
A magazine of ACCU ISSN: 1354-3172

Debugging Run-time
Windows DLL Problems

Roger Orr explains how dynamic linking can go
wrong, and how to troubleshoot when it does.

Codurance AI Hackathon
Isaac Oldwood shares what he learned
about AI-powered software development.

Tracking Success
Jacob Farrow describes his progress in
developing eye-tracking tools for children
with cerebral visual impairment.

Afterwood
Chris Oldwood examines the topic of
pattern-matching in software.

To connect with
like-minded people

visit accu.org

accu

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

June 2025 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

June 2025
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Kevlin Henny. Copy deadlines
All articles intended for publication in Overload 188 should be submitted by
1st July 2025 and those for Overload 189 by 1st September 2025.

 4 Debugging Run-time Windows DLL Problems
Roger Orr explains how dynamic linking
can go wrong, and how to troubleshoot
the problems.

 11 Codurance AI Hackathon
Isaac Oldwood shares what he learned
from the event.

 14 Tracking Success
Jacob Farrow describes his progress in
developing adaptive eye-tracking tools for
children with cerebral visual impairment.

 16 Afterwood
Chris Oldwood explores some of the
patterns he’s seen.

FRAnCES BuOnTEmPOEDITORIAL

2 | Overload | June 2025

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

Eliminate the Impossible
Some things are – or seem to be – impossible.
Frances Buontempo explores how to distinguish
between the two.

I haven’t manage to think of an editorial topic, so yet
again, sorry. There are so many things I could write
about, but I don’t want to cover old ground and don’t
have the bandwidth to spend ages learning new topics
at the moment. I am currently trying to rein in my
commitments. I say “Yes” far too often, and am now

starting to realise I can’t do “all the things”. Trying to limit the choice
of what to do is difficult. I am tending to postpone some things, and
they eventually fall off a TODO list. Not a great strategy, but a strategy
nonetheless.

Trying to eliminate things is difficult. The “You ain’t gonna need
it”(YAGNI) mantra from Extreme Programming encourages us to avoid
creating things we don’t need now. Martin Fowler wrote about YAGNI
[Fowler15], comparing the cost of building now versus building later.
Sometimes delay has a cost, but doing things now costs, too. He says,
YAGNI:

doesn’t mean to forego all abstractions, but it does mean any
abstraction that makes it harder to understand the code for current
requirements is presumed guilty.

For example, it’s OK to build an abstraction, if that makes code easier to
change. He points out:

Yagni only applies to capabilities built into the software to support a
presumptive feature, it does not apply to effort to make the software
easier to modify.

Maybe the phrase “Never say never” is relevant? Trying to eliminate
unneeded code, or anything unneeded, is sensible, as is avoiding wasting
time on planning for something that won’t happened. However, predicting
the future is difficult. I prepared a workshop last year for a conference,
but the conference got cancelled. That was frustrating, but I can use the
materials for a different conference.

Now, consider the Sherlock Holmes quote, “Once you eliminate the
impossible, whatever remains, no matter how improbable, must be the truth.”
This presupposes you have an exhaustive list that includes the truth. This
is called a Holmesian fallacy [RationalWiki]: believing one explanation
because the others you have thought of are impossible. The rational wiki
(op cit) gives an example from Thales of Miletus: “The lodestone has a
soul because it moves iron. This proves that all things are full of gods.” That
might not be the best example, since I suspect a non-corporeal substance
like a soul cannot move something physical. A better example might

be C++ programmers arguing over undefined
behaviour (UB). You often see people asking

questions about strange behaviour in code, for
example getting the right numbers from code

compiled with one compiler, but not from another. That code seems to
work sometimes leads to the claim they can’t have UB, otherwise why
is it OK in some circumstances? Of course, that’s not how UB works.

Furthermore, the history of science and mathematics is littered with
examples of impossible things becoming possible. What’s the square
root of a negative number? Initially regarded as impossible, allowing
the possibility opens up new mathematics. I have written about complex
numbers before [Buontempo24]. Pythagoras believed all numbers
were rational. A story goes that Hippasus of Metapontum, a member
of Pythagoras’ group, demonstrated that the length of the diagonal of
a square of side length 1 is the square root of 2, which is not rational
(the length, not the proof) [Cambridge]. He was kicked out for heresy.
Pythagoras thought everything in nature must be based on whole
numbers, so did not approve. Mind you, Pythagoras also held that 1 is
not a number, because it represents a singularity rather than a plurality
[Britannica], and believed you shouldn’t eat beans because they have a
soul. (You’ve heard of jumping beans, I presume? They move, so like the
lodestone, must have a soul.)

Many things are now possible on computers that would have been
unthinkable years ago. The rise of deep learning needed much faster
processors and much more memory. The precise requirements vary, but
for example consider a 50 layer network with about 26 million weight
parameters and about 16 million activations in the forward pass. Using
a 32-bit floating-point value to store each weight and activation gives
a total storage requirement of 168 MB [Hanlon17]. Lots of research is
focused on speeding up the calculations, or running algos on GPUs, or
even building specialized hardware, but maybe we need to step back
and find a completely different algorithm? The power requirements and
excessive use of water for cooling in data centres worries me as well.
Perhaps we should eliminate resource hungry methods? Doing so might
also reduce costs. I realise I am in danger of expressing opinions now,
which would take me dangerously near to an editorial! Which would, of
course, be impossible. Let’s eliminate that immediately.

Stepping back and thinking through why you believe something
is impossible can be useful. You might not invent a new branch of
mathematics, or find a new computing algorithm, but you might discover
a different approach. Alternatively, you might find you can manage
something you thought you couldn’t do. This can happen when you
try to learn something. We all have blind spots, or certain things we
find difficult to get our heads round. Some people panic at the sight of
numbers, but discovering how to deal with a small part of a big scary
topic helps. A thousand mile journey begins with the first step, as they say.
You might discover you can manage something, even if you are neither
very good at it nor enjoy it. GUI work is my mental block. I can write
a front end program, but I’d rather not. I’m also trying to learn German

FRAnCES BuOnTEmPO EDITORIAL

June 2025 | Overload | 3

on Duolingo. I didn’t do very well at foreign languages at school, and
struggle to spell English words. In fact I just typed ‘sturrgl eot’. I suspect
I have dyslexia, which doesn’t help. I used to think I would never be able
to learn a different language or spell properly. I now realise I can try a
different ways to phrase something if I get stuck. In school exercises,
you often aren’t allowed to do that. Finding a Plan B offers an alternative
if Plan A is impossible. Eliminate the impossible, and what’s left might
work, you never know.

I gave a talk at C++Online called ‘Don’t be negative’ [Buontempo25].
Why might you want to eliminate negative elements from a container or
range? Well, maybe a negative price is implausible. Go give it a try in
your favourite language. I used C++. The std::remove_if algorithm
used to be a common interview question. As you probably know, this
doesn’t remove elements – the container stays the same size, but
appropriate elements are shuffled to the front. There are newer, better
ways, like std::erase_if. You can also try a recursive approach and
more besides. You had to be there. It looks like you can get exclusive
access to content if you can’t wait for YouTube [C++Online]. I believe
this is a great example, with a simple problem statement, but many valid
approaches, as well as somewhat silly methods. Being silly often gets
your imagination going, and can provide great learning opportunities.

People often use silly analogies to make points. Sometimes these are
intended to ridicule others’ points of view. For example, Bertrand Russell
discussed the idea of a celestial teapot, too small to be seen, orbiting
the sun between Earth and Mars. Hard to argue with, right? Because
whatever you say to suggest there is no such teapot can be countered
by pointing out there can’t be any evidence because it is unobservable.
Bertrand Russell’s point was “the philosophic burden of proof lies upon a
person making empirically unfalsifiable claims, as opposed to shifting the
burden of disproof to others.” [Wikipedia-1] Russell was talking about
religion, but the logic applies more generally. When you eliminate the
impossible, if what’s left is unfalsifiable, Russell would say the person
making the suggestion still has to prove it’s true. Sherlock Holmes was
wrong. Not everyone agrees with Russell’s thought experiment. For
example, the philosopher Paul Chamberlain countered, “every truth claim,
whether positive or negative, has a burden of proof.” Again, this would
mean Sherlock Holmes is wrong.

Now, Sherlock Holmes is a fictional character, so shouldn’t be taken
as a source of authority. To be honest, many non-fictional characters
shouldn’t be taken as a source of authority either. Fiction can be useful
though. Russell’s teapot is one of many thought experiments. The dining
philosophers problem [Wikipedia-2] is a good story for thinking through
concurrency and deadlock problems. Five philosophers sit at a table, with
a plate each. There is a fork between each plate, but eating from a pile
of spaghetti requires two forks. The problem is to allow the philosophers
to eat or think, while ensuring none starve. It’s easy to end up with a
deadlock, whereby philosophers starve. Setting the problem as a story
makes it easier to visualize and discuss. I’m sure you can think of many
other stories or thought experiments. Schrodinger’s cat comes to mind
too [Wikipedia-3]. Even if you don’t understand the physics you have
probably heard of the story. Is the cat both dead and alive until you look?
Is that impossible? I’ll leave that thought with you.

Stories can be a useful way of thinking about things. They can illustrate
an abstract idea or help to compress a chain of thought. By ‘compress’
I mean pick out salient parts, rather than conveying everything. Maybe
your CV is a work of fiction, to some extent? Not that you have made up
roles, but have you tried to give it a narrative, emphasising relevant skills
and experience for a specific roles? You eliminate the irrelevant, if you
are as old as me. Fitting everything on two pages is difficult. If you don’t
have much experience, filling two pages is a different problem. Don’t
forget, if you write for Overload you can include that on your CV.

