
A magazine of ACCU ISSN: 1354-3172

Use SIMD:
Save the Planet

Andrew Drakeford demonstrates how
SIMD (Single Instruction Multiple Data)

can reduce your carbon footprint.

User Stories and BDD –
Part 2, Discovery
Seb Rose continues his investigation of the
term 'User Story'.

Dollar Origins
Paul Floyd shows how $ORIGIN can help
when using tools from non-standard locations.

How to Write an Article
Frances Buontempo explains how easy it is to
submit an article to Overload.

Afterwood
Chris Oldwood takes time to consider ghosts
in the machine.

To connect with
like-minded people

visit accu.org

accu

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

December 2023 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

December 2023
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Daniel James. Fire
escape staircases of the Lloyds
building reflected in the building
opposite.

Copy deadlines
All articles intended for publication
in Overload 179 should be
submitted by 1st January 2024
and those for Overload 180 by
1st March 2024.

 4 User Stories and BDD – Part 2, Discovery
Seb Rose continues his investigation of the term
‘User Story’, looking at detailed analysis.

 6 Use SIMD: Save The Planet
Andrew Drakeford demonstrates how SIMD
(Single Instruction Multiple Data) can reduce
your carbon footprint.

 12 Dollar Origins
Paul Floyd shows how $ORIGIN can help when
using tools from non-standard locations.

 14 How to Write an Article
Frances Buontempo explains how easy it is to
submit an article for publication in Overload.

 16 Afterwood
Chris Oldwood takes time to consider
the ghosts in the machine.

FrAnCES BUOnTEMPOEDITOrIAl

2 | Overload | December 2023

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

General Knowledge and
Selective Ignorance
It’s very easy to assume everyone knows
everything you know. Frances Buontempo points
out that general knowledge is context dependent.

It is, perhaps, common knowledge to our regular
readers that I always find an excuse for not writing
an editorial. If you are new to this magazine, first,
welcome, and second, bear with me. Allow me to
explain why, as ever, I have no editorial for you. An
editorial would involve a subjective viewpoint on

a topic, giving a personal opinion which might open the floodgate to
arguments. These, in turn, might stop me from finishing an editorial, so
the most efficient way forward is not bothering. Besides, no one likes an
argument. Furthermore, trying to spot if something is purely subjective
can be difficult. Recently, the BBC news has insisted on reporting what
‘BBC Verify’ has discovered, slapping the label ‘BBC Verify’ on many of
its new articles [BBC]. Many of the ‘verifications’ involve an assessment
of images, trying to discern if they could be from a particular place by
comparing known landmarks, streets and so on, as well as checking
whether they have previously been visible on the internet, in order to
pinpoint the veracity of the time the picture or film is claimed to have
been taken. I am not convinced this approach would spot deep fakes or
image alterations. I suspect most ‘fake news’ from bad actors involves
sneaking emotive words, possibly along with real pictures, into a social
media feed. We need to apply some discernment to anything we are told.

It can be very hard to spot untruths, and I am sure many of us can cite
examples where we have changed our minds as more information has
come to light. I recently watched Union, by David Olusoga [Olusoga23],
which went through the history of the United Kingdom. I was aware
of much of what he talked about, though there were some new bits of
information. I was left thinking about the economic situation in the UK
in 1973, and similarities with today’s ‘cost of living crisis’. I shall keep
my opinions to myself, but I do see a coincidence with the Vietnam War
causing a spike in the price of oil internationally and the cost of oil today.
Further information can provide a new perspective on things.

Regardless of my opinions, verification is difficult. I have recently taken
on some work with an open source Bounded Model Checker for C
(CBMC) [CBMC]. I haven’t worked on verification software before, so
have lots to learn. This style of verification is very different to the BBC’s
attempt; however, both can spot things that are wrong but cannot prove
things are right. Knowing something is wrong is one thing, but you will
always be left with Rumsfeld-style known unknowns and even unknown
unknowns. Proof is difficult, and software verification seems to nudge
up against Gödel’s incompleteness theorems very quickly. If I manage
to understand the specifics fully, I might get round to writing an article,

though I cannot promise it will be a complete
guide to software verification. Hopefully, it will

be consistent.

Mentioning ‘Rumsfeld’ and giving no reference rather assumes you
know about the known unknowns phrase, [Wikipedia-1]. When we
try to communicate, we need to assume some common knowledge, at
very least a common understanding of a few words. It is all too easy
to use colloquialisms specific to your own culture and experience when
you write or speak. If I watch or listen to so-called ‘general knowledge’
quizzes, I often notice people answering sport-related questions fall into
one of two categories. They either know or they don’t know. I am firmly
in the latter camp. Piecing together an intelligent guess is impossible with
no background knowledge to go on. The same happens for other types of
questions. If someone who has lived in the UK for the last ten years is
asked about a British TV programme from the 1970s they are unlikely to
know or even be able to guess the answer. General knowledge is usually
geared towards specific contexts. This is why it is important to provide
citations when writing. It allows readers to fill in gaps in their knowledge,
as well as verifying your claims.

Many who take part in quizzes spend ages learning lists, say of US states
or presidents. Points in a general knowledge quiz tend to demonstrate
memorization of these lists or an ability to guess based on, say, Latin
roots of words or similar. The culture and cohort specific questions don’t
seem to indicate any kind of cleverness. No-one said general knowledge
is the same as being clever, to be fair. Sometimes playing quiz games with
family or friends can be fun, but occasionally, someone says “Don’t you
even know that?” Very unkind. I’ve seen the same happen in teams of
coders or even interviews, and am guilty myself. I interviewed someone
for a C++ job years ago, and he hadn’t come across std::string. I’d
like to claim I didn’t raise an eyebrow at this, but can’t remember clearly.
He got the job anyway and the first thing he said to me when he started
was he’d been practising using the standard library, which was great. If
someone doesn’t know something you regard as essential knowledge,
don’t be arrogant and remember they might be able to learn about the
subject, just as you did once.

I’ve been re-watching Babylon 5 [IMDB-1] recently. It’s a 30 year old (!)
TV series, based on a space station:

located in neutral territory, … a major focal point for political intrigue,
racial tensions and various wars over the course of five years.

This means various different aliens species interact. In order to
communicate, they need some kind of commonality. At one point, they
used the phrase “20 standard minutes”. As I write this, the clocks have
switched from BST to GMT in the UK, which will confuse me silly for
a few weeks. I would imagine changing to ‘std::minutes’ might confuse
me too. I wonder if a standard minute is an Earth minute, rather like
UTC is GMT. David Olusoga might have something to say on the matter.
Many ‘common’ ideas are drawn from a geographical and cultural

FrAnCES BUOnTEMPO EDITOrIAl

December 2023 | Overload | 3

context, making them seem more natural to some people than others. This
provides diverse groups and teams with a challenge, which we should
willingly embrace.

In order for people who speak different languages to communicate, we
usually try to find a lingua franca [Wikipedia-2]. Literally meaning
‘Frankish language’, for many years, English has been used to
communicate in business and the like. Lingua franca can also apply to
mixed languages or Pidgins [Wikipedia-3]. These provide a general way
to communicate, often using pre-existing languages, perhaps simplified
or combined. People trying to communicate is one thing, but how do we
make computers communicate? In some sense, the C language works as a
lingua franca. Providing a C-API for a program, written in C++ or indeed
one of many other languages, allows libraries or processes to be called
directly. Using a narrow application programming interface hides away
details, forming a very useful selective ignorance. There are various other
ways to provide APIs, including REST, allowing services to talk. Hiding
implementation details frequently enables better general discourse, and
likewise making an API simple can facilitate usage. We don’t always
need to know historical details behind the definition of UTC in order to
tell the time, but the extra details can be of interest. And get you points
in a pub quiz.

In order to win at quizzes, you often need a diverse team of people with
a mixture of knowledge, including someone who has memorized a list
or two. The phrase “Not a lot of people know that” is often ascribed
to Michael Caine [Wikipedia-4], since he had a tendency to rattle off
obscure facts at the drop of a hat. Being a mind of ‘useless’ information
might be very useful in a quiz. Is any information truly useless? I’m not
sure. Certainly, someone pointing out everything they can think of about
a topic might prove distracting. For example, someone telling a group
why a decision was made about a code base can be useful insight in some
circumstances; however, it might not help the team find the cause of a bug
or figure out how to add a new feature. Watching Dominic Cummings
speak to the Covid enquiry in the UK recently was ‘interesting’, or at
least fascinating. He frequently rattled off lots of definitions and vague
memories, interspersed with various expletives, managing to avoid
answering the actual questions. A barrage of irrelevant information is
always unhelpful. Discerning useless information is subjective, but
spotting irrelevance is easier.

