
A magazine of ACCU ISSN: 1354-3172

Safety, Revisited
Lucian Radu Teodorescu gives an

overview of last year’s talks and
articles about safety in C++ and

presents a unified perspective.

User Stories and BDD –
Part 3, Small or Far Away?
Seb Rose continues his investigation
of user stories.

C++20 Concepts Applied – Safe
Bitmasks Using Scoped Enums
Andreas Fertig gives a practical example
where C++20’s concepts can be used
instead of enable_if.

Afterwood
Chris Oldwood explains why
over-thinking is not over-engineering.

Welcome to the ACCU Annual Conference – a
celebration of "Professionalism in Programming.” by
programmers for programmers about programming

ACCU invites everyone passionate about programming to join us in Bristol
or virtually from anywhere in the world!

Beyond the core of C and C++, dive into a multitude of languages - C#, D,
F#, Go, Javascript, Haskell, Java, Kotlin, Lisp, Python, Ruby, Rust, Swift, and
more - at our conference. Sessions cover TDD, BDD, and expert
programming practices.

4 days of the main conference with over 50
sessions.

Keynotes from: Herb Sutter, Inbal
Levi, Laura Savino and Björn Fahller

2 days of workshops from:

Mateusz Pusz, Nicolai M. Josuttis,
Kevlin Henney and Peter Sommerlad

Don't miss this opportunity to be part of a
vibrant diverse community!

Book today to attend the ACCU Conference 2024
accuconference.org/pricing

17th - 20th April 2024
Workshops: 15th, 16th April

http://accuconference.org/pricing

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

February 2024 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

February 2024
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo from Adobe Stock
Photos: a male Green Peafowl
feather.

Copy deadlines
All articles intended for publication in Overload 180 should be submitted by
1st March 2024 and those for Overload 181 by 1st May 2024.

 4 User Stories and BDD – Part 3, Small or Far Away?
Seb Rose continues his investigation of user
stories, considering when and how to size them.

 7 C++20 Concepts Applied – Safe
Bitmasks Using Scoped Enums
Andreas Fertig gives a practical example
where C++20’s concepts can be used
instead of enable_if.

 9 Safety, Revisited
Lucian Radu Teodorescu gives an overview of
last year’s talks and articles about safety in C++
and presents a unified perspective.

 16 Afterwood
Chris Oldwood presents some thought
experiments to demonstrate why
over-thinking is not over-engineering.

FRAnCES BUOntEmPOEDitORiAl

2 | Overload | February 2024

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

Over-Promise, Under-Deliver
A new year can mean new beginnings.
Frances Buontempo encourages us to stay
motivated even if things don’t work out.

’Tis the time of New Year Resolutions, new beginnings,
and even an opportunity to write an editorial for the
very first time. So much potential. However, I have
not seized the chance, so we will have to cope without
an editorial. We knew an editorial was highly unlikely,
but dreaming about change or possibility can inspire

and give hope, so we should be encouraged by the opportunity for a new
start.

The trouble with New Year’s Resolutions is we often start well then
fail. Recently, I have been trying to learn bass, yet again. I managed to
practise every day for over a month before Christmas, but a one night
stop-over killed my streak. It is very easy to think, “I’ve blown it” and
give up completely. That would be foolish. I managed to persuade myself
I simply had a day off, and this means nothing significant about me, my
determination, or my abilities. I simply cannot manage to do everything
I want to do every day. It’s perfectly fine to aim to do something every
single day, as a motivation, but miss out once or twice. Aim high, by all
means, but accept a few misses. By the same score, if I miss a note when
I try to play bass, that’s fine particularly because I am playing alone and
no one can hear the mistakes. Even if I were playing with a band, I could
continue on and forget the mistake and just about get away with it.

An occasional mistake in code might be acceptable, but there are many
circumstances where a bug could be fatal. Various approaches have been
adopted to avoid problems, including the UK government’s ‘SafeIT’
research program, leading to the development of the Motor Industry
Software Reliability Association (MISRA) guidelines for vehicle based
software in the 1990s. The recent release of MISRA C [MISRA-1] and
MISRA C++ [MISRA-2] has caused mention in a few places, but I have
yet to see the full details. Though I have worked with embedded systems,
they tended to be barcode scanners, or similar, rather than vehicles. The
most dangerous thing I ever managed was undefined behaviour causing
the laser scanner to stay on. Now, MISRA is used for more than vehicle
software, and may be found in sectors ranging from NASA to medical
devices. Whether the guidelines actually improve safety is hard to prove.
To be certain you would need to clone the development team and let them
code the system independently, one using the guidelines and one not. That
is problematic, but then you need to test for differences in safety, which
might prove even more difficult. More simply, some research on software
reliability is available, for example Boogerd and Moonen conducted a
case study investigating MISRA:C 2004 rule violation and actual faults
[Boogerd08]. Be warned, they suggest, “Enforcing conformance to noisy

rules can … increase the number of faults in the
software.” However, they also conclude “It is

important to select accurate and applicable

rules” and that doing so can make software more reliable. If used
judiciously, guidelines can improve software.

There are various other guidelines for programming languages beyond
MISRA. The ISO C++ Core Guidelines [ISO] and Google’s C++ style
guide [Google] come to mind, together with various linting tools. If you
have ever started using a static analysis tool on a code base, you may
have found yourself drowning in rule violations. Though Boogerd and
Moonen’s paper mentions frequent high levels of false positives from
various tools, you might also find many true positives hiding in the output.
Where do you start with a flood of warnings or problems? The tool you
are using might promise to find every potential problem with your code,
so you shouldn’t be surprised if it seems to flag up almost every line of
code. The important thing to do is apply some sense or discernment to the
output. You can often silence various types of rules in a tool, making it
easier to concentrate on specific types of problems. I recall being asked to
conduct a Python code review a long time ago, and ‘cheating’ by pointing
PyLint at the code. I silenced the complaints about single letter variable
names, and noticed we had hidden a keyword by a bad choice of variable
name. Without silencing a large number of ‘problems’, I would have
missed a real problem. When I mentioned the name hiding in the code
review, I was asked how I spotted this. I owned up and got a wry smile
from the person who had written the code. We could have incorporated
PyLint into the build, but didn’t at the time. However, it did give us an
extra way of investigating or reviewing new code.

Many tools claim to help us write better software, more quickly. Whether
they do or not is another matter. Marketing often over-promises, and the
goods sometimes under-deliver. If a tool provides something useful and
doesn’t cost the earth that might just be good enough. You don’t have
to fix every potential problem immediately. It is sometimes said that
perfect is the enemy of good, so finding anything that helps a bit is a
good thing. Aiming for perfection can make you freeze up and achieve
nothing. Similarly, staring at a blank page makes it very difficult to
write an editorial. Having something to start with, no matter how bad
or irrelevant, gives you something to improve on. If you have broken
any New Year’s resolutions you made already, don’t panic. Maybe you
achieved something for a while, so you can be pleased with yourself and
try again later. Don’t forget the 80/20 rule, also called the Pareto principle.
If you focus on changing 20% of what you don’t like, you might end up
with 80% improvement. Of course, that is hopelessly vague and doesn’t
specify what improvement or even change means, and the original Pareto
observation related to property ownership [Wikipedia]. The salient point
is that altering one thing might have many other impacts. They might
even be positive. If you wait until you have listed everything that needs
fixing, you are less likely to achieve anything.

FRAnCES BUOntEmPO EDitORiAl

February 2024 | Overload | 3

The ultimate overpromise may be attempting six impossible things
before breakfast. The original quote is from Through the Looking Glass
by Lewis Carroll, wherein the Queen says she has sometimes believed
as many as six impossible things, rather than achieved them. However,
if you were to aim for six impossible things, but only managed one, you
are doing better than most people. If you don’t want to believe or attempt
anything impossible, you could try something possible instead. Maybe
the New Year brings you a new project at work, or the chance to prepare
a new talk for a conference or meetup. My ACCU conference proposal
has been accepted, so I need to start writing it. Doing something new,
especially if it involves something you have never done before, can be
daunting. It would be much simpler to talk about techniques I already
know and can rattle off without preparation; however, that would be
boring. The opportunity to learn something new is exciting. I will learn
about cat swarm algorithms. Yes, that is a thing: a ‘cat’ either traces or
seeks, and algorithms can be built based on these modes to find solutions
to problems [Chu06]. I hope to be able to explain this in more detail in a
couple of months. Herding cats may be used as an example of something
foolhardy and impossible, but implementing a cat swarm algorithm can’t
be that hard, surely? Watch this space.

Aiming to do something easy is lazy, whereas trying to do something
you have never done before is admirable though risky. If I try this cat
swarm optimisation, I might not understand it properly. I won’t let fear
of failure put me off though, and neither should you. ACCU members
are supportive and easy to talk to, so I know I have people I can turn to
if I get stuck. Perhaps you should be brave too. If you aren’t going to
speak at a conference, and have no intention of ever doing so, fair enough.
Maybe consider writing an article instead? Or, try some of the puzzles
and challenges in our member’s magazine CVu, or write a book review.
You get a free book if you get in contact with the reviews editor.1 Push
yourself outside your comfort zone this year. Like exercise in the gym,
you may feel uncomfortable for a bit, but maybe you will experience
some feel-good endorphins and make yourself a little stronger.

Staring at a blank page, as I said, can cause writer’s block or similar.
Now, AI doesn’t suffer from this. Generative AI can waffle away easily
enough. In fact, most AI algorithms may start by trying something at
random, and then incrementally improve. Much of the agile movement
encourages us to take a similar approach. Make something, a minimum
viable product (MVP) for example and see how it goes. The important
part is not just making a product, but observing its use. Rather than aiming
for something to make money from, an MVP has “the additional criteria
of being sufficient to learn about the business viability of the product.”
[Agile]. Trying something and using feedback to guide what happens
next is an essential part of so many things, including software creation,
AI, and learning in general.

Seeking feedback is one thing, but unsolicited feedback can prove
incredibly unhelpful. I went for a walk round the block the other day, and
noticed two ladies walking a dog. One was clearly the owner and the other
a dog/dog-owner trainer. The dog’s owner said “Heel!” as I went by, and I

1 See https://accu.org/menu-overviews/reviews-overview/ for details.

could hear the trainer saying you don’t need to correct the dog unless they
do the wrong thing. The dog had come to heel, but not lined up perfectly.
I am not a dog owner, but I can see how being critical when something
is approximately right is not the best way to encourage behaviours you
want. It is difficult to say “That’s really good, well done. Maybe next
time, we can do even better!” each time feedback is requested and you
notice something amiss. Maybe you can be more critical with some than
others; however, let’s all try to remember to be kind and encouraging
whenever possible. If you are being drowned by negative feedback, and
are not in a position to find better collaborators, then don’t be shy about
asking which the best parts were to remind others pointing out the good is
as important as pointing out the bad.

