
A magazine of ACCU ISSN: 1354-3172

Reasoning About
Complexity – Part 1

Lucian Radu Teodorescu highlights the
importance of reasoning and its

philosophical underpinnings

Incompatible Language Features in C#
Steve Love examines some of the pitfalls.

Need Something Sorted? Sleep On It!
Kevlin Henney takes a look at sleep sort.

Type Safe C++ enum Extensions
Alf Steinbach describes how to extend enum values.

Why You Should Rarely Use std::move
Andreas Fertig reminds us that using std::move
inappropriately can make code less efficient .

Afterwood
Chris Oldwood shares some of his favourite
aphorisms and quotes.

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

June 2023 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

June 2023
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Tim Peck. Replica
‘famine ship’, Dublin, Ireland.

Copy deadlines
All articles intended for publication
in Overload 176 should be
submitted by 1st July 2023 and
those for Overload 177 by 1st
September 2023.

 4 Reasoning About Complexity – Part 1
Lucian Radu Teodorescu highlights the importance
of reasoning and its philosophical underpinnings.

 8 Incompatible Language Features in C#
Steve Love examines some of the pitfalls
of combining positional record structs with
automatic property initializers.

 11 Need Something Sorted? Sleep On It!
Kevlin Henney takes an unexpected
paradigm journey into sleep sort.

 15 Type Safe C++ enum Extensions
Alf Steinbach describes how to extend enum values.

 17 Why You Should Only Rarely Use std::move
Andreas Fertig reminds us that using std::move
inappropriately can make code less efficient.

 19 Afterwood
Chris Oldwood shares some of his favourite quotes
and aphorisms, and considers their origins.

FRANCES BUONTEmPOFEATURE

2 | Overload | June 2023

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

I recently returned from this year’s ACCU conference,
which was lots of fun and gave me loads to think
about. Unfortunately, this has stopped me from even
considering what to write for an editorial. It’s difficult
to produce something to order, by a deadline, at the
best of times. I would claim to have resisted the

temptation to ask ChatGPT [OpenAI-1] to write an editorial for me, but
am currently arguing with it about economics. I asked about production
and productivity after all, so shouldn’t be surprised the chat was not about
coding. After much discussion on employment, economic growth and
automation to replace humans, ChatGPT told me

As technology advances, the role of software developers will
evolve, but it is unlikely that machines will completely replace
human coders.

Now, I mustn’t waste all day arguing with an AI chat bot. Distractions can
eat into our time, and there’s never enough time.

How do you avoid distractions, and stay focused? I am told there are
many productivity influencers ‘out there’. Chris Bailey has a few talks
based around his books on hyper-focus and the productivity project. He
has had several million views on YouTube. I hope they weren’t all by
the same person, because if they were, they were clearly very distracted
at the time. Apologies for flippancy. Sometimes you need to stop the
distractions, but listening to YouTube on a connected device often means
I spin up other things, so I only listened to a few minutes before getting
distracted by something else. Being at a talk at a conference is a different
experience, perhaps because I don’t have my usual distraction around
me. I absolutely can focus, but it’s nice to allow your mind to wander as
people talk. Sometimes you need space to let your mind drift. Slowing
down and noticing your surroundings is grounding. You give space for
ideas, and time to recall things you may have forgotten to do. We all need
to rest sometimes. To an observer, this may not look very productive, but
downtime matters and can make you more productive in the long run.

Some productivity hacks from so-called influencers can be interesting,
but what works for one person may not work for another. I’ve recently
heard mention of the ‘5am club’. Robin Sharma introduced the idea
twenty or more years ago, and wrote a book with the subtitle ‘Own your
morning, elevate your life’ in 2018. [Sharma18]. Many people seem to
be trying a version of the suggested approach of getting up, far too early
to my mind, and scheduling blocks of 20 minutes to do various tasks. I
suspect that different approaches work for different people. There are lots

of other ‘productivity’ blogs and posts out there.
May Pang [Pang23] wrote a Medium article,

explaining why she decided to defy the 5am
club. She claims, “I watched with glee as my

productivity continued to skyrocket with each conventional productivity
rule I challenged that didn’t feel right for me.” Most productivity articles
make big claims. She does sensibly point out circadian rhythms differ.
Some people are productive early in the morning and some are not. Take
anything that claims it will change your life, or solve your problems for
you, with a pinch of salt.

Another fad attracting attention is ChatGPT. I lost a considerable amount
of time arguing with it this morning. OpenAI’s blog [OpenAI-2] tells
me ChatGPT admits its mistakes. Try asking it to write C++ coroutine
code for you. It did say “You are correct, sorry for my mistake” or “You’re
correct. I apologize for the oversight.” on many occasions. It can generate
code, which may not compile. It can even generate tests for its own code.
Would you trust something that marked its own homework? OK, to be
fair, developers often write tests for their own code, so perhaps that’s the
wrong question. I can imagine letting AI generate some boilerplate code
for a simple task might be acceptable. You can even wire ChatGPT into
your IDE, via Copilot [Dias23]. You add a comment, and a little frog icon
has a ‘think’ then offers suggested code. If you leave the comment behind,
others will know how the code was generated. I presume later versions,
trained on different data, may come out with alternative suggestions,
so maybe the comment will become obsolete at some point, as most
comments do. Whether this counts as AI writing code for us, I’m not
sure. It’s doing some kind of statistical based guess. I wrote about AI
code generation a while ago [Buontempo21]. I used genetic programming
(GP), rather than a neural network. GP is like genetic algorithms, but uses
tree structures, and so can generate ASTs and therefore programmers.
Unlike ChatGPT, my code worked, though maybe Fizz Buzz is easier
than C++ coroutines? If you don’t know about genetic algorithms, buy
my book, or read the Overload article I wrote ‘How to Program Your
Way Out of a Paper Bag Using Genetic Algorithms’ [Buontempo13]. In
some ways, using AI generated code is similar to copying code from the
internet or even documentation. However code is generated, it’s always
worth looking at the code and seeing if it is easy to understand, in case
you ever need to revisit it. At very least, check it compiles and does what
you want.

Some boilerplate code is tedious to write, and it might be more productive
to auto-generate such code. Kate Gregory gave the closing keynote at
this year’s ACCU conference. Her talk was called ‘Grinding, Farming,
and Alliances, How words and ideas from casual gaming can make
you a better programmer’. She drew analogies between games and
programming. Grinding meant tedious work, like clicking lots of buttons
to get a reward, and seems very similar to writing boilerplate code, to my
mind. Kate confessed to outsourcing some of the grinding work, getting
a child to click buttons in a game, because the young girl loved seeing
hearts materialize and float up the screen. A productivity win-win. When

Production and Productivity
How can you increase your productivity?
Frances Buontempo discovers that
ChatGPT might not help.

FRANCES BUONTEmPO FEATURE

June 2023 | Overload | 3

I did my post-doc, the lecturers often tried to outsource tedious work to a
PhD student. They thereby avoided the hard grind of experiments, and the
student got results they could use towards their qualification. If someone
other than you might get some benefit or reward from doing a task, even
if it might be a long slog, delegating might be the productive way to go.
Of course, if you have lots of tasks to complete, hiring loads of minions to
do the work might not be optimal. We are all aware of The Mythical Man
Month by Fred Brooks. If you double the number of people on a project,
the time to completion is unlikely to halve. He died at the end of last
year, aged 91. He made “landmark contributions to computer architecture,
operating systems, and software engineering” [ACM]. I believe the 8-bit
‘byte’ may be due to him. Sometime little things make a big difference.
This seemingly small contribution allowed upper and lower case letters
to be represented easily, allowing the use of computers in text processing.
Whether that directly caused large language models and ChatGPT is
another matter.

So much for productivity. Let’s think about production. As much as you
prepare for something to go live, things can always go wrong. I gave
a talk at the ACCU conference, which I had practised a few times. My
laptop powered off live on stage and refused to start up again, until
the following day. I had a copy of the talk in BitBucket, but they have
recently rearranged the UI, so when I logged in on someone else’s laptop,
I couldn’t see any of my repos. Fortunately, someone in the audience had
recently had a similar problem, and managed to help. Several minutes
later, I just about managed to continue where I left off, though some of the
fonts weren’t supported on the other laptop and I had to remember what
various bits of maths on some slides should have said. I also didn’t have
time to build the demos I had prepared. Now, I could have had a pdf of
the slides to avoid the font issue, and saved screen-casts of the demos, but
whatever I had prepared would still have left open the possibility of yet
more things going wrong. Sometimes you can’t prepare for every possible
scenario, so it’s more important to be able to think on your feet and form
a Plan B on the spot. Monitoring what’s happening live on stage, or in
production, is important. The time to recovery is often the best metric.
Preparing for every eventuality is not productive. Having a backup
plan or two is sensible, but you cannot fool-proof anything completely.
Overthinking, whether it be of potential disasters or normal use-cases, is
often a waste of time. The phrase analysis paralysis [Wikipedia] springs
to mind. Chris Oldwood recently reminded me of one of his blogs about
overthinking [Oldwood18]. He points out:

Solving those problems that we are only speculating about can lead
to over-engineering if they never manage to materialise or could
have been solved more simply when the facts were eventually
known.

However, he also asked how much thinking is over-thinking? He points
out thinking about the big picture, and trying a few thought experiments
can be relatively cheap and help the system in the long run. Seeming to be
productive, and bashing out Jiras or ticking things off a TODO list is all
very well, but sometimes pausing for a moment is more productive than
just producing a stream of code. Stopping to think about what you are
producing and why, and even how, can be very useful.

Perhaps we can’t quantify overthinking, but we still use the phrase. We
also describe some code as over-engineered. Using factories, dependency
injection frameworks and the like when a simple script would suffice
certainly seems like over-engineering. I’ve recently been reading The
Art of Darkness: The History of Goth by John Robb. It reminded me
of several bands I had forgotten about, and I even dusted off some old
vinyl and chilled over some music. John Robb describes some albums
as overproduced, a phrase I had forgotten. Now, we’d never describe
production code as overproduced. How do you expunge spontaneity or
artistry from code? Mind you, a company may insist on certain code
layouts and similar, so removing any hint of personal style. Perhaps
overproduced code is a good thing? Reading code, or even a book, that
switches between personal styles can be distracting. Over-production
would be an entirely different matter. If you over-produce a commodity,
you create too much of it, and possibly reduce its value. Can you over-

produce code? Maybe, maybe not, but you can certainly over-complicate
code. Writing less, but clearer, code is harder than cranking out lines and
lines that work, but are hard to make sense of. I suspect AI will never
generate short, clear code, unless we get better at writing our requirements.
If we never read the code, this won’t matter, but that’s a long way off.

So, back to ChatGPT. Is it OK to use AI to write code for us? Yes, it is.
It’s OK to look things up on the internet or in a book if we need to, as
well. If you regard AI generated code in the same vein, being careful to
access what you are presented with, that’s fine. Copilot and similar are
often heralded as being able to help us work smarter and harder. Being
able to look something up is often the smart thing to do. Whether AI
really helps you be more productive is for you to decide. Don’t go down
the rabbit hole I fell into, trying to get ChatGPT to register it can’t put
co_await in main. As ChatGPT apologised and retried over and over
again, I almost ended up willing it to succeed. I would have been more
productive if I had written the code myself several times over, or done
some housework, or written an editorial. The trouble is, feeling like you
are nudging something close to success makes it very hard to stop. Gail
Ollis gave Thursday’s keynote at the conference about what she terms
‘humaning’. She asked attendees to pop questions on a card the day
before that she would try to answer. One question was why do coders get
sucked into something and forget to eat or sleep. I didn’t get that sucked
into arguing with the AI, but I did lose some hours. Gail suggested a quest
for a dopamine reward can drive us into sticking with a specific task for
far too long, eventually losing the plot. We do need to eat and sleep.
We’re only human, after all. We can’t be productive all the time, and
some things never even make it to production. The
important thing should be having fun, and learning
from what we do. ChatGPT certainly hasn’t learnt it
can’t put co_await in main, but I have.