Some stories worry me, though. It’s easy to come to unfounded
conclusions if you follow Sherlock Holmes’ statement. I notice myself

thinking, ‘Oh, perhaps they are annoyed because…’ or ‘That bug must be
due to …’ or similar. I suspect you do as well. If you think of something
that’s not impossible, that does not mean it is correct. I spent a long
while working in finance. You saw reports called ‘PnL Explain’, which
‘explained’ the profit or loss on a balance sheet. Sometimes ‘attribution’
is used instead of explain. There is more than one way to calculate this,
and you often end up with an ‘unexplained’ portion of profit or loss
[Wikipedia-4]. These reports are useful for risk analysis, but the idea that
an explanation might come with an unexplained part is of note. Another
finance example involves validating financial models. You often value
a complicated instrument based on something simple that you can find
prices for in the markets. Your model should be able to reconstruct the
values you get from the markets, but often doesn’t do this precisely. On
more than one occasion I have seen ‘stories’ told explaining why there
are differences in the numbers, floating point inaccuracy being a common
excuse. More than once, the team later found a bug in the code which
more accurately explained the difference.

We all come to wrong conclusions from time to time. That’s OK. Being
humble enough to admit your mistakes and say sorry matters. Maybe
going forward, let’s try to notice if we have picked what’s left when
we eliminated the impossible, but may not have thought of everything
possible. Or catch ourselves spotting a possible explanation: the first
thing you think of to make sense of the world might
not be correct. Being wrong is OK, but that’s why we
all need to bounce our ideas off people, get a code
review, or sanity check with a review team.

References
[Britannica] ‘Pythagoreanism’, published by Britannica, available

at: https://www.britannica.com/topic/number-symbolism/
Pythagoreanism

[Buontempo24] Frances Buontemp ‘Counting Quals’ in Overload 184,
published December 2024, available at: https://accu.org/journals/
overload/32/184/buontempo/

[Buontempo25] Frances Buontempo ‘Don’t be negative’, slides from a
talk given at C++Online given on 27 February 2025 available from:
https://cpponline.uk/session/2025/dont-be-negative/

[Cambridge] ‘Death by number’, published on Underground
Mathematics by University of Cambridge, last updated 18 Jan 2016,
available at: https://undergroundmathematics.org/thinking-about-
numbers/death-by-number

[C++Online] Access to talks available from: https://cpponline.uk/on-
demand-early-access-pass-now-available/

[Fowler15] Martin Fowler, ‘Yagni’, posted 26 May 2015 at
https://martinfowler.com/bliki/Yagni.html

[Hanlon17] Jamie Hanlon ‘Why is so much memory needed for deep
neural networks?’, published 31 January 2017 on Graphcore,
available at: https://www.graphcore.ai/posts/why-is-so-much-
memory-needed-for-deep-neural-networks

[RationalWiki] ‘Homesian fallacy’ at http://rationalwiki.org/wiki/
Holmesian_fallacy

[Wikipedia-1] ‘Russell’s teapot’, available at: https://en.wikipedia.org/
wiki/Russell%27s_teapot

[Wikipedia-2] ‘Dining philosphers problem’, available at:
https://en.wikipedia.org/wiki/Dining_philosophers_problem

[Wikipedia-3] ‘Schrödinger’s cat’, available at: https://en.wikipedia.org/
wiki/Schr%C3%B6dinger%27s_cat

[Wikipedia-4] ‘PnL explained’, available at: https://en.wikipedia.org/
wiki/PnL_explained

https://www.britannica.com/topic/number-symbolism/Pythagoreanism
https://www.britannica.com/topic/number-symbolism/Pythagoreanism
https://accu.org/journals/overload/32/184/buontempo/
https://accu.org/journals/overload/32/184/buontempo/
https://cpponline.uk/session/2025/dont-be-negative/
https://undergroundmathematics.org/thinking-about-numbers/death-by-number
https://undergroundmathematics.org/thinking-about-numbers/death-by-number
https://cpponline.uk/on-demand-early-access-pass-now-available/
https://cpponline.uk/on-demand-early-access-pass-now-available/
https://martinfowler.com/bliki/Yagni.html
https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
http://rationalwiki.org/wiki/Holmesian_fallacy
http://rationalwiki.org/wiki/Holmesian_fallacy
https://en.wikipedia.org/wiki/Russell%27s_teapot
https://en.wikipedia.org/wiki/Russell%27s_teapot
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat
https://en.wikipedia.org/wiki/PnL_explained
https://en.wikipedia.org/wiki/PnL_explained

ROgER ORRFEATuRE

4 | Overload | June 2025

Debugging Run-time
Windows DLL Problems
Dynamic linking can fail in various ways. Roger Orr explains what
can go wrong and how to troubleshoot such problems.

Windows, in common with many other operating systems,
supports ‘late binding’, where some or most of the symbols in an
executable program are resolved at runtime from other files in the

system. On Windows, these are known as ‘Dynamic-Link Libraries’and
a brief overview can be found, for example, in [Microsoft-1]. The Win32
system itself is accessed via entry points in (numerous) such dynamic
link libraries (DLLs) and many applications are shipped as one or more
executable programs (EXEs) and supporting DLLs.

While this approach provides a lot of benefits, likely already known to
many of the readers of this article, it also adds an additional failure point
in the running of the application.

With so-called ‘static’ linking all required symbols are located at link
time and the actual code or data is bound into the executable file. The
resultant binary is therefore complete in itself and all the code needed at
execution time is guaranteed to be present (and the same as that at link
time.) Dynamic linking in contrast may fail if one or more of the DLLs
needed at runtime cannot be found, cannot be loaded, or do not contain
the symbols that are expected. (Additionally, but not otherwise focussed
on in this article, there are security issues arising from the way that the
code to be executed is located and loaded at runtime – the code executed
can be very different from the code the original program linked against.)

The design choice taken for Windows DLLs is that each late binding
symbol is tied to a named dynamic library, and this name is in turn tied
to the actual filename of the DLL that the loader finds on disk. Note that
this is not the only design choice, and Linux for example made a different
choice which has a slightly different set of benefits and issues.

What could possibly go wrong?
There are three broad categories of failure when resolving a late binding
symbol:

1. The DLL cannot be located

2. The symbol cannot be resolved against the DLL found

3. There is a problem when loading the DLL into the process memory

Additionally, there are two contexts where late binding occurs: one is
when the system loader implicitly resolves late binding symbols and the
other is under program control when an application can request a DLL to
be loaded into the running process and can attempt to resolve symbols
in a loaded DLL. This is not a hard separation as these two contexts
overlap, when for example an application requests a DLL that itself
has late binding symbols or makes use of the Microsoft ‘delay loading”
mechanism [Microsoft-2].

There are two main differences between these contexts. Firstly, in the
former case any failure is fatal whereas in the latter case the program

will receive an error code from the failed call and so some sort of
recovery or remediation can be attempted. Secondly, the former case is
in principle discoverable statically from the information in the headers of
the executable and the DLLs whereas the second case requires an actual
program execution as the behaviour is only evidenced at runtime.

These differences also affect the diagnosis when problems occur, as we
shall see later on.

Note that this article doesn’t cover the process of building DLLs on
Windows.

What does Windows usually report?
Often (depending on a variety of factors outside the scope of this article)
Windows will produce a simple error dialog when there are problems
with the implicit resolution for a late binding symbol.

The first example (Figure 1) is when DllNotFound.exe is executed
and the dependent DLL MissingDll.dll cannot be located.

This dialog does helpfully tell us the name of the DLL that is not found,
but I must confess I have very rarely found that this problem can be fixed
by reinstalling the program. Your experience may be different!

When under programmatic control, using LoadLibrary or
LoadLibraryEx, the failure is indicated by returning a NULL handle
to the loaded module and the actual underlying error can be obtained
from GetLastError(); it is usually 126 which is defined as
ERROR_MOD_NOT_FOUND.

While often this is enough to identify the problem, we get no information
that might help with identifying the DLL that could not be located in the
case where it was not the actual library we were trying to load that could
not be found, but one of its dependent libraries.

The second example is when the DLL is found, but the required export is
not present. For this to occur, the DLL found at load time must be different
from the DLL that is associated with the library (LIB) file used when the
executable was created (see Figure 2, next page). This dialog gives us
the so-called ‘decorated name’ (also known as the ‘mangled name’) of
the symbol we are loading – see [Microsoft-3] for more details – but it
does not show the name of the DLL in which this symbol was expected
to be found. Undecorating (or demangling) the name is easy (although
it is probably not actually necessary in this case!) as fortunately we can

Figure 1

Roger Orr Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in Canary
Wharf and the City. He joined ACCU in 1999 and the BSI C++ panel
in 2002. He may be contacted at rogero@howzatt.co.uk

ROgER ORR FEATuRE

June 2025 | Overload | 5

copy and paste from the dialog using Ctrl+C / Ctrl+V and then run the
undname program provided with Visual Studio to turn this symbol into
the C++ symbol we are looking for:

 MissingSymbol.exe - Entry Point Not Found

 The procedure entry point
 ?expected_function@@YAXXZ could not be located
 in the dynamic link library
 c:\local\bin\MissingSymbol.exe.

 OK

Then undname ?expected_function@@YAXXZ produces:
 Undecoration of :- "?expected_function@@YAXXZ"
 is :- "void __cdecl expected_function(void)"

You can also call the function UnDecorateSymbolName from the
header DbgHelp.h to undecorate names under program control.