Now, if someone, or even something, can rattle off a stream of facts, does
that makes them knowledgeable? We can watch AI chat software stream
many words, sometimes including truths; however, this does not prove
AI ‘knows’ anything. Similarly, we can type words into a search engine,
and get results. The internet does not know anything, but can be a source
of knowledge. As with books, or conversations, we need to find a way
to pick through what is written or said, and draw our own conclusions. I
asked ChatGPT if it knows or understands anything, and it replied,

ChatGPT does not possess knowledge or understanding in the
way humans do. It is a machine learning model that processes and
generates text based on patterns it has learned from a large dataset
of text. While it can provide responses that appear knowledgeable
or understanding, it does not have true comprehension or
consciousness.

To be fair, some people sometimes prattle off words and maybe do not
have a proper understanding either. I notice of a lot of politicians and
business people using the word ‘nimble’ recently. I suppose they had been
saying ‘agile’ and someone, somewhere said “You keep using that word. I
do not think it means what you think it means.” [IMDB-2]

How do we gain understanding? A child may imitate adults while they
learn language, and we actively encourage children to sing along with
songs, allowing them to mispronounce words as they go. Over time,

the child usually learns a few words correctly, and manages to use them
outside the context of the song. As adults, we still have to keep learning
new words. ‘Have to’ might be a bit strong, but new tech comes into
being, so new words and phrases creep in, or old words get repurposed.
Zoom, cloud, … I still have to suspend my disbelief/confusion if people
say “sick” to indicate something is good. I notice some people struggling
with the pronoun “they”, probably for similar reasons. Unfamiliarity
with a new context means you might misunderstand because of your
expectations. I wonder if learning a new programming language has
similar issues. Perhaps to begin with, you copy something from a book,
blog or talk, like a child singing a song, or ChatGPT spewing forth code
it found on the internet. Maybe you recognize a few parts of the code, but
perhaps you stumble a bit. If you have experience of a similar language
though, you may assume you understand a statement, but completely
miss the point. Sometimes, a little bit of knowledge is a dangerous thing,
to slightly misquote Alexander Pope [Wiktionary].

If you start working on a new codebase, in a language you know well,
it can still take a while to find your way around. Even someone who
has worked on a large codebase for years sometimes has to rely on a
search to find definitions or usages. You can’t always know all the things.
Managing enough selective ignorance and using a few signposts or
heuristics is usually enough to be able to find what you are after.

As the year draws to a close, take time to consider what, if anything, you
have learnt this year. Have a look back through the articles in Overload,
and if you are an ACCU member, look through this year’s members’
magazine, CVu, to pick your favourites. Then vote in our best article
survey (see page 11).

Thank you for reading Overload, and thank you also to all our writers.
Hopefully, we manage to keep you informed. Perhaps the citations
provided clarify background details if you are interested, and give
potential further reading.

We all have different strengths and weaknesses, so let’s continue to help
each other by sharing what we have learnt and encouraging each other
by acknowledging our writers’ hard work. Hopefully
next year will bring more opportunities to continue
to learn, while being careful to avoid irrelevant rabbit
holes or simply learn lists of facts. Thank you for
taking time to read this, and have a happy new year.

references
[BBC] BBC Verify: https://www.bbc.co.uk/news/reality_check
[CBMC] Bounded Model Checking for Software (for C and C++

programs): https://www.cprover.org/cbmc/
[IMDB-1] Babylon 5: https://www.imdb.com/title/tt0105946/
[IMDB-2] The Princess Bride – Quotes:

https://www.imdb.com/title/tt0093779/quotes/
[Olusoga23] David Olugosa (2023) ‘The Making of Britain’:

https://www.bbc.co.uk/programmes/p0gd25kn
[Wikipedia-1] Unknown unknowns:

https://en.wikipedia.org/wiki/There_are_unknown_unknowns
[Wikipedia-2] Lingua franca:

https://en.wikipedia.org/wiki/Lingua_franca
[Wikipedia-3] Pidgin: https://en.wikipedia.org/wiki/Pidgin
[Wikipedia-4] Michael Caine:

https://en.wikipedia.org/wiki/Michael_Caine
[Wiktionary] ‘A little knowledge is a dangerous thing’:

https://en.wiktionary.org/wiki/a_little_knowledge_is_a_dangerous_
thing

https://www.bbc.co.uk/news/reality_check
https://www.cprover.org/cbmc/
https://www.imdb.com/title/tt0105946/
https://www.imdb.com/title/tt0093779/quotes/
https://www.bbc.co.uk/programmes/p0gd25kn
https://en.wikipedia.org/wiki/There_are_unknown_unknowns
https://en.wikipedia.org/wiki/Lingua_franca
https://en.wikipedia.org/wiki/Pidgin
https://en.wikipedia.org/wiki/Michael_Caine
https://en.wiktionary.org/wiki/a_little_knowledge_is_a_dangerous_thing
https://en.wiktionary.org/wiki/a_little_knowledge_is_a_dangerous_thing

SEB rOSEFEATUrE

4 | Overload | December 2023

User Stories and BDD – Part 2, Discovery
The term ‘User story’ is used in a variety of different
ways. Seb Rose continues his investigation of the
term, looking at detailed analysis.

This is the second in a series of articles digging into user stories, what
they’re used for, and how they interact with a BDD approach to
software development. You could say that this is a story about user

stories. And like every good story, there’s a beginning, a middle, and an
end. Welcome to the middle!

Previously ...
In the last article in this series [Rose22], we traced the origins of the user
story. We saw that the term user story was used interchangeably with
story, that stories were used as a placeholder for a conversation, and that
this allowed us to defer detailed analysis. Now it’s time to dive into the
detailed analysis.

last responsible moment
The reason we defer detailed analysis is to minimise waste – we don’t
want to work on features until we’re reasonably sure that we’re actually
going to deliver them, and that work includes analysis. There’s no value
in having a detailed backlog that contains thousands of stories that we’ll
never have time to build.

The XP community approaches waste from another direction, with the
concept of you aren’t gonna need it (YAGNI) [C2-Wiki]. In a nutshell this
tells us not to guess the future. Deliver only what you actually need today,
not what you might need tomorrow – because you may never need it.

In Lean Software Development: An Agile Toolkit [Poppendieck03], the
authors coined the phrase ‘the last responsible moment’ (LRM). This
describes an approach to minimising waste based upon making decisions
when “failing to make a decision eliminates an important alternative”.

The key is to make decisions as late as you can responsibly wait because
that is the point at which you have the most information on which to base
the decision.

Accidental discovery
We want to defer making decisions until the last responsible moment
because software development is a process of learning. We learn about the
domain, what the customer needs, and the best way to use the available
technology to deliver on that need. The more we learn, the better our
decisions.

Learning something relevant after we’ve already made a decision is called
accidental discovery. We made a decision believing we had sufficient
knowledge, but we were surprised by an unknown unknown [Wikipedia].
The consequence of accidental discovery is usually rework (which is
often costly), so our job is to minimise the risk of that happening.

Risks and uncertainties are the raw materials we work with every day.
We’ll never be able to remove all the risks, nor should we want to.
As Lister and DeMarco put it so eloquently in Waltzing with Bears
[DeMarco03]:

If There’s No Risk On Your Next Project, Don’t Do It.

Deliberate discovery
As professionals, we are paid to have answers. We feel deeply
uncomfortable with uncertainty and will do almost anything to avoid
having to admit to any level of ignorance. Rather than focus on what we
know (and discreetly ignore what we’re unsure of), we should actively
seek out our areas of ignorance.

Daniel Terhorst-North [North10] proposed a thought experiment:

What if, instead of hoping nothing bad will happen this time, you
assumed the following as fact:

	� Several (pick a number) Unpredictable Bad Things will
happen during your project.

	� You cannot know in advance what those Bad Things will be.
That’s what Unpredictable means.

	� The Bad Things will materially impact delivery. That’s what
Bad means.

To counter the constraint of “Unpredictable Bad Things happening”,
he suggests that we should invest effort to find out what “we are most
critically ignorant of [and] reduce that ignorance – deliberately discovering
enough to relieve the constraint.”

