the object is done locally). That is, if a set of preconditions for an object 
were true at some point, there is no distant code that can invalidate these 
preconditions; local code is the only one responsible for the evolution 
of the validity of those preconditions. And because local memory safety 
issues can be handled easily by the language, we can construct a safe 

language. Formally, there are details that need to be discussed to reach 
this conclusion, but I hope the reader will understand the intuition behind 
this. For more information, please see [Racordon22a].

We just argued that global (memory) safety issues cannot be present if 
the law of exclusivity is applied. Moreover, the language can prevent 
local safety issues, either by detecting them during compilation or by 
adding runtime checks for potential unsafe operations. That means all our 
operations can be safe. And, as safety composes (as we argued above), 
we get guarantees that the whole program is safe (i.e., without undefined 
behaviour). Thus, this enables us to build programming languages that 
are safe by default.

We’ve just covered the memory safety issues, but we haven’t touched 
threading safety issues. Let’s now complete the picture.

Thread safety
Adding threading to C++ applications is a big source of unsafety and 
frustration. Actually, in her 2021 C++ Now talk [Kazakova21], Anastasia 
Kazakova presents data showing that in the C++ community, Concurrency 
safety accounts for 27% of user frustration; this is the highest source of 
frustration, and it accounts for almost the double of the next source of 
frustration. Our question is now whether the model we are discussing 
implies thread safety or not. In other words, can we have data races in 
this model or not? 7

In his concurrency talks, Kevlin Henney often presents the diagram 
reproduced in Figure 1. If we look at whether the data is mutable or not, 
and if the data is shared or not, we can have 4 possible cases. Out of 
the 4 quadrants, the one in which the data is both mutable and shared 
is problematic; if we don’t properly add synchronisation, we get thread 
safety issues. And, almost by definition, synchronisation is something 
with global effects; we cannot locally reason about it.

In the world of value-oriented programming, where the law of exclusivity 
applies, we cannot be in the synchronisation quadrant. If we have a 
mutable object, the law of exclusivity doesn’t allow us to have that 
object shared – we would be in the top-left quadrant. If we are looking 
at an object that is shared, then the only possibility is that the object is 
immutable – the bottom-right quadrant.

Thus, under the law of exclusivity we can be in 3 of the 4 quadrants, but 
not in the synchronisation quadrant. This means that this model doesn’t 
require explicit synchronisation and cannot lead to data race issues. Data 
races occur when one thread is trying to update a value that another thread 
is reading; this case is completely forbidden in our model.

Value-oriented programming allows us to be concurrently safe by default.

Whole-part relations
Many programming languages use reference semantics as their 
underlying model. With our model, we move away from reference 
semantics towards value semantics (more precisely, Mutable Value 

7 Deadlocks and livelocks are not safety issues by our definition, so we 
won’t cover them here.

Figure 1



LuCIAn rADu TEODOrESCuFEATurE

18 | Overload | February 2023

Semantics [Racordon22a]). We can no longer directly encode arbitrary 
graphs in data structures, while allowing selective mutation to the nodes 
of the graphs. To use Sean Parent’s words, we are no longer allowed to 
have incidental data structures [Parent15].

This description may be too dense, so I’ll attempt to describe this from 
a different perspective. In a UML class diagram, one can associate 
two objects A and B by using composition or by using aggregation. In 
reference-oriented languages, they are usually represented by the same 
code, although semantically they are different.

We want to keep the composition relationship but restrict the use of 
aggregations. Composition is also called a whole-part relationship.

Using only whole-part relationships, all the objects in a program form 
a forest (set of disjoint trees). Changing one object cannot change an 
entirely different object (that is not a super- or sub-object of the object we 
are changing). This means that the impact of changing objects is always 
local, and we can fully reason about object change locally. I cannot stress 
enough the importance of this.

Looking at the ownership property, we can infer the memory safety of 
the program, if all the relationship between objects are compositions. If 
object A needs object B to function properly, then it will contain object 
B; but B cannot be destructed before A, so, A will always have a valid 
instance. If we think about it, this will rule out invalid memory access.

Please note that, for efficiency reasons, implementations of objects may 
share storage, either by making it immutable or by using copy-on-write 
to make it immutable-when-shared. But the language behaves as if there 
are no aggregation relationships.

Emphasis on value semantics
Under the law of exclusivity, disallowing spooky action at a distance and 
with objects using only whole-part relationships, all objects behave as 
values. They are very similar to values of an Int.

Reference semantics disappears: one cannot have an object that is changed 
indirectly by mutation in some other object. Object identity becomes less 
relevant in the face of object equality; we only care about the value of an 
object.