Lots of people seize New Year, or any ‘significant’ date, as a time to
write dimly related blogs or mail shots and this year is no exception. One
that caught my eye touted the old aphorism, ‘Goals without plans are
just wishes.’ Now, there is an element of truth to that. I can write down
several goals, like continuing to play my bass. However, without specifics
of what to play, practice exercises, and the like, I probably won’t make
much progress. Now, I don’t need to plan out precisely what I plan to do
when, but a handful of songs to try and scales to practise is enough to
make a start. I may not have a fully formed plan, but I do have a goal. And
anyway, what’s wrong with wishes? I wish you all a Happy New Year, and
along with the review team, am here to encourage
you and maybe you will manage something you
thought was impossible this year, even if you don’t
get around to everything you hoped.

References
[Agile] ‘Minimum Viable Product (MVP)’, definition in the glossary of

the Agile Alliance: https://www.agilealliance.org/glossary/mvp/
[Boogerd08] C. J. Boogerd and L. Moonen (2008) ‘Assessing the

Value of Coding Standards: An Empirical Study’, preprint of a
paper published in ICSM 2008 (IEEE International Conference
on Software Maintenance, 28 September–4 October 2008,
available: http://resolver.tudelft.nl/uuid:646de5ba-eee8-4ec8-8bbc-
2c188e1847ea

[Chu06] Shu-Chuan Chu, Pei-Wei Tsai and Jeng-Shyang Pan (2006)
‘Cat Swarm Optimization’, available https://www.researchgate.net/
publication/221419703_Cat_Swarm_Optimization

[Google] Google C++ Style Guide: https://google.github.io/styleguide/
cppguide.html

[ISO] C++ Core Guidelines (Bjarne Stroustrup and Herb Sutter, editors):
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

[MISRA-1] MISRA C:2023 https://misra.org.uk/misra-c2023-released/
[MISRA-2] MISRA C++:2023: Guidelines for the use C++:17 in

critical systems https://misra.org.uk/misra-cpp2023-released-
including-hardcopy/

[Wikipedia] Pareto principle:
https://en.wikipedia.org/wiki/Pareto_principle

https://accu.org/menu-overviews/reviews-overview/
https://www.agilealliance.org/glossary/mvp/
http://resolver.tudelft.nl/uuid:646de5ba-eee8-4ec8-8bbc-2c188e1847ea
http://resolver.tudelft.nl/uuid:646de5ba-eee8-4ec8-8bbc-2c188e1847ea
https://www.researchgate.net/publication/221419703_Cat_Swarm_Optimization
https://www.researchgate.net/publication/221419703_Cat_Swarm_Optimization
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://misra.org.uk/misra-c2023-released/
https://misra.org.uk/misra-cpp2023-released-including-hardcopy/
https://misra.org.uk/misra-cpp2023-released-including-hardcopy/
https://en.wikipedia.org/wiki/Pareto_principle

SEB ROSEFEAtURE

4 | Overload | February 2024

User Stories and BDD – Part 3,
Small or Far Away?
The size of user stories is important. Seb Rose
continues his investigation of user stories,
considering when and how to size them.

this is the third in a series of articles digging into user stories, what
they’re used for, and how they interact with a BDD approach to
software development. You could say that this is a story about user

stories. And like every good story, there’s a beginning, a middle, and an
end. This article is a continuation of the middle.

Previously ...
In the last article [Rose23], we followed a user story through the process
of Discovery [Nagy18]. We saw that the main purpose for a user story was
to minimise waste by making decisions at the last responsible moment,
that accidental discovery is an unavoidable source of waste, but can be
minimised by embracing deliberate discovery. We introduced Example
Mapping as a deliberate discovery technique and observed that, through
discovery, stories are transformed from a placeholder for a conversation
into detailed small increments. Now it’s time to talk about what we mean
by ‘small’ and why, in the context of user stories, small is beautiful.

Small and valuable
The INVEST acronym was created by Bill Wake [Wake03] and
popularised by Mike Cohn. It reminds us that stories should exhibit the
following characteristics:
	� I – independent
	� N – negotiable
	� V – valuable
	� E – estimable
	� S – small
	� T – testable

This acronym encapsulates good advice about what a user story should
look like. I’ll write about the other aspects of this acronym in the future,
but for now I’d like to point out the tension that teams usually feel
between stories being small and stories being valuable.

Value is often thought of as delivering functionality that will earn money
from fee-paying customers. While that is one definition of value, it is very
narrow, ignores the incremental nature of value, and encourages teams to
work on larger stories than they should.

I have my own definition of value, that is much broader, and fits better
with the iterative and incremental nature of agile [Rose19]:

Value is any piece of work that increases knowledge, decreases
risk, or generates useful feedback.

This definition of value allows us to work on really small stories, but it
seems that most teams are resistant even though they typically accept that
fast feedback is beneficial.

Why small is beautiful
There’s really only one reason to work on smaller stories, which is
reduced waste. For that to make sense we need to understand where waste
occurs during software development. For the purposes of this article, I’m
going to assert that the majority of waste arises from one of two sources:
ignorance and disrupted flow.

ignorance
Software development is a process of learning and we learn by getting
feedback. Whether that’s feedback from the customer that we have
misunderstood their problem, or feedback from tests that we’ve not
understood the limitations, it’s all valuable learning. To learn faster we
need to get feedback faster.

The more work we do between each piece of feedback, the more
rework we’ll have to do if it turns out that we’ve been building on
misunderstandings or incorrect assumptions. If we can minimise rework,
then we can minimise the risk that the work we’re doing will be wasted.

And, just to be clear, there are multiple risks that learning (and hence
feedback) needs to address. The bigger the story, the higher the risk that
it’s hiding some complexities that we’re ignorant of. The earlier that
we can reduce that ignorance, the sooner we can begin to decrease our
exposure to risk.

Big stories mean we have to wait longer for feedback; smaller stories
mean we can get our feedback more quickly.

Disrupted flow
While waste due to ignorance is usually problem-specific, the waste due
to the processes that our teams follow are often systematic.

The most efficient way to work on stories is what Lean manufacturing
calls single piece flow. Essentially this means that when someone starts
work on a story, they can independently take it to completion. The larger
the story, the more likely it is that it will contain some obstacle that
interrupts its completion. When that happens, the flow of the work will be
disrupted and they will generally context switch to another story. Context
switching is a major source of waste.

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. Co-author of the BDD Books series
Discovery and Formulation (Leanpub), lead author of The Cucumber
for Java Book (Pragmatic Programmers), and contributing author to
97 Things Every Programmer Should Know (O’Reilly).

Image: Maureen Adamson [Adamson19]

Figure 1

SEB ROSE FEAtURE

February 2024 | Overload | 5

How small is small?
There’s a conversation that takes place in The Hitchhiker’s Guide to
the Galaxy which neatly describes peoples’ reaction to my answer
[MovieQuotes]:

Lunkwill: Do you...

Deep Thought: Have an answer for you? Yes. But you’re not going
to like it.

As long as a story delivers value (see my definition of value above), then
my answer (whether you like it or not) is: the smaller that you can make
the story, the better.

The standard objection to this is that it’s just not efficient to do such small
pieces of work. But why is it not efficient? Read on….

transaction cost
The challenge with delivering tiny stories is that our development
processes are frequently inefficient. The cost of creating a small story
and pulling it through your development pipeline is called the transaction
cost. A heavyweight process with, for example, a manual release process
involving management sign-off, incurs a high transaction cost for every
story. At the other end of the spectrum, a fully-automated Continuous
Delivery pipeline has an extremely low transaction cost. The lower you
can make this cost compared to the cost of actually delivering a story’s
value, the more worthwhile it is for you to ship small stories often.

There are major global corporations that have focused on making their
processes efficient – and they can deliver thousands of tiny stories into
production every day. Most organisations still think that demonstrating a
new piece of functionality every two weeks is quite advanced.

To maximise the efficiency of our development teams we should focus on
improving their flow. It took Toyota years to get to where they are today,
but they didn’t stop making cars while they improved their production
processes – and we shouldn’t stop delivering software.

Before your next retrospective, read The Bottleneck Rules (a very short
book) and think about applying some of the techniques that it describes.

Low fidelity stories
Small stories will often be low fidelity stories [Scotland09].

Fidelity refers to the finesse of the feature, or solution – low fidelity
solution will be low in things like precision, granularity, or usability,
but will still [help us learn how to] solve the original problem.

The goal is to do as little work as possible to learn whether we’re
progressing in the right direction.

Jeff Patton [Patton08] uses the analogy of painting the Mona Lisa
to demonstrate the difference between iterative and incremental
development. The first story would deliver an outline of a part of the
composition, with future stories

	� iterating on the outline by adding colour, texture, and detail

	� incrementally extending the outline to cover more of the composition

Agile teams work both iteratively and incrementally, starting with low
fidelity stories that allow us to learn fast and early.

Individual stories don’t necessarily have to be something coherent enough
to release to your users. You may need to complete several detailed small
increments before you’ve added enough value that your users would
appreciate or even notice it. The way you choose to slice your stories
becomes a really important skill, so that you’re able to gradually fade up
the fidelity until you’re ready to ship.

Story slicing
Once you accept the benefits of small stories, there’s still the challenge of
creating them. There are many techniques for decomposing stories into
thin slices, but I’d like to share three nuggets that you should keep in mind.

Asteroids
In his book User Story Mapping, Jeff Patton [Patton14] draws an analogy
with the old arcade game Asteroids. The decomposition of large, slow-
moving rocks into tiny, fast-moving, dangerous rocks is instructive.

Image: Steven Thomas [Thomas12]

Figure 2

the way you choose to slice your stories
becomes a really important skill, so

that you’re able to gradually fade up the
fidelity until you’re ready to ship.

Figure 3

SEB ROSEFEAtURE

6 | Overload | February 2024

The worst technique in Asteroids is to break all the big rocks into medium
rocks, and all the medium rocks into tiny rocks. The outcome, if you do
this, is a screenful of fast moving, dangerous rocks that inevitably destroy
your spaceship.

A similar thing happens if you try to populate your entire backlog with
tiny stories. You have a backlog that’s impossible to manage, full of
duplicate and out-of-date stories. Instead, break off a chunk at a time and
decompose that into small stories, leaving the backlog mostly full of big
and medium stories.

