
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 12

February 1996

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

We have a problem 3

Software Development in C++ 7

So you want to be a cOOmpiler writer? – part IV 7

Compiler updates 9

Notes on Microsoft Visual C++ V4.0 11

The Draft International C++ Standard 13

A UK perspective 13

C++ Techniques 14

An implementation pattern using RTTI 14

Rot in L 18

Simple classes for debugging in C++ – Part 3 19

Heapwalking problems 22

/tmp/late/* Constraining template parameter types 23

editor << letters; 26

++puzzle; 29

Handling dates with locale based day and month information 29

Making a date 34

News & Product Releases 36

Working STL for VC++ 4.0 available 37

 Overload – Issue 12 – February 1996

 Page 3

Editorial
This issue is late. I’d like to be able to put my
hand on my heart and say it’s my fault. I’d like
to be able to say that all the contributions were in
by the copy deadline and the only reason I didn’t
get the magazine to the printers was that I went
snowboarding in Alpe D’Huez.

I’d like to...but it simply wouldn’t be true. This
issue is late because when the copy deadline
passed I had received only two contributions. Of
course, it was xmas and you were all taking a
well-earned rest. I was actually working all over
xmas – I took just one day off: Friday the 29th.
Am I going to rant about the lack of contribu-
tions? No, I’m not. Francis, however, says it all
in a guest editorial below.

In March, I am attending the next ISO/ANSI
C++ meeting. The copy deadline for Overload
13 is just prior to that meeting. However, I am
taking the opportunity of being between con-
tracts to tour California which means that the
April issue will most likely be the May issue.
Perhaps, in an unprecedented fit of enthusiasm,
you can all make sure that the delay is entirely
my fault this time? :-)

By the way, I can recommend Alpe D’Huez!

Sean A. Corfield
overload@corf.demon.co.uk

We have a problem
guest editorial

by Francis Glassborow

Look back over the last year’s issues of Over-
load. What do you notice? A very small number
of faithful contributors are responsible for well
over 80% of the content. Much of this content is
highly erudite, well informed and well written by
people who either do or could write for commer-
cial publications (and get paid for their efforts).
A member’s (as opposed to a commercial) maga-
zine (and there is no way that the profile of any
ACCU publication fits the term ‘newsletter’ that
some choose to use) needs the core of expertise
but it should not be almost exclusively that, oth-
erwise we become a non-commercial immitation
of the excellent publications such as C++ Report
that already exist. Quite apart from anything else,
it is unfair on those regular contributors who do-

nate many hours of their time as well as giving
you articles that they could sell elsewhere.

A member’s magazine is something like a ‘fan-
zine’ in that it can and will publish material of a
wider range of quality and helps new writers to
develop their skills. It is not, or should not be,
just a showcase for experts to exhibit their arcane
knowledge. That, in my opinion, leads to lazy
thinking where the typical reader assumes that it
must be right because an ‘expert’ says so. I fre-
quently get things wrong, sometimes deliberately
(there is one blatant error in the current issue of
C Vu that has only been commented on by two
readers so far) and sometimes get things wrong
through ignorance or relying on a compiler to
refine my understanding (as I recently did in
EXE magazine). These errors do not worry me
because out of them everyone, myself included,
can learn.

A member’s magazine is a place for controversy,
correction of errors and explanation for ‘reli-
gious’ beliefs (Contrast writers who insist that
theirs is the one true way to lay out source code
with the ones who explain why they choose the
layout rules they use. Which is more useful?)

Every reader of Overload has something to say
or a question to ask that will help someone else
by shining a light on some aspect of C++ pro-
gramming. Paying your £15 C++ SIG subscrip-
tion should not be the end of your contribution, it
is only an enabling fee to provide the mechanism
for you to add real value by sharing something
with the rest of the readership.

A missed opportunity
Let me get down to specifics. Over 400 of you
had a chance to participate in the ‘design a date
class’ competition (It actually had a prize worth
more than your annual C++ SIG sub) but only
one actually sent in an entry. The criteria for the
competition were deliberately set so that anyone
above pure novice could compete.

Maybe the subject matter was not that inspiring.
Once, many years ago, I attended an evening
class on programming in FORTRAN – the only
formal course I have ever attended through
choice – where the course presenter was a fanati-
cal campanologist whose practical exercises in-
volved writing a program in FORTRAN to print
out the changes for a clarion of bells. He did not

 Overload – Issue 12 – February 1996

 Page 4

seem to understand why his students were less
than enthusiastic. Those of us who did not need a
certificate of completion did not bother to finish
the program, much to his frustration.

Maybe I did not make the problem clear enough
so that some thought that what was wanted was
way beyond their abilities. I suspect that quite a
few simply assumed that there would be many
much abler readers who would provide them
with answers to read and learn

 Overload – Issue 12 – February 1996

 Page 5

FULL PAGE ADVERT GOES HERE

 Overload – Issue 12 – February 1996

 Page 6

from in the future. You may be right in believing
that you are not very skilled, but you are in ex-
cellent company and may be much better than
you think. You will never know until you try.

Maybe it was the idea of producing some kind of
design document that scared you. One ACCU
member has spent six fruitless months trying to
find a programmer who understands enough
about class design to meet the needs of a job
specification. There are far too many C++ syntax
‘experts’ (who know less than they think they
do) and far too few class designers. Many, given
a design that includes a class definition, can flesh
out an implementation. What they cannot do is
produce a satisfactory design. What I wanted
from you was a class definition with a discussion
of why those choices had been made. Elsewhere
you will find a contribution from me drifting
over some design thoughts (the things that cross
your mind as you start to work on a design at this
level). No doubt a number of experts will leap in
and tell me why that is not the way to do it. Did
you ever do Physics at school? If so, I bet you
were as heartily sick of the formal write up of
experiments as I was. That isn’t the way we ar-
rive at experiments. Maths is even worse, the
deductive part only comes after much play (ex-
periment).

Maybe those of you who earn a living from pro-
gramming were reluctant to put your name over
something that you knew was going to be less
than perfect lest it damaged your professional
reputation. I sympathise and this is one (legiti-
mate) reason for using a pen-name. Within our
own community we know that the process of
learning includes making mistakes but we do not
want that to leak out into the wider world and
have it hung round our necks for ever and a day.

So what was your excuse for not taking part?
Don’t tell me that it was so easy that it wasn’t
worth doing. I have heard that before and it is
only when I have persuaded the person to try that
they have discovered the hidden problems. If
WG21/X3J16 took such a casual attitude to de-
sign you would already have your C++ Standard
but it would be totally broken.

More generalities
When enquirers ring me up to ask about ACCU
they often ask what we have to offer them. I usu-
ally, apparently in jest, include in my reply the
question ‘What have you to offer us?’ Those
who know me well know that this is no joke. Of

course we need your subscriptions (we need 500
C++ SIG members to finance Overload at the
current rate of £15 per year) but that is not where
it stops. We are all busy people and finding time
to write in-depth, considered articles may be be-
yond us but a quick bug-report, question about
why a piece of code does/does not work, a com-
ment on material in an earlier issue etc. should be
within the capability of all. Any time you have
had to work to get a piece of code to perform (or
even compile) it is worth checking that the final
code works the way you think it does and does
not have any hidden traps. Even those claiming
to be experts get it badly wrong. Two examples
for you to consider.

Almost any training course for C++ novices will
include an example something like:
class Base {
 // something simple
 virtual ~Base ()
 { cout << ”Base destroyed” << endl; }
};

class D : public Base {
 // something simple
 ~D ()
 { cout << ”D destroyed” << endl; }
};

int main(){
 Base* bp;
 bp = new D[10];
// do something
 delete[] bp;
 return 0;
}

To demonstrate the need to use delete[] rather
than delete. Perfectly true, it does demonstrate
that and it leaves a much more serious defect.
Getting the wrong delete will, probably, only
leak memory; missing the other defect leaves the
students with a belief that they can safely do
something that will one day disastrously break
their code. I’ll leave you to identify the problem.

For almost eighteen months I had the following
in my model code for an introductory C++
course (well I have simplified it and put the code
in-class to focus on the problem):
class Record {
 char* name;
// other private members
public:
 void setname(char* s) {
 delete[] name;
 name = new char[strlen(s)+1];
 strcpy(name, s);
 return;
 }
// rest of definition
};

 Overload – Issue 12 – February 1996

 Page 7

How many of you can spot the fundamental de-
fect in this code? Once again, I am leaving it to
you. In case you are wondering, the constructors
guarantee that name has been initialised to the
NULL pointer before use.

And finally
If you are worried that you may be wrong, why
not format your contribution as a question? That

is a much better approach than the one of keep-
ing silent. I promise you that the experts will not
laugh and most will thank you for writing what
they had only thought.

Francis Glassborow
francis@robinton.demon.co.uk

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools,
the software process and discussions about the good, the bad and the ugly in C++.

My compiler-writing column returns, Francis Glassborow brings us up-to-date on recent PC compiler re-
leases and Alan Griffiths takes a close look at Microsoft’s much-fêted new release.

So you want to be a
cOOmpiler writer? – part IV

by Sean A. Corfield

Introduction
In the last article I skimmed very briefly over the
preprocessor and said that in this issue I would
start to look at the type system. For once, I’m
actually going to do what I said I would!

The type system
What does the draft say about types? It very con-
veniently partitions them into different categories
that we will model directly. These partitions in-
clude:

• integral types

• arithmetic types

• scalar types

An obvious class hierarchy should already be
forming in your mind! What about the concept of
“type” itself? What questions can we ask of a
type?

• size (for sizeof)

• name (either for debugging or for typeid)

• equality

• promoted type

• ...

A first pass gives us something like:
class AbsType
{
public:

 AbsType() { }
 virtual ~AbsType() { }

 virtual size_t size() const =
0;
 virtual const string& name() const =
0;
 virtual bool operator==(const
AbsType&)
 const =
0;
 virtual AbsType* promoted()
 { return
this; }
//...
};

The size and name pure virtuals should be self-
explanatory: every concrete derived class must
implement these, even if it is just to say “Error:
you cannot take the size of a function.” for ex-
ample.

operator== needs more thought because a typi-
cal derived class version will look like:
bool
CharType::operator==(
 const AbsType& rhs
) const
{
 if (CharType* rhsp =
 dynamic_cast<CharType*>(&rhs))
 {
 // test they are the same char type
 }
 else
 {
 // rhs is not char
 return false;
 }
}

We must use RTTI to ensure that the dynamic
type of both arguments is the same. The lhs type
is known (because the virtual operator== des-
patches through that type) but we must check
that the rhs is at least as derived as the lhs (gen-
erally the test is that the rhs is the same type).

 Overload – Issue 12 – February 1996

 Page 8

See Uli Breymann’s article on this pattern else-
where in this issue.

What about promoted? Why isn’t it pure virtual?
Because very few types actually promote to any-
thing, it makes sense to provide a default action
that “does nothing”.

Building blocks
The scalar types form a fairly straightforward
hierarchy (figure 1) but some of the other types
pose more interesting problems. class, struct and
union clearly share some attributes – they all
have members, constructors and so on – but they
also have differences, especially from the point
of view of source code analysis (my original
brief for this column). There is another construct
in C++ which also has members: namespace.
Abstracting appropriate classes from this prob-
lem is hard. I went through several iterations,
discussing the pros and cons of early ideas with
Scott Meyers (thanks Scott!) before settling on a
four-level hierarchy below AbsType (see also
figure 2):

class NamedScope : public AbsType { };
class NamespaceType : public NamedScope
{};
class AbsClass : public NamedScope { };
class ClassType : public AbsClass { };
class StructUnion : public AbsClass { };
class StructType : public StructUnion {
};
class UnionType : public StructUnion {
};

Some words of explanation. First of all, name-
space is not strictly speaking a type. However,
handling of declarations is greatly simplified if
every declared name can have a type associated
with it. Furthermore, when dealing with qualified
names, e.g., X::m, it is unmportant whether the
qualifying name is a class or a namespace.

Why have a separate layer between AbsClass and
StructType (and UnionType)? I was designing a
source code analyser to check coding standards,
amongst other things. Common in coding stan-
dards are rules that say things like “treat struct
and union like C, keep C++ features for class”.
In terms of analysis, this means that finding
member functions or access specifiers inside a
struct or union should elicit a warning. The
code to check the rules in the standards is em-
bodied within methods in the type hierarchy in
such a way that checks common to every derived
class appear in base classes and differing checks
are performed in overriding functions:
void StructType::checkRules()
{
 StructUnion::checkRules();
 // other checks
}

AbsType

ScalarType

ArithmeticType PointerType

IntegralType FloatingType

Figure 1: Scalar types

AbsType

NamedScope

AbsClassNamespaceType

StructUnionClassType

UnionTypeStructType

Figure 2: Class types

 Overload – Issue 12 – February 1996

This pattern is repeated throughout the type class
hierarchy, and in fact throughout the entire ap-
plication. AbsType

 Page 9

Mixing in templates
NamedScopeIn the original design, template information was

held with the declaration and the type system
representation stayed “pure”. This caused several
problems – not the least of which was the fact
that A<int> and A<void*> were both treated as
plain old A. If this seems a strange decision, and
with hindsight it certainly was, some words
about the origins of the project are in order. In
order to provide an accelerated path to market,
the beta release of the product relied on the pre-
processor provided on the target platform and
templates were not supported. Lack of template
support became an issue after a couple of early
releases and then had to be grafted on fairly
quickly. As compiler support for templates has
improved, and especially with the advent of STL,
the template support in the analyser needed re-
vising.