References
[ACM] A.M.Turing Award to Frederick (Fred) Brooks for ‘landmark

contribution to computer architecture, operating systems and
software engineering’: https://amturing.acm.org/award_winners/
brooks_1002187.cfm

[Buontempo13] Frances Buontempo (2013) ‘How to Program Your Way
Out of a Paper Bag Using Genetic Algorithms’ Dec 2013, Overload
118, available at: https://accu.org/journals/overload/21/118/
overload118.pdf#page=8

[Buontempo21] Frances Buontempo (2021) ‘Teach Your Computer
to Program Itself” in Overload 164, Aug 2021 https://accu.org/
journals/overload/29/164/overload164.pdf#page=21

[Dias23] Chris Dias (2023) ‘Visual Studio Code and GitHub Copilot’
https://code.visualstudio.com/blogs/2023/03/30/vscode-copilot

[Oldwood18] Chris Oldwood (2018) ‘Overthinking is not
Overengineering’, published 7 December 2018 at
https://chrisoldwood.blogspot.com/2018/12/overthinking-is-not-
overengineering.html

[OpenAI-1] ChatGPT: https://chat.openai.com/
[OpenAI-2] OpenAI: https://openai.com/blog/chatgpt
[Pang23] May Pang (2023) ‘4 Rebellious Productivity Rules to

Declutter Your Brain’ published in Better Humans on 17 April 2023
https://betterhumans.pub/4-rebellious-productivity-rules-to-
declutter-your-brain-190d554b4230

[Sharma18] Robin Sharma The 5 AM Club: Own Your Morning. Elevate
Your Life Harper Thorsons, 2018

[Wikipedia] ‘Analysis paralysis’: https://en.wikipedia.org/wiki/
Analysis_paralysis

https://amturing.acm.org/award_winners/brooks_1002187.cfm
https://amturing.acm.org/award_winners/brooks_1002187.cfm
https://accu.org/journals/overload/21/118/overload118.pdf#page=8
https://accu.org/journals/overload/21/118/overload118.pdf#page=8
https://accu.org/journals/overload/29/164/overload164.pdf#page=21
https://accu.org/journals/overload/29/164/overload164.pdf#page=21
https://code.visualstudio.com/blogs/2023/03/30/vscode-copilot
https://chrisoldwood.blogspot.com/2018/12/overthinking-is-not-overengineering.html
https://chrisoldwood.blogspot.com/2018/12/overthinking-is-not-overengineering.html
https://chat.openai.com/
https://openai.com/blog/chatgpt
https://betterhumans.pub/4-rebellious-productivity-rules-to-declutter-your-brain-190d554b4230
https://betterhumans.pub/4-rebellious-productivity-rules-to-declutter-your-brain-190d554b4230
https://en.wikipedia.org/wiki/Analysis_paralysis
https://en.wikipedia.org/wiki/Analysis_paralysis

LUCIAN RAdU TEOdORESCUFEATURE

4 | Overload | June 2023

This is a two-part article. I wanted to write an article about complexity
in software engineering (in memory of Fred Brooks, 1932–2022),
but then I realised the complexity of such an endeavour. Reasoning

is hard, tackling complexity is also not easy, and, moreover, the relation
between reasoning and complexity in software engineering deserves a lot
of attention too. Thus, there are multiple subjects that are interconnected.
And covering them doesn’t fit the space of a single article.

The first part is structured as an essay. We will highlight the importance
of reasoning in software engineering, and how our field is close to
philosophy.

The second part (to appear in the next issue of Overload) is structured as
a play in 14 acts. Here we tackle the problem of complexity, and discuss
how much it is essential versus how much it is accidental.

The two parts are deeply related. While discussing complexity, we refer
to the first part in two main ways: the approach itself involves a form
of pure reasoning, and also the object of our study, i.e., dealing with
complexity, involves reasoning.

Reasoning in software engineering
How do we reason about things in software engineering? Moreover, do
we even need to reason about things, and, if so, to what extent do we need
to reason about them?

Software engineering is, as the name says, an engineering discipline.
There are people who argue differently, but I think we have sufficient
evidence to say that it is indeed an engineering discipline [Wayne21a,
Wayne21b, Wayne21c, Farley21]. Like any other engineering discipline,
our field needs to be based on facts, and ultimately knowledge. We should
be able to conduct experiments to acquire empirical evidence.

But, the sad reality is that we have a relatively small amount of definitive
empirical knowledge in software engineering [Wayne19]. Moreover, we
lack this knowledge for some fundamental aspects we are using. For
example, we don’t have good empirical knowledge on whether object-
oriented programming is better than functional programming. There are
multiple reasons for this, but probably the most important one is the fact
that the most important instrument in developing software is our mind;
not the compilers, not the programming languages, and not even the
computers. And, our mind works in mysterious ways.

The main job while programming is not writing code, but reading,
reasoning and understanding code; then, after one forms a mental
model of how the program should be written, the job is to translate that
mental model into a concrete form that both humans and computers can
understand and reason about. As Kevlin usually puts it, programming
is applied epistemology [Henney19]. And epistemology is a branch of
philosophy.

Software engineering and philosophy
If there is one book that every programmer should read, then that book is
The Mythical Man-Month by Fred Brooks. Especially the 1995 edition,
which contains the No Silver Bullet article, published initially in 1986.
In a nutshell, Brooks argues that software is essential complexity1. Ever
since I read this, many years ago, it remained with me as one of the few
fundamental ideas of software engineering.

However, we cannot actually prove that software is essential complexity,
we can only argue that it must be correct. The core reason for which this
statement cannot be proved is because it is a metaphysical statement, and
we cannot prove metaphysical statements. In the article, Brooks mentions
that he is following the distinction between essential and accidental
that was made by Aristotle. This distinction appears in Aristotle’s
‘Metaphysics’ [Aristotle-1].

This definition of software implies that there is a strong connection with
philosophy at the core of software engineering.

Another very influential book is Elements of Programming by Alex
Stepanov and Paul McJones [Stepanov09]. Reading it feels very similar
to reading Aristotle. It has a similar reasoning style, it uses terms like
entity, species, and genus that Aristotle introduces [Aristotle-1], and it
even gives examples with Socrates (chapter 1); later on, in chapter 5.4, it
directly refers to Aristotle’s ‘Prior Analytics’ [Aristotle-2].

The important aspect to notice about Elements of Programming is how
the foundations of programming are exposed: through philosophical
reasoning.

All these seem to converge to the idea that philosophical reasoning is
somehow fundamental to software engineering. Reasoning seems far
more utilised in our field compared to having controlled experiments.
While we are still in an engineering discipline, the fundamentals appear
to be very close to philosophy.

The extent of reasoning
Now that we’ve established that at the core of software engineering there
needs to be philosophical reasoning, let’s look at some examples. We’ll
use these examples, somehow similar to a qualitative study, to infer some
possible characteristics of the type of reasoning we need.

Functions should be small
The first rule of functions is that they should

be small. The second rule of functions is
that they should be smaller than that.

 ~ Robert C. Martin [Martin08]

1 Brooks actually did not put it this way, I just remember it like this, as
it makes the problem even more fundamental/metaphysical. Brooks
actually argued that software development consists of overcoming
essential difficulties and accidental difficulties, and that our main
challenge comes from essential difficulties. Hope that the reader would
agree with me that the two variants share the same essence. More on
the two variants in the second part.

Reasoning About
Complexity – Part 1
Reasoning and understanding code have fundamental roles
in programming. Lucian Radu Teodorescu highlights the
importance of reasoning and its philosophical underpinnings.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

LUCIAN RAdU TEOdORESCU FEATURE

June 2023 | Overload | 5

This is regarded as very good advice2. However, the way it is explained
in the book doesn’t convince me. The main reason for this is that the
statement is not properly argued. One can easily read this advice as
“Functions should be very small because Uncle Bob said so”. In fact, I
got an overall impression of the Clean Code book [Martin08] as being
perhaps too dogmatic. This is not something that we can put at the
foundation of software engineering.

If I need to reason about the size of the function, I would do it along these
lines:

	� the main activity in programming is reading and reasoning about
code; thus, functions should be written in order to be easily reasoned
about

	� there is a fundamental limitation of the brain that makes it harder for
us to reason about systems made of too many parts (studies show
that we can hold in our mind about 7 different things at once)

	� thus, in order to easily reason about functions, we should make them
as small as to accommodate our limitation

	� however, there is a downside to this as well: making small functions
pushes the complexity outside the functions

	� there is also a cost of abstraction that we need to pay – any
abstraction makes the code harder to read and reason about

	� thus, we should not make the functions small, but not too small to
have too many extra abstractions and to push the complexity outside
the functions.

This line of thought, at least the first part, can be found in [Seeman21].
The reader can see a big difference between the two stories, even if the
result is (roughly) the same. One has fragile reasoning, and one has more
reasoning. One doesn’t touch on consequences, the other does.

As Hillel points out, the most popular paradigm in our software industry
is charisma-driven development: we do things because high-profile
speakers and authors are telling us what to do [Wayne19]. Instead of
blindly following advice, we should look at the arguments behind the
advice. In lack of a better empirical evidence, we should at least evaluate
whether the argument makes sense, and only follow the advice if the
argument is convincing.

design choices
One thing that I’ve learned in my career is that there isn’t a perfect solution
to a problem. Every solution consists of a (potentially long) series of
design choices, and each choice has advantages and disadvantages. That
is, for every design choice, one can argue in favour, or against it.

2 At least the first sentence, that functions should be small. The second
sentence, “smaller than that”, cannot be taken seriously. It tells us that
any reasonable definition of “small” that we find is not good enough; it
takes away from us the possibility of defining a reasonable threshold for
the size of a function.

Moreover, on each side, there isn’t just a simple argument that one can
make. Usually, we have a long chain of assumptions and inferences that
lead to arguing pro or against a design choice.

The way I would like to put it is that if one cannot argue on both sides of
an argument, one must be confused.

To choose an adequate solution for a problem, we need to properly find
arguments to support it in favour of the alternative solutions. That is,
we need to be able to reason about selecting a solution for our problem.
Considering the fact that we constantly need to make design decisions,
the process of reasoning must be constantly present in our development
activities.

Thus, at higher-level, we should constantly employ reasoning.

‘for’ loops and reasoning frameworks
Let’s now turn our attention to lower-levels and reason about reasoning
code.

In a previous article ‘How We (Don’t) Reason About Code’ [Teodorescu21]
we explored a possible meaning of reasoning about code. We first tried
to define a somehow formal framework for understanding what are the
implications of code; later we discussed a model that also takes into
consideration the previous experiences of the programmer.