Example mapping
Example mapping [Wynne15] is a technique that can really help slice a
medium story into a set of small stories. It’s well described elsewhere
and provides a structured way to collaboratively analyse a problem and
generate concrete examples of how the system should actually behave.

The beauty of this technique is that the example map itself visually
communicates whether the story is too big AND gives us a simple
mechanism to slice it up. Because the product owner is present during
example mapping, this approach has the added benefit that business
priorities can be taken into account at a very fine granularity.

The flowchart
Example mapping is my go-to technique when analysing and slicing
a story, but it’s by no means the only way to do it. Richard Lawrence
created the extremely useful ‘How To Split A User Story’ flowchart
[Lawrence18]. Print this out (on a LARGE piece of paper) and hang it
on your team’s wall.

two week iterations
To learn fast and maintain flow you need stories to be significantly smaller
than your iteration. For most XP and Scrum teams, this means that every
story should be deliverable (from Backlog->Done) in 3 days or fewer.
This is hard, but the benefits are immense.

Small or far away?
Once you set about trying to work with smaller stories, you’ll probably
find that, even after slicing them, they’re still bigger than you would like.
The challenge is that until you really dig into the details of a story, some
of its complexity remains stubbornly hidden.

As Father Ted, discovered – it’s all a matter of perspective. [FatherTed]�

References
[Adamson19] Maureen Adamson, ‘The High Cost of Context

Switching’, posted 14 May 2019, https://madamsonassociates.com/
blog/high-cost-of-context-switching

[FatherTed] ‘Cows: Small or far away?’, an extract from the Father Ted
comedy series (Channel 4 Entertainment) on YouTube:
https://www.youtube.com/watch?v=MMiKyfd6hA0

[Lawrence18] Richard Lawrence (2018) ‘How to Split a User Story’
(flowchart), available at: https://agileforall.com/wp-content/
uploads/2020/12/Story-Splitting-Flowchart.pdf

[MovieQuotes] The Hitchhiker’s Guide to the Galaxy (2005), quotes
listed at https://www.moviequotes.com/s-movie/the-hitchhikers-
guide-to-the-galaxy-1/

[Nagy18] Gaspar Nagy and Seb Rose (2018) Discovery: Explore
behaviour using examples: Volume 1 (BDD Books),
https://bddbooks.com/

[Patton08] Jeff Patton, ‘Don’t Know What I Want, But I Know How to
Get It’, posted on 21 January 2008 at https://jpattonassociates.com/
dont_know_what_i_want/

[Patton14] Jeff Patton and Peter Economy (2014) User Story Mapping:
Discover the Whole Story, Build the Right Product, published by
O’Reilly, ISBN-13: 978-1491904909

[Rose18] Seb Rose ‘How long is a piece of string?’ from Agile 2018,
available at https://www.agilealliance.org/resources/videos/how-
long-is-a-piece-of-string/

[Rose19] Seb Rose ‘User stories: from good intentions to bad advice’,
Lean Agile Scotland 2019, https://www.slideshare.net/sebrose/user-
stories-from-good-intentions-to-bad-advice-lean-agile-scotland-2019

[Rose23] Seb Rose ‘User Stories and BDD – Part 2, Discover’ in
Overload 178, December 2023, available at https://accu.org/
journals/overload/31/178/rose/

[Scotland09] Karl Scotland ‘Fidelity – The Lost Dimension of the
Iron Triange’ posted on 22 December 2009 at https://availagility.
co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

[Thomas12] Steven Thomas ‘Revisiting the Iterative Incremental
Mona Lisa’, posted 3 December 2012, http://itsadeliverything.com/
revisiting-the-iterative-incremental-mona-lisa

[Wake03] Bill Wake ‘INVEST in Good Stories, and SMART Tasks’,
posted 17 August 2003 at https://xp123.com/articles/invest-in-good-
stories-and-smart-tasks/

[Wynne15] Matt Wynne, ‘Introducing Example Mapping’, posted 8
December 2015 on Seb Rose’s blog: https://cucumber.io/blog/bdd/
example-mapping-introduction/

This article was published on Seb Rose’s blog on 9 January 2020:
https://cucumber.io/blog/bdd/user-stories-and-bdd-part-3/

Image: From Agile 2018 [Rose18]

Figure 4

https://madamsonassociates.com/blog/high-cost-of-context-switching
https://madamsonassociates.com/blog/high-cost-of-context-switching
https://www.youtube.com/watch?v=MMiKyfd6hA0
https://agileforall.com/wp-content/uploads/2020/12/Story-Splitting-Flowchart.pdf
https://agileforall.com/wp-content/uploads/2020/12/Story-Splitting-Flowchart.pdf
https://www.moviequotes.com/s-movie/the-hitchhikers-guide-to-the-galaxy-1/
https://www.moviequotes.com/s-movie/the-hitchhikers-guide-to-the-galaxy-1/
https://bddbooks.com/
https://jpattonassociates.com/dont_know_what_i_want/
https://jpattonassociates.com/dont_know_what_i_want/
https://www.agilealliance.org/resources/videos/how-long-is-a-piece-of-string/
https://www.agilealliance.org/resources/videos/how-long-is-a-piece-of-string/
https://www.slideshare.net/sebrose/user-stories-from-good-intentions-to-bad-advice-lean-agile-scotland-2019
https://www.slideshare.net/sebrose/user-stories-from-good-intentions-to-bad-advice-lean-agile-scotland-2019
https://accu.org/journals/overload/31/178/rose/
https://accu.org/journals/overload/31/178/rose/
https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/
https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/
http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-lisa
http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-lisa
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/user-stories-and-bdd-part-3/

AnDREAS FERtig FEAtURE

February 2024 | Overload | 7

C++20 Concepts Applied – Safe
Bitmasks Using Scoped Enums
It can be hard to follow code using enable_if.
Andreas Fertig gives a practical example
where C++20’s concepts can be used instead.

in 2020 I wrote an article for the German magazine iX called ‘Scoped
enums in C++’ [Fertig20]. In that article, I shared an approach of
using class enums as bitfields without the hassle of having to define

the operators for each enum. The approach was inspired by Anthony
William’s post ‘Using Enum Classes as Bitfields’ [Williams15].

Today’s article aims to bring you up to speed with the implementation in
C++17 and then see how it transforms when you apply C++20 concepts
to the code.

One operator for all binary operations of a kind
The idea is that the bit-operators are often used with enums to create
bitmasks. Filesystem permissions are one example. Essentially you want
to be able to write type-safe code like this:
 using Filesystem::Permission;
 Permission readAndWrite{
 Permission::Read | Permission::Write};

The enum Permission is a class enum, making the code type-safe.
Now, all of you who once have dealt with class enums know that they
come without support for operators. Which also is their strength. You can
define the desired operator or operators for each enum. The issue here is
that most of the code is the same. Cast the enum to the underlying type,
apply the binary operation, and cast the result back to the enum type.
Nothing terribly hard, but it is so annoying to repeatedly type it.

Anthony solved this by providing an operator, a function template that
only gets enabled if you opt-in for a desired enum. Listing 1 is the
implementation, including the definition of Permission.

Neat, isn’t it?

The trick part is in the template-head in u. The is_same together
with decltype and, of course, std::declval checks that a function
enable_bitmask_operator_or exists for the given enum, which I
provide in v. Well, enable_if.

Let’s use the code for operator| and see how C++20 can simplify your
code.

C++20’s concepts applied
The great thing about C++20s concepts is that we can eliminate the often
hard-to-digest enable_if. Further, checking for functions’ existence
requires less code due to the requires-expression of concepts.

Listing 2 is the same operator using C++20s concepts instead of the
enable_if.

I can’t tell you how much I like this code. No decltype, no is_same,
no conjunction, and no declval. So beautiful.

The requires-expression tries to call enable_bitmask_operator_or
in u, together with the is_enum_v, that’s all that’s required in C++20.

There is one other bonus in C++20. Since you have not only constexpr
but also consteval functions available, applying them in v to

template<typename T>
constexpr std::
 enable_if_t<
 std::conjunction_v<std::is_enum<T>,
 // look for enable_bitmask_operator_or
 // to enable this operator u
 std::is_same<bool,
 decltype(enable_bitmask_operator_or(
 std::declval<T>()))>>,
 T>
operator|(const T lhs, const T rhs) {
 using underlying = std::underlying_type_t<T>;
 return static_cast<T>(
 static_cast<underlying>(lhs) |
 static_cast<underlying>(rhs));
}
namespace Filesystem {
 enum class Permission : uint8_t {
 Read = 1,
 Write,
 Execute,
 };
 // Opt-in for operator| v
 constexpr bool
 enable_bitmask_operator_or(Permission);
} // namespace Filesystem

listing 1

Andreas Fertig is a trainer and lecturer on C++11 to C++20,
who presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example, in
iX) and several textbooks, most recently Programming with C++20.
His tool – C++ Insights (https://cppinsights.io) – enables people to
look behind the scenes of C++, and better understand constructs. He
can be reached at contact@andreasfertig.com

template<typename T>
requires(std::is_enum_v<T>and requires(T e) {
 // look for enable_bitmask_operator_or to
 // enable this operator u
 enable_bitmask_operator_or(e);
}) constexpr auto
operator|(const T lhs, const T rhs) {
 using underlying = std::underlying_type_t<T>;
 return static_cast<T>(
 static_cast<underlying>(lhs) |
 static_cast<underlying>(rhs));
}
namespace Filesystem {
 enum class Permission : uint8_t {
 Read = 0x01,
 Write = 0x02,
 Execute = 0x04,
 };
 // Opt-in for operator| v
 consteval
 void enable_bitmask_operator_or(Permission);
} // namespace Filesystem

listing 2

https://cppinsights.io

AnDREAS FERtigFEAtURE

8 | Overload | February 2024

enable_bitmask_operator_or signals a bit better that this function
is for compile-time purposes only.

C++23: the small pearl
One more thing. You have C++23 available now1. There is one change
you can now make to simplify the code even more. C++23 offers you
std::to_underlying for converting a class enum value to a value of
its underlying type. The function is located in <utility>.
Applying this to the example leads to the code in Listing 3.