By building deliberate discovery into our delivery process we are
demonstrating our professional qualities – not admitting to incompetence.
We are acting responsibly to minimise unnecessary risk and maximise the
value that we deliver to our customer:

Ignorance is the single greatest impediment to throughput.
[North10]

Example mapping
Many agile teams will be familiar with backlog grooming/refinement
meetings. The intention of these meetings is to refine our understanding
of the stories on the backlog, but in my experience, they are often
unstructured. Nor do they focus on uncovering what we, as a team, are
ignorant of.

One of the most effective techniques for deliberate discovery is called
Example Mapping – created and documented by my colleague, Matt
Wynne [Wynne15]. It’s an extremely simple, yet extraordinarily
powerful way of structuring collaboration between team members,
harnessing diverse perspectives to approximate the wisdom of crowds
[Surowiecki05].

Example maps (see Figure 1, overleaf) give us a visual indicator of how
big a story is and how well we understand it. Once the story is well

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. Co-author of the BDD Books series
Discovery and Formulation (Leanpub), lead author of The Cucumber
for Java Book (Pragmatic Programmers), and contributing author to
97 Things Every Programmer Should Know (O’Reilly).

SEB rOSE FEATUrE

December 2023 | Overload | 5

understood, we can use the example map to help the team split the story
into manageable increments.

Stories all the way down
Stories start their life as placeholders for a conversation. As they
get refined through the deliberate discovery process they become
better understood, allowing us to decompose them into detailed small
increments. Which we still call stories.

The transformation from placeholder for a conversation to detailed
small increments is not well understood by agile practitioners. There’s
informal usage in the agile community of the term epic as a label that
identifies a large user story [Cohn22], but epics and user stories can both
be placeholders for a conversation.

Nor are detailed small increments equivalent to tasks. Tasks are used to
organise the work needed to deliver a detailed small increment. Each task
is “restricted to a single type of work” [Cohn15] – such as programming,
database design, or firewall configuration. Tasks, on their own, have no
value whatsoever to your users. Each small increment, however, makes
your product just a little bit more useful.

Same name, different purpose
By the time a piece of work is pulled onto the iteration backlog, the main
purpose of the story is to aid planning and tracking. The title of each story
is no longer all that important – the story is simply a container that carries
the detailed requirements of the next small increment to be delivered.

Without the decomposition to detailed small increments that takes place
during discovery, the stories will be too large. If there’s one thing that
hurts delivery teams more than anything else, it is inappropriately large
stories. Nevertheless, most teams that I visit still work on stories that take
weeks to deliver and this is still all too common in our industry. �

references
[C2-Wiki] You Aren’t Gonna Need It:

https://wiki.c2.com/?YouArentGonnaNeedIt
[Cohn15] Mike Cohn ‘The Difference Between a Story and a Task’,

posted on the Mountain Goat Software blog on 24 February 2015
and accessed on 21 November 2023 at
https://www.mountaingoatsoftware.com/blog/the-difference-
between-a-story-and-a-task

[Cohn22] Mike Cohn ‘Epics, Features and User Stories’, posted on the
Mountain Goat Software blog on 8 November 2022, and accessed
on 21 November 2023at https://www.mountaingoatsoftware.com/
blog/stories-epics-and-themes

[DeMarco03] Tom DeMarco and Timothy Lister (2003) Walking with
Bears: Managing Risk on Software Projects, published by Dorset
House Publishing Co Inc, USA.

[North10] Dan North ‘Introducing Deliberate Discovery’, published on
Dan North & Associates Limited blog on 30 August 2010. Accessed
21 November 2023 at https://dannorth.net/introducing-deliberate-
discovery/

[Poppendieck03] Mary Poppendieck and Tom Poppendieck (2003)
Lean Software Development: An Agile Toolkit, Addison-Wesley
Professional

[Rose22] Seb Rose ‘User Stories and BDD – Part 1’ published in
Overload 171, October 2022 and available at https://accu.org/
journals/overload/30/171/rose/.

[Surowiecki05] James Surowiecki (2005) The Wisdom of Crowds: Why
the Many Are Smarter Than the Few, Abacus.

[Wikipedia] ‘There are unknown unknowns’: https://en.wikipedia.org/
wiki/There_are_unknown_unknowns

[Wynne15] Matt Wynne ‘Introducing Example Mapping’, published on
8 December 2015, and accessed on 21 November 2023 at
https://cucumber.io/blog/bdd/example-mapping-introduction/

Figure 1

If there’s one thing that hurts delivery
teams more than anything else, it is

inappropriately large stories

This article was published on Seb Rose’s blog on 21 November 2019:
https://cucumber.io/blog/bdd/user-stories-and-bdd-(par t-2)-
discovery/

https://wiki.c2.com/?YouArentGonnaNeedIt
https://www.mountaingoatsoftware.com/blog/the-difference-between-a-story-and-a-task
https://www.mountaingoatsoftware.com/blog/the-difference-between-a-story-and-a-task
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
https://dannorth.net/introducing-deliberate-discovery/
https://dannorth.net/introducing-deliberate-discovery/
https://accu.org/journals/overload/30/171/rose/
https://accu.org/journals/overload/30/171/rose/
https://en.wikipedia.org/wiki/There_are_unknown_unknowns
https://en.wikipedia.org/wiki/There_are_unknown_unknowns
https://cucumber.io/blog/bdd/example-mapping-introduction/

AnDrEW DrAKEFOrDFEATUrE

6 | Overload | December 2023

Use SIMD: Save The Planet
Writing efficient code is challenging but worthwhile.
Andrew Drakeford demonstrates how SIMD (Single
Instruction Multiple Data) can reduce your carbon footprint.

Some sources claim that data centres consumed 2.9% of the world’s
electricity in 2021 [Andrae15]. With the recent sharp increase in
energy prices, many firms became aware of this cost. Additionally,

trends in AI use and the near-exponential growth in both network and
data services projected over the next few years [Jones18] suggest that this
situation will only get worse.

A data centre’s single purpose is to run our software (not heat the planet).
But what if the processing cores that our software runs on have a unique,
often unused, feature that would enable them to do the work several times
faster? Would this also mean several times more efficiently? This feature
is SIMD (Single Instruction Multiple Data).

SIMD is a parallel computing technology that allows processors to
perform the same operation on multiple data elements simultaneously.
By using SIMD instructions, a single CPU instruction can operate on
multiple data elements in a single clock cycle. For example, with 256-
bit SIMD registers, it is possible to process eight 32-bit floating-point
numbers or sixteen 16-bit integers in parallel. This leverages the data-
level parallelism inherent in many algorithms, such as mathematical
computations, image processing, audio processing, and simulations.
Figure 1 illustrates the element-wise addition of two sets of numbers
using the SSE2, AVX2 and AVX512 instructions sets.

SIMD instructions use vector registers, which can hold multiple data
elements. These registers allow the CPU to apply a single instruction
to all the elements simultaneously, thus reducing the instruction count.
Consequently, SIMD can provide a substantial speedup for tasks that
exhibit regular and parallelizable data processing patterns.

The experiment
To determine if utilizing SIMD instructions can save energy, we
performed a straightforward experiment on widely used x86 hardware. In
this experiment, we developed implementations for a standard task using
three different instruction sets: SSE2, AVX2, and AVX512. Our goal was
to measure power consumption while running these implementations.

Experiment setup
We created a simple application called dancingAVX512 for this
purpose. This application cycles through each of the different SIMD
implementations, with each one processing the workload in three bursts,
separated by pauses. These pauses allow us to establish both baseline
energy usage and the energy consumed during actual workload. The
application runs continuously and is pinned to a single processor core. We
monitor various core parameters, such as clock frequency, temperature,
loading, and power consumption, using Open Hardware Monitor [OHM].

Additionally, we run a reference implementation of the same task using
the C++ Standard Template Library.

Task selection
For our experiment, we chose the task of finding the maximum element
in a vector of doubles. This task applies a reduction operation to a
contiguous block of memory. Linearly traversing contiguous memory
is highly predictable for hardware and allows efficient loading of data
into vectorized registers. Moreover, reduction operations typically yield
a scalar result, minimizing output size and memory writes. Additionally,
we keep the vector size relatively small, it ranges from a few hundred
to a few thousand doubles. This ensures that most of the processing
occurs using data held in the fast L1 and L2 caches, reducing the chances
of memory-related bottlenecks. These considerations are crucial to
accentuating processing speed.