Note that the decoration is MSVC specific; other implementors’ C and
C++ compilers may or may not use the same scheme. Additionally, note
that the decoration scheme used by MSVC compilers does gradually
change over time to support new features in the language (although we’ve
had a long period of relative stability with no significant changes since
VS 2015 and the last (minor) change being in VS 2019 version 16.10.)

The equivalent programmatic mechanism is to call GetProcAddress;
this takes a module handle from a DLL previously loaded into the process
address space and the name of the symbol to be loaded. The failure is
indicated by returning NULL as the address of the symbol and the actual
underlying error can be obtained from GetLastError() (as above); it
is usually 127 which is defined as ERROR_PROC_NOT_FOUND.

Finally, if the DLL fails to load then you are likely to see something like
Figure 3 produced.

This dialog is less useful than the first two since it gives no indication of
which initialization routine failed.

The equivalent programmatic error returned from LoadLibrary
or LoadLibraryEx is error code 1114, which is defined as
ERROR_DLL_INIT_FAILED.

Note that the error code in the dialog box, 0xc0000142, is defined as
STATUS_DLL_INIT_FAILED in NtStatus.h and can be mapped
to ERROR_DLL_INIT_FAILED via the RtlNtStatusToDosError
function, defined in the header winternl.h.

‘manual’ detective work
When one of the three errors occurs, we can check things by hand to try
and identify the root cause of the failure.

We can look for a missing DLL by searching for the corresponding DLL
filename and making sure that it can be found by the loader. However,
working out exactly where the loader is going to look can be complex
as there are numerous flags and options that change the actual path used
by the system to locate DLLs. The full details are listed in [Microsoft-4],
which is not an easy read – there are lots of factors to consider.

Fortunately, for many common cases it is enough if the target DLL is
in the system32 (64-bit programs) or syswow64 (32-bit programs)
directory underneath %SystemRoot% (typically C:\Windows), in the
directory of the application executable, or somewhere along the %PATH%.
(Note: the counterintuitive 64-bit directory name system32 was retained
for backwards compatibility with the original 32-bit Windows NT, even
though it now contains 64-bit DLLs. In addition, for extra fun, Windows
provides transparent file redirection from system32 to syswow64 for
32-bit programs: see [Microsoft-5] for more on this. If you find this
confusing you are not alone.)

Looking for a missing symbol requires three things: the symbol being
requested, the name of the DLL expected to provide this symbol, and the
list of symbols actually exported from the target DLL. One way to obtain
this information is by using the dumpbin program that comes with Visual
Studio twice, once on the requesting binary and once on the target DLL.

For the example above of a missing symbol, this gives the information in
Listing 1 (on next page).

We then need to locate the actual ChangedExports.dll that the
application tried to load and then run dumpbin again, this time with the
/exports switch to see what symbols the library offers (see Listing 2,
also on next page).

Figure 3Figure 2

Looking for a missing symbol requires three things:
the symbol being requested, the name of the DLL

expected to provide this symbol, and the list of
symbols actually exported from the target DLL

ROgER ORRFEATuRE

6 | Overload | June 2025

Since the list of exported symbols only contains renamed_function
and not expected_function, we can immediately see what the
problem is.

Finally, the case where the DLL fails to initialize. This can be
very hard to identify as there’s little that can be done statically
to identify which of the potentially large number of dependent
DLLs was the one with the failing initialization routine; if
you are fortunate, the problem is an access violation or an
exception that you can find relatively easily using a debugger.

But surely there must be some better ways to do this than this
sort of manual investigation?

Viewing the dependencies
What nOT to use
Many years ago Microsoft used to ship a GUI tool for viewing
dependencies, depends.exe. This tool was later made freely
available from its own website [DepWalker]. Unfortunately,
the website stopped updating at version 2.2 which reports
under ‘What is New in Version 2.2’ that it covers “... Updated
internal information about known OS versions, build numbers,
and flags up to the Vista RC1 build.” (The tool’s ‘About’

page proudly reports that it was built on 29 Aug 2006!) Microsoft’s web
site recommends using this tool only on Windows 8 or before. Many
people do still try to use this tool, but it has not stood the test of time
very well. In particular, recent versions of Windows have added ‘API
Set’ [Microsoft-6] functionality, which is effectively a way to provide
a platform-dependent virtual alias for a real DLL. These ‘virtual DLLs’
cause various problems for older tools that are completely unaware of
their existence, like depends, and attempt to process them like normal
DLL names.

For example, if I try to run depends.exe 2.2.6000 on Windows 11 to look
at the dependencies for DllNotFound.exe, there are two problems.
First, it takes over eight minutes to run on my computer (with one thread
being 100% busy) and secondly, while it does successfully report that the
MissingDll is missing, it also reports numerous false positives. See
Figure 4.

These two problems make it of rather limited use on current versions of
Windows especially for programs more complex than this almost trivial
example program.

A potentially better tool
One recommended tool with similar functionality is ‘Dependencies’
available on GitHub [GitHub]. However, the last commit was back in
Nov 2021 so it does not appear to be being maintained any longer.

It does at least partly understand the newer API Set entries in the module
headers, and so if I run this tool against MissingSymbol.exe, it does

quickly identify the missing symbol and the DLL
containing it (see Figure 5).

This works well for ‘top level’ problems that are
visible in the default view, which lists direct child
DLLs. For more complex applications with many
DLLs and deep dependency trees it seems hard to
use this view to find the actual problems as you
need to manually expand each node in the tree
in turn until you find a node showing a problem.
This can take quite a while and is a very manual
process.

There are two other options listed in the Tree
Build behaviour dialog accessed from Options >
Properties: RecursiveOnlyOnDirectImports and
Recursive. The first option may help with locating
the problem as it does provide a more complete
list of DLLs in the lower pane. However, there
does not appear to be a way to display errors so Figure 5

Figure 4

c:> dumpbin /exports C:\local\bin\ChangedExports.
dll
...
 ordinal hint RVA name

 1 0 000010B9 ?renamed_function@@YAXXZ
= @ILT+180(?renamed_function@@YAXXZ)

Summary
...

Listing 2

c:> dumpbin /imports C:\local\bin\MissingSymbol.
exe
...

 Section contains the following imports:

 ChangedExports.dll
 14000E000 Import Address Table
 14000E458 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference
 0 ?expected_function@@YAXXZ
...

Listing 1

ROgER ORR FEATuRE

June 2025 | Overload | 7

you have to scroll through the (potentially rather long) list of DLLs and
API Sets looking for a warning icon. The second option does appear to
do more work but it consumed 9 GB of RAM during the process and, like
Dependency Walker, consumed lots of CPU doing so (it actually used all
my cores for about 20 minutes).

So, while this tool can be of some help in examining the dependency tree
of an application, it does not appear to offer a simple solution to finding
problems with the dependencies.

Other problems with dependency viewing tools
Since both tools are performing external analysis of dependencies in
the target binary, they suffer from some inevitable issues with analysing
problems occurring at runtime and also with problems that are related to
the precise path being used to search for dependent DLLs. The older tool,
depends.exe, did actually offer a way to attempt runtime diagnosis and
this could be successfully used back in the pre-Windows 10 days, with
some restrictions. The newer tool lists under ‘Limitations’ that: “Dynamic
loading via LoadLibrary are not supported (and probably won’t ever be).”

using the loader itself
Fortunately there is a better way to debug loader problems than by
analysing the program from the outside. The Microsoft loader itself
contains diagnostic code that can be configured to print out information
about the loading process as it occurs.

This setting goes by the name of Show Loader Snaps. (I believe the
‘Snaps’ in this phrase refers to the short status messages it produces.)
When this setting is enabled for a process the loader will provide extra
diagnostic information to an attached debugger for the actions it takes
while loading DLLs and resolving symbols; whether implicitly or by
calling functions like LoadLibrary. The output appears in the debugger
in the same way that output from calls to OutputDebugString does.
However, the actual mechanism used in the loader is subtly different from
an actual call to OutputDebugString and unfortunately, unlike output
from OutputDebugString, there does not appear to be any way to
view the loader snap information using other tools, such as DebugView
from SysInternals.

Enabling ‘Show Loader Snaps’ for a process
The official way to use this is to use the GFlags.exe program that is
part of Debugging Tools For Windows [Microsoft-7] – I chose the route
of simply asking for Windows Driver Kit as an Individual Component as
part of my VS 2022 installation (see Figure 6).

You then run gflags.exe – which requires Admin rights – and go to the
Image File tab. Type the base name of the executable into the entry field
and press TAB. You can then enable the flag, and click OK (or Apply) –
see Figure 7.

What this actually does is to write a value to the registry:
 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
 NT\CurrentVersion\Image File Execution Options\
 DllNotFound.exe
 GlobalFlag REG_DWORD 0x2

You can of course write the same value using any other tool of your
choice, you are not required to use GFlags.

Viewing Loader Snaps
Now whenever a program named DllNotFound.exe is executed under
a debugger such as Visual Studio or WinDbg all the loader diagnostic
information will appear in the debugger’s output window. For example,
Figure 8 is the result of running DllNotFound.exe using WinDbg.

This gives us the information we had in the dialog box we obtained by
default at the beginning of this article, and also additional debugging
output that may help us with diagnosing more complicated issues. You
can, for example, see in this screenshot the tail end of the complete list
of places the loader searched when trying to locate MissingDll.dll.