Not only does std::to_underlying remove redundant and boring
code you had to write before C++23 but, in my opinion, the utility
function makes the code more readable as well. �

References
[Fertig20] Andreas Fertig, ‘Scoped Enums in C++11’ in iX, accessible

from https://www.heise.de/select/ix/2020/7/2006907575811763393

1 Check which parts of C++23 are available on your chosen compiler at
https://en.cppreference.com/w/cpp/compiler_support

[Williams15] Anthony Williams ‘Using Enum Classes as Bitfields’,
posted 29 January 2015 at https://www.justsoftwaresolutions.co.uk/
cplusplus/using-enum-classes-as-bitfields.html

This article was first published on Andreas Fertig’s blog on 2 January
2024: https://andreasfertig.blog/2024/01/cpp20-concepts-applied/

template<typename T>
requires(std::is_enum_v<T>and requires(T e) {
 enable_bitmask_operator_or(e);
}) constexpr auto
operator|(const T lhs, const T rhs)
{
 return static_cast<T>(std::to_underlying(lhs) |
 std::to_underlying(rhs));
}

listing 3

And the winners are…
In Overload 178 and CVu 35.6, we invited you to vote for your favourite articles both in Overload
and CVu (which is our sister publication for members). The results are in.

Thank you to everyone who took the time to vote, and to those who wrote the articles. We can’t
offer a prize – just the mention here.

A number of other writers got a vote, so if you wrote something for us, someone probably
thoroughly enjoyed what you had to say.

If you’re reading this online, the article titles link to the articles. Overload articles are publicly
available, but you must be a member (and logged in) to access the CVu ones.

If you’re not a member yet, why not join?

Winner

Are the Old Ways Sometimes the
Best? (Roger Orr, in CVu 35.4)

CVu
Runner-up

Care About the Code
(Pete Goodliffe, in CVu 35.2)

Winner

Floating-Point Comparison
(Paul Floyd, in Overload 173)

Runners-up

Use SIMD: Save the Planet
(Andrew Drakeford, in Overload 178)

Live and Let Die
(Martin Janzen, in Overload 177)

Overload

https://www.heise.de/select/ix/2020/7/2006907575811763393
https://en.cppreference.com/w/cpp/compiler_support
https://www.justsoftwaresolutions.co.uk/cplusplus/using-enum-classes-as-bitfields.html
https://www.justsoftwaresolutions.co.uk/cplusplus/using-enum-classes-as-bitfields.html
https://andreasfertig.blog/2024/01/cpp20-concepts-applied/
https://accu.org/journals/cvu/35/4/orr-1/
https://accu.org/journals/cvu/35/4/orr-1/
https://accu.org/journals/cvu/35/2/goodliffe/
https://accu.org/journals/overload/31/173/floyd/
https://accu.org/journals/overload/31/178/drakeford/
https://accu.org/journals/overload/31/177/janzen/

lUCiAn RADU tEODORESCU FEAtURE

February 2024 | Overload | 9

Safety, Revisited
Last year saw a proliferation of talks and articles about
safety in C++. Lucian Radu Teodorescu gives an overview
of these and presents a unified perspective on safety.

Safety was a hot topic in 2023 for the C++ community. Leading
experts took clear positions on its significance in the context of C++
and, in general, system programming languages. They explored

various aspects, including general safety principles, functional safety,
memory safety, as well as the intersections between safety and security,
and safety and correctness. Many of these discussions were influenced by
recent reports [NSA22, CR23, WH23a, EC22, CISA23a, CISA23b], that
strongly criticised memory-unsafe languages.

In this context, it’s logical to revisit the primary safety discussions from
last year and piece together a comprehensive understanding of safety in the
context of C++. While experts may find common ground, they also have
differing opinions. However, it’s likely that the nuances expressed by the
authors hold greater significance than mere agreements or disagreements.

In this article, we will examine key C++ conference talks with a primary
focus on safety, along with a brief mention of relevant podcasts. Our
selection is limited to talks and podcasts from 2023. Subsequently, we
will consolidate the insights and viewpoints of various authors into a
unified perspective on safety in system languages.

Safety in 2023: a brief retrospective
Sean Parent, All the Safeties
In his presentation at C++ now [Parent23a], Sean Parent presents the
reasons why it’s important to discuss safety in the C++ world, tries to
define safety, argues that the C++ model needs to improve to achieve
safety, and looks at a possible future of software development. This same
talk was later delivered as a keynote at C++ on Sea [Parent23b].

Sean argues the importance of safety by surveying a few recent US and EU
reports which have begun to recognise safety as a major concern [NSA22,
CR23, WH23a, EC22]. There are a few takeaways from these reports.
Firstly, they identify memory safety as a paramount issue. The NSA report
[NSA22], for instance, cites a Microsoft study noting that “70 percent of
their vulnerabilities were due to memory safety issues”. Secondly, they
highlight the inherent safety risks in C and C++ languages, advocating
for the adoption of memory-safe languages. Lastly, these documents
suggest a paradigm shift in liability towards software vendors. Under this
framework, vendors may face accountability for damages resulting from
safety lapses in their software.

Building on the reports that underscore the significance of safety, Sean
delves into deciphering the meaning of ‘safety’ in the context of software
development. After evaluating several inadequate definitions, he adopts a
framework conceptualised by Leslie Lamport [Lamport77]. The idea is to
express the correctness of the program in terms of two types of properties:
safety properties and liveness properties. The safety properties describe
what cannot happen, while the liveness properties indicate what needs to
happen.

As highlighted in other talks that Sean gave (see, for example, ‘Exceptions
the Other Way Round’ [Parent22]), safety composes. If all the operations
in a program are safe, then the program is also safe (if preconditions are

not violated). Correctness, on the other hand, doesn’t compose like safety.
This is why safety is a (easily) solvable problem.

Sean further elaborates on what constitutes memory safety in a language.
Citing ‘The Meaning of Memory Safety’ [Amorim18], he argues that
memory safety is what the authors of the paper call the frame rule. This
rule is equivalent to the Law of Exclusivity, coined by John McCall
[McCall17]. Sean then explains why C++ can never be a safe language.
In general, any language that allows undefined behaviour is an unsafe
language.

Herb Sutter, Fill in the blank: _________ for C++
In his keynote at C++ now, ‘Fill in the blank: _________ for C++’
[Sutter23a], Herb Sutter presents the latest developments in his cppfront
project, envisioned as a successor to C++. He presented this talk again,
with minor variations, at CppCon 2023 under the title ‘Cooperative
C++ Evolution: Toward a Typescript for C++’ [Sutter23b]. A primary
objective of this new language is to significantly enhance safety. Herb
sets an ambitious goal of improving safety by 50 times compared to C++.
His plan for achieving this goal is to have bounds and null checking by
default, guaranteed initialisation before use, and other smaller safety
improvements (contracts, default const, no pointer arithmetic, etc).

The features that Herb presents in this talk are fairly small in terms of
safety improvements that they bring (especially compared to his previous
talk [Sutter22]). However, I included Herb’s keynote because he advocates
a gradual approach to safety, and provides a clear measurement for
achieving the goal. One might say that this approach is more pragmatic.

As an interesting observation, Herb has two different approaches to two
important features of his language: safety and compatibility. While he
advocates a gradual adoption for safety, he advocates an all-or-nothing
approach to compatibility (a good successor needs to be fully compatible
with the previous language from day one).

Bob Steagall, Coding for Safety, Security, and Sustainability
(panel discussion)
Safety was an important topic at C++ now, and the conference organised a
panel with JF Bastien, Chandler Carruth, Daisy Hollman, Lisa Lippincott,
Sean Parent and Herb Sutter [Steagall23].

The panellists disagreed on a definition of safety, and they disagreed
on the relation between safety and security. But, apart from that, there
seemed to be a consensus on multiple topics: it’s difficult to express safe/
correct code in C++, safety is important to the future of C++, safety and
performance are not incompatible, the C++ experts need to consider more
the opinion of security experts, the programmers also have responsibilities

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

lUCiAn RADU tEODORESCUFEAtURE

10 | Overload | February 2024

for delivering safe and secure code (not just managers) and that regulation
of the industry is likely imminent.

One important point that Daisy puts forward is that there shouldn’t be a
single answer for safety. She points out that the HPC community is not
particularly interested in safety and security, and they focus solely on
performance.

Chandler Carruth, Carbon’s Successor Strategy: from C++
interop to memory safety
In his presentation at C++ now 2023, titled ‘Carbon’s Successor Strategy:
from C++ interop to memory safety’ [Carruth23], Chandler Carruth
delved into the ongoing evolution of the Carbon language. As memory
safety is a key objective for the Carbon language, a significant portion
of his talk also addressed the strategy of handling safety by the Carbon
community.

In his talk, Chandler offers a different type of definition for safety,
starting from bugs. Safety, according to Chandler, is the guarantees that
the program provides in the face of bugs. According to Chandler, safety
is not a binary state; rather, it can exist in varying degrees. Chandler
defines memory safety as a mechanism that “limits program behaviour to
only read or write intended memory, even in the face of bugs”. Then he
goes on to make an important clarification: we may not want the entire
language to be memory safe, but we may want a subset of the language
to be memory safe. This subset should serve as a practical default, with
unsafe constructs being the exception. Additionally, there should be a
clear and auditable demarcation between safe and unsafe elements in
the language. Intriguingly, Chandler does not deem data-race safety as a
strict requirement for this safe subset, although he acknowledges it as an
admirable objective to strive for.

The Carbon migration strategy that Chandler presented is a step-by-step
process. Initially, the transition involves moving from unsafe C++ code
to Carbon, potentially utilising some unsafe constructs. Subsequently,
the strategy shifts towards adopting a safe subset of Carbon. This phased
approach breaks down the transition from unsafe to safe code into more
manageable steps, enabling an incremental migration process.

Throughout his talk, Chandler implicitly advocates the viewpoint that
memory safety ought to be a fundamental expectation in programming
languages. He suggests that software engineers should have the right to
demand safety guarantees in their work.

JF Bastien, Safety & Security: the future of C++
Right from the outset of his C++ Now keynote [Bastien23], JF Bastien
presents a compelling argument: safety and security represent existential
threats to C++. Software is central in modern society, and safety issues
can have serious consequences, potentially even leading to loss of life.
To reinforce his point, JF cites an extensive array of reports and articles,
stressing the message that the C++ community cannot afford to neglect
safety [NSA22, CR23, Gaynor18, Black21, Dhalla23, Claburn23,
CISA23a, CISA23b].

JF draws a striking analogy in his talk: he compares programming
in C++ to driving without seatbelts. He points out that the resistance
within the C++ community towards memory safety mirrors the initial
reluctance of the automotive industry to adopt seatbelts. His vision
is for safe programming languages to become as universally accepted
and life-saving as seatbelts. This perspective gradually evolves into an
ethical argument. JF suggests that to truly adhere to our duty of avoiding
harm, it’s essential to take the necessary steps to mitigate safety issues in
programming as much as possible.