Most aspects of an instantiated template class are
identical to a non-template class. The template-
specific attributes of template classes, template
structs and template unions have something in
common so it seems natural to abstract these into
a class, TemplateType. Clearly a template class
must have both AbsClass and TemplateType as
bases. Because of the demands of source code
analysis (rather than compilation), it is reason-
able to enquire of a type whether or not it is an
instantiated template. This leads to the observa-
tion that TemplateType should be derived from
AbsType and so we have a mixin diamond – see
figure 3. A secondary observation is that this
approach makes it easy to support template
namespaces and enums should either of those
become common vendor extensions.

Next time
I’ll leave you to ponder the impact of changing
the original hierarchy in this way and next time
I’ll discuss some of those implications and the
difficulties I encountered.

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

Compiler updates
by Francis Glassborow

From the state of my postbag (electronic and
snail) it seems that none of you use anything
other than compilers for PC based operating sys-
tems. I know this isn’t the case and I find it sad
that those using other hardware assume that re-
ports on their development systems are unneces-
sary. A couple of years ago I had a telephone call
from a software house in Wales. They wanted to
know if there was a compiler for C on an Apple
Mac. As it happened I could give them an answer
but it was then, and would be now, far from the
kind of comprehensive run down on the choices
available that I can give if asked about PC
C/C++ development systems. You may think that
nobody would be interested in your choice of
development tools – this results in people mak-
ing ill-informed decisions because they do not
know they have a choice.

Compilers for small machines
As far as I know, it is no longer possible to buy
the kind of development software that will run
on an old machine such as an Amstrad 1640.

AbsClass
TemplateType

ClassType

TemplateClass

Figure 3: Template types

 Overload – Issue 12 – February 1996

 Page 10

Worse still, your choice is pretty limited if you
only have a 386 with 4Mbytes of RAM and a
couple of hundred megabytes of disk space. Of
course the professional will be using something
with much more clout but what about the
young/old enthusiast or those trying to develop
their skills at home. Many of these have to make
do with older equipment and now find that
C/C++ programming tools want more hardware
than they have?

Thoughtlessly I recycled all the disks of earlier
versions of C/C++ compilers so I am in no posi-
tion to help when someone rings up with a prob-
lem. Now don’t all rush to send me your old,
dust-gathering boxes of Bor-
land/Microsoft/Symantec/Whatever C/C++ de-
velopment tools, but please do not destroy them
yet. I will shortly be trying to organise a register
of old software so that next time someone comes
looking for C on an Atari 800 or whatever I will
be able to point them at a source.

Visual C++ 4.0
Finally I managed to put aside a long weekend to
dig into this product and give it something of a
workout. I booted up Windows NT 3.51 (a much
better product than its predecessors) and set
about installing it. A day later and after several
uninstall/reinstall cycles I was no further for-
ward. Each time I clicked on the Microsoft De-
veloper Studio Icon I got the same, deeply
frustrating, application error message: ‘instruc-
tion at ... referenced memory at ... The memory
could not be written.’ I finally rang Microsoft’s
PR people (who more than earn their keep) and
they tried to get me some technical support so
that my weekend would not be wasted. That was
11am on a Friday, Microsoft did not get back to
me. No doubt the problem is something silly but
the end result is that they have missed the time
slot and you will have to wait till next time.
Well, not quite, because one of you emailed me
the following:
int main() {
 int i=0;
 i->i();
}

with the statement that VC++ 4.0, with warnings
set to level 4, compiled it without even a mur-
mur. Many of us have the (bad) habit of using a
compiler to validate the syntax of our programs.
With the ever increasing visual complexity that
things such as STL introduce into our source
code we certainly need some tool to help us. Not

only must a compiler correctly compile our cor-
rectly written code, it must not compile non-
sense. I can speculate why this problem is
happening but until I can get my copy to install
and work I cannot explore any further.

The real problem with examples such as this is
that they undermine our confidence in our tools.
When code does not behave correctly there re-
mains the nagging doubt that the fault is not
ours.

Borland C++ and other things
The current version of this is 4.53 (and we have
Turbo C++ for Windows 4.5, the DOS version is
still 3.1, and is likely to remain so). Borland have
also released Code Guard that is supposed to
provide some run time checking on memory us-
age etc. They promised to send me a version but
it has yet to arrive. Perhaps they have decided to
wait until some of the initial reported problems
have been solved.

Version 5.0 is still on the runway, warming up
for its launch. As C++ now makes some heavy
demands on the skills of implementors I would
not be surprised to find that it (like VC++) suf-
fers from some obscure behaviour. What many
of those who moan about the time it is taking to
get a Standard agreed for C++ fail to realise is
that unless the ‘corner cases’ are sorted out it is
impossible to write a lexer and parser that always
does what the human programmer expects. Com-
pilers cannot use human insight based on a mix-
ture of context and experience. Going back to the
example above, any experienced C++ program-
mer knows (without having to do a formal analy-
sis) that the code is wrong. The only way that the
compiler can know the same is by applying a set
of formal, deterministic rules to the code. As
these rules beome more and more complex to
deal with such problems as template type pa-
rameters having to cater for both builtins and
user-defined types the potential for wrong an-
swers increases dramatically.

As an aside, I think that the logic of templates is
increasingly pushing us towards accepting what
many have wanted: make builtin types classes
(indeed, I have been heard to suggest even more
radical changes such as making all classes tem-
plate classes, just that some have an empty tem-
plate parameter list).

As well as working on the continuing develop-
ment of Delphi (version 2 is due out shortly) and
their C++ tools (note that future versions of Del-

 Overload – Issue 12 – February 1996

 Page 11

phi are compiled by Delphi, and future versions
of Borland C++ will be compiled by them-
selves), Borland have also made a strong com-
mitment to provide Java development tools. It
seems that Borland are returning to their roots –
providing high quality, relatively low cost, de-
velopment tools.

Symantec C++ 7.2(1)
All who are registered owners of 7.0 should now
have received their free upgrade to 7.2. Its heavy
demand for hardware resources is no more severe
than VC++ 2.0 and upwards. If you want to work
in mixed 16-bit and 32-bit development this
product is a strong competitor for the Borland
products. The IDDE takes some getting used to,
but it grows on you and provides an excellent
working environment.

Now what about that parenthetical (1)? Soon
after 7.2 had been released the continuing work
on the product resulted in a bundle of further
bug-fixes and refinements. These are all bundled
into a single 4 megabyte archive of patch tools. It
is available by ftp from ftp.symantec.com. This
is probably best fetched early on a Sunday morn-
ing, after the Americans have gone to bed and
before too many Europeans have got up (the site
is particularly busy at the time of writing because
of Symantec’s release of a free virus-tool for
Windows NT).

Now once you have upgraded to 7.21 another
facility becomes available, Java applet and pro-
gram development in the same environment. At
the time of writing this is only an alpha version
heavily based on Sun’s beta version of Java. This
comes (by ftp from the same site) in a substantial
5 megabyte archive to upgrade 7.21 to ‘Ex-
presso’ (complete with start-up picture of a
steaming cup). Unfortunately, when I followed
the instructions everything unpacked happily but
with long filenames converted to default 16-bit
FAT ones (8.3 style). It may be something that I
do not understand about using Windows NT, but
nothing I could do would remedy the problem.
Fortunately, I already had Sun’s beta version
with proper (required by Java) long names.
Copying that directory tree in to replace the Java
tree in SC almost fixed the problem, a bit of a
clean up (being careful with project files, which
were only in the Symantec version) and I had it
all up and running. Symantec say they will
shortly fix the name problem (they seem to be-
lieve that it will work with FAT style names, all I

can say is that I tried and it doesn’t on my sys-
tem).

The upshot is that I have not only a nice C++
development environment, but one that will sup-
port my programming in Java in the same envi-
ronment. It is only an alpha release and so there
are some limitations but it gives some of us a
head start.

Wrapping up
Notice that in every case I have had to mention
inadequacies and too often ones that suggest
some complacency within the producing com-
pany. If only every company could behave as if
it were running second and needed to work hard
for first place all might benefit. ‘It’s good
enough’ is not good enough. Even ‘It’s the best’
is not enough. Only ‘It works, and does what is
specified’ will satisfy me and nothing less should
satisfy you. None of us have time to waste sort-
ing out problems from a sloppy finish.

Now let me hear from you.

Francis Glassborow
francis@robinton.demon.co.uk

Notes on Microsoft Visual C++
V4.0

by Alan Griffiths

At the time of writing most C++ implementa-
tions are a fair way from the language described
in the ISO draft. I can claim some familiarity
with three compilers: Symantec SC72, Borland
BC45, and Microsoft VC4. Of these, only one
(VC4) supports namespace and none of them do
templates quite right. (SC72 and BC45 exhibit
different sets of problems with templates but are
both a lot closer than Microsoft).

I am currently working on a development project
which uses the Microsoft compiler and have
been recording the problems I have encountered.
The following notes illustrate these problems and
show the work-arounds I have developed.

Exception handling
The draft language standard defines a hierarchy
of exceptions that include exception and
bad_alloc (which is thrown when new fails).
Although these are documented in the VC4 on-
line documentation they are not supported by the
run-time library. Even if you were to fix this by
modifying the runtime library (if you have a

 Overload – Issue 12 – February 1996

 Page 12

copy of VC2, the files required for their support
are provided as an example and appear to work
with VC4), the MFC library redefines the behav-
iour of new to throw a pointer to an MFC excep-
tion class CMemoryException.

This an issue if you wish to develop portable
code – on some platforms you need to deal with
bad_exception and on some with CMemoryEx-
ception*. (Some platforms throw xalloc, but that
can be dealt with by a typedef.) This is not a
place for a critique of the MFC library design,
but it should be obvious that libraries should not
modify the behaviour of global entities (such as
the new operator).

Implicit type conversions
class Thing;
class ThingHandle {
public:
 ThingHandle(Thing* pt = 0) : rep(pt)
{}
 ThingHandle&
 operator=(const ThingHandle& h)
 { rep = h.rep; return *this; }

private:
 Thing* rep;
};

void f() {
 ThingHandle h;
 // ...
 h = 0; // VC4 “cannot convert from
 // ‘const int’ to
‘ThingHandle’
}

According to the standard 0 may be converted to
a ThingHandle by the constructor and the as-
signment operator used. According to the on-line
help, this inability to treat a 0 as a pointer is a
change made for conformance to the “draft ANSI
standard” – this apparently spurious claim is
made for a number of the problems discussed in
these notes.

Templates and nested classes
It took me a long time to work out the name
binding rules for template instantiation applied
by the Microsoft compiler. In C++ they are con-
fusing enough: a name is either bound in the
scope of its use in the template declaration (if it
does not depend on the template parameter) or in
the scope of the template instantiation. In VC4
the latter is replaced by the global scope at the
point of the template instantiation. This affects
the following code:
#include <vector.h>
// fix for MSVC++:
#if defined(_MSC_VER) && (_MSC_VER <=
1000)

 template<class T> class Class_Value {
 public:
 Class_Value() {}
 Class_Value(const T& t) : v(t) {}

 private:
 T v;
 };
#endif

template<class T> class Class {
public:
// correct code for other compilers:
#if !(defined(_MSC_VER) && \
 (_MSC_VER <= 1000))
 class Value {
 public:
 Value() {}
 Value(const T& t) : v(t) {}

 private:
 T v;
 };
#else
 typedef ::Class_Value<T> Value;
#endif
 Value f(const T& t) const { return t;
}
private:
 vector<Value> array;
 // without the fix, VC4 says:
vector.cpp(90) : error C2065: ‘Value’ :
undeclared identifer
};

Templates and namespaces
There are a number of areas in the draft standard
that are far from clear; those dealing with tem-
plates and their interaction with namespaces are
amongst them. I cannot claim therefore that the
following code conforms (although I consider
that it’s OK and any possible problem lies in the
wording of the draft – from his comments I think
Sean agrees).
#include <vector.h>
namespace MyNameSpace {
 template<class T> class Element {
 public: T t;
 };

 template<class T> class Container {
 public:
 vector<MyNameSpace::Element<T> >
array;
 };
}

// fix for MSVC++:
#if defined(_MSC_VER) && (_MSC_VER <=
1000)
 using MyNameSpace::Element<int>;
#endif
typedef MyNameSpace::Element<int>

MyIntElement;
typedef MyNameSpace::Container<int>

MyIntContainer;
int main() {
 MyIntContainer collection;
 MyIntElement e;
 e.t = 1;

 Overload – Issue 12 – February 1996

 Page 13

 collection.array.push_back(e);

 return 0;
}

Without the using-declaration, VC4 says:
name.cpp(53) : error C2065:
‘Element<int>‘ : undeclared identifier

Throw or return
The Microsoft compiler does not believe that
throw terminates a function, thus following
every throw there needs to be a return that pro-
vides some spurious value. This requirement is
not always easy to accomodate, for example:
MDataSourceManager&
MDataSourceManager::theInstance()
{
 throw MX::NotImplemented(__FILE__,
 __LINE__);
}

testfreq.cpp(725) : error C2561:
‘theInstance’ : function must return a
value

Covariant return types
A long time ago the C++ rules for overloading
functions were changed so that, given suitable
“conformance” requirements the return type
could differ (an example of using this feature is

shown below). This change has not found is way
into VC4.