The same is true for the MissingSymbol.exe case: the output in the
debugger contains:
4a58:3e34 @ 836003546 - LdrpNameToOrdinal
- WARNING: Procedure "?expected_function@@
YAXXZ" could not be located in DLL at base
0x00007FFDC3310000.
4a58:3e34 @ 836003546 - LdrpReportError - ERROR:
Locating export "?expected_function@@YAXXZ" for
DLL "c:\Projects\articles\2025-04-show-loader-
snaps\bin\MissingSymbol.exe" failed with status:
0xc0000139.

However the output in this case is slightly less immediately readable as
there are fifty or so additional INFO lines logged after these two, making
it a little more difficult to identify the relevant output.

The ‘Show Loader Snaps’ approach also provides useful diagnostic
information when using the LoadLibrary or GetProcAddress API.
For example:

An error 126 is reported from LoadLibrary as the Dll is not found:
390c:2b7c @ 841275531 - LdrpProcessWork - ERROR:
Unable to load DLL: "MissingDll.DLL", Parent
Module: "(null)", Status: 0xc0000135

An error 1114 is reported from LoadLibrary when it loads a Dll that
crashes during initialization:
316c:3540 @ 841347500 - LdrpInitializeNode -
INFO: Calling init routine 00007FFDC331100A for
DLL "c:\local\bin\CrashingDll.DLL"

An error 127 is reported from GetProcAddress for a symbol that is not
found in the target DLL:
26c0:311c @ 841153484 - LdrpNameToOrdinal -
WARNING: Procedure "expected_function" could not
be located in DLL at base 0x00007FFE004D0000.

Figure 6

Figure 7

ROgER ORRFEATuRE

8 | Overload | June 2025

26c0:311c @ 841153484 - LdrpReportError -
WARNING: Locating export "expected_function" for
DLL "Unknown" failed with status: 0xc0000139.

Let’s write a tool
The loader snap output goes to any debugger so let us write one that is
designed specifically for this task.

We can make use of the debugger logic from ‘Using the Windows
Debugging API’ published in CVu March 2011 and also available on
GitHub [Orr-1].

The two basic parts to writing a simple Windows debugger are:

	� Passing the flag DEBUG_PROCESS to the call to CreateProcess

	� Repeatedly calling the pair of functions WaitForDebugEvent
and ContinueDebugEvent to obtain and handle successive
debug events from the target process.

For the purposes of this debugger, the only event we are interested in is
OUTPUT_DEBUG_STRING_EVENT that contains the loader snap output;
we don’t need to handle any of the other event notifications here.

I’ve wrapped the basic debugger loop inside a helper class,
DebugAdapter, and the user of this class simply overrides the methods
of interest. In this case the only method we are interested in overriding is
OnOutputDebugString (see Listing 3).

For the purposes of this article, we provide a simple list of filters as
member data to reduce the number of messages we are not interested in.
Of course, this logic could easily be expanded further to provide more
targetted information for specific use cases.

At first start, when we enable ‘quiet’ mode, we should filter out messages
containing ENTER:, RETURN:, and INFO:. This usually leaves us with
warnings and errors, which for most DLL failures is often enough to solve
the issue.

For example, Listing 4 is the complete output when running this program
targetting MissingSymbol.exe (with ‘Show Loader Snaps’ enabled):

The filtering enabled by using the -q option has removed the extra ‘noise’,
allowing us to see just the warnings and errors. If this is not quite enough
to enable us to diagnose the root cause of the problem, we can, of course,
re-run with full output to see the additional informational messages.

void ShowLoaderSnaps::OnOutputDebugString(
 DWORD /*processId*/, DWORD /*threadId*/,
 HANDLE hProcess, OUTPUT_DEBUG_STRING_INFO
 const &DebugString) {
 const auto message =
 ReadString(hProcess,
 DebugString.lpDebugStringData,
 DebugString.fUnicode,
 DebugString.nDebugStringLength);
 // Filter out unwanted messages
 for (const auto &filter : filters_) {
 if (message.find(filter) !=
 std::string::npos)
 {
 return;
 }
 }
 os_ << message << std::flush;
}

Listing 3

C:> ShowLoaderSnaps -q c:\local\bin\
MissingSymbol.exe
1558:3b34 @ 842130000 - LdrpNameToOrdinal
- WARNING: Procedure "?expected_function@@
YAXXZ" could not be located in DLL at base
0x00007FFDD8260000.
1558:3b34 @ 842130000 - LdrpReportError - ERROR:
Locating export "?expected_function@@YAXXZ" for
DLL "c:\local\bin\MissingSymbol.exe" failed with
status: 0xc0000139.
1558:3b34 @ 842141015 - LdrpGenericExceptionFilter
- ERROR: Function LdrpSnapModule raised exception
0xc0000139
 Exception record: .exr 00000032FB9FEBF0
 Context record: .cxr 00000032FB9FE700
1558:3c98 @ 842141015 - LdrpInitializeProcess
- ERROR: Walking the import tables of the
executable and its static imports failed with
status 0xc0000139
1558:3c98 @ 842141031 - _LdrpInitialize - ERROR:
Process initialization failed with status
0xc0000139
1558:3c98 @ 842141031 - LdrpInitializationFailure
- ERROR: Process initialization failed with
status 0xc0000139

Listing 4

Figure 8

The full source code for ShowLoaderSnaps is available on
GitHub [Orr-2].

ROgER ORR FEATuRE

June 2025 | Overload | 9

Removing the need for Admin rights
The solution so far has two problems, the worst of which is that writing to
the HKEY_LOCAL_MACHINE area of the registry requires Admin rights.
In quite a few of the places where I have worked, it is a challenge for
developers to get Admin rights because of the obvious security issues
that this causes. We ideally want a non-admin way to set the show loader
snaps flag in the target process that doesn’t require writing to the system
part of the registry.

Using the Loader Config
One of the lesser-known parts of the PE header is the
LoadConfig directory item (internally identified by the index
IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG). The data structure
this points to, IMAGE_LOAD_CONFIG_DIRECTORY, contains a
field GlobalFlagsSet and values in this field are OR’d into the
existing GlobalFlags settings for the process when this entity is
processed by the system loader. You can examine the settings using
dumpbin /LOADCONFIG.

If we can set the appropriate option in this header then our program will
show loader snaps, and writing to the executable program file does not
require admin rights per se.

While you can provide the complete data structure yourself at link time,
replacing the default one placed in the binary by a combination of the
linker and the MSVC runtime support library, this is quite hard to get
right as some of the fields in the structure contain values necessary to
support other features, such as structured exception handling, that your
program probably also needs.

A simpler solution is to write a program that sets the correct value into the
GlobalFlagsSet field of an already linked executable file. We know
the value to set is 2 from what GFlags.exe writes into the registry – see
earlier.

The ImageHlp header contains functions to help us do this; we can open
the binary file using MapAndLoad and edit the data.

First (Listing 5), I’m using a simple helper class to provide a very simple
RAII wrapper to the underlying C style API.

We can then set the flag appropriately for 32-bit programs (see Listing 6)
using two helper functions:

	� GetImageConfigInformation

	� SetImageConfigInformation

While in theory the same code should work in 64-bit mode…
it doesn’t. There appears to be a problem in v64-bit mode with
GetImageConfigInformation. I have raised a ticket with Microsoft
to see if they could fix this issue [Orr-3].

However, we can still do the same thing ourselves, by manually walking
the data structures.

	� Starting with the FileHeader in the loaded image we cast it to the
correct 32-bit or 64-bit IMAGE_NT_HEADERS structure.

	� From the IMAGE_NT_HEADERS we read the relative address of the
load config using:

 OptionalHeader.DataDirectory[
 IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG].
 VirtualAddress

	� We convert this relative address in the header to a virtual address in
our own address space using ImageRvaToVa

	� Then we simply OR in the correct value:
 pLoadConfig->GlobalFlagsSet |=
 SHOW_LOADER_SNAPS

(The complete code is available in SetLoaderSnaps.cpp.)

Can we do all this at runtime?
The second problem with the approach taken so far is that it makes
persistent changes to either the registry (with GFlags.exe) or the
executable file (with SetLoaderSnaps.exe.)

We usually only want to set the loader snaps flag temporarily while we are
investigating a problem; in the normal case where it ‘all just works’, we
don’t want to have any additional overhead (when there is no debugger
attached) or extraneous debug output (when a debugger is attached.)

We can resolve this easily, subject to using a couple of non, or partially,
documented features, inside our ShowLoaderSnaps program itself.