Implementation details
To implement the task, we leveraged the DR3 framework [DR3]. The
driver code for this implementation is shown in Listing 1 (overleaf). It
defines a generic lambda function for the task, maxDbl. maxDbl simply
calls the iff function which returns the results of an element wise selection
from lhs or rhs, based on the results of the comparison operator.

The test loop corresponds to the experiment’s main workload. Inside the
main loop, DR3::reduce applies the maxDbl algorithm over the vector
of doubles, vec. Internally, DR3::reduce’s inner loop is unrolled four
times to achieve better performance.

Different, instruction set specific, versions of the workload for SSE2,
AVX2, and AVX512 are created just by changing the enclosing
namespace. This changes the SIMD wrappers (and instruction sets) used
to instantiate the generic lambda and reduction algorithm. The code is
compiled with both the Intel and Clang compilers to build two versions
of the test executable dancingAVX512.

Disassembly
Clang compilation
When examining the compiled code, we observe that it produces highly
efficient and compact assembly code, precisely what our experiment
requires. In Listing 2 (opposite), we present the disassembly for the inner

Figure 1

Andrew Drakeford A Physics PhD who started developing C++
applications in the early 90s at British Telecom labs. For the last two
decades, he has worked in finance developing efficient calculation
libraries and trading systems in C++. His current focus is on making
quant libraries more ecologically sound. He is a member of the BSI
C++ panel.

AnDrEW DrAKEFOrD FEATUrE

December 2023 | Overload | 7

loops of both AVX2 and AVX512 workloads compiled using the Clang
compiler.

Using DR3::reduce with a generic lambda function creates almost
identical disassembly for the different instruction sets. In Listing 2,
we can observe the assembly code generated for the inner loops of
our experiment. Below is a breakdown of what is happening in the
disassembly:

	� The vmovapd instructions load values from memory into registers
(ymm4, ymm5, ymm16, ymm17 for AVX2, and zmm4, zmm5, zmm16,
zmm17 for AVX512).

	� The vcmppd instructions perform element-wise comparisons,
creating a mask (k1) that represents the results of the comparison,
of the running maximums with the newly loaded values.

	� The vmovapd instructions use the mask (k1) to update the running
maximum values.

	� The loop progresses through memory locations (rbx) and compares
against the loop counter (rcx) to determine whether to continue
iterating.

Intel compilation
The disassembly generated with the Intel compiler is shown in Listing 3
(overleaf). This has a much shorter loop and uses the vmaxpd (maximum
of packed doubles) instruction. The unrolled inner loop calls four
independent vmaxpd instructions. These compare and update the running
maximum values (held in zmm0, zmm1, zmm2 and zmm3) with values held
in adjacent areas of memory pointed to by zmmword ptrs.

The main difference between AVX2 and AVX512 disassembly is the
register width, which affects the number of doubles processed per
iteration. As we move from SSE2 to AVX2 and then to AVX512, the
number of elements processed doubles. This increase in processing
capacity could be expected to double performance when executing the
instructions at the same rate.

// The following lines determine which SIMD
// namespace is in use. Uncomment the desired
// namespace for the SIMD instruction set you
// wish to use.

//using namespace DRC::VecD8D; // avx512
 // - Enables 512-bit wide vector operations.

//using namespace DRC::VecD4D; // avx2 - Enables
 // 256-bit wide vector operations.

using namespace DRC::VecD2D; // sse2 - Enables
 // 128-bit wide vector operations.

// A volatile double is used to store the result.
// Declaring it as 'volatile' prevents the
// compiler from optimizing it away.
volatile double res = 0.0;

// A lambda function 'mxDbl' is defined to return
// the maximum of two values.
// The 'iff' function selects between 'lhs' or
// 'rhs' based on the comparison.
auto maxDbl = [](auto lhs, auto rhs) { return
iff(lhs > rhs, lhs, rhs); };

// Generate a shuffled vector of size 'SZ'
// starting from value '0'.
auto v1 = getRandomShuffledVector(SZ, 0);

// Create a SIMD vector 'vec' with the values
// from 'v1'.
VecXX vec(v1);

// Loop 'TEST_LOOP_SZ' times, reducing the vector
// 'vec' using the 'mxDbl' function and storing
// the result in 'res'.
for (long l = 0; l < TEST_LOOP_SZ; l++)
{
 res = reduce(vec, maxDbl);
}

listing 1

AVX2
1. vmovapd ymm4,ymmword ptr [rdx+rbx*8]
2. vmovapd ymm5,ymmword ptr [rdx+rbx*8+20h]
3. vmovapd ymm16,ymmword ptr [rdx+rbx*8+40h]
4. vmovapd ymm17,ymmword ptr [rdx+rbx*8+60h]
5. vcmppd k1, ymm0,ymm4,2
6. vmovapd ymm0{k1},ymm4
7. vcmppd k1,ymm3,ymm5,2
8. vmovapd ymm3{k1},ymm5
9. vcmppd k1,ymm1,ymm16,2
10. vmovapd ymm1{k1},ymm16
11. vcmppd k1,ymm2,ymm17,2
12. vmovapd ymm2{k1},ymm17
13. add rbx,10h
14. cmp rbx,rcx
15. jle doAVXMax512Dance+0B60h

AVX512
1. vmovapd zmm4,zmmword ptr [rdx+rbx*8]
2. vmovapd zmm5,zmmword ptr [rdx+rbx*8+40h]
3. vmovapd zmm16,zmmword ptr [rdx+rbx*8+80h]
4. vmovapd zmm17,zmmword ptr [rdx+rbx*8+0C0h]
5. vcmppd k1,zmm0,zmm4,2
6. vmovapd zmm0{k1},zmm4
7. vcmppd k1,zmm3,zmm5,2
8. vmovapd zmm3{k1},zmm5
9. vcmppd k1,zmm1,zmm16,2
10. vmovapd zmm1{k1},zmm16
11. vcmppd k1,zmm2,zmm17,2
12. vmovapd zmm2{k1},zmm17
13. add rbx,20h
14. cmp rbx,rcx
15. jle doAVXMax512Dance+390h

listing 2

The main difference between AVX2 and
AVX512 disassembly is the register width,

which affects the number of doubles
processed per iteration

AnDrEW DrAKEFOrDFEATUrE

8 | Overload | December 2023

std::max_element comparison
The disassembly of the inner loop of the std::max_element is shown
in Listing 4. Even though it uses the vector xmm registers, the instruction
names are suffixed by sd, for scalar double.

The registers are used like scalars and the inner loop processes the
elements sequentially, with only one double value considered per
iteration. By way of contrast, the previous AVX512 listing, with a similar
number of instructions, processes 32 doubles per iteration, potentially
leading to a significant speed difference.

results
Figure 2 and Figure 3, below and opposite, show the clock speed,
temperature, load, and power recorded by the Open Hardware Monitor
application [OHM] when the test application, dancingAVX512, is run on
an Intel Silver Xeon 4114 (with a Skylake architecture).

The area under the power curve gives the total energy used. The area
between the power curve when running a load and its background
consumption level, is shaded. It corresponds to the energy used to
compute the workload.

The figures show that when the workload starts, the clock frequency and
temperature rise, until an equilibrium is reached. This is maintained until
the task is completed. If a task runs for long enough, the run time gives a
reasonable approximation of energy used when clock frequencies remain
constant (and there is no reduction in power).

Figure 2 shows the power consumption for the Clang-cl build of
dancingAVX512. The workload with the largest shaded area (and energy
consumption) corresponds to std::max_element. For clarity, its

 1. vmovsd xmm0,qword ptr [rcx]
 2. vcomisd xmm0,mmword ptr [rax]
 3. cmova rax,rcx
 4. add rcx,8
 5. cmp rcx,rbx
 6. jne doAVXMax512Dance+160h

listing 4

AVX2
1. vmaxpd ymm0,ymm0, ymmword ptr [rdx+rax*8]
2. vmaxpd ymm1,ymm1, ymmword ptr [rdx+rax*8+20h]
3. vmaxpd ymm2,ymm2, ymmword ptr [rdx+rax*8+40h]
4. vmaxpd ymm3,ymm3, ymmword ptr [rdx+rax*8+60h]
5. add rax,10h
6. cmp rax, rsi
7. jle doAVXMax512Dance+1370h

AVX512
1. vmaxpd zmm0,zmm0, zmmword ptr [rdx+rax*8]
2. vmaxpd zmm1,zmm1, zmmword ptr [rdx+rax*8+40h]
3. vmaxpd zmm2,zmm2, zmmword ptr [rdx+rax*8+80h]
4. vmaxpd zmm3,zmm3, zmmword ptr [rdx+rax*8+0C0h]
5. add rax,20h
6. cmp rax,rsi
7. jle doAVXMax512Dance+1370h

listing 3

Figure 2

when the workload starts, the clock
frequency and temperature rise, until an
equilibrium is reached

AnDrEW DrAKEFOrD FEATUrE

December 2023 | Overload | 9

workload is reduced to a third of that done by the other implementations.
However, its energy use is nearly twice that associated with the SSE2
implementation, suggesting that it uses between five and six times more
energy. The regions of the graph corresponding to executing AVX2 and
AVX512 workloads show a sequential halving of runtime and energy
use (indicated by the shaded area). This is what we expected from the
disassembly, under the assumption that the instructions are processed at
the same rate.