The idea is that code which has a Derived pointer
may use the return value from makeClone di-
rectly as a Derived pointer (without requiring a
downcast).
class Base {
public:
 virtual Base* makeClone();
};

class Derived : public Base {
public:
 // this should be legal:
 virtual Derived* makeClone();
};

testfreq.cpp(394) : error C2555:
‘MTestColumnDetails::makeClone’ :
overriding virtual function differs from
‘MColumnDetails::makeClone’ only by
return type or calling convention

Alan Griffiths
Senior Systems Consultant

CCN Group Limited
agriffiths@ma.ccngroup.com

© CCN Group Limited, 1996. ACCU have been
granted unlimited rights to publish and distribute
this article.

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

In the absence of an international meeting since the last issue, I focus closer to home on the work of
IST/5/-/21.

A UK perspective
by Sean A. Corfield

I’ve mentioned in several preceding columns the
schedule for standardisation of C++. We are cur-
rently in the process of resolving National Body
comments from the first Committee Draft Ballot.
In March, the joint committee meets in Santa
Cruz to complete resolution of that first ballot
and produce the document that will go forward
as the second Committee Draft for balloting dur-
ing the middle of 1996. This meeting will be
hosted by Borland.

The UK C++ panel, IST/5/-/21, continues to
meet every couple of months to discuss issues
within the draft with which we are unhappy. So
far, the panel have produced a database of sev-
eral hundred issues from a review of clauses 1-12

of the first Committee Draft. It’s a mammoth job.
In order to complete the review of clauses 13
(Overloading) to 27 (Input/output library), the
panel have allocated one or two clauses each to
reviewers who have volunteered to go through
them with a fine-toothed comb.

Sticklers
The UK have a reputation for being sticklers for
detail where standards are concerned and, al-
though some members of the joint committee
find our approach unnecessarily pedantic, there
are many people who are pleased that someone is
willing to dot the ‘i’s and cross the ‘t’s.

Progress has generally been very good on the
UK issues. Many issues are editorial – fine
wordsmithing – and therefore non-controversial.
Most of the technical issues have been taken up
by one or other of the technical working groups

 Overload – Issue 12 – February 1996

 Page 14

within the joint committee. A couple of termino-
logical issues are proving more difficult to re-
solve:

• linkage – C introduced external and internal
linkage purely because it didn’t have a
proper mechanism to partition the global
name space. C++ has namespace, precisely
for this purpose, which renders much of the
linkage terminology (inherited from C) as
excess baggage. The UK are investigating
how a rewrite of the relevant clauses of the
draft to reflect this improvement over C
would look;

• lvalue/rvalue – these terms had relatively
clear meanings in C (and other languages)
but C++ introduces object-rvalues which
have many of the properties of lvalues. The
UK has long felt that the draft could be made
clearer by introducing a third term (e.g.,
“ovalue”) to describe this hybrid. Again, the
UK are investigating exactly what impact on
the draft such a change of terminology
would have.

In both cases, the UK position has support within
the joint committee but the concern is that it may
be too late to make such changes. The UK panel
has been asked to do the analysis and write up

the changes as formal proposals to ease the
workload of the joint committee.

Public reviews
For some countries, notably the USA, the CD
ballot signifies a public review. ANSI received
many public comments on the draft during 1995.
A second CD ballot will mean a second public
review for ANSI with, hopefully, lots more con-
structive comments from their public. The rules
in the UK are somewhat different: a public re-
view is conducted only once the document
reaches the Draft International Standard stage.
However, the UK panel are keen to collect com-
ments on the draft at any stage and welcome ac-
tive new members. For more details about
joining the UK panel, contact the convenor,
Richard DeMorgan mailto:demorgan@
parallax.co.uk, or if you want to discuss techni-
cal issues contact myself, Francis or Steve
Rumsby mailto:steve@maths.warwick.ac.uk –
Steve is the maintainer of the UK C++ informa-
tion web site http://www.maths.warwick.
ac.uk/c++

Sean A. Corfield
Technical Director

Object Consultancy Services
ocs@corf.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

Ulrich Breymann shows how RTTI provides an elegant solution to a common problem, Kevlin Henney
looks at how to generalise a simple transformation and continues his series on template techniques, and
Roger Lever rounds off his development of debugging classes.

An implementation pattern us-
ing RTTI

by Uli Breymann

Run-time type information (usually abbreviated
to RTTI) has been available in C++ for some
time. There are applications where RTTI allows
a much more elegant design and has additional
advantages from an object-oriented viewpoint.
This is shown here by a simple example.

What is Run-Time Type Information
(RTTI)?
The extension to add the capability of run time
type information to C++ was proposed by
Stroustrup in 1991 and adopted by the Standards

Committee March 1993 [1]. By means of the
operators typeid and dynamic_cast is it possible
to determine the polymorphic type of an object at
run time. Polymorph objects are represented in
C++ by pointers and by references. Example:
class Base { /* ... */ };
class Derived : public Base { /* ... */
};

Base *p1, *p2;
p1 = new Base;
if (some_special_runtime_condition)
 p2 = new Derived;
else
 p2 = new Base;

The type of the two pointers is Base*, however,
we are interested in the type of the objects (*p1,
*p2) they point to. The * operation (dereferenc-
ing) yields a reference to the object to which the

 Overload – Issue 12 – February 1996

 Page 15

pointer is pointing. The static type of *p1 and
*p2 is Base, as well as the polymorphic type of
*p1. However, the polymorphic type of *p2 de-
pends on some run-time condition and may pos-
sibly be Derived. It cannot be determined at
compile time.

Before coming to the main subject of the article,
I will explain in short the dynamic_cast operator
and typeid().

The dynamic_cast operator
The RTTI mechanism allows a safe type cast
from a base class to a specialised (derived) class
(downcast). Polymorphic behavior is assumed,
i.e., inheritance and dynamic or late binding.
This holds for pointers as well as for references.
class Base { /* ... */ };
class Derived : public Base { /* ... */
};

Base *p = new Derived;
Derived *pA;
pA = p; //
error!
pA = dynamic_cast<Derived*>(p); // ok!

The type cast is safe because it is checked at run-
time whether the pointer p is connected to an
object of type Derived. In that case the address of
the object is returned, otherwise 0 is returned.

Unlike pointers, references cannot have unde-
fined values. If the argument of dynamic_cast is
not of the same or derived type, dynamic_cast
will throw an exception of type bad_cast.
Base BaseObj;
Derived DerivedObj;
Derived& X = // ok!

dynamic_cast<Derived&>(DerivedObj);
Derived& Y = //
exception!
 dynamic_cast<Derived&>(BaseObj);

The typeid operator
The typeid operator returns an object of type
type_info. That is the reason why typeinfo.h has
to be included. The argument of typeid() can be
an object or a class. However, the static type of
the argument is not of importance, but its poly-
morphic type at run-time:
void f(const Base& X)
{
 if (typeid(Derived) == typeid(X))
 cout << “X is of polymorphic type”
 << “‘Derived’”;
 else ...
}

An implementation pattern
Here we show how the operators typeid and dy-
namic_cast, which had been invented for RTTI,
work in a typical example. In this example a pat-
tern is used which can easily be modified for dif-
ferent purposes. The pattern is suitable for binary
member functions having polymorphic parame-
ters, whose execution makes sense only if caller
and parameters are of the same type. Binary
means that one parameter is necessary in addi-
tion to the calling object. Often the type of po-
lymorphic objects can be determined at run-time
only.

The pattern can be used in virtual member func-
tions (methods) of a class. It is well applicable to
implement the CHAIN OF RESPONSIBILITY pat-
tern [2]. We will use the property of the dy-
namic_cast operator of throwing an exception in
case of “wrong” types (listing 1).
Void
Derived::binaryMethod(const Base& param)
{
 try
 {
 const Derived& X =
 dynamic_cast<const
Derived&>(param);
 // Here goes code working with X
and
 // the object which called this
 // function. This code is specific
for
 // Derived objects.
 // ...
 }

 catch(bad_cast)
 {
 // ... do nothing or error message
 }
}

Pattern of a method (listing 1)

Typical candidates for methods of this kind are
the copy assignment operator=() (see [4]) and
the relational operators, e.g., operator==(), but
you can think of other functions. We choose the
boolean equality operator for simplicity. Suppose
there is a class Base from which two classes A
and B are derived. Classes A and B differ by the
number and the values of their private data which
can be made visible by calling the method show()
(listing 2).
#define bool int
#define true 1
#define false 0
#include <iostream.h>

class Base
{
public:
 // pure virtual functions

 Overload – Issue 12 – February 1996

 Page 16

 virtual bool operator==(const Base&)
 const =
0;
 virtual void show() const = 0;
};

class A : public Base
{
public:
 A(int i)
 : AValue(i) {};
 virtual bool operator==(const Base&)

const;
 virtual void show() const
 {
 cout << “A: “ << AValue << endl;
 }
private: int AValue;
};

class B : public Base
{
public:
 B(int i1, int i2)
 : B1Value(i1), B2Value(i2) {};
 virtual bool operator==(const Base&)

const;
 virtual void show() const
 {
 cout << “B: “ << B1Value << ‘\t’
 << B2Value << endl;
 }
private: int B1Value, B2Value;
};

Declaration of classes Base, A and B (listing 2)

The implementation of the equality operator as-
sumes that two objects are not equal anyway if
they differ in type. Therefore error handling is
not required in the catch clause (listing 3).
#Include <typeinfo.h>
// translate ANSI/ISO C++ : bad_cast
// to Borland C++ 4.5 : Bad_cast
#define bad_cast Bad_cast

bool
A::operator==(const Base& object) const
{
 try
 {
 const A& compareWith =
 dynamic_cast<const
A&>(object);
 // comparison makes sense for class
A
 // objects only
 return AValue == compareWith.AValue;
 }

 catch(bad_cast)
 {
 return false;
 }
}

bool
B::operator==(const Base& object) const
{
 try
 {
 const B& compareWith =

 dynamic_cast<const
B&>(object);
 // comparison makes sense for class
B
 // objects only
 return B1Value ==
compareWith.B1Value
 && B2Value ==
compareWith.B2Value;
 }

 catch(bad_cast)
 {
 return false;
 }
}

Implementation of operator==() (listing 3)

The common base class makes it possible to
manage heterogenous, dynamic A and B objects
by means of a container if the container elements
are pointers of type Base* which point to the
objects. This is quite a common way to do this,
e.g., a group of graphical objects in a CAD sys-
tem (computer aided design). Listing 4 shows the
possibilities to get run-time type information.
First a container taking Base* objects is declared.
Then the container is partly filled and its con-
tents shown. Instead of taking the vector tem-
plate you can use a normal C array.
#include ... // (class declaration of A
 // and B)
#include <vector.t>
 // vector class template (see e.g.
[3])

void showContainer(const
Vector<Base*>&);
 // see below

void deleteElement(
 Vector<Base*>&, const
Base&);
 // see below

int main()
{
 Vector<Base*> Container(10);
 Container.init(0);

 // fill Container with 10 different
 // elements
 int i;
 for(i=0; i< 5; i++)
 Container[i] = new A(i);
 for(; i< 10; i++)
 Container[i] = new B(1,i);
 showContainer(Container);

 cout << “show B objects only” <<
endl;
 for(i = 0; i < Container.size();
i++)
 if(Container[i]
 && typeid(*Container[i]) ==

typeid(B))
 Container[i]->show();
 cin.get();
 A anA(3);
 cout << “look for A(3) ”

 Overload – Issue 12 – February 1996

 Page 17

 << “and remove from container”
 << endl;
 deleteElement(Container, anA);
 B aB(1, 8);
 cout << “look for B(1,8) ”
 << “and remove from container”
 << endl;
 deleteElement(Container, aB);
 showContainer(Container);
}

void showContainer(const Vector<Base*>&
V)
{
 for (int i = 0; i < V.size(); i++)
 if(V[i]) V[i]->show();
}

void deleteElement(
 Vector<Base*>& V, const Base& what)
{
 for(int i = 0; i < V.size(); i++)
 if(V[i] && *V[i] == what)
 // polymorphic call of
==
 {
 delete V[i];
 V[i] = 0;
 }
}

main() shows the possibilities of run-time type
information (listing 4)

Operator typeid comes into play if we want ac-
cess only to objects of a certain type. In our ex-
ample only objects of class B are shown on
standard output.