Firstly we need to use an undocumented field, NtGlobalFlag. The Show
Loader Snaps flag ends up in the process’ memory in the NtGlobalFlag
structure which is in turn inside the PEB (Process Environment Block).
While the Windows SDK does include a definition for the PEB structure
in winternl.h, it is a simplified one with only a subset of the data
available. See the official documentation at [Microsoft-8] and see that
there are a dozen sections of the structure covered by various Reserved
fields. We can use the PDB symbols for NtDll.dll (available from the
Microsoft Symbol Servers) to get the offset in the process environment

struct LoadedImage : public LOADED_IMAGE {
 LoadedImage(const std::string& filename) {
 if (!MapAndLoad(filename.c_str(), nullptr,
 this, false, false)) {
 throw std::runtime_error("MapAndLoad(" +
 filename + ") failed: " +
 std::to_string(GetLastError()));
 }
 }
 ~LoadedImage() {
 if (!UnMapAndLoad(this)) {
 std::cerr << "UnMapAndLoad failed: "
 << GetLastError() << '\n';
 }
 }
};

Listing 5

static const int SHOW_LOADER_SNAPS = 2;

void UpdateImageConfigInformation(const
 std::string &filename) {
 LoadedImage loadedImage{filename};
 std::cout << "Mapped: "
 << loadedImage.ModuleName << '\n';

 IMAGE_LOAD_CONFIG_DIRECTORY imageConfig =
 {sizeof(imageConfig)};
 if (!GetImageConfigInformation(&loadedImage,
 &imageConfig)) {
 throw std::runtime_error(
 "GetImageConfigInformation("
 + std::to_string(sizeof(imageConfig))
 + ") failed: "
 + std::to_string(GetLastError()));
 }
 if (imageConfig.GlobalFlagsSet
 & SHOW_LOADER_SNAPS) {
 std::cout << "Show Loader Snaps flag "
 "already set in image\n”;
 } else {
 imageConfig.GlobalFlagsSet |=
 SHOW_LOADER_SNAPS;
 if (!SetImageConfigInformation(&loadedImage,
 &imageConfig)) {
 throw std::runtime_error(
 "SetImageConfigInformation failed: "
 + std::to_string(GetLastError()));
 }
 std::cout << "Set Show Loader Snaps flag\n";
 }
}

Listing 6

ROgER ORRFEATuRE

10 | Overload | June 2025

block of the global flag, which lies inside one of these reserved sections.
For example, inside WinDbg:
 0:000> dt ntdll!_PEB NtGlobalFlag
 +0x0bc NtGlobalFlag : Uint4B

(and correspondingly the 32-bit offset of 0x068 is obtained from the same
command with a 32-bit target)

Secondly we have to get the PEB address in the process being
debugged. The address of the PEB can be obtained using the
NtQueryInformationProcess API.

However, note the cautionary message in the official documentation for
this item:

NtQueryInformationProcess may be altered or unavailable in
future versions of Windows. Applications should use the alternate
functions listed in this topic.

Finally, once armed with the address of the PEB in the target process and
the offset of the NtGlobalFlag we can easily read/modify/write the
value to set the loader snaps flag (Listing 7).

Now we have achieved the ability to write out the loader snap information
on demand, without requiring administrator rights nor making persistent
changes to either the registry or the binary file.

The ShowLoaderSnaps source code contains this additional piece of
functionality. Of course, if one of the previous methods has been used the
value in NtGlobalFlag will already contain a ‘2’ and so we will simply
re-write the same value back into the NtGlobalFlag field, which is
benign.

What about Linux?
As mentioned above, Linux also has shared libraries but it uses a different
design; executables and shared libraries contain two unrelated sets of
data, one listing the shared libraries that are needed and the other listing
the unresolved symbols that need resolving.

The failure to load a shared library is similar to the Windows case, except
that the way the search path is supplied is different: Linux uses the
$LD_LIBRARY_PATH and any RPATH or RUNPATH settings embedded in
each executable. Additionally, the complete path to the dependent shared
library can be embedded in the binary, which can obviate the need for a
path search.

The failure to locate a symbol in a dependent library is harder to resolve
than it is on Windows since there is no indication at all of which shared
library was expected to provide the missing symbol.

Like the loader snaps, Linux provides ways to produce debug output from
the system loader. The environment variable LD_DEBUG can be used to
enable various categories of additional debugging output from the loader
and LD_DEBUG_OUTPUT used to control where this output is written. See
[man7] for more details.

Conclusion
It can be quite hard to diagnose problems with loading DLLs and the
well-known standard debugging tools used for routine debugging tasks
do not provide as much help as we might wish. I hope that some of the
techniques shown here will help to reduce the pain of diagnosing and
fixing such problems! �

References
[DepWalker] ‘Dependency Walker’:

https://www.dependencywalker.com/
[Github] ‘Dependencies’: https://github.com/lucasg/Dependencies
[man7] ‘ld.so(8)’: https://man7.org/linux/man-pages/man8/ld.so.8.html
[Microsoft-1] ‘Dynamic Link Libraries’: https://learn.microsoft.com/

en-us/windows/win32/dlls/dynamic-link-libraries
[Microsoft-2] ‘Linker support for delay loaded DLLs’:

https://learn.microsoft.com/en-us/cpp/build/reference/linker-support-
for-delay-loaded-dlls?view=msvc-170

[Microsoft-3] ‘Decorated names’: https://learn.microsoft.com/en-us/cpp/
build/reference/decorated-names?view=msvc-170

[Microsoft-4] ‘Dynamic-link library search order’:
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-
link-library-search-order

[Microsoft-5] ‘File System Redirector’: https://learn.microsoft.com/en-
us/windows/win32/winprog64/file-system-redirector

[Microsoft-6] ‘Windows API Sets’: https://learn.microsoft.com/en-us/
windows/win32/apiindex/windows-apisets

[Microsoft-7] ‘Debugging Tools For Windows’:
https://learn.microsoft.com/en-us/windows-hardware/drivers/
debugger/debugger-download-tools

[Microsoft-8] ‘PEB structure’: https://learn.microsoft.com/en-us/
windows/win32/api/winternl/ns-winternl-peb

[Orr-1] ‘Simple Debugger’, available at: https://github.com/rogerorr/
articles/tree/main/Simple_Debugger

[Orr-2] Source code: https://github.com/AccuPublications/overload-
listings/tree/feature/DebuggingWindowsDllProblems

[Orr-3] Developer Support Ticket:
https://developercommunity.visualstudio.com/t/
GetImageConfigInformation-fails-on-x64-w/10890839

void SetShowLoaderSnaps(HANDLE hProcess) {
 PROCESS_BASIC_INFORMATION pbi = {};
 if (0 == NtQueryInformationProcess(hProcess,
 ProcessBasicInformation, &pbi, sizeof(pbi),
 0)) {
#ifdef _WIN64
 // GlobalFlag is not officially documented
 // Offsets obtained from PDB file for ntdll.dll
 PVOID pGlobalFlag =
 ((char *)pbi.PebBaseAddress) + 188;
#else
 PVOID pGlobalFlag =
 ((char *)pbi.PebBaseAddress) + 104;
#endif // _WIN64
 ULONG GlobalFlag{0};
 const ULONG SHOW_LDR_SNAPS = 2;
 ReadProcessMemory(hProcess, pGlobalFlag,
 &GlobalFlag, sizeof(GlobalFlag), 0);
 GlobalFlag |= SHOW_LDR_SNAPS;
 WriteProcessMemory(hProcess, pGlobalFlag,
 &GlobalFlag, sizeof(GlobalFlag), 0);
 }
}

Listing 7

https://www.dependencywalker.com/
https://github.com/lucasg/Dependencies
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-libraries
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-libraries
https://learn.microsoft.com/en-us/cpp/build/reference/linker-support-for-delay-loaded-dlls?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/linker-support-for-delay-loaded-dlls?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
https://learn.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector
https://learn.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-apisets
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-apisets
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://github.com/rogerorr/articles/tree/main/Simple_Debugger
https://github.com/rogerorr/articles/tree/main/Simple_Debugger
https://github.com/AccuPublications/overload-listings/tree/feature/DebuggingWindowsDllProblems
https://github.com/AccuPublications/overload-listings/tree/feature/DebuggingWindowsDllProblems
https://developercommunity.visualstudio.com/t/GetImageConfigInformation-fails-on-x64-w/10890839
https://developercommunity.visualstudio.com/t/GetImageConfigInformation-fails-on-x64-w/10890839

ISAAC OLDWOOD FEATuRE

June 2025 | Overload | 11

Codurance AI Hackathon
This hackathon explored AI-powered software development.
Isaac Oldwood shares what he learned from the event.

On Saturday 26th April, I attended an invite-only AI Hackathon at
the Codurance headquarters in London. I give a run down of the
motivations behind the event, what happened and what we learned.

At the end, I discuss some limitations of the findings as well as further
questions to be considered.

Codurance
Codurance is a global software consultancy that helps businesses
build a better sustainable technical capability to support growth. The
software craftsmanship ethos shaped the company. The goal of Software
Craftsmanship is clear: raise the bar in the software industry through
professionalism and technical excellence.

I do not work with or for Codurance and have no official affiliation
with the company. I was on the invite list as I co-organise the Software
Crafters Cambridge monthly tech meetup with their Head of Marketing,
Natalie Gray.

At one of our planning sessions, Natalie mentioned the event was
happening and asked if it was something I would be interested in. I was
keen to attend as there is currently so much hype around LLMs and AI
integrated tools. I wanted to see if we could cut through all the hype and
noise and really learn some valuable real-world lessons.

glossary
AI Tools Any tools powered by AI that developers can use in their job,

eg Cursor, ChatGPT and many more.

ChatGPT A LLM created by OpenAI, widely regarded as the first
‘mainstream AI’.

Co-pilot An AI/LLM tool that is integrated directly into VSCode editor.

Cursor A new code editor with AI built-in.

GitHub An online website to store code.

LLM Large language models are a type of artificial intelligence (AI)
program that can recognize and generate text (and code).

VSCode A code editor.

I use AI and LLM interchangeably throughout this piece as AI used in
the context of the hackathon exclusively refers to varying integrations
of LLMs.

The aim
The event was advertised as:

AI is transforming software development, but how effective is AI-
powered coding in real-world scenarios? Join Codurance’s [...] AI
Hackathon to put AI-assisted development to the test!

Online, I see lots of examples of people building web apps ‘entirely’
using AI, but on closer inspection these projects are not generally up to
standard. They are usually not well structured, tested or maintainable. The
aim of the hackathon was to see how good some of the AI tools available

are at writing real-world production-
standard code that developers would be
proud of.

Format
I arrived at the Codurance office a bit
early due to train times (about 9:15am).
Once I was buzzed in, I was met by
Matt Belcher and Rowan Lea. Matt is
‘Head of Emerging Technology’ and
Rowan is a ‘Software Craftsperson’,
both working at Codurance. I was warmly welcomed and given a brief
tour of the office as I was the first to arrive.