In the first approach, we defined the reasoning complexity (or reasoning
effort) for a code as being the difference between the post-conditions and
the pre-conditions of that code. If our minds were purely mathematical,
we would write lemmas for everything that’s important to ensure we
understand the implications. This reasoning complexity is equal to the
number of such lemmas we need.

As an example, we tried to compute the associated complexity for using
a classic for loop (with incrementing variable) and for using a ranged
for loop. In our example, the classic for loop has a complexity of 20,
compared to a complexity of 8 for the ranged for loop. That is, classic
for loop is much harder to reason about than a ranged for loop.

The result of comparing the reasoning complexities of the two styles of
for loops may not be that helpful. What I find significant is that we defined
a framework for reasoning about code. We can take this framework and
apply it to other problems; we can expand our reasoning capabilities.

In the second part of the article, we introduced another way of reasoning
about code, one that is less formal and one that accepts the previous
experience of the developer in considering complexity. We called this the
inference complexity.

For this new complexity metric, we cannot calculate the complexity of
the code just by looking at it. We have to factor in the experiences of
its readers, which is very difficult. But, nevertheless, it still gives us a
method of reasoning about code. And, especially if we put it near the
previous complexity metric, it can tell us about the biases that we, the
programmers, have.

there is a fundamental limitation of the
brain that makes it harder for us to reason

about systems made of too many parts

LUCIAN RAdU TEOdORESCUFEATURE

6 | Overload | June 2023

We can have reasoning frameworks that are more formal, and we can
have reasoning frameworks that are less formal. And, it appears that both
of them are useful.

Programming paradigms and guarantees
Reasoning is often hard. To make the reasoning process simpler, we
typically perform it in limited bounds. That is, we are drawing some
bounds in which we reason, and start from assumptions. If we were to start
reasoning without any bounds, we would have to start from metaphysics
in order to analyse the merits of a design choice.

Programming paradigms are often useful bounds for the process of
reasoning about code. They impose certain restrictions about what can
be done in a program that respects that paradigm. Let’s take a couple of
examples.

In structured programming, a function is an abstraction. Once we
understand that abstraction, we can use the same reasoning each time the
function invocation is seen. The meaning of the function doesn’t change
depending on the context in which it is being used. If the function can
mutate just one single global variable, we don’t expect it to mutate other
global variables in any of the invocations.

In functional programming, all the functions are pure. If we look at a
function call, we know that the function doesn’t have any side effects, and
is idempotent. If we call the function twice, it will have the same effect on
the correctness of the program as if we would call it once. Furthermore,
the output of the function is only dependent on the arguments of the
function. This reduces the amount of reasoning we need to perform. If we
see the same function called twice, we don’t have to reason about it twice.
Moreover, two functions that are not chained together cannot interfere
with each-other; we can reason about them in isolation.

In my previous article, ‘Value-Oriented Programming’ [Teodorescu23],
we discussed a new programming paradigm which focuses on value
semantic and removing references as first-class entities in a language.
If the programs conform to this paradigm, then the user doesn’t have to
reason about safety issues (they cannot appear), and all the reasoning can
be done locally (no spooky action at a distance).

As discussed in this article, a programming paradigm imposes a set of
constraints on the possible programs that can be written, and by doing
this it can provide some guarantees about the programs written in that
paradigm. These guarantees can simplify our reasoning about the code.

Adding restrictions to a language can simplify it by reducing the number
of things we need to reason about. On the other hand, it may make some
problems harder to solve; this can increase the amount of reasoning we
need to perform. It’s always a compromise.

If we generalise the notion of programming paradigm, the main takeaway
of this section should be that, whenever we have to reason about a
software problem, we should find the right frame that would be sufficient
to contain the problem, and yet provide enough guarantees to simplify our
reasoning process.

What can we reason about?
This one is easy: probably every aspect of software engineering. To make
it more useful for the reader, let’s provide a few examples:

	� Code: What’s the best way to reason about code? How can we
easily find out the implications of a code snippet? What’s the right
organisation of code? Are there any paradigms that we can set to
make the reasoning easier? Etc.

	� Software design: How should we design the software? When does
a top-down approach works best, and when a bottom-up works?
What are the fundamental units of design? How can we measure
the quality of a design? What does it take to understand a design?
What’s the easiest way to document a design? Etc.

	� Software architecture: What is architectural and what is not?
How do we make architecture coherent? How much time should
we spend in defining the architecture upfront? How can we best
document architecture? How to evolve the architecture? Etc.

	� Processes: How many processes does a software organisation need
to have? Does different processes work better than others? How
much are the processes dependent on the organisation? How much
can we influence the productivity of the software organisation with
processes? How to tell when processes help and when they are just
bureaucracy?

	� Testing: How much testing does a software need? Do the testing
needs differ (significantly) depending on the type of software?
Are there any testing methods that are better than others? How to
structure our tests?

	� Complexity: How can we measure the complexity of a problem?
What is essential and what is accidental? How should we reason
about complexity? Etc.

	� Reasoning: What’s the extent of our reasoning, and how can we
ensure that whatever we do has any connection with the reality?
How can we move from pure reasoning (prone to errors) into
empirical data (better matching reality)? Etc.

This article (this part and the one appearing in the next number)
approaches the last two items on our list.

A critique of pure reason
The reader may infer from the above text that I’m strongly arguing to
drop any empirical arguments in software engineering and start using
pure reasoning instead. This is far from my intention.

We should use this reasoning only in limited scenarios:

	� to make sense of things when we don’t have empirical data, or
making sense of incomplete empirical data

	� to form hypothesis/models that can later be tested empirically.

a programming paradigm imposes a set of constraints
on the possible programs that can be written, and by
doing this it can provide some guarantees about the
programs written in that paradigm

LUCIAN RAdU TEOdORESCU FEATURE

June 2023 | Overload | 7

A great example of reasoning in the first category is Brooks’ reasoning
on essential and accidental complexity. We don’t have empirical data to
make the distinction between essential and accidental complexity; after
all, what is essential complexity?

The second category is far more interesting. Let’s take, for example,
the Lean Software principles. They may have originated in practice at
Toyota, but they originated in a different domain. In software, they first
appeared as a conceptual framework [Poppendieck03]. It took us some
time to validate this principle empirically and prove that they can lead to
successful software organisations; the main results can be found in the
Accelerate book [Forsgren18].

The book provides strong empirical data showing that certain software
development practices lead to success. This is one of the few studies that
we have in our field that can show empirical that certain practices are
more valuable than others.

This should also be our goal with pure reasoning in software engineering:
find models that we can later prove empirically.

Interlude (part 1)
We reached the end of the first part of our two-part article. It’s time to
have some partial conclusions.

The goal of the entire article was to reason about complexity. In this first
part, we discussed the importance of reasoning in software engineering so
that we can later apply this reasoning about complexity in the second part.

We started to argue that software engineering doesn’t have enough good
empirical studies to capture best practices in the field. Instead, they are
replaced by some kind of reasoning. We argued then that some of the
most important foundational work in software engineering draw their
inspiration from philosophy. It seems that philosophical reasoning is
essential to our field.

We then explored a few ways in which we can reason in software
engineering. Exploring this landscape gives us an idea of what strategies
we can employ when reasoning about software engineering topics.
The reasoning that was used to analyse the two types of for loops is
especially important for this article, as we would use the same pattern
when reasoning about complexity.

Reasoning is good, but reasoning should not be divorced from practice.
Whenever it makes sense, we should test empirically the results of our
reasoning.

In the next part, we will look at complexity. We would start by defining the
problem: how we are introduced to essential complexity and accidental
complexity, and a possible sharp distinction between the two (essential
belongs to the problem, while accidental belongs to the solution). With
this sharp distinction, we go on exploring essential complexity. We define
a framework to associate a number with the essential complexity; this
allows us to compare the complexity of two problems. Reasoning on
accidental complexity is much harder, as most of the things we do in

software engineering end up as accidental complexity. This is why the
first part was needed to start exploring the extent of reasoning. At the end,
we try to provide another answer to Brooks’ old question: can we find a
ten-fold improvement in productivity for software engineering?

Read the next Overload issue for the continuation. �

References
[Aristotle-1] Aristotle, ‘Metaphysics’ in The Complete Works of

Aristotle, Volume 2: The Revised Oxford Translation, edited by
Jonathan Barnes, Princeton University Press, 1984.

[Aristotle-2] Aristotle, ‘Prior Analytics’ in The Complete Works of
Aristotle, Volume 2: The Revised Oxford Translation, edited by
Jonathan Barnes, Princeton University Press, 1984

[Farley21] Dave Farley, Modern Software Engineering: Doing
What Works to Build Better Software Faster, Addison-Wesley
Professional, 2021.

[Forsgren18] Nicole Forsgren, Jez Humble, Gene Kim (2018)
Accelerate: Building and Scaling High Performing Technology
Organizations, IT Revolution.

[Henney19] Kevlin Henney, ‘What Do You Mean?’, ACCU 2019,
https://www.youtube.com/watch?v=ndnvOElnyUg

[Martin08] Robert C. Martin (2008) Clean Code: A Handbook of Agile
Software Craftsmanship, Pearson.

[Poppendieck03] Mary Poppendieck, Tom Poppendieck (2003)
Lean Software Development: An Agile Toolkit, Addison-Wesley
Professional.

[Seemann21] Mark Seemann (2011) Code That Fits in Your Head :
Heuristics for Software Engineering, Pearson.

[Stepanov09] Alexander A. Stepanov, Paul McJones (2009) Elements of
programming, Addison-Wesley Professional.

[Teodorescu21] Lucian Radu Teodorescu, ‘How We (Don’t) Reason
About Code’, Overload 163, June 2021, https://accu.org/journals/
overload/29/163/overload163.pdf#page=13

[Teodorescu23] Lucian Radu Teodorescu, ‘Value-Oriented
Programming’, Overload 173, February 2023,
https://accu.org/journals/overload/31/173/overload173.pdf#page=16

[Wayne21a] Hillel Wayne, ‘Are we really engineers?’, 2021,
https://www.hillelwayne.com/post/are-we-really-engineers/

[Wayne21b] Hillel Wayne (2021) ‘We are not special’,
https://www.hillelwayne.com/post/we-are-not-special/

[Wayne21c] Hillel Wayne (2021) ‘What engineering can teach (and
learn from) us’, https://www.hillelwayne.com/post/we-are-not-
special/

[Wayne19] Hillel Wayne, ‘Intro to Empirical Software Engineering:
What We Know We Don’t Know’, GOTO 2019,
https://www.youtube.com/watch?v=WELBnE33dpY.

Reasoning on accidental complexity is much
harder, as most of the things we do in software

engineering end up as accidental complexity

https://www.youtube.com/watch?v=ndnvOElnyUg
https://accu.org/journals/overload/29/163/overload163.pdf#page=13
https://accu.org/journals/overload/29/163/overload163.pdf#page=13
https://accu.org/journals/overload/31/173/overload173.pdf#page=16
https://www.hillelwayne.com/post/are-we-really-engineers/
https://www.hillelwayne.com/post/we-are-not-special/
https://www.hillelwayne.com/post/we-are-not-special/
https://www.hillelwayne.com/post/we-are-not-special/
https://www.youtube.com/watch?v=WELBnE33dpY

STEvE LOvEFEATURE

8 | Overload | June 2023

The C# language has undergone quite significant changes over the last
three years or so. No longer tied to the (relatively infrequent) release
cadence of Microsoft’s Visual Studio, the C# compiler and .NET

platform designers have added a host of new features, as well as tidied up
some incongruities and removed some restrictions since C# v8.0 in 2019.
Overall those changes make C# a more consistent language, with fewer
special corner cases, and therefore easier to write and to learn, but some
changes have also introduced new complexities of their own.