The following lines show how objects of distinct
types can be removed from the container by the
method deleteElement() which expects a parame-
ter of type const Base& for the object to be
compared. Therefore we can pass all kinds of
objects to the method provided that they are of
type Base or derived from Base.

The line
 *V[i] == what

is to be understood as follows: V[i] is a pointer to
an object of type A or B (in our example). Con-
sequently *V[i] is a reference to the object, by
which the equality operator for exactly this ob-
ject is called, thanks to the virtual mechanism:
 (*V[i]).operator==(what);

Advantages and disadvantages of
RTTI
Clearly a disadvantage is the possibility that an
error may not be detected until the execution of a
program. Type checking at compile time is gen-
erally preferred. Sometimes, however, type
checking at run-time allows much more elegant
solutions which are nevertheless safe, as shown

here. In our example with objects of heteroge-
nous types the compiler guarantees that all con-
tainer elements are derived from Base, and the
check at run time within the equality operator
yields correctly either true or false.

The advantages become clear if we think of real-
izing the example without typeid() and dy-
namic_cast. A special type management would
be necessary which is outlined here.

First the class Base and all classes derived from
it need a virtual function whichType() which re-
turns the object’s type, which can be coded as an
enumeration (enum objectType { AType, BType
}). Hence the possible types have to be known
when the base class is written.

In the second place it would not be possible to
use virtual equality operators, because virtual
methods have identical parameter lists, and a
downcast is not feasible. Therefore the equality
operators must have a parameter of class type,
for example for class A: operator==(const A&).

Yet to check equality with operator==, one can
think of a global operator (listing 5):
// in base.h
enum objectType {AType, BType};

// global function as an alternative for
// typeid()
objectType whichType(const Base& X)
{
 return X.whichType();
 // polymorphic call of
whichType
}

bool operator==(
 const Base& lhs, const Base& rhs)
{
 if(lhs.whichType() != rhs.whichType())
 return false; // definitively not
equal
 switch(lhs.whichType())
 {
 case AType:
 return ((A&) lhs == (A&) rhs);

 case BType:
 return ((B&) lhs == (B&) rhs);

 default:
 cerr << “unknown type!” << endl;
 }
 return false;
}

Part of necessary modifications if there is no
RTTI (listing 5)

The global function whichType() calls the correct
method having the same name by means of the
virtual mechanism. According to the determined
type the correct equality operator is called for the

 Overload – Issue 12 – February 1996

 Page 18

object. The type casts to A& and B& are ugly,
but safe because of interrogating the type before.

Of course, main() has to be modified, too. The
disadvantages compared to using RTTI are
summarized here:

• The type of an object has to be known in
advance. Above all, extension by additional
classes derived from Base is possible only if
the enumeration type objectType is also ex-
tended. For that purpose a file belonging to
the base class has to be modified!

• The global operator==() has to be supple-
mented each time another class is added.

• The application program (here main()) has to
be modified possibly at many places.

An extension by additional classes derived from
Base therefore entails changes at many places
and thus involves the risk of inconsistencies. Us-
ing run-time type information makes all this su-
perfluous.

Using RTTI places only one requirement upon
subsequently derived classes: the adherence to
the interface of the virtual operator==(const
Base&).

The way of applying RTTI shown above can be
used for all methods which have a parameter of
their own class (dynamic type) and which are to
be used in a polymorphic manner.

Dr Ulrich Breymann
breymann@alf.zfn.uni-bremen.de

References
[1] Bjarne Stroustrup: The Design and

Evolution of C++, Addison-Wesley
1994

[2] Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides: Design Pat-
terns, Addison-Wesley 1994

[3] Ulrich Breymann, Nigel Hughes:
Composite Templates and Inheritance,
C++ Report 7(7), September 1995, pp.
32 - 40, 76

[4] Ulrich Breymann: A deeper look at
copy assignment, Overload 11/1995

[5] Stan Lippman: Pointers versus Refer-
ences. C++ Report 6(6), July 1994,
pp. 42 - 45

Rot in L
by Kevlin Henney

The rot13 encryption algorithm is a simple but
effective method for obfuscating text against
casual reading – it is not even remotely secure,
so you won’t win money from Netscape for dis-
covering this! Its principle application is for en-
coding text placed in a public place that might
otherwise be found offensive by others, for ex-
ample in a post to a newsgroup. The reader must
make a conscious effort to decode it.

The cutest feature of rot13 is that applying it
twice to a piece of text is the identity operation,
i.e., the encode and decode algorithm are one and
the same. The English 26 letter alphabet is used
and you simply rotate each letter in the text
through it by 13 places. All other characters are
left as is – in spite of Asterix et al’s best efforts,
it is hard to offend with only punctuation and
digits at your disposal.

Assuming a character set that supports an or-
dered, continuous alphabet encoding, here is a
little map function that does the job for us:
char rot13(char value)
{
 return unsigned(value - ‘A’) < 26
 ? ‘A’ + (value - ‘A’ + 13) % 26 :
 unsigned(value - ‘a’) < 26
 ? ‘a’ + (value - ‘a’ + 13) % 26
:
 value;
}

In a future /tmp/late/* column I will be covering
value constraint techniques that can be applied
here to check that this particular implementation
will not accidentally be compiled on a platform
using something like EBCDIC. Before some of
you put finger to keyboard: no, using the pre-
processor is not the correct solution.

For a given character set you could write a more
efficient implementation using array look up, i.e.,
a predefined array of encoded character codes
looked up on the unencoded character. Typing
this table out is tedious for ASCII, but I would
humbly suggest that any character set larger than
this is better handled using the code above. Oh,
and if you do use table look up don’t forget to
cast to unsigned char to index the array.

So what can we encode? Obviously a char to a
char. So how about a string to a string:
string rot13(const string &source)
{
 string result(source);

 Overload – Issue 12 – February 1996

 Page 19

 for(size_t at = 0;
 at < result.size();
 ++at)
 result[at] = rot13(result[at]);
 return result;
}

Should we be returning by value? Or should we
be changing the string in place:
void rot13(string &result)
{
 for(size_t at = 0;
 at< result.size();
 ++at)
 result[at] = rot13(result[at]);
}

Overloading on both of these is an exceptionally
bad idea, creating the kind of confusion George
Wendle was talking about in Overloading on
const is wrong, Overload 6.

What about raw C strings? Lists of char?
Streams? The list is open ended, suggesting that
a new rot13 function overloaded for each new
type is not the way to go. The solution is to build
on the general algorithm and container frame-
work of the STL – the “L” in the title of this arti-
cle (and indeed its motivation).

To transform a string in place:
transform(
 for_encode.begin(),
for_encode.end(),
 for_encode.begin(), ptr_fun(rot13));

Into another string of sufficient size:
transform(
 unencoded.begin(), unencoded.end(),
 encoded.begin(), ptr_fun(rot13));

Over an existing array:
transform(
 char_array,
 char_array + sizeof char_array,
 char_array, ptr_fun(rot13));

You get the idea. Now some words of explana-
tion. The transform template function takes two
iterators that define the sequential range of the
input. They refer to the first and one past the last
elements. These are input iterators which may be
used for single pass algorithms. They must sup-
port at least operator* for reading and opera-
tor++ operations [see Seduction: The Last? in
Overload 9]. The third argument to transform is
an output iterator to where the output characters
are written, and which is incremented after each
value is assigned.

The final argument is the transforming function –
or, more accurately, functional object. The
ptr_fun function relies on template type deduc-

tion to take a conventional function pointer and
return an object of
pointer_to_unary_function<char, char>. The
pointer_to_unary_function class is an adaptor
class enabling function pointers to be used with
STL algorithms that use functional objects. As it
appears in the standard:
template<class Arg, class Result>
class pointer_to_unary_function :
 public unary_function<Arg, Result>
{
public:
 explicit pointer_to_unary_function(
 Result
(*)(Arg));
 Result operator()(const Arg &)
const;
};

The base class is merely a non-polymorphic
place holder:
template<class Arg, class Result>
struct unary_function
{
 typedef Arg argument_type;
 typedef Result result_type;
};

See /tmp/late/* in this issue for some comments
on template parameter style – in this respect the
working paper for the standard could do better.

Finally, a program of use. Iterators are available
on IOStream objects, so the following gives you
a program that allows you to rot13 the standard
input to the standard output.
int main()
{
 transform(
 istream_iterator<char>(cin),
 istream_iterator<char>(),
 ostream_iterator<char>(cout),
 ptr_fun(rot13));
 return 0;
}

An example of use would be on UNIX to email a
conundrum to someone with the solution ap-
pended in rot13:
(cat problem;
 echo ‘solution:’;
 rot13 < solution) |
 mail -s’conundrum’ someone

Kevlin Henney
kevlin@two-sdg.demon.co.uk

Simple classes for debugging in
C++ – Part 3
by Roger Lever

Part 2 covered quite a bit of ground such as using
macro magic, the canonical class form, virtual

 Overload – Issue 12 – February 1996

 Page 20

destructors, new and delete operators and collec-
tions. RNLI is in serious danger of becoming use-
ful!

Still to be completed in Part 3:

• Provide some heap walking capability to
“see” what’s in memory

• Provide some random check capability
within ‘main’

• Output debugging information to a file

Heapwalking
This conjures images of tightrope walking and in
some senses is probably more dangerous! Within
RNLI the hard work has already been done – col-
lecting the heap items into a list. Consequently,
all that needs to be done is to add the following
declarations:
class RNLI {
public: // as before ...
 void showHeap(void) const;
 void showStack(void) const;
 void showMemory(void) const;
};

To walk through the items in the Heap list:
void RNLI::showHeap(void) const {
 RNLI* nextItem;
 for(RNLI* ptr = rnliHeap;
 ptr; ptr = nextItem) {
 cout << “Heap object at “ << ptr
 << endl;
 nextItem = ptr->next;
 }
}

Clearly showStack() would be very similar and
showMemory() would simply call both of these
functions. Visions of extending this to include
named objects, sizes or maybe garbage collection
or memory compaction are premature – remem-
ber that some simplifying assumptions were
made to ease building RNLI. For those who
missed Part 2, one important assumption was that
the global new operator was not being over-
loaded for another class.

To see the output would require main() to in-
clude:
 ptrD->showMemory();

Giving the following output (your addresses may
be different):
Heap object at 0x1732
Stack object at 0xffee

Of course, seeing pointer addresses is perhaps
not the easiest way of summarising the contents
of the Heap. It would be simple to add a static

count to help identify any mismatch in numbers
of objects.

More macro magic
Part 2 outlined the technique for using macro
magic to either add or remove RNLI from the
final code based on the value of a flag variable.
This can be extended to pepper the runtime code
with random checks. Using this approach satis-
fies a need to actually provide status CHECKs of
code in main(). This can be achieved by:
#ifdef CHECK_ON
 #define USE_CHECK : public RNLI
 #define CHECK_MEMORY(aPtr)
 \
 (aPtr->showMemory())
#else
 #define USE_CHECK
 #define CHECK_MEMORY(aPtr) ((void)0)
#endif

Within main() the ptrD->showMemory() call can
be replaced with:
 CHECK_MEMORY(ptrD);

This mechanism now enables RNLI’s dominion
to extend outside of its own class declaration and
definition and provide random checks of the state
of memory. However, it could be improved:
 #define CHECK(aPtr) (aPtr->isValid() ?
\
 (void)0 : (aPtr->dumpMemory())

This macro expands to check the pointer using
the isValid() capability. If isValid() returns OK
the program continues, if it fails the program
outputs memory and exits with the error line and
module name. The dumpMemory() would show-
Memory() and then do whatever cleanup was
necessary before exiting the program. Kinder
souls could provide diagnostic messages and al-
low the program to struggle on.

Naturally these random checks could be used
within Base and Derived, however, some sort of
control needs to be exercised. It would be some-
what farcical if the source contained more debug
code than code for instance!

Output to a file
Onto the last milestone! RNLI currently outputs
to the screen, not the best place to output debug
information unless the program has just crashed.
The usual place to put it is in a file and an obvi-
ous implementation is:
class RNLI { // file: rnli.h
 // as before
private:
 static Out2Disk* output;

 Overload – Issue 12 – February 1996

 Page 21

};

class Out2Disk { // file: 2diskcpp.h
public:
 Out2Disk(char* filename = “dump.txt”)
 { out.open(filename, ios::app); }
 // append, may be useful for
comparison
 // to a previous session
 ~Out2Disk(void)
 { out.close();}
 void dump(const char* from,
 void* str, size_t size)
 { out << from << “ is at “
 << str << “ size “ << size
 << “ bytes” << endl; }
 // Other overloaded dump functions
private:
 ofstream out;
};

The class name was chosen to show the write
only operation that RNLI performs and to give no
indication of being able to read from files. The
designed intent is that RNLI only write out de-
bugging information – it cannot read it back in or
parse it for analysis. The pointer is used to show
that the class declaration does not contain the
Out2Disk object but uses it. This also provides a
level of freedom regarding the implementation of
Out2Disk.