Figure 3 shows the power consumption of the Intel (ICC2022) build
of dancingAVX512. We note that switching from AVX2 to AVX512
workloads only reduces the runtime slightly; from 14 seconds down to
13 seconds. However, the energy used (shaded area), is noticeably less.
Also, with the AVX512 implementation, the temperature impulse is much
smaller than with the Clang-generated code. The top plot gives the CPU
clock speed and shows that for AVX512 it only boosts up to about 1.6
GHz, as compared to the 2.6 GHz for the other runs. The Intel-compiled,
AVX512 task is downclocked, making it run slower than the Clang build,
however, it still saves energy when compared to the AVX2 run.

Our experiment clearly shows that when software uses SIMD instructions
effectively, it can make a considerable difference to power consumption.

next steps: saving the planet
Our codebase is available on GitHub [DR3], allowing enthusiasts to
replicate our experiments. While results may vary due to compiler and
hardware differences, substantial improvements in performance via SIMD
are evident. We hope readers are inspired to integrate SIMD instructions
into their existing C++ applications. Provided that the application is not
IO bound and does not have workloads that are impossible to parallelize,

SIMD could make significant improvements. However, initially, some
might find limited performance gains. In this situation, the most common
problems are caused by:

	� Memory layout: In traditional OO C++ code, typical data structures
may lead to inefficient memory access patterns.

	� Auto vectorization: The compilers’ auto-vectorizer does not always
generate the vectorized code anticipated.

Memory layout
Memory bound, performance critical regions of legacy C++ applications
often navigate diverse object collections, invoking varied virtual functions.
This unpredictability in iteration leads to unpredictable memory access
patterns which cause cache misses and hinder optimal CPU performance.

A SIMD speed-up will be of little use if the application’s performance is
memory-bound. Refactoring is needed to remove this limitation. After an
initial performance measurement step which identifies the problem areas,
a two-stage refactoring process can be used to ensure the codebase is
SIMD-ready. It focuses on reorganizing data to support efficient, parallel
computations by enabling:

	� Predictable iteration.

	� Efficient SIMD invocation.

Predictable memory access is achieved by segregating the inner loop’s
object collection. The original collection is divided into type-specific
subsets. Iterating over and calling a member function on a group of objects
of the same type, will always call the same method, so the contents of the
instruction cache do not change. The subsets contain objects of the same

Figure 3

calling a member function on a group of
objects of the same type, will always call

the same method, so the contents of the
instruction cache do not change

AnDrEW DrAKEFOrDFEATUrE

10 | Overload | December 2023

type, which are of course, the same size. This enables us to re-organize
them as an Array of Structures, (AoS). Furthermore, iterating over this
layout has a very predictable memory access pattern, since the objects are
all the same size. This lays down a foundation for predictable memory
access.

Efficient SIMD invocation is achieved by transforming each segregated
(AoS) collection into a Structure of Arrays (SoA). The array of structs
of the same sub-type is converted to a new struct, where all its primitive
member attributes are replaced by arrays. An individual object is
represented by the collection of values found by slicing through all the
member arrays at the same index. The SoA layout has the following
benefits:

	� Contiguity: Values of the same data attribute from multiple objects
can be loaded into a SIMD register simultaneously, enhancing
performance.

	� Optimized cache utilization: Predictable sequential data access
from the array data members in SoA means the CPU can prefetch
data more effectively, reducing cache misses.

	� Simplified management: In some cases, memory read by SIMD
instructions needs to be aligned. Allocating memory to contain
a multiple of a registers capacity and adding extra elements for
padding, (if needed), simplifies processing the array. Processing
padded arrays only loads a whole number of registers. Additionally,
by ensuring that the first element in the padded array is aligned
appropriately, all subsequent loads will satisfy the alignment
requirements.

With the appropriate utilities to support transformations to SoA.
[Amstutz18, Intel23] and alignment and padding, this is less arduous than
one might think. A practical demonstration of vectorizing a function is
given in [Drakeford22].

Refactoring with these strategies in mind not only sets the stage for
effective SIMD integration, but one often sees substantial performance
improvements even before SIMD comes into play. These strategies
harness some of the core principles of data-oriented design [Fabian18,
Straume20, Nikolov18], focusing on the properties of the typical data
used by the application, and how it is accessed and processed rather than
solely on its representation as a data structure.

Auto vectorization and approaches for SIMD
development
Effective auto-vectorization requires loops with known sizes, simple
exit conditions, and straight-line, branchless loop bodies [Bick10].
Loop-carried dependencies occur when the body of a loop reads a value
computed in a previous iteration. Vectorized loops assume calculations
are independent across iterations. Loop-carried dependencies break this
assumption and deter the compiler from vectorizing the loop.

Sometimes, when a loop uses multiple pointers or complex pointer
arithmetic, the compiler cannot be sure that the values referred to are
not the same object in memory (i.e., aliasing) or an object previously
written to (i.e., a loop carried dependency). It is unsafe for the compiler
to generate vectorized code in such cases. However, using the compiler-
specific keyword restrict with pointers, can guide the compiler.
Essentially, restrict hints that the pointers are not aliases, meaning
they don’t point to the same memory location. Similarly, using #pragmas
with loops offers directives to the compiler, suggesting how it should
process the loop. Both these techniques can encourage the compiler to
generate vectorized instructions.

More invasive approaches become necessary when the compiler does
not automatically vectorize the code. Various strategies and tools are
available. The choice depends on the project’s specific requirements and
constraints, and the available libraries and tools.

Approaches to SIMD development:
While auto-vectorization offers opportunities for optimization, manual
intervention can often lead to more substantial gains. Here are some
approaches to consider:

	� Open MP (4): A parallel programming model for C, C++, and
Fortran, which uses #pragmas to guide compiler optimizations,
though it isn’t universally supported. [Dagum98]

	� ISPC compiler: A performance-oriented compiler that generates
SIMD code. [ISPC, Pharr12]

	� Domain-specific libraries: These are libraries tailored and
optimized for particular computational tasks, providing specialized
functions and routines for enhanced performance.

	� Intel’s MKL: Optimized math routines for science, engineering,
and financial applications. [MKL]

	� Eigen: A high-level C++ library for linear algebra.
[Guennebaud13]

	� HPX: A C++ Standard Library for parallelism and concurrency.
[Kaiser20]

	� Compiler intrinsics: Provide a more granular, assembly-level
control by directly accessing specific machine instructions,
allowing for finely tuned SIMD optimizations. [Kusswurum22,
Fredrikson15, Ponce19]

	� SIMD wrappers: Libraries that offer higher-level, portable
interfaces for SIMD operations, making SIMD code more
maintainable and readable. [Kretz12, VCL2, Creel20]

	� Generative functional approaches: Utilize the C++ template
mechanism (including auto) to generate code that calls the
appropriate SIMD instructions.

	� EVE library: Is a notable example of this approach, see
[Falcou21, Penuchot18, Drakeford22].

	� SYCL and Intel’s One API: Frameworks designed to develop
cross-platform parallel applications, ensuring code runs efficiently
across various hardware architectures [Khronos21].

	� Using C++ 17’s Parallel STL: Guide the compiler to use SIMD
where possible by using the std::execution::par_unseq
execution policy.

Conclusion
The scale of energy use by data centres means that it has become a
significant contributor to global pollution. Our simple experiment shows
that using SIMD instructions can drastically improve energy efficiency on
modern hardware. If our software made more effective use of SIMD, this
could help reduce pollution.