Later on, JF argues that we don’t have a common understanding of safety
and attempts to provide a definition for what safety means; for him, safety
is about type safety, memory safety, thread safety and functional safety.

Type safety “prevents type errors” (“attempts to perform operations on
values that are not of the appropriate data type”). He references Robin
Milner’s famous quote “Well-typed programs cannot go wrong” [Milner78]
to indicate the importance of type safety. Turning the attention to C++, he
argues that it’s really hard in C++ to follow all the best practices regarding
type safety; he also argues that it’s difficult to guarantee the absence of
undefined behaviour, so C++ cannot be considered a type-safe language.

For memory safety, JF references ‘The Meaning of Memory Safety’
[Amorim18], and defines memory safety as the absence of use-after-
free and out-of-bounds accesses (he doesn’t include use of uninitialised
values). To the question whether C++ has memory safety, the answer is
no, C++ is not there yet, but JF points out a few alternatives how C++
can get memory safety; it’s worth noting that each of the approaches has
trade-offs.

Thread safety is defined as the absence of data races. Like with the other
types of safety, C++ doesn’t have a way of guaranteeing the lack of data
races.

Regarding functional safety, he defines functional safety as “the systematic
process used to ensure that failure doesn’t occur”. While the programming
part of this is important, functional safety extends beyond it, to processes
and people; having a “safe culture” (where the boss can hear bad news) is
also important for functional safety. JF additionally argues that security is
also needed to achieve functional safety.

In the rest of the talk, JF discusses the distinction between the two
adversaries behind safety and security: stochastic vs smart adversaries,
and how the smart adversary may have a wide range of resources. He
discusses many nuances of preventing and mitigating these types of
issues. Towards the end of the talk the subject of possible regulations
is tackled; based on recent reports [OpenSSF22, WH23b, Hubert23], JF
believes that our field will soon be regulated.

Andreas Weis, Safety-First: Understanding How to Develop
Safety-critical Software
At C++ now, Andreas Weis talks about safety from a slightly different
perspective, focusing on software development for safety-critical domains
like the automotive industry. He delved into topics such as functional

the resistance within the C++ community
towards memory safety mirrors the initial
reluctance of the automotive industry to
adopt seatbelts

lUCiAn RADU tEODORESCU FEAtURE

February 2024 | Overload | 11

safety, existing regulations, processes or multiple methods of achieving
safety [Weis23].

Andreas starts by defining safety. His definition of safety is also inspired
from Leslie Lamport [Lamport83]: “something bad does not happen”.
As examples, Andreas gives partial correctness (“the program does not
produce the wrong answer”), mutual exclusion and deadlock freedom. He
also defines safety from the perspective of Functional Safety, as defined
by ISO 26262:2018 [ISO26262]. The ISO standard defines safety as being
the “absence of unreasonable risk”, and unreasonable risk as “risk judged
to be unacceptable in a certain context according to valid societal moral
concepts”, and risk as the “combination of the probability of occurrence
of harm and the severity of that harm”. Crucial to this definition are the
notions of unreasonable and the probability factor in risk assessment.
The ISO processes require a thorough risk evaluation to determine the
significance of each risk.

Another important point that Andreas draws attention to is the fact that
preventing a safety fault is just one way of dealing with the fault. There
are other ways to deal with the fault (control the impact, designing fault-
tolerant system, increasing controllability, etc.)

Andreas also explains that defining intended functionality for a system is
important; there may not be universal guarantees for a system. He also
briefly attempts at providing a distinction and commonalities between
safety and security.

Much of Andreas’s talk was dedicated to discussing the processes
mandated by ISO for addressing safety concerns. Pertinent to our
discussion are the sections where these processes dictate coding
requirements. While the standards mention some specific items, they
primarily mandate companies to develop coding standards that address
various safety concerns.

Bjarne Stroustrup: Approaching C++ Safely
In the Core C++ opening keynote, ‘Approaching C++ safety’
[Stroustrup23a], Bjarne Stroustrup presented a blend between his ideas
and standards committee on approaching safety in C++ (referencing
[P2759R1, P2739R0, P2816R0, P2687R0, P2410R0]). He tries to capture
the many nuances of safety, discusses the evolution of C++ towards safety
and also a possible future for C++ regarding safety. He delivers roughly
the same talk as a CppCon keynote in October 2023 [Stroustrup23a].

From the beginning of the talk, Bjarne argues that safety is not just one
thing, it’s actually a set of other things; he lists some of the things that safety
means but fails to define any of the terms discussed. He acknowledges that
the recent NSA report [NSA22] is a cause of concern and that C++ can be
massively improved in terms of safety. The approach that Bjarne suggests
is relying on guidelines and tooling; this puts most of the responsibility
on the users, and not on the committee members. Notably, his response
to criticism, evident in the first keynote [Stroustrup23a], was marked by
a notably sharp tone.

A major part of the talk discusses the evolution of C++ and how, during
the decades, it improved safety compared to C. Most of the ideas were
also presented in different forms by Bjarne at different conferences before
this ‘safety crisis’.

After discussing the evolution of C++ so far, the talk goes to discuss
the C++ core guidelines (present) and the safety profiles (future). The
guidelines can help users write safer code, while the profiles can enforce
the guidelines with appropriate tooling (static analysers). Using profiles
will allow gradual improvement in safety.

Throughout the talk, the audience can hear Bjarne say that some problems
are hard, and for some of them we may not get any static check soon.
The references that are made in the talk [P2759R1, P2739R0, P2816R0,
P2687R0, P2410R0] do not offer clear guarantees that all the safety issues
of C++ will be tackled. The references slide included a 2015 paper with
the note “we didn’t start yesterday,” underscoring the slow pace of safety
improvements. This leaves an impression that fully resolving C++’s
safety issues is likely to be a prolonged endeavour.

timur Doumler, C++ and Safety
Timur Doumler gave a talk called ‘C++ and Safety’ both at C++ on Sea
[Doumler23a] and at CppNorth [Doumler23b], explaining his perspective
on safety. While his approach is similar to what others have said before
at C++ now 2023, he has some new takes on safety and C++, more
specifically on the importance of safety in C++.

In the first part of the talk, he gives a taxonomy around safety, touching
functional safety, language safety, correctness (total and partial), and
on the relation between undefined behaviour and safety. He focuses
on language safety; he defines a program as language safe if it has no
undefined behaviour, and considers a programming language safe if it
cannot express programs that are not language safe.

He explores different types of safety issues (type safety, bounds safety,
lifetime safety, initialisation safety, thread safety, arithmetic safety and
definition safety). Furthermore, he provides examples and discusses them
in terms of trade-offs. A language can ban undefined behaviour, but, he
argues, that would have other negative consequences and would make
some old programs not work anymore.

Towards the end of the talk, Timur starts to draw some conclusions. First,
C++ has too much undefined behaviour, and that would make it impossible
for C++ to become a safe language. The industry has developed tools and
practices to make this a smaller problem. His second assertion is that
compromising on performance might pose a greater threat to C++ than
compromising on safety. This leads to his third conclusion: C++ is not
doomed if it fails to become a memory-safe language.

To back up his claims on completely fixing C++ safety issues, he presents
some data. First, he looks at the number of vulnerabilities per language:
while C and C++ are often quoted together as having a memory safety
issue, there is a large gap between the two languages. From the total
vulnerabilities looked at, 46.9% are in C, while only 5.23% are in C++.

the guidelines can help users write safer code,
while the profiles can enforce the guidelines

with appropriate tooling (static analysers).

lUCiAn RADU tEODORESCUFEAtURE

12 | Overload | February 2024

Other languages, like PHP, Java, JavaScript and Python have more
vulnerabilities than C++; Java, considered a safe language, has an 11.4%
share of vulnerabilities, which is twice as much as C++.

Then, he presents the results of a survey that he ran to determine the
importance of safety for C++ users. The main conclusion is that “today,
C++ developers generally do not perceive undefined behaviour as a
business-critical problem”.

Robert Seacord, Safety and Security: the Future of C and C++
Another important talk related to safety was Robert Seacord’s keynote at
NDC TechTown, entitled ‘Safety and Security: The Future of C and C++’
[Seacord23]. The talk was based on Bastien’s talk ‘Safety & Security: the
future of C++’ [Bastien23] and most of the ideas are repeated. In addition
to the ideas presented in Bastien’s talk, Robert, being the convenor for
the ISO standardisation working group for the C programming language,
added content to also cover C, not just C++.

gabor Horvath, lifetime Safety in C++: Past, Present and Future
In his CppCon talk [Horvath23], Gabor Horvath discusses some possible
approaches to improve lifetime safety. He is deliberately not explaining
once more why safety is important and briefly mentions a few C++now
talks [Bastien23, Parent23a, Steagall23, Weis23] and a few reports
[NSA22, CR23].

What is interesting in Gabor’s talk is the distinction between safe by
construction and opportunistic bug finding (Gabor also has a third
category named hybrid approach, but I failed to understand what’s the
difference between this one and opportunistic bug finding). In a safe by
construction language, the expressible programs are guaranteed to be
safe. This may reject safe programs if the compiler cannot reason that
they are safe; often, for this reason, the language allows escape hatches.
On the other hand, in an opportunistic bug-finding approach, the language
allows all the programs whether they are safe or not; then, language
warnings, static analysers or other tools might identify safety issues. In
this model, we incrementally move to safer code as the tools suggest safer
constructs. The major downside is that there will be unsafe programs that
we won’t be able to detect.

Gabor spends a fair amount of time discussing recent improvements in
C++ (or the MSVC/clang compiler) for lifetime safety. What I found
interesting in this section is not necessarily the recent improvements
(although they are great), but the many ways in which we can write
unsafe code. The takeaway I have is that the more features we add to
C++, the more possibilities of expressing unsafe code we have, making it
harder for people to reason about them.

Podcasts
In terms of podcasts, the safety theme appeared on many episodes. Out
of all these episodes, I’ve selected a few where safety plays a central
role: CppCast’s ‘Safety Critical C++ with Andreas Weis’ [CppCast356],
CppCast’s ‘Safety, Security and Modern C++ with Bjarne Stroustrup’
[CppCast365] and ADSP’s ‘Rust & Safety at Adobe with Sean Parent’
[ADSP160]. They are all worth listening to.