This uses a technique that Stroustrup describes as
initialisation is resource acquisition. Obtaining
the resource as an object which enables the ex-
ploitation of the C++ destructor to remove the
object at the appropriate time, releasing that re-
source safely. This is very simple and powerful
and is the foundation of many other techniques.

Paradise Lost
The original C++ version of Out2Disk was not
closing the file properly: If the program encoun-
tered an error the file was very likely to disap-
pear. Changing the static initialisation to use the
cerr stream instead of a file gave a clue as to
what was happening. The output would simply
stop in the middle of printing a sentence. It ap-
peared that during an ‘Abnormal program termi-
nation’ the stream was not guaranteed to
complete its operation before it too was destruc-
ted. It was as a result of this that I started to use a
C version instead:
class Out2Disk {
public:
 Out2Disk(char* filename = “dump.txt”)
 { out = fopen(filename, “a”);
 assert(out); }
 ~Out2Disk(void)
 { fclose(out); }
 void dump(const char* astring)
 { fprintf(out, “%s\n”, astring); }
private:
 FILE* out;

 // Prevent automatic assignment
operator
 // and copy constructor
 Out2Disk& operator=(const Out2Disk&
o);
 Out2Disk(const Out2Disk& o);
};

This did complete correctly during an abnormal
crash. For practical purposes the Out2Disk class
is the same since the interface remains constant.
The implementation is very similar except it uses
the stdio equivalents of iostream.

Paradise Regained
Mixing C and C++ like this was not satisfactory
and prompted more investigation...

Checking the details on the lifetime of static ob-
jects in C++ FAQ I came across a mechanism
which indirectly dealt with the problem. The
crux of the matter is to treat the file as a local
resource which is destroyed before the class or
file scope static objects. This can be done by re-
placing the declaration with a function which
returns a reference to a local scope static object
that is contained inside the functions. The decla-
ration therefore changes:
 static Out2Disk* output;
 // old
declaration
 static Out2Disk& output();
 // new
declaration

Comparing the two implementation styles:
 output->dump(“Output string”)
 // static Out2Disk*
output
 output().dump(“Output string”)
 // static Out2Disk&
output()

Using this technique resolved the problem of the
stream disappearing prematurely and enabled the
use of the iostream version of Out2Disk! Now
when the program crashed the stream would
complete its operation to the disk file and then
clean up the rest of the objects before exiting
completely. This was considerably more satisfy-
ing than mixing C and C++.

Hmm, anyone care to hazard a guess why
Roger found this to be the case? It sounds
very compiler specific to me as I would not
expect a stdio file to flush correctly when a
program crashed, nor would I expect local
static objects to be correctly destroyed in or-
der. BTW, the functions-for-static-objects
technique is highly recommended since it

 Overload – Issue 12 – February 1996

 Page 22

avoids all sorts of nasty order-of-
initialisation problems – Ed.

What was not done in RNLI
Now that RNLI is virtually complete in terms of
its original objectives it would be useful to make
a few comments about what was not included
and why not.

No other constructors are provided for RNLI, the
obvious other one being a named object i.e.,
RNLI(char* namedObject) or perhaps
RNLI(string namedObject). Currently the class
Base is derived from RNLI and since Base does
not know about RNLI the default constructor of
RNLI is used. To pass a name to RNLI the Base
class would need to know about RNLI and use an
initialisation list to pass that name. To hide the
use of name from Base would require that the
macro box of tricks is used again as a substitu-
tion mechanism like USE_CHECK. However,
what about Derived? How is a name passed from
Derived to RNLI via Base? The level of com-
plexity of these macros would multiply out of
control.

There are no protected members since I do not
expect to derive a class from RNLI which might
need a protected interface. Even if another class
were to be derived the need for protected access
is questionable.

Mutators are not defined, functions capable of
changing the object state. The designed intention
is to report state not change it.

Additonal members for RNLI. At the moment
RNLI has achieved a balance of simplicity versus
functionality I would describe it as minimal but
complete! Well it is a subjective measure:-)

Summary
This mini series of articles started out by noting
some of the most common C++ problems;
pointer and memory errors such as:

a) Memory leaks (such as a new without a cor-
responding delete)

b) Deleting the same pointer again (probably
corrupting the heap)

c) Wild pointers (the pointed to object no
longer exists)

The debug class RNLI was built up from scratch
and in the process a number of interesting topics
were touched on such as approach to design,

static variables, the canonical class, operators
new and delete and virtual destructors.

The end result is that some of the original objec-
tives have been met:

• Provide some macro magic to automatically
include/remove code

• Differentiate memory allocated via the heap

• Provide some heap walking capability to
“see” what’s in memory

• Provide some random check capability
within ‘main’

• Output debugging information to a file

However, creating a debugging class was not the
overall objective. That was a convenient vehicle
to understand some of the processes that are go-
ing on in a C++ program. If you find some use(s)
for RNLI or decide to extend it – that’s fine, but
remember that there are plenty of full featured
tools already which target this area in a great
deal more depth.

Roger Lever
rnl16616@ggr.co.uk

In Overload 13, Roger will return to look at
the application which motivated the design of
RNLI – Ed.

Heapwalking problems
by Sean A. Corfield

In Overload 11, I claimed there was a bug in
Roger’s RNLI class and asked if anyone could
spot it. No-one wrote in so I shall explain the bug
myself.

Spot the bug
Consider the linked list that RNLI builds during
construction and manipulates during destruction
– what exactly happens given the following se-
quence of news and deletes?
Base* p1 = new Derived;
Base* p2 = new Derived;
delete p1;
Base* p3 = new Derived;

Debugging line by line
Let’s trace through each line, watching rnliHeap
and the next pointer in each object:

To start with, rnliHeap is zero.
Base* p1 = new Derived;

 Overload – Issue 12 – February 1996

 Page 23

Now rnliHeap and p1 both point to the new ob-
ject and p1->me == p1, p1->next == 0.
Base* p2 = new Derived;

We are building the linked list, rnliHeap == p2,
p2->me == p2, p2->next == p1.
delete p1;

In the destructor, we change rnliHeap to p1-
>next (zero) and then set p1->me to zero. This
leaves p2 pointing at the non-existent object pre-
viously pointed at by p1! p2 is orphaned from
the heap list at this point.
Base* p3 = new Derived;

The constructor now chains this new object onto
the (incomplete) heap list and... I think you get
the idea!

Fixing the problem
The key here is that objects may not be destroyed
in the reverse order of creation if they are on the
heap. An object being destroyed may be any-
where in the heap list so the choices are:

1. walk down the heap each time to locate and
unthread the object being destroyed,

2. use a doubly-linked list to ease removal of
objects from the middle of the list.

The former would probably be extremely slow
but the code is simpler. I leave it as an exercise
to modify RNLI to use a doubly-linked list.

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

/tmp/late/*
Constraining template

parameter types
by Kevlin Henney

All that genuinely constrains what type may be
given as a parameter for a template function or
class is the way it is used in the program text.
There is no assumption on the part of the com-
piler that there is more about the given type that
may be checked in advance of its use in executa-
ble code.

This is at once both a strength and a weakness of
C++’s template mechanism: a strength in that
otherwise unrelated types with a similar set of
operations may be used, e.g., int, double and
complex<float> all support binary operator+; a

weakness because use of a function name with a
type for which that function is not defined is
typically not detected until link time, often with
an obscure error message.

Sometimes it is obvious what operations on a
type are expected. For instance, the complex<>
template class expects some kind of numeric that
supports standard arithmetic operations. We ex-
pect complex<long double> and com-
plex<rational> to be legitimate, but not
complex<string> or complex<window>.

I think the following stands a good chance of
working – Ed.

complex<string> msg1(“hi”,
“good”);
complex<string> msg2(“ya”,
“bye”);
msg1 += msg2;
cout << msg1 << endl;

Providing reasonable names for template pa-
rameters can go some way to clarifying what is
intended. For a numeric type, such as required by
complex<> and valarray<>, numeric or nu-
meric_type are more helpful names than either
type or T, which incorrectly suggest that a more
general type is acceptable.

It is possible to be yet more precise using some
form of specification, as the STL has done, out-
lining minimum requirements for a type, eg., any
type used with a container class must have an
assignment operator and a copy constructor,
amonst other things. Such documentation is ex-
ternal to the code, but is nonetheless useful.

On the whole most type substitution errors, and
certainly all those relating to function signatures,
will be picked up by link time. The techniques
outlined above merely help in prevention. The
errors that slip through tend to be semantic con-
straints that may not manifest themselves until
run time. We may have very good reasons for
restricting the expected type, e.g., where memory
management, persistence, low level mapping, or
mixed language programming are issues.

Elaborate
Until recently the class keyword has been the
only way to introduce a type name in a template
argument list. Out of the original C virtue of
keyword conservation, class was pressed into
service to indicate any type in this context and
not just a user defined type.

 Overload – Issue 12 – February 1996

 Page 24

Having a minimal set of keywords is an ideal
that ended up on the cutting room floor some
time back. There is now a better candidate for the
job, typename, and it is one that developers
should use in preference to class when a class
type is not necessarily required.
template<typename numeric_type> ...

clearly reads more accurately than
template<class numeric_type> ...

Originally introduced for different reasons, in
this context the typename keyword is somewhat
self explanatory – the use of class to represent
type names other than classes always requires
explanation.

It would help matters if the draft standard it-
self used typename in template specifications
where appropriate – Ed.

One hopes that history will consign this use of
class to the dustbin; eventually when class is
used it will mean just that. There is, however, a
technique that may currently be used to constrain
a template type argument in this fashion:
template<class value_type>
class container_of_class
{
public:
 typedef class value_type value_type;
 ...
};

I have used class in the template argument list
here because I actually mean it [NB: whenever I
use the word class, I am also referring to struct].
By elaborating it later with the class keyword I
have constrained it to not be a built-in type, a
union or an enum. The same trick works with
elaborating as union or enum, although in these
cases typename should be used in the argument
list as neither union nor enum received the same
privilege as class in this context.

A typedef of a user defined type name as itself is
harmless and often pointless except for compati-
bility with C code, i.e.,
typedef struct type {...} type;

However, in the container_of_class<> example
above it has the effect of exporting the template
parameter as a public member of the class. It
would otherwise be visible only within the class
scope.

Of course, the key to the technique is the elabo-
ration, wherever it occurs, and the export tech-

nique is simply another useful technique which
does not in itself require elaboration. You may
decide to use different names, to make this
typedef private, or to just use the elaboration at
one or more points where the type is used within
the class definition. This is needed particularly
where a template function rather than a class is
being constrained.

Arithmetic types
We may have something like the opposite re-
quirement: the type parameter must be a built-in
arithmetic type (int, char, double, enum, bool,
unsigned long, etc.). To enforce this constraint
we need some feature of the language that ac-
cepts all of these types and no others.

Looking closely we see that all of these can be
assigned, using either implicit or explicit casts,
the value 0. We can use a dummy variable that in
some way depends on this value:
template<typename arithmetic>
class some_numeric
{
 ...
private:
 // template parameter type constraint
 enum { constraint = int(arithmetic(0))
};
};

The cast to an int is to cater for the floating point
types. This class will only compile when the ex-
pression initialising the enum constant is legal.
As the constant is a dummy value, and hence not
intended for use, I have made it private with a
hopefully meaningful name as documentation –
such techniques rely on generating errors at build
time, so this is quite important.

Integral types
If we are interested only in integral types (arith-
metic types excluding the floating point types),
we could simply remove the cast to int used in
the previous example. Alternatively we can use
another context where only integral types are
permitted: bit fields. Here it is convenient to en-
capsulate the constraint in a class:
template<typename integral>
class integral_only
{
private:
 integral : 0;
};

An anonymous alignment field is used to enforce
the constraint in an otherwise functionality-free
class. We would use it as follows:
template<typename integral>

 Overload – Issue 12 – February 1996

 Page 25

class some_class
{
 ...
private:
 // template parameter type
constraint
 static const integral_only<integral>

constraint;
};

To be strictly correct we also need a definition
for constraint, not shown here.

The constraint variable is never accessed, so it is
possible that on some existing systems it will
simply be ignored and the constraint will go un-
checked. If this is the case either reference it
somewhere else, doing nothing with it, or move
the static from class to block scope in a function
guaranteed to be called, e.g., a constructor or
destructor.

Some systems even allow you to get away with a
completely stateless constraint. Merely mention-
ing the constraint type in a typedef is enough to
cause attempted template instantiation, and thus
validation of the constraint:
template<typename integral>
class some_class
{
 ...
private:
 // non-portable constraint
 typedef integral_only<integral>

constraint;
};

However, it is unwise to rely on this as many
other systems do not bother instantiating the
template unless it is used to define an object.

Integers only
What if we genuinely only want integer types,
i.e., the integrals excluding enums? One solution
would be to take the solution just given, give the
bit field a size, name it, and initialise it to 0 in a
dummy constructor. Because of the stronger typ-
ing in C++ this is not a legal assignment for
enums and it will only compile for genuine
built-in integer types.