However, achieving significant efficiency gains hinges on suitable
parallelization and optimal data layouts in memory. For legacy OO
systems, this typically demands carefully re-engineering the context in
which the vectorized instructions run. Refactoring performance-critical
regions of such systems using data-oriented design principles could be a
necessary first step to enable effective use of SIMD.

Before committing to any particular approach to SIMD development,
always test the performance achievable with the chosen toolset, its
suitability to your problem domain, and its compatibility with your target
environment.

Please help your code to consume energy responsibly. �

references
[Amstutz18] Jefferson Amstutz, ‘Compute More in Less Time Using

C++ Simd Wrapper Libraries’, CppCon 2018, available at
https://www.youtube.com/watch?v=8khWb-Bhhvs

https://www.youtube.com/watch?v=8khWb-Bhhvs

AnDrEW DrAKEFOrD FEATUrE

December 2023 | Overload | 11

[Andrae15] Anders Andrae and Tomas Edler (2015). ‘On Global
Electricity Usage of Communication Technology: Trends to 2030’
Challenges. 6. 117-157. 10.3390/challe6010117.

[Bick10] Aarat Bick ‘A Guide to Vectorisation with Intel C++
compilers’, https://www.intel.com/content/dam/develop/external/us/
en/documents/31848-compilerautovectorizationguide.pdf

[Creel20] Creel (Chris), ‘Agner Fog’s VCL 2: Performance
Programming using Vector Class Library’, https://www.youtube.
com/watch?v=u6v_70opPsk

[Dagum98] Leonardo Dagum and Ramesh Menon, ‘OpenMP:
an industry standard API for shared-memory programming’
Computational Science & Engineering, IEEE 5.1 (1998): 46-55.

[Drakeford22] Andrew Drakeford, ‘Fast C++ by using SIMD Types with
Generic Lambdas and Filters’ at CppCon 2022
https://www.youtube.com/watch?v=sQvlPHuE9KY, 6 min 35 secs

[DR3] DR3 library at https://github.com/AndyD123/DR3
[Fabian18] Richard Fabian (2018) Data-oriented design: software

engineering for limited resources and short schedules, Richard
Fabian.

[Falcou21] Joel Falcour and Denis Yaroshevskiy, ‘SIMD in C++20:
EVE of a New Era’, CppCon 2021, available at
https://www.youtube.com/watch?v=WZGNCPBMInI

[Fredrikson15] Andreas Fedrikson ‘SIMD At Insomniac Games: How
We Do the Shuffle’ GDC 2015, available at
https://vimeo.com/848520074.

[Guennebaud13] Gaël Guennebaud (2013) ‘Eigen: A C++ linear algebra
library’ Eurographics/CGLibs, available at: https://vcg.isti.cnr.it/
cglibs/. See also https://en.wikipedia.org/wiki/Eigen_(C%2B%2B_
library)

[Intel23] Intel SDLT SoA_AoS https://www.intel.com/content/www/
us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2023-1/
simd-data-layout-templates.html

[ISPC] Intel ISPC (Implicit SPMD Program Compiler):
https://ispc.github.io/ispc.html

[Jones18] N. Jones ‘How to stop data centres from gobbling up the
world’s electricity’ Nature 561, 163-166 (2018)

[Kaiser20] Kaiser et al., (2020). ‘HPX – The C++ Standard Library for
Parallelism and Concurrency’, Journal of Open Source Software,
5(53), 2352. https://doi.org/10.21105/joss.02352

[Khronos21] SYCL 2020 specification, launched 9 February 2021,
available at https://www.khronos.org/sycl/

[Kretz12] M. Kretz and V. Lindenstruth (2012) ‘Vc: A C++ library for
explicit vectorization’, Software: Practice and Experience vol 42, 11

[Kusswurum22] Daniel Kusswurum (2022) Modern Parallel
Programming with C++ and Assembly Language X86 SIMD
Development Using AVX, AVX2, and AVX-512, APress.

[MKL] Intel(R) math kernel library. https://www.intel.com/content/
www/us/en/developer/tools/oneapi/onemkl.html

[Nikolov18] Stoyan Nikolov ‘OOP Is Dead, Long Live Data-oriented
Design’, CppCon 2018

[OHM] Open Hardware Monitor: https://openhardwaremonitor.org/
[Penuchot18] Jules Penuchot, Joel Falcou and Amal Khabou (2018)

‘Modern Generative Programming for Optimizing Small Matrix-
Vector Multiplication’, in HPCS 2018

[Pharr12] M. Pharr and W. R. Mark (2012) ‘ispc: A SPMD compiler
for high-performance CPU programming’ 2012 Innovative Parallel
Computing (InPar), San Jose, CA, USA, pp. 1-13, doi: 10.1109/
InPar.2012.6339601.

[Ponce19] Sebastian Ponce (2019) ‘Practical Vectorisation’, Thematic
CERN School of Computing, available at https://cds.cern.ch/
record/2773197?ln=en

[Straume20] Per-Morten Straume (2019) ‘Investigating Data-Oriented
Design’, Master’s thesis in Applied Computer Science, December
2019 NTNU Gjøvik https://github.com/Per-Morten/master_project

[VCL2] Vector Class Library (version 2): https://github.com/vectorclass/
version2

Vote for your favourite articles from the 2023 journals.
Which did you enjoy? Which did you learn most from?
Which made you think?

Voting is open online at:
https://www.surveymonkey.com/r/5VLXHVJ

Select up to 3 ‘favourites’ from each journal.

Best Articles 2023

http://10.3390/challe6010117
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.youtube.com/watch?v=u6v_70opPsk
https://www.youtube.com/watch?v=u6v_70opPsk
https://www.youtube.com/watch?v=sQvlPHuE9KY
https://github.com/AndyD123/DR3
https://www.youtube.com/watch?v=WZGNCPBMInI
https://vimeo.com/848520074
https://vcg.isti.cnr.it/cglibs/
https://vcg.isti.cnr.it/cglibs/
https://en.wikipedia.org/wiki/Eigen_(C%2B%2B_library)
https://en.wikipedia.org/wiki/Eigen_(C%2B%2B_library)
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2023-1/simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2023-1/simd-data-layout-templates.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2023-1/simd-data-layout-templates.html
https://ispc.github.io/ispc.html
https://doi.org/10.21105/joss.02352
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://openhardwaremonitor.org/
http://10.1109/InPar.2012.6339601
http://10.1109/InPar.2012.6339601
https://cds.cern.ch/record/2773197?ln=en
https://cds.cern.ch/record/2773197?ln=en
https://github.com/Per-Morten/master_project
https://github.com/vectorclass/version2
https://github.com/vectorclass/version2
https://www.surveymonkey.com/r/5VLXHVJ

PAUl FlOyDFEATUrE

12 | Overload | December 2023

Dollar Origins
Using tools from non-standard locations
can be challenging. Paul Floyd shows
how $ORIGIN can help.

At work, we usually have GCC and binutils installed to the same root.
I’ve recently been working on a project that needs a more recent
GCC so I’ve been building these fairly often. Since these days GDB

gets bundled with binutils, I thought I’d benefit from a nice new shiny
GDB.

Some things that are always problematic when building and installing
to non-standard locations are the shared libraries. Many of the system
libraries that get used will be the ones that ship with the OS. The C
standard library, libc, is one such example. However, if you build with a
C++ compiler other than the system one, the odds are that you will need
to link with the C++ standard library that was built with that compiler.
Linking is only half of the problem. Finding the library at runtime is the
other. When you build GCC, it will tell you all about that at the end of the
build. If the library is in a well-known location like /usr/lib64 then
all is well. If you have multiple different versions of, say, libstdc++.
so, then things are a bit more complicated.

The bad way to find libraries is to use LD_LIBRARY_PATH. The
problem with this is that you can’t use it to choose different library
versions. It’s a colon-listed set of directories, and the first directory that
contains the library being sought gets used. That soon deteriorates to
the point where every application needs a wrapper script to set its own
LD_LIBRARY_PATH. There is an alternative. RPATH. RPATH is, in effect,
LD_LIBRARY_PATH compiled into an exe. For more reasons to avoid
LD_LIBRARY_PATH, see George Southoff’s blog [Southoff16].