C# v10.0 – released with .NET 6 in 2021 – introduced two new features
that were somewhat subdued in their respective announcements1: record
structs, and automatic property initializers for value types. We’ll get to
automatic property initializers but first, let’s have a look at why record
structs were introduced.

Why record structs?
To understand record structs, you need to understand records2. C# v9.0
and .NET 5 added a new way of creating user-defined types: the record.
Before the introduction of records, we could choose between classes
and structs. A class defines a reference type, meaning instances live on
the heap and benefit from garbage collection. Copying a reference type
variable creates a new reference to the same instance on the heap. A struct
defines a value type, meaning the lifetime of an instance is tied (broadly
speaking) to the scope of the variable associated with it. Copying a
value type variable copies the entire instance – value type variables and
instances have a 1-to-1 relationship – and this has important consequences
for efficiency and equality semantics.

The default behavior of Equals for classes performs a reference-based
comparison where two variables compare equal if they refer to the same
object on the heap. By contrast, Equals for structs performs a value-
based comparison whereby two variables are equal if all their fields and
properties match. Value-based equality comparisons are common for
some kinds of types in many programs, but copying large struct instances
– those with several fields, for example – could negatively impact a
program’s performance. We can override the default equality comparison
for class types to perform a value-based rather than reference-based
comparison, and still benefit from the reference-based copying behaviour
for instances of the type.

A record is a reference type (in fact, once compiled it really is a class),
and the compiler synthesizes an efficient and correct implementation
of equality (along with a few other features), which represents a fairly
significant saving on some boilerplate code that’s surprisingly easy to get
wrong. Put simply, records are reference types with compiler generated
value-based equality behaviour.

1 https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10
2 https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-

9#record-types

Record structs are merely the value type equivalent of records. The
compiler translates a record struct into a struct. While structs have always
had value-based equality semantics, the default behaviour suffers from
performance issues; specifically, the default implementation of Equals
usually (with some exceptions) requires the use of reflection, which is
not generally associated with high performance. As a result, customizing
Equals for structs is good practice, but as with classes, there are pitfalls
to avoid. The compiler generates the implementation of Equals for a
record struct in the same way as for a record.

On the face of it, record structs were introduced simply to re-establish
the symmetry between reference types and value types, but there are
good reasons for choosing value types over reference types in some
circumstances. In particular, structs and record structs are a good choice
where instances are short-lived and an application will have large
numbers of them, because value types aren’t subject to garbage collection.
Implementing them as reference types instead might add considerable
heap memory pressure, causing extra work for the garbage collector.

Property initializers
Using positional syntax3 with either records or record structs makes
defining simple types compact and convenient. Here’s an example of a
positional record struct to represent a UK postal address:
 public readonly record struct
 Address(string House, string PostCode);

The compiler translates this positional syntax to a struct with a read-only
property for each positional argument (owing to the use of readonly
in the type’s declaration), and a constructor taking those parameters
to initialize the properties. Since a record struct is really just a normal
struct when it’s compiled, a default-initialized instance will have null
for any reference type properties. That means both properties of a
default-initialized Address will be null. Classes have been able to use
automatic property initializers since C# v6.0 to address problems like this
by allowing automatic properties to be given a default value (the same is
true for fields too, but we’re only considering properties here). From C#
v10.0, automatic property initialization syntax is also permitted for record
structs and normal structs, shown here for the Address type:
 public readonly record struct
 Address(string House, string PostCode)
 {
 public string House { get; } = “”;
 public string PostCode { get; } = “”;
 }

Here we define our own House and PostCode properties (inhibiting
the compiler from generating them from the Address type’s positional
parameters) and use the property initializer to assign an empty string as
the default value for each property. The intention of using the property
initializers is to try to prevent null values for those properties when an
Address is default-initialized, like Listing 1 (overleaf).

3 https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
builtin-types/record#positional-syntax-for-property-definition

Incompatible Language
Features in C#
Adding features to an established language can introduce sources
of errors. Steve Love examines some of the pitfalls of combining
positional record structs with automatic property initializers.

STEvE LOvE
Steve Love is a programmer who gets frustrated at having to do things
twice. He can be contacted at steve@arventech.com

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-10
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#record-types
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#record-types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record#positional-syntax-for-property-definition
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record#positional-syntax-for-property-definition

STEvE LOvE FEATURE

June 2023 | Overload | 9

The property initializers in the Address type are valid since C# v10.0,
but unfortunately, this test doesn’t pass.

Initialization order
The problem here is that positional parameters and property initializers
don’t mix. Property initializers are part of object construction, so the
initializers are only applied when we call a constructor. In the example,
the defaultAddress variable is default-initialized, meaning that
no constructor call occurs, and thus the property initializers are never
applied.

Since the compiler uses the positional parameters to generate a constructor
for our record struct, if we use that constructor to create an object, the
property initializers are indeed applied:
 var address = new Address(House: "221b",
 PostCode: "NW1 6XE");

 Assert.That(address.House, Is.Not.Null);
 Assert.That(address.PostCode, Is.Not.Null);

The named arguments used to create the address variable aren’t
mandatory, but they emphasize how the arguments are applied to the
positional parameters (or rather, the constructor parameters created by
the compiler). This test passes, but hides a deeper problem: the property
initializers have been applied to the properties, but the arguments we
passed to the constructor have not! Neither of these tests pass:
 Assert.That(address.House, Is.EqualTo("221b"));
 Assert.That(address.PostCode,
 Is.EqualTo("NW1 6XE"));

Both properties now have the values assigned by the automatic property
initializers, and so are both empty strings.

The compiler-generated constructor hasn’t initialized the properties from
its parameter values. Note that this behaviour applies equally to record
types. The earlier problem with default initialization doesn’t apply to
records, which as reference types have a default constructor inserted
by the compiler if no other constructors are defined. Since the compiler
uses the positional parameters to create a constructor (called the primary
constructor), the default constructor is inhibited, with the result that
creating a new object without arguments would fail to compile.

For both records and record structs, however, the primary constructor
will only use its parameter values to initialize properties generated by
the compiler; if we define any property of our own, even if it has the
same name as a positional parameter, it is not initialized by the primary
constructor.

Did I mention that positional parameters and property initializers don’t
mix?

Requiring properties to be initialized
Our original problem was that the default values for the string
properties of Address would be null in a default-initialized instance.
There are a couple of ways to address this – at least for most common
cases – but no perfect solutions.

Since C# v11.0 we can force the user to assign a value to a property by
using the required keyword to modify the property definition, like this:
 public readonly record struct Address
 {
 public required string House { get; init; }
 public required string PostCode { get; init; }
 }

Note that we’ve added an init accessor4 for both properties, enabling
object initialization for Address objects. The init accessor was
introduced in C# v9.0 along with records. The compiler will reject the use
of required without either a public init or set accessor, and init
means an Address is immutable once it’s been created.

This doesn’t prevent the user from assigning null (although we could
use the nullable reference type5 feature available since C# v8.0 to warn
them), but we no longer need property initializers. The tests in Listing 2
all pass.

Note that we’re no longer using positional syntax for Address. We might
have used a plain struct here, although using a record struct brings other
benefits, but the required keyword means Address objects must be
created using object initialization: the primary constructor for a positional
record struct won’t initialize our custom properties, which is why
Address doesn’t use the positional syntax. That’s a little unfortunate,

4 https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-
9#init-only-setters

5 https://learn.microsoft.com/en-us/dotnet/csharp/nullable-references

var address = new Address {
 House = "",
 PostCode = ""
};

Assert.That(address.House, Is.Not.Null);
Assert.That(address.PostCode, Is.Not.Null);

address = new Address {
 House = "221b",
 PostCode = "NW1 6XE"
};

Assert.That(address.House, Is.EqualTo("221b"));
Assert.That(address.PostCode,
 Is.EqualTo("NW1 6XE"));

Listing 2

var defaultAddress = new Address();

Assert.That(defaultAddress.House, Is.Not.Null);
Assert.That(defaultAddress.PostCode,
 Is.Not.Null);

Listing 1

record structs were introduced simply to re-establish
the symmetry between reference types and value

types, but there are good reasons for choosing value
types over reference types in some circumstances

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#init-only-setters
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9#init-only-setters
https://learn.microsoft.com/en-us/dotnet/csharp/nullable-references

STEvE LOvEFEATURE

10 | Overload | June 2023

because positional record types are very convenient for the most simple
types. Luckily, we can revert to a positional record struct, and even make
Address slightly simpler, while keeping the same guarantees we’ve
realized by using the required modifier.

The syntaxy solution
Prior to C# v10.0, defining a parameterless constructor for a value
type wasn’t allowed. Constructing an instance of a struct type without
arguments always used the built-in default-initialization, which always
sets its fields (including property backing fields) to a pattern of all-zero
bits – essentially, either 0 or null, depending on the field’s type.

Since C# v10.0, user-defined parameterless constructors6 for either
structs or record structs are allowed, and we can use this facility to
achieve the outcomes needed here: an instance created using new but
with no arguments has non-null values for the properties, while keeping
the convenience of the positional syntax to properly initialize properties
with those values.

We don’t need property initializers, and our record struct representation
of Address actually becomes a little simpler:
 public readonly record struct
 Address(string House, string PostCode)
 {
 public Address() : this(“”, “”)
 {
 }
 }

Here we’re defining our own parameterless constructor which uses
constructor forwarding to invoke the compiler-generated primary
constructor with the default, non-null, values as the arguments. The
syntax used here is somewhat arcane in that we’re forwarding to an
invisible constructor, but it is arguably less surprising than the alternatives
we’ve already explored. The compiler synthesizes the properties based on
the positional parameters, and those properties are correctly initialized by
the primary constructor which is directly invoked by our parameterless
constructor with the required default values for those properties. The tests
in Listing 3 all pass.

We still can’t prevent a default-initialized7 Address, such as
default(Address), or the elements of an array of Address objects,
which will both still have null for their properties; such instances will
always be default-initialized, and it’s not possible to change or prevent
that behaviour.

6 https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
builtin-types/struct#struct-initialization-and-default-values

7 https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
operators/default

more on required properties
Disallowing automatic property initializers for structs (record structs
were added at the same time this restriction was lifted) was a frequent
source of friction, so removing the restriction is beneficial, but needs to
be used with care. We’ve not explored all the complexities here but the
take-away is that mixing positional record types and automatic property
initializers will give you a headache. You have been warned!

The required keyword in C# v11.0 certainly has its uses, but it doesn’t
play well with constructors. Consider this record:
 public sealed record class Address
 {
 public Address(string house, string postcode)
 => (House) = (house);

 public required string House { get; init; }
 public required string PostCode { get; init; }
 }

 var address = new Address(“221b”, “NW1 6XE”);

The creation of the address variable here doesn’t compile. Because
the properties are marked required, we must set them in an object
initializer (using braces { }) or add the [SetsRequiredMembers]
attribute to the constructor.

Adding the attribute to the constructor satisfies the compiler, but it’s not
foolproof, as shown in Listing 4.

We must import the System.Diagnostics.CodeAnalysis
namespace in order to use [SetsRequiredMembers], but even though
we’ve applied that attribute to the constructor here, the compiler still
can’t catch the fact that the constructor does not initialize all the required
properties. This test fails because the PostCode property isn’t initialized
in the constructor.