Alternatively we can take advantage of the, rela-
tively recent, addition to the language of static
const initialisers within a class definition. These
are only valid for integral types and must be ini-
tialised by compile time constants. We also avoid
executing any code as a consequence of intro-
ducing a constraint – true, that a constructor ini-
tialising a bit field is not a great cause for
concern, but we would rather not introduce any

executable code as a consequence of our type
checking efforts.
template<typename int_type>
class ints_only
{
 ...
private:
 // template parameter type
constraint
 static const int_type constraint =
0;
};

Again the use of a 0 excludes enums. Thus the
following types are legal:
ints_only<int>
ints_only<unsigned char>
ints_only<bool>

And the following are not:
ints_only<double>
ints_only<void*>
ints_only<string>

Derived classes
A common requirement would be to constrain a
class parameter to be derived from a particular
class. In other words, constrained genericity
similar to that found in languages like Eiffel.
Some may be tempted to use assert and RTTI,
but this is an abuse of both these features. The
errors are of static type and, as such, are stati-
cally detectable with a little lateral thinking. The
technique here is again to use dummy statics and
create a general purpose constraint class:
template<class base, class derived>
class subclass
{
private:
 static const base* const
substitutable;
 static const size_t not_void =

sizeof(base);
};

The key to the substitutability constraint is in its
definition:
template<class base, class derived>
const base* const
 subclass<base, derived>::substitutable
=
 (const derived*) 0;

The explicit cast ensures that derived is either
base or a class derived from it, otherwise it will
fail to build. The other constant is simply there to
ensure that base is not void, since a pointer to
any type is certainly substitutable for a pointer to
void but it is illegal to take sizeof(void).

Assuming sensible naming, the following are
legal:

 Overload – Issue 12 – February 1996

 Page 26

subclass<window, graph_display>
subclass<socket_address,
internet_address>
subclass<ostream, ofstream>

And the following are not:
subclass<void, any>
subclass<long, int>
subclass<window, text>

Summary
The key to all the techniques described here is in
forcing a failed build: static error detection is far
superior to dynamic error detection. Where this

involves operational compatibility it is clearly
quite simple, and is the basis of C++’s template
system. For our other constraints we can use,
quite literally, a more declarative approach and
in such a way that also acts as a form of docu-
mentation.

Enforcing compile time constraints using tem-
plates is a theme I will be returning to in future
articles.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

editor << letters;
It seems you took my admonitions in Overload 11 to heart! It’s interesting to note that many of the letters I
have received are concerned with Microsoft’s latest release.

Sean,

Can you or any of your readers recommend a
book which properly covers the creation of
Doc/View applications in Borland C++, prefera-
bly utilising the AppExpert and ClassExpert. (I
use 4.0, but will probably move to >=4.5 fairly
soon). None of the books I have found (including
Borland’s own) seem to recognise the existance
of AppExpert and ClassExpert, and none of them
give more than a paragraph on the Doc/View
system, along the lines of “derive a class from
TView, one from TDocument and put them to-
gether with TDocManager and then everything is
easy”. In fact ClassExpert gives you the option
of deriving from various other classes such as
TListView and TFileDocument, but then leaves
you with no idea of what functions these classes
supply and what members should be overridden
to provide your specific functionality. I generally
find ClassExpert a very useful tool, with its list
of the virtual functions for the class under devel-
opment, but it seems to fall down with mutliply-
derived classes such as TListView. It is very frus-
trating to have tools to make things easy, but the
books only tell you how to do it the hard way.

Any suggestions would be appreciated.

Dave Midgley
100117.2522@compuserve.com

I can’t help so over to the readers – any
takers?

Hello Sean

On Java:

I for one would be interested in seeing Overload
contain a ‘Java Corner’. A rationale follows: I
would agree with The Harpist’s comment that
Java (based on C/C++) can co-exist quite happily
with other languages like C or C++ without re-
placing them. Since it is based on C++ I would
view it as appropriate for Overload where some-
thing like Delphi (based on Pascal) is not.

On languages:

It seems to me that developers generally would
like that one tool (ABC or XYZ programming
language), that can be used for everything –
hence the talk of using ABC or XYZ. However,
it appears more typical, certainly in a corporate
environment, that the developer will use ABC
and (maybe) XYZ dependent on requirement.
The bottom line must surely be a choice based on
fitness for purpose of that tool, in combination
with the strategic and tactical issues that that
choice involves.

On developer expertise:

When I first started to look at programming lan-
guages I was convinced that it was essential to be
an ‘expert’ in one of them and largely to the ex-
clusion of all others. This was surely better than
being a jack-of-all and master-of-none? How-
ever, that view has changed to: have a good un-
derstanding of the key languages (2 or 3), their
strengths and weaknesses and match this, where
possible, against requirements. Choosing the
right tool for the job.

 Overload – Issue 12 – February 1996

 Page 27

On programming situations:

Programming is a complex business and contrary
to some popular opinion it is not getting easier.
One only has to look at the connectivity, con-
figuration, integration and usability issues of
modern applications to recognise that there are
vast areas of uncharted territory. As program-
ming technology advances so does requirement,
in a never ending spiral!

As technology and ideas advance, programming
languages evolve to support the new paradigm –
C++ is an obvious recent example. As a devel-
oper it is important to leverage that – where ap-
propriate. Conversely it is important not to be
dragged off course, tangentially chasing every
new advance. Extremes, as always, are rarely the
best course.

Client/Server as a paradigm is here and has been
adopted by many businesses, Client/Network
heralded by the Internet and languages such as
Java are visible on the horizon. It is important
that developers have a good understanding of its
merit and based on that knowledge decide on
extending their understanding to an in-depth
knowledge.

There is an intentional bias towards the devel-
oper here, or the person(s) involved in writing
applications since it is important that

a) Project decisions are influenced by both the
business and developers

b) Decisions are timely and based on a sound
understanding of requirement, technical ca-
pability, business impact

c) Technical skills in the current market are
maintained

Change is the only constant – it needs to be man-
aged, by everyone.

Roger Lever
rnl16616@ggr.co.uk

As editor I would welcome contributions
on Java – I have started looking at the
language but, sadly, HotJava is not yet
available for my favoured platform (al-
though it is apparently in alpha testing
internally).

As an adjunct to Roger’s, very reason-
able, comment that we as developers
should be aware of more than one lan-
guage/tool, it should probably be noted
that the development environment is of-

ten chosen by corporate policy rather
than by the more sensible “fitness for
purpose” line of thinking. One company
at which I worked used a mixture of C,
Prolog and 4GLs to achieve their re-
quirements, carefully picking the best
tool for each part of the project. Corpo-
rate policy dictating, say, Microsoft Vis-
ual C++ 2.0 for all tasks does no-one
any favours (and I’m not, for once, pick-
ing on Microsoft – it’s just the first ex-
ample to come to mind).

The following exchange of letters was
between Chris Simons and Andrew King
(of Microsoft) and copied to Overload –
it follows on from correspondence in
Overload 10 and Overload 11.

Hi Sean and Andrew,

I read and enjoyed Overload 11 – lots of goodies
as ever :-)

I note with interest Andrew’s letter to the editor
saying that upgrading to VC++ 4 will ‘be a win-
ner’ with STL. It’s uncanny then that this week
my compiler was upgraded to VC++ 4 and so I
dived straight into STL.

Except that it’s not part of the install procedure...

One has to:

1) manually copy the files

2) #define NOMINMAX to prevent clash with
windows macros,

3) create a namespace to wrap STL headers,

4) perform 23 edits in four files.

Good job the readme was clear!

Frankly, I’d hardly call this install ‘on to a win-
ner’ :-/

I’ve still got problems intergrating with pre-
existing project code (which, of course, cannot
be altered. sigh). Something to do with #in-
cludeing header files within a namespace defini-
tion and elsewhere – perhaps preprocessor
multiple include guards? More research required
there I guess.

Chris Simons
cl-simon@csm.uwe.ac.uk

Hi,

 Overload – Issue 12 – February 1996

 Page 28

The version of STL Microsoft shipped was a
public domain version. We were, therefore, un-
able to alter the sources. Yes, sadly there is some
setup work to do in integrating STL, but it’s 1) a
known quantity; and 2) a lot more benefit than if
we had said to ourselves, “this might be time
consuming to do, we’ll just not include STL.”
Remember, the mods to STL happen only once.
You can reuse the code over and over again.

On the subject of SETUP, if you look at the CD,
there is a file called autorun.exe. This should
automatically run under Win95 when you put the
disc in the drive. Under Windows NT you can
just run it (Windows NT doesn’t have “spin and
grin” yet for CDs). It’s a master setup and it of-
fers to install (i.e., copy) STL to your hard disk.

Hope you like VisualC++ 4.0.

Andrew King
andrewki@microsoft.com

Hi Sean,

Might further feedback on VC++4.0 and STL be
of interest?

Installing VC++4 and STL for use with existing
project code has proved a challenge. The order of
#include directives across multiple source files
has proved critical if STL is put in a namespace
as Microsoft recommend, thus
namespace stl
{
 #include <vector.h>
 // etc. etc.
}

When any STL file includes, for example, <io-
stream>, streams then become part of the STL
namespace, but also cannot then be included
once more in the global namespace due to pre-
processor multiple inclusion guards. Careful
analysis of the order of header file inclusion has
been required to overcome this.

The issue is much less problematic when classes
declared in namespaces reside within preproces-
sor multiple redefinition guards.

Come to think of it, shouldn’t MFC be in its own
namespace and STL at global scope?

Pip-pip,

Chris Simons
cl-simon@csm.uwe.ac.uk

Well, STL (and other components of the
standard library) should all be in the std
namespace but I agree that proprietary
third-party libraries such as MFC
should be in a vendor-specific name-
space – that is, after all, what name-
space was designed for.

I will resist commenting on Andrew’s
claim that Microsoft could not alter the
public domain STL source code, except
to note that other compiler vendors seem
able to ship a version that works out-of-
the-box with their compilers. I would be
interested to hear the real reason that
Microsoft felt it acceptable to ship such
a hack without going through proper QA
and integration procedures – they had
clearly spent some time ensuring that a
modified version of STL would work with
STL (up to a point, as Chris’s second let-
ter shows).

Sean,

In Overload 11 you asked about whinges re MS
VC4.

I didn’t really, but I’m always glad to
hear of people’s experiences with com-
mercial products!

The following is the help given on one of the
warnings from this compiler:
C++ Exception Specification ignored

A function was declared using exception
specification. At this time the
implementation details of exception
specification have not been
standardized, and are accepted but not
implemented in Microsoft Visual C++.
Code compiled with ignored exception
specifications may need to be recompiled
and linked to be reused in future
versions supporting exception
specifications. You can avoid this
warning by using the warning pragma:

#pragma warning(disable : 4290)

Of course, MSVC4 does support the draft stan-
dard exceptions – except where it has not been
“standardized”. ;-)

I tried the above advice which does remove the
error message, but the following fragment still
doesn’t compile:
class string
{
public:
 // Exceptions

 Overload – Issue 12 – February 1996

 Page 29

 class outofrange
 : public exception
 { public: outofrange(); };
 class lengtherror
 : public exception
 { public: lengtherror(); };
 // Constructors
 string() throw(bad_alloc);
 string(const string& s)
 throw(bad_alloc);
error C2146: syntax error : missing ‘;’
before identifier ‘string’

Commenting out the throw declarations does
eliminate the problems. :-(

I’ll try to get you a proper report early Jan
(unless you have another, faster, source).

FYI, it looks from the header files and help as
though the May ‘94 draft is the last one MS
looked at. (e.g., xalloc, not bad_alloc). OTOH
some of the library source mentions bad_alloc in
comments. All very confusing.

Alan Griffiths
Senior Systems Consultant

CCN Group Limited
agriffiths@ma.ccngroup.com

Alan’s report on using Microsoft Visual
C++ v4.0 appears elsewhere in this is-
sue.

The missing ‘;’ bug can be fixed by put-
ting two semicolons after the throw spec
of a constructor:
string() throw(bad_alloc);;

I am indebted to Andy Sawyer
<andys@thone.demon.co.uk> for pro-
viding this insight!

Hi,

What I have found is that the compiler that
comes with Microsoft Visual C++ 4.0 produces
an output value of 12. [for the code below] This
is the value associated with the variable in the
namespace. From your article, and the draft stan-
dard, I expected the value to be 67. Have I inter-
preted something wrong or is the Microsoft
compiler failing to implement this feature cor-
rectly. Any and all information would be greatly
appreciated!
#include <iostream.h>
namespace A
{
 int j = 12;
};

double j = 90.90;
void main()
{
 int j = 67;
 if (j)
 {
 using namespace A;
 cout << j << endl;
 }
}

Jay
jayc@smtpgate.tais.com

Microsoft have implemented the using-
directive incorrectly. They are in good
company as Metaware and Program-
ming Research both implement the above
example in the same way. However, their
excuse is that they implemented name-
spaces nearly three years ago when the
draft wasn’t clear on this.