Recently, I decided to rename one of my directories, since I’d been doing
some work with GCCs 11 and 13. And that broke my GDB. The problem
was that I’d used an absolute RPATH to build it. When I renamed the
directory, the absolute path no longer matched and the link loader could
no longer find a suitable libstdc++. That gave me lots of errors like
/path/to/gcc-13.1.0/bin/gdb: /lib64/libstdc++.so.6:
version 'GLIBCXX_3.4.20' not found (required by
/path/to/gcc-13.1.0/bin/gdb)

There is a better way to set your RPATH. You can use $ORIGIN.
$ORIGIN is a way of specifying relative paths. It is not an environment
variable – it gets baked into the executable. The link loader will replace
$ORIGIN with the directory containing the exe. So, for my installation of
GDB, I just need to give it an RPATH of $ORIGIN/../lib64. Sounds
easy? Wrong! Whilst the link loader doesn’t look for $ORIGIN in the
environment, the shell thinks that it is a shell variable and make thinks
that it is a make variable.

binutils/GDB uses autoconf and a configure script. I wrote a shell
script to run configure for the project.

Starting with something naive:

 ../configure {various arguments} LDFLAGS="-Wl,
 -rpath,$ORIGIN/../lib64"

The -Wl,-rpath, bit is the parameter to tell g++ acting as the linker
driver to pass -rpath to the link editor.

In the generated Makefile I get
 LDFLAGS = Wl,-rpath,/../lib64

That’s no good. My shell script has interpreted $ORIGIN as an
environment variable and replaced it. OK, so I’ll escape the dollar in my
script, making it \$ORIGIN. Now the Makefile contains
 LDFLAGS = Wl,-rpath,$ORIGIN/../lib64

That looks better, so I build GDB and ... same error. I can check what
rpath (if any) has been built into gdb as follows:
 readelf -d gdb | grep rpath

that gives me
 0x000000000000000f (RPATH)
 Library rpath: [RIGIN/../lib64]

OK, I got something. The next problem is that binutils/GDB uses a
hierarchical configuration. Running configure in my build directory just
generates a top level Makefile. Running make reruns configure for each
subdirectory. The gdb subdirectory Makefile contains
 LDFLAGS = -Wl,-rpath,RIGIN/../lib64

That means that the recursive make has played the same trick on me,
though this time it has interpreted $O as a make variable.

I could try to ‘escape the escape’ with \\$ORIGIN in my script. That
won’t work as the first escape only protects the second escape, and the
shell will still replace the environment variable. I could try a triple escape.
That gives me -Wl,-rpath,\RIGIN/../lib64. The problem is that
\ isn’t the escape character for Makefiles. In order to escape a $, you
need a second $.

So, let’s try -Wl,-rpath,\$\$ORIGIN/../lib64 in my script. That
gives me LDFLAGS = $$ORIGIN/../lib64 in the outer Makefile but
just LDFLAGS = -Wl,-rpath,/../lib64 in the inner Makefile. That
looks like a shell replacement when the outer make runs configure for the
inner gdb directory. Those dollars need protecting in the outer Makefile.
I didn’t think that it was the right thing, but I tried \$\$\$\$ORIGIN in
my script. That gave me -Wl,-rpath,60598ORIGIN/../lib64 in
the inner Makefile. Definitely shell replacement where $$ gets replaced
by the PID. I think that’s enough trial and error. Let’s try to reason about
it.

	� To protect a shell dollar it needs to be preceded by a \.

	� To protect a shell backslash it needs to be preceded by a \.

	� To protect a make dollar it needs to be preceded by $.

I then spent a while looking at the flow from my script that runs configure
to the final gdb binary. I wanted to understand that flow in terms of

Paul Floyd has been writing software, mostly in C++ and C, for
about 30 years. He lives near Grenoble, on the edge of the French
Alps and works for Siemens EDA developing tools for analogue
electronic circuit simulation. In his spare time, he maintains Valgrind.
He can be contacted at pjfloyd@wanadoo.fr

PAUl FlOyD FEATUrE

December 2023 | Overload | 13

successive executions of shell and make, so that I could understand
what replacements get done and what escaping is needed.

So there is:

1. The starting shell

2. Outer make

3. Outer config.status shell

4. Outer recursive make

5. Inner config.status shell

6. Inner make

7. Linker shell

8. Final gdb rpath

Along the way, there’s some awk self modification of the Makefiles, but
thankfully that doesn’t need any escaping.

Working backwards and applying the 3 protection rules described above
that means that the strings need to be

1. $ORIGIN

2. \$ORIGIN

3. \$$ORIGIN

4. \\\$\$ORIGIN

5. \\\$$\$$ORIGIN

6. \\\\\\\$\$\\\$\$ORIGIN

7. \\\\\\\$$\$$\\\$$\$$ORIGIN

8. \\\\\\\\\\\\\\\$\$\\$\$\\\\\\\$\$\\$\$ORIGIN

I’m glad that I didn’t persist with the trial-and-error approach to finding
that. So the big question, does it work? Yes! As long as I keep the gdb
binary at the same position relative to ../lib64, I can move the lower
directories around to my heart’s content. One disadvantage is that this
approach may not allow in-place execution of the binary.

Let’s hope that binutils/GDB never adds a third level of recursion. The
backslashes grow by 2x+1 for every extra level of shell, so two more
shells would mean that leading group would need 63 backslashes. That
really would be a ‘fistful of backslashes’. �

reference
[Southoff16] George Southoff ‘LD_LIBRARY_PATH considered

harmful’, posted on 22 Jul 2016 and accessed on 21 November 2023
at https://gms.tf/ld_library_path-considered-harmful.html

https://gms.tf/ld_library_path-considered-harmful.html

FrAnCES BUOnTEMPOFEATUrE

14 | Overload | December 2023

How to Write an Article
Submitting an article for publication might
seem daunting. Frances Buontempo
explains just how easy it is.

Who writes articles in Overload? Taking names from the list of
Overload authors on the ACCU website gives around 250 authors,
without breaking down joint authorship. The top three authors

have been Sean Corfield, with 80, Alan Griffiths with 74 and Sergey
Ignatchenko with 69 articles. Figure 1 (overleaf) shows a histogram of
authors with 10 or more articles to their name.

A consistent pattern emerges of a few people who contribute again and
again – most regular Overload readers have never written an article.
Some readers may have a blog, or join in a discussion on accu-general, or
discuss something technical over a beer with colleagues one evening, but
never get as far was writing it up for the ACCU.

The majority of the articles published here are from ACCU members, but
from time to time other people submit articles. Indeed, as a peer reviewed
journal, we are open to submissions from anyone. One of the benefits of
such a journal is the feedback process. The article can be improved before
being read by the public at large whereas a blog gets the feedback after it
is published. Don’t forget being published in a peer review journal counts
as a few extra kudos points.

Idea
How do you decide what to write about? Bear in mind writing is usually a
learning process. Even if you think you are the world’s leading expert on
a particular field, writing it up clearly will find gaps in your knowledge
or spark off new ideas.

It can be worthwhile to simply write a summary style article, with the
latest thinking on a subject you are interested in, perhaps delving way
back to its beginnings years ago or simply introducing a new language
feature. This will get you, and your readers, up to speed with a way of
doing something.

Some articles have started life with a question on a discussion group, like
accu general. In fact, my first Overload article, ‘Floating point fun and
frolics’ [Buontempo09], started there. It can make life easier to just have
a trail of comments and ideas to summarise if you don’t feel you have
enough ideas yourself. Alternatively, you can present a new technique,
library or even language you have developed yourself. Either way, the
audience may expect to see a few references, so it is possible to do further
background reading on a subject.

If you’re not sure whether to submit to Overload or CVu, try both and see
what happens. The main points to bear in mind are:

	� Overload is freely available, so anyone may read it. You may want
to just try something in CVu first time, but this is not a requirement.

	� Overload tries to take a more academic tone, so might tend towards
more technical content, with more references.

Something like ‘My first ‘Hello World’ program in JavaScript’ might be
more suited to CVu, while something like ‘Advanced C++17’ might be
more suited to Overload.

If you do not have a full blown article, but just a sketch of an idea, it is
OK to get in touch for some early feedback. We might be able to give a
few pointers of further things to research or other ways of doing things.

If you do want to submit a full-blown article, try to give it some kind of
structure. Simply having an introduction, main work and conclusion is far
better than sending in a list of bullet points.

Spare a little thought for your target audience. How much background
might need fully explaining? What can be covered by a reference and
leave them to go read up if required? We are always open to other ideas,
including but not limited to letters to the editor, for example if a previous
article has set you thinking.