Putting it all together
From correctness to safety
Let’s assume that we have a complete specification for a program we want
to build. We consider a program to be functionally correct if for every
input given to the program, it produces an output, and that output satisfies
the specification; this is sometimes referred to as total correctness.
A program is deemed partially correct if, for every input, should the
program produce an output, this output must conform to the specification.
Note that partial correctness does not guarantee termination, which makes
it easier to reason about.

Ideally, programs would be functionally correct. However, ensuring
this for most programs is not feasible. In fact, even achieving partial

correctness is a challenge for many programs. Furthermore, defining a
complete specification for a problem is often as complex as implementing
the solution itself. Therefore, having completely correct programs is not
practically achievable. But this does not mean we should resign ourselves
to letting our programs behave unpredictably. We must constrain them to
ensure only a reasonable set of outcomes are possible.

Consider a self-driving car that needs to travel from point A to point B.
We cannot guarantee the car will complete its journey since it might break
down. However, we aim to ensure that, under normal operating conditions,
the car doesn’t, for instance, continuously accelerate uncontrollably or
start driving off-road. This leads us to express guarantees in terms of ‘X
shouldn’t happen’.

Sean [Parent23a] references a paper by Leslie Lamport [Lamport77]
which suggests breaking down correctness into two types of properties:
safety properties (what must not happen) and liveness properties
(what must happen). Thus, our first definition of safety is that aspect
of correctness concerned with what must not happen. In the example
above, not continuously accelerating and not driving off-road are safety
properties.

Because there are potentially an infinite amount of negative properties,
having a clear definition of safety is not possible. We might have different
types of safeties, and we should always keep in mind the goals of our
programs. As Sean and Timur argue, safety is just an illusion [Parent23a,
Doumler23a]. There are always limitations to what safety properties can
express.

All safety properties should, in one way or another, contain the condition
‘if operating under intended usage parameters’. For example, there is
no guarantee that a software can make if the hardware misbehaves. For
example, a car may continuously accelerate if the cosmic rays make the
output of the hardware to continuously accelerate (ignoring any input
from the software); or, a car may drive off-road if it’s teleported outside
the road while having high speed. Due to practical reasons, we should
always assume our safety properties are qualified to exclude unintended
usage behaviours.

If we want safety properties (that are not defined in probabilistic terms)
to always hold, then, this definition of safety excludes gradual safety
adoption that Herb was advocating for.

Once we address the issue of intended usage, we must consider the
implications of any safety property for a program. The presence of even a
single non-probabilistic safety property implies that undefined behaviour
in our programs is unacceptable. Undefined behaviour means anything
can happen, including violations of the safety property. Therefore,
discussing safety in a system where undefined behaviour is possible is
fundamentally flawed.

Functional safety
There is another path that leads to defining safety, more specifically called
functional safety, coming from regulated industries, like automotive.
Andreas and JF provide a good overview of functional safety [Weis23,
Bastien23]. I will slightly alter the definition to make it more general.

We will define harm as physical, moral or financial injury or damage
to individuals or companies. In automotive, this is typically defined
as “physical injury or damage to the health of persons” [Weis23]. If a
software leads to moral injuries or leads to customers losing money, by
our definition, this will be called harm. Following Andreas, we will then
define risk as being the “probability of the occurrence of harm weighted
by the severity”, and unreasonable risk as the risk that is “unacceptable
according to societal moral concepts”. This leads us to define safety of a
system as the process of ensuring the absence of unreasonable risk.

These are several points to notice about this way of defining safety. First,
we define safety at the system level; that means that we might have unsafe
components in the system, if, overall, the system is safe. Then, we are
talking about processes; this implies that C code, which theoretically
contains undefined behaviour, can be rendered safe by applying processes

lUCiAn RADU tEODORESCU FEAtURE

February 2024 | Overload | 13

that (probabilistically) ensure that undefined behaviour does not occur in
practice. Finally, this definition uses the probability of harm occurrence
and “societal moral concepts”, rendering the entire definition subjective.

The subjectivity of this definition of safety makes it harder to work with
in practice, and especially if we want to apply safety at the programming
language level. Andreas outlines a thorough process by which car
manufacturers can certify their systems for functional safety, but this
approach may be too heavyweight.

On the other hand, the main thing that I like about this form of defining
safety is that it revolves around the why? question. It tells us why it’s
important to have safety guarantees, and lets us choose which guarantees
we should have, and allows us to prioritise safety guarantees. If, with
our previous definition of safety, we are allowed to select any negative
property as being part of safety, this definition encourages us to consider
the important properties.

The reader should note that this definition of safety is equivalent to the
first definition of safety if we properly express the probabilities and the
‘societal moral concepts’ into the negative properties.

Security
While there is general consensus that safety and security are interrelated,
the nature of their relationship is a subject of debate among C++ experts
[Steagall23]. By the two definitions we’ve listed above, security needs to
be a part of safety.

For simplicity, let’s define security as the protection of software systems
from malicious attacks that may result in unauthorised information
disclosure or any other damage to a software system. This definition of
security is a property of the software system of things that are not allowed
to happen; thus security is part of safety.

Coming from the second definition of safety, we can say that a security
attack is producing harm, so preventing this harm is part of safety.

To classify security as a subset of safety, the system’s specifications must
align with safety principles. For instance, if a program’s specifications
permit unauthenticated access to data, this could create a conflict between
safety and security. However, if both safety and security are defined
solely in the context of the program’s specifications, then there should be
no discrepancy between the two.

Another important discussion point that also applies to safety is the above
intended use. Sometimes, security issues don’t stem directly from the
software itself, but from the surrounding system. For example, a security
breach might be feasible due to insufficient security at the hardware level.
Such scenarios fall outside the scope of the safety properties that can
be ascribed to the software system itself. However, if the software in
question amplifies the damage produced (compared to that is reasonably
feasible), the software may still be considered unsafe.

Regulation and ethical perspective
Starting from the recent reports on safety and security [NSA22, CR23,
WH23a, EC22, CISA23a, CISA23b], many authors we cited here believe
that our software industry needs to be regulated.

Consider the scenario where someone buys a phone that fails to function
properly; typically, the customer is entitled to return the phone and receive
a replacement, depending on the country’s consumer protection laws.
However, if a software update bricks the phone, the software company
is often not obligated to rectify the issue, as noted in a story from Conor
Hoekstra [ADSP160]. This situation seems unjust, particularly given
the ubiquity of software and its increasing significance. Therefore, it is
anticipated that the software industry will eventually be held accountable
for its failures.

Indeed, the National Cybersecurity Strategy document issued by the White
House [WH23a] has, among others, the following strategic objectives:
“Hold the Stewards of Our Data Accountable”, “Shift Liability for Insecure
Software Products and Services”, and “Leverage Federal Procurement to

Improve Accountability”. In Europe, the European Commission produced
a proposal [EC22] that states:

It is necessary to improve the functioning of the internal market by
laying down a uniform legal framework for essential cybersecurity
requirements for placing products with digital elements on the
Union market.

The same issue can also be seen from an ethical perspective. Buggy
software can produce harm (physical, moral, or financial). The engineers
who produced and/or allowed those bugs are morally responsible for
the harm they produce. And we can conclude – according to our second
definition of safety, i.e., the bugs that create harm are safety issues – that
engineers are morally responsible for safety issues.

Safety for programming languages
It’s not obvious how the notion of safety applied to systems or to programs
applies to programming languages (we will mainly focus here on system
programming languages). The fact that a software system must not
exhibit a specific problem doesn’t mean that the language should prevent
this problem or that there can’t be sub-systems that have this problem. For
example, the software system may detect faults and control their impact.

However, from a practical standpoint, it makes sense to add as many
guarantees as possible to the language level so that we don’t spend too
much energy addressing safety issues at the system level. For example,
it’s a very hard problem to mitigate undefined behaviour from one
component to make the entire system safe; after all, undefined behaviour
can mean tricking the rest of the system that everything is fine while
covering a safety issue.

While at the language level we can’t guarantee all the safety properties,
there are a few safety properties that we can enforce from that very level.
We can enforce the absence of undefined behaviour (which includes
memory safety, thread safety and arithmetic safety).

And, while we are here, I’ll attempt to provide a different definition of
memory safety that doesn’t rely on enumerating different types of issues
(type safety, bounds safety, lifetime safety, initialisation safety). We can
define memory safety as the absence of undefined behaviour caused by
accessing memory (for reading or writing). Other authors (for example,
see [Doumler23a]) put type safety as part of memory safety. With my
definition of memory safety, one can have type safety issues without
having memory safety issues.

Avoiding deadlocks is another safety property that some programming
languages strive for; there are solutions that provide general concurrency
mechanisms while avoiding deadlocks, but these solutions are not widely
deployed.

In addition to the absence of undefined behaviour, a safe programming
language may also provide mechanisms for dealing with failed
preconditions. When preconditions are not satisfied, there is a bug in
the program. The most reasonable path forward for the software is to
terminate or raise an error; the idea is to immediately get outside the area
in which the bug was detected. See [Parent22] for an insightful discussion
on this topic.

A safe language ensures that safety properties always hold. However,
such guarantees can limit the language’s expressiveness; there are safe
constructs that the compiler cannot definitively verify as safe. Therefore,
a common strategy in language design is to divide the language into two
parts: a safe subset (where the compiler verifies safety properties) and an
unsafe subset (where compiler guarantees are relaxed).

With all these, we can define a safe programming language as a
programming language that:

	� has a safe subset of the language that guarantees:

	� no undefined behaviour

	� type safety

lUCiAn RADU tEODORESCUFEAtURE

14 | Overload | February 2024

	� (optional) absence of deadlocks

	� (optional) safe handling of precondition failure when detected

	� makes the safe subset distinct from the rest of the language (unsafe
subset), and that this distinction is visible and auditable

Achieving a safe programming language is feasible. From an ethical
perspective, it is also desirable. We are beginning to see examples of C++
components that require efficiency being successfully rewritten in Rust
with minimal efficiency loss. Thus, my conclusion is that a larger portion
of the systems programming community will likely (and, for ethical
reasons, also should) shift towards safe programming languages, whether
partially or entirely.

Quo vadis, C++?
C++ has too much undefined behaviour to become a safe programming
language in the foreseeable future. One way or another, all the C++
experts cited here agree on that. This means that C++ can only make
partial improvements towards the direction of a safe programming
language; while it may address some safety issues, it can never guarantee
basic safety.