Over the next 45 minutes, other developers filtered in. It was great to meet
everyone! There was a wide range of experience in both the software
development industry and using AI tools – I think this played into the
whole day very well. Some people were veterans of the industry with
30+ years experience but only had briefly used ChatGPT. At the other
end, there was a developer who was still quite early in their career but
has been following and using AI tools extensively since they first arrived
on the scene. This was great as it meant that everyone had something to
contribute but also something to learn and improve on!

After some chatting and fuelling (coffee drinking), Matt and Rowan
invited everyone into the space we would be working in. They then
explained that everyone was to be split into group A and group B. Group
A would use AI tools for the first exercise whilst group B would use
traditional non-AI methods. In the afternoon this would be swapped
around so everyone gets a go! I was assigned to group A so I got to dive
right into the AI tools. It was explained that we should get into pairs or
threes within our group to tackle the two exercises.

The brief for both exercises can be found on Matt Belcher’s GitHub. You
can find each group’s output in the forks of each repository.

Exercise 1
Exercise 1 was revealed as ‘StyleDen’ and asked you to ‘build a minimal
viable product (MVP) for their e-commerce website’.

For the first exercise, I paired with a C# developer who had been exploring
and learning Python. As I was most comfortable with Python, we decided
to work together and knowledge share along the way. Since we were
assigned to the AI first group, we had a discussion about the best way to
use it, and more importantly the best way to put it through its paces. We
decided to try and use it to its full potential and avoid writing a single line
of code if possible, i.e. just prompting and guiding it.

Isaac Oldwood is a Software Engineer working in the
Insurance Industry. He taught himself Python at university
to (unsuccessfully) purchase a pair of limited edition shoes.
He organises Software Crafters Cambridge, a monthly tech
meetup. In his spare time, he enjoys reading, rugby and running.
He can be contacted at Isaac.Oldwood@gmail.com.

Timetable
09:30 Arrival and registration

10:30 Kick-off and Challenge 1

12:45 Lunch

13:45 Challenge 2

16:00 Playback and discussion

16:45 Event close

17:00 Pub

ISAAC OLDWOODFEATuRE

12 | Overload | June 2025

At the beginning of the task, all we had was a README which contained
all the requirements. The first thing we needed was a plan. As previously
mentioned, we wanted to fully utilise AI so we passed the entire README
to ChatGPT and asked it to produce a solution to complete the exercise.

The first section it produced was titled ‘Overview’ and it was essentially
the parts of the app we would need and suggested technologies for them.
It mentioned a frontend built in React, a backend built using Python’s
FastAPI and a SQLite Database.

It then laid out a file directory structure to help us visualise how to split
out the app. It listed some key API endpoints which we reviewed to make
sure all the requirements were met. It was good to see these aligned with
how we would have designed them ourselves.

One part of ChatGPT’s output that I was really interested in was a section
titled ‘Tech Stack (Quick Justification)’. This section outlined WHY it
chose to use the technologies described above. For me this is a really key
aspect of using AI. In most of the uses I see of AI, we ask it to complete
some task or ask it a question; we very rarely ask the AI to explain (this is
a key point I raise later in the day).

The last part it produced was a ‘Plan of Attack (MVP Steps)’. This was
really useful as it gave us smaller bite size chunks to iterate on as we created
our MVP. My only issue with the plan of attack was ‘Write some unit tests
(especially backend)’ was at the bottom of the list. This highlights an issue
I have seen repeatedly with AI- (and human-) developed code. Testing is
not considered; or if it is, only as an afterthought. As an advocate of Test
Driven Development (TDD), this is a real issue for me. I want tests to be
written first based on the requirements, then code to be written to pass
those tests. Just to reiterate, this is for production code as was the aim
of the day. I understand that usually for a ‘Hackathon’, you are building
some form of prototype and it may not be the time or place for TDD.

As we wanted to fully embrace AI, we concluded to use the technologies
suggested by ChatGPT. This was partially a decision due to us having
some experience with the technologies, but also because these are
technologies that are widely used. This means in theory the LLMs will
have plenty of training data and should produce decent code. That was
the theory at least…

To actually start writing the code I used GitHub Co-pilot built into VSCode
– with this you can use ‘agent’ mode. This allows you to prompt an ‘AI
Agent’ which will then make edits directly in your files. We started at the
first step of the ChatGPT plan of attack and asked it to create a SQLite
database along with a seed script (to load the CSV into the database). This
worked first time and created a file that worked successfully without any
tweaks. However, it did not create any tests.To rectify this we discarded
the changes and added ‘Using TDD…’ at the start of the prompt. The
second attempt created a very similar script whilst also writing some tests.

As a side note, now reflecting on the day, it has been pointed out to me
that it is possible that this isn’t really proper TDD. An LLM writing code
and tests in one loop/prompt does not force the tests to be written first and
then code to be written to satisfy those tests. It is certainly possible that
the production code is written first and then the tests are written. It is not
clear to the prompter. Perhaps a better process would be using the LLM to
write the unit tests first in one prompt, verifying the tests, and then using
another prompt to write the production code to satisfy those tests.

The second step was creating a boilerplate FastAPI app. I used some
prompts such as ‘Create a boilerplate FastAPI app using TDD’, this
created a very basic app as well as using the FastAPI framework.

Another thing that we explored is documentation writing. If we were
writing real production code, this app would need to be worked on by
other developers that may not have experience with writing/running these
APIs. So after getting some working code we asked Co-pilot to ‘Add
local setup and running steps to the README’. The documentation
produced was easy to follow and contained all the necessary steps to get
the app up and running locally.

The rest of the first session followed in this flow. After a basic API was
created we moved onto the frontend. Neither myself or my partner have
extensive experience with React (though I am trying to learn a bit more).
The first thing Co-pilot did was ask to run create-react-app. I was
surprised that it was capable of using the terminal directly.To clarify, it
does ask your permission before running every command with a simple
‘Continue’ button. I do worry that people may just click ‘Continue’
without fully understanding the commands being run, which could
become a security concern.

My part of the exercise was to create the cart page. I prompted Co-
pilot to create a new cart page with tests. I asked it to add some basic
functionality; for example, allow the user to increase/decrease the item
count in the cart. As well as, if the item count reached zero then remove
it from the cart. After some manual testing of the app, I discovered that
once I removed the last item from the cart the table still showed but just
empty. This was bad UX in my opinion. I was happily surprised with how
easy this was to improve by prompting Co-pilot ‘Currently when no items
are left in the cart nothing happens, update this code and tests to display
a message such as “No items in cart”’ It updated the code and tests in a
straightforward way and in very little time.

By this point, we were running out of time. I wanted to add a couple of
finishing touches and asked the AI to add some images and a dynamic
total at the bottom of the table. You can see the code’s final state on my
GitHub along with all the local running instructions. All the code and
documentation has been entirely written by AI tools. My partner and I
edited no code manually. To summarise, I was very impressed with how
quickly we got a working app up and running with very little intervention
from us humans.

Lunch
Lunch was provided by Codurance and gave us all some well-earned time
to reflect. Of course, Exercise 1 dominated the topic of discussion. There
was lots of chatting between pairs within group A about what tools were
used, what prompts worked well and other tips and tricks. There were
also lots of discussions between group A and B about varying aspects of
the task. The key takeaways were:

	� Group A got further in the exercise (a more complete solution with
more features) than Group B
Clearly due to using AI tools, it allowed them to work faster

	� Co-pilot and ChatGPT were widely chosen AI tools
It seemed like this is due to familiarity and being built into VSCode,
most of the developers’ editor of choice

	� The AIs did not write unit tests unless specifically asked, but when
prompted it did write them mostly to an acceptable standard

Exercise 2
The second exercise was revealed as ‘StreamStack’. Essentially, build a
movie reviewing website. For this task we decided to mix up the pairs,
which allowed new ideas and networking. I ended up forming a three
with two other developers who were happy to use Python. We knew we
would have no AI help for this exercise so we needed to stick to tools and
technology we had experience with.

We started off by working out that we would need a backend and frontend.
We wrote down some questions and design decisions on post-it notes
and created a rough architecture/design diagram. One of the team had
experience with React and so offered to handle the frontend part. This left
me and the other team member to create the backend.

As the functionality was on the simpler side, I suggested using FastAPI.
It is my preferred technology for creating APIs as it is simple, integrates
with Pydantic for validation and has a great testing framework. My
backend partner had not used FastAPI before and preferred Flask, it
didn’t take me long to persuade them to give it a try!

ISAAC OLDWOOD FEATuRE

June 2025 | Overload | 13

We continued much as you’d expect at a hackathon: we used TDD to
put together the backend API and start integrating it with the UI. It
was noticeably slower this time round compared to using the AI tools
(especially without the auto-complete/in-line suggestions). Although
this time round I personally felt I understood every line of code and was
happy that it would pass a code review. I also spent next to no time at all
reviewing the code as we actually wrote it ourselves.

An example of being slower was right at the start. We needed to create
the FastAPI app, first of all just with a “Hello world” endpoint to make
sure we had set it up right. Previously, I would have asked Co-pilot or
ChatGPT to write a very brief boilerplate file for a FastAPI app. This time
we had to google the FastAPI docs, navigate to the quick start guide and
copy the code from there. As I had used this many times before I knew
where to look, which sped things up somewhat. However, this process
would have certainly been faster with the use of an AI tool.

By the end of the exercise we had a slightly crude web app with a UI and
a backend. It had some basic filtering and sorting functionality but we did
not have time to complete all of the requested features in the given time.
It did have a full test suite though!