Closing thoughts
Language design is undoubtedly hard, and adding new features to any
non-trivial language can bring unforeseen consequences. C# may consider
itself to be “simple”, but the truth is that usefulness almost always
involves complexity. New features can interact with long-established
semantics in … interesting ways. In this article we’ve examined how just
some of the many new features in C# are intricately entwined with each
other, and with features that have been part of the C# language from the
very beginning. �

using System.Diagnostics.CodeAnalysis;

public sealed record class Address
{
 [SetsRequiredMembers]
 public Address(string house, string postcode)
 => (House) = (house);

 public required string House { get; init; }
 public required string PostCode { get; init; }
}

var address = new Address("221b", "NW1 6XE");

Assert.That(address.PostCode, Is.Not.Null);

Listing 4

var defaultAddress = new Address();

Assert.That(defaultAddress.House, Is.Not.Null);
Assert.That(defaultAddress.PostCode,
 Is.Not.Null);

var address = new Address(House: "221b",
 PostCode: "NW1 6XE");

Assert.That(address.House, Is.EqualTo("221b"));
Assert.That(address.PostCode,
 Is.EqualTo("NW1 6XE"));

Listing 3

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/struct#struct-initialization-and-default-values
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/struct#struct-initialization-and-default-values
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/default
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/default

KEvLIN HENNEY FEATURE

June 2023 | Overload | 11

Need Something Sorted?
Sleep On It!
Sorting algorithms have been thoroughly studied. Kevlin Henney
takes an unexpected paradigm journey into sleep sort.

A decade ago, I first presented a lightning talk entitled ‘Cool Code’. This
short talk evolved into a full talk whose iterations I presented over the
next half decade. The focus? Code that, for some reason or other, can

be considered cool. For example, code that has played a significant role
in historical events, such as the source for the Apollo Guidance Computer
[Apollo]. Or code that is audacious – if not seemingly impossible – given
its constraints, such as David Horne’s 1K chess [Frogley01]. There is code
that is both simple and profound, such as Peter Norvig’s fits-on-a-slide
spelling corrector [Norvig16]. And code that demonstrates ingenuity and
humour, such as Yusuke Endoh’s Qlobe [Endoh10].

Leaving aside its content for a moment, one of the most interesting things
about the talk was its stone-soup nature [Wikipedia-1]. Whenever and
wherever I gave it, I would usually receive at least one suggestion for
more code to include. This drove the talk’s evolution over the years.
Summed across all its variations, there’s probably a half-day’s worth of
material in total.

The first full-length version of the talk I presented was at JavaZone 2011
[Henney11]. Afterwards, someone came up to me and asked, “Have you
come across sleep sort?” I hadn’t. “You should look it up. I think you might
enjoy it.” I did. And I did.

Bourne to sleep
Possibly the only good thing to ever come out of 4chan, sleep sort was
created by an anonymous user in 2011 [Sleep]. The original code was
written in Bash, but it also runs as a traditional Bourne shell script.

Here is a version with the called function renamed to something more
meaningful (it was f in the original post):
 function sleeper() {
 sleep $1
 echo $1
 }
 while [-n "$1"]
 do
 sleeper $1 &
 shift
 done
 wait

We could condense this code by inlining the sleeper function at its
point of use:
 while [-n "$1"]
 do
 (sleep $1; echo $1) &
 shift
 done
 wait

I have a slight preference for the shorter version but, in this case, keeping
the longer form gives a structure we can preserve more easily across
implementation variations. It also offers more real estate for supplementary
explanation (see Listing 1).

Assuming this is in a script file named sleepsort, you can run it as follows:

 sleepsort 3 1 4 1 5 9

With the following result:
 1
 1
 3
 4
 5
 9

The first two lines arrive after 1 second, the next after 3 seconds, the next
after 4 seconds, etc.

Bonkers, brilliant and definitely NSFW.

Reductio ad absurdum
Sleep sort presents itself as an O(n) sorting algorithm for non-negative
integers. It’s also a lot of fun. Sleep sort lets us defamiliarise a hackneyed
topic – sorting – and see it anew: sorting as an arrangement in time
rather than space. We can learn things from it, from the mechanics of
time expressed in code to styles of composition in different paradigms
and languages. It lets us explore assumptions as we uncover solution
possibilities and brush up against their boundaries.

If you want to extend the sortable domain into negative numbers, either
you must add a bias to each value of at least the magnitude of the most
negative value, or you need to find yourself a source of reverse entropy
(e.g., thiotimoline [Wikipedia-2]). Although sources of entropy are
common in modern CPUs, reverse entropy sources will not available in
the foreseeable (or unforeseeable) future.

function sleeper() {# define a function that...
 sleep $1 # sleeps for duration of its
 # argument in seconds
 echo $1 # prints its argument to the
 # console
}
while [-n "$1"] # while the script’s lead
 # argument is not empty
do
 sleeper $1 & # launch a sleeper with the
 # lead argument
 shift # shift argument list,
 # so $2 becomes $1, etc.
done
wait # wait for all launched
 # processes to complete

Listing 1

Kevlin Henney is an independent consultant, speaker, writer and
trainer. His development interests include programming languages,
software architecture and programming practices, with a particular
emphasis on unit testing and reasoning about practices at the
team level. He is co-author of A Pattern Language for Distributed
Computing and On Patterns and Pattern Languages. He is also
editor of 97 Things Every Programmer Should Know and co-editor of
97 Things Every Java Programmer Should Know.

KEvLIN HENNEYFEATURE

12 | Overload | June 2023

In theory, this algorithm can work for floating-point numbers… in theory.
In practice, scheduler limitations and variability and the cost of process
creation makes sorting of floats unreliable the closer the values are to one
another.

Which brings us to performance. Sleep sort is not just fun; it’s educational.

That the algorithm appears to take linear time, i.e., the number of steps
taken to sort is proportional to the number of items in the input, is both
a point of interest and a source of distraction. Big O notation can be
considered the GDP of performance. It is a singular observation that,
while not necessarily false, may distract you from other measures that
matter. There’s more to algorithms and their (un)suitability than just
finding the abstracted proportionality of steps to input size.

At first sight, the sorting of each value appears to be done without
reference to or co-ordination through any shared state – not even the other
values to be sorted. Viewed classically, the only shared resource is the
standard output. But look more closely and it becomes clear that there is
co-ordination and it is through a shared resource: time. Without the fork–
join arrangement (from each & to the wait), this code would terminate
before completion of the algorithm and, without the explicit and managed
passage of time, there is no algorithm. The wait is a necessary feature
not an optional one; for the algorithm, time is of the essence, not simply
a consequence.

The specific machinery of time is not a necessary part of a sleep sort
implementation, but that time has a design is, which opens up other
implementation possibilities.

In a state of threadiness
We can switch from processes to threads, preserving the structure of the
solution above. In C++, the sleeper function becomes
 void sleeper(int value)
 {
 this_thread::sleep_for(value * 1s);
 cout << value << "\n";
 }

The move from pre-emptive multitasking processes to pre-emptive
multitasking threads is, in this case, a simple one. The sleeper function
is still a function that receives an argument and is launched from within
a loop. The separateness or sharing of memory doesn’t play a role in the
solution. Had the process-based Bash solution used an IPC mechanism for
synchronisation, such as pipes or locks, this would have had to have been
translated in some way. But in the absence of any other communication,
the thread-based version is essentially a transliteration of the process-
based one.

This leaves the significant differences between the shell and the C++
versions as being down to language, such as syntax and typing, and the
realisation of the fork–join model.

To make it a little easier on the eye, I’ve assumed the std namespace is
made available, along with the std::chrono_literals namespace,

which lets us express 1 second directly as 1s, which would also be the
value we would change to rescale the unit interval.
 void sleepsort(const auto & values)
 {
 vector<jthread> sleepers;
 for (int value: values)
 sleepers.push_back(jthread(sleeper,
 value));
 }

The function receives the values to be sorted by reference, along with
a const promise that the values will not be altered by the sorting.
Type deduction via auto leaves the remaining type bookkeeping to the
compiler, so it can be called with a vector<int>:
 sleepsort(vector {3, 1, 4, 1, 5, 9});

Or with anything else that satisfies the expectation of the for loop:
 sleepsort(list {3, 1, 4, 1, 5, 9});

And, for C++ compilers that also support C compound literals:
 sleepsort((int[]) {3, 1, 4, 1, 5, 9});

The lifetime of sleepers is scope-bound to sleepsort. When the
function completes, sleepers will be cleaned up automatically and, in
turn, will clean up its contained values. In this case, the contained values
are jthread instances, which are threads that join – i.e., wait for – their
threads to complete before completing their own destruction. Thus,
joining is an automatic end-of-life feature of the sleepers variable, and
the sleepsort function will not return until all the launched threads
have completed.

Fearless symmetry
Python’s global interpreter lock (GIL) and casually modifiable underlying
object model make it almost uniquely unsuited to pre-emptive threading.
That does not, however, mean that it cannot express concurrency
conveniently. Originally with generator functions, and more recently
and explicitly with async functions, Python supports coroutines. Donald
Knuth states:

Subroutines are special cases of more general program
components, called coroutines. In contrast to the unsymmetric
relationship between a main routine and a subroutine, there is
complete symmetry between coroutines. [Knuth05]

Coroutines were invented in the late 1950s, with the word itself coined
in 1958 by Melvin Conway [Conway] (yes, that Conway) . They were an
influential feature across many architectures, paradigms and languages.
Their popularity waned to the point of disappearance in the 1980s,
although co-operative multitasking became a common feature of runtime
environments (e.g., Mac OS and Windows). Over the last decade, this
classic of the procedural paradigm has enjoyed new popularity, with many
languages and libraries adopting coroutines or coroutine-like constructs.

Python’s global interpreter lock (GIL) and
casually modifiable underlying object
model make it almost uniquely unsuited
to pre-emptive threading

KEvLIN HENNEY FEATURE

June 2023 | Overload | 13

The coroutine notion can greatly simplify the conception of a
program when its modules do not communicate with each other
synchronously. [Conway63]

Coroutines offer a constrained concurrency model, one based on single-
threaded execution of concurrently available re-entrant code, rather than
truly concurrent execution. For sleep sort that is enough.
 async def sleepsort(values):
 async def sleeper(value):
 await sleep(value)
 print(value)
 await wait(
 [sleeper(value) for value in values])

Structurally, there is little difference between this and the pre-emptive
solutions, with all of them sharing the same underlying fork–sleep–join
anatomy.

The sleepsort function expects values to be iterable, such as a
list or a tuple. The values can be non-negative floats, not just integers,
for which the underlying single-threaded nature of coroutines offers a
better ordering guarantee than would be delivered for the equivalent pre-
emptive execution.

The sleeper function is nested as a private detail within the sleepsort
function. The sleeper-launching loop is expressed as a comprehension
whose resulting list holds the awaitable coroutine instances that are run
and blocked on by asyncio.wait, thereby collapsing the whole fork–
join into a single await statement.

An alternative expression of this is to gather together all of the tasks that
must be run concurrently, in this case unpacking the list of coroutines to
asyncio.gather, which expects each awaitable object to be a separate
argument:
 async def sleepsort(values):
 async def sleeper(value):
 await sleep(value)
 print(value)
 await gather(
 *[sleeper(value) for value in values])

In either case, the sleepsort coroutine must be launched explicitly as
a coroutine:
 run(sleepsort([3, 1, 4, 1, 5, 9])

The coroutine-ness, and therefore the run, can be further wrapped inside
an ordinary function, if you prefer.