We’ve already seen that companies and products are seriously considering
moving parts of their software away from C++ to Rust. The main question
is whether C++ can do something to stop this trend, and maybe reverse
it. Personally, I am not convinced that in the near future, C++ can do
something to stop this trend. C++ will leak talent to other languages
(currently Rust, but perhaps in the future to Cppfront, Carbon, Hylo or
Swift). If the progress towards safety started in 2015 as Bjarne suggested,
the last 8 years have seen very little progress in safety improvements.
Even with accelerated efforts, the three-year release cycle and slow
adoption of new standards will keep C++ a decade away from addressing
major safety concerns.

If safety remains as critical as it is today, then C++ will bleed engineers,
reducing its importance in programming language landscape. However,
after some time, there will be a point in which this bleeding will not
be significant any more. We still have Cobol and Fortran code being
maintained, so we cannot expect C++ to simply disappear. The key
questions are: how long will this transition take and how much of core
C++ will remain when the bleeding is over?

The answers depend on C++’s ability to restore credibility among its core
user base. Again, all things equal, I believe the transition will probably
take more than a decade; during this time, C++ usage will decrease,
especially for new software, potentially relegating C++ to a language for
legacy code. If this happens, it could start a negative reinforcement loop,
making C++ even less attractive for new projects.

A factor that could halt this process is the inability of other languages to
effectively operate in the systems programming space. Rust is relatively
young and not fully vetted; if it proves inefficient, this might slow or
halt the migration from C++ to Rust. The stability of the language and
ecosystem is another crucial factor.

One major selling point for C++ for new projects is efficiency. People
are still skeptical that other languages can truly compete with C++ in that
space. For example, people that need low latency (game development,
trading, etc.) or are into HPC, may never be convinced to switch away
from C++ because of this reason. We still don’t have enough data to argue
if another language that provides safety can compete with C++ in this
area.

There is another reason that may slow down the transition away from
C++. The inertia of some industries. Just like some industries/companies
were very slow to move from C to C++, there may be companies that
invested so heavily in C++ that they can’t afford to switch to another
language.

A more likely scenario is the segregation of C++ codebases and the
rewriting of parts in other languages. Some components might continue
to be written in C++, while others, where safety is more critical than

peak performance, could migrate to safer languages. This is similar to
the approach taken by Microsoft, Linux, and Adobe, which are starting to
migrate parts of their codebase to Rust.

Assuming there is a migration away from C++, another important
question is: How would migration happen? We may see multiple ways
of approaching this, from migrating entire systems, to incrementally
migrating components of a bigger system and even to smoother transitions
similar to the ones that Chandler and Herb discuss [Carruth23, Sutter23a].
What I would envision is that soon we will see tools appearing that help
migrate C++ code to safer languages.

Only time will tell how all this will evolve. While a decade may seem
long, it’s also just around the corner. Our focus will soon shift to other
pressing topics, and before we know it, we may see a predictable safety
narrative for C++ and other languages.

Reasonable safety
Safety is no longer a luxury. As the world increasingly depends on
software, the importance of software safety cannot be overstated.
Therefore, consumers are justified in expecting software safety to be a
given. This places a responsibility on us to ensure safety is guaranteed.

To achieve safety for programs written in languages like C++, we rely
on heavyweight processes. The more we shift left these guarantees to the
compilers, the easier it would be for us to provide safety.

Programming language safety is not any more something difficult to
achieve. We have proven experience of languages that are safe by default,
i.e., that avoid undefined behaviour, while being also efficient.

Our aspiration is for all our software to be reasonable – easy to understand,
reliably good, and free of surprises. We want safety to be reasonable, we
want safety to be the default setting in a programming language. This
should be a right, of both consumers and us, the programmers. �

References
[ADSP160] Conor Hoekstra, Bryce Adelstein Lelbach, Sean Parent,

‘Rust & Safety at Adobe with Sean Parent’, ADSP: The Podcast,
episode 160, Dec 2023, https://adspthepodcast.com/2023/12/15/
Episode-160.html

[Amorim18] Arthur Azevedo de Amorim, Cătălin Hriţcu, Benjamin C.
Pierce. ‘The meaning of memory safety’, Principles of Security and
Trust: 7th International Conference, POST 2018, Held as part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Apr 2018.

[Bastien23] JF Bastien, ‘Safety and Security: The Future of C++’, C++
now, May 2023, https://www.youtube.com/watch?v=Gh79wcGJdTg

[Black21] Paul E. Black, Barbara Guttman, Vadim Okun, ‘Guidelines
on Minimum Standards for Developer Verification of Software’,
National Institute of Standards and Technology, NISTIR 8397, Oct
2021, https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf

[Carruth23] Chandler Carruth, ‘Carbon’s Successor Strategy: From C++
interop to memory safety’, C++ now, May 2023,
https://www.youtube.com/watch?v=1ZTJ9omXOQ0

[CISA23a] Cybersecurity and Infrastructure Security Agency, ‘Shifting
the Balance of Cybersecurity Risk: Principles and Approaches for
Security-by-Design and -Default’, Apr 2023, https://www.cisa.
gov/sites/default/files/2023-04/principlesapproachesforsecurity-by-
design-default5080.pdf

[CISA23b] Cybersecurity and Infrastructure Security Agency, ‘Secure
by Design’, Apr 2023, https://www.cisa.gov/securebydesign

[Claburn23] Thomas Claburn, ‘Memory safety is the new black,
fashionable and fit for any occasion’, The Register, Jan 2023, https://
www.theregister.com/2023/01/26/memory_safety_mainstream/

[CppCast356] Timur Doumler, Phil Nash, Andreas Weis, ‘Safety Critical
C++’, CppCast, episode 356, Mar 2023, https://cppcast.com/safety-
critical-cpp/

https://adspthepodcast.com/2023/12/15/Episode-160.html
https://adspthepodcast.com/2023/12/15/Episode-160.html
https://www.youtube.com/watch?v=Gh79wcGJdTg
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://www.youtube.com/watch?v=1ZTJ9omXOQ0
https://www.cisa.gov/sites/default/files/2023-04/principlesapproachesforsecurity-by-design-default5080.pdf
https://www.cisa.gov/sites/default/files/2023-04/principlesapproachesforsecurity-by-design-default5080.pdf
https://www.cisa.gov/sites/default/files/2023-04/principlesapproachesforsecurity-by-design-default5080.pdf
https://www.cisa.gov/securebydesign
https://www.theregister.com/2023/01/26/memory_safety_mainstream/
https://www.theregister.com/2023/01/26/memory_safety_mainstream/
https://cppcast.com/safety-critical-cpp/
https://cppcast.com/safety-critical-cpp/

lUCiAn RADU tEODORESCU FEAtURE

February 2024 | Overload | 15

[CppCast365] Timur Doumler, Phil Nash, Bjarne Stroustrup, ‘Safety,
Security and Modern C++, with Bjarne Stroustrup’, CppCast,
episode 365, Jul 2023, https://cppcast.com/safety_security_and_
modern_cpp-with_bjarne_stroustrup/

[CR23] Yael Grauer (Consumer Reports), ‘Future of Memory Safety:
Challenges and Recommendations’, Jan 2023, https:// advocacy.
consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-
Convening-Report.pdf

[Dhalla23] Amira Dhalla, ‘Fireside Chat: The State of Memory Safety,
with Yael Grauer, Alex Gaynor, Josh Aas, USENIX Enigma 2023,
Feb 2023, https://www.youtube.com/watch?v=b1I8qGYCx3c

[Doumler23a] Timur Doumler, ‘C++ and Safety’, C++ on Sea, Jun
2023, https://www.youtube.com/watch?v=imtpoc9jtOE

[Doumler23b] Timur Doumler, ‘C++ and Safety’, CppNorth, Jul 2023,
https://www.youtube.com/watch?v=iCP2SFsBvaU

[EC22] European Commission, ‘Proposal for a REGULATION OF
THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on
horizontal cybersecurity requirements for products with digital
elements and amending Regulation (EU) 2019/1020’, Document
52022PC0454, Sep 2022, https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A52022PC0454&qid=1703762955224

[Gaynor18] Alex Gaynor, ‘The Internet Has a Huge C/C++ Problem and
Developers Don’t Want to Deal With It’, Vice, 2018,
https://www.vice.com/en/article/a3mgxb/the-internet-has-a-huge-cc-
problem-and-developers-dont-want-to-deal-with-it

[Horvath23] Gabor Horvath, ‘Lifetime Safety in C++: Past, Present
and Future’, CppCon, Oct 2023, https://www.youtube.com/
watch?v=PTdy65m_gRE

[Hubert23] Bert Hubert, ‘The EU’s new Cyber Resilience Act is about
to tell us how to code’, Mar 2023, https://berthub.eu/articles/posts/
eu-cra-secure-coding-solution/

[ISO26262] ISO, 26262:2018 ‘Road vehicles – functional safety’, 2018.
[Lamport77] Leslie Lamport. ‘Proving the correctness of multiprocess

programs’, IEEE transactions on software engineering 2, 1977,
https://www.microsoft.com/en-us/research/publication/2016/12/
Proving-the-Correctness-of-Multiprocess-Programs.pdf

[Lamport83] Leslie Lamport, ‘What good is temporal logic?’ IFIP
congress, 1983, http://lamport.azurewebsites.net/pubs/what-good.
pdf

[McCall17] John McCall, ‘Swift ownership manifesto’, 2017. https://
github.com/apple/swift/blob/main/docs/OwnershipManifesto.md

[Milner78] Robin Milner, ‘A theory of type polymorphism in
programming’, Journal of computer and system sciences,
1978, https://www.sciencedirect.com/science/article/
pii/0022000078900144/pdf?md5=cdcf7cdb7cfd2e1e4237f4f779ca0
df7&pid=1-s2.0-0022000078900144-main.pdf&_valck=1

[NSA22] National Security Agency, ‘Software Memory Safety’, Nov
2022, https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/
CSISOFTWAREMEMORYSAFETY.PDF

[OpenSSF22] OpenSSF, May 2022, https://openssf.org/oss-security-
mobilization-plan/

[P2410R0] Bjarne Stroustrup, ‘P2410R0: Type-and-resource safety in
modern C++’, WG21, Jul 2021, https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2021/p2410r0.pdf

[P2687R0] Bjarne Stroustrup, Gabriel Dos Reis, ‘P2687R0: Design
Alternatives for Type-and-Resource Safe C++’, WG21, Oct 2022,
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/
p2687r0.pdf

[P2739R0] Bjarne Stroustrup, ‘P2739R0 : A call to action: Think
seriously about “safety”; then do something sensible about it’,
WG21, Dec 2022, https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2023/p2739r0.pdf

[P2759R1] H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M.
Wong, ‘P2759R1: DG Opinion on Safety for ISO C++’, WG21, Jan
2023, https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/
p2759r1.pdf