By this logic, value-oriented programming can give us the same 
guarantees as functional programming. But, the model is more relaxed 
than in functional programming. We can mutate variables under the law 
of exclusivity, and thus value-oriented programming is more expressive 
than functional programming.

Compared to functional programming, our paradigm has several 
advantages:

	n allows expressing some problems more efficiently

	n allows expressing some problems in imperative terms, which 
can be more natural for programmers (i.e., thinking in terms of 
postconditions and being more mathematical is often considered 
harder than just thinking in terms of a sequence of actions); 
using operation sequence we can avoid the mental gymnastics of 
functional composition.

The reader may consult [O’Neill09] for an example of a problem that, 
when written in functional languages, is not necessarily efficient nor easy 
to understand.

Changing our mental model
Like we mentioned at the beginning of the article, a programming 
paradigm always comes with a change in the mental model when building 
programs. One simply cannot write and reason about programs in the 
same way between two different programming paradigms. The main 
reason is that the programming paradigm restricts the use of certain 
constructs. And, each time the programmer would want to use those 
constructs, it needs to take a step back and devise a new strategy that 
avoids using them.

In value-oriented programming, we cannot share mutable objects. And, 
not surprisingly, this is widely used in object-oriented programming (and, 
in general, in many forms of imperative programming).

Let’s take an example. Let’s imagine that we are compiling a program, and 
we want to store the program information (syntax tree, type information, 
and links between nodes) in some kind of a graph. In OOP, many would 
probably create a Node base class, and create a class hierarchy from it. 
Then, one would create the possibility of child nodes (most likely by 
having nodes directly linked in other node classes), and the possibility of 
nodes to reference other nodes (similar to weak pointers). By doing so, 
the programmer would create what Sean Parent would call an incidental 
data structure [Parent15]. 

Value-oriented programming would prevent the user from directly 
expressing such a structure. Let us try to illustrate how one can model 
this. The whole program can be modelled by a Program class. This class 
can have ownership of all the nodes we need to create (i.e., use whole-
part relations); for example, one can store all the nodes in an array inside 
this class. The children and the reference relationships can be built using 
indices in the entire collection of nodes. We have a completely equivalent 
data structure, but built using only whole-part relationships. Accessing 
related nodes from a given node is an operation outside any given node, 
so nodes cannot mutate other nodes. Mutating one node requires the 
mutation ability of the entire Program object, and we cannot mutate two 
nodes at the same time. The mutating logic, as it needs to be external 
to the nodes, can be reasoned locally. Because of local reasoning, the 
value-oriented model is arguably better compared to its object-oriented 
alternative.

Let us now take a more complicated example. Let’s assume that we want 
to build a shared cache component. And, to simplify the exposure of the 
problem, let’s also assumed that the cache that can be accessed from 
multiple threads. By definition, a cache can update its state every time one 
wants to read something from it. That is, we have a potential mutation for 
every call made to the cache. And, because this is a shared cache, we need 
to have shared access to a mutable object. This is forbidden by our model.

There is no way of implementing this program in a pure value-oriented 
programming style. One needs to get outside the paradigm to implement 
such a cache.

The bottom line is that we can’t simply jump on value-oriented 
programming and expect our journey to be effortless. We have to adjust 
our mental model for it.

The Val programming language
Val [Val] is a programming language created by Dimi Racordon and 
Dave Abrahams that is probably the first programming language that is 
focused, at its core, on call value-oriented programming. Val aims to be 
fast by definition, safe by default, simple and interoperable with C++.

Val is based on Swift. One can argue that Swift made the first steps 
towards value-oriented programming; Val takes some core ideas from 
Swift further and cleans up the semantics to fully resonate with value-
oriented programming.

Swift encourages using value semantics [Abrahams15], but it doesn’t 
go all the way through to remove reference semantics. While structures 
uphold value semantics, classes in Swift follow reference semantics; 
closures (with mutable captures) also follow reference semantics. 

Val doesn’t have structures and classes as Swift does; in Val there is one 
way of defining structures and that follows value semantics. From this 
point of view, one can argue that Val is simpler than Swift.

Swift aims at being a safe language (i.e., remove the presence of undefined 
behaviour); it does that by adding runtime checks when generating code. 
Val inherits the safety principle from Swift but does this in a better way. 
Because of the guarantees of value-oriented programming, Val has more 
guarantees about the preconditions of the operations, so it can eliminate 
some of the runtime checks.