It’s about time
If we look closely at what we’ve been trying to do, we’ll see we’ve
been working around the intrinsic structure of the solution rather than
expressing it directly. Consider, for a moment, what the essence of sleep
sort is: time-based execution. What have the three solutions shown so
far done? They have launched separate paths of execution that have
immediately been suspended so as to prevent that very execution.
The terms and conditions of suspension have been time-based, but the
constructs that shape the code have not been. We’ve been faking timers.

In the words of Morpheus [YouTube], “Stop trying to hit me and hit me.”

Time can be considered a source of events, as can I/O and user interaction.
Event-driven control flow offers an alternative way of structuring
applications to the the explicit top–down control flow most commonly
used to express algorithms. This inversion of control activates code in
response to events rather than embedding blocks or polls into the code
to stem the flow of control. Such opposite framing has many design
consequences.

Although they both express themselves through asynchrony, threads and
event-driven code mix poorly. It is generally better to choose one approach
and stick with it. Bringing these two world views together (correctly)
under the same architectural roof demands a clear head, a clear separation
of responsibilities and, unfortunately, a clear increase in complexity.
For example, the POSA2 [Buschmann00] full write-up of the Reactor

pattern, which is an event-loop based dispatch pattern, is 36 pages long;
the Proactor pattern, which mixes in asynchronous mechanisms for its
event-handling, took 46 pages. Although we managed to condense them
to three pages each in POSA4 [Buschmann07], I recall that for much of
the draft Proactor was hitting the four-page mark. We also ranked the
patterns differently: Reactor was considered more mature and less tricky
than Proactor.

Tempting as it is to mess around with timer events in GUI frameworks
or with POSIX timers in C for an illustrative example, life is too short.
The corresponding JavaScript/HTML5 implementation, however, is not:
 const sleepsort = values =>
 values.forEach(
 value => setTimeout(
 () => document.writeln(value),
 value * 1000))

To run, this needs to be embedded into HTML as a <script> – timers
are part of the HTML5 standard but not the ECMAScript standard.
 sleepsort([3, 1, 4, 1, 5, 9])

The sleepsort function can be refactored to more closely resemble the
separations in the previous three versions:
 const sleeper = value =>
 setTimeout(() =>
 document.writeln(value), value * 1000)
 const sleepsort = values =>
 values.forEach(sleeper)

The sleepsort function still iterates through each value to be sorted,
but rather than launching a sleeper, it simply calls it as an ordinary
function that then registers a lambda expression as a callback after the
appropriately scaled number of milliseconds.

In this case, no join boundary is necessary to wait on all the timers
expiring because timers and their effect persist in their enclosing web-
page environment.

Trigger warning
Time-triggered systems are a particular class of event-driven architecture
that offer another variation on the idea of organising application execution
in terms of tasks and time.

Rather than regarding timers as plural and first class, the progress of time
is uniquely marked out by a single recurring interrupt. This heartbeat is
played against a schedule of tasks, a queue of work or a set of pending
notifications from external or internal events. The tick of the timer marks
out time slices into which tasks are placed rather than associating tasks
with timers, threads or other directly asynchronous constructs. Therefore,
in contrast to our usual conception of event-driven systems, time-
triggered systems have only one event they respond to directly: there is
only quantised, periodic time. If there is something to do at that moment,
it is done. The constraint that must be respected to make this architecture
work is that tasks undertaken in any time slice must fit within that time
slice – there is no concurrent execution or arrhythmia.

Time-triggered systems have a more even and predictable behaviour that
makes them attractive in safety-critical environments. They impose a
regular and sequential structure on time that ensures conflicting events
are neither lost nor experience priority inversion in their handling.

It is the need to deal with the simultaneous occurrence of more
than one event that both adds to the system complexity and
reduces the ability to predict the behaviour of an event-triggered
system under all circumstances. By contrast, in a time-triggered
embedded application, the designer is able to ensure that only
single events must be handled at a time, in a carefully controlled
sequence. [Pont01]

Although normally associated with C and embedded systems, we can
illustrate the approach using JavaScript and HTML5’s setInterval
function (see Listing 2, overleaf).

KEvLIN HENNEYFEATURE

14 | Overload | June 2023

I’ve separated out the roles in this code to be a little more explicit, but it
is already clear that the shape of this solution has little in common with
the previous four solutions. It is more complex, involving an additional
intermediate data structure, sleepers, that represents the task table (i.e.,
number of items of a particular value to be sorted) with respect to the time
slice. For the task in hand it is – compared to the other examples – overkill
(but keep in mind that we are dealing with sleep sort, so all excess is
relative…).

The first tick is counted as 0 and there is an initial offset of 1000 milliseconds
before tick 0 drops. The interval timer will run forever (well, until the page
is closed), but by decrementing an initial sleeper count the code could be
tweaked to cancel the timer when all the sleepers have expired.

We have journeyed through time to a solution that has laid out the sorting
structure spatially in a table. The solution is now, in truth, data driven and
is simply dressed up to behave like sleep sort. Time is now consumed in
a more conventional algorithmic form – albeit in a rather elaborate way
– and the defining temporal separation of sleep sort has been rotated into
spatial separation through data structure.

Timing out
I previously noted [Henney20] that ‘Looking at something from a
different point of view can reveal a hidden side.’ And that is true of this
essay, whose subtitle describes an unexpected journey.

I originally had it in mind to show three variants of sleep sort: the
simplified shell version I normally use in talks, a multithreaded version
and then one other. Deciding on coroutines as the third variant made
it clear to me that, nice as that troika was for illustrating sleep sort,
excluding an event-driven solution might feel like a glaring omission.
And once I started down that path, a time-triggered solution seemed like
another natural inclusion. Three becomes four becomes five and, before
you know it, what started as a simple examination of sleep sort becomes
an exploration of execution paradigms and architectural decisions.

Of course, there are many more paradigms and variations that could
be explored and lessons learned from this fun example. For example,
although the shell version was based on OS processes, there are other
process-based approaches such as actors and CSP that could be explored.
Writing, however, shares an important attribute with algorithms: there
should be a stopping condition. In this case, we’ll stop at five.

The purpose here is neither the search for an ideal sorting algorithm nor
the ideal way of implementing a non-ideal sort. It is to take something
that is familiar and commodified and dull and find within it something
fun and unexpected and surprising – sorting without sorting – and use it
as a way to pry open different approaches to organising execution with
respect to the flow and structure of time. How code and data are organised
with respect to time is architectural, and changing your model of time has
consequences we can appreciate and apply beyond sleep sort.

Grace Hopper once observed [QuoteInvestigator]:

Humans are allergic to change. They love to say, ‘We’ve always
done it this way.’ I try to fight that. That’s why I have a clock on my
wall that runs counter-clockwise.

Grace Hopper is why I have a clock on my wall that does the same.

The value of the exercise comes from approaching sorting, concurrency
and events through ostranenie [PennState] rather than habit, as something
unfamiliar and new.

Defamiliarization or ostranenie is the artistic technique of presenting
to audiences common things in an unfamiliar or strange way so
they could gain new perspectives and see the world differently.
[Wikipedia-3]

Whether a difference in perspective will shower you with IQ points
[Wikiquote] is an open question, but it can grant you greater knowledge
and insight and both satisfy and fuel a curiosity you may not have realised
you had. �

References
[Apollo] Apollo 11 Source Code on Google Code: http://lambda-the-

ultimate.org/node/3522
[Buschmann00] Frank Buschmann, Hans Rohnert, Douglas C. Schmidt

and Michael Stal (2000) Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, published by Wiley
& Sons

[Buschmann07] Frank Buschmann, Kevlin Henney and Douglas C.
Schmidt (2007) Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing, published by Wiley & Sons

[Conway] Conway’s Law: https://www.melconway.com/Home/
Conways_Law.html

[Conway63] Melvin E. Conway (1963) ‘Design of a Separable
Transition-Diagram Compiler’, published in Communications of the
ACM, Volume 6:7, July 1963, available at: https://www.melconway.
com/Home/pdf/compiler.pdf

[Endoh10] Yusuke Endoh ‘The Qlobe’, published on 5 September 2010
at http://mamememo.blogspot.com/2010/09/qlobe.html

[Frogley01] Thaddaeus Frogley (2001) ‘The greatest program ever
written’, available at: https://thad.frogley.info/archive/the_greatest_
program.html

[Henney11] Kevlin Henney (2011) ‘Cool Code’, presented at JavaZone,
Norway: https://vimeo.com/28772428

[Henney20] Kevlin Henney ‘Out of Control’, published on 17
December 2020 at https://kevlinhenney.medium.com/out-of-control-
97ed6efa2818

[Knuth05] Donald E. Knuth (2005) The Art of Computer Programming,
Volume 1, published by Addison Wesley Professional

[Norvig16] Peter Norvig ‘How to Write a Spelling Corrector’, published
at https://norvig.com/spell-correct.html from Feb 2007 to August
2016

[PennState] Word of the Week:
https://sites.psu.edu/kielarpassionblog2/2016/02/04/ostranenie/

[Pont01] Michael Pont (2001) Patterns for Time-Triggered Embedded
Systems, published by Addison Wesley

[QuoteInvestigator] Most Dangerous Phrase: We’ve Always Done It
That Way: https://quoteinvestigator.com/2014/11/27/always-done/

[Sleep] Genius sorting algorithm: Sleep sort: https://devrant.com/
rants/445614/found-on-my-universitys-computing-soc-page

[Wikipedia-1] Stone Soup: https://en.wikipedia.org/wiki/Stone_Soup
[Wikipedia-2] Thiotimoline: https://en.wikipedia.org/wiki/Thiotimoline
[Wikipedia-3] Defamiliarization: https://en.wikipedia.org/wiki/

Defamiliarization
[Wikiquote] Alan Kay: https://en.wikiquote.org/wiki/Alan_Kay
[YouTube] Extract from The Matrix: https://www.youtube.com/

watch?v=5mdy8bFiyzY

const sleepsort = values => {
 const sleepers = {}
 values.forEach(value => sleepers[value]
 = sleepers[value] + 1 || 1)
 let ticks = 0
 const tick = () => {
 for (let count = sleepers[ticks];
 count > 0; --count)
 document.writeln(ticks)
 ++ticks
 }
 setInterval(tick, 1000)
}

Listing 2

This article was published on Kevlin Henney’s blog in May 2021, and
is available at https://kevlinhenney.medium.com/need-something-
sorted-sleep-on-it-11fdf8453914

http://lambda-the-ultimate.org/node/3522
http://lambda-the-ultimate.org/node/3522
https://www.melconway.com/Home/Conways_Law.html
https://www.melconway.com/Home/Conways_Law.html
https://www.melconway.com/Home/pdf/compiler.pdf
https://www.melconway.com/Home/pdf/compiler.pdf
http://mamememo.blogspot.com/2010/09/qlobe.html
https://thad.frogley.info/archive/the_greatest_program.html
https://thad.frogley.info/archive/the_greatest_program.html
https://vimeo.com/28772428
https://kevlinhenney.medium.com/out-of-control-97ed6efa2818
https://kevlinhenney.medium.com/out-of-control-97ed6efa2818
https://norvig.com/spell-correct.html
https://sites.psu.edu/kielarpassionblog2/2016/02/04/ostranenie/
https://quoteinvestigator.com/2014/11/27/always-done/
https://devrant.com/rants/445614/found-on-my-universitys-computing-soc-page
https://devrant.com/rants/445614/found-on-my-universitys-computing-soc-page
https://en.wikipedia.org/wiki/Stone_Soup
https://en.wikipedia.org/wiki/Thiotimoline
https://en.wikipedia.org/wiki/Defamiliarization
https://en.wikipedia.org/wiki/Defamiliarization
https://en.wikiquote.org/wiki/Alan_Kay
https://www.youtube.com/watch?v=5mdy8bFiyzY
https://www.youtube.com/watch?v=5mdy8bFiyzY
https://kevlinhenney.medium.com/need-something-sorted-sleep-on-it-11fdf8453914
https://kevlinhenney.medium.com/need-something-sorted-sleep-on-it-11fdf8453914

ALF STEINBACH FEATURE

June 2023 | Overload | 15

Type Safe C++ enum Extensions
Is it possible to extend a value type
in C++? Alf Steinbach describes
how to extend enum values.