++puzzle;
In Overload 11 Francis set a puzzle for everyone to have a go at. The winning entry appears below fol-
lowed by a discussion of design issues by Francis.

Handling dates with locale
based day and month

information
by John Smart

As the only entry, though not what I was
really after, John wins the copy of ‘The
Mythical Man Month’ – Francis

This is an implementation of dates that allows
them to be externally represented in a variety of

locale based textual formats. The design could, I
believe, be used as a model for a multi-calendar
date system as noted below.

The classes used in this implementation are:

Dates A concrete class holding a date as a
serial day value. Provides compact in-
ternal storage for dates with fast arith-
metic operations, e.g., comparisons,
subtraction and adjustment by number
of days.

DateText A class holding a locale based set of
constant Calendar texts.

 Overload – Issue 12 – February 1996

 Page 30

DateFormat
A class that associates a DateText in-
stance with a date formatting string
and the size of buffer required to hold
an instance of a date in the supplied
format.

CalendarTime
A concrete class holding calendar time
(a value of time_t from <time.h>).
This represents time in seconds since
1/1/1904 (on a Mac)

DateIn A class supporting the input of Dates
in a format specified by a DateFormat
object.

Formatter
A general purpose class that supports
the interpretation of formatting strings.
It generalises the implementation of
DateFormat. This class is described in
an issue of Overload 6.

The five date related classes do not use inheri-
tance. The design of these classes is described
below.

class Dates
struct tm;
class DateFormat;

class Dates {
 unsigned long serial_days;
public:
 Dates(int day, int month, int
year);
 Dates(int day_in_year, int year);
 Dates(void);
 const char * operator
 ()(DateFormat&);
 Dates operator ++(void);
 Dates operator --(void);
 int invalid(void);
 int operator < (Dates rhs) {
 return (serial_days <
 rhs.serial_days);};
 int operator > (Dates rhs) {
 return (serial_days >
 rhs.serial_days);};
 int operator <= (Dates rhs) {
 return (serial_days <=
 rhs.serial_days);};
 int operator >= (Dates rhs) {
 return (serial_days >=
 rhs.serial_days);};
 int operator == (Dates rhs) {
 return (serial_days ==
 rhs.serial_days);};
 int operator != (Dates rhs) {
 return (serial_days !=
 rhs.serial_days);};
 int operator - (Dates rhs) {
 return (serial_days -
 rhs.serial_days);};
 Dates operator += (int);
 //add days to a date
 Dates operator -= (int);

 //subtract days from a
date
 tm decompose(void);
};

It holds a date in its Serial Day representation
(unsigned long). This representation has been
described in a article in .EXE a couple of years
ago. I have used an algorithm published in that
article to convert between Serial Days and the
Gregorian Calendar that is valid for dates be-
tween 1st March 1900 and 28th February 2100
(Year 2100 is not a leap year). The article also
published algorithms that coped with a much
larger range of dates.

Its constructors accept day of month, month
number and year as integer values or number of
days since 1st January and year as integers. Any
integer values will be accepted and converted
into a serial days value. However, if the resulting
value is outside of the range of supported dates
(1/3/1900 to 28/2/2100) the value held will rep-
resent the date of 29/2/1900 (an invalid date!)
and this value, once established, will not change.
The invalid() member function can be used to
identify an invalid date.

The default constructor creates the current date
through the use of the ANSI C Library functions
localtime(&time(NULL))

The arithmetic and relational operators are pro-
vided to support the use of Dates class objects.
The operator +(int) and operator -(int) are
omitted to avoid the use of friends to provide
commutative addition and subtraction.

The Dates::decompose() function converts a se-
rial day value into the standard ANSI C struct
tm (see <time.h>) so that the existing facilities of
<time.h> may be applied to a date. There is no
date constructor accepting a tm value since it is
not necessary and avoids having to deal with
possibly inconsistent data; the constructor
Dates(x.tm_yday, x.tm_year + 1900) can be used
instead.

Note that all the private functions used to imple-
ment the public interface are simple non-class
static functions since they only operate on built
in types; they do not need pollute the class defi-
nition.

The member function, Dates::operator ()(Date-
Format&), converts a date into a constant char*
according to the data supplied by the DateFor-
mat parameter. It allows any Dates object to be
converted into any desired textual representation.

 Overload – Issue 12 – February 1996

 Page 31

class CalendarTime
#include <time.h>

class DateFormat;

struct CalendarTime {
 time_t calendartime;
 CalendarTime()
 : calendartime(time(NULL)) {};
 CalendarTime(time_t t)
 : calendartime(t) {};
 const char * operator
 ()(DateFormat&);
};

This class encapsulates a time_t value so that it
may be output using a DateFormat object and
read in with a DateIn object. A full implementa-
tion would provide arithmetic and comparison
operations.

class DateFormat
class DateText;

struct DateFormat {
 char const *const a_format;
 DateText & the_text;
 char *const buffer;
 const int size;
public:
 DateFormat(char const *const,
 DateText&, int
buffer_size);
 ~DateFormat();
};

This has a single constructor that requires:

1 A date formatting string,

2 A DateText object

3 The size of the buffer that will accommodate
a date formatted according to the formatting
string and the text supplied by the DateText
object.

All the members of this class are constants.

This constructor allocates a buffer of the speci-
fied size as a member of the constructed object; it
is deleted by the destructor. This allocation
means that the use of DateFormat objects is not
thread-safe; see the description of the class
LongDate for a solution to this problem.

The formatting string uses the format specifiers
defined for the ANSI C function strftime(), in-
cluding H, M & S, plus the format specifier
‘%D’ which appends an ordinal suffix to the day
of the month e.g., 1st, 2nd, 3rd, 4th, 21st etc.

The formatting string also supports the width,
justification, fill and repetition facilities imple-
mented by the Formatter class.

Thus the formatting string: "%9A, %2D %9B
%Y @ %2_0H:%2_0M:%2_0S" generates the
text: “Thursday, 4th January 1996 @ 00:00:00”.

The text to be used for the generation is specified
by the DateText object.

struct DateText
#include <time.h>

class Dates;
class CalendarTime;
class istream;

struct DateText {
 const char *const
 full_month_names[12];
 const char *const
 short_month_names[12];
 const char *const
 full_day_names[7];
 const char *const
 short_day_names[7];
 const char *const
 ordinal_suffix[31];
 const char *const
 am_pm_text[2];
 const char *
 outForm(Dates
 ,const char *const
format
 ,char *const
buffer
 ,int size)
const;
 const char *
 outForm(CalendarTime,
 const char *const
format
 ,char *const
buffer
 ,int size)
const;
 int inForm(tm&
 ,const char *const format
 ,char *const buffer
 ,int size
 ,istream& source)
const;
private:
 const char *
 outForm(tm&
 ,const char *const
format
 ,char *const buffer
 ,int size) const;
};

By making the class members arrays I can ensure
that the right number of values are supplied. The
members are all public so that a DateText decla-
ration may be simply initialised (see Calendar-
DateNames.cp). In case the user does not supply
enough elements for any of these arrays the im-
plementation that reads these values should rec-
ognise NULL elements and use a fixed default
string.

 Overload – Issue 12 – February 1996

The DateText class consists of constant arrays of constant strings which provide:

full_month_names[12] The twelve month names

short_month_names[12] The twelve abbreviated month names

full_day_names[7] The seven names for the days of the week

short_month_names[7] The seven abbreviated day names

ordinal_suffix[31] The 31 possible ordinal suffices

am_pm_text[2] The am/pm text for hours in the day

 Page 32

I have not found a way of inhibiting the user
from declaring an uninitialised object of the class
DateText. Is it possible in C++ to ensure that
these constant objects are always initialised
without the overhead of providing constructors
(which may not be able to tell whether the arrays
have enough members)?

The only solution I can think of is to provide a
constructor that requires 71 const char *const
parameters (one for each element of each array!).
I don’t like the runtime overhead this incurs
compared with ordinary initialisation being done
before execution.

Objects of class DateText can be declared for any
locale that uses the Gregorian Calendar; the file
CalendarDateNames.cp contains declarations for
English, French and German names

For Calendars that are not Gregorian an equiva-
lent class of constant arrays of constant strings
could be defined. A class could then be derived
from Dates that knows how to convert serial
days into the numerical values used by another
Calendar and these values can then be used to
look up its external representation. One could
even devise another form of date formatting
string to parameterise the external representation.
The same design model can still be used. All it
relies upon is the fact that dates are always calcu-
lated in days.

The member functions DateText::outForm() ac-
cept a Dates or CalendarTime object together
with a formatting string and the address and size
of a buffer into which the textual representation
will be written and returned. The user is respon-
sible for the management of the supplied buffer.

The member functions DateText::inForm() trans-
lates an input stream into a tm structure accord-
ing to the supplied formatting string and its
member’s text strings.

class DateIn
#include <time.h>

#include "Dates.h"
#include "CalendarTime.h"

class istream;
class DateFormat;

class DateIn {
 Dates date;
 time_t time;
 int input_error;
public:
 tm details;
 DateIn(istream&, DateFormat&);
 operator Dates(void) {return
date;};
 operator CalendarTime(void)
 {return
time;};
 int invalid(void)
 {return
input_error;};
};

This class provides the interface whereby dates,
textually represented in the format described by a
DateForm object, can be converted into their
internal representation.

The constructor reads the text from the istream
using the formatting string and textual names
supplied by the DateForm. The values read are
placed in the public member ‘details’. The con-
version operators Dates and CalendarTime can
then be used to convert the value into internal
form.

The DateIn::invalid() operation can be used to
discover whether there were any errors during
the input conversion. If there were then the cor-
responding members of details will be negative.
The user of this class is thereby able to build ap-
propriate diagnostics into the application. Con-
verting an erroneous DateIn into a Dates values
will always succeed but may generate the invalid
Dates object; this is also generated when the in-
put date is out of range.

The use of the above classes
The user of Dates may create initialised Dates
and manipulate and store them very efficiently.

To handle the external representation for these
Dates the user can declare a variety of date for-

 Overload – Issue 12 – February 1996

 Page 33

matting strings and any number of locale based
DateText objects. These may be combined into
any set of DateForm objects of the user’s choice.
These objects and their members are prime can-
didates for inclusion in a namespace rather than
being global objects.

The member function Dates::operator ()(Date-
Form&) can then be invoked to translate any
Dates object according to any of DateForm ob-
jects. Similarly the constructor
DateIn::DateIn(istream&, DateForm&) can be
used to translate text into a Dates and/or Calen-
darTime object.

If, for a particular context, it is required that all
Dates are externally represented in a single for-
mat then a class may be derived from Dates
which encapsulates the required formatting inter-
face. An implementation of this approach is
shown by the class LongDate which provides the
friend operations: ostream& operator
<<(ostream&, LongDate); and istream& opera-
tor >>(istream&, LongDate); so that a LongDate
can be used with the standard streams interface.
The required DateForm is held as a static data
member so that a LongDate object is just as effi-
cient as a Dates object.
#include "Dates.h"

class DateFormat;
class ostream;
class istream;

class LongDate : Dates {
 static DateFormat longDateText;
public:
 LongDate(int day, int month,
 int year)
 : Dates(day, month, year) {};
 LongDate(int day_in_year, int
year)
 : Dates(day_in_year, year) {};
 LongDate(void) {};
 LongDate(const Dates& d)
 : Dates(d) {};

friend ostream& operator <<(ostream& os,
 LongDate
ld)
 {return (os <<

ld(LongDate::longDateText));};
friend istream& operator >>(istream& in,
 LongDate&
ld);
};

The operator <<() implemented by LongDate
simply encapsulates the call of the
Dates::operator()(DateForm&). This is not
thread-safe but the following would be:
ostream&
operator <<(ostream& os, LongDate ld) {

 char * buffer = new

char[LongDate::longDateText.size];
 os << LongDate::longDateText.
 the_text.outForm
 (ld

,LongDate::longDateText.a_format
 ,buffer
 ,LongDate::longDateText.size
);
 delete[] buffer;
 return os;
}

This dynamically allocates the buffer before the
call of DateText::outForm() as an argument to
ostream::operator <<(ostream&, char*). After
the text has been copied into the ostream object
the buffer is released. For non-threading applica-
tions I don’t think the overhead of dynamically
allocating/deallocating a buffer for each date
translation is necessary; that’s why the Date-
Format constructor allocates the buffer. If the
users cares to use DateText::outForm() directly
they can even provide a statically allocated
buffer explicitly to achieve even more predict-
able run time performance.