Submission
How do you submit an article to Overload? The best approach is to use
email: Overload@ACCU.org. An easy-to-copy format, like Open Office,
Word, or just plain text is best, though other formats are acceptable. Any
diagrams should be attached as separate scalable graphics, so they can be
positioned and sized easily for the final layout.
If you are demonstrating code you have written, it might not need listing
in its entirety. Enough listings to get the main point across often work
well. It is sensible to add a link to the whole codebase, for example a
github repository, if relevant, though.
We also like to have a short biography, with a contact email. Your readers
may get in touch and say ‘Thanks’.

Some journals offer a template, expecting submissions in a specific font,
with a specific size, number of columns and so on. We don’t mind – the
formatting and layout will happen later. We won’t fuss too much about
length either. Approximately one thousand words fill a page. Anything
from one page upwards is ok. If your article is a 20 page epic, it might
make more sense to split in into two or more mini-articles. This will
depend on how many other pages have already been taken up, and where
we can find a natural place in which to insert a break. More details on
the format and structure can be found in ‘Guidelines for contributors’
[Overload07].

Feedback
If your article looks like a plausible candidate, it will get sent round the
review team, and you will be emailed back comments. We try to make
sure we get a mix of positive encouraging comments, nit-picks over typos
and grammar, and suggestions of unclear parts that may need rewording.
On top of this basic style feedback, be prepared for the reviewers to
point out something you may have missed, for example newer language
techniques, more succinct ways of doing things, pre-existing libraries you

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD using AI and data mining. She’s written a book
about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and
learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com

FrAnCES BUOnTEMPO FEATUrE

December 2023 | Overload | 15

can use off the shelf. You are allowed to argue back, of course, but this
process can make the articles more thorough and you may learn even
more during the process. Once in a while, the only feedback simply says,
“This is great.” Not often, but it can happen. On very few occasions the
potential author decides not to take on board the feedback, and the idea
is taken no further.

Once all the articles have been reviewed they are sent to the production
editor, and you will then receive a proof first-draft, showing the actual
layout. At this stage everyone needs to keep their eye open for omissions,
like second author’s names, missing diagrams, copy and paste errors and
other typos that have slipped under the net. Not matter how hard we try
there always seems to be at least one in the final printed version.

Fame
Shortly after the drafts, the whole magazine will be pieced together. You
are likely to see an announcement on accu-general, the accu.org webpage
and possibly Twitter.

Obviously, if you are a member and have paid for it you will get a paper
copy through your door at some point and can leave it lying around open
on your desk to show off to all your friends and colleagues. If you aren’t
a member, you can ask for a printed copy – yours to show off and share
with others. It might even persuade someone to join.

Almost nothing beats the sight of your name in print – try it. �

references
[Buontempo09] Frances Buontempo ‘Floating point fun and frolics’ in

Overload 91, available at http://accu.org/index.php/journals/1558
[Overload07] Overload ‘Guidelines for Contributors’ in Overload 80,

available at http://www.accu.org/index.php/journals/1414

If you do not have a full blown article, but
just a sketch of an idea, it is ok to get in

touch for some early feedback

Figure 1

Most Prolific Authors of All Time (Overload)

http://accu.org/index.php/journals/1558
http://www.accu.org/index.php/journals/1414

CHrIS OlDWOODFEATUrE

16 | Overload | December 2023

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or
@chrisoldwood

Afterwood
Halloween has been and gone.
Chris Oldwood therefore takes time to
consider the ghosts in the machine.

I always find writing an article at this time of year particularly
challenging. Due to the lead time in publishing, we’re currently
celebrating Halloween, but by the time this hits the metaphorical

shelves, we’ll be enjoying the Christmas festivities. In the world of
programming, this Halloween/Christmas duality is even immortalised in
a joke that riffs on date formats and number bases to illustrate that ‘OCT
31 == DEC 25’.

If you’ve ever worked with databases, you may have come across The
Halloween Problem. This was an issue coined back in the 1970s, where
a database update to adjust employee salaries used an index on the same
column that was being updated. As each salary was increased, it caused
the row to move further down the index and consequently was visited
multiple times, meaning that every salary was bumped repeatedly until
it exceeded the threshold specified for the raise. If you were one of the
lowest paid employees in that company, then Christmas would definitely
have come very early that year!

By the time I had started working with databases, all these issues had
been worked out and the ACID guarantee had become a staple question at
job interviews. It wasn’t until the rise of the NoSQL movement in the late
2000s and the new breed of document-oriented databases like CouchDB
and MongoDB that I started to become more aware of issues like The
Halloween Problem, and its associated problems like Phantom Reads.
The performance demands of ‘Web 2.0 at scale’ meant that the cool kids
were happy to trade their ACID guarantees for throughput, and so the
pendulum started to swing back the other way, and we also got to use
the new excuse ‘eventual consistency’ whenever things didn’t quite add
up. In those early days, some database products traded off more than just
the ACID guarantees. In the race to appear fastest in the benchmarks,
they chose dangerous defaults which meant you couldn’t even be sure
if your request left the machine. The pitchforks came out, the ‘NoSQL
Considered Harmful’ posts were written, and the pendulum swung back
again towards the Pit of Success.

Even if you do manage to avoid the phantoms in your result-sets you’ll
struggle to escape one of the most curious perversions in relational
database logic – the non-value NULL. After scratching your head
wondering why your SQL query doesn’t work as you expect when NULLs
are present, you learn that one NULL does not equal another NULL and
you need to litter your SQL code with IS NULL, ISNULL, COALESCE,
etc. instead. Until, that is, you introduce certain aggregations, grouping,
or sorting constructs, at which point NULL starts to feel like it does have
equivalence semantics after all. But the SQL standards committee are a
cunning bunch and with a little sleight of hand they sidestep the apparent
similarities of equivalence by introducing the concept of ‘distinctness’
instead and any notion of equivalence remains merely a figment of your
imagination.

If a database NULL is a value which doesn’t exist then, in the world of
floating-point numbers, the undead comes in the form of a nan – once
a number, full of life, but now destined to walk the Earth turning every
other number it meets into the undead, too. This one really is evil, though,
as there is no standards committee to save you here if one creeps into
your collection before you try and sort it. Depending on the language
and sort implementation, you might be lucky and escape with a sequence
that remains intact, whereas if you’re unlucky, your sort won’t complete
until the heat death of the universe, making the outcome a moot point.
I’m pretty sure IEEE754 wasn’t what the late Fred Brooks had in mind
when he warned us there was no silver bullet but maybe he also advised
us to decorate our collection types with garlic in one of his lesser-known
essays.

If you’ve dabbled in computing for even a small amount of time, you’ll
likely have experienced ‘The Ghost in the Machine’. Like many real-
world ghost sightings, they eventually get debunked. That elusive bug,
which initially appears to be from another realm, turns out to be entirely
real, and all too often self-inflicted. We might call it Undefined Behaviour
to avoid frightening the children, but it’s really a portal to another
dimension where only those tooled up like Ash Williams will make it
out alive. C++ in particular has the kind of power to contact the dead all
too easy, although it tends to be hackers that celebrate its ‘use after free’
abilities.

Einstein famously coined the phrase ‘spooky action at a distance’ to
describe the weirdness of quantum mechanics but you don’t need to
delve that far down the technology stack to experience the spookiness of
hardware. Even though we’re becoming less susceptible to the vagaries of
some older technologies – like hard disk drives, aka ‘spinning rust’– we
are more reliant on network connectivity, meaning that Leslie Lamport’s
famous quip from the late 80s about distributed systems and being
reliant on computers you didn’t even know exist is becoming ever more
prescient. Failing and loosely seated RAM chips also provide just enough
of a distraction to make you question your sanity before declaring the
host cursed.

The complexities of modern hardware and software can make it feel like
you’re constantly being haunted by a poltergeist as you struggle to reason
why your code is not behaving the way you intended. Halloween might
only be one day for normal people but for programmers it can feel like
we’re permanently living in The Upside Down. When you’re battling
with phantoms, daemons, and zombies, sometimes it can feel more like
exorcism than programming. �

Professional development
World-class conference

Individual membership
Corporate membership

Printed journals
Email discussion groups

Visit accu.org
for details

accu
Professionalism in Programming

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

	Editorial: General Knowledge andSelective Ignorance
	User Stories and BDD – Part 2, Discovery
	Use SIMD: Save The Planet
	Dollar Origins
	How to Write an Article
	Afterwood