Consider if an enum like the following,
 enum class Suit{
 spades, hearts, diamonds, clubs };

could be extended like
 enum class Suit_with_joker extends Suit {
 joker };

where

	� Suit_with_joker has all the enumerators of Suit plus the
joker enumerator; and

	� enumerators introduced in Suit_with_joker get integer values
following those of Suit; and

	� any Suit value is also a Suit_with_joker value.

This would be an example of what I’ll call a value type extension.

The apparently backwards is-a relationship in the last point, where any
value of the original type is-a value of the derived type, is characteristic
of value type extensions.

C++20 totally lacks support for value type extensions, of enum types or
other types.

value type ‘is-a’ versus class inheritance ‘is-a’
Direct use of class inheritance to model an enum extension would give an
is-a relationship the wrong way.

As a concrete example, see Listing 1.

So, class inheritance works for picking up the base type enumerators, but
it doesn’t work for expressing the backwards is-a relationship between
base value type and extended type.

A type safe model of an enum extension
Instead of providing reference conversion via class inheritance, a model
of an enum extension requires value conversion via constructors and/or
type conversion operators.

This is how e.g. unique_ptr works. A unique_ptr<Derived>&
reference is not a unique_ptr<Base>& reference – there’s no
inheritance relationship! But a unique_ptr<Derived> value converts
to a unique_ptr<Base> value.

When Suit_with_joker doesn’t inherit Suit (since that would be the
wrong way) it must inherit in the Suit enumerators from somewhere else.
Which means that the enumerators must be defined in parallel enumerator
holder classes. With no support for comparisons, data hiding etc., just
implementing type safe conversion, it can go like Listing 2 (overleaf).

Compared to the hypothetical
 enum class Suit{
 spades, hearts, diamonds, clubs };
 enum class Suit_with_joker extends Suit {
 joker };

… this is a heck of a lot of code; language support would have been nice.

Note: the above code just exemplifies working C++ that implements a
type safe enumeration type extension. It does not provide conversion
from enumerator to int, or more generally to the underlying type. And
it does not provide a way to specify the underlying type. As mentioned, it
does not provide value comparison.

Suit_names and Suit_with_joker_names should be non-
instantiable. And Suit and Suit_with_joker should ideally inherit
in the value data member from some generic Enumeration class. And
there are even more issues, all omitted for clarity, but all mostly trivial.

About an enum extension syntax
In the example I used the word extends instead of just a colon : as with
classes, because this isn’t like a class inheritance: the is-a relationship
goes the opposite way.

Alf Steinbach is a Norwegian C++ enthusiast, currently co-admin
of FB groups ‘C++ Enthusiasts’ and ‘C++ in-practice questions (most
anything!)’. He’s worked as a vocational school teacher (no C++), as
a college lecturer (teaching also C++, and introducing a Windows
programming course), and as an IT consultant (mostly C and C++).
He can be reached at alf.p.steinbach@gmail.com

struct Suit
{
 int value;

 constexpr explicit Suit(const int v)
 : value(v) {}

 static const Suit spades;
 static const Suit hearts;
};
inline constexpr Suit Suit::spades = Suit(0);
inline constexpr Suit Suit::hearts = Suit(1);

struct Suit_with_joker: Suit
{
 constexpr explicit
 Suit_with_joker(const int v): Suit(v) {}
 static const Suit_with_joker joker;
};

inline constexpr Suit_with_joker
 Suit_with_joker::joker = Suit_with_joker(4);

auto main() -> int
{
 (void) Suit_with_joker::hearts;
 // OK, has inherited the "enumerators".
 Suit_with_joker s1 = Suit::hearts;
 //! C. error, wrong way is-a relationship.
 Suit s2 = Suit_with_joker::joker;
 //! No c. error, but should be error.
}

Listing 1

ALF STEINBACHFEATURE

16 | Overload | June 2023

And I imagine that a useful syntax would have to provide for a list of base
enum types, not just one.

Case in point: in my own hobbyist code I’ve only used the above scheme
once, mostly as an exploration of the issues, and then for data stream id’s
hypothetically defined like
 enum class Input_stream_id{ in = 0 };
 enum class Output_stream_id{ out = 1, err = 2 };
 enum class Stream_id extends Input_stream_id,
 Output_stream_id {};

This supported type safety for functions taking a stream id, since a stream
id argument can be limited to input (Input_stream_id parameter
type) or output (Output_stream_id parameter type), and alternatively
can be allowed to be any stream (Stream_id parameter type).

Probably the Boost Preprocessing Library (BPL) can be used to generate
modeling code for enumeration type extensions. I.e. the hypothetical
enum declarations can be replaced with actual C++ macro invocations.
And possibly, as a less maintenance-friendly alternative, AI based code
generation such as via ChatGPT can be used on a case by case base.

However, regarding BPL-based macros, in my experience ‘smart’ variadic
macros lead to brittle and ungrokable code. If or when one chooses to use
type safe enumeration extensions, it is perhaps better to just code it up
manually, as I did for the stream id’s. I believe that this is an example
of a feature that would be used if it was provided by the core language,
where the centralized effort provides correctness guarantees and the effort
involved confers some advantage to all millions of C++ users. �

struct Suit;
struct Suit_names
{
 static const Suit spades;
 static const Suit hearts;
};
struct Suit:
 Suit_names
{
 int value;
 constexpr explicit Suit(const int v)
 : value(v) {}
};
constexpr Suit Suit_names::spades = Suit(0);
constexpr Suit Suit_names::hearts = Suit(1);

struct Suit_with_joker;
struct Suit_with_joker_names:
 Suit_names
{
 static const Suit_with_joker joker;
};
struct Suit_with_joker:
 Suit_with_joker_names
{
 int value;
 constexpr explicit
 Suit_with_joker(const int v): value(v) {}
 constexpr Suit_with_joker(const Suit v)
 : value(v.value) {}
};
constexpr Suit_with_joker
 Suit_with_joker_names::joker
 = Suit_with_joker(4);
auto main() -> int
{
 (void) Suit_with_joker::hearts;
 // OK, has inherited the "enumerators".
 Suit_with_joker s1 = Suit::hearts;
 // OK, right way is-a relationship.
 #ifdef FAIL_PLEASE
 Suit s2 = Suit_with_joker::joker;
 //! C. error, /as it should be/. :)
 #endif
}

Listing 2

Cartoon by Idalia Kulik (idalia.ku@hotmail.com), who also
designed the ACCU Conference T-shirt and wrote about the
designing experience in CVu 35.2.

ANdREAS FERTIG FEATURE

June 2023 | Overload | 17

In this article, I try to tackle a topic that comes up frequently in my
classes: move semantics, and when to use std::move. I will explain
to you why you should suggest std::move yourself (in most cases).

However, move semantics is way bigger than what this article covers, so
don’t expect a full guide to the topic.

The example in Listing 1 is the code I used to make my point: don’t use
std::move on temporaries! Plus, in general, trust the compiler and only
use std::move rarely. For this article, let’s focus on the example code.

Here we see a, well, perfectly movable class. I left the assignment
operations out. They are not relevant. Aside from the constructor
and destructor, we see in u the copy constructor and in v the move
constructor. All special members print a message to identify them when
they are called.

Further down in Use, we see w, a temporary object of S used to initialize
obj, also of type S. This is the typical situation where move semantics
excels over a copy (assuming the class in question has moveable
members). The output I expect, and I wanted to show my participants, is:
 default constructor
 move constructor
 deconstructor
 deconstructor

However, the resulting output was:
 default constructor
 deconstructor

Performance-wise, the output doesn’t look bad, but it doesn’t show a
move construction. The question is, what is going on here?

This is the time to apply std::move, right?
At this point, somebody’s suggestion was to add std::move.
 void Use()
 {
 S obj{
 // Moving the temporary into obj w
 std::move(S{})
 };
 }

This change indeed leads to the desired output:
 default constructor
 move constructor
 deconstructor
 deconstructor

It looks like we just found proof that std::move is required all the
time. The opposite is the case! std::move makes things worse here. To
understand why, let’s first talk about the C++ standard I used to compile
this code.

Wait a moment!
In C++14, the output is what I showed you for both Clang and GCC.
Even if we compile with -O0 that doesn’t change a thing. We need
std::move to see that the move constructor is called. The key here is
that the compiler can optimize the temporary away, resulting in only a
single default construction. We shouldn’t see a move here because the
compiler is already able to optimize it away. The best move operation

class S {
public:
 S() { printf("default constructor\n"); }
 ~S() { printf("deconstructor\n"); }

 // Copy constructoru
 S(const S&) { printf("copy constructor\n"); }

 // Move constructorv
 S(S&&) { printf("move constructor\n"); }
};
void Use()
{
 S obj{
 S{} // Creating obj with a temporary of S w
 };
}

Listing 1

Why You Should Only Rarely Use
std::move
std::move can allow the efficient transfer of resources from
object to to object. Andreas Fertig reminds us that using
std::move inappropriately can make code less efficient.

Andreas Fertig is a trainer and lecturer on C++11 to C++20,
who presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example, in
iX) and several textbooks, most recently Programming with C++20.
His tool – C++ Insights (https://cppinsights.io) – enables people to
look behind the scenes of C++, and better understand constructs. He
can be reached at contact@andreasfertig.com

Looking more Closely
For a deeper dive, see ‘Nothing is better than copy or move’ [Orr18].

C++11 introduced ‘move semantics’ to facilitate transferring the
contents of one object to another more efficiently than creating a
copy and then erasing the original. This is particularly focused on
optimising the performance of temporary objects, such as when
passing them into or out of a function call.

However, in all the discussions about copying and moving, it is easy
to forget that not creating an object in the first place may be even
more efficient. This can be something done by design choice, or an
optimisation applied during compilation. For example, introduction
of a temporary object by copying can be removed; this is is called
‘copy elision’ in C++ and has been permitted in the language for many
years.

C++17 adds some additional specification around the creation of
temporary variables with the phrase ‘temporary materialization’.

Rog’s presentation looks at some ‘worked examples’ of how this
behaves in practice, and some things to be aware of.

ANdREAS FERTIGFEATURE

18 | Overload | June 2023

will not help us here. Nothing is better than eliding a certain step.
Eliding is the keyword here. To see what is going on, we need to use
the -fno-elide-constructors flag, which Clang and GCC support.