End of day discussion
This was the part of the day that was the most insightful to me. A pair from
group B kicked off the ‘show and tell’ by showing their ‘StreamStack’
app. They had used Cursor and it was immediately very impressive. They
had a complete application that had every functionality asked for, looked
nice and they even had time to add bonus things like images. One of the
members of the pair said something that really stuck with me, though.
They explained that the application was practically a black box as they
had only given it a few prompts and just asked it to create the application.
After the AI had finished, they had tried to use images on a different page
and were unable to get it working; this should have been trivial. They
said, “This application was written two hours ago and I already feel like
I’m working with legacy code.” They believed that if they had written it
all then adding these images would be trivial but because it was a black
box they would take much longer to understand and make these changes.

I feel like my first pair had a similar problem with the AI code being a bit
of a black box. This prompted me to ask the question, “There has been lots
of talk about black box code and not easily understanding the AI changes
– did anyone ask the AI to explain the code?”. There was a long pause as
it was clear no one had done this, including myself! It seems all groups
had spent the day asking AI to write/change code and not once asked it to
explain code. This is a feature that has been advertised, particularly with
Co-pilot’s chat feature. I have used this a few times at work when moving
into a new project. I think that was a large unexplored part and a use that
we should have tested more during the hackathon.

Another group spoke about abstraction and refactoring. They said that
the AI tools heavily favour ‘copying and pasting’ similar code instead of
extracting and refactoring into its own function for reusing elsewhere.
They had similar functionality in three places in their app and the AI re-
created the logic every time. If they wanted to tweak it they would have
to change it in multiple places. It seems AI does not follow DRY. They
did explain that with some guidance and prompting the AI tools could
refactor and extract logic, but it wasn’t natural and had to be requested
specifically.

A pair of developers followed on from this point. They asked the AI
tools to refactor some code in a specific file; it did manage this but along
the way would update and change unrelated code in other files. Another
person raised their hand and agreed with this point. They vented some
frustration with this in their day job. They told us the following anecdote;
they were working on a large codebase with many files and wanted to
update/refactor a specific file. By default, Co-pilot will take your whole
workspace as ‘context’ to make these changes. Unfortunately, that also
means it can access and make changes to every file in your workspace.
They suggested a good improvement to the tool would be to tell the AI
to ‘read’ these files for context but only allow ‘write’ changes in file X,Y
and Z.

Lastly, a member of my three for Exercise 2 said, “I have achieved a lot
less in this problem compared with using AI tools; however, I can say for
sure, I am more proud of the code I have written.” I think this is a key
point because, as developers, all code we commit has our name on it. We
should be proud of the code we write. This perpetuates ownership and in
my opinion results in better code being written.

Post-event
After the event we headed to the pub. There was still a bit of chatting
about AI but we mostly were all done with discussing AI for the day. It
was nice to chat about other non-AI stuff over a beer. We all agreed we
would love to attend a similar event in the future!

Limitations
If we were to do this again there are some things I would like to test. I
think we gave the AI tools the best possible chance by picking problems
that are widely solved with lots of examples on the internet. Having said
that, there are some questions raised:

	� How well does it perform when writing code for something other
than a web app e.g. embedded systems?

	� How well does it perform in a different problem domain?
What about in a domain where there is lots of context required that
may not be widely documented in the training data?

	� How well does it perform in an existing code base?
Both of these exercises were building something new. How well
does it work when asked to change/write new code in an existing
project?

	� Would developers with more AI experience do better?
Some of the developers had little experience with AI tools. Are there
ways of working that unlock better output? Had we known these,
would we have done better?

	� How good and useful is asking AI to summarise/explain code?

	� Most of these tools allow you to change the LLM being used. Would
different LLM choices have produced better results?

	� As previously mentioned, does adding “Use TDD…” to the prompt
actually use TDD within one prompt or does it require a two step
process?

	� How safe is allowing the LLMs to directly run commands in the
terminal?
Is a ‘Continue’ button enough to prompt the user to verify the code
vs copying and pasting commands from the internet?

TLDR
My key takeaways are:

	� The AI tools are great for writing boilerplate/setup code.

	� AI tools avoid DRY.

	� The AI tools did not write unit tests unless specifically asked, but
when prompted it did write them to an acceptable standard.

	� The AI tools did better when asked to work in smaller steps.

	� Developers are more proud of their work when using less AI.

	� Some tools are better than others, with the tools that can edit directly
in the IDE saving more time.

	� The ‘auto-complete’/in-line functionality is the way most developers
use the AI tools.

Ultimately, it is clear to me: developers can already move faster and be
more productive with AI tools and these effects are only increasing. �

This article was first published on 2 May 2025 on Isaac’s blog:
https://isaacoldwood.com/blog#codurance-ai-hackathon

https://isaacoldwood.com/blog#codurance-ai-hackathon

JACOB FARROWFEATuRE

14 | Overload | June 2025

Tracking Success
Developing adaptive eye-tracking tools for children with
cerebral visual impairment has specific challenges.
Jacob Farrow describes his progress so far.

Earlier this year, I presented a poster at ACCU 2025 [ACCU] titled
‘Tracking Success: Enhancing Visual Tracking Skills in Children
with Cerebral Visual Impairment (CVI) through Interactive Digital

Tools’. The project explores whether gaze-tracking technology can
be meaningfully adapted for children with CVI – an often-overlooked
neurological condition that affects the brain’s ability to process visual
information.

I was thrilled to see people stop by and engage with the poster. Some had
experience with assistive tech, others wanted to know how eye-tracking
can be made more inclusive. We discussed head pose, side-eyeing,
glare from glasses, and real-time feedback loops. It was an encouraging
reminder that sometimes niche research can strike a chord with a wide
audience.

Problem statement
CVI is now the leading cause of visual impairment in children in the UK.
Unlike traditional eye problems, it affects how the brain interprets visual
input – even if the eyes themselves are healthy. CVI manifests in many
(often contradicting) ways. Children with CVI may use peripheral vision
instead of central, avoid eye contact, or struggle to recognise moving/
static objects. This makes it difficult for traditional educational tools –
and standard eye-tracking systems – to interpret what these children are
seeing or focusing on.

So, full of the hubris of an engineering student, I created my final-year
project and set out to change that. I wanted to build an eye-tracking
system that could cope with diverse gaze behaviours, and provide real-
time feedback to help practitioners understand how children with CVI
engage with visual stimuli.

The research had both academic and real-world legs. Academically, it
formed the core of my Software Engineering degree project at The
University of Bradford [Bradford]. Professionally, I developed it as Lead
Software Engineer at SpaceKraft Ltd [SpaceKraft] – a company that
researches and develops sensory solutions for children with disabilities. I
saw a chance to make a practical tool that could be deployed in classrooms
and therapy spaces, not just written about in reports.

What I built
The core of the system is an interactive game that asks users to
follow moving objects across a screen. A camera tracks the user’s eye
movements, estimating gaze position in real-time. The game then uses
this data to adjust the size and speed of the object based on user accuracy
in order to give performance feedback.

But building a working prototype meant figuratively wrestling with a
long list of edge cases. Many standard eye-tracking libraries assume a
clear, frontfacing gaze. Children with CVI often present anything but.
They may ‘side-eye’, tilt their heads, look ‘through’ objects, or glance
briefly before disengaging.

Here’s where the system had to adapt:

	� Face & Eye Detection: I used dlib [dlib] for facial landmark
detection, reinforced by CLAHE (Contrast Limited Adaptive
Histogram Equalisation) [Wikipedia] to enhance image clarity
under varied lighting.

	� Glare Reduction: Glasses introduced major glare issues, especially
with sensory room lighting. I applied inpainting and thresholding to
mask bright regions, along with techniques inspired by polarization
filtering.

	� Calibration & Gaze Mapping: I stored pupil and eye corner data,
along with head pose matrices, during calibration. This was mapped
to screen coordinates using a combination of linear regression and
data-driven mapping.

	� Feedback & Logging: Engagement data (accuracy and session
metrics) was logged securely for practitioner review – while
respecting strict privacy standards.

The whole system runs on a streamlined Linux build on a 32″ touchscreen
with a USB camera, booting directly into the app for plug-and-play
simplicity. It’s developed in C++ with OpenCV, OpenGL, and Dear
ImGui, compiled using Ninja and CMake.

What I learned
Accuracy isn’t everything. Most eye-tracking systems measure fixations,
saccades, and dwell time to infer engagement. But children with CVI
don’t necessarily exhibit those
behaviours in expected ways.
Instead of focusing purely on
metrics, my system focuses
on responsiveness. If the child
interacts – however briefly
or obliquely – that counts as
meaningful engagement.

Practitioner input is vital. This
wasn’t a solo coding exercise.
I collaborated closely with
educators and specialists, who
gave continual feedback during
development. They helped me
understand not just how the system
works, but how it might actually be
used in a therapeutic setting.

Jacob Farrow is the Lead Software Engineer at SpaceKraft Ltd
and a final-year Software Engineering student at the University of
Bradford. He leads the development of sensory solutions used in
special education around the globe, specializing in computer vision
and real-time interaction. An Engineering Leaders Scholar with
RAENG, he contributes to inclusive design frameworks and mentors
young engineers. Contact him at Jacob-M-Farrow@outlook.com

The main menu UI rendered
using Dear ImGUI.

Figure 1

JACOB FARROW FEATuRE

June 2025 | Overload | 15

Adaptive design beats one-size-fits-all. Customisation was key. Children
needed different contrast levels, movement speeds, and calibration
sensitivities. This led to a settings system that could be tuned per user –
an arena I’d like to expand further.