[P2816R0] Bjarne Stroustrup, ‘P2816R0: Safety Profiles: Type-and-
resource Safe programming in ISO Standard C++’, WG21, Feb
2023, https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/
p2816r0.pdf

[Parent22] Sean Parent, ‘Exceptions the Other Way Round’, C++ now,
May 2022, https://www.youtube.com/watch?v=mkkaAWNE-Ig

[Parent23a] Sean Parent, ‘All the Safeties’, C++ now, May 2023,
https://www.youtube.com/watch?v=MO-qehjc04s

[Parent23b] Sean Parent, ‘All the Safeties’, C++ on Sea, Jun 2023,
https://www.youtube.com/watch?v=BaUv9sgLCPc

[Seacord23] Robert Seacord, ‘Safety and Security: The Future of C
and C++’, NDC TechTown, Sep 2023, https://www.youtube.com/
watch?v=DRgoEKrTxXY

[Steagall23] Bob Steagall, ‘Coding for Safety, Security, and
Sustainability’, panel discussion with JF Bastien, Chandler
Carruth, Daisy Hollman, Lisa Lippincott, Sean Parent, Herb
Sutter, C++ now, May 2023, https://www.youtube.com/
watch?v=jFi5cILjbA4

[Stroustrup23a] Bjarne Stroustrup, ‘Approaching C++ Safely’, Core
C++, Aug 2023, https://www.youtube.com/watch?v=eo-4ZSLn3jc

[Stroustrup23b] Bjarne Stroustrup, ‘Delivering Safe C++’, CppCon, Oct
2023, https://www.youtube.com/watch?v=I8UvQKvOSSw

[Sutter22] Herb Sutter, ‘Can C++ be 10× simpler & safer…? CppCon,
Oct 2022, https://www.youtube.com/watch?v=ELeZAKCN4tY&list
=WL

[Sutter23a] Herb Sutter, ‘Fill in the blank: _________ for C++’, C++
now, May 2023, https://www.youtube.com/watch?v=fJvPBHErF2U

[Sutter23b] Herb Sutter, ‘Cooperative C++ Evolution: Toward a
Typescript for C++’, CppCon, Oct 2023, https://www.youtube.com/
watch?v=8U3hl8XMm8c

[Weis23] Andreas Weis, ‘Safety-First: Understanding How To Develop
Safety-critical Software’, C++now, May 2023,
https://www.youtube.com/watch?v=mUFRDsgjBrE

[WH23a] White House, ‘National Cybersecurity Strategy’, Mar 2023,
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-
Cybersecurity-Strategy-2023.pdf

[WH23b] White House, ‘National Cybersecurity Strategy’ (press
release), Mar 2023, https://www.whitehouse.gov/briefing-
room/statements-releases/2023/03/02/fact-sheet-biden-harris-
administration-announces-national-cybersecurity-strategy/

https://cppcast.com/safety_security_and_modern_cpp-with_bjarne_stroustrup/
https://cppcast.com/safety_security_and_modern_cpp-with_bjarne_stroustrup/
https:// advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report.pdf
https:// advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report.pdf
https:// advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report.pdf
https://www.youtube.com/watch?v=b1I8qGYCx3c
https://www.youtube.com/watch?v=imtpoc9jtOE
https://www.youtube.com/watch?v=iCP2SFsBvaU
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0454&qid=1703762955224
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0454&qid=1703762955224
https://www.vice.com/en/article/a3mgxb/the-internet-has-a-huge-cc-problem-and-developers-dont-want-to-deal-with-it
https://www.vice.com/en/article/a3mgxb/the-internet-has-a-huge-cc-problem-and-developers-dont-want-to-deal-with-it
https://www.youtube.com/watch?v=PTdy65m_gRE
https://www.youtube.com/watch?v=PTdy65m_gRE
https://berthub.eu/articles/posts/eu-cra-secure-coding-solution/
https://berthub.eu/articles/posts/eu-cra-secure-coding-solution/
https://www.microsoft.com/en-us/research/publication/2016/12/Proving-the-Correctness-of-Multiprocess-Programs.pdf
https://www.microsoft.com/en-us/research/publication/2016/12/Proving-the-Correctness-of-Multiprocess-Programs.pdf
http://lamport.azurewebsites.net/pubs/what-good.pdf
http://lamport.azurewebsites.net/pubs/what-good.pdf
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
https://www.sciencedirect.com/science/article/pii/0022000078900144/pdf?md5=cdcf7cdb7cfd2e1e4237f4f779ca0df7&pid=1-s2.0-0022000078900144-main.pdf&_valck=1
https://www.sciencedirect.com/science/article/pii/0022000078900144/pdf?md5=cdcf7cdb7cfd2e1e4237f4f779ca0df7&pid=1-s2.0-0022000078900144-main.pdf&_valck=1
https://www.sciencedirect.com/science/article/pii/0022000078900144/pdf?md5=cdcf7cdb7cfd2e1e4237f4f779ca0df7&pid=1-s2.0-0022000078900144-main.pdf&_valck=1
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSISOFTWAREMEMORYSAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSISOFTWAREMEMORYSAFETY.PDF
https://openssf.org/oss-security-mobilization-plan/
https://openssf.org/oss-security-mobilization-plan/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2739r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2739r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.youtube.com/watch?v=mkkaAWNE-Ig
https://www.youtube.com/watch?v=MO-qehjc04s
https://www.youtube.com/watch?v=BaUv9sgLCPc
https://www.youtube.com/watch?v=DRgoEKrTxXY
https://www.youtube.com/watch?v=DRgoEKrTxXY
https://www.youtube.com/watch?v=jFi5cILjbA4
https://www.youtube.com/watch?v=jFi5cILjbA4
https://www.youtube.com/watch?v=eo-4ZSLn3jc
https://www.youtube.com/watch?v=I8UvQKvOSSw
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=fJvPBHErF2U
https://www.youtube.com/watch?v=8U3hl8XMm8c
https://www.youtube.com/watch?v=8U3hl8XMm8c
https://www.youtube.com/watch?v=mUFRDsgjBrE
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/

CHRiS OlDWOODFEAtURE

16 | Overload | February 2024

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or
@chrisoldwood

Afterwood
Over-thinking is not over-engineering.
Chris Oldwood presents some thought
experiments to demonstrate why.

As the pendulum swings ever closer towards being leaner, and focusing
on simplicity, I grow more concerned about how this is beginning to
affect software architecture. By breaking our work down into ever

smaller chunks and then focusing on delivering the next most valuable
thing, how much of what is further down the pipeline is being factored
into the design decisions we make today? And consequently, how much
pain are we storing up for ourselves because we took the pejorative Big
Design Up Front (BDUF) too far and ended up with No Design Up Front?

Wasteful thinking
Part of the ideas around being leaner is an attempt to reduce waste caused
by speculative requirements which has led many a project in the past
into a state of ‘analysis paralysis’ where they can’t decide what to build
because the goalposts keep moving or the problem is so underspecified
there are simply too many options and we have to second-guess
everything. By focusing on delivering something simpler, much sooner,
we begin to receive an initial return on our investment earlier which helps
shape the future design based on practical feedback from today, rather
than guessing what we need.

When we’re building those simpler features that sit nicely upon our
existing foundations we have much less need to worry about the cost of
rework from getting it wrong as it’s unlikely to be overly expensive. But
as we move from independent features to those which are based around,
say, a new ‘concept’ or ‘pillar’ we should not be afraid to spend a little
more time looking further down the product backlog to see how any
design choices we are considering now, might play out later. Emergent
Design is not a Random Walk but a set of educated guesses based on what
we currently know, and strongly suspect about the near future.

thinking to excess?
The term ‘overthinking’ implies that we are doing more thinking than is
actually necessary; trying to fit everyone’s requirements in and getting
bogged down in analysis is definitely an undesirable outcome of spending
too much time thinking about a problem. As a consequence, we are
starting to think less and less up-front about the problems we solve to try
and ensure that we only solve the problems we actually have and not the
problems we think we’ll have in the future.
Solving problems that we are only speculating about can lead to
overengineering if they never manage to materialise or could have been
solved more simply when the facts are eventually known.

But how much thinking is overthinking? If I have a feature to develop
and only spend as much effort thinking as I need to solve that problem

today then, by definition, any more thinking than that is ‘overthinking it’.
But not thinking about the wider picture is exactly what leads to the kinds
of architecture and design problems that begin to hamper us later in the
product’s lifetime, and later on might not be measured in years but could
be weeks or even days if we are looking to build a set of related features
that all sit on top of a new concept or pillar.

Building the simplest thing that could possibly work does not mean being
naïve about the future.

the thinking horizon
Hence, it feels to me that some amount of overthinking is necessary
to ensure that we don’t prematurely pessimise our solution and paint
ourselves into a corner too quickly. As such, we should factor in related
work further down the backlog, at least into our thoughts, to help us see
the bigger picture and work out how we can shape our decisions today
to ensure it biases our thinking towards our anticipated future rather than
an arbitrary one.

Acting on our impulses prematurely can lead to overengineering if we
implement what’s in our thoughts without having a fairly solid backlog
to draw on, and overengineering is wasteful. In contrast, a small amount
of overthinking – thought experiments – is relatively cheap and can go
towards helping to maintain the integrity of the system’s architecture
by narrowing the solution space to something more realistic. Very few
software products have the need to scale to anything like what you read
about in the technology news pages, despite what the optimists in the
business might have you planning for.

The phrase ‘think globally, act locally’ is usually reserved for talking
about the health of the planet, but I think it is fractal in nature, in that you
can also apply it at the software system level too, to suggest factoring in
thinking about the design and architecture of the system even though you
are only implementing a feature in a small part of it.

One has to be careful quoting old adages like ‘a stitch in time saves nine’
or ‘an ounce of prevention is worth a pound of cure’ because they can
send the wrong message and lead us back to where we were before –
stuck for eternity in The Analysis Phase. That said, I also want us to avoid
‘throwing the baby out with the bathwater’ and end up forgetting exactly
how much thinking is required to achieve sustained delivery in the longer
term. �

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

Conference 17 – 20 April 2024
Pre-conference workshops 15 & 16 April 2024

accu
2024

REGISTRATION NOW OPEN! Visit https://accuconference.org/

	Editorial: Over-Promise, Under-Deliver
	User Stories and BDD – Part 3, Small or Far Away?
	C++20 Concepts Applied – Safe Bitmasks Using Scoped Enums
	Survey results: And the winners are…
	Safety, Revisited
	Afterwood