Now the output changes. Running the initial code, without std::move,
in C++14 mode shows the expected output:
 default constructor
 move constructor
 deconstructor
 deconstructor

If we now switch to C++17 as the standard, the output is once again:
 default constructor
 deconstructor

Due to the mandatory copy elision in C++17, the compiler must elide
this nonsense construction even with -fno-elide-constructors.

However, if we apply std::move to the temporary copy, elision doesn’t
apply anymore, and we’re back to seeing a move construction.

You can verify this on Compiler Explorer: godbolt.org/z/G1ebj9Yjj

The take away
That means, hands-off! Don’t move temporary objects! The compiler
does better without us. �

References
[Orr18] Roger Orr, ‘Nothing is better than copy or move’ presentation

given at ACCU 2018, available at: https://youtu.be/-dc5vqt2tgA

This article was published on Andreas Fertig’s blog in February 2022
(https://andreasfertig.blog/2022/02/why-you-should-use-stdmove-
only-rarely/).

http://godbolt.org/z/G1ebj9Yjj
https://youtu.be/-dc5vqt2tgA
https://andreasfertig.blog/2022/02/why-you-should-use-stdmove-only-rarely/
https://andreasfertig.blog/2022/02/why-you-should-use-stdmove-only-rarely/

CHRIS OLdWOOd FEATURE

June 2023 | Overload | 19

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or @
chrisoldwood

One of the benefits of living on a small island (Great Britain) is that
you have plenty of old fashioned nautical terms to draw on when
discussing matters of software development. For example, I’ve

contributed a short segment to the Early Career’s Day at the ACCU
Conference in recent years and you can probably imagine my joy at
realising I’d be talking about quality in software development in Bristol –
home of the expression ‘shipshape and Bristol fashion’ – which naturally
I adopted as my title.

One of my other nautical favourites that I’m accused of saying far too
regularly (and causes my children to roll their eyes) is ‘don’t spoil
the ship for a ha’p’orth of tar’. (The word ha’p’orth is a contraction
of halfpennyworth.) Sadly, this gets more airing than I’d like because
the quality conversation can tend occasionally towards cutting corners
instead of taking that little bit of extra time to refactor more deeply or add
test cases to cover the error scenarios.

There are of course plenty of nautical terms which are still in common
use by normal people too and I’m not adverse to ‘showing someone the
ropes’ or ‘trying a different tack’, although I don’t think I could ever
bring myself to ‘on-board’ someone (it’s a phrase I’d happily give a wide
berth to). Interestingly, the not too uncommon expression ‘a rising tide
lifts all boats’, which I find particularly useful when trying express the
importance of team members sharing their time and knowledge for the
greater good, is believed to be a fairly modern invention.

What I like about many of these old-fashioned terms is that they add
a little colour to what can be a somewhat abstract but nonetheless
contentious topic. While the phrase ‘best practice’ gets tossed around a
lot, it’s debatable whether any are truly ‘best’ – more likely is that they are
better than others in some circumstances. Hence any conversation around
deciding how much effort to spend on improving matters in any given
situation becomes less objective, and more subjective, and therefore
largely about what your gut instinct tells you.

Once the conversation enters this abstract territory it can become (as an
old work colleague once described it) a game of Top Trumps where you
use quotes from various industry ‘luminaries’ to try and back up your
side of the argument. I suspect no topic in software development has
anywhere near as many sayings as those about simplicity.

For example, in languages like C# and Java it is not uncommon to be
faced with a solution to a problem which is implemented in a dizzying
array of interfaces and classes when a couple of extension methods could
just as easily do the job. For this scenario I like to play the John Carmack
card [Carmack11]:

Sometimes, the elegant implementation is just a function. Not a
method. Not a class. Not a framework. Just a function.

As the author of such seminal games as Doom and Quake his opinion
should hold a lot of sway, but if you’re dealing with code from someone
more classically trained you might need to draw on someone from a
different era. Your deck probably holds a solid collection of quotes from
the legendary Sir Tony Hoare (with the most heavily worn card likely
being one on premature optimization) but I find this observation of his
particularly useful for proposing further refactoring [Hoare]:

There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.

In extreme cases the protagonist may choose to counter with their
performance card which luckily you can quickly neutralize with the
aforementioned Sir Tony Hoare power card. But you may feel the need
to finish off the round once and for all by hitting them with a double
whammy by plucking out Hal Abelson’s famous words from Structure
and Interpretation of Computer Programs [Abelson96]:

Programs must be written for people to read, and only incidentally
for machines to execute.

For a trifecta you might consider playing Martin Fowler’s variation about
any fool being able to write code a computer can understand, but an ad
hominem attack like this would be more Donald Trump than Top Trump,
so don’t.

The benefits of deleting code can never be overstated either, especially
dead code and comments which provide no value, and, more importantly,
code which can be further simplified by leveraging existing features of the
language or standard library. For this we need to flick through the cards
from our early 20th century section and draw something wonderfully
profound from Antoine de Saint-Exupéry [Saint-Exupéry39]:

Perfection is achieved, not when there is nothing more to add, but
when there is nothing left to take away.

Not all programming quotes can or should be weaponised though.
Sometimes we can be too quick to judge the efforts of our ancestors and
ascribe the actions to malice or stupidity when in fact it was neither. This
quote from Gerry Weinberg is a wonderful reminder about how hindsight
is 20/20 [Weinberg]:

Things are the way they are because they got that way ... one
logical step at a time.

I think we are fortunate now to be living in an age where
less emphasis is being placed on talking about failure
and more on using it as an opportunity to learn. The late

Afterwood
Quotes and aphorisms are often used to
emphasise a point. Chris Oldwood shares some
of his favourites and considers their origins.

CHRIS OLdWOOdFEATURE

20 | Overload | June 2023

Fred Brooks [Brooks] has a particularly memorable quote which I think
extols that notion of continuous personal development:

Good judgement comes from experience, and experience comes
from bad judgement.

Despite being relatively new in comparison to the maritime industry we
are still blessed with plenty of our own expressions to draw from. As
Andrew Tanenbaum once said (sic) “the good thing about quotes is that
there are so many to choose from.” �

References
[Abelson96] Harold Abelson and Gerald Jay Sussman (1996) Structure

and Interpretation of Computer Programs, 2nd Edition, published
by MIT Press.

[Brooks] Frederick (Fred) Brooks Jr (1931-2022) was an American
computer scientist and software engineer, who wrote The Mythical
Man Month. See https://en.wikipedia.org/wiki/Fred_Brooks

[Carmack11] John Carmack, posted 31 Mar 2011 on Twitter:
https://twitter.com/ID_AA_Carmack/status/53512300451201024

[Hoare] Sir Antony Hoare, the quote is referenced in many places,
including https://computerhistory.org/profile/sir-antony-hoare/

[Saint-Exupéry39] Antoine de Saint-Exupéry (1939) Terre des Hommes,
(mostly) translated into English with the title Wind, Sand and Stars.
See https://en.wikipedia.org/wiki/Wind,_Sand_and_Stars for an
explanation of the differences.

[Weinberg] Gerald Weinberg, American computer scientist and author
(1933-2018).

So, what does it mean?
The problem with expressions such as ‘ship-shape and Bristol fashion’
is that they aren’t always as obvious as you might think to people who
haven’t heard them before. If you’re not from the UK – or you’re under
40 years of age (my guess) – you may not recognise them, or even
if you do, your understanding of their meaning may be a little vague.
A quick online search soon sorts it out, although you may find many
suggestions of the origins of some! The current meaning is fairly
standard, though, regardless of how the phrase started.

Ship-shape and Bristol-fashion: The ‘ship-shape’ part doesn’t have
so much to do with the appearance (although that may be part of it)
but more a claim that everything is as it should be, in its right place
(construction and contents) – ready for sea. But why Bristol-fashion?
Bristol is a historic port, but isn’t on the coast. Instead, it’s on a tidal
river. This means that any ships – sometimes full of cargo – had to
be able to withstand being dumped unceremoniously on the mud
when the tide went out and cope with a strong tidal flow. The strain
on the construction was greater than when floating. So, if ‘ship-shape’
is ‘ready to go’, ‘Bristol-fashion’ is probably the ‘high-quality’ element.
(https://wordhistories.net/2017/10/18/shipshape-bristol-fashion/)

Don’t spoil the ship for a ha’p’orth of tar: Interestingly (to me, anyway)
although this is ‘obviously’ a nautical expression, that may not
actually be where it started. It’s believed that ‘ship’ is actually ‘sheep’
(pronounced ‘ship’ in some dialects, and therefore written that way
when literate non-farmers wrote it down) and ‘tar’ is tar – but was used
to keep flies from sores, not to waterproof a hull. It does make sense
with the commonly accepted derivation, though. (https://wordhistories.
net/2017/10/13/spoil-ship-haporth-tar/)

Trying to save time/effort/cost when what you’re not doing is trivial in
those terms but could have a devastating effect on the success of the
overall project/task is the meaning, regardless of the origin.

Showing someone the ropes: The sails on large sailing ships were
raised and lowered using ropes. And some had a lot of sails, and

therefore a lot of ropes. It wasn’t always obvious which rope did what
to which bit of sail. This is a straightforward one: making sure people
know how to do what they have to do. (https://en.wiktionary.org/wiki/
show_someone_the_ropes)

Changing tack: Very much a nautical term, in use today. A sailing
boat can’t sail directly into the wind, but tacking (changing its direction
relative to that wind) enables the wind to alternatively blow into the
sails from the port (left) and starboard (right) sides. This moves the
boat generally into the wind, in a zig-zag pattern. (https://www.safe-
skipper.com/tacking-a-sailing-boat/)

Changing tack means changing the way you approach a task or an
issue. Using different methods. Resolving an issue in a different way.

Onboarding: Sounds nautical, but appeared in the 1970s and always
to do with new employees going through an induction programme.
(https://www.businesstoday.in/lifestyle/wordsmith/story/meaning-of-
the-word-onboarding-21672-2011-08-05)

The benefits of deleting code can never be
overstated either, especially dead code and
comments which provide no value

https://en.wikipedia.org/wiki/Fred_Brooks
https://twitter.com/ID_AA_Carmack/status/53512300451201024
https://computerhistory.org/profile/sir-antony-hoare/
https://en.wikipedia.org/wiki/Wind,_Sand_and_Stars
https://wordhistories.net/2017/10/18/shipshape-bristol-fashion/
https://wordhistories.net/2017/10/13/spoil-ship-haporth-tar/
https://wordhistories.net/2017/10/13/spoil-ship-haporth-tar/
https://en.wiktionary.org/wiki/show_someone_the_ropes
https://en.wiktionary.org/wiki/show_someone_the_ropes
https://www.safe-skipper.com/tacking-a-sailing-boat/
https://www.safe-skipper.com/tacking-a-sailing-boat/
https://www.businesstoday.in/lifestyle/wordsmith/story/meaning-of-the-word-onboarding-21672-2011-08-05
https://www.businesstoday.in/lifestyle/wordsmith/story/meaning-of-the-word-onboarding-21672-2011-08-05

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Production and Productivity
	Reasoning About Complexity – Part 1
	Incompatible Language Features in C#
	Need Something Sorted? Sleep On It!
	Type Safe C++ enum Extensions
	Why You Should Only Rarely Use std::move
	Afterwood