LuCIAn rADu TEODOrESCu FEATurE

February 2023 | Overload | 19

For some people, Val somehow appears as a successor language to C++; 
see also my previous article [Teodorescu22] (although not necessarily 
positioned this way by language authors). Val’s efficiency aim and the 
goal to be interoperable with C++ put it in that space. But, looking at the 
main programming paradigms in the two languages, the two languages 
seem to operate in different spaces.

There appears to be a big difference between Val and other languages 
that target to be C++ language successors (i.e., Carbon or Cpp2). Val is 
the only language that proposes a paradigm shift. The other languages 
will operate in the same paradigm as C++; i.e., in the words of Robert C. 
Martin, they only propose syntactic changes. With those changes alone, 
it’s hard to get additional guarantees from the language, and therefore it’s 
hard to full fix the safety of the language and to ensure local reasoning.

Comparing Val to Rust, they both seem to fix the safety issues. That 
is because Rust’s borrow checker is also compatible with the law of 
exclusivity. But there is a big difference on how the same results are 
achieved. In Rust one uses reference semantics and manually annotate 
objects to express lifetime guarantees.

In Val the programmer cannot use reference semantics. Aggregation is 
forbidden, and whole-part relationships are used to express connections 
between objects. To recognize different ways of handling objects, 
Val has four parameter passing conventions (let, inout, sink and set) 
[Abrahams22d]. In Val all copies are explicit.

There are cases in which the programmer wants to exit the bounds 
of value-oriented programming. One trades safety guarantees with 
expressive power. Going outside of safety guarantees of the language is 
not a bad thing, and it doesn’t mean that the code is unsafe; it just means 
that the programmer takes full ownership of guaranteeing safety. Similar 
to Rust’s unsafe construct, Val aims to provide a mechanism that 
allows programmers to exit the bounds of value-oriented programming 
[Evans20].

Conclusions
This article explored value-oriented programming, a new programming 
paradigm proposed by Dimi Racordon and Dave Abrahams with the 
creation of the Val programming language.

In value-oriented programming, first-class references are forbidden; 
everything operates under the law of exclusivity, which allows exclusive 
access to an object while mutating it. What is called spooky action at 
a distance (i.e., indirect mutation) is, consequently, also forbidden. In 
this model, all the relationship between objects are whole-part. In other 
words, we ban aggregation in the favour of composition.

We impose restrictions on programming languages to gain some guarantees. 
In our case, the restrictions imposed by value-oriented programming will 
allow us to improve on local reasoning, and to avoid a big class on safety 
issues (the rest of the safety issues being simpler to solve). As cognitive 
power is the main bottleneck in software engineering, improving on local 
reasoning may have a big impact on software engineering.

Val programming language is the first programming language that 
has value-oriented programming (as we defined it) at its core. It is an 
experiment that allows us to explore the boundaries of this paradigm.

Will the Val language succeed? Will the value-oriented programming be 
highly used? We don’t know; and at this point, I don’t think it matters 
that much. We’ve found a new programming paradigm, and I feel that it’s 
our moral duty to explore this new programming paradigm. Only after 
exploring it, we can decide to completely drop it, or to build all future 
programming languages based on it. n

Acknowledgements
The author would like to thank Dave Abrahams and Dimi Racordon for 
reviewing the article and providing numerous suggestions to improve it. 

references
[Abrahams15] Dave Abrahams, Protocol-Oriented Programming 

in Swift, WWDC15, 2015, https://www.youtube.com/
watch?v=p3zo4ptMBiQ

[Abrahams22a] Dave Abrahams, A Future of Value Semantics and 
Generic Programming (part 1), C++ Now 2022, https://www.
youtube.com/watch?v=4Ri8bly-dJs

[Abrahams22b] Dave Abrahams, Dimi Racordon, A Future of Value 
Semantics and Generic Programming (part 2), C++ Now 2022, 
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL

[Abrahams22c] Dave Abrahams, ‘Values: Safety, Regularity, 
Independence, and the Future of Programming’, CppCon 2022, 
https://www.youtube.com/watch?v=QthAU-t3PQ4

[Abrahams22d] Dave Abrahams, Sean Parent, Dimi Racordon, David 
Sankel, ‘P2676: The Val Object Model’, https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2022/p2676r0.pdf

[Dahl72] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured 
Programming, Academic Press Ltd., 1972

[Evans20] Ana Nora Evans, Bradford Campbell, Mary Lou Soffa, Is 
Rust used safely by software developers?, 2020 IEEE/ACM 42nd 
International Conference on Software Engineering (ICSE), 2020

[Henney17] Kevlin Henney, Thinking Outside the Synchronisation 
Quadrant, ACCU 2017 conference, 2017, https://www.youtube.com/
watch?v=UJrmee7o68A

[Hoare69] C. A. R. Hoare, An axiomatic basis for computer 
programming. Communications of the ACM. 12 (10): 576–580, 
1969.