An implementation of these classes supported the
following source code which generated this out-
put text:
 Monday, 25th December 1995 ==
 Mon, 25/Dec/95
 Lundi, 25me Décembre 1995 ==
 Lun, 25/Déc/95
 Montag, 25te Dezember 1995 ==
 Mont, 25/Dez/95

The code follows:
char const *const fulldate_format =
 "%9A, %2D %9B
%Y";
char const *const shortdate_format =
 "%a,
%2d/%b/%y";

extern DateText EnglishDateNames;
extern DateText FrenchDateNames;
extern DateText GermanDateNames;

DateFormat Full_English
(fulldate_format,

EnglishDateNames,40);
DateFormat
Short_English(shortdate_format,

EnglishDateNames,20);
DateFormat Full_French (fulldate_format,
 FrenchDateNames,
40);
DateFormat Short_French
(shortdate_format,
 FrenchDateNames,
20);
DateFormat Full_German (fulldate_format,
 GermanDateNames,
40);

 Overload – Issue 12 – February 1996

 Page 34

DateFormat Short_German
(shortdate_format,
 GermanDateNames,
20);

void xmas95(void) {
 static char is[] = “ == “;
 Dates xmas(25,12,1995);
 cout << xmas(Full_English) << is
 << xmas(Short_English) <<
‘\n’;
 cout << xmas(Full_French) << is
 << xmas(Short_French) << ‘\n’;
 cout << xmas(Full_German) << is
 << xmas(Short_German) << ‘\n’;
};

These classes have been implemented using Sy-
mantec for Macintosh version 7. The following
two problems (bugs?) were found during the im-
plementation:

1. An ostrstream buffer initialised with the
constructor ostrstream::ostrstream(char*
buffer, int size); never has a ‘\0’ character
terminating the text inserted. One has to fill
the buffer with zeroes before writing to it!

2. An extern const char* const xx; in one file
does not achieve external linkage to the defi-
nition: const char*const xx = “text”; in an-
other file.

John Smart
smart@baesema.demon.co.uk

On John’s second problem, the definition
needs extern in order to get external linkage
(otherwise it has internal linkage because xx
is const). On the first, although I’m not cer-
tain, I believe there is a call that terminates
the ostrstream prior to extracting the char*
string.

The code accompanying John’s article will
appear on a future CVu disk – Ed.

Making a date
by Francis Glassborow

Before we start
The following is not intended as a tutorial nor as
a definitive way of tackling the task of develop-
ing a date class. It is (despite my writing style) a
collection of partially organised thoughts about
the problem. I do not care how many formal
methods you have available to tackle design is-
sues, you will still have to go through this kind
of thinking before you start laying down an ac-
tual design. Unless you do so your work will be

plagued with constant visits to early design deci-
sions as a result of later ones (or even implemen-
tation problems).

Getting started
• Get little black book ... sorry, wrong kind of

date.

• Grow palm tree ... closer.

• Create a kernel ... sounds better.

Deep in the centre of any date object is the con-
cept of locating days in a time stream. The proc-
ess of locating requires a reference point. This is
rarely an easy point to tackle because we have to
decide what this starting point will be. In every-
day usage we often use context. When talking to
you on the phone I might say ‘I’ll see you the
day after tomorrow.’ But if I wrote something
like that in a letter, I better make sure that the
letter is dated (similar problems arise when peo-
ple leave messages on answer-phones, they as-
sume that the message will be heard on the day
that it was sent). Even if I provide a date this as-
sumes that you will be using the same calendar
that you are. There was a period in European
history when it was vital to say whether you
were using a Julian or a Gregorian calendar.

We will need some object that will store infor-
mation about where a day is located in the time
stream. This object should be conceptually inde-
pendent of any calendar system (in so far as that
can be achieved). This is the kernel of a date sys-
tem. The following are some thoughts on design-
ing such a date kernel.

The date kernel
Absolute dates
What we need is some absolute, universal refer-
ence point. The beginning of the Universe looks
like a good candidate. It is, of course, completely
impractical for our purposes. In fact all universal
reference points that I can think of are impracti-
cal. What this means is that all practical dating
mechanisms are relative to some arbitrary start-
ing point. So choose one. Today’s date (13th
January 1996) is as good as any other. Reference
all days as +/- from now. Some time we will
need to tie down what a day is and when it starts.
In other words we will need a time 0 point. Note
that not all human calendars define the same
point as the start of a day but we can leave that
for later. For the time being let us use the Gre-
gorian convention of starting a day at midnight.

 Overload – Issue 12 – February 1996

 Page 35

Now we can identify any moment as being in
day +/- x from now. So our date kernel object
will store an offset from time 0 by any mecha-
nism we finally choose.

Relative and partial dates
How should I handle such things as ‘three days
from now’ if I do not know when now is? Or ‘the
third of next month’? Or ‘June 22nd’ and so on?
We often fix things on some local relative basis
or provide only partial information relying on
context to provide the rest. Sometimes only par-
tial information makes sense. For example: ‘How
many days are there between June 3rd and No-
vember 4th?’ You would be a little surprised if a
year was included (unless the time interval
spanned years). Note that this type of question is
vulnerable to periods crossing leap days.

Let’s consider including a second data item to
handle an offset and then we could do something
like this:

Reference Offset Description

n 0 n days from base day
(13th January 1996 – Gre-
gorian Calendar)

0 n n days from an unspeci-
fied local reference

1 n n days from a context
based reference

We are beginning to go from design issues to
design decisions so I’ll break off here with the
comment that I’m aware that there is an ambigu-
ity for date (0,0) that will have to be resolved by
a convention. And give you a few examples to
help clarify the above.

• January 14th 1996 becomes (1,0),

• January 14th becomes (1, 13) – 13 days from
the contextual reference of New Year’s Day.

• The 14th becomes (0, 14) – 14 day offset
from an unspecified reference point.

And so on.

Note that this mechanism allows us to progres-
sively refine a date by using the offset until we
have a complete date when we can transfer the
offset to the reference data.

Invalid dates
These are quite distinct from partial or incom-
plete dates. For example, 13th June is incomplete

but 31st June is invalid. It is not part of the Date
kernel to determine that a date is invalid but it
must be able to store that state. We will need
some Boolean value to hold this state informa-
tion which can be set/reset by the concrete date
object.

How should this information be made available
to the outside world? The first reaction may be to
provide an enquiry function. Not bad, I could
certainly live with that. The intermediate class
designer will want to provide conversion func-
tion to convert date kernel objects to bool so that
they can write lines like:
 if (today) dosomething()

That has not been adequately thought through.
Most unfortunately bool has an automatic con-
version to arithmetic types so if you did that you
would find all sorts of statements misbehaving
(creating surprises). If you want to provide a
mechanism for date kernel objects to return their
status when used in a context where a Boolean
value is required you have to provide a conver-
sion to a void*. Return (convert to) a zero (null
pointer) for an invalid date and a non-zero (con-
ventionally this) value for a valid date. This
minimises unexpected behaviour because there
are no valid implicit conversions from void*.

This is because the bool type in C++ is bro-
ken – Ed.

Functionality issues
What should this kernel do? What access should
there be to the constructors/destructor?

Such questions as ‘How many days between...?’
and ‘What is the date 27 days before...’ are not
properties of a calendar system but of the time-
stream. So that kind of functionality should be
provided within the date kernel. (I’m fed up with
this level of precision, let’s call it ‘the kernel’).
But we should try to design it so that questions
such as ‘Does this Jewish date come before this
Islamic one?’ can be asked.

The constructor/destructor issue is a matter of
deciding just how accessible we want our kernel
to be. To answer this we need to move on to con-
sider the fundamental requirements of a (calen-
dar) date (let’s call it ‘a date’).

Putting meat round the kernel
Fundamentally we have two basic options. We
can build a date from a kernel by inheritance or

 Overload – Issue 12 – February 1996

 Page 36

we can do so by ‘layering’. The question is,
‘Does a date contain a kernel, or is it a kernel?’
One issue here is automatic conversions – not
forgetting the convenience this can provide for
parameters. Many functions you write might just
want some sort of date, any sort will do. This
favours the inheritance route.

However we could possibly want to have the
same date (kernel) held by several calendar ob-
jects. This mechanism favours using pointers or
references to kernel so that several objects can all
share the same kernel. There are a few advan-
tages to this if we want to handle multiple repre-
sentations of the same day.

Having thought about it for some time I think
that inheritance is the way to go. I am open to
persuasion and would be delighted to see other
ways of tackling this problem because I feel that
there must be alternatives that I have missed.

I have some reservations about using inheritance,
not least because I think that the kernel design is
too raw to be let loose on application program-
mers. This prods me towards having private con-
structors/destructors. However that mitigates
against being able to have pure dates (kernel ob-
jects) passed to functions. It is pointless having
an private ordinary constructor while having a
public copy constructor if you are trying to pre-
vent application programmers from creating raw
kernels because that allows construction via self-
copying. Don’t tell me this is stupid – it is, but it
is guaranteed to work. For example for any type
T where the copy constructor has not been ex-
plicitly declared as private/protected the follow-
ing is syntactically valid though semantic
rubbish:
T t = t;

Once we have determined that we are going to
base a hierarchy on the kernel we then have to
decide whether it should be polymorphic. It cer-
tainly cannot be a pure polymorph because such
concepts as weeks and months are not univer-
sally applicable. On the other hand, such things

as ‘get the date’ and ‘display the date’ are. By
the way, it is because different calendar systems
require different functionality that we cannot
solve our problem by simply having the kernel
contain a pointer to a date (many of you won’t
even have realised that was a possible solution)
which is a sort of inheritance in reverse and can
be useful when you want to change the outward
behaviour of an object – sort of polymorphic be-
haviour without using the type system, in es-
sence you manage a virtual function table.
(Aside: perhaps I can get my polymorphic object
that way.)

Problems
Designing and implementing date classes for
specific calendars can be very difficult. About
the easiest is the Islamic calendar (I think, but I
am not sure that it doesn’t have some nasty fid-
dles in some years). The Julian calendar is pretty
straight-forward, with our current Gregorian one
a little more awkward with its slightly more
complicated leap year rule. By the time you
reach the Jewish calendar you are beginning to
enter tougher territory with inter-calendar
months thrown in (sort of like leap days but
whole extra months instead). At least all these
have the concept of 7-day weeks, with months
that have their days numbered consecutively.
There are a couple of historical Indian calendars
that have missing days (sort of like leap days in
reverse) and the Aztecs used quite different reli-
gious and secular calendars, neither of which had
any concept of either a week or a year.

Something to do
I would much like to see someone implement
(having fleshed out a design) some kind of date
kernel class which could be used to develop cal-
endar specific classes. If done properly, inter-
calendar conversions become easy.

Francis Glassborow
francis@robinton.demon.co.uk

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

This information was taken from
comp.std.c++

 Overload – Issue 12 – February 1996

 Page 37

Working STL for VC++ 4.0 avail-
able

I followed Microsoft’s instructions in the STL
readme file for Visual C++ 4.0. I also added
helper code and documented solutions to com-
mon problems.

• This code is unique in that it allows STL to
work with CString.

• The code has been tested extensively with
MFC applications.

The files are available at:
ftp.rahul.net/pub/terris/stl.zip

Terris Linenbach
terris@rahul.net

 Overload – Issue 12 – February 1996

 Page 39

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS
accuads@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy
c/o 11 Foxhill Road

Reading, Berks, RG1 5QS
pippa@octopull.demon.co.uk

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author
of an article or column (not a letter or review of software or book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights. Except for licences granted to (1) Corporate Members
to copy solely for internal distribution (2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 13 (April/May) should be submitted to the editor by March
24th. Note that this is an extended deadline due to the Editor attending the joint ISO/ANSI C++ meeting.

 Overload – Issue 12 – February 1996

 Page 40

FULL PAGE ADVERT GOES HERE!

	Editorial
	We have a problem
	A missed opportunity
	More generalities
	And finally

	Software Development in C++
	So you want to be acOOmpiler writer? – part IV
	Introduction
	The type system
	Building blocks
	Mixing in templates
	Next time

	Compiler updates
	Compilers for small machines
	Visual C++ 4.0
	Borland C++ and other things
	Symantec C++ 7.2(1)
	Wrapping up

	Notes on Microsoft Visual C++ V4.0
	Exception handling
	Implicit type conversions
	Templates and nested classes
	Templates and namespaces
	Throw or return
	Covariant return types

	The Draft International C++ Standard
	A UK perspective
	Sticklers
	Public reviews

	C++ Techniques
	An implementation pattern using RTTI
	What is Run-Time Type Information (RTTI)?
	The dynamic_cast operator
	The typeid operator
	An implementation pattern
	Advantages and disadvantages of RTTI
	References

	Rot in L
	Simple classes for debugging in C++ – Part 3
	Heapwalking
	More macro magic
	Output to a file
	Paradise Lost
	Paradise Regained
	What was not done in RNLI
	Summary

	Heapwalking problems
	Spot the bug
	Debugging line by line
	Fixing the problem

	/tmp/late/*Constraining templateparameter types
	Elaborate
	Arithmetic types
	Integral types
	Integers only
	Derived classes
	Summary

	editor << letters;
	++puzzle;
	Handling dates with locale based day and monthinformation
	class Dates
	class CalendarTime
	class DateFormat
	struct DateText
	class DateIn
	The use of the above classes

	Making a date
	Before we start
	Getting started
	The date kernel
	Absolute dates
	Relative and partial dates
	Invalid dates
	Functionality issues

	Putting meat round the kernel
	Problems
	Something to do

	News & Product Releases
	Working STL for VC++ 4.0 available