Feedback from ACCu
People at ACCU had great questions – some of which caught me off
guard in the best way. One asked whether the system could learn from
individual users over time. Another wondered about the potential of
integrating into VR environments. A few developers had worked on gaze
estimation themselves and were curious about how I approached noisy
data, partial occlusion, and hardware constraints.

It was validating to hear how many people saw potential of this kind of
tech beyond high-end labs or gaming setups. One even said, “I’ve never
seen eye-tracking used for kids before – especially not like this.”

next steps
The current prototype has laid the groundwork, but there’s a long way to
go. Planned improvements include:

	� Dynamic calibration that adjusts on-the-fly during gameplay,
reducing setup time and improving accuracy without user effort.

	� Multiple game modes, including shifting gaze tasks and noisy
backgrounds to test visual attention more thoroughly.

	� Gaze heatmap visualisation, offering real-time and session-based
insight for practitioners to understand focus zones and avoidances.

	� Deeper analytics, including attention duration, latency, and object
tracking success over time.

The project will be entering a new phase of weekly testing with a cohort
of children with CVI at a partner school. The feedback will guide further
iteration and help define the long-term viability of the tool in classroom
environments.

Final thoughts
Software isn’t just about solving problems – it’s about solving the right
problems. This project gave me the opportunity to design something that
may help children who are often underserved by mainstream tech. It
challenged me technically, but also reminded me why I got into this field
in the first place.

The real test will be whether children engage with it, learn from it, and
enjoy using it. If they do – even just one of them – then this project has
already been a success. �

Acknowledgements
I wish to express my profound gratitude to John Kopelciw and Chris
Morton of SpaceKraft for their invaluable guidance, encouragement,
and professional insights throughout the course of this project. Their
dedication to creating innovative and impactful solutions has been both
inspiring and pivotal to the development of this work.

I am equally indebted to Dr. Rachel Pilling of the University of Bradford,
whose expertise and thoughtful advice have been instrumental in
ensuring the relevance and effectiveness of this project in addressing the
needs of children with Cerebral Visual Impairment (CVI). Her support
has been critical in shaping the academic and practical contributions of
this research.

Finally, I extend my heartfelt thanks to Dr. Ci Lei of the University of
Bradford, who always encouraged me to look at things from a different
angle. His perspective has profoundly influenced the innovative aspects
of this project and has inspired me to think more critically and creatively.

The completion of this project would not have been possible without their
collective expertise and generosity in sharing their time and knowledge,
for which I am deeply thankful.

glossary
CLAHE Contrast Limited Adaptive Histogram Equalisation – used

to enhance image contrast in low-light or uneven lighting
conditions.

CVI Cerebral Visual Impairment – a condition where the brain
struggles to process visual information.

Dear
ImGUI

An immediate-mode GUI library used for rendering fast,
dynamic user interfaces in graphical applications.

Dlib An open-source machine learning and computer vision
library used for facial landmark detection.

Fixation When the eyes are stationary and focused on a single visual
point.

Gaze
Heatmap

A visual representation of where the user looked most
frequently or for the longest duration.

Inpainting An image-processing method that fills in missing or obscured
parts of an image.

Saccades Rapid, ballistic eye movements between fixation points.
OpenCV Open Source Computer Vision Library: A widely-used library

for real-time computer vision.
OpenGL Open Graphics Library: A graphics API used to render

interactive elements on the screen in real time.

References
[ACCU] ACCU 2025 Conference: https://accuconference.org/.
[Art] Artist of the Portal Illustrations kasej.portalillustrations@gmail.

com.
[Bradford] The University of Bradford: https://www.bradford.ac.uk/

external/.
[dlib] dlib C++ Library: https://dlib.net/.
[SpaceKraft] SpaceKraft Ltd: http://www.spacekraft.co.uk.
[Wikipedia] CLAHE: https://en.wikipedia.org/wiki/Adaptive_

histogram_equalization.

Gaze point being rendered to screen while tracking the rocket [Art].

Figure 2

Session-based heatmaps could offer practitioners valuable insights.

Figure 3

https://accuconference.org/
mailto:kasej.portalillustrations@gmail.com
mailto:kasej.portalillustrations@gmail.com
https://www.bradford.ac.uk/external/
https://www.bradford.ac.uk/external/
https://dlib.net/
http://www.spacekraft.co.uk
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization

CHRIS OLDWOODFEATuRE

16 | Overload | June 2025

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
Human brains are wired for pattern
recognition. Chris Oldwood explores
some patterns he’s seen over the years.

Pattern matching is a concept traditionally associated with functional
programming but the more I think about my day-to-day job in the
world of software development, the more I realise that pattern

matching in general is something which pervades everything from
working with the codebase, to processes, and ultimately the people in the
organisation.

I was reminded again recently that we don’t all see the same patterns in
code. (Before going on we need to stop and remind ourselves of Ralph
Waldo Emerson’s famous quote “A foolish consistency is the hobgoblin of
little minds” but this not about being right or wrong, just a reflection on
the disparity.)

I discovered that someone had inserted 7DY (a financial period, aka
‘tenor’, representing 7 days) between 0DY and 0YR instead of between
6DY and 1WK in this sequence below, and that threw me.

0DY, 0YR, 4DY, 5DY, 6DY, 1WK, 30DY, 1MO, …

Now, I should point out that each entry was on a separate line as they
were the keys of a dictionary, but they were still on consecutive lines.
In the past, even alphabetised lists have not been immune to seemingly
random insertions, and they have slipped through the review process, too,
because diff tools only show a few lines of context, which incentivises
you to largely ignore the wider context unless you go out of your way. (If
it really matters, enforce it in code or with a test.)

In essence you could consider the first choice of insertion point a local
maximum (between days and years, albeit both zero) whereas the second
one might be more like a global maximum (between six days and one
week – yes, finance is weird). And that, I think, is one difference that
distinguishes programmers along their journey to mastery – they typically
go looking for the global maxima rather than settling for the first local
maxima they find.

As we start to zoom out of the codebase, we see patterns at different
levels – statements, functions, classes, components, systems, etc. For
some reason, we refer to small-scale patterns as mere ‘idioms’, whereas
once they get large enough, they get promoted to Design Pattern™
status. (Although ironically the original design patterns made famous by
the Gang of Four were relegated to ‘idiom’ by many commentators.) In
the past, I’ve quipped that many interfaces I see are more adhesive than
cohesive, as people have a tendency to just stick a new method on the end
instead of looking for a ‘more logical’ place to insert it.

On the subject of terminology, a favoured pattern-oriented approach
to software development goes by the moniker ‘Convention over
Configuration’. The idea is that it should be easier to follow an existing
pattern and have the right thing magically happen, than be given free rein
and then need to explicitly link the artefacts together. Some conventions,
e.g. putting all source files under a src folder to avoid you needing to add
each filename to a project/makefile/build script, span technologies and

helps you fall into the Pit of Success. Other conventions, which typically
involve using reflection and adhering to seemingly arbitrary naming
rules, are less obvious. In the past, I’ve discovered tests that weren’t run
because they only started with ‘test’ and not ‘test_’. (The former style is
the convention in more than one popular test framework, but not the one
we were using.) Likewise, I’ve discovered entire test assemblies being
missed out of the CI pipeline due to being unconventional. Typically,
this then begs the question about how someone could write tests and not
notice that they weren’t being run.

I think this is another area where those of us further along their
programming journey begin to explore patterns outside the codebase and
architecture – people and their behaviours. For example, I once noticed
that a certain member of the team would consistently submit merge
requests with a large commit history with tiny changes and typically
the word ‘fixed’ in the message. When reviewing, it’s common to only
consider the final outcome of the entire changeset and not the journey, so
you probably miss the signs buried in the history. In this instance what
was missing was taking the time to review their code properly and run the
entire test suite before pushing the branch thereby creating an excessive
amount of context switching.

A few decades earlier, I remember joining a team to help improve the
scalability and reliability of a distributed system. One of my first jobs
was to deal with a serious memory leak, which actually turned out to be a
considerable number of smaller leaks – forgetting to mark the destructor
of a base class as virtual. While I could have just fixed the leaks and
moved on, I wondered if there was a pattern there. It turned out they
were all written by the same person, and although no longer in the team,
they were still at the company and only a few rows away. They were
very appreciative of my discovery and for taking the time to talk to them
about the mistake. (Sadly, not everyone there was quite so happy with my
ability to spot suspect code patterns and use the version control tool to
work backwards to identity the author.)

Monitoring systems is another area where our pattern recognition abilities
get put to the test as we scour log files and performance graphs, looking
for the clues that caused the system to behave in an odd way. The trick
here, like elsewhere, is not to fall foul of the old adage about correlation
being mistaken for causation. Of course, before you can spot a system
that’s behaving weirdly, you have to know what it looks like when it’s
behaving normally, which likely entails spotting a different kind of
pattern. This is why I like to write-up postmortems, it’s hard to spot a
pattern if you don’t have the history to draw upon.

Cohesion, whether it be in the code, design, system, processes, or
organisation, is an enabler for successful delivery, but it requires us to
stand back to see the bigger picture and course-correct
when things have gone wayward. Inside the chaos, there
may well be order fighting to get out, but only if you go
looking for it. �

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

Professional development
World-class conference

Individual membership
Corporate membership

Printed journals
Email discussion groups

Visit accu.org
for details

accu
Professionalism in Programming

	Editorial: Eliminate the Impossible
	Debugging Run-time Windows DLL Problems
	Codurance AI Hackathon
	Tracking Success
	Afterwood