[Kazakova21] Anastasia Kazakova, Code Analysis++, CppNow, 2021, 
https://www.youtube.com/watch?v=qUmG61aQyQE 

[Martin11] Robert C. Martin, The Last Programming Language, 2011, 
https://www.youtube.com/watch?v=P2yr-3F6PQo

[McCall17] John McCall, Swift ownership manifesto, 2017. https://
github.com/apple/swift/blob/main/docs/OwnershipManifesto.md

[O’Neill09] Melissa E. O’Neill, The genuine sieve of Eratosthenes, 
Journal of Functional Programming 19.1, 2009

[Parent15] Sean Parent, Better Code: Data Structures, CppCon 2015, 
https://www.youtube.com/watch?v=sWgDk-o-6ZE

[Parent22] Sean Parent, Exceptions the Other Way Around, C++Now 
2022, https://www.youtube.com/watch?v=mkkaAWNE-Ig

[Racordon22a] Dimi Racordon, Denys Shabalin, Daniel Zheng, Dave 
Abrahams, Brennan Saeta, Implementation Strategies for Mutable 
Value Semantics, https://www.jot.fm/issues/issue_2022_02/article2.
pdf

[Racordon22b] Dimi Racordon, Val Wants To Be Your Friend: 
The design of a safe, fast, and simple programming 
language, CppCon 2022, https://www.youtube.com/
watch?v=ELeZAKCN4tY&list=WL

[Teodorescu22] Lucian Radu Teodorescu, The Year of C++ Successor 
Languages, Overload 172, December 2022, https://accu.org/
journals/overload/30/172/overload172.pdf#page=10

[Val] The Val Programming Language, https://www.val-lang.dev/

https://www.youtube.com/watch?v=p3zo4ptMBiQ
https://www.youtube.com/watch?v=p3zo4ptMBiQ
https://www.youtube.com/watch?v=4Ri8bly-dJs
https://www.youtube.com/watch?v=4Ri8bly-dJs
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL
https://www.youtube.com/watch?v=QthAU-t3PQ4
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2676r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2676r0.pdf
https://www.youtube.com/watch?v=UJrmee7o68A
https://www.youtube.com/watch?v=UJrmee7o68A
https://www.youtube.com/watch?v=qUmG61aQyQE
https://www.youtube.com/watch?v=P2yr-3F6PQo
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
https://www.youtube.com/watch?v=sWgDk-o-6ZE
https://www.youtube.com/watch?v=mkkaAWNE-Ig
https://www.jot.fm/issues/issue_2022_02/article2.pdf
https://www.jot.fm/issues/issue_2022_02/article2.pdf
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://accu.org/journals/overload/30/172/overload172.pdf#page=10
https://accu.org/journals/overload/30/172/overload172.pdf#page=10
https://www.val-lang.dev/


ChrIS OLDWOODFEATurE

20 | Overload | February 2023

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros. 
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed 
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or @
chrisoldwood

Afterwood
Meetings come and go. Chris Oldwood 
asks us to meet him halfway.

I’m only a few days back into work at the dawn of a new year and I’ve 
already chalked up a couple of meetings. This particular one is the 
overrun for the planning meeting we held yesterday, and it looks like 

we’ll need at least one more to finish things off. My colleague made a 
nervous remark about how long it’s taken to cover all the topics we had 
on the list, and so I made light of the situation by pointing out that I’ve 
spent longer than this in sprint planning meetings that are only looking 
at the next two weeks. In our case, we’re trying to look ahead at the next 
12 months, so I’m hardly surprised we have plenty to discuss, not least 
because most of the people are new to the team so there’s a plethora of 
history and context to fill in.

After spending the last three years filling the void between Development 
and Operations, acting more like a service desk, I’m quite pleased 
to slow the pace down and have the opportunity to sink my teeth into 
something meatier. Not long before Christmas, my diary only contained 
two meetings a week, and one of them was only held on alternate weeks 
which probably sounds like nirvana to some. The change in teams has 
brought with it a couple of extra regular entries in the diary for catch-ups 
but hardly anything arduous. Some kind of ‘daily stand-up’ has been a 
part of my professional routine for so many years now it felt really odd 
when it wasn’t there.

The employees at Shopify started the new year with what many see as a 
belated Christmas present – all regular meetings of more than two people 
were cancelled, along with a cooling off period before they can be re-
added. The premise, according to their CEO, is that many meetings “are 
a bug” and the underlying cause should be fixed instead. In his tweet, he 
cited trust, clarity, and missing APIs as common ‘root’ causes. The article 
I read suggested they were also cancelling all meetings on a Wednesday 
(but didn’t say if that was to allow more time for sports activities like at 
school), while Thursday was reserved for any large meetings. In essence 
,they want to put more time back in the hands of people to get on with 
actually building stuff.

When it comes to hot takes about meetings my personal favourite is this 
tweet from some years ago:

Meetings are complete distraction from coding. Without them, 
I could work without interruption on solving the wrong problems. 
~ @raganwald

To be sure, it was a flippant remark, but there’s more than a grain of 
truth in there. I’ve been witness to at least two occasions where someone 
has gone off on a tangent for a couple of weeks and churned out a large 
body of code that was either far in excess of what was needed to solve 
the problem, or created more problems than we already had. Unlike a 
suggestion in a meeting which can often be reasoned about and either 
improved upon or dismissed in a fast timeframe, reverting a whole ton of 
somebody’s code after they’ve sweated over it for hours is a much tougher 
prospect as their loss is likely to be so much greater. In both cases I had the 
unenviable job of breaking the bad news to them that we needed to revert 
their efforts as there was considerably more technical debt than credit.

In some way I’m not surprised this happens. Back in the late noughties, 
Daniel Pink famously ascribed autonomy, mastery, and purpose towards 
what drives people to be motivated. The aspect of autonomy can lead 
us to take on far more than we are equipped to handle by ourselves. 
Like free-speech, it doesn’t mean you get to do what you want without 
consequences – you still need to be accountable for your actions. The 
intent was to avoid micro-managing people, but not at the cost of 
removing collaboration altogether. Instead, autonomy puts the power to 
collaborate back in the hands of the producer so they have more control 
over when and where it happens. However, if you’re going to adopt a 
more ‘trust, but verify’ approach you don’t want to leave it too long 
before doing some ‘verifying’, lest the waste starts to accumulate and 
course corrections become ever more costly. Ideally, you want a balance 
between giving out creative freedom whilst also ensuring they have 
access to the kinds of people they will want to draw upon because they 
provide insights in a positive manner. The best kind of people often go 
out of their way to have their work and opinions challenged as they treat 
failure as an opportunity for learning. (‘Egoless Programming’ was first 
coined by Gerry Weinberg way back in the early 1970s in The Psychology 
of Computer Programming.)

My take on the drastic actions by Shopify is not to stifle collaboration, 
as that has to happen somewhere, but to try and eliminate some waste 
by avoiding unproductive meetings or removing unnecessary people 
from the equation. For me, an unproductive meeting though is often a 
smell that there is some confusion that needs resolving, which I guess 
is what the CEO of Shopify is getting at, but I’d rather do that quickly 
face-to-face than have to experience the tortuous route of a protracted 
email exchange or pull request with a number of comments to rival War & 
Peace. If you’re in Rumsfeld territory facing unknown unknowns you’ll 
want to navigate out of there as quickly as possible to at least the safer 
harbour of known unknowns.

I remember a project manager getting tetchy once because we went 
around in circles in a few design meetings apparently arguing about a 
particular concept. He saw it as disruptive, but I saw the conflict as a sign 
that we were missing something fundamental, and we were, we just didn’t 
discover what it was until an iteration or two later. When it did finally 
emerge all the confusion made sense, along with the realisation that we 
needed a much broader view of the business than many of our existing 
users had had up to that point.

As I write we’re just about to pass the third anniversary of the first Covid 
lockdown in the UK, along with the sudden switch to long-term remote 
working for many businesses. The consequential rise in asynchronous 
communication via the written word and video recordings will have been 
liberating for some employees more used to a classic 9 to 5 schedule, 
rebalancing the work-life scales for them in the process. But meetings 
can, and should have a social element too, even if just for 
a minute or two here and there, and so I hope we don’t 
throw the proverbial baby out with the bathwater in the 
stampede to deprecate face-to-face contact. n



Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

ACCU is a not-for-profit organisation.

Become a member and support your
programming community.

www.ACCU.org



Follow @ACCUConf
Tweet #ACCUConf

Conference 19 – 22 April 2023
Pre-conference workshops 17 & 18 April 2023

accu
2023

REGISTRATION NOW OPEN! Visit https://www.accuconference.org/


	Under Pressure
	Floating-Point Comparison
	Determining If A Template Specialization Exists
	Stack Frame Layout On x86-64
	And the winners are…
	Value-Oriented Programming
	Afterwood



